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Preface

To paraphrase a comment in the introduction to a classic point–set topology
text, this book might have been titled “What every young topologist should
know.” It grew from lecture notes we wrote while teaching algebraic topol-
ogy at Indiana University during the 1994-1995 and 1996-1997 academic
years.

The amount of algebraic topology a student of topology must learn can
be intimidating. Moreover, by their second year of graduate studies students
must make the transition from understanding simple proofs line-by-line to
understanding the overall structure of proofs of difficult theorems.

To help our students make this transition, the material in these notes
is presented in an increasingly sophisticated manner. Moreover, we found
success with the approach of having the students meet an extra session per
week during which they took turns presenting proofs of substantial theorems
and wrote lecture notes to accompany their explanations. The responsibility
of preparing and giving these lectures forced them to grapple with “the big
picture,” and also gave them the opportunity to learn how to give mathe-
matical lectures, preparing for their participation in research seminars. We
have collated a number of topics for the students to explore in these ses-
sions; they are listed as projects in the table of contents and are enumerated
below.

Our perspective in writing this book was to provide the topology grad-
uate students at Indiana University (who tend to write theses in geometric
topology) with the tools of algebraic topology they will need in their work,
to give them a sufficient background to be able to interact with and appre-
ciate the work of their homotopy theory cousins, and also to make sure that
they are exposed to the critical advances in mathematics which came about
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x Preface

with the development of topology in the years 1950-1980. The topics dis-
cussed in varying detail include homological algebra, differential topology,
algebraic K-theory, and homotopy theory. Familiarity with these topics is
important not just for a topology student, but any student of pure mathe-
matics, including the student moving towards research in geometry, algebra,
or analysis.

The prerequisites for a course based on this book include a working
knowledge of basic point–set topology, the definition of CW-complexes, fun-
damental group/covering space theory, and the construction of singular ho-
mology including the Eilenberg-Steenrod axioms. In Chapter 8, familiarity
with the basic results of differential topology is helpful. In addition, a com-
mand of basic algebra is required. The student should be familiar with the
notions of R-modules for a commutative ring R (in particular the defini-
tion of tensor products of two R-modules) as well as the structure theorem
for modules over a principal ideal domain. Furthermore, in studying non-
simply connected spaces it is necessary to work with tensor products over
(in general non-commutative) group rings, so the student should know the
definition of a right or left module over such a ring, and their tensor prod-
ucts. Basic terminology from category theory is used (sometimes casually),
such as category, functor, and natural transformation. For example, if a
theorem asserts that some map is natural the student should express this
statement in the categorical language.

In a standard first–year course in topology students might also learn
some basic homological algebra including the universal coefficient theorem,
the cellular chain complex of a CW-complex, and perhaps the ring structure
on cohomology. We have included some of this material in Chapters 1, 2,
and 3 to make the book more self–contained and because we will often have
to refer to the results. Depending on the pace of a first–year course, a course
based on this book could start with the material of Chapter 2 (Homological
Algebra), Chapter 3 (Products), or Chapter 4 (Fiber Bundles).

Chapter 6 (Fibrations, Cofibrations and Homotopy Groups) and Chap-
ter 9 (Spectral Sequences) form the core of the material; any second–year
course should cover this material. Geometric topologists must understand
how to work with non simply–connected spaces, and so Chapter 5 (Homol-
ogy with Local Coefficients) is fundamental in this regard. The material
in Chapters 7 (Obstruction Theory and Eilenberg-MacLane Spaces) and 8
(Bordism, Spectra, and Generalized Homology) introduce the student to
the modern perspective in algebraic topology. In Chapter 10 (Further Ap-
plications of Spectral Sequences) many of the fruits of the hard labor that
precede this chapter are harvested. Chapter 11 (simple-homotopy theory)
introduces the ideas which lead to the subject of Algebraic K-theory and
to the s-cobordism theorem. This material has taken a prominent role in
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research in topology, and although we only cover a few of the topics in this
area (K1, the Whitehead group, and Reidemeister torsion), it serves as a
good preparation for more advanced courses.

These notes are meant to be used in the classroom, freeing the student
from copying everything from the chalkboard and hopefully leaving more
time to think about the material. There are a number of exercises in the
text; these are usually routine and are meant to be worked out when the
student studies. In many cases, the exercises fill in a detail of a proof or
provide a useful generalization of some result. It goes without saying that
this subject, like any subject in mathematics, cannot be learned without
thinking through some exercises. Working out these exercises as the course
progresses is one way to keep up with the material. The student should keep
in mind that, perhaps in contrast to some areas in mathematics, topology
is an example–driven subject, and so working through examples is the best
way to appreciate the value of a theorem.

We will omit giving a diagram of the “independence” of various chapters,
or suggestions on which topics could be skipped, on the grounds that any
teacher of topology will have their own opinion based on their experience and
the interests of the students. (In any case, every topic covered in this book is
related in some way on every other topic.) We have attempted (and possibly
even succeeded) to organize the material in such a way as to avoid the use of
technical facts from one chapter to another, and hence to minimize the need
to shuffle pages back and forth when reading the book; this is to maximize
its usefulness as a textbook, as well as to ensure that the student with a
command of the concepts presented can learn new material smoothly and the
teacher can present the material in a less technical manner. Moreover, we
have not taken the view of trying to present the most elementary approach
to any topic but rather we feel that the student is best served by learning
the high-tech approach, since this ultimately is faster and more useful in
research. For example, we do not shrink from using spectral sequences to
prove basic theorems in algebraic topology.

Some standard references on the material covered in this course include
the books [8], [13], [43], [36], [31], [7], and [16]. A large part the material
in these notes were distilled from these books. Moreover, one can find some
of the material covered in much greater generality and detail in these tomes.
Our intention is not to try replace these wonderful books, but rather to offer
a textbook to accompany a course in which this material is taught.
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We recommend that students look at the article “Fifty years of Homo-
topy Theory” by G. Whitehead [44] for an introduction to algebraic topol-
ogy, and look back over this article every few weeks to see how much of
it they are learning. The books a student should read after finishing this
course (or in conjunction with this course) are Milnor and Stasheff Char-
acteristic Classes [30] (every mathematician should read this book) and
Adams Algebraic Topology: A student’s guide [1].

The authors would like to thank Eva-Marie Elliot and Mary Jane Wilcox
for typing early versions of the manuscript. Special thanks are due to our
colleagues Ayelet Lindenstrauss and Allan Edmonds for their careful proof-
reading of our manuscripts; all remaining mistakes and typographical errors
are entirely the authors’s fault. The second author would like to thank
John Klein for teaching him algebraic topology while they were in graduate
school. Special thanks to Marcia and Beth.
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Projects

The following is a list of topics to be covered in the “extra” meetings and
lectured on by the students. They do not always match the material of the
corresponding chapter but are usually either related to the chapter material
or preliminary to the next chapter. Sometimes they form interesting sub-
jects which could reasonably be skipped. Some projects are quite involved
(e.g. “state and prove the Hurewicz theorem”) and the students and instruc-
tor should confer to decide how deeply to cover each topic. In some cases
(e.g. the Hopf degree theorem, the Hurewicz theorem, and the Freudenthal
suspension theorem) proofs are given in later chapters using more advanced
methods.

• Chapter 1.
1. The cellular approximation theorem.

• Chapter 2.
1. The acyclic models theorem and the Eilenberg-Zilber map.

• Chapter 3.
1. Algebraic limits and the Poincaré duality theorem.
2. Exercises on intersection forms.

• Chapter 4.
1. Fiber bundles over paracompact bases are fibrations.
2. Classifying spaces.

• Chapter 5.
1. The Hopf degree theorem.
2. Colimits and limits.

• Chapter 6.
1. The Hurewicz theorem.
2. The Freudenthal suspension theorem.

• Chapter 7.
1. Postnikov systems.

• Chapter 8.
1. Basic notions from differential topology.
2. Definition of K-theory.
3. Spanier-Whitehead duality.

• Chapter 9.
1. Construction of the Leray-Serre-Atiyah-Hirzebruch spectral se-

quence.

• Chapter 10.
1. Unstable homotopy theory.
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• Chapter 11.
1. Handlebody theory and torsion for manifolds.



Chapter 1

Chain Complexes,
Homology, and
Cohomology

1.1. Chain complexes associated to a space

Here are 3 examples of chain complexes associated to a space:

1. The singular chain complex (Sq(X), ∂) of a topological space X.

2. The cellular chain complex (Cq(X), ∂) of a CW -complex X.

3. The simplicial chain complex (∆q(K), ∂) of a simplicial complex K.

Their constructions are as follows.

1.1.1. Construction of the singular chain complex. The (geometric)
q-simplex ∆q is defined by

∆q =
{
(t0, t1, . . . , tq) ∈ Rq+1|Σti = 1, ti ≥ 0 for all i

}
.

The face maps are the functions

f q
m : ∆q−1 → ∆q

defined by

(t0, t1, . . . , tq−1) �→ (t0, . . . , tm−1, 0 , tm, . . . , tq−1)

↑ mthcoordinate

A singular q-simplex in a space X is a continuous map σ : ∆q → X.

1



2 1. Chain Complexes, Homology, and Cohomology

f2
0

e2

f2
1 σ

e0 e1 e0 e1

f2
2 X

Let R be a commutative ring with unit. Denote by Sq(X;R) the free
R-module with basis the singular q-simplices {σ : ∆q → X} and define the
differential ∂ : Sq(X;R)→ Sq−1(X;R) to be the R-linear map defined on a
singular simplex σ by

∂(σ) =
q∑

m=0

(−1)mσ ◦ f q
m.

Thus, on a chain
∑�

i=1 riσi, ∂ has the formula

∂

(
�∑

i=1

riσi

)
=

�∑
i=1

ri

(
q∑

m=0

(−1)mσi ◦ f q
m

)
.

One calculates that ∂2 = 0.
Recall that S∗(−;R) is a covariant functor, that is, a continuous map f :

X → Y induces a homomorphism of free modules f∗ : S∗(X;R)→ S∗(Y ;R).
One defines f∗ by

f∗(σ) = f ◦ σ

on a singular simplex σ, and extends by linearity.

Definition 1.1. The complex (S∗(X;R), ∂) is the singular (simplicial) chain
complex of X with coefficients in R. Its homology

ker ∂ : Sq(X;R)→ Sq−1(X;R)
Im ∂ : Sq+1(X;R)→ Sq(X;R)

is denoted by Hq(X;R) and is called the singular homology of X with co-
efficients in R. When R = Z, we omit the reference to R. Homology is a
covariant functor from the category of spaces to the category of R-modules.

We next recall the definition of the relative singular chain complex of a
pair of spaces (X, A).

If A ⊂ X, define

Sq(X, A;R) =
Sq(X;R)
Sq(A;R)

.
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Thus Sq(X, A;R) is a free R-module; a basis element is represented by a
singular q-simplex in X whose image is not contained in A. One obtains a
commutative diagram with exact rows

0 Sq(A;R) Sq(X;R) Sq(X, A;R) 0

0 Sq−1(A;R) Sq−1(X;R) Sq−1(X, A;R) 0

✲ ✲

❄
∂

✲

❄
∂

✲

❄
∂

✲ ✲ ✲ ✲

Exercise 1. Show that ∂ : Sq(X, A;R) → Sq−1(X, A;R) is well–defined
and ∂2 = 0.

The complex (Sq(X, A;R), ∂) is called the singular chain complex for
the pair (X, A) with coefficients in R.

Its homology is defined by

Hq(X, A;R) =
ker ∂ : Sq(X, A)→ Sq−1(X, A)
Im ∂ : Sq+1(X, A)→ Sq(X, A)

.

1.1.2. Definition of a CW-complex. CW-complexes form a nice collec-
tion of topological spaces which include most spaces of interest in geometric
and algebraic topology.

Definition 1.2. Let X be a topological space and let A ⊂ X be a closed
subspace. We say X is obtained from A by adjoining n-cells {en

i }i∈I if:

1. For each index i ∈ I, en
i is a subset of X, called an n-cell.

2. Letting ∂en
i denote the intersection of en

i with A, we require en
i − ∂en

i

to be disjoint from en
j − ∂en

j for i �= j.

3. A subset B ⊂ X is closed if and only if its intersection with A and
with each en

i is closed.

4. X = A ∪i en
i .

5. For each i ∈ I there exists a continuous surjective map

φi : (Dn, Sn−1)→ (en
i , ∂en

i ),

called a characteristic map for the cell en
i , so that the restriction of

φi to the interior int(Dn) is a homeomorphism onto en
i − ∂en

i .

6. A subset B ⊂ en
i is closed if and only if φ−1

i (B) is closed in Dn and
B ∩ ∂en

i is closed in ∂en
i .

The characteristic maps themselves are not part of the definition; only
their existence is. The restriction of the characteristic map to Sn−1 is called
the attaching map for the n-cell. Notice that adjoining 0-cells to a space is
the same as taking a disjoint union with a discrete set.
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Definition 1.3. A relative CW-complex (X, A) is a topological space X, a
closed subspace A, and a sequence of closed subspaces Xn, n = −1, 0, 1, 2, · · ·
called the relative n-skeleton so that

1. X−1 = A, X0 is obtained form A by adjoining 0-cells, and Xn is
obtained from Xn−1 by adjoining (n− 1)-cells.

2. X = ∪∞i=−1Xi.

3. A subset B ⊂ X is closed in X if and only if B ∪Xn is closed in Xn

for each n.

The largest n so that X = Xn, if it exists, is called the dimension of
(X, A). If such an n does not exist, we say (X, A) is infinite–dimensional. If
A is itself a CW-complex we call (X, A) a CW-pair.

If A is empty X is called an (absolute) CW-complex and Xn is called the
(absolute) n-skeleton.

1.1.3. Definition of the cellular chain complex of a CW-complex.
If X is a CW-complex and Xn ⊂ X is the the n-skeleton of X, denote by
Cq(X;R) the relative homology group

Cq(X;R) = Hq(Xq, Xq−1;R).

If (X, A) is a CW -pair, then you have seen an argument (using excision
for singular homology) which shows that Hq(X, A;R) = Hq(X/A, A/A;R).
Applying this to (Xq, Xq−1), it follows that Cq(X;R) is the free R-module
on the q-cells of X.

Exercise 2. What is the excision argument? How can one use characteristic
maps φ : Dq → Xq for cells to give basis elements?

The differential ∂ : Cq(X;R)→ Cq−1(X;R) can be defined in two ways.
The first is purely algebraic, the second is geometric and involves the notion
of the degree of a map f : Sn → Sn. If you don’t know what the degree
of such a map is, look it up. If you know the definition of degree, then
look up the differential-topological definition of degree for a smooth map
f : Sn → Sn.

First definition of ∂.

Take ∂ to be the composite

Hq(Xq, Xq−1;R) δ−→Hq−1(Xq−1;R) i−→Hq−1(Xq−1, Xq−2;R)

where δ is the connecting homomorphism in the long exact sequence in
singular homology for the pair (Xq, Xq−1) and i is induced by the inclusion
(Xq−1, φ) ↪→ (Xq−1, Xq−2).
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Second definition of ∂. The quotient Xq−1/Xq−2 is homeomorphic to a
one-point union of (q − 1)-spheres, one for each (q − 1)-cell of X, since the
boundary of each (q−1)-cell has been collapsed to a point, and a (q−1)-cell
with its boundary collapsed to a point is a (q− 1)-sphere. For each q-cell eq

consider the the attaching map Sq−1 → Xq−1. The composite of this map
with the quotient map to Xq−1/Xq−2 defines a map from a (q − 1)-sphere
to a one-point union of (q − 1)-spheres. Taking the degree of this map in
the factor corresponding to a (q − 1)-cell eq−1

i gives an integer denoted by
[eq : eq−1

i ].
Now define the differential ∂ : Cq(X;R)→ Cq−1(X;R) on a q-cell eq by

∂(eq) =
∑

[eq : eq−1
i ]eq−1

i

(the sum is over all (q− 1)–cells eq−1
i ), and extend to all chains by linearity.

Exercise 3. Prove that the two definitions of the differential

∂ : Cq(X;R)→ Cq−1(X;R)

are the same. (Hint: Hn(Dn, Sn−1) δ−→Hn−1(Sn−1) is an isomorphism.) Use
the first definition to show that ∂2 = 0.

The cellular homology groups are the homology groups of the complex
(C∗(X;R), ∂):

Hq(X, R) =
ker ∂ : Cq(X)→ Cq−1(X)
Im ∂ : Cq+1(X)→ Cq(X)

.

Definition 1.4. A cellular map f : X → Y is a continuous function between
CW-complexes so that f(Xq) ⊂ Yq for all q.

A cellular map induces a chain map f∗ : C∗(X;R)→ C∗(Y ;R), since f
restricts to a map of pairs f : (Xq, Xq−1) → (Yq, Yq−1). Thus for every q,
cellular homology is a functor

{CW-complexes, cellular maps} → {abelian groups, homomorphisms}
The proof of the following theorem can be found in any standard first-year
algebraic topology textbook.

Theorem 1.5. The cellular and singular homology of a CW-complex are
naturally isomorphic.

So for example, the circle S1 has a cell structure with one 0-cell and
one 1-cell. The boundary map is trivial, so H1(S1) ∼= Z. A generator
[S1] ∈ H1(S1) is specified by taking the 1-cell which parameterizes the circle
in a counterclockwise fashion. We can use this to define the Hurewicz map

ρ : π1(X, x0)→ H1(X;Z)
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by
ρ(α) = α∗([S1]).

Here π1(X, x0) denotes the fundamental group of X based at x0 ∈ X

π1(X, x0) =
{Homotopy classes of maps

(S1, 1)→ (X, x0)

}
Recall that the fundamental group of a space is a non-abelian group in
general. Hurewicz theorem for the fundamental group is the following.

Theorem 1.6. Suppose that X is path–connected. Then the Hurewicz map
ρ : π1(X, x0) → H1(X;Z) is a surjection with kernel the commutator sub-
group of π1(X, x0). Hence H1(X;Z) is isomorphic to the abelianization of
π1(X, x0).

1.1.4. Construction of the simplicial chain complex of a simplicial
complex.

Definition 1.7. An (abstract) simplicial complex K is a pair (V, S) where
V is a set and S is a collection of non-empty finite subsets of V satisfying:

1. If v ∈ V then {v} ∈ S.

2. If τ ⊂ σ ∈ S and τ is non-empty, then τ ∈ S.

Elements of V are called vertices. Elements of S are called simplices. A
q-simplex is an element of S with q + 1 vertices. If σ ∈ S is a q-simplex we
say dim (σ) = q.

Put a (total) ordering on the vertices V .
Define the simplicial q-chains ∆q(K;R) to be the free R-module with

basis the q-simplices of K. Denote a q-simplex by 〈σ〉 = 〈v0, v1, . . . , vq〉
where the vertices are listed in increasing order. Define the differential
∂ : ∆q(K;R)→ ∆q−1(K;R) on a q-simplex by

∂(〈v0, v1, . . . , vq〉) =
q∑

m=0

(−1)m〈v0, v1, . . . , v̂m, . . . , vq〉,

where v̂m means omit the m-th vertex, and then extend by R-linearity, i.e.

∂

(
�∑

i=1

ri〈σi〉
)

=
�∑

i=1

ri

(
q∑

m=0

(−1)m∂(〈σi〉)
)

.

The homology of this chain complex is denoted H∗(K;R). Notice that these
definitions are purely combinatorial; the notions of topological space and
continuity are not used. The connection with topology is given by the next
definition.
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Definition 1.8. The geometric realization of a simplicial complex K is the
quotient space

|K| = �σ∈S∆dim (σ)

∼ .

In other words, we take a geometric q–simplex for each abstract q–simplex
of K, and glue them together. The identifications are given as follows: if
σ = 〈v0, v1, . . . , vq〉 ∈ S and if τ = 〈v0, v1, . . . , v̂m, . . . , vq〉 is a face of σ,
then identify the geometric simplex ∆dim (τ) corresponding to τ with a face
of the geometric simplex ∆dim (σ) corresponding to σ using the m-th face
map f q

m. In other words, the equivalence relation is generated by x ∼ f q
m(x)

for x ∈ 〈v0, v1, . . . , v̂m, . . . , vq〉. (Look at [26] for a deeper perspective on
this construction.)

If one chooses another ordering of the vertices, then one can, with some
fuss about orientation, define a canonical isomorphism between the simpli-
cial chain complex (or geometric realization) defined using one ordering to
the simplicial chain complex (or geometric realization) defined using the
other ordering.

A triangulation of a topological space X is a homeomorphism from the
geometric realization of a simplicial complex to X.

Exercise 4. Find a triangulation of RP 2 and compute its simplicial ho-
mology.

The homology H∗(K;R) of an abstract simplicial complex K is isomor-
phic to H∗(|K|;R), the singular homology of its geometric realization. This
can be seen by noting that |K| is naturally a CW-complex, the q-skeleton is
the union of a simplices of dimension ≤ q, the q-cells (which are always open
by definition, remember?) are the interiors of the q-simplices. The cellular
chain complex of |K| is isomorphic to the simplicial chain complex of K.

Another construction of homology uses the cubical singular complex
(this is the point of view taken in Massey’s book [23]). This gives yet
another chain complex associated to a topological space. It is not hard,
using the acyclic models theorem, to show that the simplicial and cubical
singular homology functors are naturally isomorphic.

1.2. Tensor products, adjoint functors, and Hom

1.2.1. Tensor products. Let A and B be modules over a commutative
ring R.
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Definition 1.9. The tensor product of A and B is the R-module A ⊗R B
defined as the quotient

F (A×B)
R(A×B)

where F (A× B) is the free R-module with basis A× B and R(A× B) the
submodule generated by

1. (a1 + a2, b)− (a1, b)− (a2, b)

2. (a, b1 + b2)− (a, b1)− (a, b1)

3. r(a, b)− (ra, b)

4. r(a, b)− (a, rb).

One denotes the image of a basis element (a, b) in A⊗R B by a⊗b. Note
that one has the relations

1. (a1 + a2)⊗ b = a1 ⊗ b + a2 ⊗ b,

2. a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2,

3. (ra⊗ b) = r(a⊗ b) = (a⊗ rb).

Informally, A ⊗R B is the largest R-module generated by the set of
symbols {a⊗ b}a∈A,b∈B satisfying the above “product type relations”. Any
element of A⊗B can be expressed as a finite sum

∑n
i=1 ai ⊗ bi, but it may

not be possible to take n = 1, nor is the representation as a sum unique.
Recall that a function φ : A×B →M is R-bilinear if M is an R-module

and

1. φ(a1 + a2, b) = φ(a1, b) + φ(a2, b)

2. φ(a, b1 + b2) = φ(a, b1) + φ(a, b2)

3. φ(ra, b) = rφ(a, b) = φ(a, rb).

For example, the map π : A×B → A⊗R B, (a, b) �→ a⊗ b is R-bilinear.
The universal property of the tensor product is that this map is initial in
the category of bilinear maps with domain A×B.

Proposition 1.10. Given a R-bilinear map φ : A×B →M , there is unique
R-module map φ̄ : A⊗R B →M so that φ̄ ◦ π = φ.

A×B M

A⊗B

✲φ

❄

π

�

�

�

�

�

�

�

�

�

�

�

✒

∃!φ̄
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Proof. If φ exists, then φ(
∑

ai ⊗ bi) =
∑

φ(ai ⊗ bi) =
∑

φ ◦ π(ai ⊗ bi) =∑
φ(ai, bi). Thus uniqueness is clear. For existence, define φ̂ : F (A×B)→

M on basis elements by (a, b) �→ φ(a, b) and extend by R-linearity. The
bilinearity of φ implies φ̂(R(A×B)) = 0, so φ̂ induces φ : A⊗R B →M by
the universal property of quotients.

Proposition 1.10 is useful for defining maps out of tensor products, and
the following exercise indicates that this is the defining property of tensor
products.

Exercise 5. Suppose p : A × B → T is an R-bilinear map so that for any
R-bilinear map ψ : A×B →M , there is a unique R-module map ψ : T →M
so that ψ ◦ p = ψ. Then T ∼= A⊗R B.

A×B M

T

✲ψ

❄

p

�

�

�

�

�

�

�

�

�

�

�

✒

∃!ψ̄

For the rest of this section, we will omit the subscript R from the tensor
product. The basic properties of the tensor product are given by the next
theorem.

Theorem 1.11.

1. A⊗B ∼= B ⊗A

2. R⊗B ∼= B

3. (A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

4. (⊕αAα)⊗B ∼= ⊕α(Aα ⊗B)

5. Given R-module maps f : A → C and g : B → D, there is an R-
module map f ⊗ g : A⊗B → C ⊗D so that a⊗ b �→ f(a)⊗ g(b).

6. The functor − ⊗M is right exact. That is, given an R-module M ,
and an exact sequence

A
f−→ B

g−→C → 0,

the sequence

A⊗M
f⊗Id−−−→ B ⊗M

g⊗Id−−−→ C ⊗M → 0

is exact.

Proof.
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1. There is a map A⊗ B → B ⊗ A with a⊗ b �→ b⊗ a. More formally,
the map A×B → B ⊗A, (a, b) �→ a⊗ b is bilinear, for example, one
sees (a1 + a1, b) �→ b ⊗ (a1 + a2) = b ⊗ a1 + b ⊗ a2. By the universal
property there is a map A⊗B → B ⊗A with

∑
ai ⊗ bi �→

∑
bi ⊗ ai.

The inverse map is clear.

2. Define R⊗B → B by r ⊗ b �→ rb and B → R⊗B by b �→ 1⊗ b.

3. (a⊗ b)⊗ c↔ a⊗ (b⊗ c).

4. (⊕aα)⊗ b↔ ⊕ (aα ⊗ b).

5. A×B → C ⊗D, (a, b) �→ f(a)⊗ g(b) is R-bilinear.

6. We explicitly define an isomorphism

g ⊗ Id :
B ⊗M

(f ⊗ Id)(A⊗M)
→ C ⊗M

Since (g ⊗ Id) ◦ (f ⊗ Id) = (g ◦ f)⊗ Id = 0, the map g ⊗ Id descends
to the map g ⊗ Id by the universal property of quotients. The inverse
map is given by defining an R-bilinear map C×M → B⊗M

(f⊗Id)(A⊗M) by
(c, m) �→ [ĉ⊗m] where g(ĉ) = c. Note that the map is independent of
the choice of lift ĉ, indeed if ĉ′ is another lift, then ĉ−ĉ′ ∈ ker g = Im f ,
so [ĉ⊗m]− [ĉ′ ⊗m] = 0.

Example 1.12. Let M be an abelian group. Applying properties 5 and 2
of Theorem 1.11 we see that if we tensor the short exact sequence

0→ Z ×n−−→ Z→ Z/n→ 0

by M we obtain the exact sequence

M
×n−−→M → Z/n⊗Z M → 0.

Notice that Z/n ⊗Z M ∼= M/nM and that the sequence is not short exact
if M has torsion whose order is not relatively prime to n. Thus − ⊗M is
not left exact.

Example 1.13. If V and W are vector spaces over R with bases {ei} and
{fj} respectively, then V ⊗R W has basis {ei ⊗ fj}, thus dim(V ⊗R W ) =
(dimV )(dimW ).

Exercise 6. Compute A⊗Z B for any finitely generated groups A and B.

1.2.2. Adjoint functors. Note that a R-bilinear map β : A × B → C is
the same as an element of HomR(A,HomR(B, C)). The universal property
of the tensor product can be rephrased as follows.
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Proposition 1.14 (Adjoint Property of Tensor Products). There is an iso-
morphism of R-modules

HomR(A⊗R B, C) ∼= HomR(A,HomR(B, C)),

natural in A, B, C given by φ↔ (a �→ (b �→ φ(a⊗ b))).

This is more elegant than the universal property for three reasons: It is
a statement in terms of the category of R-modules, it gives a reason for the
duality between tensor product and Hom, and it leads us to the notion of
adjoint functor.

Definition 1.15. (Covariant) functors F : C → D and G : D → C form an
adjoint pair if there is a 1-1 correspondence MorD(Fc, d)←→ MorC(c, Gd),
for all c ∈ Ob C and d ∈ Ob D, natural in c and d. The functor F is said to
be the left adjoint of G and G is the right adjoint of F .

The adjoint property says that for any R-module B, the functors

−⊗R B : R-MOD→ R-MOD

and
HomR(B,−) : R-MOD→ R-MOD

form an adjoint pair. Here R-MOD is the category whose objects are R-
modules and whose morphisms are R-maps.

It turns out that right exactness of − ⊗R B and the left exactness of
HomR(B,−) is a formal consequence of being an adjoint pair, but we won’t
pursue this. A random functor may not have a left (or right) adjoint, but if
it does, the adjoint is unique up to natural isomorphism.

Exercise 7. Let SETS be the category whose objects are sets and whose
morphisms are functions. The forgetful functor R-MOD → SETS takes a
module to its underlying set. Find an adjoint for the forgetful functor. Find
another adjoint pair of your own. “Adjoints are everywhere.”

1.2.3. Hom.

Exercise 8. For any finitely generated abelian groups A and B, compute
HomZ(A, B), the group of all homomorphisms from A to B.

For an R-module A, define A∗ = HomR(A, R). The module A∗ is often
called the dual of A. For a R-module map f : A → B, the dual map
f∗ : B∗ → A∗ is defined by f∗(ϕ) = ϕ ◦ f . Hence taking duals defines a
contravariant functor from the category of R-modules to itself.

More generally, for R-modules A and M , HomR(A, M) is the R-module
of homomorphisms from A to M . It is contravariant in its first variable
and covariant in its second variable. For an R-map f : A → B, we have
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HomR(f, M) : HomR(B, M)→ HomR(A, M), defined by ϕ �→ ϕ◦f . Usually
we write f∗ for HomR(f, M). The following computational facts may help
with Exercise 8.

1. HomR(R, M) ∼= M .

2. HomR(⊕α Aα, M) ∼=
∏

α HomR(Aα, M).

3. HomR(A,
∏

α Mα) ∼=
∏

α HomR(A, Mα).

The distinction between direct sum and direct product in the category
of modules only is relevant when the indexing set is infinite.

1.3. Tensor and Hom functors on chain
complexes

We will turn our attention now to the algebraic study of (abstract) chain
complexes (C∗, ∂) of R-modules. We do not assume that the chain groups
are free R-modules, although they are for the three geometric examples of
Section 1.1.

The starting observation is that the singular (or cellular) homology func-
tor is a composite of two functors, the singular complex functor

S∗ : { spaces, cts. maps } → { chain complexes, chain maps }
and the homology functor

H∗ :{chain complexes, chain maps}→{graded R-modules, homomorphisms}.

The strategy is to place interesting algebraic constructions between S∗
and H∗; i.e. to use functors

{Chain Complexes} → {Chain Complexes}
to construct new homology invariants of spaces. The two families of functors
we use are the following.

1. Forming the tensor product of a chain complex and an R-
module M .

This is the functor

(C∗, ∂)→ (C∗⊗M, ∂ ⊗ Id)

with
(∂ ⊗ Id)

(∑
ci ⊗mi

)
=

∑
(∂ci)⊗mi.

Since (∂ ⊗ Id)2 = 0, (C∗ ⊗M, ∂ ⊗ Id) is a chain complex. You should
show that this is a covariant functor , i.e. write down the formula for the
map C∗ ⊗M → C ′∗ ⊗M induced by a chain map C∗ → C ′∗ and check that
it is a chain map.
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Definition 1.16. Taking the homology of C∗ ⊗M yields the homology of
C∗ with coefficients in M :

H∗(C∗;M) =
ker ∂ : C∗ ⊗M → C∗ ⊗M

Im ∂ : C∗ ⊗M → C∗ ⊗M
.

Applying this to the singular complex of a space leads to the following
definition.

Definition 1.17. The homology of S∗(X;R) ⊗ M is called the singular
homology of X with coefficients in the R-module M and is denoted by
H∗(X;M).

In the same way one can define H∗(X, A;M), the relative singular ho-
mology with coefficients in M . A similar construction applies to the cellular
complex to give the cellular homology with coefficients.

2. Taking the R-linear maps from C∗ to an R-module M .

This is the functor

(C∗, ∂)→ (HomR(C∗, M), δ)

where the differential δ is the dual to ∂; i.e. δ = HomR(∂, M) (sometimes
denoted by ∂∗). Explicitly δ : HomR(C∗, M)→ HomR(C∗, M) is defined by

(δf)(c) = f(∂c).

Then δ2 = 0 since (δ2f)(c) = (δf)(∂c) = f(∂2c) = 0. There are two
important facts to notice about this chain complex:

1. The differential δ of this complex has degree +1, and not −1 as in
the three examples we encountered before. What this means is that

δ : HomR(Cq, M)→ HomR(Cq+1, M).

2. The functor is contravariant, in contrast to the tensor product functor
we considered above. The point here is that for any R−module M
the functor Hom(−, M) is a contravariant functor.

A useful terminology is to call a chain complex with degree +1 differen-
tial a cochain complex.

This leads us to the definition of the cohomology of a chain complex
with coefficients in M :

Definition 1.18.

H∗(C∗;M) =
ker δ : Hom(C∗, M)→ Hom(C∗, M)
Im δ : Hom(C∗, M)→ Hom(C∗, M)

is the cohomology of (C∗, ∂) with coefficients in M .
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1.4. Singular cohomology

Applying the construction of the previous section to a space X one obtains
the singular cochain complex of X with coefficients in the R-module M

(HomR(Sq(X;R), M), δ).

This cochain complex is denoted by S∗(X;M). (Note that we can take
M = R.) Similar constructions apply to the cellular chain complex and the
simplicial chain complex.

Exercise 9. For a useful way to think about singular cochains, show that

Sq(X;R) = HomZ(Sq(X;Z), R)

and also show that

Sq(X;R) =functions({singular simplexes}, R).

Definition 1.19. The singular cohomology of X with coefficients in the R-
module M is

Hq(X;M) =
ker δ : HomR(Sq(X, R), M)→ HomR(Sq+1(X, R), M)
Im δ : HomR(Sq−1(X, R), M)→ HomR(Sq(X, R), M)

.

Similarly one defines the cellular cohomology of a CW-complex and the
simplicial cohomology of a simplicial complex.

Exercise 10. What is H0(X;Z)? Show that H0(Q;Z) �∼= H0(Q;Z), where
we consider the rational numbers Q as subspace of the real numbers R.

The primary motivation for introducing cohomology comes from the fact
that H∗(X;R) admits a ring structure, while homology does not. This will
be discussed in Chapter 3.

Recall that for a chain complex (C∗, ∂), a cycle is an element of ker ∂ and
a boundary is an element of Im ∂. The terminology for cochain complexes
is obtained by using the “co” prefix:

Definition 1.20. A cocycle is an element in the kernel of δ and a coboundary
is an element in the image of δ.

Exercise 11. Show that a cocycle applied to a boundary is zero and a
coboundary applied to a cycle is zero. Deduce that there is a bilinear pairing
(the Kronecker pairing)

Hn(C∗;R)×Hn(C∗;R)→ R

given by the formula
〈[ϕ], [α]〉 = ϕ(α).

Deduce by taking adjoints that the Kronecker pairing defines a map

Hn(C∗;R)→ HomR(Hn(C∗;R), R).
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The Kronecker pairing on the homology and cohomology of a space
should be thought of as an analogue (in fact it is a generalization) of inte-
grating a differential n-form along an n-dimensional submanifold. (See the
paragraph on the DeRham complex on page 16.)

We will study the Kronecker pairing in detail for R a P.I.D. in Section
2.6. It is important to note that cohomology is not the dual of homology in
general. The map Hn(C∗;R)→ HomR(Hn(C∗;R), R) need not be injective
nor surjective. The following example illustrates this. A precise relationship
between the dual of homology and cohomology is provided by the universal
coefficient theorem (Theorem 2.29) when R is a P.I.D..

The cellular chain complex of RP 2 is

· · · C3 C2 C1 C0 0

· · · 0 Z Z Z 0

✲∂

❄

✻∼=

✲∂

❄

✻∼=

✲∂

❄

✻∼=

✲∂

❄

✻∼=

✲∂

✲ ✲ ✲
×2

✲
×0

✲

so
H0(RP 2;Z) = Z,

H1(RP 2;Z) = Z/2,

H2(RP 2;Z) = 0.

The corresponding cochain complex is

· · · C3 C2 C1 C0 0

· · · Hom(C3,Z) Hom(C2,Z) Hom(C1,Z) Hom(C0,Z) 0

· · · 0 Hom(Z,Z) Hom(Z,Z) Hom(Z,Z) 0

· · · 0 Z Z Z 0

❄
✻∼=

✛ δ

❄
✻∼=

✛ δ

❄
✻∼=

✛ δ

❄
✻∼=

✛ δ ✛

❄
✻∼=

✛

❄✻
∼=

✛

❄✻
∼=

✛

❄✻
∼=

✛ ✛

❄
✻∼=

✛

❄
✻∼=

✛

❄
✻∼=

✛

❄
✻∼=

✛ ✛

✛ ✛ ✛
×2

✛
×0

✛

Thus
H0(RP 2;Z) = Z

H1(RP 2;Z) = 0

H2(RP 2;Z) = Z/2.

In particular H2(RP 2;Z) �= HomZ(H2(RP 2;Z),Z). Hence the Kronecker
pairing is singular.

Exercise 12. We will show that if R is a field then homology and cohomol-
ogy are dual. Verify this for RP 2 and R = Z/2.
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Recall that if f : X → Y is continuous, then f∗ : Sq(X) → Sq(Y )
is defined via f∗(Σriσi) = Σrif ◦ σi. Since f∗ is a chain map its dual
f∗ : Sq(Y )→ Sq(X) is a (co)chain map. Hence the singular cochain functor
is contravariant. This implies the following theorem.

Theorem 1.21. Singular cohomology is a contravariant functor

{ spaces, continuous maps } → {graded R-modules, homomorphisms }.

Remark for those readers who know about differential forms.
Suppose X is a smooth manifold. Let Ωq(X) be the vector space of differ-
ential q-forms on a manifold. Let d : Ωq(X) → Ωq+1(X) be the exterior
derivative. Then (Ω∗(X), d) is an R-cochain complex, whose cohomology
is denoted by H∗DR(Ω∗(X), d) and is called the DeRham cohomology of X.
This gives geometric analogues: q-form and q-cochain, d and δ, closed form
and cocycle, exact form and coboundary.

DeRham’s theorem states that the DeRham cohomology of a manifold
X is isomorphic to the singular cohomology H∗(X;R). More precisely, let
Ssmooth

q (X;R) be the free R-module generated by smooth singular simplices
σ : ∆q → X. There is the chain map

Ssmooth
∗ (X;R)→ S∗(X;R)

given by inclusion and the cochain map

Ω∗(X)→ Ssmooth
∗ (X;R)∗

given by integrating a q-form along a q-chain. DeRham’s theorem follows
from the fact that both maps are chain homotopy equivalences, i.e. they
have inverses up to chain homotopy.

1.4.1. Relative cohomology. Recall that the relative singular chain com-
plex of a pair (X, A) is defined by taking the chain groups Sq(X, A) =
Sq(X)/Sq(A). Similarly, let M be an R-module and define the relative sin-
gular cochain complex by

Sq(X, A;M) = HomR(Sq(X, A;R), M)

δ = HomR(∂, M), δ(ϕ) = ϕ ◦ ∂.

Theorem 1.22. The diagram

0 −→ Sq(X, A;M) −→ Sq(X;M) −→ Sq(A;M) −→ 0
↓ δ ↓ δ ↓ δ

0 −→ Sq+1(X, A;M) −→ Sq+1(X;M) −→ Sq(A;M) −→ 0

commutes and the horizontal rows are exact.
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The proof will depend on a few exercises.

Exercise 13. The diagram commutes.

Exercise 14. Given any short exact sequence of R-modules

0 −→ A −→ B −→ C −→ 0

show that

0→ Hom(C, M)→ Hom(B, M)→ Hom(A, M)

and
0→ Hom(M, A)→ Hom(M, B)→ Hom(M, C)

are exact.

We recall what it means for homomorphisms to split.

Definition 1.23.

1. An injection 0 −→ A
α−→ B is said to split if there is a map δ : B → A

so that δ ◦ α = IdA. The map δ is called a splitting.

2. A surjection B
β−→ C −→ 0 splits if there is a map γ : C → A so that

β ◦ γ = IdC .

A surjection B → C → 0 splits if C is free (prove this basic fact). In gen-
eral, for an injection 0 −→ A

α−→ B the dual HomR(B, M)→ HomR(A, M)
need not be a surjection (find an example!) but if α is split by δ, then the
dual map is a split surjection with splitting map HomR(δ, M).

Lemma 1.24. Given a short exact sequence of R-modules

0 −→ A
α−→ B

β−→ C −→ 0,

show that α splits if and only if β splits. (If either of these possibilities occur,
we say the short exact sequence splits.) Show that in this case B ∼= A⊕ C.

Exercise 15. Prove this lemma.

Corollary 1.25. If 0 −→ A
α−→ B

β−→ C −→ 0 is a short exact sequence
of R-modules which splits, then

0→ Hom(C, M)→ Hom(B, M)→ Hom(A, M)→ 0

is exact and splits.

Exercise 16. Sq(X, A;R) is a free R-module with basis

{σ : ∆q → X|σ(∆q) �⊂ A}.

Theorem 1.22 now follows from Corollary 1.25 and Exercise 16.
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Applying the zig-zag lemma (a short exact sequence of (co)-chain com-
plexes gives a long exact sequence in (co)-homology) immediately implies
the following corollary.

Corollary 1.26. To a pair (X, A) of spaces there corresponds a long exact
sequence in singular cohomology

0→ H0(X, A;M)→ H0(X;M)→ H0(A;M) δ−→H1(X, A;M)→
· · · → Hq−1(A;M) δ−→Hq(X, A;M)→ Hq(X;M)→ · · ·

Note that the connecting homomorphism δ has degree +1, in contrast to
the homology connecting homomorphism ∂ in homology which has degree
−1.

Exercise 17. Prove the zig-zag lemma, which says that a short exact se-
quence of (co)chain complexes yields a long exact sequence in (co)homology,
to remind yourself how to carry out diagram chase arguments.

Exercise 18. Using the facts that S∗(X;R) and S∗(X, A;R) are free chain
complexes with bases consisting of singular simplices (see Exercise 16), show
that

1. Sq(X;M) = Sq(X;R) ⊗R M can be expressed as the set of all sums{∑�
i=1 mi ⊗ σi|mi ∈M, σi a q-simplex

}
with ∂(m⊗ σ) = m⊗ ∂(σ).

What is the corresponding statement for Sq(X, A;M)?

2. Sq(X;M) = HomR(Sq(X;R), M) is in 1-1 correspondence with the
set of functions from the set of singular q-simplices to M . Under this
identification, given a cochain

α : {Singular q-simplices} →M,

its differential δα : {Singular (q + 1)-simplices} → M corresponds to
the map

δα(σ) = Σ(−1)iα(σ ◦ f q+1
i )

and Sq(X, A;M) ⊂ Sq(X;M) corresponds to those functions which
vanish on the q-simplices entirely contained in A.

Exercise 19. Define and identify the cellular cochain complex in two dif-
ferent ways, as the dual of the cellular chain complex and in terms of relative
cohomology of the skeleta. (This will be easier after you have learned the
universal coefficient theorem.)
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1.5. The Eilenberg-Steenrod axioms

An important conceptual advance took place in algebraic topology when
Eilenberg and Steenrod “axiomatized” homology and cohomology.

Definition 1.27. An (ordinary) homology theory is a covariant functor

H∗ : { (space, subspace) pairs, continuous maps of pairs } →
{ graded R-modules, homomorphisms },

in other words a collection of covariant functors Hq for each non-negative
integer q which assign an R-module Hq(X, A) to a pair (X, A) of topological
spaces and a homomorphism f∗ : Hq(X, A)→ Hq(Y, B) to every continuous
function of pairs f : (X, A) → (Y, B). These are required to satisfy the
following axioms:

1. There exist natural connecting homomorphisms

∂ : Hq(X, A)→ Hq−1(A)

for each pair (X, A) and each integer q so that the sequence

· · · → Hq(A)→ Hq(X)→ Hq(X, A) ∂−→ Hq−1(A)→ · · ·
· · · → H1(X, A) ∂−→ H0(A)→ H0(X)→ H0(X, A)→ 0

is exact.
(Long exact sequence of a pair)

2. If f, g : (X, A)→ (Y, B) are homotopic maps, then the induced maps
on homology are equal, g∗ = f∗ : Hq(X, A)→ Hq(Y, B).

(Homotopy invariance)

3. If U ⊂ X, U ⊂ IntA, then Hq(X − U, A − U) → Hq(X, A) is an
isomorphism for all q.

(Excision)

4. If “pt” denotes the one-point space, then Hq(pt) = 0 when q �= 0.
(Dimension Axiom)

Theorem 1.28 (Existence). For any R-module M , there is a homology the-
ory with H0(pt) = M .

Similar comments apply to cohomology.

Definition 1.29. An (ordinary) cohomology theory is a contravariant func-
tor

H∗ : { (space, subspace) pairs, continuous maps of pairs } →
{ graded R-modules, homomorphisms }.
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In other words a collection of contravariant functors Hq, one for each non-
negative integer q, which assign an R-module Hq(X, A) to a pair (X, A)
of topological spaces and a homomorphism f∗ : Hq(Y, B) → Hq(X, A) to
every continuous function of pairs f : (X, A) → (Y, B). These are required
to satisfy the following axioms:

1. There exist natural connecting homomorphisms

δ : Hq(A)→ Hq+1(X, A)

for each pair (X, A) so that the sequence of Corollary 1.26 is exact.
(Long exact sequence of a pair)

2. If f, g : (X, A) → (Y, B) are homotopic maps, then g∗ = f∗ :
Hq(Y, B)→ Hq(X, A).

(Homotopy invariance)

3. If U ⊂ X, U ⊂ IntA, then Hq(X, A) → Hq(X − U, A − U) is an
isomorphism.

(Excision)

4. If pt is a point, Hq(pt) = 0 when q �= 0.
(Dimension Axiom)

Theorem 1.30 (Existence). For any R-module M , there is a cohomology
theory with H0(pt) = M .

There are many different approaches to constructing homology and co-
homology theories; the choice of method is often dictated by the kind of
problem one is attacking. For example, singular homology and cohomology
is defined for all spaces. Its abstract definition simplifies the proofs of many
theorems, but it is too large to be effective for computations. DeRham co-
homology is defined for smooth manifolds and has many nice properties,
including direct relationships to solutions of differential equations on mani-
folds. There exist some extensions of DeRham theory to more general spaces;
these tend to be technical. Cellular homology is often the most useful for
computing, but of course applies only to CW-complexes.

Čech cohomology theory is another theory that satisfies the axioms (at
least for the subcategory of pairs of compact spaces), but the Čech co-
homology of the topologist’s sine curve is not isomorphic to the singular
cohomology. Thus the axioms do not determine the cohomology of space.
However they do for finite CW-complexes. An informal way of saying this
is that the proof that cellular cohomology equals singular cohomology uses
only the axioms. A more precise version is the following theorem whose
proof we omit. We state it for cohomology but the dual result holds for
homology also.
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Theorem 1.31 (Uniqueness). Let H∗ and Ĥ∗ be contravariant functors
from the category {pairs of finite CW-complexes, cellular maps} to {graded
R-modules, homomorphisms} satisfying the Eilenberg-Steenrod Axioms. Let
pt be a point.

1. If H0(pt) ∼= Ĥ0(pt), then there is a natural isomorphism of functors
H∗ → Ĥ∗.

2. Any natural transformation H∗ → Ĥ∗ inducing an isomorphism for
a point, is an isomorphism for all CW-complexes.

In fact the excision axiom can be replaced by the weaker axiom that for
all finite CW-pairs H∗(X/A, A/A) → H∗(X, A) is an isomorphism. This
shows that cellular cohomology and singular cohomology coincide for finite
CW-complexes.

In light of this theorem, one can do all computations of cohomology
groups of finite CW-complexes using the axioms, without resorting to the
definition of the singular or cellular cochain complex. This is not always
the best way to proceed, but usually in doing cohomology computations one
makes repeated use of the axioms and a few basic computations.

There are also many functors from spaces to R-modules for which the
dimension axiom of Eilenberg and Steenrod does not hold. These are called
generalized (co)homology theories. They will be introduced in Chapter 8.

1.6. Projects for Chapter 1

1.6.1. Cellular approximation theorem. Recall that a cellular map f :
X → Y is a map between CW-complexes which satisfies f(Xn) ⊂ Y n for
all n. The cellular approximation theorem says that any map between CW-
complexes is homotopic to a cellular map. Prove the cellular approximation
theorem and its relative version. This is stated as Theorem 6.47. Give
applications to homotopy groups. A good reference is [12].





Chapter 2

Homological Algebra

2.1. Axioms for Tor and Ext; projective
resolutions

Definition 2.1. An exact functor R-MOD → R-MOD is a functor which
takes short exact sequences to short exact sequences.

More generally, a covariant functor F : R-MOD → R-MOD is called
right exact (resp. left exact) if F (A) → F (B) → F (C) → 0 is exact (resp.
0 → F (A) → F (B) → F (C) is exact) whenever 0 → A → B → C → 0
is a short exact sequence. Similarly a contravariant functor is called right
exact (resp. left exact) if F (C) → F (B) → F (A) → 0 is exact (resp.
0 → F (C) → F (B) → F (A) is exact) whenever 0 → A → B → C → 0 is a
short exact sequence.

We have already seen that the functors − ⊗R M , HomR(M,−), and
HomR(−, M) are not exact in general. For example taking R = Z, M = Z/2,
and the short exact sequence

0→ Z ×2−→ Z→ Z/2→ 0,

we obtain

Z⊗ Z/2 Z⊗ Z/2 Z/2⊗ Z/2 0

Z/2 Z/2 Z/2 0,
❄

∼=

✲

❄

∼=

✲

❄

∼=

✲

✲×2 ✲Id ✲

23
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0 Hom(Z/2,Z) Hom(Z/2,Z) Hom(Z/2,Z)

0 0 0 Z/2,

✲

❄

∼=

✲

❄

∼=

✲

❄
∼=

✲ ✲ ✲

and

0 Hom(Z/2,Z/2) Hom(Z,Z/2) Hom(Z,Z/2)

0 Z/2 Z/2 Z/2.

✲

❄

∼=

✲

❄

∼=

✲

❄

∼=

✲ ✲ ✲×2

However, we have seen in Theorem 1.11 that −⊗R M is right exact and
in Exercise 14 that HomR(M,−) and HomR(−, M) are left exact.

Exercise 20. If F is a free module, show that −⊗R F and HomR(F,−) are
exact functors. Show by example that HomR(−, F ) need not be exact.

The idea of homological algebra is to find natural functors which measure
the failure of a functor to preserve short exact sequences. (A first stab at
this for −⊗R M might be to take the kernel of A⊗M → B⊗M as the value
of this functor. Unfortunately, this does not behave nicely with respect to
morphisms.) To construct these functors the only things we will use are the
left/right exactness properties, the above exercise and the observation that
for any module M there is a surjective map from a free module to M .

Theorem 2.2 (Existence).

1. There exist functors

TorR
n : R-MOD×R-MOD→ R-MOD for all n = 0, 1, 2, . . .

(M1, M2) �→ TorR
n (M1, M2) covariant in M1 and M2 satisfying the

following axioms:
T1) TorR

0 (M1, M2) = M1 ⊗R M2.
T2) If 0 → A → B → C → 0 is any short exact sequence of R-

modules, and M is any R-module, then there is a natural long
exact sequence

· · · → TorR
n (A, M)→ TorR

n (B, M)→ TorR
n (C, M)→ TorR

n−1(A, M)→ · · ·
· · · → TorR

1 (C, M)→ A⊗R M → B ⊗R M → C ⊗R M → 0.

T3) TorR
n (F, M) = 0 if F is a free module and n > 0.
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The functor TorR
n (−, M) is called the nth derived functor of the

functor −⊗R M .

2. There exist functors

Extn
R : R-MOD×R-MOD→ R-MOD for all n = 0, 1, 2, . . .

(M1, M2) �→ Extn
R(M1, M2) contravariant in M1 and covariant in M2

satisfying the following axioms:
E1) Ext0R(M1, M2) = HomR(M1, M2).
E2) If 0 → A → B → C → 0 is any short exact sequence of R-

modules, and M is any R-module, then there is a natural long
exact sequence

0→ HomR(C, M)→ HomR(B, M)→ HomR(A, M)→ Ext1R(C, M)→ · · ·
· · · → Extq

R(B, M)→ Extq
R(A, M)→ Extq+1

R (C, M)→ · · ·

E3) Extn
R(F, M) = 0 if F is a free module and n > 0.

The functor Extn
R(−, M) is called the nth derived functor of the

functor HomR(−, M).

Before we embark on the proof of this theorem, we prove that these
axioms characterize the functors Tor and Ext.

Theorem 2.3 (Uniqueness). Any two functors satisfying T1), T2), and
T3) are naturally isomorphic. Any two functors satisfying E1), E2), and
E3) are naturally isomorphic.

Proof. We will show that values of TorR
n (M1, M2) are determined by the

axioms by induction on n. This is true for n = 0 by T1). Next note that

for any module M1, there is a surjection F
φ−→ M1 → 0 where F is a free

module. For example, let S ⊂ M1 be a set which generates M1 as an R-
module (e.g. S = M1), and let F = F (S) the free module with basis S.
There is an obvious surjection φ. Let K = kerφ. Apply T2) to the short
exact sequence

0→ K → F →M1 → 0.

Then by T2) and T3), one has

TorR
1 (M1, M2) ∼= ker(K ⊗R M2 → F ⊗R M2)

and

TorR
n (M1, M2) ∼= TorR

n−1(K, M2) for n > 1.

The values of TorR
n−1 are known by induction. The proof for Ext is similar.
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The technique of the above proof is called dimension shifting, and it can
be useful for computations. For example, if F is a free module and

0→ K → F ′ →M → 0

is a short exact sequence with F ′ free, then

TorR
1 (M, F ) ∼= ker(K ⊗ F → F ′ ⊗ F )

but this is zero by Exercise 20. Thus TorR
1 (−, F ) is identically zero. But

TorR
n (M, F ) ∼= TorR

n−1(K, F ) for n > 1, so inductively we see TorR
n (−, F )

is zero for n > 0. To compute Ext1Z(Z/2,Z), we apply E2) to the exact
sequence 0→ Z ×2−→ Z→ Z/2→ 0, to get the exact sequence

Hom(Z,Z) Hom(Z,Z) Ext1(Z/2,Z) Ext1(Z,Z)

Z Z Ext1(Z/2,Z) 0

✲(×2)∗

❄

∼=

❄

∼=

✲

❄

∼=

✲

❄

∼=

✲×2 ✲ ✲

so Ext1Z(Z/2,Z) ∼= Z/2.
The following proposition gives some simple but useful computations.

This result should be memorized. (The subscript or superscript R is often
omitted when the the choice of the ring R is clear from context.)

Proposition 2.4. Let R be a commutative ring and a ∈ R a non-zero-
divisor (i.e. ab = 0 implies b = 0). Let M be an R-module. Let M/a =
M/aM and aM = {m ∈M |am = 0}. Then

1. R/a⊗M ∼= M/a,
2. Tor1(R/a, M) ∼= aM ,
3. Hom(R/a, M) ∼= aM ,
4. Ext1(R/a, M) ∼= M/a.

Proof. Since a is not a divisor of zero, there is a short exact sequence

0→ R
×a−→ R→ R/A→ 0.

Apply the functors−⊗M and Hom(−, M) to the above short exact sequence.
By the axioms we have exact sequences

0→ Tor1(R/a, M)→ R⊗M → R⊗M → R/a⊗M → 0

and

0→ Hom(R/a, M)→ Hom(R, M)→ Hom(R, M)→ Ext1(R/a, M)→ 0.

The middle maps in the exact sequence above can be identified with

M
×a−→M,
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which has kernel aM and cokernel M/a.

In particular if n is a non-zero integer and R = Z, the four functors
Tor1,⊗,Hom, and Ext1 applied to the pair (Z/n,Z/n) are all isomorphic
to Z/n. If m and n are relatively prime integers, then applied to the pair
(Z/m,Z/n) they are all zero.

Proposition 2.5.

1. If R is a field, then TorR
n (−,−) and Extn

R(−,−) are zero for n > 0.

2. If R is a P.I.D., then TorR
n (−,−) and Extn

R(−,−) are zero for n > 1.

Proof. 1. All modules over a field are free so this follows from axioms T3)
and E3).
2. A submodule of a free module over a P.I.D. is free, so for any module M
there is a short exact sequence

0→ F1 → F0 →M → 0

with F1 and F0 free. Then by T2), T3), E2), and E3), for n > 1, TorR
n (M,−)

and ExtR
n (M,−) sit in long exact sequences flanked by zero, and hence must

vanish.

The functors TorZ1 and Ext1Z are typically abbreviated Tor and Ext.

Exercise 21. Using the axioms, compute Tor(A, B) and Ext(A, B) for all
finitely generated abelian groups.

A couple of natural questions must have occurred to you. What is the
behavior of these functors with respect to exact sequences in the second
variable? Is Torn(A, B) ∼= Torn(B, A)? This seems likely since A ⊗ B ∼=
B⊗A. (Since Hom(A, B) �∼= Hom(B, A) the corresponding question for Ext
could not have possibly occurred to you!) Your questions are answered by
the following theorem.

Theorem 2.6 (Existence′).

1. The functors

TorR
n : R-MOD×R-MOD→ R-MOD for all n = 0, 1, 2, . . .

satisfy the following axioms.
T1′) TorR

0 (M1, M2) = M1 ⊗R M2.
T2′) If 0 → A → B → C → 0 is any short exact sequence of R-

modules, and M is any R-module, then there is a natural long
exact sequence

· · · → TorR
n (M, A)→ TorR

n (M, B)→ TorR
n (M, C)→ TorR

n−1(M, A)→ · · ·
· · · → TorR

1 (M, C)→M ⊗R A→M ⊗R B →M ⊗R C → 0.
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T3′) TorR
n (M, F ) = 0 if F is a free module and n > 0.

2. The functors

Extn
R : R-MOD×R-MOD→ R-MOD for all n = 0, 1, 2, . . .

satisfy the following axioms:
E1′) Ext0R(M1, M2) = HomR(M1, M2).
E2′) If 0 → A → B → C → 0 is any short exact sequence of R-

modules, and M is any R-module, then there is a natural long
exact sequence

0→ HomR(M, A)→ HomR(M, B)→ HomR(M, C)→ Ext1R(M, A)→ · · ·
· · · → Extq

R(M, B)→ Extq
R(M, C)→ Extq+1

R (M, A)→ · · ·

E3′) Extn
R(M, I) = 0 if I is an injective module (see Definition 2.12)

and n > 0.

We postpone the proof of Theorem 2.6 until the next section.

Corollary 2.7. The functors TorR
n (A, B) and TorR

n (B, A) are naturally iso-
morphic.

Proof. By Theorem 2.6, the functor (A, B) �→ TorR
n (B, A) satisfies the

axioms T1), T2), and T3) and thus by the uniqueness theorem, Theorem
2.3, it must be naturally isomorphic to (A, B) �→ TorR

n (A, B).

Tor and Ext are higher derived versions of ⊗R and Hom, so they have
analogous properties. For example we offer without proof:

1. TorR
n (⊕αAα, B) ∼= ⊕αTorR

n (Aα, B),

2. Extn
R(⊕αAα, B) ∼=

∏
α Extn

R(Aα, B), and

3. Extn
R(A,

∏
α Bα) ∼=

∏
α Extn

R(A, Bα).

The proofs of Theorems 2.2 and 2.6 are carried out using projective mod-
ules and projective resolutions. The functors Extn

R can also be defined using
injective resolutions. We will carry out the details in the projective case
over the next few sections, and sketch the approach to Ext using injective
resolutions.

Much of what we say can be done in the more general setting of abelian
categories, these are categories where the concept of exact sequence makes
sense (for example the category of sheaves or the category of representa-
tions of a Lie algebra) provided there are “enough projectives” or “enough
injectives” in the category.
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2.2. Projective and injective modules

Recall, if F is a free module over R, A, B are R-modules, and

F

A B 0
❄
β

✲
α

✲

is a diagram with α onto, then there exists a γ : F → A so that

F

A B 0
❄
β

�
�

�✠

γ

✲
α

✲

commutes. We say

“the problem

F

A B 0
❄
β

�

�

�

�

�

�

�✠

γ

✲
α

✲

has a solution”

Remark. In general, whenever a commutative diagram is given with one
dotted arrow, we will consider it as a problem whose solution is a map which
can be substituted for the dashed arrow to give a commutative diagram.
This makes sense in any category; we will use it mostly in the categories
R-MOD and the category of topological spaces.

We make the following definition which encapsulates the basic property
of free modules.

Definition 2.8. An R-module P is called projective if for any A, B, α, β
with α onto, the problem

P

A B 0
❄
β

�

�

�

�

�

�

�✠

γ

✲
α

✲

has a solution γ.

Lemma 2.9. An R-module P is projective if and only if there exists an
R-module Q so that P ⊕Q is a free R-module.

Proof. If P is projective, choose F free and F → P an epimorphism. Let
Q = ker(F → P ), so

0→ Q→ F → P → 0
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is exact. Since P is projective, the sequence splits, as one sees by considering
the problem

P

F P 0
❄
Id

�

�

�

�

�

�

�✠
✲ ✲

so F = P ⊕Q.

Conversely, if there exists an R-module Q so that P ⊕Q is free, extend

P

A B 0
❄
β

✲ ✲
to

P ⊕Q

A B 0.
❄
β⊕0

✲ ✲

Since P ⊕Q is free, there exists a solution f : P ⊕Q→ A to

P ⊕Q

A B 0.
❄
β⊕0

�

�

�

�

�

�

�✠

f

✲ ✲

But then let f = f ◦ i where i : P → P ⊕Q is given by p �→ (p, 0). Then
f solves the problem

P

A B 0.
❄
β

�

�

�

�

�

�

�✠

f̄

✲
α

✲

Thus projective modules generalize free modules by isolating one of the
main properties of free modules. Furthermore the definition of a projective
module is purely in terms of arrows in R-MOD, and hence is more elegant
than the definition of a free module. On the other hand they are less familiar.

Exercise 22. Let P be a projective module.

1. Any short exact sequence 0→ A→ B → P → 0 is split.
2. If P is finitely generated there is a finitely generated Q so that P ⊕Q

is free.

Proposition 2.10.

1. Any module over a field is projective.
2. Any projective module over a P.I.D. is free.
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Proof. All modules over a field are free, hence projective. A projective
module P is a submodule of the free module P ⊕ Q, and for P.I.D.’s sub-
modules of free modules are free.

There are many examples of non-free projective modules over rings R.
Note that R must be complicated, i.e. not a field nor a P.I.D. For example,
if R = Z/6, then P = Z/2 is a projective module. (To see this, use the
Chinese remainder theorem Z/6 = Z/2× Z/3).

Here is a more interesting example, related to K-theory. Let R be the
ring of continuous functions on the circle, R = C0(S1,R). Let E → S1 be
the twisted real line bundle over S1 (so E = open Möbius band) Then as
vector bundles E �∼= S1 × R, but E ⊕ E ∼= S1 × R2. So, if M = C0(E)
(continuous sections of E), M is not free (why?), but M⊕M ∼= C0(S1,R)⊕
C0(S1,R) = R⊕R. Thus M is projective.

Exercise 23. Show that the following are examples of projectives which
are not free.

1. Let R be the ring of 2-by-2 matrices with real entries. Let P = R2

where the action of R on P is by multiplying a matrix by a vector.
(Hint: Think of P as 2-by-2 matrices with the second column all
zeroes.)

2. Let R = R × R (addition and multiplication are component-wise)
and P = R× {0}.

One of the quantities measured by the functor K0 of algebraic K-theory is
the difference between projective and free modules over a ring. See Chapter
11 for another aspect of algebraic K-theory, namely the geometric meaning
of the functor K1.

As far as Tor and Ext are concerned, observe that

TorR
n (A⊕B, M) ∼= TorR

n (A, M)⊕ TorR
n (B, M).

This is because A⊕B fits into the split exact sequence

0→ A→ A⊕B → B → 0,

functoriality, and Axiom T2) put TorR
n (A⊕ B, M) in a corresponding split

exact sequence. Applying this to P ⊕ Q ∼= free, (and applying a similar
argument to Ext) one obtains the following result.

Corollary 2.11. For a projective module P , for n > 0, and for any module
M , both TorR

n (P, M) and Extn
R(P, M) vanish.

Thus for purposes of computing Tor and Ext (e.g. dimension shifting),
projective modules work just as well as free modules.
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In the categorical framework which we find ourselves, something inter-
esting usually happens if one reverses all arrows. Reversing the arrows in the
definition of projective modules leads to the definition of injective modules.

Definition 2.12. An R-module M is called injective if

M

A B 0
�

�

�

�

�

�

�

✒

✛
β

✻
α

✛

has a solution for all A, B, α, β (with β injective).

We will define Ext using projective modules instead of injective mod-
ules, so we omit most details about injective modules. See Rotman [33] or
MacLane [22] for more. We list here a few results.

Theorem 2.13. An abelian group A is injective if and only if is divisible,
(i.e. the equation nx = a has a solution x ∈ A for each n ∈ Z, a ∈ A.)

Thus some examples of injective abelian groups are Q and Q/Z. (Note
that a quotient of a divisible group is divisible, hence injective.)

Theorem 2.14.

1. Given any R-module M , there exists a projective R-module P and an
epimorphism P →M → 0.

2. Given any R-module M , there exists an injective R-module I and a
monomorphism 0→M → I.

Proof. We have already proved 1, by taking P to be a free module on a set
of generators of M . The proof of 2 is more involved. One proves it first for
an abelian group. Here is one way. Express M = (⊕Z)/K. This injects to
D = (⊕Q)/K which is divisible and hence injective.

Now suppose M is a R-module. Then, considered as an abelian group,
there is a injection ϕ : M → D where D is divisible. One can show the map
M → HomZ(R, D), m �→ (r �→ ϕ(rm)) is an injective R-module map, and
that HomZ(R, D) is an injective R-module when D is divisible.

2.3. Resolutions

We begin with the definition of projective and injective resolutions of an
R-module.

Definition 2.15.



2.3. Resolutions 33

1. A projective resolution of an R-module M is a sequence (possibly
infinitely long)

· · · → Pn → Pn−1 → · · · → P0 →M → 0

where
(a) the sequence is exact, and
(b) each Pi is a projective R-module.

2. An injective resolution of M is a sequence

0→M → I0 → I1 → I2 → · · · → In → · · ·
where

(a) the sequence is exact, and
(b) each In is an injective R-module.

Definition 2.16. Given a projective resolution, define the deleted resolu-
tion to be

· · · → Pn → Pn−1 → · · · → P0 → 0

We will use the notation P∗ or PM . Note that Hq(PM ) is zero for q �= 0
and is isomorphic to M for q = 0.

Theorem 2.17. Every R-module M has (many) projective and injective
resolutions.

Proof. Choose a surjection P0 →M with P0 projective. Assume by induc-
tion that you have an exact sequence

Pn
dn−→ Pn−1 → · · · → P0 →M → 0.

Let Kn = ker dn. Using the previous theorem, choose a projective module
Pn+1 which surjects to Kn. Then splice

Pn+1 → Kn → 0 to 0→ Kn → Pn → · · · → P0 →M

to get
Pn+1 → Pn → · · · → P0 →M.

The proof for injective resolutions is obtained by re-writing the proof for
projective resolutions but turning the arrows around.

To see that projective resolutions are not unique, notice that if

→ Pn
dn−→ Pn−1 → · · · → P0 →M → 0

is a projective resolution, and Q is projective, then

→ Pn+1 → Pn ⊕Q
dn⊕Id−→ Pn−1 ⊕Q→ Pn−2 → · · · → P0 →M

is also a projective resolution.
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If at any stage in the above construction the kernel Kn is projective,
then one may stop there since

· · · → 0→ 0→ Kn → Pn−1 → · · · → P0 →M → 0

is a projective resolution. We omit typing the 0’s.
We also record the following lemma which we used in constructing res-

olutions.

Lemma 2.18 (Splicing lemma). If the sequences A → B
α−→ C → 0 and

0→ C
β−→ D → E are exact, then A→ B

β◦α−−→ D → E is exact.

Exercise 24. Prove the splicing lemma.

Theorem 2.19.

1. If R is a field, and M is any R-module, then

0→M
Id−→M → 0

is a projective resolution. In other words, every module over a field
has a length 0 projective resolution. (It stops at P0.)

2. Every module over a P.I.D. has a length 1 projective resolution

0→ P1 → P0 →M → 0.

3. Every abelian group (R = Z) has a length 1 injective resolution

0→M → I0 → I1 → 0.

Proof. 1. is clear.
2. Every submodule of a free module over a P.I.D. is free. Thus if P0 is

a free module surjecting to M , and P1 is its kernel,

0→ P1 → P0 →M → 0

is a projective (in fact free) resolution of M .
3. If 0 → M → D0 is an injection with D0 divisible, then D0/M is

divisible, since the quotient of any divisible group is divisible. Thus 0 →
M → D0 → D0/M → 0 is an injective resolution.

Comment about Commutative Algebra. A Dedekind Domain is a com-
mutative domain (no zero divisors) in which every module has a projective
resolution of length 1. Equivalently submodules of projective modules are
projective. A P.I.D. is a Dedekind domain. From the point of view of cat-
egory theory, they are perhaps more natural than P.I.D.’s. If ζn = e2πi/n is
a primitive n-th root of unity, then Z[ζn] is a Dedekind domain. Projective
modules (in fact ideals) which are not free first arise at n = 23. Non-free
ideals are what makes Fermat’s Last Theorem so hard to prove.
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A commutative Noetherian ring R has height equal to n (ht(R) = n) if
the longest chain of non-trivial prime ideals in R has length n:

0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ R.

The homological dimension of R, hdim(R), is the least upper bound on
the length of projective resolutions for all finitely generated modules over
R. The homological dimension of a field is 0 and a Dedekind domain is 1.
If a ring has homological dimension n, then any module M has a projective
resolution with Pk = 0 for k > n. The numbers ht(R) and hdim(R) are
related. For a large class of rings (regular rings) they are equal.

2.4. Definition of Tor and Ext - existence

In this section we will complete the proof of Theorem 2.2.

Let M, N be R-modules. Let · · · → Pn → · · · d2→ P1
d1→ P0

ε→ M → 0 be
a projective resolution of M . Applying −⊗R N to a deleted resolution PM

one obtains the sequence PM ⊗R N

PM ⊗R N = {· · · → Pn ⊗N → · · · d2⊗Id−→ P1 ⊗N
d1⊗Id−→ P0 ⊗N → 0}

Note that PM ⊗ N is a chain complex (since (dn−1 ⊗ Id) ◦ (dn ⊗ Id) =
dn−1 ◦ dn ⊗ Id = 0), and by right exactness of − ⊗ N , the 0-th homology
is M ⊗N . However, since − ⊗N need not be an exact functor in general,
PM ⊗N might not be exact.

Similarly, by applying the functor HomR(−, N) to a deleted projective
resolution PM one obtains the cochain complex

Hom(PM , N)={0→HomR(P0, N)
α∗1→ HomR(P1, N)

α∗2→ HomR(P2, N)→· · · }.

Exercise 25. Show that HomR(PM , N) forms a cochain complex.

We will eventually define TorR
n (M, N) as Hn(PM ⊗R N) and we will

define Extn
R(M, N) as Hn(Hom(PM , N)). (We could have also defined Tor

and Ext as H∗(M ⊗R PN ) and H∗(Hom(M, IN )).) For now we record some
obvious facts. What is not obvious is that this will lead to well-defined
functors, i.e. independent of the choice of resolutions.

Theorem 2.20. Let M and N be R-modules and let PM be a deleted pro-
jective resolution of M .

1. For n = 0, 1, 2, . . . the assignment (M, N) �→ Hn(PM ⊗R N) is a
covariant functor in N and satisfies Axioms T1′), T2′), and T3′) of
Theorem 2.6. Furthermore, if M is free (or just projective), one can
choose the resolution so that axiom T3) of Theorem 2.2 is satisfied.
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2. For n = 0, 1, 2, . . . the assignment (M, N) �→ Hn(HomR(PM , N)) is
a covariant functor in N and satisfies Axioms E1′), E2′), and E3′) of
Theorem 2.6. Furthermore, if M is free (or just projective), one can
choose the resolution so that axiom E3) of Theorem 2.2 is satisfied.

Exercise 26. Prove this theorem.

Exercise 27. An R-module F is called flat if − ⊗R F is exact. A free
module is flat and clearly a summand of a flat module is flat, so projectives
are flat. There are modules which are flat, but not projective; show that Q
is a flat but not projective Z-module. In fact over a P.I.D. a module is flat
if and only if it is torsion free.

Tor can be computed using a flat resolution rather than a projective one.
Assume this and compute Tor(Q/Z, A) = H1(PQ/Z ⊗ A) for any abelian
group A.

2.5. The fundamental lemma of homological
algebra

Taking inventory, we still need to show that our candidates for Tor and
Ext are well-defined, functorial in the first variable, and that short exact
sequences in the first variable give long exact sequences in Tor and Ext. The
well-definition and functoriality will follow from the fundamental lemma of
homological algebra; the long exact sequences will follow from the horseshoe
lemma.

Definition 2.21. A projective chain complex

P∗ = {· · · → P2 → P1 → P0}
is a chain complex where all the modules Pi are projective. An acyclic chain
complex

C∗ = {· · · → C2 → C1 → C0}
is a chain complex where Hi(C∗) = 0 for all i > 0. (i.e. C∗ is an exact
sequence.)

Theorem 2.22 (Fundamental lemma of homological algebra.). Let P∗ be a
projective chain complex and C∗ be an acyclic chain complex over a ring R.
Then given a homomorphism ϕ : H0(P∗)→ H0(C∗), there is a chain map
f∗ : P∗ → C∗ inducing ϕ on H0. Furthermore, any two such chain maps are
chain homotopic.

We derive a few corollaries before turning to the proof.

Corollary 2.23. Any two deleted projective resolutions of M are chain ho-
motopy equivalent.
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Proof. Let PM and P′M be deleted projective resolutions of M . They are
both projective and acyclic and they have H0 = M . The existence part of the
fundamental lemma gives chain maps f∗ : PM → P′M and g∗ : P′M → PM

inducing the identity on H0. The uniqueness part of the fundamental lemma
given a chain homotopy equivalence between g∗ ◦ f∗ and Id since they are
both chain maps PM → PM inducing the identity map on H0. Likewise
f∗ ◦ g∗ is chain homotopy to Id.

Corollary 2.24. The assignments (M, N) �→ Hn(PM⊗RN) and (M, N) �→
Hn(HomR(PM , N)) do not depend on the choice of projective resolution and
are functorial in M .

Proof. Corollary 2.23 gives chain homotopy equivalences PM → P′M and
hence a chain homotopy equivalence PM ⊗R N → P′M ⊗R N and similarly
for Hom. This gives the independence of the resolution. Given a map
M → M ′, the fundamental lemma gives a map PM → P′M , unique up to
chain homotopy. This gives functoriality.

Corollary 2.25. The assignments (M, N) �→ Hn(PM⊗RN) and (M, N) �→
Hn(HomR(PM , N)) are functorial in both variables and satisfy the ′ axioms
of Theorem 2.6.

Proof of the fundamental lemma, Theorem 2.22. Let M = H0(P∗)
and M ′ = H0(C∗). Then since H0(P∗) = P0/Im (P1 → P0), there is a
surjection P0 →M and likewise a surjection C0 →M ′. So we wish to solve
the following problem (i.e. fill in the dotted arrows so that the diagram
commutes).

· · · Pn+1 Pn Pn−1 · · · P1 P0 M 0

· · · Cn+1 Cn Cn−1 · · · C1 C0 M ′ 0

✲ ✲∂n+1

�

�

�

�

�

�

�❄
fn+1

✲∂n

�

�

�

�

�

�

�❄
fn

✲
�

�

�

�

�

�

�❄
fn−1

✲ ✲∂1

�

�

�

�

�

�

�❄
f1

✲ε
�

�

�

�

�

�

�❄
f0

✲

❄
ϕ

✲ ✲
dn+1

✲
dn

✲ ✲ ✲
d1

✲
ε′

✲

Here the Pi are projective, ε is onto and the bottom sequence is exact.
We construct fi by induction.

Step 0. The map f0 exists since P0 is projective:

P0

C0 M ′ 0
❄
ϕ◦ε

�

�

�

�

�

�

�

�✠

f0

✲
ε′

✲



38 2. Homological Algebra

Step n. Suppose we have constructed f0, f1, · · · , fn−1. The problem

Pn

C0 ker dn−1 0
❄

fn−1◦∂n

�

�

�

�

�

�

�

�

�

�

�

�✠

fn

✲
dn

✲

makes sense since dn−1 ◦ fn−1 ◦ ∂n = fn−2 ◦ ∂n−1 ◦ ∂n = 0. Furthermore
ker dn−1 = Im dn since C∗ is acyclic, so the bottom map is onto. Then fn

exists since Pn is projective.
This completes the existence part of the fundamental lemma; we switch

now to uniqueness up to chain homotopy. Suppose f∗, g∗ are two choices of
chain maps which induce ϕ on H0.

Pn Pn−1 · · · P1 P0 M 0

Cn Cn−1 · · · C1 C0 M ′ 0

✲ ✲∂n

❄
fn−gn

✲

❄
fn−1−gn−1

�

�

�

�

�

�

�

�

�✠

sn−1

✲ ✲∂1

❄
f1−g1

✲ε

❄
f0−g0

�

�

�

�

�

�

�

�

�

�✠

s0

✲

❄

ϕ

✲ ✲
dn

✲ ✲ ✲
d1

✲
ε′

✲

Here we want to define maps sn : Pn → Cn+1, but contrary to our usual
convention, we don’t want the diagram to commute, but instead we want s
to be a chain homotopy, i.e. f0−g0 = d1◦s0 and fn−gn = dn+1◦sn+sn−1◦∂n

for n > 0.
We will construct a chain homotopy by induction on n.

Step 0. Since ε′ ◦ (f0 − g0) = (ϕ − ϕ) ◦ ε = 0 : P0 → C0, Im(f0 − g0) ⊂
ker ε′ : C0 →M ′ = Im d1 : C1 → C0.

Then s0 exists since P0 is projective

P0

C1 ker ε′ 0
❄

f0−g0

�

�

�

�

�

�

�

�

�

�✠

s0

✲
d1

✲

Step n. Suppose we have defined

sq : Pq → Cq+1 for q = 0, · · · , n− 1
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satisfying fq − gq = dq+1sq + sq−1∂q for each q = 0, · · · , n − 1 (s−1 = 0).
Then the problem

Pn

C1 ker dn 0
❄

fn−gn

�

�

�

�

�

�

�

�

�

�✠

sn

✲
dn+1

✲

makes sense, since

dn(fn − gn − sn−1∂n) = (fn−1 − gn−1)∂n − dnsn−1∂n

= (dnsn−1 + sn−2∂n−1)∂n − dnsn−1∂n

= sn−2∂n−1∂n = 0.

Therefore Im (fn − gn − sn−1∂n) ⊂ ker dn = Im (dn+1 : Cn+1 → Cn). Thus
dn+1sn = fn − gn − sn−1∂n, proving the induction step.

This finishes the proof of the fundamental lemma.

To show that our functors satisfy the remaining long exact sequence
axioms we need the following lemma.

Lemma 2.26 (Horseshoe lemma). Let 0→ A→ B → C → 0 be a short ex-
act sequence of R-modules. Let PA and PC be deleted projective resolutions
of A and C. Then there exists a deleted projective resolution PB of B, fitting
into a short exact sequence of chain complexes 0 → PA → PB → PC → 0
which induces the original sequence on H0.

Proof. We are given the following “horseshoe” diagram

0

· · · Pn · · · P1 P0 A 0

B

· · · Rn · · · R1 R0 C 0

0

❄
✲ ✲∂ ✲ ✲∂ ✲ε ✲

❄

❄
✲ ✲d ✲ ✲d ✲τ ✲

❄

where the horizontal rows are projective resolutions. We want to add a
middle row of projective modules to obtain a commutative diagram with
exact rows and short exact columns. Since Qn is projective, the columns
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will split, and so Qn = Pn ⊕ Rn must go in the n-th slot in the middle.
Furthermore we may assume that the maps Pn → Qn and Qn → Rn are the
inclusion and projection maps, but the horizontal maps are yet unclear.
Step 0. The problem

B

R0 C

0

❄�

�

�

�

�

�

�

✒Φ

✲
τ

❄

has a solution Φ since R0 is projective. Let γ : Q0 → B be γ(p, r) =
iε(p)− Φ(r) where (p, r) ∈ Q0 = P0 ⊕ R0 and i : A→ B. A diagram chase
shows γ is onto. Thus we have the commutative diagram

0 0

· · · Pn · · · P1 P0 A 0

Q0 B 0

· · · Rn · · · R1 R0 C 0

0 0

❄ ❄
✲ ✲∂ ✲ ✲∂ ✲ε

❄

✲

❄
✲γ

❄

✲

❄
✲ ✲d ✲ ✲d ✲τ

❄

✲

❄

Step n+1. Suppose inductively we have constructed the following commu-
tative diagram with exact rows and columns.
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0 0 0 0

· · · Pn · · · P1 P0 A 0

Qn · · · Q1 Q0 B 0

· · · Rn · · · R1 R0 C 0

0 0 0 0

❄ ❄ ❄ ❄
✲

❄

✲∂ ✲

❄

✲∂ ✲ε

❄

✲

❄

❄

✲ ✲

❄

✲ ✲γ

❄

✲

❄
✲

❄

✲d ✲ ✲d

❄

✲τ

❄

✲

❄

Let Kn = ker(Pn → Pn−1), Ln = ker(Qn → Qn−1) and Mn = ker(Rn →
Rn−1). We then have the diagram

0

· · · Pn+2 Pn+1 Kn 0

Ln

· · · Rn+2 Rn+1 Mn 0

0

❄
✲ ✲∂ ✲∂ ✲

❄

❄
✲ ✲d ✲d ✲

❄

By Step 0 we can fill in the next column and horizontal arrow. We then
splice this diagram with the previous one to obtain the inductive step.

It is important to notice that the short exact sequence 0→ PA → PB →
PC → 0 is not (necessarily) a split short exact sequence of chain complexes,
even though each chain module is projective. (What might a projective
object in the category of chain complexes be?)

Corollary 2.27. Let 0 → A → B → C → 0 be a short exact sequence of
R-modules and let 0 → PA → PB → PC → 0 be a short exact sequence of
deleted projective resolutions provided by the horseshoe lemma. Let N be an
R-module. Then there are long exact sequences:
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· · · → Hn+1(PC⊗RN)→ Hn(PA⊗RN)→ Hn(PB⊗RN)→ Hn(PC⊗RN)→ · · ·
and
· · · → Hn(HomR(PC , N))→ Hn(HomR(PB, N))→ Hn(HomR(PA, N))

→ Hn+1(HomR(PC , N))→ Hn+1(HomR(PB, N))→ · · ·

Proof. Since we have a short exact sequence of deleted projective resolu-
tions, in degree n, the short exact sequence

0→ (PA)n → (PB)n → (PC)n → 0

is split, hence

0→ (PA ⊗R N)n → (PB ⊗R N)n → (PC ⊗R N)n → 0

is split and hence exact. Thus

0→ PA ⊗R N → PB ⊗R N → PC ⊗R N → 0

is a short exact sequence of chain complexes; the zig-zag lemma gives the
long exact sequence in homology above. We leave the cohomology proof as
an exercise.

We can finally safely make the following definition.

Definition 2.28.

1. TorR
n (M, N) = Hn(PM ⊗R N).

2. Extn
R(M, N) = Hn(HomR(PM , N)).

With these definitions, the existence theorem, Theorem 2.2 and the
primed version, Theorem 2.6 follow from Corollaries 2.25 and 2.27.

We have not proven that ExtnR(M, N) = Hn(HomR(M, IN )). This fol-
lows by using injective versions of the fundamental lemma and the horseshoe
lemma to show that the axioms are also satisfied here. For these facts, see
any book on homological algebra, or, better, prove it yourself. Once we
have defined tensor products and Hom for chain complexes, one can show
TorR

n (M, N) = Hn(PM ⊗R PN ) and ExtnR(M, N) = HomR(PM , IN )); this
is an intermediate way between resolving on the left and the right.

Earlier in this chapter you were asked in an exercise to compute Tor(A, B)
and Ext(A, B) for finitely generated abelian groups. Lest you learn all the
theory without any examples, we give a way of stating the result. Let
torsion(A) denote the subgroup of A consisting of elements of finite order.
Then

Tor(A, B) ∼= torsion(A)⊗Z torsion(B)
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and
Ext(A, B) ∼= torsion(A)⊗Z B.

Exercise 28. For any commutative ring R show that

Extq
R(A⊕B, M) ∼= Extq

R(A, M)⊕ Extq
R(B, M)

and
TorR

q (A⊕B, M) ∼= TorR
q (A, M)⊕ TorR

q (B, M).

Finally we quote from the famous exercise from Lang’s Algebra, Chapter
IV ([21]):

“Take any book on homological algebra, and prove all the theorems with-
out looking at the proofs given in that book.

Homological algebra was invented by Eilenberg-MacLane. General cate-
gory theory (i.e. the theory of arrow-theoretic results) is generally known as
abstract nonsense (the terminology is due to Steenrod).”

2.6. Universal coefficient theorems

Let (C∗, ∂) be a chain complex over a ring R. Then there is an evaluation
map

HomR(Cq, M)× Cq →M

(f, z) �→ f(z).

You have already come across this pairing in Exercise 11 and have shown
that this pairing passes to the Kronecker pairing

〈 , 〉 : Hq(C∗;M)×Hq(C∗)→M

of cohomology with homology. This pairing is bilinear, and its adjoint is a
homomorphism

Hq(C∗, M)→ Hom(Hq(C∗);M).
The example following Exercise 11 shows that this adjoint need not be an
isomorphism. To understand the kernel and cokernel of this map is a sub-
tle question. Universal coefficient theorems among other things provide a
measure of how this adjoint fails to be an isomorphism in terms of the de-
rived functors Extq and Torq. The answer can be quite difficult for general
commutative rings and arbitrary chain complexes.

We will answer the question completely when R is a P.I.D. and C∗ is a
free chain complex. In this case Hq(C∗, M)→ Hom(Hq(C∗);M) is surjective
with kernel Ext(Hq−1(C∗), M). This will cover the topological situation in
the most important cases of coefficients in the integers or in a field, since
the singular and cellular complexes of a space are free.
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Theorem 2.29 (universal coefficient theorem for cohomology). Let R be a
principal ideal domain. Suppose that M is a module over R, and (C∗, ∂) is
a free chain complex over R (i.e. each Cq is a free R-module).

Then the sequence

0→ ExtR(Hq−1(C∗), M)→ Hq(C∗;M)→ Hom(Hq(C∗), M)→ 0

is exact, and natural with respect to chain maps of free chain complexes.
Moreover, the sequence splits, but not naturally.

We will give a proof of this based on the concept of an exact triangle.

Definition 2.30. An exact triangle of R-modules is a diagram of R-modules

A B

C

✲α

��✠β❅❅	
γ

satisfying ker(β) = Im (α), ker(γ) = Im (β), and ker(α) = Im (γ).

Similarly one defines an exact triangle of graded R-modules A∗, B∗, C∗
(see Definition 3.1). In this case we require the homomorphisms α, β, and γ
each to have a degree; so for example if α has degree 2 then α(Aq) ⊂ Aq+2.

The basic example of an exact triangle of graded R-modules is the long
exact sequence in homology

H∗(A) H∗(X)

H∗(X, A)

✲i∗

✑
✑

✑✑✰ j∗◗
◗

◗◗❦
∂

For this exact triangle i∗ and j∗ have degree 0, and ∂ has degree −1.

Exercise 29. Suppose that

0 E A B F 0

C

✲ ✲j ✲α

✑
✑✑✰ β

✲k ✲

◗
◗◗❦
γ

is a diagram with the top row exact and the triangle exact. Prove that there
is a short exact sequence

0 F C E 0.✲ ✲β◦k−1
✲j−1◦γ ✲

State and prove the graded version of this exercise.

Proof of Theorem 2.29. There is a short exact sequence of graded, free
R-modules

0→ Z∗
i−→C∗

∂−→ B∗ → 0(2.1)
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where Zq denotes the q-cycles and Bq denotes the q-boundaries. The homo-
morphism i has degree 0 and ∂ has degree −1. This sequence is in fact a
short exact sequence of chain complexes where Z∗ and B∗ are given the zero
differential.

Since the sequence (2.1) is an exact sequence of free chain complexes,
applying the functor Hom(−, M) gives another short exact sequence of chain
complexes

0→ Hom(B∗, M) ∂∗−→ Hom(C∗, M) i∗−→ Hom(Z∗, M)→ 0

Applying the zig-zag lemma we obtain a long exact sequence (i.e. ex-
act triangle) in homology, which, since the differentials for the complexes
Hom(B∗, M) and Hom(Z∗, M) are zero, reduces to the exact triangle

Hom(Z∗, M) Hom(B∗, M)

H∗(C∗;M)

✲δ

✟✟✟✟✟✙ ∂∗❍❍❍❍❍
i∗

(2.2)

There is also short exact sequence of graded R-modules

0→ B∗
j−→Z∗ → H∗ → 0(2.3)

coming from the definition of homology, that is

Z∗ = ker ∂ : C∗ → C∗,

B∗ = Im ∂ : C∗ → C∗,

and
H∗ = H∗(C∗) = Z∗/B∗.

Notice that in the sequence (2.3), B∗ and Z∗ are free, since R is a P.I.D.
and these are submodules of the free module C∗. Thus using the second
axiom E2) of Theorem 2.2 and using the fact that Ext(Z∗, M) = 0 we
obtain an exact sequence

0→ Hom(H∗, M)→ Hom(Z∗, M)
j∗−→ Hom(B∗, M)→ Ext(H∗, M)→ 0.

(2.4)

Exercise 30. Complete the proof of the universal coefficient theorem as
follows.

1. Show, taking special care with the grading, that the homomorphism
δ of the exact triangle (2.2) coincides with the homomorphism j∗ of
(2.4). Thus there is a commutative diagram
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0→ Hom(H∗, M)→ Hom(Z∗, M)
j∗−→ Hom(B∗, M)→ Ext(H∗, M)→ 0

↖ ↙
i∗ ∂∗

H∗(C∗, M)

obtained by putting together (2.2) and (2.4).

2. Apply Exercise 29 to obtain a short exact sequence of graded R-
modules

0→ Ext(H∗, M)→ H∗(C∗;M)→ Hom(H∗, M)→ 0.

Verify that the map H∗(C∗;M)→ Hom(H∗, M) is induced by evalu-
ating a cochain on a cycle.

3. By taking the grading into account, finish the proof of Theorem 2.29.

Corollary 2.31. If R is a field, M is a vector space over R, and C∗ is a
chain complex over R, then

Hq(C∗;M) ∼= Hom(Hq(C∗), M).

Moreover the Kronecker pairing is non-degenerate.

Applying the universal coefficient theorem to the singular or cellular
complexes of a space or a pair of spaces one obtains the following.

Corollary 2.32. If (X, A) is a pair of spaces A ⊂ X, R a P.I.D., M a
module over R, then for each q the sequence

0→ExtR(Hq−1(X, A;R), M)→ Hq(X, A;M)→ Hom(Hq(X, A;R),M)→0

is short exact, natural, and splits (though the splitting is not natural).

Exercise 31. Let f : RP 2 → S2 be the map pinching the 1-skeleton to a
point. Compute the induced map on Z and Z/2 cohomology to show the
splitting is not natural.

The most important special case of the universal coefficient theorem for
cohomology is its use in the computation of Hq(X) (cohomology with in-
teger coefficients). For an abelian group A, we have denoted the torsion
subgroup (i.e. the subgroup of finite order elements) by torsion(A). Let
free(A) = A/torsion(A). Then for space X whose homology is finitely gener-
ated in every dimension (e.g. a finite CW -complex), the universal coefficient
theorem shows that

Hq(X) ∼= free(Hq(X))⊕ torsion(Hq−1(X)).
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Another formulation is is to define the dual of an abelian group A by
A∗ = Hom(A,Z) and the torsion dual Â ∼= Hom(A,Q/Z), then the uni-
versal coefficient theorem says that

Hq(X) ∼= Hq(X)∗ ⊕ (torsion(Hq−1(X)))̂.

The right hand side is then a contravariant functor in X but the isomorphism
is still not natural.

There are other universal coefficient theorems, for more complicated
rings, and other algebraic situations. Knowing these can speed up compu-
tations. A useful example is the following theorem. (See [36, pg. 246] for a
proof.)

Theorem 2.33. If R is a P.I.D., M is a finitely generated R-module, and
C∗ is a free chain complex over R then there is a split short exact sequence

0→ Hq(C∗)⊗M → Hq(C∗;M)→ TorR
1 (Hq+1(C∗), M)→ 0.

Notice the extra hypothesis that M be finitely generated in this state-
ment.

There are also universal coefficient theorems for homology, and we turn
to these now. The following universal coefficient theorem measures the dif-
ference between first tensoring a complex with a module M and then passing
to homology versus first passing to homology and then tensoring with M .

Theorem 2.34 (universal coefficient theorem for homology). Suppose that
R is a P.I.D., C∗ a free chain complex over R, and M a module over R.
Then there is a natural short exact sequence.

0→ Hq(C∗)⊗M → Hq(C∗ ⊗M)→ TorR
1 (Hq−1(C∗), M)→ 0

which splits, but not naturally.

Sketch of Proof. The proof is similar to the proof given above of Theorem
2.29. As before, there is a short exact sequence of chain complexes

0→ Z∗ → C∗ → B∗ → 0

which remains exact when tensoring with M , since B∗ is free.
Applying the zig-zag lemma to the tensored sequence one obtains the

exact triangle

B∗ ⊗M Z∗ ⊗M

H∗(C∗;M)

✲
✟✟✟✟✙❍❍❍❍(2.5)
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The short exact sequence of graded R-modules

0→ B∗ → Z∗ → H∗(C∗)→ 0

gives, using axiom T2) of Theorem 2.2, an exact sequence

0→ Tor(H∗(C∗), M)→ B∗ ⊗M → Z∗ ⊗M → H∗(C∗)⊗M → 0.(2.6)

Assembling the triangle (2.5) and the sequence (2.6) as in Exercise 29
one obtains the short exact sequence

0→ H∗(C∗)⊗M → H∗(C∗;M)→ Tor(H∗(C∗), M)→ 0.

Taking the grading into account finishes the proof.

Corollary 2.35. If (X, A) is a pair of spaces A ⊂ X, R a P.I.D., M a
module over R, then for each q the sequence

0→ Hq(X, A;R)⊗M → Hq(X, A;M)→ TorR
1 (Hq−1(X, A;R), M)→ 0

is short exact, natural, and splits, but not naturally.

There is another universal coefficient theorem for homology (see [36, pg.
248] for the proof). It addresses the question of how a different version of
the Kronecker pairing fails to pass to a perfect pairing on (co)homology.

In this case, the pairing

HomR(C∗, R)× (C∗ ⊗M)→M

is defined by
(f, z ⊗m) �→ f(z) ·m.

This pairing passes to a pairing on homology

Hq(C∗;R)×Hq(C∗ ⊗M)→M.

Taking the adjoint yields the homomorphism

α : Hq(C∗ ⊗M)→ HomR(Hq(C∗), M).

The following theorem computes the kernel of this homomorphism if R
is a P.I.D. and C∗ has finitely generated homology.

Theorem 2.36. Let R be a P.I.D., C∗ a free chain complex over R such
that Hq(C∗) is finitely generated for each q, and let M be an R-module.
Then the sequence

0→ Ext1R(Hq+1(C∗), M)→ Hq(C∗;M) α→ Hom(Hq(C∗), M)→ 0

is short exact, natural, and splits.
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As an application of the universal coefficient theorems we can identify
the different versions of the Betti numbers of a space. Recall that the q-th
Betti number βq(X) of a space X is the rank of Hq(X;Z). Since Q and R
are flat abelian groups (see Exercise 27) Tor(−,Q), Tor(−,R), Ext(−,Q),
and Ext(−,R) all vanish. This implies the following.

Corollary 2.37. The following numbers are all equal: The Betti number
βq(X), dimQHq(X;Q), dimRHq(X;R), dimQHq(X;Q), and dimRHq(X;R).

In particular if X is a compact smooth manifold, by the above corollary
and DeRham cohomology we see the q-th Betti number is the dimension of
the real vector space of closed q-forms modulo exact q-forms.

Example. Since Hq(RP 2;Z) = Z,Z/2, 0, . . . for q = 0, 1, 2, . . . , by the
universal coefficient theorem Hq(RP 2;Z/2) = Z/2,Z/2,Z/2, 0, . . . for q =
0, 1, 2, 3, . . . and Hq(RP 2;Z) = Z, 0,Z/2, 0, . . . for q = 0, 1, 2, 3, . . . What
is the geometric meaning of the torsion? Let α be a cycle representing the
generator of H1(RP 2;Z), e.g. α is a “half-equator”. Then 2α = ∂β. The
generators of H1(RP 2;Z/2) and H2(RP 2;Z/2) are represented by α ⊗ 1
and β ⊗ 1 respectively. A representative of the generator of H2(RP 2;Z) is
represented by a cocycle ω where ω(β) = 1.

2.7. Projects for Chapter 2

2.7.1. The acyclic models theorem and the Eilenberg-Zilber map.
First state the acyclic models theorem very carefully.

Theorem 2.38 (acyclic models theorem). Suppose that (A,M) is a cate-
gory with models. Let C the category of augmented chain complexes over R.
Let F, F ′ : A → C be functors so that F is free and F ′ acyclic. Then there
exists a natural transformation Φ : F → F ′ unique up to chain homotopy.

In particular, if both F and F ′ are free and acyclic, then F and F ′ are
chain equivalent and any natural transformation between them is a chain
equivalence.

In this theorem A is a category, for example the category TOP of spaces
or the category TOP2 consisting of pairs (X, Y ) where X and Y are spaces
(but Y need not be a subspace of X), andM is a fixed collection of objects
of A. The functor F : A → C is called acyclic if F (M) is an acyclic chain
complex for each model M ∈M; it is called free if for every X ∈ A, the chain
groups Fq(X) are free with basis contained in the set {Fq(u)Fq(M)|M ∈
M, u ∈ Hom(M, X)}.
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Then describe the functors

(X, Y ) �→ S∗(X × Y )

and
(X, Y ) �→ S∗(X)⊗ S∗(Y )

and show that they are both free and acyclic. Conclude the Eilenberg–Zilber
theorem, Theorem 3.4. Prove the acyclic models theorem.

If time is left, prove the homotopy axiom for homology and cohomol-
ogy: homotopic maps give chain homotopic maps on the singular chains.
References include [13, pg. 265-270]. Also see [36].
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Products

The theory of products in the homology and cohomology of a space comes
about by combining two basic constructions. The first is purely algebraic;
one forms the tensor product of chain complexes and their dual cochain com-
plexes and studies their relationships. The second construction is topological
and applies to the singular complex of a space. It is a natural chain homo-
topy equivalence between the singular chain complex S∗(X × Y ) and the
tensor product of S∗X and S∗Y . This result is called the Eilenberg-Zilber
theorem and it is a consequence of the acyclic models theorem.

3.1. Tensor products of chain complexes and the
algebraic Künneth theorem

We begin with a discussion about tensor products and Hom of graded R-
modules.

Definition 3.1.

1. A graded R-module A∗ can be thought of either a collection of R-
modules {Ak}k∈Z, or as a module A =

⊕
k Ak with a direct sum

decomposition.

2. A homomorphism of graded R-modules is a element of
∏

k Hom(Ak, Bk).

3. The tensor product of graded R-modules A∗ and B∗ is the graded
R-module

(A∗ ⊗B∗)n =
⊕

p+q=n

(Ap ⊗Bq).

51
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4. Define Hom(A∗, B∗) to be the graded R-module, with

Hom(A∗, B∗)n =
∏
k

Hom(Ak, Bk+n).

The functors − ⊗ B∗ and Hom(B∗,−) are adjoint functors from the
category of graded R-modules to itself.

5. A graded ring is a graded abelian group R∗ together with a (degree
zero) map

R∗ ⊗R∗ → R∗

which is associative in the sense that (ab)c = a(bc) where we write ab
for the image of a⊗ b. Alternatively, a graded ring can be thought of
as a ring R with a direct sum decomposition R =

⊕
Rk, satisfying

Rk ·Rl ⊂ Rk+l.
6. A graded ring is commutative if

ab = (−1)|a||b|ba,

where a ∈ R|a| and b ∈ R|b|.

7. A graded module M∗ over a graded ring R∗ is a module over R satis-
fying Rk ·Ml ⊂Mk+l.

We apply these constructions to chain complexes. Let (C∗, ∂) and (C ′∗, ∂
′
∗)

be two chain complexes. We allow Cq and C ′q to be nonzero for any q ∈ Z.

Definition 3.2. The tensor product chain complex, (C∗ ⊗ C ′∗, d) is defined
by taking the tensor product of the underlying graded modules, so

(C∗ ⊗ C ′∗)n = ⊕
p+q=n

Cp ⊗ C ′q

and giving it the differential

d(z ⊗ w) = ∂z ⊗ w + (−1)pz ⊗ ∂′w, if z ∈ Cp.

(The differential d is sort of a “graded derivative;” it satisfies the product
rule by definition.)

One computes:

d2(z ⊗ w) = d(∂z ⊗ w + (−1)pz ⊗ ∂′w)

= ∂2z ⊗ w + (−1)p−1∂z ⊗ ∂′w

+(−1)p∂z ⊗ ∂′w + (−1)2pz ⊗ ∂′
2
w

= 0.

Thus (C∗ ⊗ C ′∗, d) is indeed a chain complex.
One geometric motivation for this construction is the following. If X and

Y are CW-complexes with cells {ei} and {fj} respectively, then X × Y is a
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CW-complex with cells {ei×fj}. The cellular chain complex C∗(X×Y ) can
be identified with (i.e. is isomorphic to) the tensor product C∗(X)⊗C∗(Y ).

The question we wish to understand is: To what extent and how does the
homology of C∗ and C ′∗ determine the homology of C∗ ⊗ C ′∗? A connection
between the two is provided by the algebraic homology cross product.

Exercise 32. If C∗, D∗ are chain complexes, there is a natural map

×alg : HpC∗ ⊗HqD∗ → Hp+q(C∗ ⊗D∗).

called the algebraic homology cross product defined by

[z]⊗ [w] �→ [z ⊗ w].

Write [z]×alg [w] (or just [z]× [w]) for [z ⊗ w].

The following theorem measures the extent to which this map is an
isomorphism, at least if the ground ring R is a P.I.D..

Theorem 3.3 (Künneth exact sequence). Suppose C∗, D∗ are chain com-
plexes over a P.I.D. R, and suppose Cq is a free R-module for each q. Then
there is a natural exact sequence

0→ ⊕
p+q=n

Hp(C∗)⊗Hq(D∗)
×alg−−−→Hn(C∗⊗D∗)→⊕

p+q=n
TorR(Hp(C∗), Hq−1(D∗))→0

which splits (non-naturally).

Proof. The proof is similar to the proof of the universal coefficient theorem
(Theorem 2.29), and so we only sketch the argument, leaving details, notably
issues about the grading, to the reader.

Setting Zq = ker ∂ : Cq → Cq−1 and Bq = Im ∂ : Cq+1 → Cq we obtain
the short exact sequence

0→ Z∗ → C∗
∂−→ B∗ → 0(3.1)

which we view as a short exact sequence of free chain complexes by giving
Z∗ and B∗ the zero differential (the modules Zq and Bq are free since they
are submodules of the free module Cq and R is a P.I.D.).

Since Bq is free, tensoring the short exact sequence (3.1) with D∗ yields
a new short exact sequence of chain complexes.

0→ Z∗ ⊗D∗ → C∗ ⊗D∗ → B∗ ⊗D∗ → 0.(3.2)

Since the differential in the chain complex Z∗ is zero, the differential
∂ : Z∗ ⊗D∗ → Z∗ ⊗D∗ reduces to

z ⊗ d �→ (−1)|z|z ⊗ ∂d

and so passing to homology one gets

H∗(Z∗ ⊗D∗) = Z∗ ⊗H∗(D∗).
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Similarly
H∗(B∗ ⊗D∗) = B∗ ⊗H∗(D∗).

Thus, the long exact sequence in homology obtained by applying the
zig-zag lemma to the complex (3.2) reduces to the exact triangle

B∗ ⊗H∗(D∗) Z∗ ⊗H∗(D∗)

H∗(C∗ ⊗D∗)

✲

✟✟✟✟✟✙❍❍❍❍❍
(3.3)

On the other hand, applying Theorem 2.2 to the tensor product of the
short exact sequence

0→ B∗ → Z∗ → H∗(C∗)→ 0,

with H∗(D∗) yields an exact sequence

0→Tor(H∗(C∗),H∗(D∗))→B∗⊗H∗(D∗)→Z∗⊗H∗(D∗)→H∗(C∗)⊗H∗(D∗)→0.

(3.4)

Combining (3.3) and (3.4), applying Exercise 29, taking care with the
grading, and chasing down the definitions of the maps induced finishes the
proof.

3.2. The Eilenberg-Zilber maps

Recall the statement of the Eilenberg-Zilber theorem. Until further notice,
homology and cohomology with coefficients in a ring R is understood, and
we omit writing “ ;R ”.

Theorem 3.4 (Eilenberg-Zilber theorem). Let TOP2 be the category whose
objects are pairs of spaces (X, Y ) (we do not assume Y ⊂ X), and mor-
phisms are pairs (f : X ′ → X, g : Y ′ → Y ) of continuous maps. Then the
two functors

F : (X, Y ) �→ S∗(X × Y )

and
F ′ : (X, Y ) �→ S∗(X)⊗ S∗(Y )

from TOP2 to the category of chain complexes are naturally equivalent, i.e.
there exist natural transformations A : F → F ′ and B : F ′ → F so that for
any pair (X, Y ) the composites

S∗(X × Y ) A−→ S∗(X)⊗ S∗(Y ) B−→ S∗(X × Y )
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and
S∗(X)⊗ S∗(Y ) B−→ S∗(X × Y ) A−→ S∗(X)⊗ S∗(Y )

are chain homotopic to the identity. Moreover, any two choices of A (resp.
B) are naturally chain homotopic.

In particular, there exist natural isomorphisms

Hn(X × Y )→ Hn(S∗(X)⊗ S∗(Y ))

for each n.

The proof of this theorem is an easy application of the acyclic mod-
els theorem. See the project on the acyclic models theorem at the end of
Chapter 2.

The natural transformations A and B determine chain homotopy equiv-
alences

A : S∗(X × Y )→ S∗(X)⊗ S∗(Y )
and

B : S∗(X)⊗ S∗(Y )→ S∗(X × Y )
for any pair of spaces X and Y . We will call these maps the Eilenberg-Zilber
maps.

The confusing, abstract, but important point is that A and B are not
canonical, but only natural. That is, they are obtained by the method of
acyclic models, and so constructed step by step by making certain arbitrary
choices. However, these choices are made consistently for all spaces.

In what follows, we will show how a choice of A and B determines
natural additional structure, namely products, on the singular complex and
homology of a space. But you should keep in mind that all the constructions
depend at core on the non-canonical choice of the transformations A and B.

An alternative approach to this material is to just give specific formulas
for A and B. It is easy to imagine a chain map B : S∗(X) ⊗ S∗(Y ) →
S∗(X × Y ). Given singular simplices σ : ∆p → X and τ : ∆q → Y , there
is the product map σ × τ : ∆p ×∆q → X × Y . Unfortunately the product
of simplices is not a simplex, but it can be chopped up into a union of
p+q-simplices (consider a square chopped into triangles or a prism chopped
into tetrahedra.) Then one could choose B(σ ⊗ τ) to be a sum of singular
p + q-simplices – the “shuffle product”.

It is harder to imagine a candidate for the reverse map A : S∗(X ×
Y ) → S∗(X) ⊗ S∗(Y ), but one can do this explicitly using projections to
X and Y – the “Alexander-Whitney diagonal approximation”. However,
even if one constructs the maps A and B explicitly, they will only be chain
homotopy equivalences, not isomorphisms; S∗(X ×Y ) is simply bigger than
S∗(X)⊗ S∗(Y ).
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In any case, invoking a technical formula can obscure the point of a con-
struction (just look at any page of a differential geometry book for evidence
of this principle). Thus for what follows, fix a natural transformations A
and B whose existence is asserted in Theorem 3.4. Each product on chain
complexes constructed below depends on the choice of A or B, but this
dependence disappears when passing to homology and cohomology.

3.3. Cross and cup products

3.3.1. The homology cross product and the Künneth formula. Ex-
ercise 32 implies that the natural map

×alg : HpX ⊗HqY → Hp+q(S∗X ⊗ S∗Y )

given on the chain level by [a]⊗ [b] �→ [a⊗ b] is well-defined. Denote by B∗
the isomorphism induced by the Eilenberg-Zilber map on homology, so

B∗ : H∗(S∗(X)⊗ S∗(Y ))→ H∗(S∗(X × Y )) = H∗(X × Y ).

Composing ×alg with B∗, we obtain

× : HpX ⊗HqY → Hp+q(X × Y ).

Definition 3.5. If α ∈ HpX, β ∈ HqY , the image of α⊗ β under this map
is called the homology cross product of α and β, and is denoted by α× β.

The Eilenberg-Zilber theorem has the following important consequence.

Theorem 3.6 (Künneth formula). If R is a P.I.D., there exists a split ex-
act sequence

0→
n
⊕

p=0
HpX ⊗Hn−pY → Hn(X × Y )→

n−1
⊕

p=0
Tor(HpX, Hn−1−pY )→ 0.

The first map is given by cross products.

Proof. This follows easily by combining the the Künneth exact sequence
(Theorem 3.3) to the free chain complexes S∗X and S∗Y with the Eilenberg-
Zilber theorem.

Corollary 3.7. If R is a field, then

H∗(X × Y ) = H∗(X)⊗H∗(Y ).

Exercise 33. Compute H∗(RP 2×RP 2), both with Z and Z/2-coefficients.
Give a geometric interpretation of the class coming from the Tor term in
the Künneth formula.

The Künneth formula implies that if R is a P.I.D., α × β �= 0 if α �= 0
and β �= 0.
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3.3.2. The cohomology cross product. Let C∗ and D∗ be chain com-
plexes over a ring R and let C∗ and D∗ be the dual chain complexes
HomR(C∗, R) and HomR(D∗, R) respectively.

Exercise 34. If C∗, D∗ are chain complexes, there is a natural map

×alg : HpC∗ ⊗HqD∗ → Hp+q((C∗ ⊗D∗)∗)

defined by [α] ⊗ [β] �→ [
∑

zi ⊗ wi �→
∑

α(zi) · β(wi)]. In this formula if α
and zi are of different degrees, then α(zi) is zero, and likewise for β(wi).
The notation α(zi) · β(wi) refers to multiplication in the ring R.

This map is called the algebraic cohomology cross product.

Applying this product to the singular complexes we see that for any
spaces X and Y we have a map

×alg : HpX ⊗HqY → Hp+q((S∗X ⊗ S∗Y )∗)

Using the Eilenberg-Zilber theorem we can further map to Hp+q(X × Y ).
Explicitly, the dual of the Eilenberg-Zilber map A : S∗(X×Y )→ S∗X⊗S∗Y
is a chain homotopy equivalence A∗ : (S∗X ⊗ S∗Y )∗ → S∗(X × Y ). Passing
to cohomology one obtains an isomorphism

A∗ : H∗((S∗X ⊗ S∗Y )∗)→ H∗(X × Y ).

This map is independent of the choice of Eilenberg-Zilber map A since any
two are naturally chain homotopic. (We will be somewhat casual with no-
tation and denote by A∗ the dual of A as well as the induced map on co-
homology. This should not cause any confusion and will keep the notation
under control.)

Definition 3.8. If a ∈ HpX, b ∈ HqY , the image of a ⊗ b under the
composite

HpX ⊗HqY
×alg

−−−→ Hp+q((S∗X ⊗ S∗Y )∗) A∗−→ H∗(X × Y )

map is called the cohomology cross product of a and b, and is denoted by
a× b.

3.3.3. The cup product. Combining the the diagonal map ∆ : X →
X × X, x �→ (x, x) with the cross product leads to the important cup
product:

Definition 3.9. If If a ∈ HpX, b ∈ HqX, then the cup product of a and b
is defined by a ∪ b = ∆∗(a× b) ∈ Hp+qX.

To review, the cup product gives a homomorphism

HpX ⊗HqX → Hp+qX, a⊗ b �→ a ∪ b.
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It is defined as the composite

HpX ⊗HqX
×alg

−−−→ Hp+q((S∗X ⊗ S∗X)∗) A∗−→ Hp+q(X ×X) ∆∗−−→ Hp+qX

where the first map is given by ×alg, the second by the dual of the Eilenberg-
Zilber map A and the third by the diagonal map.

It is usually more intuitive to think of the cup product as a bilinear
pairing

∪ : HpX ×HqX → Hp+qX,

by precomposing with the canonical map HpX ×HqX → HpX ⊗HqX.
The next lemma shows the cross product determines the cup product

and conversely the cup product determine the cross product. Both are
functorial.

Lemma 3.10. Let f : X ′ → X and g : Y ′ → Y be continuous maps. Let
a, b ∈ H∗X and c ∈ H∗Y .

1. a ∪ b = ∆∗(a× b)

2. a× c = p∗Xa ∪ p∗Y c, where pX and pY are the projections in X × Y .

3. f∗(a ∪ b) = f∗a ∪ f∗b.

4. (f × g)∗(a× c) = f∗a× g∗c

Proof. We prove these in reverse order. 4.) follows from the naturality of
the Eilenberg-Zilber map and the algebraic cohomology cross product with
respect to pairs of maps (f : X ′ → X, g : Y ′ → Y ).

3.) follows since

f∗a ∪ f∗b = ∆∗(f∗a× f∗b)

= ∆∗(f × f)∗(a× b)

= ((f × f) ◦∆)∗(a× b)

= (∆ ◦ f)∗(a× b)

= f∗(∆∗(a× b))

= f∗(a ∪ b).

2.) follows since

p∗Xa ∪ p∗Y c = ∆∗X×Y (p∗Xa× p∗Y c)

= ∆∗X×Y ((pX × pY )∗(a× c))

= ((pX × pY ) ◦∆X×Y )∗(a× c)

= Id∗X×Y (a× c).

1.) is the definition of cup product.
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At this point it is convenient to introduce the concept of a diagonal
approximation.

Definition 3.11. A diagonal approximation τ is a chain map

τ : S∗X → S∗X ⊗ S∗X

for every space X, so that

1. τ(σ) = σ ⊗ σ for every 0-simplex σ.

2. τ is natural with respect to continuous maps of a spaces.

Now the functor S∗X is free on the models {∆n} and S∗X ⊗ S∗X is
acyclic on these models, so the acyclic models theorem says that there exists
a diagonal approximation and any two such are natural chain homotopic.
If A is an Eilenberg-Zilber map and ∆ : X → X ×X is the diagonal map,
then τ = A ◦ ∆∗ is a diagonal approximation. Thus we can rephrase the
definition of the cup product

a ∪ b = τ∗(a×alg b).

Lemma 3.12. A choice of Eilenberg-Zilber map A : S∗(X ×Y )→ S∗(X)⊗
S∗(Y ) determines a diagonal approximation τ : S∗X → S∗X ⊗ S∗X by the
formula

τ = A ◦∆∗.

Conversely, a diagonal approximation τ determines an Eilenberg-Zilber
map A by the formula A = (pX ⊗ pY ) ◦ τ , that is, as the composite

S∗(X × Y ) S∗(X × Y )⊗ S∗(X × Y ) S∗(X)⊗ S∗(Y ).✲τ ✲pX⊗pY

Proof. Given an Eilenberg-Zilber map A, clearly A ◦∆∗ is a diagonal ap-
proximation.

Conversely, the map (pX ⊗ pY ) ◦ τ is a natural transformation from the
functor F : (X, Y ) �→ S∗(X×Y ) to the functor F ′ : (X, Y ) �→ S∗(X)⊗S∗(Y ).
By the uniqueness part of the Eilenberg-Zilber theorem, this must be an
Eilenberg-Zilber map.

In light of Lemma 3.12, we see that the cup product and the cohomology
cross product could just as well have been defined starting with a diagonal
approximation. We will use τ or A depending on which one leads to simpler
notation, using the formulas of Lemma 3.12 to pass between the two.

The following theorem says that H∗X is a graded commutative ring with
unit. (Remember, coefficients in a commutative ring R are understood.)
Part 3.) of Lemma 3.10 shows that a map of spaces f : X → Y induces a
map f∗ : H∗Y → H∗X of graded rings.
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Theorem 3.13.

1. Let 1 ∈ H0(X) be represented by the cocycle which takes every singu-
lar 0-simplex to 1 ∈ R. Then 1 ∪ a = a = a ∪ 1.

2. (a ∪ b) ∪ c = a ∪ (b ∪ c).

3. a ∪ b = (−1)|a||b|b ∪ a. Here |a| represents the degree of A, i.e. a ∈
H |a|X.

Proof. All three parts involve the uniqueness part of the method of acyclic
models.

1. Represent 1 ∈ H0X by the cochain 1 ∈ S0X. The algebraic co-
homology cross product is represented on the chain level by the canonical
identification

×alg : C∗ ⊗D∗ → (C∗ ⊗D∗)∗.

Consider the natural transformation of functors

C : S∗X → S∗X

defined by
C(α) = τ∗(1×alg α).

This induces the identity map on H0; if σ is a singular 0-simplex, then

C(α)(σ) = τ∗(1×alg α)(σ)

= (1×alg α)(τ(σ))

= (1×alg α)(σ ⊗ σ)

= 1(σ) · α(σ) = α(σ).

Since S∗X is free and acyclic on the models {∆p}, the map C must be
naturally chain equivalent to the identity by the acyclic models theorem.
Passing to cohomology gives 1.

2. The compositions of Eilenberg-Zilber maps

S∗X ⊗ S∗Y ⊗ S∗Z → S∗(X × Y )⊗ S∗Z → S∗(X × Y × Z)

S∗X ⊗ S∗Y ⊗ S∗Z → S∗X ⊗ S∗(Y × Z)→ S∗(X × Y × Z)

are natural transformations of functors on TOP3 (triples of spaces), which
are free and acyclic on the models {∆p,∆q,∆r}. They induce the same map
on H0 so must be naturally chain homotopic. Associativity follows.

3. The key observation here is that for chain complexes C∗ and D∗, the
interchange map

T : C∗ ⊗D∗ → D∗ ⊗ C∗

z ⊗ w �→ (−1)|z||w|w ⊗ z
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gives an isomorphism of chain complexes. Let S : X × Y → Y ×X be the
geometric switch map S(x, y) = (y, x). Thus the Eilenberg-Zilber maps

T ◦A : S∗(X × Y )→ S∗Y ⊗ S∗X

A ◦ S∗ : S∗(X × Y )→ S∗Y ⊗ S∗X

are naturally chain homotopic by the uniqueness part of the acyclic models
theorem. The result follows.

More explicitly, if S is the switch map on X ×X, note that

S ◦∆ = ∆ : X → X ×X.

Thus

a ∪ b = ∆∗(a× b)

= ∆∗S∗(a× b)

= ∆∗S∗A∗(a×alg b)

= ∆∗(A ◦ S)∗(a×alg b)

= ∆∗(T ◦A)∗(a×alg b)

= (−1)|a||b|∆∗A∗(b×alg a)

= (−1)|a||b|b ∪ a.

Exercise 35. Give another proof of the graded commutativity of the cup
product as follows. Let T : S∗X⊗S∗X → S∗X⊗S∗X be the algebraic switch
map, x ⊗ y �→ (−1)|x||y|y ⊗ x. Show that if τ is a diagonal approximation,
so is T ◦ τ . Use this to show that H∗X is graded commutative.

Sometimes one wishes to use products on homology and cohomology
with coefficients in various R-modules. The following exercise shows how to
accomplish this. The basic idea is that multiplication in the ring R was used
in the in the definition of cup products (in fact in the definition of ×alg),
and so when passing to more general modules an auxiliary multiplication is
needed.

Exercise 36. If M, N, P are R modules, and M ×N → P a bilinear map,
show how to construct a cross product

× : Hp(X;M)×Hq(Y ;N)→ Hp+q(X × Y ;P )

and a cup product

∪ : Hp(X;M)×Hq(X;N)→ Hp+q(X;P ).
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3.3.4. The cap product. Recall that the Kronecker pairing is a natural
bilinear evaluation map (sometimes called “integration” by analogy with the
deRham map)

〈 , 〉 : S∗X × S∗X → R

defined for a ∈ SqX, z ∈ SpX by

〈a, z〉 =

{
a(z) if p = q,
0 otherwise.

This pairing can be extended to a “partial evaluation” or “partial inte-
gration” map

E : S∗X ⊗ S∗X ⊗ S∗X → S∗X

by “evaluating the first factor on the last factor”, i.e.

E(a⊗ z ⊗ w) = a(w)⊗ z.

We will define the cap product on the chain level first.

Definition 3.14. The cap product

Sq(X)× Sp+q(X)→ Sq(X)

is defined for a ∈ Sq(X), z ∈ Sp+q(X) by

a ∩ z = E(a⊗A ◦∆∗(z)).

The definition can be given in terms of a diagonal approximation τ
instead of the Eilenberg-Zilber map A:

a ∩ z = E(a⊗ τ(z)).

Lemma 3.15. For α ∈ SqX, z ∈ Sp+qX,

∂(α ∩ z) = (−1)pδα ∩ z + α ∩ ∂z.

Proof. Suppose τ(z) =
∑

xi ⊗ yi so that |xi| + |yi| = p + q. Then since α
only evaluates non-trivially on chains in degree q, we have

∂(α ∩ z) = ∂E(α⊗ τ(z))

= ∂
∑
|yi|=q

α(yi) · xi

=
∑
|yi|=q

α(yi) · ∂xi
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and

δα ∩ z = E(δα⊗ τ(z))

=
∑

δα(yi) · xi

=
∑

|yi|=q+1

α(∂yi) · xi.

Moreover,

α ∩ ∂z = E(α⊗ τ(∂z))

= E(α⊗ ∂τ(z))

= E(α⊗ (
∑

∂xi ⊗ yi +
∑

(−1)|xi|xi ⊗ ∂yi))

=
∑
|yi|=q

α(yi) · ∂xi +
∑

|yi|=q+1

(−1)p−1α(∂yi) · xi

= ∂(α ∩ z) + (−1)p−1(δα) ∩ z.

Lemma 3.15 immediately implies:

Corollary 3.16. The cap product descends to a well defined product

∩ : HqX ×Hp+qX → HpX

([α], [z]) �→ [α ∩ z]
after passing to (co)homology.

Exercise 37. Let a, b ∈ H∗X and z ∈ H∗X. Show that

1. 〈a, b ∩ z〉 = 〈a ∪ b, z〉.
2. a ∩ (b ∩ z) = (a ∪ b) ∩ z.

Thus the cap product makes the homology H∗(X) a module over the ring
H∗(X).

3.3.5. The slant product. We next introduce the slant product which
bears the same relation to the cross product as the cap product does to the
cup product (this could be on an SAT test). Again we give the definition
on the chain level first.

Definition 3.17. The slant product

\ : Sq(Y )× Sp+q(X × Y )→ Sp(X)

is defined for a ∈ SqY, and z ∈ Sp+q(X × Y ) by

a\z = E(a⊗A(z)) ∈ SpX

Where A : S∗(X × Y )→ S∗(X)⊗ S∗(Y ) is the Eilenberg-Zilber map.
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Similar arguments to those given for the other products given above
show that

〈a, b\z〉 = 〈a× b, z〉
for all a ∈ SqY and that passing to (co)homology one obtains a well-defined
bilinear map

\ : HqY ×Hp+q(X × Y )→ HpX.

If M, N, P are R modules and M × N → P a bilinear map, one can
define cap products

∩ : Hq(X;M)×Hp+q(X;N)→ Hp(X;P )

and slant products

\ : Hq(Y ;M)×Hp+q(X × Y ;N)→ Hp(X;P ).

(See Exercise 36.)
There are even more products (the book by Dold [8] is a good reference).

For example, there is another slant product

/ : Hp+q(X × Y )×HqY → HpX.

Often one distinguishes between internal products which are defined in terms
of one space X (such as the cup and cap products) and external products
which involve the product of two spaces X × Y . Of course, one can go back
and forth between the two by thinking of X ×Y as a single space and using
the two projections pX and pY and the diagonal map ∆ : X → X ×X.

3.4. The Alexander-Whitney diagonal
approximation

When considered on the chain level, the various products we have defined
above do depend on the choice of Eilenberg-Zilber map A : S∗(X × Y ) →
S∗(X) ⊗ S∗(Y ). Only by passing to (co)homology does the choice of A
disappear. It is nevertheless often useful to work on the chain level, since
there is subtle homotopy-theoretic information contained in the singular
complex which leads to extra structure such as such as Steenrod operations
and Massey products.

We will give an explicit formula due to Alexander and Whitney for a
specific choice of A. This enables one to write down formulas for the products
on the chain level, and in particular gives the singular cochain complex of a
space an explicit natural associative ring structure.

Definition 3.18. Given a singular n-simplex σ : ∆n → X, and integers
0 ≤ p, q ≤ n, define the front p-face of σ to be the singular p-simplex
pσ : ∆p → X

pσ(t0, . . . , tp) = σ(t0, . . . , tp, 0, . . . , 0)
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and the back q-face of σ to be the singular q-simplex σq : ∆q → X

σq(t0, . . . , tq) = σ(0, . . . , 0, t0, . . . , tq).

Let pX : X × Y → X and pY : X × Y → Y denote the two projections.

Definition 3.19. The Alexander-Whitney map

A : S∗(X × Y )→ S∗(X)⊗ S∗(Y )

is the natural transformation given by the formula

A(σ) =
∑

p+q=n

p(pX ◦ σ)⊗ (pY ◦ σ)q.

Thus
A : Sn(X × Y )→ (S∗X ⊗ S∗Y )n = ⊕

p+q=n
SpX ⊗ SqY.

The Alexander-Whitney map A is a natural chain map since it is given
by a specific formula involving geometric simplices which is independent of
the choice of X and Y .

Exercise 38. Show directly that A induces an isomorphism on H0.

From the uniqueness part of the Eilenberg-Zilber theorem, it follows that
A is a chain homotopy equivalence, and can be used to define cross products
and cup products. (This illustrates the power of the acyclic models theorem;
the naturality of the Alexander-Whitney map and the map on H0 suffice to
conclude that A is a chain homotopy equivalence.)

To an Eilenberg-Zilber map A one can associate the corresponding di-
agonal approximation τ = A ◦∆∗. Taking A to be the Alexander-Whitney
map one gets the following.

Definition 3.20. The Alexander-Whitney diagonal approximation is the
map

τ(σ) =
∑

p+q=n

pσ ⊗ σq.

This allows one to define a specific product structure on S∗X: for a
cochain α ∈ SpX and β ∈ SqX, define α ∪ β ∈ Sp+qX by

(α ∪ β)(σ) = α(pσ) · β(σq).

Exercise 39. By tracing through this definition of the cup product, show
that [α] ∪ [β] = [α ∪ β].

Exercise 40. Using the Alexander-Whitney diagonal approximation,

1. prove that S∗(X;R) is an associative ring with unit 1 represented by
the cochain c ∈ S0(X;R) = Hom(S0(X);R) which takes the value 1
on every singular 0-simplex in X.
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2. Compute cap products: show that if α ∈ SqX and σ is a singular
(p + q)-simplex, then

α ∩ σ = α(σq) · pσ.

3. Show that (α ∪ β) ∩ z = α ∩ (β ∩ z), and so the cap product makes
S∗(X) into a S∗(X) module.

We have already seen that cohomology is an associative and graded
commutative ring with unit in Theorem 3.13. However, the methods used
there cannot be used to show that S∗(X) is an associative ring; in fact it is
not for a random choice of Eilenberg-Zilber map A.

The Alexander-Whitney map is a particularly nice choice of Eilenberg-
Zilber map because it does give an associative ring structure on S∗(X).
This ring structure, alas, is not (graded) commutative (Steenrod squares
give obstructions to its being commutative), while the ring structure on
H∗X is commutative by Theorem 3.13.

Notice that the deRham cochain complex of differential forms on a
smooth manifold is graded commutative, since differential forms satisfy
a ∧ b = ±b ∧ a. It is possible to give a natural construction of a commuta-
tive chain complex over the rationals which gives the rational homology of
a space; this was done using rational differential forms on a simplicial com-
plex by Sullivan. This fact is exploited in the subject of rational homotopy
theory [14]. On the other hand it is impossible to construct a functor from
spaces to commutative, associative chain complexes over Z which gives the
integral homology of a space.

Exercise 41. Give an example of two singular 1-cochains α1 and α2 such
that α1 ∪α2 �= −α2 ∪α1 using the Alexander-Whitney diagonal approxima-
tion to define the cup product.

See Vick’s book [41] for a nice example of computing the cohomology
ring of the torus directly using the Alexander-Whitney diagonal approxima-
tion.

If X is a CW-complex then the diagonal ∆ : X → X ×X is not cellular
(consider X = [0, 1]). However the cellular approximation theorem says that
∆ is homotopic to a cellular map ∆′. If ∆′∗(z) =

∑
xi ⊗ yi, then the cup

product on cellular cohomology can be defined by (α∪β)(z) =
∑

α(xi)·β(yi).
The geometric root of the Alexander-Whitney diagonal approximation is
finding a simplicial map (i.e. takes simplices to simplices and is affine on
the simplices) homotopic to the diagonal map ∆n → ∆n ×∆n.

Let ε : S0X → R be the augmentation map ε(
∑

riσi) =
∑

ri. This
passes to homology ε∗ : H0X → R and is an isomorphism if X is path
connected.
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The cup product of an q-dimensional cocycle with a q-dimensional co-
cycle generalizes the Kronecker pairing in the following sense.

Proposition 3.21. For α ∈ HqX and z ∈ HqX,

〈α, z〉 = ε∗(α ∩ z).

Proof. We show that for any cochain α ∈ SqX and for any chain z ∈ SqX,
using the Alexander-Whitney definition,

α(z) = ε(α ∩ z).

By linearity it suffices to check this for z = σ.

ε(α ∩ σ) = ε(α(σq) · 0σ)) = α(σ).

Notice that the argument shows that the equation 〈α, z〉 = ε∗(α ∩ z)
holds even on the chain level. Since ε∗ is a canonical isomorphism for a
path–connected space we will usually just write

〈α, z〉 = α ∩ z.

Can you prove Proposition 3.21 for an arbitrary choice of diagonal ap-
proximation using the acyclic models theorem?

3.5. Relative cup and cap products

The constructions of cup and cap products carry over without any difficulty
to the singular chains and singular (co)homology of a pair (X, A). Naturality
then implies that there is a cup product

H∗(X, A)×H∗(X, B)→ H∗(X, A ∩B).(3.5)

However, it turns out that applying a construction that comes about in
proving the excision theorem via acyclic models, one can obtain a very useful
form of cup and cap products, for example there is a well-defined natural
cup product

H∗(X, A)×H∗(X, B)→ H∗(X, A ∪B),(3.6)

provided A and B are open. (Explain to yourself why (3.6) is better than
(3.5).)

That the pairing (3.6) exists is not so surprising if you think in terms of
the Alexander-Whitney definition of cup product. Recall

(a ∪ b)σ =
∑

a(pσ) · b(σq).

If the image of σ is contained in either A or B, then the sum will be zero,
since a is zero on simplices in A and b is zero on simplices in B. However, if
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A and B are open, then one can subdivide σ so that each piece is contained
in A or B. The existence of this cup product follows since subdivision
disappears when passing to cohomology. We now give a formal argument.

We begin with some algebraic observations. Suppose (X, A) and (Y, B)
are two pairs of spaces. Then

S∗X
S∗A

⊗ S∗Y
S∗B

∼= S∗X ⊗ S∗Y
S∗X ⊗ S∗B + S∗A⊗ S∗Y

.(3.7)

This is a natural isomorphism, induced by the surjection

S∗X ⊗ S∗Y →
S∗X
S∗A

⊗ S∗Y
S∗B

.

Exercise 42. Prove that (3.7) is a natural isomorphism.

Now assume X = Y , i.e. let A and B be subsets of X. The diagonal
approximation τ satisfies τ(S∗A) ⊂ S∗A ⊗ S∗A and τ(S∗B) ⊂ S∗B ⊗ S∗B.
Thus τ induces a map

τ :
S∗X

S∗A + S∗B
→ S∗X ⊗ S∗X

S∗X ⊗ S∗A + S∗B ⊗ S∗X
.

The composite

Hom
(

S∗X
S∗A

, R

)
⊗Hom

(
S∗X
S∗B

, R

)
Hom

(
S∗X

S∗A + S∗B
, R

)
✲τ∗◦×alg

induces a cup product

Hp(X, A)×Hq(X, B)→ Hp+q

(
Hom

(
S∗X

S∗A + S∗B
, R

))
.(3.8)

Definition 3.22. If A, B are subspaces of a topological space X, we say
{A, B} is an excisive pair if the inclusion map

S∗(A) + S∗(B) ⊂ S∗(A ∪B)

is a chain homotopy equivalence.
Since a chain map between free chain complexes inducing an isomor-

phism on homology is a chain homotopy equivalence, this is equivalent to
requiring that the inclusion map induces an isomorphism on homology.

If {A, B} is an excisive pair, the induced map on cochain complexes

S∗(A ∪B)→ Hom(S∗(A) + S∗(B), R)

is also a chain homotopy equivalence and hence induces an isomorphism on
cohomology.

The excision theorem implies that if

A ∪B = Int A∪BA ∪ Int A∪BB
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then {A, B} is an excisive pair. Standard arguments show that if A, B are
subcomplexes of a CW-complex X, then {A, B} is excisive (replace A, B by
homotopy equivalent neighborhoods).

Exercise 43. Let A be a point on a circle in X = R2 and let B be the
complement of A in this circle. Show that {A, B} is not an excisive pair.

Suppose {A, B} is an excisive pair. Then consider the two short exact
sequences of chain complexes

0 S∗A + S∗B S∗X
S∗X

S∗A + S∗B
0

0 S∗(A ∪B) S∗X
S∗X

S∗(A ∪B) 0.

✲ ✲

❄

✲

❄
❄

✲

✲ ✲ ✲ ✲

The zig-zag lemma gives a ladder of long exact sequences on cohomology
where two-thirds of the vertical arrows are isomorphisms. The five lemma
shows that the rest are isomorphisms, in particular, we conclude that if
{A, B} is an excisive pair, the natural map

Hn(X, A ∪B)→ Hn

(
Hom

(
S∗X

S∗A + S∗B
, R

))
is an isomorphism for all n. Combining this fact with the cup product of
Equation (3.8) gives a proof of the following theorem.

Theorem 3.23. If {A, B} is an excisive pair, there is a well-defined cup
product

∪ : Hp(X, A)×Hq(X, B)→ Hp+q(X, A ∪B).

Here is a particularly interesting application of Theorem 3.23.

Exercise 44. Show that if X is covered by open, contractible sets Ui, i =
1, · · · , n then

a1 ∪ · · · ∪ an = 0
for any collection of ai ∈ Hqi(X) with qi > 0.

As an example, the torus cannot be covered by two charts, since the cup
product of the two 1-dimensional generators of cohomology is non-trivial
(by Exercise 48).

Notice that the pair {A, A} is always excisive. Thus H∗(X, A) is a ring.
Also, {A, φ} is always excisive. This implies the following.
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Corollary 3.24. There is a well-defined natural cup product

∪ : Hp(X, A)×HqX → Hp+q(X, A).

Similar arguments apply to cap products. The final result is:

Theorem 3.25. If {A, B} is an excisive pair, then there is a well-defined
cap product

∩ : Hq(X, A)×Hp+q(X, A ∪B)→ Hp(X, B).

Proof. (Special case when A = ∅, using the Alexander-Whitney map.)

If A = ∅, let a ∈ SqX be a cocycle, and let c ∈ Sp+qX so that its image
in Sp+q(X, B) is a cycle, i.e. ∂c ∈ Sp+q−1B. Then a ∩ c ∈ SqX. Since
∂(a∩ c) = δa∩ c+(−1)qa∩∂c, and δa = 0, it follows that ∂(a∩ c) = a∩∂c.

Because ∂c ∈ S∗B, a ∩ ∂c ∈ S∗B also. Indeed, if ∂c =
∑

riσi, σi :
∆p+q−1 → B, a ∩ ∂c =

∑
ria(qσi) · σip−1 , but σip−1 : ∆p−1 → B ∈ S∗B.

Thus ∂(a ∩ c) ∈ S∗B, i.e. a ∩ c is a cycle in S∗(X, B).
It is easy to check that replacing a by a + δx, and c by c + ∂y, y ∈

Sp+q+1(X, B) does not change a ∩ c in Hp(X, B).

Exercise 45. Prove Theorem 3.25 when B = ∅ and A �= ∅.

3.6. Projects for Chapter 3

3.6.1. Algebraic limits and the Poincaré duality theorem. Define
both direct and inverse limits of modules over a directed system. Define
a n-dimensional manifold. Define the local orientation and the fundamen-
tal class of a manifold. Define the compactly supported cohomology of a
manifold, then state and prove the Poincaré duality theorem. State the
Poincaré-Lefschetz duality for a manifold with boundary. If time permits
state the Alexander duality theorem. A good reference is Milnor and Stash-
eff’s “characteristic classes”, [30, pg. 276]. Also see [13, pg. 217]. For the
definition of limits see [33].

Let M be a connected manifold of dimension n.

1. If M is non-compact, then HnM = 0. (Just prove the orientable case
if the non-orientable case seems too involved).

2. If M is compact, then Hn(M ;Z) is Z or 0. It is Z if and only if M is
orientable.

From these facts you can define the Poincaré duality maps. The following
theorem forms the cornerstone of the subject of geometric topology.
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Theorem 3.26.

1. (Poincaré duality) Let M be an oriented n-dimensional compact man-
ifold without boundary. Then the orientation determines a preferred
generator [M ] ∈ Hn(M ;Z) ∼= Z. Taking cap products with this gen-
erator induces isomorphisms

∩[M ] : Hp(M ;Z)→ Hn−p(M ;Z).

2. (Poincaré-Lefschetz duality) Let M be a compact oriented n-manifold
with non-empty boundary ∂M . Then the orientation determines a
preferred generator [M, ∂M ] ∈ Hn(M, ∂M ;Z). The manifold with-
out boundary ∂M is orientable. Let [∂M ] = ∂([M, ∂M ]) where ∂ :
Hn(M, ∂M)→ Hn−1(∂M). Then the diagram

· · · → Hp−1(M) Hp−1(∂M) Hp(M, ∂M) Hp(M)→· · ·

· · ·→Hn−p+1(M,∂M) Hn−p(∂M) Hn−p(M) Hn−p(M,∂M)→· · ·

✲

❄
∩[M,∂M ]

✲

❄
∩[∂M ]

✲

❄
∩[M,∂M ]

❄
∩[M,∂M ]

✲ ✲ ✲

commutes up to sign, where the horizontal rows are the long exact se-
quences in cohomology and homology for the pairs, and every vertical
map is an isomorphism.

3. (Alexander duality) Let M be a compact closed orientable n-manifold,
and let A ⊂M be a finite subcomplex. Then Hp(A) is isomorphic to
Hn−p(M, M −A).

3.6.2. Exercises on intersection forms. Let M be a compact, closed,
oriented n-dimensional manifold. For each p, define a bilinear form

Hp(M ;Z)×Hn−p(M ;Z)→ Z

by a · b = 〈a ∪ b, [M ]〉.

Exercise 46. a · b = (−1)p(n−p)b · a.

Given a finitely generated abelian group A, let T = T (A) ⊂ A denote
the torsion subgroup. Thus A/T is a free abelian group.

Exercise 47. Show that the pairing (a, b) �→ a · b passes to a well-defined
pairing

Hp(M ;Z)/T ×Hn−p(M ;Z)/T → Z.(3.9)

Show that this pairing is perfect, i.e. the adjoint

Hp(M ;Z)/T → Hom(Hn−p(M ;Z)/T,Z)
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is an isomorphism of free abelian groups. (Hint: use the universal coefficient
theorem and Poincaré duality.)

The pairing (3.9) is called the intersection pairing on M . In Section
10.7 we will see that the pairing can be described by the intersection of
submanifolds of M .

Exercise 48. Compute the cohomology rings H∗(RPn;Z/2), H∗(CPn;Z),
and H∗(Tn;Z) using Poincaré duality and induction on n. (The first two
are truncated polynomial rings; the last one is an exterior algebra.)

If dim M = 2k, then

Hk(M ;Z)/T ×Hk(M ;Z)/T → Z

called the intersection form of M . It is well-defined and unimodular over Z,
i.e. has determinant equal to ±1.

Let V = Hk(M,Z)/T . So (V ,· ) is an inner product space over Z. This
inner product space can have two kinds of symmetry.
Case 1. k is odd. Thus dim M = 4F+2. Then v ·w = −w ·v for v, w ∈ V ,
so (V ,· ) is a skew-symmetric and unimodular inner product space over Z.

Exercise 49. Prove that there exists a basis v1, w1, v2, w2, · · · , vr, wr so
that vi · vj = 0 for all i, j, wi · wj = 0 for all i, j, and vi · wj = δij . So
(V, · ) has matrix 

0 1
−1 0

0 1
−1 0

. . .


(all other entries zero) in this basis. Such a basis is called a “symplectic
basis”. The closed surface of genus r is an example; describe a symplectic
basis geometrically.

Hence unimodular skew-symmetric pairings over Z are classified by their
rank. In other words, the integer intersection form of a 4k − 2-dimensional
manifold M contains no more information than the dimension of H2k+1(M).

Case 2. k is even. Thus dim M = 4F. Then v · w = w · v, so (V, · ) is a
symmetric and unimodular inner product space over Z

There are 3 invariants of such unimodular symmetric forms:

1. The rank of (V, · ) is the rank of V as a free abelian group.

2. The signature of (V, · ) is the difference of the number of positive
eigenvalues and the number of negative eigenvalues in any matrix
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representation of (V, ·). (The eigenvalues of a symmetric real matrix
are all real.)

Notice that in any basis {vi} for V , the form · defines a matrix Q with
Qij = vi ·vj . Since Q is symmetric, There exists a basis over the real numbers
so that in this basis Q is diagonal (with real eigenvalues).

Exercise 50. Show that although the eigenvalues of Q are not well defined,
their signs are well-defined, so that the signature is well-defined. (This is
often called Sylvester’s Theorem of Inertia).

3. The type (odd or even) of (V, ·) is defined to be even if and only if
v · v is even for all v ∈ V . Otherwise the type is said to be odd.

The form (V, · ) is called definite if the absolute value of its signature
equals its rank; i.e. the eigenvalues of Q are either all positive or all negative.

The main result about unimodular integral forms is the following. For
a proof see e.g. [29].

Theorem 3.27. If (V, · ), (W, · ) are two unimodular, symmetric, indefinite
forms over Z, then V and W are isometric (i.e. there exists an isomorphism
V →W preserving the inner product) if and only if they have the same rank,
signature, and type.

In fact, any odd indefinite form is equivalent to ⊕
�
(1)⊕

m
(−1), and any

even indefinite form is equivalent to

⊕
�

[
0 1
1 0

]
⊕
m

E8

where

E8 =



2 1
1 2 1

1 2 1
1 2 1

1 2 1 0 1
1 2 1 0
0 1 2 0
1 0 0 2


(all other entries zero).

Exercise 51. Prove E8 is unimodular and has signature equal to 8.

The classification of definite forms is not known. It is known that:

1. for each rank, there are finitely many isomorphism types.
2. If (V ,· ) is definite and even, then sign(V ,· ) ≡ 0 Mod 8.
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3. There are

1 even, positive definite rank 8 forms.
2 ” rank 16 ”
24 ” rank 24 ”

71051 ” rank 40 ”

Definition 3.28. The signature, sign M , of a compact, oriented 4k-manifold
without boundary M is the signature of its intersection form

H2k(M ;Z)/T ×H2k(M ;Z)/T → Z

The following sequence of exercises introduce the important technique
of bordism in geometric topology. The topic will be revisited from the per-
spective of algebraic topology in Chapter 8.

Exercise 52.

1. Let M be a closed, odd–dimensional manifold. Show that the Euler
characteristic χ(M) = 0. Prove it for non-orientable manifolds, too.

2. Let M be a closed, orientable manifold of dimension 4k + 2. Show
that χ(M) is even.

3. Let M be a closed, oriented manifold of dimension 4k. Show that the
signature sign M is congruent to χ(M) mod 2.

4. Let M be the boundary of a compact manifold W . Show χ(M) is
even.

5. Let M be the boundary of an compact, oriented manifold W and
suppose the dimension of M is 4k. Show sign M = 0.

6. Give examples of manifolds which are and are not boundaries.

We have seen that even–dimensional manifolds admit intersection forms
on the free part of their middle dimensional cohomology. For odd-dimensional
manifolds one can construct the linking form on the torsion part of the
“middle dimensional” cohomology as well. The construction is a bit more
involved. We will outline one approach. Underlying this construction is the
following exercise.

Exercise 53. If M is a compact, closed, oriented manifold of dimension n,
show that the torsion subgroups of Hp(M) and Hn−p+1(M) are isomorphic.
(Note: you will use the fact that H∗(M) is finitely generated if M is a
compact manifold.)

Consider the short exact sequence of abelian groups

0→ Z→ Q→ Q/Z→ 0.
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For any space X, one can dualize this sequence with the (integer) singular
complex to obtain a short exact sequence of cochain complexes

0→ HomZ(S∗(X),Z)→ HomZ(S∗(X),Q)→ HomZ(S∗(X),Q/Z)→ 0.

The zig-zag lemma gives a long exact sequence in cohomology

· · · → Hq−1(X;Q/Z) δ−→Hq(X;Z) i−→Hq(X;Q)→ · · · .
Exercise 54. Prove that the map δ : Hq−1(X;Q/Z) → Hq(X;Z) maps
onto the torsion subgroup T of Hq(X;Z).

(The map δ is a Bockstein homomorphism; see Section 10.4)
The bilinear map

Q/Z× Z→ Q/Z, (a, b) �→ ab

is non-degenerate, in fact induces an isomorphism Q/Z ⊗ Z → Q/Z. This
bilinear map can be used to define a cup product

Hq−1(X;Q/Z)×Hq(X;Z)→ H2q−1(X;Q/Z)(3.10)

as in Exercise 36.
Now suppose that M is a closed manifold of dimension 2k − 1. Let

T ⊂ Hk(M ;Z) denote the torsion subgroup.

Exercise 55. Prove that the linking pairing of M

T × T → Q/Z

defined by
(a, b) �→ 〈δ−1(a) ∪ b, [M ]〉

is well-defined. Here δ−1(a) means any element z in Hk−1(M ;Q/Z) with
δ(z) = a.

Show that this pairing is skew symmetric if dim(M) = 4k + 1 and sym-
metric if dim(M) = 4k − 1.

It is a little bit harder to show that this pairing is non-singular (the proof
uses Exercise 53 in the same way that the corresponding fact for the free part
of cohomology is used to show that the intersection pairing is non-singular.)





Chapter 4

Fiber Bundles

Fiber bundles form a nice class of maps in topology, and many naturally
occurring maps are fiber bundles. A theorem of Hurewicz says that fiber
bundles are fibrations, and fibrations are a natural class of maps to study in
algebraic topology, as we will soon see. There are several alternate notions of
fiber bundles and their relationships with one another is somewhat technical.
The standard reference is Steenrod’s book [37].

A fiber bundle is also called a Hurewicz fiber bundle or a locally trivial
fiber bundle. The word “fiber” is often spelled “fibre,” even by people who
live in English speaking countries in the Western hemisphere.

4.1. Group actions

Let G be a topological group. This means that G is a topological space and
also a group so that the multiplication map µ : G × G → G, µ(g, h) = gh
and the inversion map ι : G→ G, ι(g) = g−1 are continuous.

Definition 4.1. A topological group G acts on a space X if there is a group
homomorphism G→ Homeo(X) such that the “adjoint”

G×X → X (g, x) �→ g(x)

is continuous. We will usually write g · x instead of g(x).
The orbit of a point x ∈ X is the set Gx = {g · x|g ∈ G}.
The orbit space or quotient space X/G is the quotient space X/ ˜ , with

the equivalence relation x˜ g · x.

The fixed set is XG = {x ∈ X|g · x = x for all g ∈ G}.
An action is called free if g(x) �= x for all x ∈ X and for all g �= e.
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An action is called effective if the homomorphism G → Homeo(X) is
injective.

A variant of this definition requires the homomorphism G→ Homeo(X)
to be continuous with respect to the compact-open topology on Homeo(X),
or some other topology, depending on what X is (for example, one could
take the C∞ topology on Diff(X) if X is a smooth manifold). Also note that
we have defined a left action of G on X. There is a corresponding notion of
right G-action (x, g) �→ x · g. For example, one usually takes π1X to act on
the right by covering transformations on the universal cover of X.

4.2. Fiber bundles

We can now give a definition of fiber bundles.

Definition 4.2. Let G be a topological group acting effectively on a space
F . A fiber bundle E over B with fiber F and structure group G is a map
p : E → B together with a collection of homeomorphisms {ϕ : U × F →
p−1(U)} for open sets U in B (ϕ is called a chart over U) such that:

1. The diagram

U × F p−1(U)

U

✲ϕ

❅
❅

❅❘
pU

�
��✠

p

commutes for each chart ϕ over U .
2. Each point of B has a neighborhood over which there is a chart.
3. If ϕ is a chart over U and V ⊂ U is open, then the restriction of ϕ to

V is a chart over V .
4. For any charts ϕ, ϕ′ over U , there is a continuous map θϕ,ϕ′ : U → G

so that
ϕ′(u, f) = ϕ(u, θϕ,ϕ′(u) · f)

for all u ∈ U and all f ∈ F . The map θϕ,ϕ′ is called the transition
function for ϕ, ϕ′.

5. The collection of charts is maximal among collections satisfying the
previous conditions.

The standard terminology is to to call B the base, F is called the
fiber, and E is called the total space. For shorthand one often abbreviates
(p, E, B, F ) by E.

This definition of fiber bundle is slick and some discussion about the
various requirements helps to understand the concept.
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A map p : E → B is called a locally trivial bundle if the first 3 require-
ments of Definition 4.2 are met. There is no need to assume that any group
G is acting since this does not enter into the first three axioms. Local triv-
iality is the important distinction between a fiber bundle and an arbitrary
map.

The fourth condition invokes the structure group G. To understand the
difference between a locally trivial bundle and a fiber bundle, notice that in
a locally trivial bundle, if

U × F p−1(U)

U

❅
❅❅❘pU

✲ϕ

�
��✠ p

and

U × F p−1(U)

U

❅
❅❅❘pU

✲ϕ′

�
��✠ p

are two local trivializations, then commutativity of the diagram

U × F p−1(U) U × F

U

◗
◗

◗◗�pU

✲ϕ
′

❄
p

✲ϕ−1

✑
✑

✑✑✰ pU

implies that there is a map ψϕ,ϕ′ : U × F → F so that the composite
ϕ−1 ◦ ϕ′ : U × F → U × F has the formula

(u, f) �→ (u, ψϕ,ϕ′(u, f)).

For each u ∈ U the map ψϕ,ϕ′(u,−) : F → F is a homeomorphism.
In a fiber bundle, the map ψϕ,ϕ′ must have a very special form, namely

1. The homeomorphism ψϕ,ϕ′(u,−) : F → F is not arbitrary, but is
given by the action of an element of G, i.e. ψϕ,ϕ′(u, f) = g · f for
some g ∈ G independent of f . The element g is denoted by θϕ,ϕ′(u).

2. The topology of G is integrated into the structure by requiring that
θϕ,ϕ′ : U → G be continuous.

The requirement that G act effectively on F implies that the functions
θϕ,ϕ′ : U → G are unique. Although we have included the requirement that
G acts effectively of F in the definition of a fiber bundle, there are certain
circumstances when we will want to relax this condition, particularly when
studying liftings of the structure group, for example, when studying local
coefficients.



80 4. Fiber Bundles

It is not hard to see that a locally trivial bundle is the same thing as a
fiber bundle with structure group Homeo(F ). One subtlety about the topol-
ogy is that the requirement that G be a topological group acting effectively
on F says only that the homomorphism G→ Homeo(F ) is injective, but the
inclusion G→ Homeo(F ) need not be an embedding, nor even continuous.

Exercise 56. Show that the transition functions determine the bundle.
That is, suppose that spaces B and F are given, and an action of a topo-
logical group G on F is specified.

Suppose also that a collection of pairs T = {(Uα, θα)} with each Uα an
open subset of B and θα : Uα → G a continuous map is given satisfying:

1. The Uα cover B.

2. If (Uα, θα) ∈ T and W ⊂ Uα, then the restriction (W, θα|W ) is in the
collection T .

3. If (U, θ1) and (U, θ2) are in T , then (U, θ1 · θ2) is in T , where θ1 · θ2

means the pointwise multiplication of functions to G.

4. the collection T is maximal with respect to the first three conditions.

Then there exists a fiber bundle p : E → B with structure group G, fiber
F , and transition functions θα.

The third condition in Exercise 56 is a hidden form of the famous “co-
cycle condition”. Briefly what this means is the following. In an alternative
definition of a fiber bundle one starts with a fixed open cover {Ui} and a
single function φi : Ui × F → p−1(Ui) of each open set Ui of the cover.
Then to each pair of open sets Ui, Uj in the cover one requires there exists
a function θi,j : Ui ∩ Uj → G so that (on Ui ∩ Uj)

φ−1
i ◦ φj(u, f) = (u, θi,j(u) · f).

A G-valued Čech 1-cochain for the cover {Ui} is just a collection of maps
θi,j : Ui ∩ Uj → G and so a fiber bundle with structure group G determines
a Čech 1-cochain.

From this point of view the third condition of the exercise translates
into the requirement that for each triple Ui, Uj and Uk the restrictions of
the various θ satisfy

θi,j · θj,k = θi,k : Ui ∩ Uj ∩ Uk → G.

In the Čech complex this condition is just the requirement that the Čech
1-cochain defined by the θi,j is in fact a cocycle.

This is a useful method of understanding bundles since it relates them
to (Čech) cohomology. Cohomologous cochains define isomorphic bundles,
and so equivalence classes of bundles over B with structure group G can be
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identified with H1(B;G) (this is one starting point for the theory of charac-
teristic classes; we will take a different point of view in a later chapter). One
must be extremely cautious when working this out carefully. For example,
G need not be abelian (and so what does H1(B;G) mean?) Also, one must
consider continuous cocycles since the θi,j should be continuous functions.
We will not pursue this line of exposition any further in this book.

We will frequently use the notation F ↪→ E
p−→B or

F E

B

✲

❄
p

to indicate a fiber bundle p : E → B with fiber F .

4.3. Examples of fiber bundles

The following are some examples of locally trivial bundles. We will revisit
these and many more examples in greater detail in Section 6.14.

1. The trivial bundle is the projection pB : B × F → B.

2. If F has the discrete topology, any locally trivial bundle over B with
fiber F is a covering space; conversely if p : E → B is a covering space
with B connected, then p is a locally trivial bundle with discrete fiber.

3. The Möbius strip mapping onto its core circle is a locally trivial bun-
dle with fiber [0, 1].

4. The tangent bundle of a smooth manifold is a locally trivial bundle.

Exercise 57. Show that a fiber bundle with with trivial structure group is
(isomorphic to) a trivial bundle.

4.3.1. Vector bundles.

Exercise 58. Let F = Rn, and let G = GLnR ⊂ Homeo(Rn). A fiber
bundle over B with fiber Rn and structure group GLn(R) is a vector bundle
of dimension n over B. Explicitly, show that each fiber p−1{b} can be given
a well-defined vector space structure.

(Similarly, one can take F = Cn, G = GLn(C) to get complex vector
bundles.)

In particular, if M is a differentiable n-manifold, and TM is the set of
all tangent vectors to M then p : TM →M is a vector bundle of dimension
n.
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4.3.2. Bundles over S2. For every integer n ≥ 0, we can construct an S1

bundle over S2 with structure group SO(2); n is called the Euler number
of the bundle. For n = 0, we have the product bundle p : S2 × S1 → S2.
For n ≥ 1, define a 3-dimensional lens space L3

n = S3/Zn, where the action
is given by letting the generator of Zn on act on S3 ⊂ C2 by (z1, z2) �→
(ζnz1, ζnz2) (here ζn = exp2πi/n is a primitive n-th root of unity). For n = 2,
the lens space is just real projective space RP 3. Define the S1-bundle with
Euler number n ≥ 1 by p : L3

n → S2 = C ∪∞ by [z1, z2]→ z1/z2.
When n = 1 we obtain the famous Hopf bundle S1 ↪→ S3 → S2. For

n > 1 the Hopf map S3 → S2 factors through the quotient map S3 → L3
n,

and the fibers of the bundle with Euler number n are S1/Zn which is again
homeomorphic to S1.

Exercise 59. Let S(TS2) be the sphere bundle of the tangent bundle of
the 2-sphere, i.e. the tangent vectors of unit length, specifically

S(TS2) = {(P, v) ∈ R3 ×R3|P, v ∈ S2 and P · v = 0}.

Let SO(3) be the 3-by-3 orthogonal matrices of determinant one (the group
of orientation preserving rigid motions of R3 preserving the origin). This is
a topological group. Show that the spaces S(TS2), SO(3), and RP 3 are all
homeomorphic.

(Hint.

1. Given two perpendicular vectors in R3, a third one can be obtained
by the cross product.

2. On one hand, every element of SO(3) is rotation about an axis, on
the other hand RP 3 is D3/˜ , where you identify antipodal points on
the boundary sphere.)

This gives three incarnations of the S1-bundle over S2 with Euler number
equal to 2:

1. p : S(TS2)→ S2, (P, v) �→ P

2. p : SO(3)→ S2, A �→ A ·

1
0
0


3. p : RP 3 → S2, the lens space bundle above.

4.3.3. Clutching. Suppose a topological group G acts on a space F . Let
X be a space and let ΣX be the unreduced suspension of X,

ΣX =
X × I

(x, 0) ∼ (x′, 0), (x, 1) ∼ (x′, 1)
.
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Then given a map β : X → G, define

E =
(X × [0, 1/2]× F ) � (X × [1/2, 1]× F )

∼
where the equivalence relation is given by identifying (x, 0, f) ∼ (x′, 0, f),
(x, 1, f) ∼ (x′, 1, f), and (x, 1/2, f) ∼ (x, 1/2, β(x)f), where the last relation
glues the summands of the disjoint union. This bundle is called the bundle
over ΣX with clutching function β : X → G ⊂Aut(F ).

Exercise 60. Show that projection onto the first two coordinates gives a
fiber bundle p : E → ΣX with fiber F and structure group G. Give some
examples with X = S0 and X = S1. In particular, show that the S1-bundle
over S2 = ΣS1 with Euler number equal to n is obtained by clutching using
a degree n map S1 → S1.

Clutching provides a good way to describe fiber bundles over spheres.
For X a CW-complex, all bundles over ΣX arise by this clutching construc-
tion. This follows from the fact that any fiber bundle over a contractible
CW-complex is trivial (this can be proven using obstruction theory). Since
ΣX is the union of two contractible spaces, X × [0, 1

2 ]/ ∼ and X × [12 , 1]/ ∼,
any bundle over ΣX is obtained by clutching two trivial bundles over X.

4.3.4. Local coefficients and other structures. An important type of
fiber bundle is the following. Let A be a group and G a subgroup of the
automorphism group Aut(A). Then any fiber bundle E over B with fiber
A and structure group G has the property that each fiber p−1{b} has a
group structure. This group is isomorphic to A, but the isomorphism is not
canonical in general.

We have already run across an important case of this, namely vector
bundles, where A = Rn and G = GLn(R).

In particular, if A is a abelian group with the discrete topology, then
p : E → B is a covering space and is called a system of local coefficients on
B. The terminology will be explained later.

Exercise 61. Define local coefficient systems for R-modules, R a commu-
tative ring, generalizing the case of Z-modules above.

The basic principle at play here is if the structure group preserves a
certain structure on F , then every fiber p−1{b} has this structure. For ex-
ample, a local coefficient system corresponds to the case when the structure
group is a subgroup of the group of automorphisms of the fiber, a discrete
abelian group. A vector bundle corresponds to the case when the structure
group corresponds to the group of linear transformations of a vector space.
Other examples of fibers with a structure that one could consider include
the following.
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1. F is a real vector space with an inner product, G = O(F, 〈 , 〉) ⊂
GL(F ) consists of those linear isomorphisms which preserve the inner
product. The resulting fiber bundle is called a vector bundle with an
orthogonal structure.

2. Similarly one can define a complex vector bundle with hermitian struc-
ture by taking F to be a complex vector space with a hermitian inner
product.

3. Taking this further, let F be a riemannian manifold and suppose that
G acts isometrically on F . Then each fiber in a fiber bundle with
structure group G and fiber F will be (non-canonically) isometric to
F .

4. Take F to be a smooth manifold and G a subgroup of the diffeomor-
phism group of F (with the C∞ strong topology, say). Then each
fiber in a fiber bundle with structure group G will be diffeomorphic
to F .

Exercise 62. Invent your own examples of fibers with structure and the
corresponding fiber bundles.

4.4. Principal bundles and associated bundles

Principal bundles are special cases of fiber bundles, but nevertheless can be
used to construct any fiber bundle. Conversely any fiber bundle determines
a principal bundle. A principal bundle is technically simpler, since the fiber
is just F = G with a canonical action.

Let G be a topological group. It acts on itself by left translation.

G→ Homeo(G), g �→ (x �→ gx).

Definition 4.3. A principal G-bundle over B is a fiber bundle p : P → B
with fiber F = G and structure group G acting by left translations.

Proposition 4.4. If p : P → B is a principal G-bundle, then G acts freely
on P on the right with orbit space B.

Proof. Notice first that G acts on the local trivializations on the right:

(U ×G)×G→ U ×G

(u, g) · g′ = (u, gg′).

This commutes with the action of G on itself by left translation (i.e. (g′′g)g′ =
g′′(gg′)), so one gets a well-defined right action of G on E using the identi-
fication provided by a chart

U ×G
ϕ−→ p−1(U).
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More explicitly, define ϕ(u, g) · g′ = ϕ(u, gg′). If ϕ′ is another chart over U ,
then

ϕ(u, g) = ϕ′(u, θϕ,ϕ′(u)g),

and ϕ(u, gg′) = ϕ′(u, θϕ,ϕ′(u)(gg′)) = ϕ′(u, (θϕ,ϕ′(u)g)g′), so the action in
independent of the choice of chart. The action is free, since the local action
(U × G) × G → U × G is free, and since U × G/G = U it follows that
E/G = B.

As a familiar example, any regular covering space p : E → B is a princi-
pal G-bundle with G = π1B/p∗π1E. Here G is given the discrete topology.
In particular, the universal covering B̃ → B of a space is a principal π1B-
bundle. A non-regular covering space is not a principal G-bundle.

Exercise 63. Any free (right) action of a finite group G on a (Hausdorff)
space E gives a regular cover and hence a principal G-bundle E → E/G.

The converse to Proposition 4.4 holds in some important cases. We
state the following fundamental theorem without proof, referring you to [5,
Theorem II.5.8].

Theorem 4.5. Suppose that X is a compact Hausdorff space, and G is a
compact Lie group acting freely on X. Then the orbit map

X → X/G

is a principal G-bundle.

4.4.1. Construction of fiber bundles from principal bundles. Exer-
cise 56 shows that the transition functions θα : Uα → G and the action of G
on F determine a fiber bundle over B with fiber F and structure group G.

As an application note that if a topological group G acts on spaces F
and F ′, and if p : E → B is a fiber bundle with fiber F and structure group
G, then one can use the transition functions from p to define a fiber bundle
p′ : E′ → B with fiber F ′ and structure group G with exactly the same
transition functions.

This is called changing the fiber from F to F ′. This can be useful because
the topology of E and E′ may change. For example, take G = GL2(R),
F = R2, F ′ = R2 − {0} and the tangent bundle of the 2-sphere.

R2 TS2

S2

✲

❄
p
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After changing the fiber from R2 to R2 − {0} we obtain

R2 − {0} TS2 − z(S2)

S2

✲

❄
p

where z : S2 → TS2 denotes the zero section.
With the second incarnation of the bundle the twisting becomes revealed

in the homotopy type, because the total space of the first bundle has the
homotopy type of S2, while the total space of the second has the homotopy
type of the sphere bundle S(TS2) and hence of RP 3 according to Exercise
59.

A fundamental case of changing fibers occurs when one lets the fiber F ′

be the group G itself, with the left translation action. Then the transition
functions for the fiber bundle

F E

B

✲

❄
p

determine, via the construction of Exercise 56, a principal G-bundle

G P (E)

B.

✲

❄
p

We call this principal G-bundle the principal G-bundle underlying the fiber
bundle p : E → B with structure group G.

Conversely, to a principal G-bundle and an action of G on a space F
one can associate a fiber bundle, again using Exercise 56. An alternative
construction is given in the following definition.

Definition 4.6. Let p : P → B be a principal G-bundle. Suppose G acts
on the left on a space F , i.e. an action G × F → F is given. Define the
Borel construction

P ×G F

to be the quotient space P × F/ ∼ where

(x, f) ∼ (xg, g−1f).

(We are continuing to assume that G acts on F on the left and by Proposition
4.4 it acts freely on the principal bundle P on the right).
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Let [x, f ] ∈ P ×G F denote the equivalence classes of (x, f). Define a
map

q : P ×G F → B

by the formula [x, f ] �→ p(x).

The following important exercise shows that the two ways of going from
a principal G-bundle to a fiber bundle with fiber F and structure group G
are the same.

Exercise 64. If p : P → B is a principal G-bundle and G acts on F , then

F P ×G F

B

✲

❄
q

where q[x, f ] = p(x), is a fiber bundle over B with fiber F and structure
group G which has the same transition functions as p : P → B.

We say q : E ×G F → B is the fiber bundle associated to the principal
bundle p : E → B via the action of G on F .

Thus principal bundles are more basic that fiber bundles, in the sense
that the fiber and its G-action are explicit, namely G acting on itself by left
translation. Moreover, any fiber bundle with structure group G is associated
to a principal G-bundle by specifying an action of G on a space F . Many
properties of bundles become more visible when stated in the context of
principal bundles.

The following exercise gives a different method of constructing the prin-
cipal bundle underlying a vector bundle, without using transition functions.

Exercise 65. Let p : E → B be a vector bundle with fiber Rn and structure
group GL(n,R). Define a space F (E) to be the space of frames in E, so
that a point in F (E) is a pair (b, f) where b ∈ B and f = (f1, · · · , fn) is a
basis for the vector space p−1(b). There is an obvious map q : F (E)→ B.

Prove that q : F (E)→ B is a principal GL(n,R)-bundle, and that

E = F (E)×GL(n,R) Rn

where GL(n,R) acts on Rn in the usual way.

For example, given a representation of GL(n,R), that is, a homomor-
phism ρ : GL(n,R)→ GL(k,R), one can form a new vector bundle

F (E)×ρ Rk

over B.
An important set of examples comes from this construction by starting

with the tangent bundle of a smooth manifold M . The principal bundle
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F (TM) is called the frame bundle of M . Any representation of GL(n,R)
on a vector space V gives a vector bundle with fiber isomorphic to V . Im-
portant representations include the alternating representations GL(n,R)→∧p(Hom(Rn,R)) from which one obtains the vector bundles of differential
p-forms over M .

We next give one application of the Borel construction. Recall that a
local coefficient system is a fiber bundle over B with fiber A and structure
group G where A is a (discrete) abelian group and G acts via a homomor-
phism G→ Aut(A).

Lemma 4.7. Every local coefficient system over a path-connected (and semi-
locally simply connected) space B is of the form

A B̃ ×π1B A

B

✲

❄
q

i.e., is associated to the principal π1B-bundle given by the universal cover
B̃ of B where the action is given by a homomorphism π1B → Aut(A).

In other words the group G ⊂ Aut(A) can be replaced by the discrete
group π1B. Notice that in general one cannot assume that the homomor-
phism π1B → Aut(A) is injective, and so this is a point where we would
wish to relax the requirement that the structure group acts effectively on the
fiber. Alternatively, one can take the structure group to be π1(B)/ ker(φ)
where φ : π1(B)→Aut(A) is the corresponding representation.

Sketch of proof. It is easy to check that q : B̃ ×π1B A → B is a local
coefficient system, i.e. a fiber bundle with fiber on abelian group A and
structure group mapping to Aut(A).

Suppose that p : E → B is any local coefficient system. Any loop
γ : (I, ∂I) → (B, ∗) has a unique lift to E starting at a given point in
p−1(∗), since A is discrete so that E → B is a covering space. Fix an
identification of p−1(∗) with A, given by a chart. Then the various lifts of γ
starting at points of A define, by taking the end point, a function A→ A.

The fact that p : E → B has structure group Aut(A) easily implies
that this function is an automorphism. Since E is a covering space of B,
the function only depends on the homotopy class, and so we get a map
π1(B, ∗)→ Aut(A). This is clearly a homomorphism since if γ̃1, γ̃2 are lifts
starting at a, b, then γ̃1 + γ̃2 (addition in A) is the lift of γ1γ2 (multiplication
in π1) and starts at a+ b. A standard covering space argument implies that
E = B̃ ×π1B A.
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4.5. Reducing the structure group

In some circumstances, given a subgroup H of G and a fiber bundle p : E →
B with structure group G, one can view the bundle as a fiber bundle with
structure group H. When this is possible, we say the structure group can be
reduced to H.

Proposition 4.8. Let H be a topological subgroup of the topological group
G. Let H act on G by left translation. Let q : Q → B be a principal
H-bundle. Then

G Q×H G

B

✲

❄
q

is a principal G-bundle.

The proof is easy; one approach is to consider the transition functions
θ : U → H as functions to G using the inclusion H ⊂ G. To satisfy
maximality of the charts it may be necessary to add extra charts whose
transition functions into G map outside of H.

Exercise 66. Prove Proposition 4.8.

Definition 4.9. Given a principal G-bundle p : E → B we say the structure
group G can be reduced to H for some subgroup H ⊂ G if there exists a
principal H-bundle Q→ B and a commutative diagram

Q×H G E

B

◗
◗◗�

✲r

✑
✑✑✰

so that the map r is G-equivariant. For a fiber bundle, we say the struc-
ture group reduces if the structure group of the underlying principal bundle
reduces.

If we are willing to relax the requirement that the structure group acts
effectively, then we can just assume that we are given a homomorphism
H → G rather than an inclusion of a subgroup. Proposition 4.8 holds
without change. In this more general context, for example, Lemma 4.7
states that any fiber bundle over B with discrete fiber can have its structure
group reduced to π1B.

Exercise 67. Show that every real vector bundle (i.e. fiber bundle with
structure group GL(n,R) acting on Rn in the usual way) over a paracom-
pact base can have its structure group reduced to the orthogonal group
O(n). (Hint: use a partition of unity.)
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Another subtle point is that there may be several “inequivalent” reduc-
tions. An example concerns orientability and orientation of vector bundles.

Definition 4.10. A real vector bundle is called orientable if its structure
group can be reduced to the subgroup GL+(n,R) of matrices with positive
determinant.

For example, a smooth manifold is orientable if and only if its tangent
bundle is orientable. A more detailed discussion of orientability for manifolds
and vector bundles can be found in Section 10.7.

For the following exercise it may help to read the definition of a map
between fiber bundles in the next section.

Exercise 68. Prove that an orientable vector bundle can be oriented in
two incompatible ways, that is, the structure group can be reduced from
GL(n,R) to GL+(n,R) (or, using Exercise 67, from O(n) to SO(n)) in two
ways so that the identity map Id: E → E is a not a map of fiber bundles
with structure group GL+(n,R) (or SO(n)).

4.6. Maps of bundles and pullbacks

The concept of morphisms of fiber bundles is subtle, especially when there
are different fibers and structure groups. Rather than to try to work in
the greatest generality, we will just define one of many possible notions of
morphism.

Definition 4.11. A morphism of fiber bundles with structure group G and
fiber F from E → B to E′ → B′ is a pair of continuous maps f̃ : E → E′

and f : B → B′ so that the diagram

E E′

B B′

✲f̃

❄ ❄
✲

f

commutes and so that for each chart φ : U × F → p−1(U) with b ∈ U and
chart φ′ : U ′ × F → p−1(U ′) and each b ∈ U with f(b) ∈ U ′ the composite

{b} × F p−1(b) (p′)−1(f(b)) {f(b)} × F✲φ ✲f̃ ✲(φ′)−1

is a homeomorphism given by the action of an element ψφ,φ′(b) ∈ G. More-
over, b �→ ψφ,φ′(b) should define a continuous map from U ∩ f−1(U ′) to
G.

As you can see, this is a technical definition. Notice that the fibers
are mapped homeomorphically by a map of fiber bundles of this type. In
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particular, an isomorphism of fiber bundles is a map of fiber bundles (f̃ , f)
which admits a map (g̃, g) in the reverse direction so that both composites
are the identity.

One important type of fiber bundle map is a gauge transformation. This
is a bundle map from a bundle to itself which covers the identity map of the
base, i.e. the following diagram commutes.

E E

B

✲g

❅❅❘p
��✠p

By definition g restricts to an isomorphism given by the action of an element
of the structure group on each fiber. The set of all gauge transformations
forms a group.

One way in which morphisms of fiber bundles arise is from a pullback
construction.

Definition 4.12. Suppose that a fiber bundle p : E → B with fiber F and
structure group G is given, and that f : B′ → B is some continuous function.
Define the pullback of p : E → B by f to be the space

f∗(E) = {(b′, e) ∈ B′ × E | p(e) = f(b′)}.

Let q : f∗(E)→ B be the restriction of the projection E×B → B to f∗(E).
Notice that there is a commutative diagram

f∗(E) E

B′ B
❄

q

✲

❄

p

✲
f

Theorem 4.13. The map q : f∗(E)→ B′ is a fiber bundle with fiber F and
structure group G. The map f∗(E)→ E is a map of fiber bundles.

Proof. This is not hard. The important observation is that if ϕ is a chart
over U ⊂ B, then f−1(U) is open in B′ and ϕ induces a homeomorphism
f−1(U)× F → f∗(E)|f−1(U). We leave the details as an exercise.

The following exercise shows that any map of fiber bundles is given by
a pullback.
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Exercise 69. Let

E′ E

B′ B
❄

p′

✲f̃

❄
p

✲
f

be a map of bundles with fiber F in the sense of Definition 4.11. Show that
there is a factorization

E′ f∗E E

B′ B

❅
❅

❅❅❘
p′

� � � � � � �✲β

❄

q

✲f∗

❄

p

✲
f

so that f∗ ◦ β = f̃ , with (β, Id) a map of bundles over B′.

We have given a rather narrow and rigid definition of fiber bundle mor-
phisms. More general definitions can be given depending on the structure
group, fiber, etc..

Exercise 70. Define a morphism between two fiber bundles with structure
group G but with different fibers by requiring the map on fibers to be equi-
variant. Use this to define a morphism of vector bundles.

4.7. Projects for Chapter 4

4.7.1. Fiber bundles over paracompact bases are fibrations. State
and prove the theorem of Hurewicz (Theorem 6.8) which says that a map
f : E → B with B paracompact is a fibration (see Definition 6.7) provided
that B has an open cover {Ui} so that f : f−1(Ui) → Ui is a fibration for
each i. In particular, any locally trivial bundle over a paracompact space is
a fibration.

A reference for the proof is [10, Chapter XX,§3-4] or [36].

4.7.2. Classifying spaces. For any topological group G there is a space
BG and a principal G-bundle EG → BG so that given any paracom-
pact space B, the pullback construction induces a bijection between the
set [B, BG] of homotopy classes of maps from B to BG and isomorphism
classes of principal G-bundles over B. Explain the construction of the bundle
EG → BG and prove this theorem. Show that the assignment G �→ BG is
functorial with respect to continuous homomorphisms of topological groups.
Show that a principal G-bundle P is of the form Q×H G (as in Proposition
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4.8) if and only if the classifying map f : B → BG lifts to BH

BH

B BG
❄�

�

�

�

�

�

�

�

�

✒

✲
f

Show that given any action of G on F , any fiber bundle E → B with
structure group G and fiber F is isomorphic to the pullback

f∗(EG×G F )

where f : B → BG classifies the principal G-bundle underlying E → B.
Use this theorem to define characteristic classes for principal bundles.

See Theorem 8.22 and Corollary 6.50 for more on this important topic.
A reference for this material is [17]. We will use these basic facts about

classifying spaces throughout this book, notably when we study bordism.





Chapter 5

Homology with Local
Coefficients

When studying the homotopy theory of non-simply connected spaces, one
is often led to consider an action of the fundamental group on some abelian
group. Local coefficient systems are a tool to organize this information. The
theory becomes more complicated by the fact that one must consider non-
commutative rings. It is possible to learn a good deal of homotopy theory by
restricting only to simply connected spaces, but fundamental group issues
are ubiquitous in geometric topology.

There are two approaches to constructing the complexes giving the ho-
mology and cohomology of a space with local coefficients. The first is more
algebraic, and takes the point of view that the fundamental chain complex
associated to a space X is the singular (or cellular) complex of the univer-
sal cover X̃, viewed as a chain complex over the group ring Z[π1X]. From
this point of view local coefficients are nothing more than modules over the
group ring Z[π1X].

The second approach is more topological; one takes a local coefficient
system over X (i.e. a fiber bundle over X whose fibers are abelian groups and
whose transition functions take values in the automorphisms of the group)
and define a chain complex by taking the chains to be formal sums of singular
simplices (or cells) such that the coefficient of a simplex is an element in the
fiber over that simplex (hence the terminology local coefficients). Each of
these two points of view has its strengths; Lemma 4.7 is the basic result
which identifies the two.

95
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In this chapter we will work with Z-modules, (i.e. abelian groups) and
modules over integral group rings Zπ. Everything generalizes appropriately
for R-modules and Rπ-modules for any commutative ring R.

5.1. Definition of homology with twisted
coefficients

We begin with the definition of a group ring.

Definition 5.1. The group ring Zπ is a ring associated to a group π. Ad-
ditively it is the free abelian group on π, i.e., elements are (finite) linear
combinations of the group elements

m1g1 + · · ·+ mkgk mi ∈ Z, gi ∈ π.

Multiplication is given by the distributive law and multiplication in π:

(
∑

i

migi)(
∑

j

njhj) =
∑
i,j

(minj)(gihj).

In working with group rings the group π is always written multiplica-
tively, and if e is the identity of the group, e is written as 1, since this
element forms the unit in the ring Zπ. To avoid confusing notation we will
sometimes write Z[π] instead of Zπ.

Two examples of group rings (with their standard notation) are

Z[Z] = Z[t, t−1] = {a−jt
−j + · · ·+ a0 + · · ·+ akt

k | an ∈ Z}
(this ring is called the ring of Laurent polynomials) and

Z[Z/2] = Z[t]/(t2 − 1) = {a + bt | a, b ∈ Z}.

We will work with modules over Zπ. If π is a non-abelian group, the
ring Zπ is not commutative, and so one must distinguish between left and
right modules.

Let A be an abelian group and

ρ : π → AutZ(A)

be a homomorphism. (The standard terminology is to call either ρ or A a
representation of π.) The representation ρ endows A with the structure of
a left Zπ-module by taking the action

(
∑
g∈π

mgg) · a =
∑
g∈π

mg ρ(g)(a).

Conversely if A is a left module over a group ring Zπ, there is homomorphism

ρ : π → AutZ(A)
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given by (g �→ (a �→ ga)) where ga is multiplying a ∈ A by g ∈ Zπ. Thus
a representation of a group π on an abelian group is the same thing as a
Zπ-module.

Exercise 71. Let A be a finitely generated (left) module over Z[Z/2] so
that, as an abelian group, A is finitely generated and torsion free. Show
that A is a direct sum of modules of the form Z+, Z−, and Z[Z/2]. Here
Z+ is the trivial Z[Z/2]-module corresponding to the trivial homomorphism
ρ : Z/2→ Aut(Z) and Z− corresponds to the non-trivial homomorphism.

We briefly outline the definition of the tensor product in the non–
commutative case.

Definition 5.2. If R is a ring (possibly non-commutative), M is a right
R-module, and N is a left R-module (sometimes one writes MR and RN),
then the tensor product M ⊗R N is an abelian group satisfying the adjoint
property

HomZ(M ⊗R N, A) ∼= HomR(M, HomZ(N, A))
for any abelian group A. The corresponding universal property is that there
is a Z-bilinear map φ : M × N → M ⊗R N , so that φ(mr, n) = φ(m, rn),
and this map is initial in the category of Z-bilinear maps φ : M ×N → A,
satisfying φ(mr, n) = φ(m, rn).

The tensor product is constructed by taking the free abelian group on
M × N and modding out by the expected relations. Elements of M ⊗R N
are denoted by ∑

mi ⊗ ni.

The relation mr ⊗ n = m⊗ rn holds. (This is why we take a right module
tensored with a left module.)

Exercise 72. Compute the abelian group Z+⊗Z[Z/2] Z− (see Exercise 71).

The starting point in the algebraic construction of homology with local
coefficients is the observation that the singular chain complex of the universal
cover of a space is a right Zπ-module.

To proceed, fix a path connected and locally path-connected space X
with a base point which admits a universal cover. For notational ease set
π = π1X. Let X̃ → X be the universal cover of X, with its usual right π1X-
action obtained by identifying π with the group of covering transformations.
Then the singular complex S∗(X̃) of the universal cover (with integer co-
efficients) is a right Zπ-module; the action of g ∈ π on a singular simplex
σ : ∆k → X̃ is the singular simplex σ · g defined as the composite of σ and
the covering transformation g : X̃ → X̃. This is extended from π to Zπ by
linearity.
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We can now give the algebraic definition of homology with local coeffi-
cients.

Definition 5.3. Given a Zπ-module A, form the tensor product

S∗(X;A) = S∗(X̃)⊗Zπ A.

This is a chain complex whose homology is called the homology of X with
local coefficients in A and is denoted by H∗(X;A).

Notice that since the ring Zπ is non-commutative (except if π is abelian),
the tensored chain complex only has the structure of a chain complex over
Z, not Zπ. Thus the homology group H∗(X;A) is only a Z-module.

If the Zπ-module is specified by a representation ρ : π1X →Aut(A) for
some abelian group A, and we wish to emphasize the representation, we will
sometimes embellish A with the subscript ρ and write H∗(X;Aρ) for the
homology with coefficients in A. It is also common to call H∗(X;Aρ) the
homology of X twisted by ρ : π1X →Aut(A).

Before we look at examples, we will give the corresponding definition
of cohomology. A new wrinkle which appears is that since the functor
HomZπ(−,−) is defined on the category of pairs of right R-modules or of
pairs of left R-modules, we need to either change S∗(X̃) to a left Zπ-module
or consider coefficients in right Zπ-modules. We opt for the former.

Thus transform S∗(X̃) into a left Zπ-module by the (standard) proce-
dure:

g · z :=
def

z · g−1.

Definition 5.4. Given a left Zπ-module A form the cochain complex

S∗(X;A) = HomZπ(S∗(X̃), A).

(This means the set of group homomorphisms f : S∗(X̃)→ A which satisfy
f(rz) = rf(z) for all r ∈ Zπ and z ∈ S∗(X̃).)

The cohomology of this complex is called the cohomology of X with local
coefficients in A, and is denoted by

H∗(X;A).

If the module A is defined by a representation ρ : π1X →Aut(A) for an
abelian group A, the cohomology with local coefficients may be denoted by
H∗(X;Aρ) and is often called the cohomology of X twisted by ρ.

5.2. Examples and basic properties

The (ordinary) homology and cohomology groups are just special cases of the
homology and cohomology with local coefficients corresponding to twisting
by the trivial representations ρ as we now show.
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If ρ : π1X → Aut(A) is is the trivial homomorphism, then the definition
of tensor product gives a chain map

S∗(X̃)⊗ZπAρ → S∗X⊗ZA

which we will see is an isomorphism. (In the chain complex on the left
A is considered only as an abelian group.) This follows since both S∗(X̃)
and S∗(X) are chain complexes of free modules so it is easy to compute
tensor products. The complex S∗(X̃) is a free Zπ-chain complex since π

acts freely on X̃, and hence on the set of all singular simplices in X̃. We
obtain a Zπ basis by choosing a representative simplex for each orbit. Better
yet, for each singular simplex σ : ∆n → X, choose a single lift σ̃ : ∆n →
X̃. Then the set {σ̃} gives a basis for S∗(X̃) over Zπ and it follows that
S∗(X̃)⊗ZπAρ → S∗X⊗ZA is an isomorphism of graded abelian groups;
from this description it is not hard to check that this isomorphism is a chain
map, and so Hk(X;Aρ) = Hk(X;A), the usual homology with coefficients
in (the underlying Z-module) A.

Similarly,
HomZπ(S∗X̃, A) ∼= HomZ(S∗X, A)

so Hk(X;Aρ) ∼= Hk(X;A), the usual cohomology with coefficients in A.

Exercise 73. Show that the natural map

HomZ(S∗X, A) → HomZπ(S∗X̃, A)

is a chain isomorphism.

At the other extreme we consider what happens if A is a (finitely gener-
ated) free Zπ-module. Since the tensor product and Hom functors respect
direct sums, it suffices to consider the case when A = Zπ.

Then,
S∗X̃⊗ZπZπ = S∗X̃,

and therefore
Hk(X;Zπ) = Hk(X̃;Z),

the (untwisted) integral homology of the universal cover.
In other words, the homology with local coefficients given by the tauto-

logical representation ρ : π → Aut(Zπ)

ρ(g) = (
∑

mhh �→
∑

mhgh)

equals the homology of X̃ with (untwisted) Z coefficients.

Exercise 74. Let M be an abelian group with the trivial left π action. Let
A = Zπ ⊗Z M ; notice that A has a left Zπ-module structure defined by
g · (x ⊗ m) = (gx) ⊗ M . Show that the homology H∗(X;A) is just the
(ordinary) homology of X̃ with coefficients in M .
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Exercise 75. (Shapiro’s Lemma) Show that if H ⊂ π is a subgroup and
A = Z[π/H] viewed as a left π-module, then the corresponding homology is
isomorphic to the homology of the H-cover of X. Generalize this as in the
previous exercise to include other coefficients. (Hint: try the case when H
is normal first.)

These examples and the two exercises show that the (untwisted) homol-
ogy of any cover of X with any coefficients can be obtained as a special case
of the homology of X with appropriate local coefficients.

One might ask whether the same facts hold for cohomology. They
do not without some modification. If A = Zπ, then the cochain com-
plex HomZπ(S∗X̃, A) is not in general isomorphic to HomZ(S∗X,Z) and
so Hk(X;Zπ) is not equal to Hk(X̃;Z). It turns out that if X is compact
Hk(X;Zπ) ∼= Hk

c (X̃;Z), the compactly supported cohomology of X̃.

5.2.1. Cellular methods. If X is a (connected) CW-complex then homol-
ogy and cohomology with local coefficients can be defined using the cellular
chain complex; this is much better for computations. If p : X̃ → X is the
universal cover, then X̃ inherits a CW-structure from X – the cells of X̃
are the path components of the inverse images of cells of X. The action of
π = π1X on X̃ gives C∗(X̃) the structure of a Zπ-chain complex. For each
cell e of X, choose a cell ẽ above X̃; this gives a Zπ-basis for C∗(X̃).

For example, let X = RPn with n > 1. Then X = e0 ∪ e1 ∪ · · · ∪ en.
Then X̃ = Sn and the corresponding cell decomposition is

Sn = e+
0 ∪ e−0 ∪ e+

1 ∪ e−1 ∪ · · · ∪ e+
n ∪ e−n

with e±i being the (open) upper and lower hemispheres of the i-sphere. A
basis for the free (rank 1) Zπ-module Ci(X̃) is e+

i . With this choice of basis
the Zπ-chain complex C∗(X̃) is isomorphic to

Z[Z/2]→ · · · Z[Z/2] Z[Z/2] Z[Z/2]→ 0.✲1−t ✲1+t ✲1−t

Writing down this complex is the main step in the standard computation
of C∗(RPn) as in [41]: first use the homology of Sn and induction on n

to compute C∗(X̃) as a Z[Z/2]-chain complex, then compute C∗(RPn) =
C∗(X̃)⊗Zπ Z.

The following exercises are important in gaining insight into what infor-
mation homology with local coefficients captures.

Exercise 76. Compute the cellular chain complex C∗(S̃1) as a Z[t, t−1]-
module. Compute Hk(S1;Aρ) and Hk(S1;Aρ) for any abelian group A and
any homomorphism ρ : π1S

1 = Z→ Aut(A).



5.2. Examples and basic properties 101

Exercise 77. Let ρ : π1(RPn)
∼=−→ Z/2 = Aut(Z). Compute Hk(RPn;Zρ)

and Hk(RPn;Zρ) and compare to the untwisted homology and cohomology.

Exercise 78. Let p and q be a relatively prime pair of integers and denote
by L(p,q) the 3-dimensional Lens space L(p,q) = S3/(Z/p), where Z/p = 〈t〉
acts on S3 ⊂ C2 via

t(Z,W ) = (ζZ,ζqW )

(ζ = e2πi/p). Let ρ : Z/p → Aut(Z/n) = Z/(n − 1) for n prime. Compute
Hk(L(p,q); (Z/n)ρ) and Hk(L(p,q); (Z/n)ρ).

Exercise 79. Let K be the Klein bottle. Compute Hn(K;Zρ) for all twist-
ings ρ of Z (i.e. all ρ : π1K → Z/2 = Aut(Z)).

5.2.2. The orientation double cover and Poincaré duality. An im-
portant application of local coefficients is its use in studying the algebraic
topology of non-orientable manifolds.

Theorem 5.5. Any n-dimensional manifold M has a double cover

p : MO →M

where MO is an oriented manifold. Moreover, for any point x ∈ M , if
p−1{x} = {x1, x2}, then the orientations µx1 ∈ Hn(MO, MO − {x1}) and
µx2 ∈ Hn(MO, MO − {x2}) map (by the induced homomorphism p∗) to the
two generators of Hn(M, M − {x}).

Proof. As a set MO = {a ∈ Hn(M, M−{x}) | a is a generator and x ∈M}.
As for the topology, let V be a open set in X and z ∈ Zn(M, M−V ) a relative
cycle. Then let

Vz = {Im [z] ∈ Hn(M, M −{x}) | x ∈ V and Z · Im [z] = Hn(M, M −{x})}.
Then {Vz} is a basis for the topology on MO. For more details see [23].

For example, consider RPn for n even. The orientation double cover is
Sn; the deck transformation reverses orientation. For RPn for n odd, the
orientation double cover is a disjoint union of two copies of RPn, oriented
with the opposite orientations.

If M is a connected manifold, define the orientation character or the
first Stiefel–Whitney class

w : π1M → {±1}
by w[γ] = 1 if γ lifts to a loop in the orientation double cover and w[γ] = −1
if γ lifts to a path which is not a loop. Intuitively, w[γ] = −1 if going around
the loop γ reverses the orientation. M is orientable if and only if w is trivial.
Clearly w is a homomorphism.
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Corollary 5.6. Any manifold with H1(M ;Z/2) = 0 is orientable.

Proof. This is because

H1(M ;Z/2) ∼= Hom(H1M ;Z/2) ∼= Hom(π1M ;Z/2),

where the first isomorphism follows from the universal coefficient theorem
and the second from the Hurewicz theorem

H1M ∼= π1M/[π1M, π1M ].

Notice that Aut(Z) = {±1} and so the orientation character defines
a representation w : π1X → Aut(Z). The corresponding homology and
cohomology Hk(X;Zw), Hk(X;Zw) is called the homology and cohomology
of X twisted by the orientation character w, or with local coefficients in the
orientation sheaf.

The Poincaré duality theorem (Theorem 3.26) has an extension to the
non-orientable situation.

Theorem 5.7 (Poincaré duality theorem). If X is an n-dimensional man-
ifold, connected, compact and without boundary, then

Hn(X;Zw) ∼= Z

and if [X] denotes a generator, then

∩[X] : Hk(X;Zw)→ Hn−k(X;Z)

and
∩[X] : Hk(X;Z)→ Hn−k(X;Zw)

are isomorphisms. (This statement of Poincaré duality applies to non-
orientable manifolds as well as orientable manifolds.)

The Poincaré–Lefschetz duality theorem also holds in this more general
context.

The cap products in Theorem 5.7 are induced by the bilinear maps on
coefficients Z× Zw → Zw and Zw × Zw → Z as in Exercise 36.

Exercise 80. Check that this works for RPn, n even.

More generally, for a manifold X, and any right Zπ-module A given
by a representation ρ : π → Aut A, let Aw be the module given by the
representation

ρw : π → Aut (A), g �→ w(g)ρ(g−1).
Then a stronger form of Poincaré duality says

∩[X] : Hk(X;A)→ Hn−k(X;Aw)
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is an isomorphism.

5.3. Definition of homology with a local
coefficient system

The previous (algebraic) definition of homology and cohomology with local
coefficients may appear to depend on base points, via the representation

ρ : π1(X, ∗)→ Aut(A).

and the identification of π1X with the covering translations of X̃. In fact, it
does not. We now give an alternative definition, which takes as input only
the local coefficient system itself, i.e. the fiber bundle with discrete abelian
group fibers. This definition is more elegant in that it does not depend on
the arbitrary choice of a base point, but it is harder to compute with.

Let p : E → X be a system of local coefficients with fiber a discrete
abelian group A and structure group G ⊂ Aut(A). Denote the fibers p−1(x)
by Ex; for each x this is an abelian group non-canonically isomorphic to A.

We construct a chain complex as follows. Let Sk(X;E) denote the set
of formal sums

m∑
i=1

aiσi

where:

1. σi : ∆k → X is a singular k-simplex, and
2. ai is an element of the group Eσi(e0) where e0 ∈ ∆k is the base point

(1, 0, 0, · · · , 0) of ∆k. More precisely, σi(e0) ∈ X and we require
ai ∈ Eσi(e0) = p−1(σi(e0)).

The obvious way to add elements of Sk(X;E) makes sense and is well-
defined. Thus Sk(X;E) is an abelian group. This is somewhat confusing
since the coefficients lie in different groups depending on the singular sim-
plex. One way to lessen the confusion is to view Sk(X;E) as a subgroup of
the direct sum over every point x ∈ X of Sk(X;Ex).

Think of S∗(X;E) as a graded abelian group. We next describe the
differential. The formula would be the usual one were it not for the fact
that given any k-simplex, one of its faces does not contain the base point.
We will use the local coefficient system to identify fibers over different points
of the simplex to resolve this problem.

Recall there are face maps fk
m : ∆k−1 → ∆k defined by

fk
m(t0, t1, · · · , tk−1) = (t0, · · · , tm−1, 0, tm, · · · , tk−1).

Note that fk
m(e0) = e0 if m > 0 but

fk
0 (e0) = fk

0 (1, 0, · · · , 0) = (0, 1, 0, · · · , 0).
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This will make the formulas for the differential a little bit more complicated
than usual, since this one face map does not preserve base points.

Given a singular simplex σ : ∆k → X, let γσ : [0, 1] → X be the path
σ(t, 1− t, 0, 0, · · · , 0). Then because p : E → X is a covering space (the fiber
is discrete), the path γσ defines a isomorphism of groups γσ : Eσ(0,1,··· ,0) →
Eσ(1,0,0,··· ,0) via path lifting.

Thus, define the differential ∂ : Sk(X;E)→ Sk−1(X;E) by the formula

aσ �→ γσ(a)(σ ◦ fk
0 ) +

k∑
m=1

(−1)m a (σ ◦ fk
m).

Theorem 5.8. This is a differential, i.e. ∂2 = 0. Moreover the homology
Hk(S∗(X;E), ∂) equals Hk(X;Aρ), where ρ : π1X → Aut(A) is the homo-
morphism determined by the local coefficient system p : E → X as in Lemma
4.7.

Exercise 81. Prove Theorem 5.8.

The homology of the chain complex (Sk(X;E), ∂) is called the homology
with local coefficients in E. Theorem 5.8 says that this is isomorphic to
the homology with coefficients twisted by ρ. Notice that the definition of
homology with local coefficients does not involve a choice of base point for X.
It follows from Theorem 5.8 that the homology twisted by a representation
ρ also does not depend on the choice of base point.

Similar constructions apply to cohomology, as we now indicate. Let
Sk(X;E) be the set of all functions, c, which assign to a singular simplex
σ : ∆k → X an element c(σ) ∈ Eσ(e0). Then Sk(X;E) is an abelian group,
and has coboundary operator δ : Sk(X;E)→ Sk+1(X;E) defined by

(δc) (σ) = (−1)k

(
γ−1

σ (c (∂0σ)) +
k+1∑
i=1

(−1)i c (∂iσ)

)
Then δ2 = 0 and,

Theorem 5.9. The cohomology of the chain complex (S∗(X;E), δ) equals
the cohomology H∗(X;Aρ), where ρ : π1X → Aut(A) is the homomorphism
determined by the local coefficient system p : E → X.

For the proof see [43].
Here is the example involving orientability of manifolds, presented in

terms of local coefficients instead of the orientation representation. Let M
be an n-dimensional manifold. Define a local coefficient system E →M , by
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setting
E =

⋃
x∈M

Hn(M, M − {x}).

A basis for the topology of E is given by

V z = {Im [z] ∈ Hn(M, M − {x}) | x ∈ V }
where V is open in X and z ∈ Zn(M, M − V ) is a relative cycle. Then
E → X is a local coefficient system with fibers Hn(M, M −{x}) ∼= Z, called
the orientation sheaf of M . (Note the orientation double cover MO is the
subset of E corresponding to the subset ±1 ∈ Z) Then H∗(M ;E) can be
identified with H∗(M ;Zw).

5.4. Functoriality

The functorial properties of homology and cohomology with local coefficients
depend on more than just the spaces involved, they also depend on the
coefficient systems.

Definition 5.10. A morphism (E → X) → (E′ → X) of local coefficients
over X is a commutative diagram

E E′

X

❅
❅❘

✲f

�
�✠

so that for each point x ∈ X, the restriction of f : E → E′ to the fibers
f|Ex

: Ex → E′x is a group homomorphism.

Notice that we do not require the maps on fibers to be isomorphisms,
and so this is more general than the concept of bundle map we introduced
in Section 4.6.

It follows immediately from the definition of pullbacks that a commuta-
tive diagram

E E′

X X ′

✲f̃

❄
p

❄
p′

✲
f

with f̃ inducing homomorphisms on fibers induces a morphism of local co-
efficients (E → X)→ (f∗(E′)→ X) over X.

Theorem 5.11. Homology with local coefficients is a covariant functor from
a category L of pairs of spaces (X, A) with the following extra structure.
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1. The objects of L are pairs (X, A) (allowing A empty) with a system
of local coefficients p : E → X.

2. The morphisms of L are the continuous maps f : (X, A) → (X ′, A′)
together with a morphism of local coefficients

E f∗(E′)

X

❅
❅

❅❘

✲

�
��✠

where f∗(E′) denotes the pullback of E′ via f .

Sketch of proof. The basic idea comes from looking at the definition of the
chain complex. Given a formal sum

∑
i aiσi with ai ∈ Eσi(e0), the simplices

σi push forward to simplices f ◦ σ in X ′. Thus one needs a way to assign
to ai an element b′i in E′f(σi(e0)). This is exactly what the morphism of local
coefficients does.

Cohomology with local coefficients is a functor on a slightly different
category, owing to the variance of cohomology with respect to coefficients.

Theorem 5.12. Cohomology with local coefficients is a contravariant func-
tor on the category L∗, where:

1. The objects L∗ are the same as the object of L, i.e. pairs (X, A) with
a local coefficient system p : E → X.

2. A morphism in L∗ from (p : E → X) to (p′ : E′ → X ′) is a con-
tinuous map f : (X, A)→ (X ′, A′) together with a morphism of local
coefficients

f∗(E′) E

X

❅
❅❅❘

✲f̃

�
�

�✠

In other words, f̃ induces a group homomorphism from E′f(x) to Ex

for all x ∈ X.

Sketch of proof. This is similar to the previous argument. A cochain c in
Sk(X ′;E′) is a function that assigns to each singular simplex σ : ∆k → X ′

an element c(σ) in E′σ(e0).

We need to construct f∗(c) ∈ Sk(X;E). Given a simplex τ : ∆k → X,
compose with f to get f ◦ τ : ∆k → X ′. Next apply c to get an element
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c(f ◦ τ(e0)) ∈ E′f(τ(e0)). Finally apply f̃ to get

f∗(c)(τ) = f̃(c(f ◦ τ(e0))) ∈ Eτ(e0).

Exercise 82. Give an alternative description of these two functoriality prop-
erties in terms of representations using the algebraic definition of homology
and cohomology with local coefficients. More precisely, if ρ : π1X → Aut(A)
is a representation defining the homology of X with coefficients in Aρ, and
similarly ρ′ : π1X

′ → Aut(A′) defines the homology of X ′ with coefficients
in A′ρ′ , construct a commutative diagram which must exist for the homology
of X with coefficient in ρ to map to the homology of X ′ with coefficients in
A′ρ′ . Do the same for cohomology.

A straightforward checking that all the usual constructions continue to
hold with local coefficients proves the following theorem.

Theorem 5.13. Homology with local coefficients forms a homology theory
on L. More precisely, for any object in L there exists a connecting homo-
morphism and a natural long exact sequence. The excision and homotopy
axioms hold.

Similarly cohomology with local coefficients forms a cohomology theory
on the category L∗.

In particular, there is a Mayer-Vietoris sequence for homology with local
coefficients which gives a method for computing. Some care must be taken
in using this theorem because local coefficients do not always extend. For
example, Given a homomorphism ρ : π1(X−U)→ Aut(A) and an inclusion
of pairs (X − U, B − U)→ (X, B) excision holds (i.e. the inclusion of pairs
induces isomorphisms in homology with local coefficients) only if ρ extends
over π1(X). In particular the morphism of local coefficients must (exist and)
be isomorphisms on fibers.

We end this section with a useful proposition which explicitly describes
the 0th homology and cohomology with local coefficients.

Proposition 5.14. Let B be a path connected CW-complex, π = π1(B) and
V a Zπ-module. then

1. Let Vπ denote the quotient of V by the subgroup generated by the
elements {v − γ · v | v ∈ V, γ ∈ π1B } (the group Vπ is called the
group of coinvariants). Then

H0(B;V ) ∼= Vπ.
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2. Let V π denote the subgroup of V consisting of elements fixed by π,
i.e. V π = {v ∈ V | γ · v = v for all γ ∈ π} (the group V π is called
the group of invariants). Then

H0(B;V ) ∼= V π.

Proof. Since B is path connected, up to homotopy we may as well assume
that the 0-skeleton of B consists of a single vertex, and so the 0-cells of
the universal cover B̃ are all of the form τ · γ where τ is a fixed 0-cell and
γ ∈ π1B. Thus, any 1-cell σ in B̃ has boundary

∂(σ) = τ · γ1(σ)− τ · γ2(σ)

for some γi(σ) ∈ π1B.
Let

Φ : V → H0(B;V ) = H0(C∗(B̃ ⊗Zπ V ))
be defined by

Φ(v) = [τ ⊗ v].

The 0-cycles are generated by (τ · γ)⊗ v for γ ∈ π1B and v ∈ V . Given
an 1-cell σ in B̃,

∂(σ ⊗ v) = ∂(σ)⊗ v

= (τ · γ1(σ)− τ · γ2(σ))⊗ v

= τ ⊗ (γ1(σ)− γ2(σ)) · v
and so

0 = Φ(γ1(σ) · v)− Φ(γ2(σ) · v).(5.1)

There exists a collection of 1-cells σi, i ∈ Λ for B̃ with ∂(σi) = τ · ξi − τ

for a set of generators {ξi} of π1B (just lift each 1-cell of B to a 1-cell of B̃
starting at τ).

Using Equation (5.1) and writing an arbitrary element of π1B as a word
in the σi, it follows easily that Φ is onto with kernel generated by {v − γ ·
v | v ∈ V, γ ∈ π1B }.

The proof of the second assertion is similar, and is left as an exercise.

Exercise 83. Prove the second assertion in Proposition 5.14.

5.5. Projects for Chapter 5

5.5.1. The Hopf degree theorem. This theorem states that the degree
of a map f : Sn → Sn determines its homotopy class. See Theorems 6.67
and 8.5. Prove the theorem using the simplicial approximation theorem.
One place to find a proof is [43] on pages 13–17.
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5.5.2. Colimits and Limits. The categorical point of view involves defin-
ing an object in terms of its properties and showing that the properties
uniquely define the object up to isomorphism. Colimits and limits are im-
portant categorical constructions in algebra and topology. Special cases
include the notions of a cartesian product, a disjoint union, a pullback, a
pushout, a quotient space X/A, and the topology of a CW-complex. Define a
product and coproduct of two objects in a category, and show that cartesian
product and disjoint union give the product and coproduct in the category
of topological spaces. Define the colimit of a sequence of topological spaces

X0
f0−→ X1

f1−→ X2
f2−→ X3 → · · · ,

show that it is unique up to homeomorphism, and show existence by taking

colim
n→∞

Xi =
∐

Xi

(xi ∼ fi(xi))
.

If all the Xi are subsets of a set A and if all the fi’s are inclusions of subspaces
show that the colimit can be taken to X = ∪Xi. The topology is given by
saying U ⊂ X is open if and only if U ∩ Xi is open for all i. Thus such a
colimit can be thought of as some sort of generalization of a union. Define
the limit of a sequence of topological spaces

· · · −→X3
f3−→ X2

f2−→ X1
f1−→ X0,

and show existence by taking

lim
←

Xi = {(xi) ∈
∏

Xi : fi(xi) = xi−1 for all i > 0}.

Interpret the limit as a generalized form of intersection.
Now let I be a category and let T be the category of topological spaces.

Let X : I → T , i �→ Xi be a functor, so you are given a topological space
for every object i, and the morphisms of I give oodles of maps between the
Xi satisfying the same composition laws as the morphisms in I do. Define

colim
I

Xi and lim
I

Xi.

Consider the categories {· → · → · → · → · · · }, {· · · ← · ← · ← · ←},
{· → · ← ·}, {· ← · → ·}, {· ·}, and discuss how colimits and limits over
these categories give the above colimit, the above limit, the pullback, the
pushout, the cartesian product and the disjoint union.

A definition of a CW-complex can be given in terms of colimits. A
CW-complex is a space X together with a increasing sequence of subspaces
X0 ⊂ X1 ⊂ X2 ⊂ · · · so that if X−1 is the empty set, then each Xi is the
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pushout of ∐
Si−1

∐
Di

Xi−1 Xi
❄

✲inc

❄
✲

and X = colimi→∞Xi. This definition incorporates all the properties of
the topology of a CW-complex that you use in practice. Show that this
definition is equivalent to your favorite definition of CW-complex.

Finally suppose that Y is a CW-complex and Y0 ⊂ Y1 ⊂ Y2 ⊂ Y3 ⊂ · · ·
is an increasing union of subcomplexes whose union is Y . Show that

HnY = colim
i→∞

Hn(Y i).

Define Milnor’s lim1 (see [25] or [42]) and show that there is an exact
sequence

0→ lim
←

1Hn−1(Yi)→ HnY → lim
←

Hn(Yi)→ 0.

We are using the more modern notation of colimit. Other authors using
the terms direct limit or inductive limit, and restrict the categories they
consider. Other authors use the words inverse limit or projective limit,
while we just use the term limit.

For an old-fashioned approach to limits in the special case of a directed
system see [33] and for the more modern approach see [42].



Chapter 6

Fibrations,
Cofibrations and
Homotopy Groups

The material in this chapter forms the topological foundation for algebraic
topology.

6.1. Compactly generated spaces

Given a map f : X×Y → Z, we would like to topologize the set of continuous
functions C(Y, Z) in such way that f is continuous if and only if the adjoint

f̃ : X → C(Y, Z), f̃(x)(y) = f(x, y)

is continuous. Here are three examples:

1. We would like an action of a topological group G× Z → Z to corre-
spond to a continuous function G→ Homeo(Z), where Homeo(Z) is
given the subspace topology inherited from C(Z, Z).

2. We would like a homotopy f : I × Y → Z to correspond to a path
f̃ : I → C(Y, Z) of functions.

3. The evaluation map

C(Y, Z)× Y → Z, (f, y) �→ f(y)

should be continuous. (Is the evaluation map an adjoint?)

Unfortunately, such a topology on C(Y, Z) is not possible, even for Haus-
dorff topological spaces, unless you bend your point of view. Although many

111
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of the constructions we will give are set-theoretically simple, the issue of how
to appropriately topologize these sets can become a nuisance. The category
of compactly generated spaces is a framework which permits one to make
such constructions without worrying about these technical issues. The ref-
erence for the material in this section is Steenrod’s paper “A convenient
category of topological spaces” [38].

Definition 6.1. A topological space X is said to be compactly generated if
X is Hausdorff and if a subset A ⊂ X is closed if and only if A∩C is closed
for every compact C ⊂ X.

Examples of compactly generated spaces include:

1. locally compact Hausdorff spaces (e.g. manifolds),
2. metric spaces, and
3. CW-complexes with finitely many cells in each dimension.

We will use the notation K for the category of compactly generated
spaces. (This is taken as a full subcategory of the category of all topological
spaces, i.e. every continuous function between compactly generated spaces
is a morphism in K.)

Any Hausdorff space can be turned into a compactly generated space by
the following trick.

Definition 6.2. If X is Hausdorff, let k(X) be the set X with the new
topology defined by declaring a subset A ⊂ X to be closed in k(X) if and
only if A ∩ C is closed in X for all C ⊂ X compact.

Exercise 84. Show that k(X) is compactly generated.

Thus k(X) is the underlying set of X topologized with more (closed and
hence more) open sets than X. This construction defines a functor

k : T2 → K
from the category T2 of Hausdorff spaces to the category K of compactly
generated spaces.

Exercise 85. Show that k is a right adjoint for the inclusion functor i :
K → T2. You will end up having to verify several of the facts below.

6.1.1. Basic facts about compactly generated spaces.

1. If X ∈ K, then k(X) = X.
2. If f : X → Y is a function, then k(f) : k(X)→ k(Y ) is continuous if

and only if f |C : C → Y is continuous for each compact C ⊂ X.
3. Let C(X, Y ) denote the set of continuous functions from X to Y .

Then k∗ : C(X, k(Y ))→ C(X, Y ) is a bijection if X is in K.
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4. The singular chain complexes of a Hausdorff space Y and the space
k(Y ) are the same.

5. The homotopy groups (see Definition 6.43) of Y and k(Y ) are the
same.

6. Suppose that X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · is an expanding sequence of
compactly generated spaces so that Xn is closed in Xn+1. Topologize
the union X = ∪nXn by defining a subset C ⊂ X to be closed if
C ∩Xn is closed for each n. Then if X is Hausdorff, it is compactly
generated. In this case every compact subset of X is contained in
some Xn.

6.1.2. Products in K. Unfortunately, the product of compactly generated
spaces need not be compactly generated. However, this causes little concern,
as we now see.

Definition 6.3. Let X, Y be compactly generated spaces. The categorical
product of X and Y is the space k(X × Y ).

The following useful facts hold about the categorical product.

1. k(X × Y ) is in fact a product in the category K.
2. If X is locally compact and Y is compactly generated, then X ×Y =

k(X × Y ). In particular, I × Y = k(I × Y ). Thus the notion of
homotopy is unchanged.

From now on, if X and Y are compactly generated, we will denote
k(X × Y ) by X × Y .

6.1.3. Function spaces. The standard way to topologize the set of func-
tions C(X, Y ) is to use the compact-open topology.

Definition 6.4. If X and Y are compactly generated spaces, let C(X, Y )
denote the set of continuous functions from X to Y , topologized with the
compact-open topology. This topology has as a subbasis sets of the form

U(K, W ) = {f ∈ C(X, Y )|f(K) ⊂W}
where K is a compact set in X and W an open set in Y .

If Y is a metric space, this is the notion, familiar from complex analysis,
of uniform convergence on compact sets. Unfortunately, even for compactly
generated spaces X and Y , C(X, Y ) need not be compactly generated. We
know how to handle this problem: define

Map(X, Y ) = k(C(X, Y )).

As a set, Map(X, Y ) is the set of continuous maps from X to Y , but its
topology is slightly different from the compact open topology.
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Theorem 6.5 (adjoint theorem). For X, Y , and Z compactly generated,
f(x, y) �→ f̃(x)(y) gives a homeomorphism

Map((X × Y ), Z)→ Map(X, Map(Y, Z))

Thus −× Y and Map(Y,−) are adjoint functors from K to K.

The following useful properties of Map(X, Y ) hold.

1. Let e : Map(X, Y )×X → Y be the evaluation e(f, x) = f(x). Then
if X, Y ∈ K, e is continuous.

2. If X, Y, Z ∈ K, then:
(a) Map(X, Y × Z) is homeomorphic to Map(X, Y )×Map(X, Z),
(b) Composition defines a continuous map

Map(X, Y )×Map(Y, Z)→ Map(X, Z).

We will also use the notation Map(X, A;Y, B) to denote the subspace of
Map(X, Y ) consisting of those functions f : X → Y which satisfy f(A) ⊂ B.
A variant of this notation is Map(X, x0;Y, y0) denoting the subspace of
basepoint preserving functions.

6.1.4. Quotient maps. We discuss yet another convenient property of
compactly generated spaces. For topological spaces, one can give an example
of quotient maps p : W → Y and q : X → Z so that p× q : W ×X → Y ×Z
is not a quotient map. However, one can show the following.

Theorem 6.6.

1. If p : W → Y and q : X → Z are quotient maps, and X and Z are
locally compact Hausdorff, then p× q is a quotient map.

2. If p : W → Y and q : X → Z are quotient maps and all space are
compactly generated, then p × q is a quotient map, provided we use
the categorical product.

From now on, we assume all spaces are compactly generated. If we ever
meet a space which is not compactly generated, we immediately apply k.
Thus, for example, if X and Y are Hausdorff spaces, then by our conven-
tion X × Y really means k(k(X) × k(Y )). By this convention, we lose no
information concerning homology and homotopy, but we gain the adjoint
theorem.

6.2. Fibrations

There are two kinds of maps of fundamental importance in algebraic topol-
ogy; fibrations and cofibrations. Geometrically, fibrations are more com-
plicated than cofibrations. However, your garden variety fibration tends to
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be a fiber bundle, and fiber bundles over paracompact spaces are always
fibrations, so that we have seen many examples so far.

Definition 6.7. A continuous map p : E → B is a fibration if it has the
homotopy lifting property (HLP); i.e. the problem

Y × {0} E

Y × I B

✲g̃

❄ ❄

p

✲
G

�

�

�

�

�

�

�

�

�

�

�

�

✒
G̃

has a solution for every space Y .

In other words, given the continuous maps p, G, g̃, and the inclusion
Y × {0} → Y × I, the problem is to find a continuous map G̃ making the
diagram commute.
Remark. Recall that whenever a commutative diagram is given with one
dotted arrow, we consider it as a problem whose solution is a map which
can be substituted for the dashed arrow to give a commutative diagram.

A covering map is a fibration. In studying covering space theory this
fact is called the covering homotopy theorem. For covering maps the lifting
is unique, but this is not true for an arbitrary fibration.

Exercise 86. Show that the projection to the first factor p : B×F → B is
a fibration. Show by example that the liftings need not be unique.

The following theorem of Hurewicz says that if a map is locally a fibra-
tion, then it is so globally.

Theorem 6.8. Let p : E → B be a continuous map. Suppose that B is
paracompact and suppose that there exists an open cover {Uα} of B so that
p : p−1(Uα)→ Uα is a fibration for each Uα.

Then p : E → B is a fibration.

Proving this theorem is one of the projects for Chapter 4. The corollary
of most consequence for us is the following.

Corollary 6.9. If p : E → B is a fiber bundle over a paracompact space B,
then p is a fibration.

Proof. Exercise 86 says that the projection U×F → U is a fibration. Since
fiber bundles have this local product structure, Theorem 6.8 implies that a
fiber bundle is a fibration.
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Exercise 87. Give an example of a fibration which is not a fiber bundle.

Maps between fibrations are analogous to (and simpler than) maps of
fiber bundles.

Definition 6.10. If p : E → B and p′ : E′ → B′ are fibrations, then a map
of fibrations is a pair of maps f : B → B′, f̃ : E → E′ so that the diagram

E E′

B B′

✲f̃

❄ ❄
✲

f

commutes.

Pullbacks make sense and exist in the world of fibrations.

Definition 6.11. If p : E → B is a fibration, and f : X → B a continuous
map, define the pullback of p : E → B by f to be the map f∗(E)→ X where

f∗(E) = {(x,e) ∈ X × E|f(x) = p(e)} ⊂ X × E

and the map f∗(E)→ B is the restriction of the projection X × E → X.

The following exercise is a direct consequence of the universal property
of pullbacks.

Exercise 88. Show that f∗(E)→ X is a fibration.

The following notation will be in effect for the rest of the book. If
H : Y × I → B is a homotopy, then Ht : Y → B is the homotopy at time t,
i.e.

Ht(y) = H(y, t).

6.3. The fiber of a fibration

A fibration need not be a fiber bundle. Indeed, the definition of a fibration is
less rigid than that of a fiber bundle and it is not hard to alter a fiber bundle
slightly to get a fibration which is not locally trivial. Nevertheless, a fibration
has a well defined fiber up to homotopy. The following theorem asserts this,
and also states that a fibration has a substitute for the structure group
of a fiber bundle, namely the group of homotopy classes of self-homotopy
equivalences of the fiber.

It is perhaps at first surprising that the homotopy lifting property in
itself is sufficient to endow a map with the structure of a “fiber bundle up
to homotopy”. But as we will see, the notion of a fibration is central in
studying spaces up to homotopy.
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Theorem 6.12. Let p : E → B be a fibration. Assume B is path connected.
Then all fibers Eb = p−1(b) are homotopy equivalent. Moreover every

path α : I → B defines a homotopy class α∗ of homotopy equivalences
Eα(0) → Eα(1) which depends only on the homotopy class of α rel endpoints,
in such a way that multiplication of paths corresponds to composition of
homotopy equivalences.

In particular, there exists a well-defined group homomorphism

[α] �→ (α−1)∗

π1(B, b0)→ Homotopy classes of self-homotopy equivalences of Eb0 .

Remark. The reason why we use α �→ (α−1)∗ instead of α �→ α∗ is because
by convention, multiplication of paths in B is defined so that αβ means first
follow α, then β. This implies that (αβ)∗ = β∗ ◦ α∗, and so we use the
inverse to turn this anti-homomorphism into a homomorphism.

Proof. Let b0, b1 ∈ B and let α be a path in B from b0 to b1. The inclusion
Eb0 ↪→ E completes to a diagram

Eb0 × {0} E

Eb0 × I B
❄

✲

❄

p

✲
H

where H(e, t) = α(t). Since E → B is a fibration, H lifts to E, i.e. there
exists a map H̃ such that

Eb0 × {0} E

Eb0 × I B
❄

✲

❄

p

�
�

�
��✒

H̃

✲
H

commutes.
Notice that the homotopy at time t = 0, H̃0 : Eb0 → E is just the

inclusion of the fiber Eb0 in E. Furthermore, p ◦ H̃t is the constant map at
α(t), so the homotopy H̃ at time t = 1 is a map H̃1 : Eb0 → Eb1 . We will let
α∗ = [H̃1] denote the homotopy class of this map. Since H̃ is not unique,
we need to show that another choice of lift gives a homotopic map. We will
in fact show something more general. Suppose α′ : I → B is another path
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homotopic to α rel end points. Then as before, we obtain a solution H̃ ′ to
the problem

Eb0 × {0} E

Eb0 × I B
❄

✲

❄

p

�
�

�
��✒

H̃′

✲
H′

(where H ′ = α′ ◦ projI) and hence a map H̃ ′1 : Eb0 → Eb1 .

Claim. H̃1 is homotopic to H̃ ′1.

Proof of Claim. Since α is homotopic rel end points to α′, there exists a
map Λ : Eb0 × I × I → B such that

Λ(e,s,t) = F (s,t)

where F (s,t) is a homotopy rel end points of α to α′. (So F0 = α and
F1 = α′.) The solutions H̃ and H̃ ′ constructed above give a diagram

(Eb0 × I)× {0, 1} ∪ (Eb0 × {0})× I E

(Eb0 × I)× I B
❄

✲Γ

❄

p

✲
Λ

where
Γ(e,s,0) = H̃(e,s)

Γ(e,s,1) = H̃ ′(e,s), and,

Γ(e,0,t) = e.

Let U = I × {0,1} ∪ {0} × I ⊂ I × I There exists a homeomorphism
ϕ : I2 → I2 taking U to I × {0} as indicated in the following picture.

ϕ
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Thus the diagram

Eb0 × I × {0} Eb0 × U E

Eb0 × I × I Eb0 × I2 B
❄

✛Id×ϕ ✲Γ

❄ ❄

p

✛
ϕ

✲
Λ

has the left two horizontal maps homeomorphisms. Since the homotopy
lifting property applies to the outside square, there exists a lift Λ̃ : Eb0×I2 →
E so that

Eb0 × U E

Eb0 × I2 B

✲Γ

❄ ❄

p

�
�

�
��✒

Λ̃

✲
Λ

commutes.
But then Λ̃ is a homotopy from H̃ : Eb0 × I → E to H̃ ′ : Eb0 × I → E.

Restricting to Eb0 × {1} we obtain a homotopy from H̃1 to H̃ ′1. Thus the
homotopy class α∗ = [H̃1] depends only on the homotopy class of α rel end
points, establishing the claim.

Clearly (αβ)∗ = β∗ ◦ α∗ if β(0) = α(1). In particular, if β = α−1 then
(const)∗ = β∗ ◦α∗, where const denotes the constant path at b0. But clearly

(const)∗ = [IdEb0
]

Thus β∗ is a homotopy inverse of α∗.
This shows that α∗ is a homotopy equivalence, and since B is path

connected, all fibers are homotopy equivalent.
Applying this construction to α ∈ π1(B,b0) we see that α∗ defines a ho-

motopy equivalence of Eb0 , and products of loops correspond to composites
of homotopy equivalences. The following exercise completes the proof.

Exercise 89. Show that the set of homotopy classes of homotopy equiva-
lences of a space X forms a group under composition. That is, show that
multiplication and taking inverses is well defined.

Theorem 6.12 asserts that the fibers p−1(b) = Eb for b ∈ B are homotopy
equivalent. Thus we will abuse terminology slightly and refer to any space
in the homotopy equivalence class of the space Eb for any b ∈ B as the fiber
of the fibration p : E → B.
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Since homotopy equivalences induce isomorphisms in homology or coho-
mology, a fibration with fiber F gives rise to local coefficients systems whose
fiber is the homology or cohomology of F , as the next corollary asserts.

Corollary 6.13. Let p : E → B be a fibration and let F = p−1(b0).
Then p gives rise to local coefficient systems over B with fiber Hn(F ;M) or
Hn(F ;M) for any n and any coefficient group M . These local coefficients
are obtained from the representations via the composite homomorphism

π1(B,b0)→
{ Homotopy classes of self-homotopy

equivalences F → F

}
→ Aut(A)

where A = Hn(F ;M) or A = Hn(F ;M).

Proof. The maps f∗ : Hn(F ;M) → Hn(F ;M) and f∗ : Hn(F ;M) →
Hn(F ;M) induced by a homotopy equivalence f : F → F are isomorphisms
which depend only on the homotopy class of f . Thus there is a function
from the group of homotopy classes of homotopy equivalences of F to the
group of automorphisms of A. This is easily seen to be a homomorphism.
The corollary follows.

We see that a fibration gives rise to many local coefficient systems, by
taking homology or cohomology of the fiber. More generally one obtains a
local coefficient system given any homotopy functor from spaces to abelian
groups (or R-modules), such as the generalized homology theories which we
introduce in Chapter 8.

With some extra hypotheses one can also apply this to homotopy func-
tors on the category of based spaces. For example, we will see below that if
F is simply connected, or more generally “simple,” then taking homotopy
groups πnF also gives rise to a local coefficient system. For now however,
observe that the homotopy equivalences constructed by Theorem 6.12 need
not preserve base points.

6.4. Path space fibrations

An important family of fibrations are the path space fibrations. They will
be useful in replacing arbitrary maps by fibrations and then in extending a
fibration to a “fiber sequence”.

Definition 6.14. Let (Y, y0) be a based space. The path space Py0Y is the
space of paths in Y starting at y0, i.e.

Py0Y = Map(I,0;Y ,y0) ⊂ Map(I,Y ),
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topologized as in the previous subsection, i.e. as a compactly generated
space. The loop space Ωy0Y is the space of all loops in Y based at y0, i.e.

Ωy0Y = Map(I,{0,1};Y ,{y0}).

Often the subscript y0 is omitted in the above notation. Let Y I =
Map(I, Y ). This is called the free path space. Let p : Y I → Y be the
evaluation at the end point of a path: p(α) = α(1).

By our conventions on topologies, p : Y I → Y is continuous. The
restriction of p to Py0Y is also continuous.

Exercise 90. Let y0, y1 be two points in a path-connected space Y . Prove
that Ωy0Y and Ωy1Y are homotopy equivalent.

Theorem 6.15.

1. The map p : Y I → Y , where p(α) = α(1), is a fibration. Its fiber
over y0 is the space of paths which end at y0, a space homeomorphic
to Py0Y .

2. The map p : Py0Y → Y is a fibration. Its fiber over y0 is the loop
space Ωy0Y .

3. The free path space Y I is homotopy equivalent to Y . The projection
p : Y I → Y is a homotopy equivalence.

4. The space of paths in Y starting at y0, Py0Y , is contractible.

Proof. 1. Let A be a space, and suppose a homotopy lifting problem

A× {0} Y I

A× I Y

✲g

❄ ❄

p

✲
H

�

�

�

�

�

�

�

�

�

�

�

�

✒
H̃

is given. We write g(a) instead of g(a, 0). For each a ∈ A, g(a) is a path
in Y which ends at p(g(a)) = H(a, 0). This point is the start of the path
H(a,−).

H(a, 0)

g(a) H(a,−)
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We will define H̃(a, s)(t) to be a path running along the path g(a) and
then part way along H(a,−), ending at H(a, s).

H̃(a, s)(−)

g(a) H(a,−) H(a, s)

Define

H̃(a, s)(t) =

{
g(a)((1 + s)t) if 0 ≤ t ≤ 1/(1 + s),
H(a, ((1 + s)t− 1) if 1/(1 + s) ≤ t ≤ 1.

Then H̃(a, s)(t) is continuous as a function of (a, s, t), so H̃(a,s) ∈ Y I and by
our choice of topologies H̃ : A× I → Y I is continuous. Also H̃(a,0) = g(a)
and p(H̃(a, s)) = H̃(a, s)(1) = H(a, s). Thus the lifting problem is solved
and so p : Py0Y → Y is a fibration. The fiber p−1(y0) consists of all paths
ending at y0 and the path space Py0Y consists of all paths starting at y0. A
homeomorphism is given by

α(t) �→ α(t) = α(1− t).

This proves 1.

2. has the same proof; the fact that g(a) starts at y0 means that H̃(a, s)
also starts at y0.

3. Let i : Y → Y I be the map taking y to the constant path at y. Then
p ◦ i = IdY . Let F : Y I × I → Y I be given by

F (α,s)(t) = α(s + t− st).

Then F (α,0) = α and F (α, 1) is the constant path at α(1) which in turn
equals i ◦ p(α). Thus F shows that the identity is homotopic to i ◦ p. Hence
p and i are homotopy inverses.

4. has the same proof as 3.
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6.5. Fiber homotopy

Recall a map of fibrations (p : E → B) to (p′ : E′ → B′) is a commutative
diagram

E E′

B B′

✲f̃

❄
p

❄
p′

✲
f

Definition 6.16. A fiber homotopy between two morphisms (f̃i, fi) i = 0, 1
of fibrations is a commutative diagram

E × I E′

B × I B′

✲H̃

❄

p×Id

❄

p′

✲
H

with H0 = f0, H1 = f1, H̃0 = f̃0, and H̃1 = f̃1.
Given two fibrations over B, p : E → B and p′ : E′ → B, we say they

have the same fiber homotopy type if there exists a map f̃ from E to E′

covering the identity map of B, and a map g̃ from E′ to E covering the
identity map of B, such that the composites

E E E′ E′

B B
❅❅❘

✲g̃◦f̃

��✠ ❅❅❘

✲f̃◦g̃

��✠

are each fiber homotopic to the identity via a homotopy which is the identity
on B (i.e. there exists H̃ : E×I → E such that p(H̃(e,t)) = p(e), H̃0 = g̃◦ f̃ ,
and H̃1 = IdE . Similarly for f̃ ◦ g̃). One says that f̃ and g̃ are fiber homotopy
equivalences.

Notice that a fiber homotopy equivalence f̃ : E → E′ induces a homo-
topy equivalence Eb0 → E′b0 on fibers.

6.6. Replacing a map by a fibration

Let f : X → Y be a continuous map. We will replace X by a homotopy
equivalent space Pf and obtain a map Pf → Y which is a fibration. In short,
every map is equivalent to a fibration. If f is a fibration to begin with, then
the construction gives a fiber homotopy equivalent fibration. We assume
that Y is path-connected and X is non-empty.

Let q : Y I → Y be the path space fibration, with q(α) = α(0); evaluation
at the starting point.
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Definition 6.17. The pullback Pf = f∗(Y I) of the path space fibration
along f is called the mapping path space.

Pf = f∗(Y I) Y I

X Y

✲

❄ ❄
q

✲
f

(6.1)

An element of Pf is a pair (x, α) where α is a path in Y and x is a point in
X which maps via f to the starting point of α.

The mapping path fibration

p : Pf → Y

is obtaining by evaluating at the end point

p(x, α) = α(1).

Theorem 6.18. Suppose that f : X → Y is a continuous map.

1. There exists a homotopy equivalence h : X → Pf so that the diagram

X Pf

Y

❅
❅❘f

✲h

��✠p

commutes.

2. The map p : Pf → Y is a fibration.

3. If f : X → Y is a fibration, then h is a fiber homotopy equivalence.

Proof. 1. Let h : X → Pf be the map

h(x) = (x, constf(x))

where constf(x) means the constant path at f(x). Then f = p ◦ h, so the
triangle commutes. The homotopy inverse of h is p1 : Pf → X, projection
on the X-component. Then p1 ◦h = IdX . The homotopy from h◦p1 to IdPf

is given by

F ((x, α), s) = (x, αs),

where αs is the path s �→ α(st) (We have embedded X in Pf via h, and have
given a deformation retract of Pf to X by contracting a path to its starting
point.)
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2. Let the homotopy lifting problem

A× {0} Pf

A× I Y

✲g

❄ ❄

p

✲
H

�

�

�

�

�

�

�

�

�

�

�

�

✒
H̃

be given. For a ∈ A, we write g(a) instead of g(a, 0). Furthermore g(a) has
an X-component and a Y I -component and we write

g(a) = (g1(a), g2(a)) ∈ Pf ⊂ X × Y I .

Note that since g(a) is in the pullback, g1(a) maps via f to the starting
point of the path g2(a) and the square above commutes, so the endpoint of
the path g2(a) is the starting point of the path H(a,−). Here is a picture
of g(a) and H(a,−).

g1(a)

f

H(a, 1)
g2(a)(−) H(a,−)

The lift H̃ will have two components. The X-component will be constant
in s,

H̃1(a, s) = g1(a)

The Y I -component of the lift will be a path running along the path g2(a)
and then part way along H(a,−), ending at H(a, s).

Here is a picture of H̃(a, s).

g1(a)

f

H(a, s)
g2(a)(−) H(a,−)
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A formula is given by

H̃(a, s) = (g1(a), H̃2(a, s)(−)) ∈ Pf ⊂ X × Y I ,

where

H̃2(a, s)(t) =

{
g2(a)((1 + s)t) if 0 ≤ t ≤ 1/(1 + s),
H(a, ((1 + s)t− 1) if 1/(1 + s) ≤ t ≤ 1.

We leave it to the reader to check H̃ is continuous and that it is a lift of H
extending the map g. Thus we have shown the mapping path fibration is a
fibration.

3. Finally suppose that f : X → Y is itself a fibration. In the proof of
1. we showed that

h : X → Pf , h(x) = (x, constf(x))

and
p1 : Pf → X p1(x,α) = x

are homotopy inverses. Note h is a map of fibrations (covering the identity),
but p1 is not, since f ◦ p1(x, α) is the starting point of α and p(x, α) is the
endpoint of α.

Let γ : Pf × I → Y be the map γ(x,α,t) = α(t). Since f is a fibration,
the homotopy lifting problem

Pf × {0} X

Pf × I Y

✲p1

❄ ❄

f

✲
γ

�

�

�

�

�

�

�

�

�

�

�

�

✒
γ̃

has a solution. Define g : Pf → X by g(x, α) = γ̃(x, α, 1). Then the
diagrams

X Pf X Pf

Y Y

❅❅❘f

✲h

��✠ ❅❅❘f

✛ g

��✠p

commute.
Thus h and g are maps of fibrations, and in fact homotopy inverses since

g is homotopic to p1. But this is not enough.
To finish the proof, we need to show that g ◦ h is homotopic to IdX by

a vertical homotopy (i.e. a homotopy over the identity IdY : Y → Y ) and
h ◦ g is homotopic to IdPf

by a vertical homotopy.
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Let F : X × I → X be the map

F (x,t) = γ̃(x,constf(x),t).

Then

1. F (x,0) = γ̃(x,constf(x),0) = p1(x,constf(x)) = x, and

2. F (x,1) = γ̃(x,constf(x),1) = g ◦ h(x).

Hence F is a homotopy from IdX to g ◦ h. Moreover,

f(F (x,t)) = f(γ̃(x,constf(x),t)) = γ(x,constf(x),t) = f(x)

so F is a vertical homotopy.
Here is a picture of γ̃

g(x)

x
γ̃(α, x)(−)

α

The vertical homotopy from IdPf
to h ◦ g is given by contracting along

paths to their endpoints. Explicitly H : Pf × I → Pf is

H(x, α, s) = (γ̃(x, α, s), (t �→ α(s + t− st))).

Given a map f : X → Y , it is common to be sloppy and say “F is the
fiber of f”, or “F ↪→ X → Y is a fibration” to mean that after replacing
X by the homotopy equivalent space Pf and the map f by the fibration
Pf → Y , the fiber is a space of the homotopy type of F .

6.7. Cofibrations

Definition 6.19. A map i : A → X is called a cofibration, or satisfies the
homotopy extension property (HEP), if the following diagram has a solution
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for any space Y .

A× {0} A× I

Y

X × {0} X × I
❄

i

✲

❄

i×Id

✑
✑✑✰

✑
✑✑✸

✲
�

�

�

�

�

�

�❦

Cofibration is a “dual” notion to fibration, using the adjointness of the
functors −×I and −I , and reversing the arrows. To see this, note that since
a map A × I → B is the same as a map A → BI , the diagram defining a
fibration f : X → Y can be written

X XI

Z Y I .

❄

f

✛eval. at 0

✻

✲
�

�

�

�

�

�

�

�

�

�

✒

The diagram defining a cofibration f : Y → X can be written as

X X × I

Z Y × I.
❄

✲i0

�

�

�

�

�

�

�

�

�

�

�✠

✻
f×I

✛

For “reasonable” spaces, any cofibration i : A → X can be shown to
be an embedding whose image is closed in X. We will only deal with cofi-
brations given by a pair (X, A) with A a closed subspace. In that case one
usually says that A ↪→ X is a cofibration if the problem

X × {0} ∪ A× I Y

X × I
❄

i

✲f∪h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

as a solution for all spaces Y , maps f : X → Y and homotopies h : A×ItoY
extending f |A. Hence the name homotopy extension property.

Definition 6.20. Let X be compactly generated, A ⊂ X a subspace. Then
(X,A) is called an NDR–pair (NDR stands for “neighborhood deformation
retract”) if there exist continuous maps u : X → I and h : X × I → X so
that:



6.7. Cofibrations 129

1. A = u−1(0),
2. h(−, 0) = IdX ,
3. h(a, t) = a for all t ∈ I, a ∈ A, and
4. h(x, 1) ∈ A for all x ∈ X such that u(x) < 1.

In particular the neighborhood U = {x ∈ X|u(x) < 1} of A deformation
retracts to A.

Definition 6.21. A pair (X,A) is called a a DR–pair (DR stands for “de-
formation retract”) if 1,2,3 hold, but also

4′ h(x, 1) ∈ A for all x ∈ X.

(This is slightly stronger than the usual definition of deformation retracts,
because of the requirement that there exists a function u : X → I such that
u−1(0) = A.)

Theorem 6.22 (Steenrod). Equivalent are:

1. (X,A) is an NDR pair.
2. (X × I, X × 0 ∪A× I) is a DR pair.
3. X × 0 ∪A× I is a retract of X × I.
4. i : A ↪→ X is a cofibration.

For a complete proof see Steenrod’s paper [38].
Proof of some implications.

(4 ⇒ 3) Let Y = X × 0 ∪A× I. Then the solution of

X × {0} ∪ A× I X × {0} ∪ A× I

X × I
❄

✲Id

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✯

r

is a retraction of X × I to X × 0 ∪A× I.
(3 ⇒ 4) The problem

X × {0} ∪ A× I Y

X × I
❄

✲f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

has a solution f ◦ r, where r : X × I → X × {0} ∪A× I is the retraction.
(1 ⇒ 3) (This implication says that NDR pairs satisfy the homotopy

extension property. This is the most important property of NDR pairs.)
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The map R : X × I → X × {0} ∪A× I given by

R(x, t) =


(x, t) if x ∈ A or t = 0,
(h(x, 1), t− u(x)) if t ≥ u(x) and t > 0, and
(h(x, t

u(x)), 0) if u(x) ≥ t and u(x) > 0

is a well-defined and continuous retraction.

The next result should remind you of the result that fiber bundles over
paracompact spaces are fibrations.

Theorem 6.23. If X is a CW-complex, and A ⊂ X a subcomplex, then
(X,A) is a NDR pair.

Sketch of proof. The complex X is obtained from A by adding cells. Use
a collar Sn−1 × [0,1] ⊂ Dn given by (Pv, t) �→ (1 − t

2)Pv to define u and h
cell-by-cell.

Exercise 91. If (X, A) and (Y, B) are cofibrations, so is their product

(X, A)× (Y, B) = (X × Y, X ×B ∪A× Y ).

We next establish that a pushout of a cofibration is a cofibration; this
is dual to the fact that pullback of a fibration is a fibration. The word dual
here is used in the sense of reversing arrows.

Definition 6.24. A pushout of maps f : A → B and g : A → C is a
commutative diagram

A B

C D

✲f

❄
g

❄
✲

which is initial among all such commutative diagrams, i.e. any problem of
the form

A B

C D

E

✲f

❄
g ❆

❆
❆
❆
❆
❆❆

❄
✲

❍❍❍❍❍❍❍❥

�

�

�

�

�

�

�❘

has a unique solution.
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Pushouts are unique up to homeomorphism; this is proved using an
“initial object” argument. Sometimes we just say D is the pushout, and
sometimes we write D = f∗C, the pushout of g along f .

Pushouts always exist. They are constructed as follows.
When A is empty the pushout is the disjoint union B � C. A concrete

realization is given by choosing base points b0 ∈ B and c0 ∈ C and setting

B�C = {(b, c0, 0) ∈ B ×C × I | b ∈ B} ∪ {(b0, c, 1) ∈ B ×C × I | c ∈ C}.

In general, a concrete realization for the pushout of f : A → B and
g : A→ C is

B � C

f(a) ∼ g(a)
.

Note that this is a quotient of a sum, just like the pushout in the category
of abelian groups.

Theorem 6.25. If g : A→ C is a cofibration and

A B

C f∗C

✲f

❄

g

❄
✲

is a pushout diagram then B → f∗C is a cofibration.

The proof is obtained by reversing the arrows in the dual argument for
fibrations. We leave it as an exercise.

Exercise 92. Prove Theorem 6.25.

6.8. Replacing a map by a cofibration

Let f : A → X be a continuous map. We will replace X by a homotopy
equivalent space Mf and obtain a map A → Mf which is a cofibration. In
short, every map is equivalent to a cofibration. If f is a cofibration to begin
with, then the construction gives a homotopy equivalent cofibration relative
to A.

Definition 6.26. The mapping cylinder of a map f : A→ X is the space

Mf =
(A× I)�X

(a, 1) ∼ f(a)
.
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A× I

X

Mf

The mapping cone of f : A→ X is

Cf =
Mf

A× {0} .

A×I
A×{0}

X

Cf

Note that the mapping cylinder Mf can also be defined as the pushout
of

A× {1} X × {1}

A× I

✲

❄

This shows the analogue with the mapping path fibration Pf more clearly.
Sometimes Pf is called the mapping cocylinder by those susceptible to cat-
egorical terminology.
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The “dual” result to Theorem 6.18 is the following.

Theorem 6.27. Let f : A→ X be a map. Let i : A→Mf be the inclusion
i(a) = [a, 0].

1. There exists a homotopy equivalence h : Mf → X so that the diagram

A

X Mf

��✠
f

❅❅❘
i

✛
h

commutes.
2. The inclusion i : A→Mf is a cofibration.
3. If f : A → X is a cofibration, then h is a homotopy equivalence

rel A, in particular h induces a homotopy equivalence of the cofibers
Cf → X/f(A).

Proof. 1. Let h : Mf → X be the map

h[a, s] = f(a), h[x] = x.

Then f = h ◦ i so the diagram commutes. The homotopy inverse of h is the
inclusion j : X → Mf . In fact, h ◦ j = IdX , and the homotopy from IdMf

to j ◦ h squashes the mapping cylinder onto X and is given by

F ([a, s], t) = [a, s + t− st]

F ([x], t) = [x].

2. By the implication (3⇒ 4) from Steenrod’s theorem (Theorem 6.22),
we need to construct a retraction

R : Mf × I →Mf × 0 ∪A× I

A× I
R

1
I
0

Mf × I Mf × {0} ∪A× I

Let
r : I × I → I × 0 ∪ 0× I
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be a retraction so that r(1 × I) = {(1, 0)}. (First retract the square onto
3 sides and then contract a side to a point.) Define R([a, s], t) = [a, r(s, t)]
and R([x], t) = ([x], 0). Thus i : A→Mf is a cofibration.

3. If f : A ↪→ X is a cofibration, by Steenrod’s theorem there is a
retraction

r : X × I → X × 1 ∪ f(A)× I

and an obvious homeomorphism

q : X × 1 ∪ f(A)× I →Mf .

Define g : X → Mf by g(x) = q(r(x, 0)). We will show that g and h are
homotopy inverses rel A (recall h[a, s] = f(a) and h[x] = x).

Define the homotopy
H : X × I → X

as H = h ◦ r. Then H(x, 0) = h ◦ g(x), H(x, 1) = x, and H(f(a), t) = f(a).
Define the homotopy

F : Mf × I →Mf

by F ([x], t) = q(r(x, t)) and F ([a, s], t) = q(r(f(a), st)). Then F (x, 0) =
g ◦ h(x), H(−, 1) = IdMf

, and F (i(a), t) = i(a). The reader is encouraged
to verify these formulae, or to draw the motivating pictures.

6.9. Sets of homotopy classes of maps

We introduce the following notation. If X, Y are spaces, then [X,Y ] denotes
the set of homotopy classes of maps from X to Y , i.e.

[X,Y ] = Map(X,Y )/ ∼
where f ∼ g if f is homotopic to g.

Notice that if Y is path-connected, then the set [X,Y ] contains a distin-
guished class of maps, namely the unique class containing all the constant
maps. We will use this as a base point for [X,Y ] if one is needed.

If X has a base point x0, and Y has a base point y0, let [X,Y ]0 denote
the based homotopy classes of based maps, where a based map is a map
f : (X,x0) → (Y ,y0). Then [X,Y ]0 has a distinguished class, namely the
class of the constant map at y0. (In the based context, it is not necessary to
assume Y is path-connected to have this distinguished class.) Given a map
f : X → Y let [f ] denote its homotopy class in [X, Y ] or [X, Y ]0. Notice
that if X and Y are based spaces there is a forgetful map [X, Y ]0 → [X, Y ].
This map need not be injective or surjective.

The notion of an exact sequence of sets is a useful generalization of the
corresponding concept for groups.
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Definition 6.28. A sequence of functions

A
f−→ B

g−→C

of sets (not spaces or groups) with base points is called exact at B if

f(A) = g−1(c0)

where c0 is the base point of C.

All that was necessary here was that C be based. Notice that if A, B, C
are groups, with basepoints the identity element, and f, g homomorphisms,
then A → B → C is exact as a sequence of sets if and only if it is exact as
a sequence of groups.

The following two theorems form the cornerstone of constructions of
exact sequences in algebraic topology.

Theorem 6.29 (basic property of fibrations). Let p : E → B be a fibra-
tion, with fiber F = p−1(b0) and B path-connected. Let Y be any space.
Then the sequence of sets

[Y ,F ] i∗−→ [Y ,E]
p∗−→ [Y ,B]

is exact.

Proof. Clearly p∗(i∗[g]) = 0.
Suppose f : Y → E so that p∗[f ] = [const], i.e. p ◦ f : Y → B is

null homotopic. Let G : Y × I → B be a null homotopy, and then let
H : Y × I → E be a solution to the lifting problem

Y × {0} E

Y × I B

✲f

❄ ❄

p

✲
G

�

�

�

�

�

�

�

�

�

�

�

�

✒
H

Since p ◦ H(y,1) = G(y,1) = b0, H(y,1) ∈ F = p−1(b0). Thus f is
homotopic into the fiber, so [f ] = i∗[H(−,1)].

Theorem 6.30 (basic property of cofibrations). Let i : A ↪→ X be a cofi-
bration, with cofiber X/A. Let q : X → X/A denote the quotient map. Let
Y be any path-connected space. Then the sequence of sets

[X/A,Y ]
q∗−→ [X,Y ] i∗−→ [A,Y ]

is exact.
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Proof. Clearly i∗(q∗([g])) = [g ◦ q ◦ i] = [const].
Suppose f : X → Y is a map and suppose that f|A : A → Y is nullho-

motopic. Let h : A × I → Y be a null homotopy. The solution F to the
problem

X × {0} ∪ A× I Y

X × I
❄

i

✲f∪h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

F

defines a map f ′ = F (−,1) homotopic to f whose restriction to A is constant,
i.e. f ′(A) = y0. Therefore the diagram

X Y

X/A
❄

q

✲f ′

�

�

�

�

�

�

�

✒
g

can be completed, by the definition of quotient topology. Thus [f ] = [f ′] =
q∗[g].

6.10. Adjoint of loops and suspension; smash
products

Definition 6.31. Define K∗ to be the category of compactly generated
spaces with a non-degenerate base point, i.e. (X,x0) is an object of K∗
if the inclusion {x0} ⊂ X is a cofibration. The morphisms in K∗ are the
base point preserving continuous maps.

Exercise 93. Prove the base-point versions of the previous two theorems:

1. If F ↪→ E → B is a base point preserving fibration, then for any
Y ∈ K∗

[Y ,F ]0 → [Y ,E]0 → [Y ,B]0
is exact.

2. If A ↪→ X → X/A is a base point preserving cofibration, then for any
Y ∈ K∗

[X/A,Y ]0 → [X,Y ]0 → [A,Y ]0
is exact.

Most exact sequences in algebraic topology can be derived from Theo-
rems 6.29, 6.30, and Exercise 93. We will soon use this exercise to establish
exact sequences of homotopy groups. To do so, we need to be careful about
base points and adjoints. Recall that if (X, x0) and (Y, y0) are based spaces,
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then Map(X, Y )0 is the set of maps of pairs (X, x0) → (Y, y0) with the
compactly generated topology.

Definition 6.32. The smash product of based spaces is

X ∧ Y =
X × Y

X ∨ Y
=

X × Y

X × {y0} ∪ {x0} ∪ Y
.

Note that the smash product X∧Y is a based space. Contrary to popular
belief, the smash product is not the product in the category K∗, although
the wedge product

X ∨ Y = (X × {y0}) ∪ ({x0} × Y ) ⊂ X × Y

is the sum in K∗. The smash product is the adjoint of the based mapping
space. The following theorem follows from the unbased version of the adjoint
theorem (Theorem 6.5), upon restricting to based maps.

Theorem 6.33 (adjoint theorem). There is a (natural) homeomorphism

Map(X ∧ Y, Z)0 ∼= Map(X, Map(Y, Z)0)0

Definition 6.34. The (reduced) suspension of a based space (X, x0) is SX =
S1 ∧ X. The (reduced) cone is CX = I ∧ X. Here the circle is based by
1 ∈ S1 ⊂ C and the interval by 0 ∈ I.

Using the usual identification I/{0, 1} = S1 via t �→ e2πit, one sees

SX =
X × I

X × {0, 1} ∪ {x0} × I

In other words, if ΣX is the unreduced suspension and cone(X) is the unre-
duced cone (= ΣX/X × {0}), then there are quotient maps

ΣX → SX cone(X)→ CX

given by identifying {x0} × I shaded in the following figure.
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{x0} × I {x0} × I

ΣX cone(X)

Notice that taking reduced suspensions and reduced cones is functo-
rial. Reduced suspensions and cones are more useful than the unreduced
variety since they have canonical base points and satisfy adjoint proper-
ties. Nonetheless, it is reassuring to connect them with the more familiar
unreduced versions.

Exercise 94. If X ∈ K∗ (i.e. the inclusion {x0} → X is a cofibration),
then the quotient maps ΣX → SX and cone(X) → CX are homotopy
equivalences.

Proposition 6.35. The reduced suspension SSn is homeomorphic to Sn+1

and the reduced cone CSn is homeomorphic to Dn+1.

Exercise 95. Prove Proposition 6.35. This shows in a special case that the
smash product is associative. Prove associativity of the smash product in
general.

Corollary 6.36. Si ∧ Sj is homeomorphic to Si+j.

We defined loop spaces by Ωx0X = Map(I, {0, 1};X, {x0}), but by using
the identification of the circle as a quotient space of the interval, one sees

Ωx0X = Map(S1, X)0
Then a special case of Theorem 6.33 shows the following.

Theorem 6.37 (loops and suspension are adjoints). The spaces

Map(SX, Y )0
and

Map(X, ΩY )0
are naturally homeomorphic.
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6.11. Fibration and cofibration sequences

We will see eventually that the homotopy type of a fiber of a fibration mea-
sures how far the fibration is from being a homotopy equivalence. (For
example, if the fiber is contractible then the fibration is a homotopy equiv-
alence.) More generally given a map f : X → Y , one can turn it into a
fibration Pf → Y as above; the fiber of this fibration measures how far f is
from a homotopy equivalence.

After turning f : X → Y into a fibration Pf → Y one then has an
inclusion of the fiber F ⊂ Pf . Why not turn this into a fibration and see
what happens? Now take the fiber of the resulting fibration and continue
the process . . .

Similar comments apply to cofibrations. Theorem 6.39 below identifies
the resulting iterated fibers and cofibers. We first introduce some terminol-
ogy.

Definition 6.38. If f : X → Y is a map, the homotopy fiber of f is the
fiber of the fibration obtained by turning f into a fibrations. The homotopy
fiber is a space, well-defined up to homotopy equivalence. Usually one is
lazy and just calls this the fiber of f .

Similarly, the homotopy cofiber of f : X → Y is the mapping cone Cf ,
the cofiber of X →Mf .

Theorem 6.39.

1. Let F ↪→ E → B be a fibration. Let Z be the homotopy fiber of
F ↪→ E, so Z → F → E is a fibration (up to homotopy). Then Z is
homotopy equivalent to the loop space ΩB.

2. Let A ↪→ X → X/A be a cofibration sequence. Let W be the homotopy
cofiber of X → X/A, so that X → X/A → W is a cofibration (up
to homotopy). Then W is homotopy equivalent to the (unreduced)
suspension ΣA.

Proof. 1. Let f : E → B be a fibration with fiber F = f−1(b0). Choose
a base point e0 ∈ F . In Section 6.6 we constructed a fibration p : Pf → B
with

Pf = {(e,α) ∈ E ×BI |f(e) = α(0)}

and p(e,α) = α(1), and such that the map h : E → Pf given by h(e) =
(e, constf(e)) is a fiber homotopy equivalence.

Let (Pf )0 = p−1(b0), so (Pf )0 ↪→ Pf
p−→ B is a fibration equivalent to

F ↪→ E
f−→ B.
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Define π : (Pf )0 → E by π(e,α) = e. Notice that

(Pf )0 = {(e,α)|f(e) = α(0), α(1) = b0}.

e

f b0

α

f(e)

Claim. π : (Pf )0 → E is a fibration with fiber Ωb0B.

Proof of claim. Clearly π−1(e0) = {(e0,α)|α(0) = α(1) = b0} is homeo-
morphic to the loop space, so we just need to show π is a fibration. Given
the problem

A× {0} (Pf )0

A× I E

✲g

❄ ❄
π

�

�

�

�

�

�

�

�

�

�

�✸H̃

✲
H

the picture is

H(a,−) g1(a)

f b0

g2(a)(−)

Hence we can set H̃(a, s) = (H(a, s), H̃2(a, s)) where H̃2(a, s))(−) has
the picture
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b0

f(H(a, s))
g2(a)(−)

and is defined by

H̃2(a, s))(t) =

{
f(H(y,−(1 + s)t + s)) if 0 ≤ t ≤ s/(s + 1),
g2(a)((s + 1)t− s if s/(s + 1) ≤ t ≤ 1.

The map F ↪→ (Pf )0 is a homotopy equivalence, since E → Pf is a fiber
homotopy equivalence. Thus the diagram

F

E

(Pf )0
❄

�

❅
❅❘

�
�✒
π

shows that the fibration π : (Pf )0 → E is obtained by turning F ↪→ E into
a fibration, and the homotopy fiber is Ωb0B.

2. The map X → X/A is equivalent to X ↪→ Ci = X ∪ cone(A) where
i : A ↪→ X. The following picture makes clear that Ci/X = ΣA. The fact
that X → Ci is a cofibration is left as an exercise.

i
A

X Ci = X∪ cone(A) ∼ X/A ΣA = Ci/X

Exercise 96. Show that X ↪→ Ci = X ∪ cone(A) is a cofibration.

We have introduced the notion of the loop space ΩX of a based space
X as the space of paths in X which start and end at the base point. The
loop space is itself a based space with base point the constant loop at the
base point of X. Let ΩnX denote the n-fold loop space of X. Similarly the
reduced suspension SX of X is a based space. Let SnX denote the n-fold
suspension of X.
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The previous theorem can be restated in the following convenient form.

Theorem 6.40.

1. Let A ↪→ X be a cofibration. Then any two consecutive maps in the
sequence

A→ X → X/A→ ΣA→ ΣX → · · · → ΣnA→ ΣnX → Σn(X/A)→ · · ·

have the homotopy type of a cofibration followed by projection onto
the cofiber.

1′. Let A ↪→ X be a base point preserving cofibration. Then any two
consecutive maps in the sequence

A→ X → X/A→ SA→ SX → · · · → SnA→ SnX → Sn(X/A)→ · · ·

have the homotopy type of a cofibration followed by projection onto
the cofiber.

2. Let E → B be a fibration with fiber F . Then any two consecutive
maps in the sequence

· · · → ΩnF → ΩnE → ΩnB → · · · → ΩF → ΩE → ΩB → F → E → B

have the homotopy type of a fibration preceded by the inclusion of its
fiber.

To prove 1′., one must use reduced mapping cylinders and reduced cones.

6.12. Puppe sequences

Lemma 6.41. Let X and Y be spaces in K∗.
1. [X,ΩY ]0 = [SX,Y ]0 is a group.

2. [X,Ω(ΩY )]0 = [SX, ΩY ]0 = [S2X, Y ]0 is an abelian group.

Sketch of proof. The equalities follow from Theorem 6.37, the adjointness
of loops and suspension. The multiplication can be looked at in two ways:
first on [SX, Y ]0 as coming from the map

ν : SX → SX ∨ SX

given by collapsing out the “equator” X × 1/2. Then define

fg :=
def

ν(f ∨ g)
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ν f

∨
g

SX SX ∨ SX Y

The second interpretation of multiplication is on [X, ΩY ]0 and comes from
composition of loops

∗ : ΩY × ΩY → ΩY

with (fg)x = f(x) ∗ g(x).
The proof of 2 is obtained by meditating on the following sequence of

pictures.

* *f g
f g

∼ ∼ ∼
g fg f

Exercise 97. Convince yourself that the two definitions of multiplication
on [X,ΩY ]0 = [SX,Y ]0 are the same and that π1(Y, y0) = [SS0, Y ]0.

The last lemma sits in a more general context. A loop space is a example
of an H-group and a suspension is an example of a co-H-group. See [36] or
[43] for precise definitions, but here is the basic idea. An H-group Z is a
based space with a “multiplication” map µ : Z ×Z → Z and an “inversion”
map ϕ : X → X which satisfy the axioms of a group up to homotopy (e.g.
is associative up to homotopy). For a topological group G and any space
X, Map(X, G) is a group, similarly for an H-group Z, [X, Z]0 is a group.
To define a co-H-group, one reverses all the arrows in the definition of H-
group, so there is a co-multiplication ν : W → W ∨W and a co-inversion
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ψ : W → W . Then [W, X]0 is a group. Finally, there is a formal, but
occasionally very useful result. If W is a co-H-group and Z is an H-group,
then the two multiplications on [W, Z]0 agree and are abelian. Nifty, huh?
One consequence of this is that π1(X, x0) of an H-group (e.g. a topological
group) is abelian.

Combining Lemma 6.41 with Theorem 6.40 and Exercise 93 yields the
proof of the following fundamental theorem.

Theorem 6.42 (Puppe sequences). Let Y ∈ K∗.
1. If F → E → B is a fibration, the following sequence is a long exact

sequence of sets (i ≥ 0), groups (i ≥ 1), and abelian groups (i ≥ 2).

· · · → [Y ,ΩiF ]0 → [Y ,ΩiE]0 → [Y ,ΩiB]0 →
· · · → [Y ,ΩB]0 → [Y ,F ]0 → [Y ,E]0 → [Y ,B]0

where ΩiZ denotes the iterated loop space

Ω(Ω(· · · (ΩZ) · · · ).
2. If (X,A) is an cofibration, the following sequence is a long exact se-

quence of sets (i ≥ 0), groups (i ≥ 1), and abelian groups (i ≥ 2).

· · · → [Si(X/A), Y ]0 → [SiX, Y ]0 → [SiA, Y ]0 →
· · · → [SA, Y ]0 → [X/A, Y ]0 → [X, Y ]0 → [A, Y ]0

This theorem is used as the basic tool for constructing exact sequences
in algebraic topology.

6.13. Homotopy groups

We now define the homotopy groups of a based space.

Definition 6.43. Suppose that X is a space with base point x0. Then the
nth homotopy group of X based at x0 is the group (set if n = 0, abelian
group if n ≥ 2)

πn(X, x0) = [Sn, X]0.

(We will usually only consider X ∈ K∗.)

Notice that

πn(X, x0) = [Sn, X]0 = [Sk ∧ Sn−k, X]0 = πn−k(Ωk(X)).(6.2)

In particular,
πnX = π1(Ωn−1X).
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There are other ways of looking at homotopy groups which are useful.
For example, to get a hold of the group structure for writing down a proof,
use πn(X, x0) = [(In, ∂In), (X, x0)]. For the proof of the exact sequence of
a pair (coming later) use πn(X, x0) = [(Dn, Sn−1), (X, x0)]. For finding a
geometric interpretation of the boundary map in the homotopy long exact
sequence of a fibration given below, use

πn(X, x0) = [(Sn−1 × I, (Sn−1 × ∂I) ∪ (∗ × I)), (X, x0)].

A useful observation is that the set π0(X, x0) is in bijective correspon-
dence with the path components of X. A based map f : S0 = {±1} → X
corresponds to the path component of f(−1). In general π0 is just a based
set, unless X is an H-space, e.g. a loop space or a topological group.

Also useful is the fact that [X, Y ]0 = π0(Map(X, Y )0), the set of path
components of the function space Map(X, Y )0. In particular, Equation (6.2)
shows that πn(X, x0) is the set of path components of the n-fold loop space
of X.

Homotopy groups are the most fundamental invariant of algebraic topol-
ogy. For example, we will see below that a CW-complex is contractible if
and only if all its homotopy groups vanish. More generally we will see that
a map f : X → Y is a homotopy equivalence if and only if it induces an
isomorphism on all homotopy groups. Finally, the homotopy type of a CW-
complex X is determined by the homotopy groups of X together with a
cohomological recipe (the k-invariants) for assembling these groups. (The
homotopy groups by themselves do not usually determine the homotopy
type of a space.)

Exercise 98. Show that πn(X × Y ) = πn(X)⊕ πn(Y ).

As an application of the Puppe sequences (Theorem 6.42) we imme-
diately get the extremely useful long exact sequence of homotopy groups
associated to any fibration.

Corollary 6.44 (long exact sequence of a fibration). Let F ↪→ E → B be
a fibration. Then the sequence

· · · → πnF → πnE → πnB → πn−1F → πn−1E → · · ·
→ π1F → π1E → π1B → π0F → π0E → π0B

is exact.

In Corollary 6.44, one must be careful with exactness at the right end
of this sequence since π1F , π1E, and π1B are non-abelian groups and π0F ,
π0E, and π0B are merely sets.

Taking F discrete in Corollary 6.44 and using the fact that covering
spaces are fibrations one concludes the following important theorem.
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Theorem 6.45. Let X̃ → X be a connected covering space of a connected
space X. Then the induced map

πn(X̃)→ πn(X)

is injective if n = 1, and an isomorphism if n > 1.

Exercise 99. Give a covering space proof of Theorem 6.45.

6.14. Examples of fibrations

Many examples of fibrations and fiber bundles arise naturally in mathemat-
ics. Getting a feel for this material requires getting one’s hands dirty. For
that reason many facts are left as exercises. We will use the following theo-
rem from equivariant topology to conclude that certain maps are fibrations.
This is a special case of Theorem 4.5.

Theorem 6.46 (Gleason). Let G be a compact Lie group acting freely on
a compact manifold X. Then

X → X/G

is a principal fiber bundle with fiber G.

6.14.1. Hopf fibrations. The first class of examples we give are the fa-
mous Hopf fibrations. These were invented by Hopf to prove that there are
non–nullhomotopic maps Sn → Sm when n > m.

There are four Hopf fibrations (these are fiber bundles):

S0 ↪→ S1 → S1

S1 ↪→ S3 → S2

S3 ↪→ S7 → S4

and
S7 ↪→ S15 → S8.

These are constructed by looking at the various division algebras over R.
Let K = R,C,H, or O (the real numbers, complex numbers, quater-

nions, and octonions). Each of these has a norm N : K → R+ so that

N(xy) = N(x)N(y)

and N(x) > 0 for x �= 0.
More precisely,

1. If K = R, then N(x) = |x| =
√

xx where x = x,

2. If K = C, then N(x) =
√

xx where a + ib = a− ib,

3. If K = H, then N(x) =
√

xx, where a + ib + jc + kd = a−ib−jc−kd,
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4. The octonions are defined to be O = H ⊕ H. The conjugation is
defined by the rule: if p = (a, b), then p = (a,−b). Multiplication is
given by the rule

(a, b)(c, d) = (ac− db, bc + da)

and the norm is defined by

N(p) =
√

pp.

Let EK = {(x, y) ∈ K ⊕ K|N(x)2 + N(y)2 = 1}. Let GK = {x ∈
K|N(x) = 1}.

Exercise 100. GK is a compact Lie group homeomorphic to Sr for r =
0, 1, 3. For K = O, GK is homeomorphic to S7, but it is not a group;
associativity fails.

Let GK act on EK by g · (x, y) = (gx, gy) (Note N(gx)2 + N(gy)2 =
N(x)2 + N(y)2 if N(g) = 1.)

This action is free. This is easy to show for K = R,C, or H, since
K is associative, hence if g(x, y) = (x, y), one of x or y is non-zero (since
N(x) and N(y) are not both zero) and so if x �= 0, gx = x implies that
1 = xx−1 = (gx)x−1 = g(xx−1) = g. This argument does not work for
K = O since GK is not a group; in this case one defines an equivalence
relation on EK by (x, y) ∼ (gx, gy) for g ∈ GK . The resulting quotient map
EK → Ek/ ∼ is a fiber bundle.

It is also easy to see that EK consists of the unit vectors in the corre-
sponding Rn and so EK = S2r+1 for r = 0, 1, 3, 7. Moreover GK

∼= Sr and
so the fiber bundle GK ↪→ EK → EK/GK can be rewritten

Sr ↪→ S2r+1 → Y = S2r+1/Sr

Exercise 101. Prove that Y is homeomorphic to the (r+1)-sphere Sr+1 in
the 4 cases. In fact, prove that the quotient map S2r+1 → Y can be written
in the form f : S2r+1 → Sr+1 where

f(z1, z2) = (2z1z2, N(z1)2 −N(z2)2).

Using these fibrations and the long exact sequence of a fibration (Corol-
lary 6.44) one obtains exact sequences

· · · → πnS1 → πnS3 → πnS2 → πn−1S
1 → · · ·

· · · → πnS3 → πnS7 → πnS4 → πn−1S
3 → · · ·

· · · → πnS7 → πnS15 → πnS8 → πn−1S
7 → · · ·

Since πnS1 = 0 for n > 1 (the universal cover of S1 is contractible and
so this follows from Theorem 6.45), it follows from the first sequence that
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πnS3 = πnS2 for n > 2. The Hopf degree Theorem (Corollary 6.67 and a
project for Chapter 3) implies that πnSn = Z. In particular,

π3S
2 = Z.

This is our second non-trivial calculation of πmSn (the first being πnSn = Z).
The quickest way to to obtain information from the other sequences is to

use the cellular approximation theorem. This is an analogue of the simplicial
approximation theorem. Its proof is one of the projects for Chapter 1.

Theorem 6.47 (cellular approximation theorem). Let (X, A) and (Y, B) be
relative CW-complexes, and let f : (X, A) → (Y, B) be a continuous map.
Then f is homotopic rel A to a cellular map.

Applying this theorem with (X, A) = (Sn, x0) and (Y, B) = (Sm, y0) one
concludes that

πnSm = 0 if n < m.

Returning to the other exact sequences, it follows from the cellular ap-
proximation theorem that πnS4 = πn−1S

3 for n ≤ 6 (since πn(S7) = 0 for
n ≤ 6), and that πnS8 = πn−1S

7 for n ≤ 14. We will eventually be able to
say more.

6.14.2. Projective spaces. The Hopf fibrations can be generalized by
taking GK acting on Kn for n > 2 at least for K = R,C, and H.

For K = R, GK = Z/2 acts on Sn with quotient real projective space
RPn. The quotient map Sn → RPn is a covering space, and in particular
a fibration.

Let S1 act on

S2n−1 = {(z1, . . . , zn) ∈ Cn | Σ|zi|2 = 1}
by

t(z1, · · · , zn) = (tz1, · · · , tzn)
if t ∈ S1 = {z ∈ C | |z| = 1}.
Exercise 102. Prove that S1 acts freely.

The orbit space is denoted by CPn−1 and called complex projective space.
The projection S2n−1 → CPn−1 is a fibration with fiber S1. (Can you
prove directly that this is a fiber bundle?) In fact, if one uses the map
p : S2n−1 → CPn−1 to adjoin a 2n-cell, one obtains CPn. Thus complex
projective space is a CW-complex.

Notice that CPn is a subcomplex of CPn+1, and in fact CPn+1 is ob-
tained from CPn by adding a single 2n+2-cell. One defines infinite complex
projective space CP∞ to be the union of the CPn, with the CW-topology.
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Exercise 103. Using the long exact sequence for a fibration, show that
CP∞ is an Eilenberg–MacLane space of type K(Z, 2), i.e. a CW-complex
with π2 the only non-zero homotopy group and π2

∼= Z.

Similarly, there is a fibration

S3 ↪→ S4n−1 → HPn−1

using quaternions in the previous construction. The space HPn−1 is called
quaternionic projective space.

Exercise 104.

1. Calculate the cellular chain complexes for CP k and HP k.
2. Compute the ring structure of H∗(CP k;Z) and H∗(HP k;Z) using

Poincaré duality.
3. Examine whether OP k can be defined this way, for k > 1.
4. Show these reduce to Hopf fibrations for k = 1.

6.14.3. More general homogeneous spaces and fibrations.

Definition 6.48.

1. The Stiefel manifold Vk(Rn) is the space of orthonormal k-frames in
Rn:

Vk(Rn) = {(v1, v2, . . . , vk) ∈ (Rn)k | vi · vj = δij}
given the topology as a subspace of (Rn)k = Rnk.

2. The Grassmann manifold or grassmannian Gk(Rn) is the space of k-
dimensional subspaces (a.k.a. k-planes) in Rn. It is given the quotient
topology using the surjection Vk(Rn)→ Gk(Rn) taking a k-frame to
the k-plane it spans.

Let G be a compact Lie group. Let H ⊂ G be a closed subgroup (and
hence a Lie group itself). The quotient G/H is called a homogeneous space.
The (group) quotient map G → G/H is a principal H-bundle since H acts
freely on G by right translation. If H has a closed subgroup K, then H acts
on the homogeneous space H/K. Changing the fiber of the above bundle
results in a fiber bundle G/K → G/H with fiber H/K.

For example, if G = O(n) and H = O(k)×O(n− k) with H ↪→ G via

(A, B) �→
(

A 0
0 B

)
,

let K ⊂ O(n) be O(n− k), with

A �→
(

I 0
0 A

)
.
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Exercise 105. Identify G/H with the grassmannian and G/K with the
Stiefel manifold. Conclude that the map taking a frame to the plane it
spans defines a principal O(k) bundle Vk(Rn)→ Gk(Rn).

Let

γk(Rn) = {(p, V ) ∈ Rn ×Gk(Rn) | p is a point in the k-plane V }.
There is a natural map γk(Rn)→ Gk(Rn) given by projection on the second
coordinate. The fiber bundle so defined is a vector bundle with fiber Rk (a
k-plane bundle)

Rk ↪→ γk(Rn)→ Gk(Rn).
It is called the canonical (or tautological) vector bundle over the grassman-
nian.

Exercise 106. Identify the canonical bundle with the bundle obtained from
the principal O(k) bundle Vk(Rn)→ Gk(Rn) by changing the fiber to Rk.

Exercise 107. Show there are fibrations

O(n− k) ↪→ O(n)→ Vk(Rn)

O(n− 1) ↪→ O(n)→ Sn−1

taking a matrix to its last k columns. Deduce that

πi(O(n− 1)) ∼= πi(O(n)) for i < n− 2,(6.3)

and
πi(Vk(Rn)) = 0 for i < n− k − 1.

The isomorphism of Equation (6.3) is an example of “stability” in alge-
braic topology. In this case it leads to the following construction. Consider
the infinite orthogonal group

O = lim
n→∞

O(n) =
∞
∪

n=1
O(n),

where O(n) ⊂ O(n + 1) is given by the continuous monomorphism

A→
(

A 0
0 1

)
.

Topologize O as the expanding union of the O(n). Then any compact
subset of O is contained in O(n) for some n, hence πiO = lim

n→∞
πi(O(n)) =

πi(O(n)) for any n > i + 2.
A famous theorem of Bott says:

Theorem 6.49 (Bott periodicity).

πkO ∼= πk+8O for k ∈ Z+.

Moreover the homotopy groups of O are computed to be
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k (mod 8) 0 1 2 3 4 5 6 7

πkO Z/2 Z/2 0 Z 0 0 0 Z

An element of πkO is given by an element of πk(O(n)), for some n, which
by clutching (see Section 4.3.3) corresponds to a bundle over Sk+1 with
structure group O(n). (Alternatively, one may use that πk+1(BO(n)) ∼=
πk(O(n)) using the long exact sequence of homotopy groups of the fibration
O(n) ↪→ EO(n) → BO(n)). The generators of the first eight homotopy
groups of O are given by Hopf bundles.

Similarly one can consider stable Stiefel manifolds and stable grassma-
nians. Let Vk(R∞) = lim

n→∞
Vk(Rn) and Gk(R∞) = lim

n→∞
Gk(Rn). Then

πi(Vk(R∞)) = lim
n→∞

πi(Vk(Rn)) and πi(Gk(R∞)) = lim
n→∞

πi(Gk(Rn)). In

particular πi(Vk(R∞)) = 0.
A project for Chapter 4 was to show that for every topological group G,

there is a principal G-bundle EG→ BG where EG is contractible.
This bundle classifies principal G-bundles in the sense that given a prin-

cipal G-bundle p : G ↪→ E → B over a CW-complex B (or more generally a
paracompact space), there is a map of principal G-bundles

E EG

B BG
❄

p

✲f̃

❄
✲

f

and that the homotopy class [f ] ∈ [B, BG] is uniquely determined. It follows
that the (weak) homotopy type of BG is uniquely determined.

Corollary 6.50. The infinite grassmannian Gk(R∞) is a model for BO(k).
The principal O(k) bundle

O(k) ↪→ Vk(R∞)→ Gk(R∞)

is universal and classifies principal O(k)-bundles. The canonical bundle

Rk ↪→ γk(R∞)→ Gk(R∞)

classifies Rk-vector bundles with structure group O(k) (i.e. Rk-vector bun-
dles equipped with metric on each fiber which varies continuously from fiber
to fiber).

The fact that the grassmannian classifies orthogonal vector bundles
makes sense from a geometric point of view. If M ⊂ Rn is a k-dimensional
smooth submanifold, then for any point p ∈ M , the tangent space TpM
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defines a k-plane in Rn, and hence a point in Gk(Rn). Likewise a tangent
vector determines a point in the canonical bundle γk(Rn). Thus there is a
bundle map

TM γk(Rn)

M Gk(Rn)
❄

p

✲f̃

❄
✲

f

Moreover, Gk(R∞) is also a model for BGLk(R) and hence is a clas-
sifying space for k-plane bundles over CW-complexes. This follows either
by redoing the above discussion, replacing k-frames by sets of k-linearly
independent vectors, or by using the fact that O(k) ↪→ GLk(R) is a ho-
motopy equivalence, with the homotopy inverse map being given by the
Gram-Schmidt process.

Similar statements apply in the complex setting to unitary groups U(n).
Let

Gk(Cn) = complex k-planes in Cn

Gk(Cn) = U(n)/(U(k)× U(n− k)), the complex grassmanian

Vk(Cn) = U(n)/U(n− k), the unitary Stiefel manifold.

There are principal fiber bundles

U(n− k) ↪→ U(n)→ Vk(Cn)

and
U(k) ↪→ Vk(Cn)→ Gk(Cn).

Moreover, V1(Cn) ∼= S2n−1, therefore

πk(U(n)) ∼= πk(U(n− 1)) if k < 2n− 2

and so letting
U = lim

n→∞
U(n),

we conclude that

πkU = πk(U(n)) for n > 1 +
k

2
.

Bott periodicity holds for the unitary group; the precise statement is the
following.



6.15. Relative homotopy groups 153

Theorem 6.51 (Bott periodicity).

πkU ∼= πk+2U for k ∈ Z+.

Moreover,

πkU =

{
Z if k is odd, and
0 if k is even.

Exercise 108. Prove that π1U = Z and π2U = 0.

Taking determinants give fibrations SO(n) ↪→ O(n) det−−→ {±1} and
SU(n) ↪→ U(n) det−−→ S1. In particular, SO(n) is the identity path–component
of O(n), so πk(SO(n)) = πk(O(n)) for k ≥ 1. Similarly, since πk(S1) = 0
for k > 1, π1(SU(n)) = 0 and πkSU(n) = πk(U(n)) for k > 1.

Exercise 109. Prove that SO(2) = U(1) = S1, SO(3) ∼= RP 3, SU(2) ∼=
S3, and that the map p : S3 × S3 → SO(4) given by (a, b) �→ (v �→ avb̄)
where a, b ∈ S3 ⊂ H and v ∈ H ∼= R4 is a 2-fold covering map.

Exercise 110. Using Exercise 109 and the facts:

1. πnSn = Z (Hopf degree Theorem).

2. πkS
n = 0 for k < n (Hurewicz theorem).

3. πkS
n ∼= πk+1S

n+1 for k < 2n− 1 (Freudenthal suspension theorem).

4. There is a covering Z ↪→ R→ S1.

5. πnSn−1 = Z/2 for n > 3 (this theorem is due to V. Rohlin and G.
Whitehead; see Corollary 9.27).

Compute as many homotopy groups of Sn’s, O(n), Grassmann manifolds,
Stiefel manifolds, etc. as you can.

6.15. Relative homotopy groups

Let (X, A) be a pair, with base point x0 ∈ A ⊂ X. Let p = (1, 0, · · · , 0) ∈
Sn−1 ⊂ Dn.

Definition 6.52. The relative homotopy group (set if n = 1) of the pair
(X, A) is

πn(X, A, x0) = [Dn, Sn−1, p;X, A, x0],

the set of based homotopy classes of base point preserving maps from the
pair (Dn, Sn−1) to (X, A). This is a functor from pairs of spaces to sets
(n = 1), groups (n = 2), and abelian groups (n > 2).

Thus, representatives for πn(X, A, x0) are maps f : Dn → X such that
f(Sn−1) ⊂ A, f(p) = x0 and f is equivalent to g if there exists a homotopy
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F : Dn× I → X so that for each t ∈ I, F (−, t) is base point preserving and
takes Sn−1 into A, and F (−, 0) = f, F (−, 1) = g.

(Technical note: associativity is easier to see if instead one takes

πn(X, A, x0) = [Dn, Sn−1, P ;X, A, x0]

where P is one-half of a great circle, running from p to −p, e.g.

P = {(cos θ, sin θ, 0, · · · , 0) | θ ∈ [0, π]}.
This corresponds to the previous definition since the reduced cone on the
sphere is the disk.)

Theorem 6.53 (long exact sequence in homotopy of a pair).The homotopy
set πn(X, A) is a group for n ≥ 2, and is abelian for n ≥ 3. Moreover, there
is a long exact sequence

· · · → πnA→ πnX → πn(X, A)→ πn−1A→ · · · → π1(X, A)→ π0A→ π0X.

Proof. The proof that πn(X, A) is a group is a standard exercise, with
multiplication based on the idea of the following picture.

ν f
A

∨
g

Dn Dn ∨Dn X

Exercise 111. Concoct an argument from this picture and use it to figure
out why π1(X, A) is not a group. Also use it to prove that the long exact
sequence is exact.

Lemma 6.54. Let f : E → B be a fibration with fiber F . Let A ⊂ B be a
subspace, and let G = f−1(A), so that F ↪→ G

f−→ A is a fibration. Then
f induces isomorphims f∗ : πk(E, G) → πk(B, A) for all k. In particular,
taking A = {b0} one obtains the commuting ladder

· · · πkF πkE πk(E, F ) πk−1(F ) · · ·

· · · πkF πkE πk(B) πk−1(F ) · · ·

✲ ✲

❄
Id

✲

❄
Id

✲

❄
f∗

✲

❄
Id

✲ ✲ ✲ ✲ ✲
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with all vertical maps isomorphisms, taking the long exact sequence of the
pair (E, F ) to the long exact sequence in homotopy for the fibration F ↪→
E → B.

Proof. This is a straightforward application of the homotopy lifting prop-
erty. Suppose that h0 : (Dk, Sk−1) → (B, A) is a map. Viewed as a
map Dk → B it is nullhomotopic, i.e. homotopic to the constant map
cb0 = h1 : Dk → B. Let H be a homotopy, and let h̃1 : Dk → G ⊂ E be
the constant map at the base point of G. Since f ◦ h̃1 = h1 = H(−, 1), the
homotopy lifting property implies that there is a lift H̃ : Dk × I → E with
f ◦ H̃(−, 0) = h0. This proves that f∗ : πk(E, G) → πk(B, A) is surjective.
A similar argument shows that f∗ : πk(E, G)→ πk(B, A) is injective.

The only square in the diagram for which commutativity is not obvious
is

πk(E, F ) πk−1(F )

πk(B) πk−1(F )

✲

❄
f∗

❄
Id

✲

(6.4)

We leave this as an exercise.

Exercise 112. Prove that the diagram (6.4) commutes. You will find the
constructions in the proof of Theorem 6.39 useful. Notice that the com-
mutativity of this diagram and the fact that f∗ is an isomorphism gives an
alternative definition of the connecting homomorphism πk(B) → πk−1(F )
in the long exact sequence of the fibration F ↪→ E → B.

An alternative and useful perspective on Theorem 6.53 is obtained by
replacing a pair by a fibration as follows.

Turn A ↪→ X into a fibration, with A′ replacing A and L(X, A) the fiber.
Using the construction of Section 6.6 we see that

L(X, A) = {(a, α) | α : I → X, α(0) = a ∈ A, α(1) = x0}
= Map((I, 0, 1), (X, A, x0)).

This shows that if ΩX ↪→ PX
e−→ X denotes the path space fibration,

then L(X, A) = PX|A = e−1(A). Thus Lemma 6.54 shows that e induces
an isomorphism e∗ : πk(PX, L(X, A)) → πk(X, A) for all k. Since PX
is contractible, using the long exact sequence for the pair (PX, L(X, A))
gives an isomorphism ∂ : πk(PX, L(X, A))

∼=−→ πk−1(L(X, A)). Therefore
the composite

πk−1(L(X, A)) e∗◦∂−1

−−−−→ πk(X, A)
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is an isomorphism which makes the diagram

· · · πk+1X πk(L(X, A)) πkA πkX · · ·

· · · πk+1X πk+1(X, A) πkA πkX · · ·

✲

❄Id

✲ ✲

❄ ❄Id

✲

❄Id

✲

✲ ✲ ✲ ✲ ✲

commute, where the top sequence is the long exact sequence for the fibration
L(X, A) ↪→ A → X and the bottom sequence is the long exact sequence of
the pair (X, A).

Homotopy groups are harder to compute and deal with than homology
groups, essentially because excision fails for relative homotopy groups. In
Chapter 8 we will discuss stable homotopy and generalized homology the-
ories, in which (properly interpreted) excision does hold. Stabilization is a
procedure which looks at a space X only in terms of what homotopy infor-
mation remains in SnX as n gets large. The fiber L(X, A) and cofiber X/A
are stably homotopy equivalent.

6.16. The action of the fundamental group on
homotopy sets

The question which arises naturally when studying based spaces is what is
the difference between the based homotopy classes [X, Y ]0 and the unbased
classes [X, Y ]? Worrying about base points can be a nuisance. It turns out
that for simply connected spaces one need not worry; the based and unbased
homotopy sets are the same. In general, the fundamental group acts on the
based set as we will now explain.

Let X be in K∗, that is, it is a based space with a non-degenerate base
point x0. Suppose Y is a based space.

Definition 6.55. Let f0, f1 : X → Y . Let u : I → Y be a path and suppose
there is a homotopy F : X × I → Y from f0 to f1 so that F (x0, t) = u(t).
Then we say f0 is freely homotopic to f1 along u, and write

f0 �u f1.

Notice that if f0, f1 : (X, x0) → (Y, y0), then u is a loop. Thus a free
homotopy of based maps gives rise to an element of π1(Y, y0).

Lemma 6.56.

1. (Existence) Given a map f0 : X → Y and a path u in Y starting at
f0(x0), then f0 �u f1 for some f1.

2. (Uniqueness) Suppose f0 �u f1, f0 �v f2 and u 1 v (rel ∂I). Then
f1

�
const

f2.
3. (Multiplicativity) f0 �u f1, f1 �v f2 =⇒ f0 �uv f2
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Proof. 1. There exists a free homotopy F : X × I → Y with F (x0, t) =
u(t), F (−, 0) = f0, since (X, x0) is a cofibration:

X × {0} ∪ {x0} × I Y.

X × I
❄

✲f0∪u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

F

2. Since (I, ∂I), (X, x0) are cofibrations, so is their product (X × I, X ×
∂I ∪ x0 × I) (See Exercise 91) and so the following problem has a solution

X × I × {0} ∪X × {0, 1} × I ∪ {x0} × I × I Y.

X × I × I
❄

✲

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✯

H

In this diagram,

1. X × I × {0} → Y is the map (x, s, 0) �→ f0(x).

2. X × {0} × I → Y is the homotopy of f0 to f1 along u.

3. X × {1} × I → Y is the homotopy of f0 to f2 along v.

4. {x0} × I × I → Y is the path homotopy of u to v.

The situation is represented in the following picture of a cube X× I× I.

therefore f1 1 f2

f1 t
f2

f0 �v f1
u v

f0 �u f1 s

x

f0◦prX
u 1 v

Then H(−,−, 1) is a homotopy of f1 to f2 along a constant path.
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3. This is clear.

In light of Lemma 6.56, we can define an action of π1(Y, y0) on [X, Y ]0
by the following recipe.

For [u] ∈ π1(Y, y0) and [f ] ∈ [X, Y ]0, define [u][f ] to be [f1], where f1 is
any map so that f �

u
f1.

Theorem 6.57. This defines an action of π1(Y, y0) on the based set [X, Y ]0,
and [X, Y ] is the quotient set of [X, Y ]0 by this action if Y is path connected.

Proof. We need to verify that this action is well-defined. It is independent
of the choice of representative of [u] by Lemma 6.56, part 2. Suppose now
[f ] = [g] ∈ [X, Y ]0 and g �

u
g1. Then

f1 �
u−1

f �
const

g �
u

g1

so that f1 and g1 are based homotopic by Lemma 6.56, parts 2 and 3.
This is an action of the group π1(Y, y0) on the set [X, Y ]0 by Lemma

6.56, part 3. Let
Φ : [X, Y ]0 → [X, Y ]

be the forgetful functor. Clearly Φ([u][f ]) = [f ] and if Φ[f0] = Φ[f1], then
there is a u so that [u][f0] = [f1]. Finally Φ is onto by Lemma 6.56, part 3
and the fact that Y is path-connected.

Corollary 6.58. A based map of path connected spaces is null-homotopic
if and only if it is based null-homotopic.

Proof. If c denotes the constant map, then clearly c �
u

c for any u ∈ π1Y .
Thus π1Y fixes the class in [X, Y ]0 containing the constant map.

Corollary 6.59. Let X, Y ∈ K∗. If Y is a path connected and simply-
connected space then the forgetful functor [X, Y ]0 → [X, Y ] is bijective.

6.16.1. Alternative description in terms of covering spaces. Sup-
pose Y is path connected, and X is simply connected. Then covering space
theory says that any map f : (X, x0) → (Y, y0) lifts to a unique map
f̃ : (X, x0) → (Ỹ , ỹ0), where Ỹ denotes the universal cover of Y . Moreover
based homotopic maps lift to based homotopic maps. Thus the function

p∗ : [X, Ỹ ]0 → [X, Y ]0

induced by the cover p : (Ỹ , ỹ0)→ (Y, y0) is a bijection. On the other hand,
since Ỹ is path connected and simply connected, Corollary 6.59 shows that
the function [X, Ỹ ]0 → [X, Ỹ ] induced by the inclusion is a bijection.
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Now π1(Y, y0) can be identified with group of covering transformations
of Ỹ . Thus, π1(Y, y0) acts on [X, Ỹ ] by post composition i.e. α : Ỹ → Ỹ

acts on f : X → Ỹ by α ◦ f . (Note: one must be careful with left and right
actions: by convention π1(Y, y0) acts on Ỹ on the right, so α ◦ f means the
function x �→ f(x) · α.)

A standard exercise in covering space theory shows that if α ∈ π1(Y, y0)
the diagram

[X, Y ]0 [X, Ỹ ]0 [X, Ỹ ]

[X, Y ]0 [X, Ỹ ]0 [X, Ỹ ]
❄

α

✛∼= ✲∼=

❄

α

✛∼= ✲∼=

commutes, where the action on the left is via an α-homotopy, and the action
on the right is the action induced by the covering translation corresponding
to α, and the two left horizontal bijections are induced by the covering
projection. Thus the two notions of action agree.

Since πnY = [Sn, Y ]0, we have the following corollary.

Corollary 6.60. For any space Y , π1(Y, y0) acts on πn(Y, y0) for all n with
quotient [Sn, Y ], the set of free homotopy classes.

One could restrict to simply connected spaces Y and never worry about
the distinction between based and unbased homotopy classes of maps into Y .
This is not practical in general, and so instead one can make a dimension-
by-dimension definition.

Definition 6.61. We say Y is n-simple if π1Y acts trivially on πnY . We
say Y is simple if Y is n-simple for all n.

Thus, simply connected spaces are simple.

Proposition 6.62. If F is n-simple, then the fibration F ↪→ E → B defines
a local coefficient system over B with fiber πnF .

(A good example to think about is the Klein bottle mapping onto the
circle.)

Proof. Theorem 6.12 shows that given any fibration, F ↪→ E → B, there
is a well-defined homomorphism

π1B →
{ Homotopy classes of self-homotopy

equivalences F → F

}
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A homotopy equivalence induces a bijection

[Sn, F ]
∼=−→ [Sn, F ].

But, since we are assuming that F is n-simple, this is the same as an auto-
morphism

πnF → πnF

Thus, we obtain a homomorphism

ρ : π1B → Aut(πn(F )),

i.e. a local coefficient system over B.

Exercise 113. Prove that the action of π1(Y, y0) on itself is just given by
conjugation, so that Y is 1-simple if and only if π1Y is abelian.

Exercise 114. Show that a topological group is simple. (In fact H-spaces
are simple.)

Theorem 6.63. The group π1A acts on πn(X, A), πnX, and πnA for all n.
Moreover, the long exact sequence of the pair

· · · → πnA→ πnX → πn(X, A)→ πn−1A→ · · ·
is π1A-equivariant.

Proof. Let h : (I, 0, 1) → (A, x0, x0) represent u ∈ π1(A, x0). Let f :
(Dn, Sn−1, p)→ (X, A, x0). Then since (Sn−1, p) is an NDR–pair, the prob-
lem

Sn−1 × {0} ∪ {p} × I A

Sn−1 × I

✲
f|Sn−1∪h

❄ �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

h

has a solution h. Since (Dn, Sn−1) is a cofibration, the problem

Dn × {0} ∪ Sn−1 × I X

Dn × I

✲f∪h

❄ �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✯

F

has a solution F . By construction, F (x, 0) = f(x), and also F (−, 1) takes
the triple (Dn, Sn−1, p) to (X, A, x0). Taking u · [f ] = [F (−, 1)] defines
the action of π1(A, x0) on πn(X, A;x0). It follows immediately from the
definitions that the maps in the long exact sequence are π1A-equivariant.
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Definition 6.64. A pair (X, A) is n-simple if π1A acts trivially on πn(X, A)
for all n.

6.17. The Hurewicz and Whitehead Theorems

Perhaps the most important result of homotopy theory is the Hurewicz
Theorem. We will state the general relative version of the Hurewicz theorem
and its consequence, the Whitehead theorem, in this section.

Recall that Dn is oriented as a submanifold of Rn, i.e., the chart Dn ↪→
Rn determines the local orientation at any x ∈ Dn via the excision iso-
morphism Hn(Dn, Dn − {x}) ∼= Hn(Rn,Rn − {x}). This determines the
fundamental class [Dn, Sn−1] ∈ Hn(Dn, Sn−1). The sphere Sn−1 is oriented
as the boundary of Dn, i.e. the fundamental class [Sn−1] ∈ Hn−1(Sn−1) is
defined by [Sn−1] = δ([Dn, Sn−1]) where δ : Hn(Dn, Sn−1)

∼=−→ Hn−1(Sn−1)
is the connecting homomorphism in the long exact sequence for the pair
(Dn, Sn−1).

Definition 6.65. The Hurewicz map ρ : πnX → HnX is defined by

ρ([f ]) = f∗([Sn]),

where f : Sn → X represents an element of πnX, [Sn] ∈ HnSn ∼= Z is the
generator (given by the natural orientation of Sn) and f∗ : HnSn → HnX
the induced map.

There is also a relative Hurewicz map ρ : πn(X, A)→ Hn(X, A) defined
by

ρ([f ]) = f∗([Dn, Sn−1]).
Here [Dn, Sn−1] ∈ Hn(Dn, Sn−1) ∼= Z is the generator given by the natu-
ral orientation, and f∗ : Hn(Dn, Sn−1) → Hn(X, A) is the homomorphism
induced by f : (Dn, Sn−1, ∗)→ (X, A, x0) ∈ πn(X, A;x0).

Since the connecting homomorphism Hn(Dn, Sn−1) ∂−→ Hn−1(Sn−1) takes
[Dn, Sn−1] to [Sn−1], the map of exact sequences

· · · πn(A) πn(X) πn(X, A) πn−1(A) · · ·

· · · Hn(A) Hn(X) Hn(X, A) Hn−1(A) · · ·

✲ ✲

❄
ρ

✲

❄
ρ

✲

❄
ρ

✲

❄
ρ

✲ ✲ ✲ ✲ ✲

commutes.
Let π+

n (X, A) be the quotient of πn(X, A) by the normal subgroup gen-
erated by

{x(α(x))−1|x ∈ πn(X, A), α ∈ π1A}.
(Thus π+

n (X, A) = πn(X, A) if π1A = {1}, or if (X, A) is n-simple.)
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Clearly ρ factors through π+
n (X, A), since f∗([Dn, Sn]) depends only on

the free homotopy class of f . The following theorem is the subject of one of
the projects for this chapter. It says that for simply connected spaces, the
first non-vanishing homotopy and homology groups coincide. The Hurewicz
theorem is the most important result in algebraic topology. We will give a
proof the Hurewicz theorem for simply connected spaces in Chapter 10.

Theorem 6.66 (Hurewicz theorem).

1. Let n > 0. Suppose that X is path-connected. If πk(X, x0) = 0 for all
k < n, then Hk(X) = 0 for all 0 < k < n, and the Hurewicz map

ρ : πnX → HnX

is an isomorphism if n > 1, and a surjection with kernel the commu-
tator subgroup of π1X if n = 1.

2. Let n > 1. Suppose X and A are path-connected. If πk(X, A) = 0 for
all k < n then Hk(X, A) = 0 for all k < n, and

ρ : π+
n (X, A)→ Hn(X, A)

is an isomorphism. In particular ρ : πn(X, A) → Hn(X, A) is an
epimorphism.

Corollary 6.67 (Hopf degree theorem). The Hurewicz map ρ : πnSn →
HnSn is an isomorphism. Hence a degree zero map f : Sn → Sn is null-
homotopic.

Although we have stated this as a corollary of the Hurewicz theorem,
it can be proven directly using only the (easy) simplicial approximation
theorem. (The Hopf degree theorem was covered as a project in Chapter 5.)

Definition 6.68.

1. A space X is called n-connected if πkX = 0 for k ≤ n. (Thus “simply
connected” is synonymous with 1-connected).

2. A pair (X, A) is called n-connected if πk(X, A) = 0 for k ≤ n.
3. A map f : X → Y is called n-connected if the pair (Mf , X) is n-

connected, where Mf = mapping cylinder of f .

Using the long exact sequence for (Mf , X) and the homotopy equivalence
Mf ∼ Y we see that f is n-connected if and only if

f∗ : πkX → πkY

is an isomorphism for k < n and an epimorphism for k = n. Replacing the
map f : X → Y by a fibration and using the long exact sequence for the
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homotopy groups of a fibration shows that f is n-connected if and only if
the homotopy fiber of f is (n− 1)-connected.

Corollary 6.69 (Whitehead theorem).

1. If f : X → Y is n-connected, then f∗ : HqX → HqY is an isomor-
phism for all q < n and an epimorphism for q = n.

2. If X, Y are 1-connected, and f : X → Y is a map such that

f∗ : HqX → HqY

is an isomorphism for all q < n and an epimorphism for q = n. Then
f is n-connected.

3. If X, Y are 1-connected spaces, f : X → Y a map inducing an isomor-
phism on Z-homology, then f induces isomorphisms f∗ : πkX

∼=−→ πkY
for all k.

Exercise 115. Prove Corollary 6.69.

A map f : X → Y inducing an isomorphism of πkX → πkY for all k
is called a weak homotopy equivalence. Thus a map inducing a homology
isomorphism between simply connected spaces is a weak homotopy equiva-
lence. Conversely a weak homotopy equivalence between two spaces gives a
homology isomorphism.

We will see later (Theorem 7.34) that if X, Y are CW-complexes, then
f : X → Y is a weak homotopy equivalence if and only if f is a homotopy
equivalence. As a consequence,

Corollary 6.70. A continuous map f : X → Y between simply connected
CW-complexes inducing an isomorphism on all Z-homology groups is a ho-
motopy equivalence.

This corollary does not imply that if X, Y are two simply connected
spaces with the same homology, then they are homotopy equivalent; one
needs a map inducing the homology equivalence.

For example, X = S4 ∨ (S2 × S2) and Y = CP 2 ∨CP 2 are simply con-
nected spaces with the same homology. They are not homotopy equivalent
because their cohomology rings are different. In particular, there does not
exist a continuous map from X to Y inducing isomorphisms on homology.

The Whitehead theorem for non-simply connected spaces involves ho-
mology with local coefficients: If f : X → Y is a map, let f̃ : X̃ → Ỹ
be the corresponding lift to universal covers. Recall from Shapiro’s lemma
(Exercise 75) that

Hk(X̃;Z) ∼= Hk(X,Z[π1X]) for all k
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and
πkX̃ ∼= πkX for k > 1

(and similarly for Y ).
We obtain (with π = π1X ∼= π1Y ):

Theorem 6.71. If f : X → Y induces an isomorphism f∗ : π1X → π1Y ,
then f is n-connected if and only if it induces isomorphisms

Hk(X;Z[π])→ Hk(Y ;Z[π])

for k < n and an epimorphism

Hn(X;Z[π])→ Hn(Y ;Z[π])
In particular, f is a weak homotopy equivalence (homotopy equivalence if
X, Y are CW-complexes) if only if f∗ : Hk(X;Aρ) → Hk(Y ;Aρ) is an iso-
morphism for all local coefficient systems ρ : π → Aut(A).

Thus, in the presence of a map f : X → Y , homotopy equivalences can
be detected by homology.

6.18. Projects for Chapter 6

6.18.1. The Hurewicz theorem. The statement is given in Theorem
6.66. A reference is §IV.4-IV.7 in [43]. Another possibility is to give a
spectral sequence proof. Chapter 10 contains a spectral sequence proof the
Hurewicz theorem.

6.18.2. The Freudenthal suspension theorem. The statement is given
in Theorem 8.7. A good reference for the proof is §VII.6-VII.7 in [43]. You
can find a spectral sequence proof in Section 10.3.



Chapter 7

Obstruction Theory
and
Eilenberg-MacLane
Spaces

7.1. Basic problems of obstruction theory

Obstruction theory addresses the following types of problems. Let (X, A)
be a CW-pair, Y an arbitrary space, and p : E → B a fibration.
1. Extension problem. Suppose f : A→ Y is a continuous map. When does
f extend to all of X? The problem is stated in the following diagram.

A Y

X
❄

✲f

�

�

�

�

�

�

�

✒

(Given the two solid arrows can one find a dotted arrow so that the diagram
commutes?)
2. Homotopy problem.

165
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X × {0, 1} ∪A× I Y

X × I
❄

✲f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

In words, given two maps f0, f1 : X → Y and a homotopy of the restrictions
f0|A : A→ Y to f1|A : A→ Y , can one find a homotopy from f0 to f1?

If A is empty this is just the question of whether two maps f0 and f1 are
homotopic. This problem is different from the homotopy extension problem
(which is always solvable in our context) since in this case f1 is specified.

Notice that the the homotopy problem is a special case of the extension
problem.
3. Lifting problem.

E

X B
❄
p

�

�

�

�

�

�

�

�

✒

✲
f

If f : X → B is given, can we find a lift of f to E? This is a special case
of the relative lifting problem

A E

X B

✲

❄ ❄
p

�

�

�

�

�

�

�

�

✒

✲
f

4. Cross section problem. This is just a special case of the relative lifting
problem in the case when X = B and f : X → B is the identity map.

The cross section and relative lifting problems are equivalent since the
relative lifting problem reduces to finding a cross section of the pullback
bundle f∗E → X.

Fibrations and cofibrations are easier to work with than arbitrary maps
since they have fibers and cofibers. Although we have required that (X, A)
be a CW-pair and p : E → B be a fibration, the methods of Chapter 6 show
how to work in complete generality. Suppose that X and A are arbitrary
CW-complexes and g : A→ X is an arbitrary continuous map. The cellular
approximation theorem (Theorem 6.47) implies that g is homotopic to a
cellular map; call it h : A → X. The mapping cylinder Mh is then a CW-
complex containing A as a subspace and (Mh, A) is a CW-pair. Similarly if
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p : E → B is not a fibration, replace E by the mapping path space Pp of p
to obtain a fibration Pp → B.

Then the following exercise is an easy consequence of the homotopy lift-
ing property, the homotopy extension property, and the method of turning
maps into fibrations or cofibrations.

Exercise 116. Each of the four problems stated above is solvable for arbi-
trary continuous maps g : A→ X and p : E → B between CW-complexes if
and only if it is solvable for the CW-pair (Mh, A) and the fibration Pp → E.

To solve the following exercise, work cell-by-cell one dimension at a time.
Obstruction theory is a formalization of this geometric argument.

Exercise 117. (Motivating exercise of obstruction theory) Any map f :
X → Y from an n-dimensional CW-complex to an n-connected space is
null-homotopic.

It turns out that if Y is only assumed to be (n− 1)-connected there is a
single obstruction θ(f) ∈ Hn(X;πnY ) which vanishes if and only if the map
f is null-homotopic.

The strategy of obstruction theory is to solve the four problems cell-
by-cell, and skeleton-by-skeleton. Thus, if the problem is solved over the
n-skeleton Xn of X, and en+1 is an (n + 1)-cell on X, some map is defined
on ∂en+1 and so the problem is to extend it over en+1. The obstruction
to extending this map is that it be nullhomotopic, or, more formally, that
the element of πnY represented by the composite Sn → ∂en+1 → Xn → Y
equals zero.

In this way we obtain a cellular cochain which assigns to en+1 ∈ X the
element in πnY . If this cochain is the zero cochain, then the map can be
extended over the (n + 1)-skeleton of X. It turns out this cochain is in fact
a cocycle and so represents a cohomology class in Hn+1(X;πnY ).

The remarkable result is that if this cocycle represents the zero cohomol-
ogy class, then by redefining the map on the n-skeleton one can then extend
it over the (n + 1)-skeleton of X (if you take one step backwards, then you
will be able to take two steps forward).

We will deal with the extension and homotopy problems first. The ho-
motopy problem can be viewed as a relative form of the extension problem;
just take

(X ′, A′) = (X × I, X × ∂I ∪A× I).

Hence the problem of finding a homotopy between f : X → Y and g :
X → Y is obstructed by classes in Hn+1(X × I, X × {0, 1};πnY ), which is
isomorphic to Hn(X;πnY ).
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We end this introduction to obstruction theory with some comments to
indicate how the results of obstruction theory lead to a major conceptual
shift in perspective on what homology is.

Let A be an abelian group and K(A, n) be a space such that

πk(K(A, n)) =

{
A if k = n,

0 otherwise.

Such a space is called an Eilenberg-MacLane space of type (A, n). Then the
solution to the homotopy problem for maps into Y = K(A, n) shows that
there is a single obstruction θ ∈ Hn(X;πn(K(A, n))) to homotoping a map
f : X → K(A, n) to another map g : X → K(A, n). With a little more work
one shows that this sets up an isomorphism

[X, K(A, n)]
∼=−→ Hn(X;A).

This suggests one could define Hn(X;A) to be [X, K(A, n)]. This obser-
vation forms the basic link between the homological algebra approach to co-
homology and homotopy theory. From this perspective the Puppe sequence
(Theorem 6.42) immediately gives the long exact sequence in cohomology,
and the other Eilenberg–Steenrod axioms are trivial to verify. But more
importantly, it suggests that one could find generalizations of cohomology
by replacing the sequence of spaces K(A, n) by some other sequence En,
and defining functors from spaces to sets (or groups, or rings, depending on
how much structure one has on the sequence En) by

X �→ [X, En].

This indeed works and leads to the notion of a spectrum {En} and its cor-
responding generalized homology theory, one of the subjects of Chapter 8.

7.2. The obstruction cocycle

Suppose that (X, A) is a relative CW-complex. We refer the reader to
Definition 1.3 for the precise definition.

Notice that X/A is a CW-complex. The dimension of (X, A) is defined
to be the highest dimension of the cells attached (we allow the dimension to
be infinite).

Suppose that g : A→ Y a continuous map with Y path connected. We
wish to study the question of whether g can be extended to map X → Y .

Since Y is path connected, the map g : A → Y extends over the 1-
skeleton X1. Thus the zeroth and first step in extending g : A→ Y to X is
always possible (when Y is path connected).

Suppose that g : A → Y has been extended to g : Xn → Y for some
n ≥ 1.
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We now make an simplifying assumption.
Assumption. Y is n-simple, so that [Sn, Y ] = πnY .
(We will indicate later how to avoid this assumption by using local coeffi-
cients.)

Theorem 7.1 (main theorem of obstruction theory). Let (X, A) be a rel-
ative CW-complex, n ≥ 1, and Y a path–connected n-simple space. Let
g : Xn → Y be a continuous map.

1. There is a cellular cocycle θ(g) ∈ Cn+1(X, A;πnY ) which vanishes if
and only if g extends to a map Xn+1 → Y .

2. The cohomology class [θ(g)] ∈ Hn+1(X, A;πnY ) vanishes if and only
if the restriction g|Xn−1

: Xn−1 → Y extends to a map Xn+1 → Y .

The proof of this theorem will occupy several sections.

7.3. Construction of the obstruction cocycle

Recall that if Jn indexes the n-cells of (X, A),

Cn+1(X, A;πnY ) = HomZ(Cn+1(X, A), πnY )

= Funct({en+1
i |i ∈ Jn+1}, πnY )

Each (n + 1)-cell en+1
i admits a characteristic map

φi : (Dn+1, Sn)→ (en+1
i , ∂en+1

i ) ⊂ (Xn+1, Xn)

whose restriction to Sn we call the attaching map

fi = φi|Sn : Sn → Xn.

Composing fi with g : Xn → Y defines a map

Sn fi−→ Xn
g−→ Y.

This defines an element [g◦fi] ∈ [Sn, Y ], which equals [Sn, Y ]0 = πnY , since
Y is assumed to be n-simple.

Definition 7.2. Define the obstruction cochain θn+1(g) ∈ Cn+1(X, A;πnY )
on the basis of (n + 1)-cells by the formula

θn+1(g)(en+1
i ) = [g ◦ fi]

and extend by linearity.

A map h : Sn → Y is homotopically trivial if and only if h extends
to a map Dn+1 → Y . The following lemma follows from this fact and the
definition of adjoining cells.

Lemma 7.3. θ(g) = 0 if and only if g extends to a map Xn+1 → Y
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We gave a geometric definition of the obstruction cochain and came to
a geometric conclusion. Next we give an algebraic definition.

Recall from Section 1.1.3 that the cellular chain complex is defined by
taking the chain groups to be Cn(X, A) = Hn(Xn, Xn−1). The differential
is defined to be the composite

Hn(Xn, Xn−1)
∂−→ Hn−1(Xn−1)

i−→Hn−1(Xn−1, Xn−2).

By the cellular approximation theorem, π1Xn → π1Xn+1 is onto if n = 1,
and an isomorphism if n > 1, so π1(Xn+1, Xn) = 0. Similarly, the cellular
approximation theorem implies that πk(Xn+1, Xn) = 0 for k ≤ n, hence the
(relative) Hurewicz theorem implies that Hk(Xn+1, Xn) = 0 for k ≤ n and
the Hurewicz map

ρ : πn+1(Xn+1, Xn)→ Hn+1(Xn+1, Xn)

is onto, with kernel the subgroup of πn+1(Xn+1, Xn) generated by the set

K = {x(α(x))−1|x ∈ πn+1(Xn+1, Xn), α ∈ π1Xn}.
Recall that π+

n+1(Xn+1, Xn) denotes πn+1(Xn+1, Xn)/K.

Lemma 7.4. There is a factorization:

πn+1(Xn+1, Xn) πn(Xn) πn(Y )

π+
n+1(Xn+1, Xn)

❄

✲∂ ✲g∗

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�✿

g∗◦∂

Proof. If α ∈ π1Xn, then ∂(α · x) = α · ∂x. Moreover g∗(α · z) = g∗(α) ·
(g∗(z)) = g∗(z) for z ∈ πnXn since Y is n-simple.

Using Lemma 7.4 one can form the composite

Cn+1(X, A) = Hn+1(Xn+1, Xn)
∼=−→

ρ−1
π+

n+1(Xn+1, Xn)
g∗◦∂−−−→ πnY(7.1)

where ρ : π+
n+1(Xn+1, Xn) → Hn+1(Xn+1, Xn) denotes the Hurewicz iso-

morphism. The composite map of Equation (7.1) defines another cochain in
HomZ(Cn+1(X, A));πnY ) which we again denote by θn+1(g).

Proposition 7.5. The two definitions of θn+1(g) agree.

Proof. We first work on the second definition. Given an (n + 1)-cell en+1
i ,

let φi : (Dn+1, Sn) → (Xn+1, Xn) be the characteristic map for the cell.
We construct a map (φi ∨ u) ◦ q : (Dn+1, Sn, p) → (Xn+1, Xn, x0) as the
composite of a map q : (Dn+1, Sn, p)→ (Dn+1 ∨ I, Sn ∨ I, p), illustrated in
the next figure,
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q
p p

Dn+1 Dn+1 ∨ I

and a map Dn+1 ∨ I
φi∨u−→ Xn+1 where u is a path in Xn to the base point

x0. Clearly (φi ∨ u) ◦ q is homotopic to the characteristic map φi. Thus
ρ((φi ∨ u) ◦ q) is the generator of Hn+1(Xn+1, Xn) represented by the cell
en+1
i . Hence (φi∨u)◦q represents the element ρ−1(en+1

i ) in π+
n+1(Xn+1, Xn).

By definition, ∂((φi ∨ u) ◦ q) ∈ πnXn is represented by the composite of
the map q : Sn → Sn ∨ I (obtained by restricting the map q of the previous
figure to the boundary) and the attaching map fi = φi|Sn for the cell en+1

i

together with a path u to x0.

∂((φi ∨ u) ◦ q) = (fi ∨ u) ◦ q : Sn → Xn.

Hence by the second definition, θ(g)(en+1
i ) = g ◦ (fi ∨ u) ◦ q. But this is

(g ◦ fi ∨ g ◦ u) ◦ q which equals [fi] ∈ [Sn, Y ] = πnY , which in turn is the
first definition of θ(g)(en+1

i ).

Theorem 7.6. The obstruction cochain θn+1(g) is a cocycle.

Proof. Consider the following commutative diagram.

πn+2(Xn+2, Xn+1) Hn+2(Xn+2, Xn+1)

πn+1(Xn+1) Hn+1(Xn+1)

πn+1(Xn+1, Xn) Hn+1(Xn+1, Xn)

πn(Xn) πn(Y )

❄

✲

❄

❄

✲

❄

❄

✲

❄

θ(g)

✲g∗
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The unlabeled horizontal arrows are the Hurewicz maps. The unlabeled
vertical arrows come from homotopy or homology exact sequences of the
pairs (Xn+2, Xn+1) and (Xn+1, Xn).

The theorem follows by noting that the δθ(g) is the composite of all the
right vertical maps, that the top horizontal arrow is onto by the Hurewicz
Theorem, and the composite of the bottom two vertical maps on the left
are zero, because they occur in the homotopy exact sequence of the pair
(Xn+1, Xn).

7.4. Proof of the extension theorem

Lemma 7.3 says that θn+1(g) is the zero cocycle if and only if g extends
over Xn+1. Theorem 7.1 says that if θn+1(g) is cohomologous to 0, then the
restriction of g to the (n − 1)-skeleton Xn−1 extends over Xn+1. Thus to
prove Theorem 7.1 it must be shown that if θn+1(g) = δd for some cochain
d ∈ Cn(X, A;πnY ), then g can be redefined on the n-skeleton relative to the
(n− 1)-skeleton, then extended over the (n + 1)-skeleton.

Theorem 7.7. If θn+1(g) is cohomologous to 0, then the restriction of g :
Xn → Y to the (n − 1)-skeleton, g|Xn−1

: Xn−1 → Y extends over the
(n + 1)-skeleton Xn+1.

Before we prove this, we prove some preliminary lemmas which will be
useful for the homotopy classification as well.

Lemma 7.8. Let f0, f1 : Xn → Y be two maps so that f0|Xn−1
is homotopic

to f1|Xn−1
. Then a choice of homotopy defines a difference cochain d ∈

Cn(X, A;πnY ) with
δd = θn+1(f0)− θn+1(f1).

Proof. Let X̂ = X× I, Â = A× I. Then (X̂, Â) is a relative CW-complex,
with X̂k = Xk × ∂I ∪ Xk−1 × I. Hence a map X̂n → Y is a pair of maps
f0, f1 : Xn → Y and a homotopy G : Xn−1 × I → Y of the restrictions of
f0, f1 to Xn−1.

Thus one obtains the obstruction cocycle

θ(f0, G, f1) ∈ Cn+1(X̂, Â;πnY )

to extending f0∪G∪f1 to X̂n+1. From this cocycle one obtains the difference
cochain

d(f0, G, f1) ∈ Cn(X, A;πnY )

by restricting to cells of the form en × I; that is,

d(f0, G, f1)(en
i ) = (−1)n+1θ(f0, G, f1)(en

i × I)(7.2)
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for each en
i an n-cell of X. (The reason for the sign will be apparent shortly.)

Using the fact that θ(f0, G, f1) is a cocycle, for all (n + 1)-cells en+1
i ,

0 = (δθ(f0, G, f1))(en+1
i × I)

= θ(f0, G, f1)(∂(en+1
i × I))

= θ(f0, G, f1)(∂(en+1
i )× I)

+(−1)n+1(θ(f0, G, f1)(en+1
i × {1})− θ(f0, G, f1)(en+1 × {0}))

= (−1)n+1(δ(d(f0, G, f1))(en+1
i ) + θ(f1)(en+1

i )− θ(f0)(en+1
i )).

Therefore
δd(f0, G, f1) = θn+1(f0)− θn+1(f1).

There is a geometric interpretation for the difference cochain. Identify
Sn with ∂(Dn×I). For an n-cell en

i , let ϕi : (Dn, Sn−1)→ (Xn, Xn−1) be its
characteristic map. Then ±d(f0, G, f1)(en

i ) ∈ πnY is f0 ∪G ∪ f1 composed
with the attaching map of en

i × I as indicated in the next figure.

f0

G

f1

Lemma 7.8 immediately implies the following.

Corollary 7.9. Given g : Xn → Y , the obstruction cocycle θn+1(g) is null
homologous if the restriction g|Xn−1

: Xn−1 → Y is homotopic to a map
which extends over Xn+1.

We want is a converse. What we need is a realization theorem, i.e.
a proof that for any coboundary δd ∈ Cn+1(X, A;πnY ), any map g, and
any homotopy G, that there is a map f1 so that the difference cochain
d(g, G, f1) = d. In particular, G could be a homotopy constant in time in
which case if θn+1(g) = δd = δd(g, g|Xn−1

× IdI , f1), the previous lemma
shows that θn+1(f1) = 0, so that f1 extends over Xn+1. Since g′|Xn−1

=
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g|Xn−1
this would finish this step in the extension process. The realization

result is the following.

Proposition 7.10. Given a map f0 : Xn → Y and a homotopy G : Xn−1×
I → Y , so that G0 = f0|Xn−1

and an element d ∈ Cn(X, A;πnY ), there is a
map f1 : Xn → Y so that G(−, 1) = f1|Xn−1

and d = d(f0, G, f1).

Given the previous geometric description of the difference cochain all we
really need to prove is:

Lemma 7.11. For any map f : Dn × {0} ∪ Sn−1 × I → Y and for any
element α ∈ [∂(Dn × I), Y ], there is a map F : ∂(Dn × I) → Y so that F
represents α and restricts to f .

Proof. The proof is easy. Let K : ∂(Dn× I)→ Y be any map representing
α and let D = Dn×{0} ∪ Sn−1×I. Since D is contractible, both K|D and f
are null-homotopic, hence homotopic to each other and the map K gives an
extension of one end of this homotopy. The homotopy extension property
of the pair (∂(Dn × I), D) gives a homotopy H : ∂(Sn−1 × I)× I → Y and
F = H1 is the required map.

Proof of Proposition 7.10. Given an n-cell en
i of Xn, let

ϕi : (Dn, Sn−1)→ (Xn, Xn−1)

be the characteristic map. Apply Lemma 7.11 with f = f0◦ϕi∪G◦(ϕi|Sn−1×
IdI) and α = d(en

i ) and let Fi be the map provided by the conclusion of
Lemma 7.11. Define f1 : Xn → Y on the n-cells by f1(ϕi(x)) = Fi(x, 1). The
geometric interpretation of the difference cochain shows d(f0, G, f1)(en

i ) =
d(en

i ) as desired.

Proof of Theorem 7.1. The only thing left to show is that if g : Xn → Y
and if θ(g) is a coboundary δd, then g|Xn−1

extends to Xn+1. Apply the
realization proposition to g, d, and the stationary homotopy ((x, t) �→ g(x))
from g|Xn−1

to itself . One obtains a map g′ : Xn → Y which agrees with g
upon restriction to Xn−1, and satisfies

δd = θ(g)− θ(g′).

Then θ(g′) = 0 so g′ extends to Xn+1.

Exercise 118. Find examples of (X, A), Y , and g where:

1. θn+1(g) = 0.
2. θn+1(g) �= 0, but [θn+1(g)] = 0.
3. [θn+1(g)] �= 0.
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It is conceivable (and happens frequently) that finding an extension of
g : Xn → Y to Xn+1 may require g to be redefined not just on the n-cells,
but maybe even the (n − 1)-cells, or, perhaps even on the (n − k)-cells for
k = 1, · · · , r for some r.

This suggests that there may be theorems which state “given g, the re-
striction g|Xn−k

extends to Xn+1 if and only if some obstruction vanishes.”
Such theorems exists, and working them out leads to the definition of sec-
ondary and higher obstructions.

To get a feel for where such obstructions may lie, notice that the ob-
struction cochain θ is the obstruction to extending g : Xn → Y to Xn+1, and
that its cohomology class [θ] is the obstruction to extending g|Xn−1

to Xn+1.
The cohomology group is a subquotient of the cochain group Cn(X, A;πnY ).
It turns out that the obstructions live in further subquotients, that is, in
subquotients of cohomology.

7.5. Obstructions to finding a homotopy

We now turn to the construction of obstructions to finding a homotopy
between f0 : X → Y and f1 : X → Y extending a fixed homotopy on A.

X × {0, 1} ∪A× I Y

X × I
❄

✲f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

This is accomplished by viewing the homotopy problem as an extension
problem and then applying the Künneth theorem.

Consider the product relative CW-complex:

(X∗, A∗) = (X, A)× (I, ∂I) = (X × I, X × ∂I ∪A× I)

Then a map F : X∗n → Y is a pair of maps f0, f1 : X → Y and a
homotopy of f0|Xn−1

to f1|Xn−1
. Therefore the obstruction class [θn+1(F )] ∈

Hn+1(X∗, A∗;πnY ) is defined. This group is isomorphic to Hn(X, A;πnY )
by the Künneth Theorem (this is really the suspension isomorphism). Call
the corresponding element dn(f0, f1) ∈ Hn(X, A;πnY ). Then one gets the
following theorem.

Theorem 7.12. Let (X, A) be a relative CW-complex, Y an n-simple space,
f0, f1 : X → Y two maps which agree on A and F : Xn−1 × I → Y a
homotopy from f0|Xn−1

to f1|Xn−1
(rel A). Then the cohomology class of

dn(f0, f1) equals 0 if and only if the restriction of F to Xn−2 × I extends to
a homotopy of f0|Xn

to f1|Xn
.
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An interesting special case occurs when f1 is constant (see Exercise 117).

Corollary 7.13. Any continuous map from an n-dimensional CW-complex
to an n-connected space is null-homotopic.

7.6. Primary obstructions

A case where obstruction theory is easy to use occurs if Hn+1(X, A;πnY ) = 0
for all n. This occurs quite frequently. For example, if (X, A) has dimension
a and Y is (a− 1)-connected, then any map from A to Y extends to X.

The next interesting case occurs when Hk+1(X, A;πkY ) is non-zero in
only one dimension. Then there is a single obstruction to extending g,
and this obstruction sets up a correspondence between extensions and the
corresponding cohomology group. As a first step in understanding this cor-
respondence, we have the following theorem.

Theorem 7.14. Let (X, A) be a relative CW-complex, n ≥ 1, and Y an
(n− 1)-connected space (if n = 1 assume π1Y is abelian). Let f : A→ Y be
a map. Then f extends to a map g : Xn → Y . If g0, g1 are extensions of f ,
then g0|Xn−1

1 g1|Xn−1
(rel A) and the obstructions θn+1(g0) and θn+1(g1)

are cohomologous.

Proof. Since Y is path connected, f can be extended over X1. Since the
obstructions to extending f lie in Hr+1(X, A;πrY ), f can be extended to
Xn−1. Since the obstructions to finding a homotopy between maps lie in
Hr(X, A;πrY ) any two extensions of f are homotopic over Xn−1, and as
we saw, the difference cochain has coboundary equal to the difference of the
obstruction cocycles.

Definition 7.15. Let (X, A) be a relative CW-complex, n ≥ 1, and Y an
(n − 1)-connected space (if n = 1 assume π1Y is abelian). Let f : A → Y
be a map. The obstruction to extending f to Xn+1 is denoted by

γn+1(f) ∈ Hn+1(X, A;πnY ).

It is called the primary obstruction to extending f .

Theorem 7.14 says that the primary obstruction is well-defined and van-
ishes if and only if f extends over Xn+1. We next show that it is homotopy
invariant.

Theorem 7.16. Let (X, A) be a relative CW-complex, n ≥ 1, and Y an
(n− 1)-connected space (if n = 1 assume π1Y is abelian). Let f : A→ Y be
a map. Suppose f ′ is homotopic to f . Then γn+1(f ′) = γn+1(f).
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Proof. By Theorem 7.14, f extends to a map g : Xn → Y and f ′ extends to
a map g′ : Xn → Y . Likewise g|Xn−1

1 g′|Xn−1
, since Y is highly connected.

Call the homotopy F . Then the difference cochain satisfies

δd(g, F, g′) = θ(g)− θ(g′)

by Lemma 7.8. This shows γn+1(f) and γn+1(f ′) are cohomologous.

In the situation of the above theorems, if the primary obstruction van-
ishes then the map f extends to g : Xn+1 → Y . However the next obstruc-
tion class [θn+2(g)] may depend on the choice of g. So it is usually only the
primary obstruction which is computable. Obstruction theory ain’t all it’s
cracked up to be.

To define the primary obstruction for two maps to be homotopic, we
apply to above theorems to (X×I, X×∂I ∪A×I) and obtain the following
theorem.

Theorem 7.17. Let (X, A) be a relative CW-complex, n ≥ 1, and Y an
(n − 1)-connected space (if n = 1 assume π1Y is abelian). Let f0, f1 :
X → Y be two functions which agree on A. Then f0|Xn−1

1 f1|Xn−1
rel A,

and the obstruction in Hn(X, A;πnY ) to extending this homotopy to Xn is
independent of the choice of homotopy on Xn−1 and depends only on the
homotopy classes of f0 and f1 relative to A.

In light of this theorem, one can make the following definition.

Definition 7.18. Let (X, A) be a relative CW-complex, n ≥ 1, and Y an
(n−1)-connected space (if n = 1 assume π1Y is abelian). Let f0, f1 : X → Y
two functions which agree on A. The obstruction to constructing a homotopy
f0|Xn

1 f1|Xn
rel A is denoted

dn(f0, f1) ∈ Hn(X, A;πnY )

and is called the primary obstruction to homotoping f0 to f1. It depends
only on the homotopy classes of f0 and f1 relative to A.

7.7. Eilenberg-MacLane spaces

An important class of spaces are those spaces Y satisfying πkY = 0 for all
k �= n.

Definition 7.19. Let n be a positive integer and let π be a group, with π
abelian if n > 1. A CW-complex Y is called a K(π, n)-space if

πkY =

{
0 if k �= n

π if k = n.
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We will see later that (π, n) determines the homotopy type of Y , that is,
for a fixed pair (π, n), any two K(π, n) spaces are homotopy equivalent. A
K(π, n)-space is called an Eilenberg–MacLane space.

Theorem 7.20. Given any n > 0, and any group π with π abelian if n > 1,
there exists a K(π, n)-CW-complex.

Sketch of proof. Let 〈xi, i ∈ I|rj , j ∈ J〉 be a presentation (abelian if
n > 1) of π. Let Kn be the wedge ∨i∈I Sn of n-spheres, one for each
generator of π. Then the Van Kampen and Hurewicz theorems imply that
πkKn = 0 for k < n, π1K1 is the free group on the generators of π when
n = 1, and πnKn is the free abelian group on the generators of π when
n > 1.

For each relation, attach an (n + 1)-cell using the relation to define the
homotopy class of the attaching map. This defines a complex Kn+1 with

πk(Kn+1) =

{
0 if k < n

π if k = n.

For n = 1, this follows from the Van Kampen theorem. For n > 1 and
k < n, this follows from the cellular approximation theorem and for k = n
from the Hurewicz theorem.

Attach (n + 2)-cells to kill πn+1(Kn+1). More precisely, choose a set of
generators for πn+1(Kn+1) and attach one (n + 2)-cell for each generator,
using the generator as the homotopy class of the attaching map. This gives a
(n+2)-dimensional complex Kn+2. By the cellular approximation theorem,
the homotopy groups in dimensions less than n+1 are unaffected, and there
is a surjection πn+1(Kn+1)→ πn+1(Kn+2). Thus

πk(Kn+2) =

{
0 if k < n or k = n + 1,
π if k = n.

Now attach (n + 3)-cells to kill πn+2, etc. The union of the Kr is a
CW-complex and a K(π, n) space.

An important property of Eilenberg-MacLane spaces is that they pos-
sess fundamental cohomology classes. These classes are extremely useful.
They allow us to set up a functorial correspondence between Hn(X, π) and
[X, K(π, n)]. They are used to define cohomology operations. They can be
used to give the “fibering data” needed to decompose an arbitrary space
into Eilenberg-MacLane spaces (Postnikov towers), and also to construct
characteristic classes for fiber bundles.

Assume π is abelian, so that K(π, n) is simple. Then

Hn(K(π, n);π) ∼= Hom(Hn(K(π, n);Z), π) ∼= Hom(π, π),(7.3)
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where the first isomorphism is the adjoint of the Kronecker pairing (Exercise
11) and is an isomorphism by the universal coefficient theorem (Theorem
2.29). The second map is the Hurewicz isomorphism (Theorem 6.66).

Definition 7.21. The fundamental class of the K(π, n),

ι ∈ Hn(K(π, n);π),

is the class corresponding to the identity map Id : π → π under the isomor-
phisms of Equation (7.3).

The fundamental class can be used to define a function

Φ : [X, K(π, n)]→ Hn(X;π)(7.4)

by the formula
Φ([f ]) = f∗[ι]

for f : X → K(π, n).
The primary obstruction class can be used to define another function

Ψ : [X, K(π, n)]→ Hn(X;π)(7.5)

by setting Ψ[f ] to be the primary obstruction to homotoping f to the con-
stant map,

Ψ[f ] = dn(f, const).
Theorem 7.14 shows that Ψ[f ] depends only on the homotopy class of f ,
and hence is well-defined.

Theorem 7.22. The functions Φ and Ψ

[X, K(π, n)]→ Hn(X;π)

of Equations (7.4) and (7.5) coincide, are bijections, and are natural with
respect to maps X → X ′.

Proof. Step 1. Ψ is injective. Let f : X → K(π, n) be a continuous map.
Obstruction theory says that if dn(f, const) = 0, then f and the constant
map are homotopic over the n-skeleton. But all higher obstructions vanish
since they live in zero groups. Hence if Ψ[f ] = 0, f is nullhomotopic. In
other words Ψ−1[0] = [const].

If we knew that [X, K(π, n)] were a group and Ψ a homomorphism,
then we could conclude that Ψ is injective. (Of course, this follows from the
present theorem.)

Instead, we will outline the argument proving the “addition formula”

dn(f, g) = dn(f, const)− dn(g, const);

i.e. dn(f, g) = Ψ[f ] − Ψ[g] for any two functions f, g : X → K(π, n). This
implies that Ψ is injective.
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To see this, if F is a homotopy from f|Xn−1
to the constant map and G is

a homotopy from g|Xn−1
to the constant map then compose F and G to get

a homotopy from f|Xn−1
to g|Xn−1

. (Here G means the reverse homotopy,

i.e. G = G ◦ r where r(x, t) = (x, 1− t).)
Write F ∗ Ḡ for this homotopy from f|Xn−1

to g|Xn−1
. Then on an n-

cell e ⊂ X the obstruction dn(f, g)(e) ∈ πn(K(π, n)) is defined to be the
homotopy class of the map Sn → K(π, n) defined as follows. Decompose
Sn as a neighborhood of the poles together with a neighborhood of the
equator: Sn = Dn

0 ∪ (Sn−1 × I) ∪Dn
1 . Then define d = dn(f, g)(e) : Sn →

K(π, n) to be the homotopy class of the map which equals f on Dn
0 , F ∗ Ḡ

on Sn−1 × I, and g on Dn
1 . Since this map is constant on the equator

Sn−1 × 1
2 , the homotopy class of d is clearly the sum of two classes, the

first representing dn(f, const)(e) and the second representing dn(const, g)(e).
Therefore dn(f, g) = dn(f, const) − dn(g, const) and so Ψ[f ] = Ψ[g] if and
only if f is homotopic to g.

Step 2. Ψ is surjective. We do this by proving a variant of the realization
proposition (Proposition 7.10) for the difference cochain.

Given [α] ∈ Hn(X;π), choose a cocycle α representing [α]. Since the
quotient Xn/Xn−1 is the wedge of n-spheres, one for each n-cell of X, α
defines a function (up to homotopy)

g : Xn/Xn−1 → K(π, n)

by having the restriction of g to the i-th n-sphere to be a function repre-
senting α(en

i ) ∈ π = πn(K(π, n)).
The function g extends to Xn+1/Xn−1 → K(π, n) because α is a cocycle.

In fact, for each (n + 1)-cell en+1
i

0 = (δα)(en+1
i ) = α(∂en+1

i ),

which implies that the composite

Sn → ∂en+1
i → Xn → Xn/Xn−1

g−→ K(π, n)

of the attaching map of en+1
i and and g is nullhomotopic. Thus g extends

over the (n + 1)-skeleton.
Since Hn+i+1(X;πn+i(K(π, n))) = 0 for i ≥ 1, obstruction theory and

induction shows that there exists an extension of g : Xn/Xn−1 → K(π, n)
to g̃ : X/Xn−1 → K(π, n). Composing with the quotient map, one obtains
a map

f : X → K(π, n),
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constant on the (n−1)-skeleton, so that the characteristic map for an n-cell
en
i , induces

α(en) : Dn/∂Dn → X/Xn−1 → K(π, n).

But dn(f, const)[en] was defined to be the map on Sn which equals f on the
upper hemisphere and the constant map on the lower hemisphere. Therefore
dn(f, const) equals α(en), hence Ψ[f ] = [α] and so Ψ is onto.

Step 3. Ψ is natural. This follows from the algebraic definition of the
obstruction cocycle, but we leave the details as an exercise.

Exercise 119. Prove that Ψ is natural.

Step 4. Ψ = Φ. We first prove this for the identity map Id : K(π, n) →
K(π, n), and then use naturality. In other words, we need to show the
primary obstruction to finding a null homotopy of Id is the fundamental class
ι ∈ Hn(K(π, n);π)). Since K(π, n) is (n− 1)-connected, Id is homotopic to
a map, say Id′, which is constant on the (n − 1)-skeleton K(π, n)n−1. By
the universal coefficient and Hurewicz theorems,

Hn(K(π, n);π) ∼= Hom(ρ(πn(K(π, n))), π).

The definition of the fundamental class is equivalent to the formula

〈ι, ρ[g]〉 = [g] ∈ πn(K(π, n))

where 〈 , 〉 denotes the Kronecker pairing. Thus what we need to show is:

〈dn(Id′, const), ρ[g]〉 = [g].

This is an equation which can be lifted to the cochain level, i.e. we need to
show that if [g] ∈ πn(K(π, n)n, K(π, n)n−1), then

dn(Id′, const)(ρ[g]) = Id′∗[g]

In particular, we only need verify this equation for the characteristic maps
ϕi : (Dn, Sn−1) → (K(π, n)n, K(π, n)n−1) of the n-cells. But the element
dn(Id′, const)[ρ(ϕi)] ∈ πn(K(π, n)) is represented by the map Sn → K(π, n)
given by the characteristic map composed with Id′ on the upper hemisphere
and the constant map on the lower hemisphere, and this map is homotopic
the the characteristic map composed with the identity. Thus

dn(Id′, const)[ρ(ϕi)] = Id′∗[ϕi]

as desired. Hence Φ[Id] = Ψ[Id].
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Now suppose [f ] ∈ [X, K(π, n)]. Then naturality of Ψ and Φ means that
the diagram

[X, K(π, n)] [K(π, n), K(π, n)]

Hn(X;π) Hn(K(π, n);π)
❄

Ψ,Φ

✛f∗

❄

Ψ,Φ

✛
f∗

commutes when either both vertical arrows are labeled by Ψ or when both
are labeled by Φ. Then we have

Ψ[f ] = Ψf∗[Id]

= f∗Ψ[Id]

= f∗Φ[Id]

= Φf∗[Id]

= Φ[f ].

Corollary 7.23. For abelian groups π and π′ and n > 1, there is a 1-1
correspondence

[K(π, n), K(π′, n)]0 = [K(π, n), K(π′, n)]←→ Hom(π, π′)

taking a map K(π, n)→ K(π′, n) to the induced map on homotopy groups.

Proof.

[K(π, n), K(π′, n)] ∼= Hn(K(π, n);π′)
∼= Hom(Hn(K(π, n)), π′)
∼= Hom(π, π′).

This follows from Theorem 7.22, the universal coefficient theorem, and the
Hurewicz theorem. The composite is the map induced on the n-homotopy
group. That the based and unbased homotopy sets are the same follows
from Corollary 6.59 since K(π, n) is simply connected for n > 1.

Corollary 7.24. Let K(π, n) and K ′(π, n) be two Eilenberg-MacLane spaces
of type (π, n) for n > 1. The identity map determines a canonical homotopy
equivalence between them.

Proof. The homotopy equivalence is simply the map K(π, n) → K ′(π, n)
corresponding to the identity π → π.
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We shall see in the next section that Corollaries 7.23 and 7.24 continue
to hold when n = 1 and π is non-abelian provided one uses based homotopy
classes.

Computing the cohomology of Eilenberg-MacLane spaces is very impor-
tant, because of connections to cohomology operations.

Definition 7.25. For positive integers n and m and abelian groups π and
π′, a cohomology operation of type (n, π, m, π′) is a natural transformation
of functors θ : Hn(−;π)→ Hm(−;π′).

For example u �→ u∪u gives a cohomology operation of type (n,Z, 2n,Z).

Exercise 120. (Serre) Let O(n, π, m, π′) be the set of all cohomology oper-
ations of type (n, π, m, π′). Show that θ ↔ θ(ι) gives a 1-1 correspondence

O(n, π, m, π′)←→ Hm(K(π, n);π′) = [K(π, n), K(π′, m)].

We will return to this subject in Section 10.4.

7.8. Aspherical spaces

It follows from our work above that for π abelian, [X, K(π, 1)] = H1(X;π) =
Hom(H1X, π) = Hom(π1X, π).

For π non-abelian we have the following theorem.

Theorem 7.26. For a based CW-complex X, the map on fundamental groups
gives a bijection

[X, K(π, 1)]0 → Hom(π1X, π).

Sketch of Proof. We will assume that the zero-skeleton of X is a single
point. Then by the Van Kampen theorem, π1X is presented with generators
given by the characteristic maps of the 1-cells

ϕ1
i : D1/S0 → X,

and relations given by the attaching maps of the 2-cells.

ψ2
j : S1 → X

We will discuss why the above correspondence is onto. Let γ : π1X → π
be a group homomorphism. Construct a map g : X1 → K(π, 1) by defining
g on a 1-cell (a circle) e1

i to be a representative of γ[ϕ1
i ]. The attaching

maps ψ2
j are trivial in π1X, and hence g∗[ψ2

j ] = γ[ψ2
j ] = γ(e) = e. Thus

g extends over the 2-skeleton. The attaching maps of the 3-cells of X are
null-homotopic in K(π, 1), so the map extends over the 3-cells. Continuing
inductively, one obtains X → K(π, 1) realizing γ on the fundamental group.
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The proof that if g, h : X → K(π, 1) are two maps inducing the same
homomorphism (i.e. g∗ = h∗ : π1X → π) then g is based point preserving
homotopic to h (rel x0) is similar in nature and will be omitted.

Corollary 7.27. Let K(π, 1) and K ′(π, 1) be two Eilenberg-MacLane spaces
of type (π, 1). The identity map determines a canonical based homotopy
equivalence between them.

Proposition 7.28. Suppose that

1→ L
φ−→ π

γ−→ H → 1

is an exact sequence of (not necessarily abelian) groups. Then the homotopy
fiber of the map g : K(π, 1) → K(H, 1) inducing γ as in Theorem 7.26 is
K(L, 1) and that the inclusion of the fiber K(L, 1) → K(π, 1) induces the
homomorphism φ.

If L, π, and H are abelian, the same assertions hold with K(π, 1) re-
placed by K(π, n) for any positive integer n.

Thus short exact sequences of groups correspond exactly to fibrations of
Eilenberg–MacLane spaces; the sequence of groups

1→ L→ π → H → 1

is a short exact sequence of groups if and only if the corresponding sequence
of spaces and maps

K(L, 1) ↪→ K(π, 1)→ K(H, 1)

is a fibration sequence up to homotopy.
Similarly the sequence of abelian groups

0→ L→ π → H → 0

is exact if and only if for any n the corresponding sequence of spaces and
maps

K(L, n) ↪→ K(π, n)→ K(H, n)

is a fibration sequence up to homotopy.

Exercise 121. Prove Proposition 7.28.

Definition 7.29. A space is aspherical if its universal cover is contractible.

Corollary 7.34 below implies that a CW-complex is aspherical if and
only if it is a K(π, 1).

Using K(π, 1) spaces one can define functors from groups to abelian
groups by taking homology and cohomology. The group Hn(K(π, 1)) is
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called the nth homology of the group π and is often denoted by Hn(π). Simi-
larly the nth cohomology of the group π is defined by Hn(π) = Hn(K(π, 1)).
We will study these functors in greater detail in Chapter 9. Other purely
algebraic definitions of the (co)homology of groups can also be given.

Aspherical spaces are ubiquitous. Compact 2-manifolds other than the
sphere and projective space are K(π, 1)’s. Also, K(Z/2, 1) = RP∞. More
generally K(Z/n, 1) = L∞n , where L∞n is the infinite lens space given as
S∞/(Z/n) where S∞ ⊂ C∞ is the infinite dimensional sphere and the ac-
tion is given by multiplication by a primitive n-th root of unity in every
coordinate. Since πn(X × Y ) = πn(X) ⊕ πn(Y ), K(Zn, 1) = (S1)n, the
n-torus. The Cartan–Hadamard Theorem states that if M is a complete
Riemannian manifold with sectional curvature everywhere ≤ 0, then for
every point p ∈M , the exponential map

exp : TpM →M

is a covering map. In particular M is aspherical. Here is an application.

Exercise 122. If M is a complete Riemannian manifold with sectional cur-
vature everywhere ≤ 0, then π1M is torsion-free.

We also mention the still open

Borel conjecture. Compact aspherical manifolds with isomorphic funda-
mental groups are homeomorphic.

The K(π, 1)-spaces are important for at least three reasons.

1. If M is a Zπ-module, then H∗(K(π, 1);M) is an important algebraic
invariant of the group and the module.

2. K(π, 1) = Bπ, and hence [X, Bπ] = Hom(π1X, π)/(φ ∼ gφg−1) clas-
sifies regular covers with deck transformations π.

3. In the study of flat bundles, that is, bundles whose structure group
G reduces to a discrete group π, the classifying map X → BG factors
through some K(π, 1).

7.9. CW-approximations and Whitehead’s
theorem

Definition 7.30.

1. A weak homotopy equivalence is a map f : X → Y which induces
isomorphisms πi(X, x) → πi(Y, f(x)) for all i and for all base-points
x in X.
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2. A CW-approximation of a topological space Y is a weak homotopy
equivalence

X → Y

where X is a CW-complex.

Theorem 7.31. Any space Y has a CW-approximation.

Proof. We may reduce to the case where Y is path-connected, by approxi-
mating each path-component separately. We will inductively construct maps

gn : Xn → Y

which are n-connected, that is, give an surjection on πn and a bijection on
πi for i < n. Also the restriction of gn to the (n− 1)-skeleton will be gn−1.

Take X0 to be a point. Assume inductively the existence of an n-
connected map gn : Xn → Y , where Xn is an n-dimensional CW-complex.
Attach an (n + 1)-cell to Xn for every generator ker gn∗ : πnXn → πnY
to obtain a complex X ′n+1. Since the attaching maps are in the kernel,
gn extends to a map g′n+1 : X ′n+1 → Y . By cellular approximation and
by construction g′n+1∗ : πiX

′
n+1 → πiY is an isomorphism for i < n + 1.

(One could alternatively use the relative Hurewicz theorem). Finally, define
Xn+1 = X ′n+1 ∨ (

∨
Sn+1

i ) with an (n + 1)-sphere for each generator of the
cokernel of g′n+1∗ : πn+1X

′
n+1 → πn+1Y . Define the map gn+1 : Xn+1 → Y ,

by defining the map on Sn+1
i to be a representative of the corresponding

element of the cokernel.
This shows how to construct the skeleta of X = ∪Xn. Topologize X as

a CW-complex; see Definition 1.3.

By the relative Hurewicz Theorem, a CW-approximation induces an
isomorphism on homology.

Milnor defined a functorial CW-approximation using simplicial methods
([26]). This is done by defining a CW-complex X with an n-cell for each
non-degenerate singular n-simplex in Y , where a non-degenerate simplex
means that it does not factor through a face map. Milnor’s construction
gives a functor from topological spaces to CW-complexes; this functor takes
a CW-complex to another complex of the same homotopy type.

A very useful theorem is given by the following.

Theorem 7.32 (cofibrant theorem). A map f : Y → Z is a weak homotopy
equivalence if and only if for all CW-complexes X,

f∗ : [X, Y ]→ [X, Z] [g] �→ [f ◦ g]

is a bijection.
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Proof. (⇐=) When Y and Z are simple (e.g. simply-connected), then by
choosing X to be the n-sphere n = 0, 1, 2, . . . , one sees that f is a weak
homotopy equivalence. We omit the proof without the simplicity hypothesis
and refer the reader to Whitehead’s book [43].
(=⇒) Philosophically, f∗ is a bijection, since it is for spheres and disks,
and CW-complexes are built from spheres and disks. A easy proof along
these lines can be given using the Puppe sequence for finite–dimensional
CW-complexes, but for the general case we need a lemma similar to the
motivating exercise (Exercise 117).

Lemma 7.33. Let g : (X, A) → (Z, Y ) be a map of pairs where (X, A) is
a relative CW-complex and Y ↪→ Z is a weak homotopy equivalence. Then
g 1 h (rel A) where h(X) ⊂ Y .

Proof. We will construct a sequence of maps hn : X → Z so that hn(Xn) ⊂
Y with h−1 = g and hn−1 1 hn (rel Xn−1). (Slowly drag g into Y .) Then
for a point x in an open n-cell, we define h(x) = hn(x), and the homotopy
from g to h is defined by squeezing the homotopy hn−1 1 hn into the time
interval [1− (1/2n), 1− (1/2n+1)] ⊂ [0, 1].

Assume inductively that hn−1 : X → Z has been constructed. Let

ϕi : (Dn, Sn−1)→ (Xn, Xn−1)

be the characteristic map of an n-cell. Since πn(Z, Y ) = 0, the map

hn−1 ◦ ϕi : (Dn, Sn−1)→ (Z, Y )

is homotopic rel Sn−1 to a map hn,i whose image lies in Y . (See Exercise
123 below for this interpretation of the vanishing of the relative homotopy
group.) Then define hn : Xn → Y by

hn(ϕi(e)) = hn,i(e)

where e ∈ Dn. Using the above homotopy, one sees hn−1|Xn
1 hn : Xn →

Z. Apply the homotopy extension theorem to extend this to a homotopy
H : X × I → Z and define hn(x) as H(x, 1).

We now return to the proof of the cofibrant theorem. We have a weak
homotopy equivalence f : Y → Z, which we may as well assume is the
inclusion of a subspace by replacing Z by a mapping cylinder. We see

f∗ : [X, Y ]→ [X, Z]

is onto by applying the lemma to the pair (X, ∅). We see f∗ is injective by
applying the lemma to the pair (X × I, X × {0, 1}).
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Exercise 123. Let Y ⊂ Z be path-connected spaces. If πn(Z, Y, y0) = 0,
show that any map f : (Dn, Sn−1)→ (Z, Y ) is homotopic rel Sn−1 to a map
whose image lies in Y .

Corollary 7.34 (Whitehead theorem). A weak homotopy equivalence be-
tween CW-complexes is a homotopy equivalence.

Proof. Let f : Y → Z be a weak homotopy equivalence between CW-
complexes. By the surjectivity of f∗ : [Z, Y ] → [Z, Z], there is a g : Z → Y
so that [IdZ ] = f∗[g] = [f ◦ g]. Then

f∗[g ◦ f ] = [f ◦ g ◦ f ] = [IdZ ◦ f ] = [f ◦ IdY ] = f∗[IdY ].

By the injectivity of f∗, [g ◦ f ] = [IdY ], so f and g are homotopy inverses.

Corollary 7.35. Any n-connected CW-complex Y has the homotopy type
of a CW-complex X whose n-skeleton is a point.

Proof. Apply the proof of the CW-approximation to Y to find a weak
homotopy equivalence X → Y where Xn is a point. By Corollary 7.34 it is
a homotopy equivalence.

Theorem 7.36. Let f : X → Y be a continuous map. Suppose that CW-
approximations u : X ′ → X and v : Y ′ → Y are given. Then there exists a
map f ′ so that the diagram

X ′ X

Y ′ Y
❄

f ′

✲u

❄
f

✲
v

commutes up to homotopy. Furthermore the map f ′ is unique up to homo-
topy.

The theorem follows from the cofibrant theorem (v∗ is a bijection.) Ap-
plying it to the case where f = IdX we see that CW-approximations are
unique up to homotopy type. The theorem and the cofibrant theorem imply
that for the purposes of homotopy theory, one may as well assume all spaces
involved are CW-complexes. A relative version of the cofibrant theorem
gives the same result for based homotopy theory.
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7.10. Obstruction theory in fibrations

We next turn to the lifting and cross section problems.
Consider the lifting problem:

E

X B
❄
p

✲
f

�

�

�

�

�

�

�

�

✒g

where p : E → B is a fibration. Note that if f = IdB, then the lifting
problem is the same as constructing a cross section of p.

Suppose g has been defined over the n-skeleton of X. Given an (n + 1)-
cell en+1 of X, the composite of the attaching map and g gives a map
Sn → X

g−→ E. The composite Sn → X
g−→ E

p−→ B is null homotopic since
it equals Sn → X

f−→ B, which extends over the cell en+1 ↪→ X.
The homotopy lifting property of fibrations implies that the composite

Sn → X
g−→E

is homotopic to a map Sn → F , by lifting the null-homotopy in the base
(cf. Corollary 6.44).

Thus, to each (n+1)-cell of X we have defined, in a highly non-canonical
way, a map Sn → F . We would like to say that this defines a cochain on X
with values in πnF .

If we assume F is n-simple, so that πnF = [Sn, F ] (unbased maps) then
any map Sn → F defines an element in πnF .

However, if π1B �= 0, then some ambiguity remains, namely it was not
necessary that f preserved base points, and hence, even if F is n-simple, we
do not obtain a cochain in Cn(X;πnF ). However, one does get a cochain
with local coefficients. Thus obstruction theory for fibrations requires the
use of cohomology with local coefficients, as we will now see.

Recall from Proposition 6.62 that if F is n-simple, then the fibration
F ↪→ E → B defines a local coefficient system over B with fiber πnF . In fact
Proposition 6.62 shows how to associate to each α ∈ π1B a homotopy class
hα of self-homotopy equivalences of F . Then hα induces an automorphism
of [Sn, F ] by f �→ hα◦f . Since we are assuming F is n-simple, [Sn, F ] = πnF
and so this shows how the fibration determines a representation ρ : π1B →
Aut(πnF ).

Now pull back this local coefficient system over X via f : X → B to
obtain a local coefficient system over X. We continue to call it ρ, so

ρ : π1X
f∗−→ π1B

ρ−→Aut(πn(F )).
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With these hypotheses, one obtains an obstruction cocycle

θn+1(g) ∈ Cn+1(X;πn(F )ρ) = HomZ[π1X](Cn+1(X̃), πn(F )ρ).

One then can prove the following theorem.

Theorem 7.37. Let X be a CW-complex, p : E → B be a fibration with
fiber F . Let f : X → B be a map and g : Xn → E a lift of f on the
n-skeleton.

If F is n-simple, then an obstruction class

[θn+1(g)] ∈ Hn+1(X;πn(F )ρ)

is defined.
If [θn+1(g)] vanishes, then g can be redefined over the n-skeleton (rel the

(n− 1)-skeleton), then extended over the (n + 1)-skeleton Xn+1.

If the local coefficient system is trivial, for example if π1X = 0 or π1B =
0, then [θn+1(g)] ∈ Hn+1(X;πnF ) (untwisted coefficients). If π1F = 0, then
F is k-simple for all k, so that the hypotheses of Theorem 7.37 hold.

If πkF = 0 for k ≤ n− 1, then [θn+1(g)] ∈ Hn+1(X;πnFρ) is called the
primary obstruction to lifting f , and is well-defined, i.e.

1. a lift over the n-skeleton always exists, and
2. [θn+1(g)] is independent of the choice of lift to the n-skeleton.

Henceforth we write γn+1(f) for the primary obstruction to lifting f .
The proof of Theorem 7.37 is in many ways similar to the proofs given

earlier. In certain important cases one can reduce this theorem to a special
case of the extension problem by the following useful device.

Suppose there is a fibration E → B, so that the fiber can be “delooped”
in the following sense. Namely there exists a fibration q : B → Z with fiber
E′ so that the inclusion E′ ↪→ B is equivalent to the fibration E → B. Then
we have seen that F is homotopy equivalent to the loop space ΩZ, and the
sequence

[X, F ]→ [X, E]→ [X, B]
q∗−→ [X, Z]

is exact by Theorem 6.42.
This sequence shows that f : X → B can be lifted to g : X → E if and

only if q∗[f ] is nullhomotopic. Thus the problem of lifting f is equivalent to
the problem of nullhomotoping q ◦ f .

As was explained above, there are obstructions

dk(q ◦ f, ∗) ∈ Hk(X;πk(Z))

to nullhomotoping q ◦ f (provided Z is simple, etc.). But since

πk(Z) = πk−1(ΩZ) = πk−1F,
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we can view dk(q ◦ f, ∗) as an element of Hk(X;πk−1F ). Thus the obstruc-
tions to finding cross sections are in this special case obtainable from the
homotopy obstruction theorem.

This point of view works if E → B is, say, a principal G bundle, since
one can take Z to be the classifying space BG.

7.11. Characteristic classes

One application of obstruction theory is to define characteristic classes. For
example, suppose p : E → B is an oriented n-plane vector bundle, i.e. a bun-
dle with fiber Rn and structure group GL+

n (R), the group of automorphisms
of Rn with positive determinant. Then the Euler class e(p) ∈ Hn(B;Z) is
the primary obstruction to finding a section of the bundle

Rn − {0} ↪→ E0 → B

where E0 = E − i(B) is E minus the zero section.

Exercise 124. The primary obstruction to finding a cross section of E0 →
B lies in Hn(B;πn−1(Rn − {0})). Show that Rn − {0} is n-simple, that
πn−1(Rn − {0}) = Z, and that π1B acts trivially on πn−1(Rn − {0}), i.e.
the local coefficient system is trivial (this uses the fact that the bundle is
orientable).

In other words the Euler class is the primary obstruction to finding
a nowhere zero section of p. The Euler class is a characteristic class in
the sense that given a map of oriented n-plane vector bundles which is an
isomorphism on fibers

E′ E

B′ B

✲

❄
p′

❄
p

✲
f

then
f∗e(p) = e(p′)

If B is a CW-complex of dimension n, then the primary obstruction is the
only obstruction, so there is a nowhere zero section if and only if the Euler
class is zero. The Euler class is related to the Euler characteristic of a
manifold by the following theorem (see [30]).

Theorem 7.38. If p : TB → B is the tangent bundle of a closed, oriented
n-manifold, then

〈e(p), [B]〉 = χ(B).
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Corollary 7.39 (Poincaré–Hopf theorem). A closed, oriented n-manifold
has a nowhere-zero vector field if and only if its Euler characteristic is zero.

For example, you can’t comb the hairy ball!
The mod 2 reduction of the Euler class of an Rn-vector bundle E → B

is called the nth Stiefel–Whitney class wn(E) ∈ Hn(B;Z/2).
There are many other aspects of obstruction theory, for example the

analogue of the homotopy problem in this setting is the problem of finding
vertical homotopies between two cross sections. There are obstructions

dn(g, g1) ∈ Hn(X;πn(F )ρ).

Here are a few more examples to ponder.

Exercise 125. When we studied the extension problem, we did not come
across local coefficient systems. This is because we assumed that Y was
n-simple. Use Theorem 7.37 stated above together with the inverse of the
delooping method outlined above to find a statement of a theorem about
obstructions to extending maps into non-simple spaces.

Exercise 126. Write down a careful statement of a theorem about the ob-
struction to finding vertical homotopies between cross sections of a fibration.

7.12. Projects for Chapter 7

7.12.1. Postnikov systems. The decomposition of a CW-complex into
its skeleta has a “dual” construction leading to Postnikov decompositions of
a space. The word “dual” here is used in the same sense that cofibrations
and fibrations are dual. The building blocks for CW-complexes are cells
(Dn, Sn−1). These have homology Z in dimension n and zero in other dimen-
sions. The building blocks for Postnikov decompositions are the Eilenberg-
MacLane spaces K(π, n). For CW-complexes, the attaching maps describe
how the cells are put together. For Postnikov decompositions, spaces are
described as iterated fibrations with fibers Eilenberg-Maclane spaces and
the primary obstruction to finding cross sections determine how the space
is to assembled from its K(π, n)s.

For this project, show how to construct a Postnikov tower for a space
X.

Theorem 7.40. If X is a simple path connected space, there exists a “tower”

· · · → Xn
pn−→ Xn−1 → · · · → X1

p1−→ X0,
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as well as maps fn : X → Xn so that the diagrams

Xn

X

Xn−1

❄

pn

��✒
fn

❅❅❘fn−1

commute for each n.
For each n, the map pn : Xn → Xn−1 is a fibration with fiber the

Eilenberg-MacLane space K(πn(X), n). Moreover, πk(Xn) = 0 for k > n
and (fn)∗ : πk(X)→ πk(Xn) is an isomorphism for all k ≤ n.

To avoid complications you may assume that X is simply connected.
Each fibration in the tower pn : Xn → Xn−1 has fiber K(πn(X), n), and

so there is a single obstruction (i.e. the primary obstruction) to finding a
cross section which lies in

Hn+1(Xn−1;πn(K(πn(X), n))) = Hn+1(Xn−1;πnX).

This obstruction is called the (n+1)st k-invariant of X and is denoted by
kn+1. Using the identification Hn+1(Xn−1;πnX) = [Xn−1, K(πn, n + 1)],
kn+1 can be thought of a homotopy class of maps Xn−1 → K(πn, n + 1) so
that the fibration K(πn, n) ↪→ Xn → Xn−1 is the pullback of the path space
fibration K(πn, n) ↪→ P → K(πn, n + 1) via kn+1.

Thus to a (simple) path connected space X this construction associates
a collection {πn, Xn, pn, kn} where

1. πn is an abelian group.

2. X0 is contractible.

3. pn : Xn → Xn−1 is a fibration with fiber K(πn, n).

4. kn ∈ Hn(Xn−1;πn−1) classifies pn−1.

5. The inclusion of the fiber induces an isomorphism πn(K(πn, n)) →
πn(Xn).

This collection has the property that πn = πn(X).
This collection of data is called the Postnikov system or Postnikov de-

composition for X.
Prove the main result about Postnikov systems.

Theorem 7.41. The weak homotopy type of X is determined by its Post-
nikov system. More precisely, given the data {πn, Xn, pn, kn} satisfying con-
ditions 1–5 above there exists a space X with this space as its Postnikov
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decomposition. If Y is any space with this Postnikov system then X and Y
are weakly homotopy equivalent.

A good reference for this material is [43, pg. 421–437] and [14, pg.
78-82].

If time permits, lecture on the dual exposition of obstruction theory from
the point of view of Postnikov decompositions. Spanier’s book [36] is one
place to find this material.



Chapter 8

Bordism, Spectra, and
Generalized Homology

This chapter contains a mixture of algebraic and differential topology and
serves as an introduction to generalized homology theories. We will give a
precise definition of a generalized homology theory later, but in the mean-
time you should think of a generalized homology theory as a functor from
pairs of spaces to graded abelian groups (or graded R-modules) satisfying
all Eilenberg–Steenrod axioms but the dimension axiom.

The material in this chapter will draw on the basic notions and theo-
rems of differential topology, and you should re-familiarize yourself with the
notion of smooth maps between smooth manifolds, submanifolds, tangent
bundles, orientation of a vector bundle, the normal bundle of a submanifold,
the Sard theorem, transversality and the tubular neighborhood theorem.
One of the projects for this chapter is to prepare a lecture on these topics.
A good reference for this material is Hirsch’s book [16]; more elementary
references include [27] and [15].

In this chapter (in contrast to the rest of this book), the word “mani-
fold” will mean a compact, smooth manifold with or without boundary and
a submanifold V ⊂M will mean a compact submanifold whose boundary is
contained in the boundary of M in such a way that V meets the boundary
of M transversely. The normal bundle of a submanifold i : V ↪→ M is the
quotient bundle i∗(TM)/TV , and we will use the notation ν(V ↪→ M) or
ν(i). If M is a submanifold of Rn, or more generally if M has a Riemann-
ian metric, then the normal bundle ν(V ↪→ M) can be identified with the
subbundle of TM |V consisting of all tangent vectors in TpM which are per-
pendicular to TpV , where p ∈ V . A tubular neighborhood of a submanifold
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i : V ↪→ M is a embedding f : ν(i) → M which restricts to the identity on
(the zero section) V . Informally, we say that the open set U = f(ν(i)) ⊂M
is a tubular neighborhood of V .

8.1. Framed bordism and homotopy groups of
spheres

Pontrjagin and Thom in the 1950’s noted that in many situations there is
a one-to-one correspondence between problems in geometric topology (=
manifold theory) and problems in algebraic topology. Usually the algebraic
problem is more tractable, and its solution leads to geometric consequences.
In this section we discuss the quintessential example of this correspondence;
a reference is the last section of Milnor’s beautiful little book [27].

We start with an informal discussion of the passage from geometric topol-
ogy to algebraic topology.

Definition 8.1. A framing of a submanifold V k−n of a closed manifold
Mk is a embedding φ of V × Rn in M so that φ(p, 0) = p for all p ∈ V .
If (W k+1−n, ψ) is a framed submanifold of M × I, then the two framed
submanifolds of M given by intersecting W with M × {0} and M × {1}
are framed bordant. Let Ωfr

k−n,M be the set of framed bordism classes of
(k − n)-dimensional framed submanifolds of M .

A framed submanifold defines a collapse map M → Sn = Rn ∪ {∞}
by sending φ(p, v) to v and all points outside the image of φ to ∞. Note
that 0 ∈ Sn is a regular value and the inverse image of 0 is V . A framed
bordism gives a homotopy of the two collapse maps. A framed bordism from
a framed submanifold to the empty set is a null-bordism. In the special case
of a framed submanifold V k−n of Sk, a null-bordism is given by an extension
to a framed submanifold W k+1−n of Dk+1.

Theorem 8.2. The collapse map induces a bijection Ωfr
k−n,M → [M, Sn].

This method of translating between bordism and homotopy sets is called
the Pontrjagin–Thom construction.

Here are some examples (without proof) to help your geometric insight.
A (framed) point in a Sk gives a map Sk → Sk which generates πkS

k ∼= Z.
Any framed circle in S2 is null-bordant, for example the equator with the
obvious framing is the boundary of the 2-disk in the 3-ball. However, a
framed S1 in S3 so that the circle φ(S1 ×{(1, 0)}) links the S1 with linking
number 1 represents the generator of π3(S2) ∼= Z. (Can you reinterpret
this in terms of the Hopf map? Why can’t one see the complexities of knot
theory in framed bordism?) Now S3 is naturally framed in S4, S4 in S5, etc.
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so we can suspend the linking number 1 framing of S1 in S3 to get a framing
of S1 in Sk+1 for k > 2. This represents the generator of πk+1S

k ∼= Z2.
More generally, one can produce examples of framed manifolds by twist-

ing and suspending. If (V k−n, φ) is a framed submanifold of Mk and α : V →
O(n), then the twist is the framed submanifold (V, φ.α) where φ.α(p, v) =
φ(p, α(p)v). The framed bordism class depends only on (V, φ) and the ho-
motopy class of α. (See Exercise 132 below for more on this construction.)
Next if (V k−n, φ) is a framed submanifold of Sk, then the suspension of
(V k−n, φ) is the framed submanifold (V k−n, Sφ) of Sk+1 is defined using
the obvious framing of Sk in Sk+1, with Sk × R>0 mapping to the upper
hemisphere of Sk+1. Then the generator of π3(S2) mentioned earlier can be
described by first suspending the inclusion of a framed circle in the 2-sphere,
and then twisting by the inclusion of the circle in O(2).

To prove Theorem 8.2 we first want to reinterpret Ωfr
k−n,M in terms of

normal framings. The key observation is that a framed submanifold deter-
mines n linearly independent normal vector fields on M .

Definition 8.3.

1. A trivialization of a vector bundle p : E → B with fiber Rn is a
collection {σi : B → E}ni=1 of sections which form a basis pointwise.
Thus {σ1(b), . . . , σn(b)} is linearly independent and spans the fiber
Eb for each b ∈ B.

Equivalently, a trivialization is a specific bundle isomorphism E ∼=
B×Rn. A trivialization is also the same as a choice of section of the
associated principal frame bundle.

2. A framing of a vector bundle is a homotopy class of trivializations,
where two trivializations are called homotopic if there is a continuous
1-parameter family of trivializations joining them. In terms of the
associated frame bundle this says the two sections are homotopic in
the space of sections of the frame bundle.

A section of a normal bundle is called a normal vector field.

Definition 8.4. A normal framing of a submanifold V of M is a homotopy
class of trivializations of the normal bundle ν(V ↪→M). If W is a normally
framed submanifold of M×I, then the two normally framed submanifolds of
M given by intersecting W with M ×{0} and M ×{1} are normally framed
bordant. (You should convince yourself that restriction of ν(W ↪→ M × I)
to V0 = (M × {0}) ∩W is canonically identified with ν(V0 ↪→M)).

Exercise 127. Show that a framed submanifold (V, φ) of M determines a
normal framing of V in M . Use notation from differential geometry and
denote the standard coordinate vector fields on Rn by {∂/∂x1, . . . , ∂/∂xn}.
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Exercise 128. Define a map from the set of bordism classes of (k − n)-
dimensional framed submanifolds of M to the set of bordism classes of
(k − n)-dimensional normally framed submanifolds of M and show it is
a bijection. (The existence part of the tubular neighborhood theorem will
show the map is surjective, while the uniqueness part will show the map is
injective.)

Henceforth we let Ωfr
k−n,M denote both the bordism classes of framed

submanifolds and the bordism classes of normally framed submanifolds of
M .

Proof of Theorem 8.2. To define an inverse

d : [M, Sn]→ Ωfr
k−n,M

to the collapse map

c : Ωfr
k−n,M → [M, Sn]

one must use differential topology; in fact, this was the original motivation
for the development of transversality.

Any element of [M, Sn] can be represented by a map f : M → Sn =
Rn ∪ {∞}, which is smooth in a neighborhood of f−1(0) and transverse to
0 (i.e. 0 is a regular value). Thus:

1. The inverse image f−1(0) = V is a smooth submanifold of Mk of
codimension n (i.e. of dimension k − n), and

2. The differential of f identifies the normal bundle of V in Mk with
the pullback of the normal bundle of 0 ∈ Sn via f . More precisely,
the differential of f , df : TMk → TSn restricts to TMk|V and factors
through the quotient ν(V ↪→Mk) to give a map of vector bundles

ν(V ↪→Mk) ν(0 ↪→ Sn)

V 0
❄

✲df

❄
✲

which is an isomorphism in each fiber.
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f
V 0

Mk Sn

Since the normal bundle of 0 in Rn ∪ {∞} is naturally framed by the
standard basis, the second assertion above implies that the normal bundle
of V in Mk is also framed, i.e. there is a bundle isomorphism

ν(V ↪→Mk) V ×Rn

V

✲∼=

◗
◗

◗◗�

✑
✑

✑✑✰

The map d is defined by sending [f ] to f−1(0) with the above framing.
To see that d is well-defined, consider a homotopy

F : M × I → Sn.

where F |M×{0,1} is transverse to 0 ∈ Sn. Consider the “trace of F”

F̂ : M × I → Sn × I

(m, t) �→ (F (m, t), t),

which has the advantage that it takes boundary points to boundary points.
The (relative) transversality approximation theorem says that F̂ is homo-
topic (rel M × {0, 1}) to a map transverse to 0 × I. The inverse image of
0×I equipped with an appropriate normal framing gives a normally framed
bordism between F |−1

M×{0}(0) and F |−1
M×{1}(0).

Our final task is to show that c and d are mutual inverses. It is easy
to see that d ◦ c is the identity, but to show c ◦ d is the identity takes some
work. First represent an element of [M, Sn] by a a map f transverse to
0 ∈ Rn ∪ {∞} = Sn. It seems plausible that the collapse map associated to
V = f−1(0) with the normal framing induced by df is homotopic to f , but
there are technical details.

Here goes. Let ν = ν(V ↪→ M), let g : ν → M be a tubular neighbor-
hood of V , assume ν has a metric, and let D = g(D(ν)) correspond to the
disk bundle. Define Φ : ν → Rn by Φ(x) = limt→0 t−1f(g(tx)). Then Φ(x)
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is the velocity vector of a curve, and by the chain rule Φ is the composite of
the identification of ν with ν(V ↪→ ν) and df ◦ dg. In particular Φ gives an
isomorphism from each fiber of ν to Rn.

There is a homotopy ft : D → Rn ∪ {∞} for −1 ≤ t ≤ 1 given by

ft(g(x)) =

{
1

1+t‖x‖Φ(x) if − 1 ≤ t ≤ 0,

t−1f(g(tx)) if 0 < t ≤ 1.

We now have a map

∂D × [−1, 1] ∪ (M − Int D)× {1} ∪ (M − Int D)× {−1} → Sn − {0}
defined by ft on the first piece, by f on the second piece, and by the constant
map at infinity on the third piece. This extends to a map (M − Int D) ×
[−1, 1]→ Sn − {0} by the Tietze extension theorem.

We can then paste back in ft to get a homotopy

F : M × [−1, 1]→ Sn

from our original f to a map h so that

h−1Rn = Int D ∼= V ×Rn

where the diffeomorphism ∼= is defined by mapping to V by using the
original tubular neighborhood and by mapping to Rn by h. Thus f 1 h
where h is in the image of c. It follows that c is surjective and thus that c
and d are mutual inverses.

In reading the above proof you need either a fair amount of technical
skill to fill in the details or you need to be credulous. For an alternate
approach see [27, Chapter 7].

For a real vector bundle over a point, i.e. a vector space, a framing is the
same as a choice of orientation of the vector space, since GL(n,R) has two
path components. Thus a normal framing of V ⊂ Sk induces an orientation
on the normal bundle ν(V ↪→ Sk). (See Section 10.7 for more information
about orientation.)

Exercise 129. Let V be a normally framed submanifold of a manifold M .
Show that an orientation on M induces an orientation on V . (Hint: consider
the isomorphism TV ⊕ ν = TM |V .)

Theorem 8.5 (Hopf degree theorem). Let Mk be a connected, closed,
smooth manifold.

1. If Mk is orientable, then two maps Mk → Sk are homotopic if and
only if they have the same degree.

2. If Mk is nonorientable, then two maps Mk → Sk are homotopic if
and only if they have the same degree mod 2.
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Exercise 130. Prove the Hopf degree theorem in two ways: obstruction
theory and framed bordism.

The function πkS
n → [Sk, Sn] obtained by forgetting base points is a

bijection. For n > 1 this follows from the fact that Sn is simply connected
and so vacuously the fundamental group acts trivially. For n = 1 this is still
true because πkS

1 is trivial for k > 1 and abelian for k = 1.
The result that πnSn ∼= Z is a nontrivial result in algebraic topology; it

is cool that this can be proven using differential topology.

Exercise 131. We only showed that the isomorphism of Theorem 8.2 is
a bijection of sets. However, since πkS

n is an abelian group, the framed
bordism classes inherit an abelian group structure. Prove that this group
structure on framed bordism is given by taking the disjoint union:

[V0] + [V1] := V0 � V1 ⊂ Sk#Sk ∼= Sk

with negatives given by changing the orientation of the framing (e.g. replac-
ing te first vector field in the framing by its negative)

−[V0] = [−V0].

We will generalize Theorem 8.2 by considering the effect of the sus-
pension map S : πkS

n → πk+1S
n+1 and eventually passing to the limit

lim
�→∞

πk+�S
n+�. This has the effect of eliminating the thorny embedding

questions of submanifolds in Sk; in the end we will be able to work with
abstract framed manifolds V without reference to an embedding of V in
some sphere.

Exercise 132. (The J-homomorphism) Let V k−n ⊂ Mk be a non-empty
normally framed manifold. Use twisting to define a function

J : [V k−n, O(n)]→ [Mk, Sn].

Now let V be the equatorial Sk−n ⊂ Sk with the canonical framing coming
from the inclusions Sk−n ⊂ Sk−n+1 ⊂ · · · ⊂ Sk, and show that the function

J : πk−n(O(n))→ πkS
n

is a homomorphism provided k > n. It is called the J-homomorphism and
can be used to construct interesting elements in πkS

n.
Draw an explicit picture of a framed circle in R3 = S3−{∞} representing

J(ι) where ι ∈ π1O(2) = Z is the generator.
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8.2. Suspension and the Freudenthal theorem

Recall that the (reduced) suspension of a space X ∈ K∗ with nondegenerate
basepoint is the space

SX = X × I/ ∼
where the subspace (x0 × I) ∪ (X × {0, 1}) is collapsed to a point. This
construction is functorial with respect to based maps f : X → Y . In
particular, the suspension defines a function

S : [X, Y ]0 → [SX, SY ]0.

By Proposition 6.35, SSk = Sk+1, so that when X = Sk, the suspension
defines a function, in fact a homomorphism

S : πk(Y )→ πk+1(SY )

for any space Y . Taking Y to be a sphere one obtains

S : πk(Sn)→ πk+1(Sn+1).

We next identify Sk ⊂ Sk+1 = SSk as the equator, and similarly Sn ⊂ Sn+1,
and interpret the above map in terms of framed bordism.

If f : Sk → Sn is smooth, then the suspension

Sf : Sk+1 → Sn+1

is smooth away from the base points. If x ∈ Sn is a regular value different
from the base point, and V = f−1(x) is the normally framed submanifold
of Sk associated to f , then clearly

V = (Sf)−1(x) ⊂ Sk ⊂ Sk+1.

Let us compare normal bundles and normal framings.

ν(V ↪→ Sk+1) = ν(V ↪→ Sk)⊕ ν(Sk ↪→ Sk+1)|V
= ν(V ↪→ Sk)⊕ εV

where εV = V ×R = trivial line bundle.
Similarly, ν(x ↪→ Sn+1) = ν(x ↪→ Sn)⊕ ε{x}, and the differential of Sf

preserves the trivial factor, since, locally (near the equator Sk ⊂ Sk+1),

Sf ∼= f × Id : Sk × (−ε, ε)→ Sn × (−ε, ε).

We have shown the following.

Theorem 8.6. Taking the suspension of a map corresponds, via the
Pontrjagin-Thom construction, to the same manifold V , but embedded in
the equator Sk ⊂ Sk+1, and with normal framing the direct sum of the old
normal framing and the trivial 1-dimensional framing.
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Now consider the effect of multiple suspensions.

S� : πkS
n → πk+�S

n+�

For each suspension, the effect on the normally framed submanifold V is
to replace it by the same manifold embedded in the equator, with the new
normal framing νnew = νold ⊕ εV . Thus after F suspensions,

νnew = νold ⊕ ε�
V .

The following fundamental result is the starting point for the investiga-
tion of “stable” phenomena in homotopy theory. We will not give a proof
at this time, since a spectral sequence proof is the easiest way to go. The
proof is given in Section 10.3.

Theorem 8.7 (Freudenthal suspension theorem). Suppose that X is an
(n− 1)–connected space (n ≥ 2). Then the suspension homomorphism

S : πkX → πk+1SX

is an isomorphism if k < 2n− 1 and an epimorphism if k = 2n− 1.

The most important case is when X = Sn, and here the Freudenthal
suspension theorem can also be given a differential topology proof using
framed bordism and the facts that any j-manifold embeds in Sn for n ≥
2j + 1, uniquely up to isotopy if n ≥ 2j + 2, and that any embedding of a
j-manifold in Sn+1 is isotopic to an embedding in Sn if n ≥ 2j + 1.

Exercise 133. Show that for any k-dimensional CW-complex X and for
any (n− 1)-connected space Y (n ≥ 2) the suspension map

[X, Y ]0 → [SX, SY ]0

is bijective if k < 2n−1 and surjective if k = 2n−1. (Hint: Instead consider
the map [X, Y ]0 → [X, ΩSY ]0. Convert the map Y → ΩSY to a fibration
and apply cross-section obstruction theory as well as the Freudenthal sus-
pension theorem.)

For a based space X, πnX = [X, Sn]0 is called the n-th cohomotopy set.
If X is a CW-complex with dim X < 2n − 1, then Exercise 133 implies
that πnX is a group, with group structure given by suspending and using
the suspension coordinate in SX. The reader might ponder the geometric
meaning (framed bordism) of the cohomotopy group structure when X is a
manifold.

Definition 8.8. The k-th stable homotopy group of a based space X is the
limit

πS
k X = lim

�→∞
πk+�S

�X.
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The stable k-stem is
πS

k = πS
k S0.

The computation of the stable k-stem for all k is the holy grail of the
field of homotopy theory.

The Hurewicz theorem implies that if X is (n− 1)-connected, then SX

is n-connected, since H̃�SX = H̃�−1X = 0 if F ≤ n and π1SX = 0 if X
is path connected. The following corollary follows from this fact and the
Freudenthal theorem.

Corollary 8.9. If X is path connected,

πS
k X = π2k(SkX) = πk+�(S�X) for F ≥ k.

For the stable k-stem,

πS
k = π2k+2(Sk+2) = πk+�(S�) for F ≥ k + 2.

Recall from Equation (6.3) that πk(O(n − 1)) → πk(O(n)), induced by
the inclusion O(n − 1) ↪→ O(n), is an isomorphism for k < n − 2, and
therefore letting O = limn→∞O(n), πkO = πk(O(n)) for k < n − 2. It
follows from the definitions that the following diagram commutes

πk(O(n− 1)) πk+n−1(Sn−1)

πk(O(n)) πk+n(Sn)

✲J

❄
i∗

❄
s

✲J

with the horizontal maps the J-homomorphisms, the left vertical map in-
duced by the inclusion, and the right vertical map the suspension homomor-
phism. If k < n− 2, then both vertical maps are isomorphisms, and so one
obtains the stable J-homomorphism

J : πk(O)→ πS
k .

Corollary 8.10. The Pontrjagin-Thom construction defines an isomorphism
from πS

k to the normally framed bordism classes of normally framed k-
dimensional closed submanifolds of Sn for any n ≥ 2k + 2.

8.3. Stable tangential framings

We wish to remove the restriction that our normally framed manifolds be
submanifolds of Sn. To this end we need to eliminate the reference to the
normal bundle. This turns out to be easy and corresponds to the fact that
the normal and tangent bundles of a submanifold of Sn are inverses in a
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certain stable sense. Since the tangent bundle is an intrinsic invariant of
a smooth manifold, and so is defined independently of any embedding in
Sk, this will enable us to replace normal framings with tangential framings.
On the homotopy level, however, we will need to take suspensions when
describing in what way the bundles are inverses. In the end this means that
we will obtain an isomorphism between stably tangentially framed bordism
classes and stable homotopy groups.

In what follows, εj will denote a trivialized j-dimensional real bundle
over a space.

Lemma 8.11. Let V k ⊂ Sn be a closed, oriented, normally framed sub-
manifold of Sn. Then

1. A normal framing γ : ν(V ↪→ Sn) ∼= εn−k induces a trivialization

γ : TV ⊕ εn−k+1 ∼= εn+1.

2. A trivialization γ : TV ⊕ ε ∼= εk+1 induces a trivialization

ν(V ↪→ Sn)⊕ εk+1 ∼= εn+1.

Proof. The inclusion Sn ⊂ Rn+1 has a trivial 1-dimensional normal bundle
which can be framed by choosing the outward unit normal as a basis. This
shows that the once stabilized tangent bundle of Sn is canonically trivialized

TSn ⊕ ε ∼= εn+1

since the tangent bundle of Rn+1 is canonically trivialized.
There is a canonical decomposition

(TSn ⊕ ε)|V = ν(V ↪→ Sn)⊕ TV ⊕ ε.

Using the trivialization of TSn ⊕ ε, one has a canonical isomorphism

εn+1 ∼= ν(V ↪→ Sn)⊕ TV ⊕ ε.

Thus a normal framing γ : ν(V ↪→ Sk) ∼= εn−k induces an isomorphism

εn+1 ∼= εn−k ⊕ TV ⊕ ε,

and, conversely a trivialization γ : TV ⊕ ε ∼= εk+1 induces an isomorphism

εn+1 ∼= ν(V ↪→ Sn)⊕ εk+1.

Definition 8.12. A stable (tangential) framing of an k-dimensional mani-
fold V is an equivalence class of trivializations of

TV ⊕ εn

where εn is the trivial bundle V ×Rn. Two trivializations

t1 : TV ⊕ εn1 ∼= εk+n1 , t2 : TV ⊕ εn2 ∼= εk+n2
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are considered equivalent if there exists some N greater than n1 and n2 such
that the direct sum trivializations

t1 ⊕ Id : TV ⊕ εn1 ⊕ εN−n1 ∼= εk+n1 ⊕ εN−n1 = εk+N

and

t2 ⊕ Id : TV ⊕ εn2 ⊕ εN−n2 ∼= εk+n2 ⊕ εN−n2 = εk+N

are homotopic.
Similarly, a stable normal framing of a submanifold V of S� is an equiv-

alence class of trivializations of ν(V ↪→ S�) ⊕ εn and a stable framing of a
bundle η is an equivalence class of trivializations of η ⊕ εn.

A tangential framing is easier to work with than a normal framing, since
one does not need to refer to an embedding V ⊂ Sn to define a tangential
framing. However, stable normal framings and stable tangential framings
are equivalent; essentially because the tangent bundle of Sn is canonically
stably framed. Lemma 8.11 generalizes to give the following theorem.

Theorem 8.13. There is a 1-1 correspondence between stable tangential
framings and stable normal framings of a manifold V . More precisely:

1. Let i : V ↪→ Sn be an embedding. A stable framing of TV determines
stable framing of ν(i) and conversely.

2. Let i1 : V ↪→ Sn1 and i2 : V ↪→ Sn2 be embeddings. For n large
enough there exists a canonical (up to homotopy) identification

ν(i1)⊕ εn−n1 ∼= ν(i2)⊕ εn−n2 .

A stable framing of ν(i1) determines one of ν(i2) and vice versa.

Proof. 1. The proof of Lemma 8.11 gives a canonical identification

ν(V ↪→ Sn)⊕ ε� ⊕ TV ∼= εn+�

for all F > 0. Associativity of ⊕ shows stable framings of the normal bundle
and tangent bundles coincide.

2. Let i1 : V ↪→ Sn1 and i2 : V ↪→ Sn2 be embeddings. There is a
formal proof that stable framings of ν(i1) and ν(i2) coincide. Namely, a
stable framing of ν(i1) determines a stable framing of TV by part 1, which
in turn determines a stable framing of ν(i2). However, the full statement of
part 2 applies to submanifolds with non-trivial normal bundle, and theorems
from differential topology must be used.

Choose n large enough so that any two embeddings of V in Sn are
isotopic. (Transversality theorems imply that n > 2k + 1 suffices.)
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The composite V
i1−→ Sn1

j1−→ Sn, with Sn1
j1−→ Sn the equatorial embed-

ding, has normal bundle

ν(j1 ◦ i1) = ν(i1)⊕ εn−n1 .

Similarly, the composite V
i2−→ Sn2

j2−→ Sn has normal bundle

ν(j2 ◦ i2) = ν(i2)⊕ εn−n2 .

Then j2 ◦ i2 is isotopic to j1 ◦ i1, and the isotopy induces an isomorphism
ν(j2 ◦ i2) ∼= ν(j1 ◦ i1).

If n > 2(k + 1) + 1, then any self-isotopy is isotopic to the constant
isotopy, so that the identification ν(j2 ◦ i2) ∼= ν(j1 ◦ i1) is canonical (up to
homotopy).

Definition 8.14. Two real vector bundles E, F over V are called stably
equivalent if there exists non-negative integers i, j so that E⊕ εi and F ⊕ εj

are isomorphic.

Since every smooth compact manifold embeds in Sn for some n, the
second part of Theorem 8.13 has the consequence that the stable normal
bundle (i.e. the stable equivalence class of the normal bundle for some
embedding) is a well defined invariant of a smooth manifold, independent of
the embedding, just as the tangent bundle is. However, something stronger
holds. If ν(i1) and ν(i2) are normal bundles of two different embeddings of
a manifold in a sphere, then not only are ν(i1) and ν(i2) stably equivalent,
but the stable isomorphism is determined up to homotopy.

Returning to bordism, we see that the inclusion Sn ⊂ Sn+1 sets up a
correspondence between the suspension operation and stabilizing a normal
(or equivalently tangential) framing. Consequently Corollary 8.10 can be
restated as follows.

Corollary 8.15. The stable k-stem πS
k is isomorphic to the stably tan-

gentially framed bordism classes of stably tangentially framed k-dimensional
smooth, oriented compact manifolds without boundary.

This statement is more appealing since it refers to k-dimensional mani-
folds intrinsically, without reference to an embedding in some Sn.

Here is a list of some computations of stable homotopy groups of spheres
for you to reflect on. (Note: πS

k has been computed for k ≤ 64. There is no
reasonable conjecture for πS

k for general k, although there are many results
known. For example, in Chapter 10, we will show that the groups are finite
for k > 0; πS

0 = Z by the Hopf degree theorem.)
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k 1 2 3 4 5 6

πS
k Z/2 Z/2 Z/24 0 0 Z/2

k 7 8 9 10 11 12

πS
k Z/240 (Z/2)2 (Z/2)3 Z/6 Z/504 0

k 13 14 15 16 17 18

πS
k Z/3 (Z/2)2 Z/480⊕ Z/2 (Z/2)2 (Z/2)4 Z/8⊕ Z/2

k 19 20 21 22 23 24

πS
k Z/264⊕ Z/2 Z/24 (Z/2)2 (Z/2)2 † (Z/2)2

† πS
23 is Z/16⊕ Z/8⊕ Z/2⊕ Z/9⊕ Z/3⊕ Z/5⊕ Z/7⊕ Z/13.

The reference [32] is a good source for the tools to compute πS
k .

We will give stably framed manifolds representing generators of πS
k for

k < 9; you may challenge your local homotopy theorist to supply the proofs.
In this range there are (basically) two sources of framed manifolds: normal
framings on spheres coming from the image of the stable J-homomorphism
J : πk(O) → πS

k , and tangential framing coming from Lie groups. There is
considerable overlap between these sources.

Bott periodicity (Theorem 6.49) computes πk(O).

k 0 1 2 3 4 5 6 7 8

πkO Z/2 Z/2 0 Z 0 0 0 Z Z/2

Then J : πkO → πS
k is an isomorphism for k = 1, an epimorphism for

k = 3, 7, and a monomorphism for k = 8.
Another source for framed manifolds are Lie groups. If G is a compact

k-dimensional Lie group and TeG ∼= Rk is an identification of its tangent
space at the identity, then one can use the group multiplication to identify
TG ∼= G×Rk and thereby frame the tangent bundle. This is the so-called Lie
invariant framing. The generators of the cyclic groups πS

0 , πS
1 , πS

2 , πS
3 , πS

6 , πS
7

are given by e, S1, S1 × S1, S3, S3 × S3, S7 with invariant framings. (The
unit octonions S7 fail to be a group because of the lack of associativity, but
nonetheless, they do have an invariant framing.)

Finally, the generators of πS
8 are given by S8 with framing given by the

J-homomorphism and the unique exotic sphere in dimension 8. (An exotic
sphere is a smooth manifold homeomorphic to a sphere and not diffeomor-
phic to a sphere.)
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We have given a bordism description of the groups πS
k . If X is any

space, πS
k X can be given a bordism description also. In this case one adds

the structure of a map from the manifold to X. (A map from a manifold to
a space X is sometimes called a singular manifold in X.)

Definition 8.16. Let (Vi, γi : TVi ⊕ εa ∼= εk+a), i = 0, 1 be two stably
framed k-manifolds and gi : Vi → X, i = 0, 1 two maps.

We say (V0, γ0, g0) is stably framed bordant to (V1, γ1, g1) over X if there
exists a stably framed bordism (W, τ) from (V0, γ0) to (V1, γ1) and a map

G : W → X

extending g0 and g1.

We introduce the notation:

1. Let X+ denote X � pt, the union of X with a disjoint base point.
2. Let Ωfr

k (X) denote the stably framed bordism classes of stably framed
k-manifolds over X.

Since every space maps uniquely to point, and since S0 = pt+, we can
restate Corollary 8.15 in this notation as

Ωfr
k (pt) = πS

k (pt+)

since πS
k = πS

k (S0) = πS
k (pt+).

More generally one can easily prove the following theorem.

Theorem 8.17. Ωfr
k (X) = πS

k (X+).

The proof of this theorem is essentially the same as for X = pt; one just
has to carry the map V → X along for the ride. We give an outline of the
argument and indicate a map πS

k (X+)→ Ωfr
k (X).

Sketch of proof. Choose F large so that πS
k (X+) = πk+�(X+ ∧ S�).

The smash product X+ ∧ S� = X+ × S�/X+ ∨ S� = X × S�/X × pt is
called the half smash of X and S� and is depicted in the following picture.

S�

pt
+ X

X+ × S� X+ ∧ S�
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Given f : Sk+� → X+ ∧S�, make f transverse to X ×{x}, where x ∈ S�

is a point different from the base point. (You should think carefully about
what transversality means since X is just a topological space. The point
is that smoothness is only needed in the normal directions, since one can
project to the sphere.)

Then f−1(X × {x}) = V is a smooth, compact manifold, and since a
neighborhood of X×{x} in X+∧S� is homeomorphic to X×R� as indicated
in the following figure,

X × {x} ⊂ X+ ∧ S�

the submanifold V has a framed normal bundle, and f|V : V → X×{x} = X.
This procedure shows how to associate a stably framed manifold with a map
to X to a (stable) map f : Sk+� → X+ ∧ S�. One can show as before, using
the Pontrjagin-Thom construction, that the induced map πk+�(X+ ∧ S�)→
Ωfr

k (X) is an isomorphism.

Exercise 134. Define the reverse map Ωfr
k (X)→ πS

k (X+).

8.4. Spectra

The collection of spheres, {Sn}∞n=0, together with the maps (in fact homeo-
morphisms)

kn : SSn ∼=−→Sn+1

forms a system of spaces and maps from which one can construct the stable
homotopy groups πS

n (X). Another such system is the collection of Eilenberg–
MacLane spaces K(Z, n) from which we can recover the cohomology groups
by the identification Hn(X;Z) = [X, K(Z, n)] according the the results of
Chapter 7.

The notion of a spectrum abstracts from these two examples and intro-
duces a category which measures “stable” phenomena, that is, phenomena
which are preserved by suspending. Recall that H̃n(X) = H̃n+1(SX) and
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by definition πS
n (X) = πS

n+1(SX). Thus cohomology and stable homotopy
groups are measuring stable information about a space X.

Definition 8.18. A spectrum is a sequence of pairs {Kn, kn} where the Kn

are based spaces and kn : SKn → Kn+1 are basepoint preserving maps,
where SKn denotes the suspension.

In Exercise 95 you saw that the the n-fold reduced suspension of SnX of
X is homeomorphic to Sn ∧X. Thus we can rewrite the definition of stable
homotopy groups as

πS
nX = lim

�→∞
πn+�(S� ∧X)

where the limit is taken over the homomorphisms

πn+�(S� ∧X)→ πn+�+1(S�+1 ∧X).

These homomorphisms are composites of the suspension

πn+�(S� ∧X)→ πn+�+1(S(S� ∧X)),

the identification S(S� ∧ X) = S1 ∧ (S� ∧ X) = S(S�) ∧ X, and the map
πn+�+1(S(S�) ∧X) → πn+�+1(S�+1 ∧X) induced by the map k� : S(S�) →
S�+1.

Thus we see a natural link between the sphere spectrum

S = {Sn, kn : S(Sn) ∼= Sn+1}
and the stable homotopy groups

πS
n (X) = lim

�→∞
πn+�(S� ∧X).

Another example is provided by ordinary integral homology. The path
space fibration and the long exact sequence in homotopy, shows that the loop
space of the Eilenberg–MacLane space K(Z, n + 1) is homotopy equivalent
to K(Z, n). Fixing a model for K(Z, n) for each n, there exists a sequence
of homotopy equivalences

hn : K(Z, n)→ ΩK(Z, n + 1).

Then hn defines, by taking its adjoint, a map

kn : S(K(Z, n))→ K(Z, n + 1).

In this way we obtain the Eilenberg–MacLane spectrum

K(Z) = {K(Z, n), kn}.
We have seen in Theorem 7.22 that Hn(X;Z) = [X, K(Z, n)].

Ordinary homology and cohomology are derived from the Eilenberg–
MacLane spectrum, as the next theorem indicates. This point of view gen-
eralizes to motivate the definition of homology and cohomology with respect
to any spectrum.
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Theorem 8.19. For any space X,

1.
Hn(X;Z) = lim

�→∞
πn+�(X+ ∧K(Z, F)).

2.
Hn(X;Z) = lim

�→∞
[S�(X+), K(Z, n + F)]0

Recall that for n ≥ 0, Hn(X) = H̃n(X+) = H̃n+1(SX+) = Hn+1(SX+);
in fact the diagram

[X+, K(Z, n)]0 [SX+, SK(Z, n)]0

[X+,ΩK(Z, n + 1)]0 [SX+, K(Z, n + 1)]0

✲S

❄

hn
∼=

❄

kn

✲∼=

commutes. This shows that we could have defined the cohomology of a space
by

Hn(X;Z) = lim
�→∞

[S�X+;K(Z, n + F)]0,

and verifies the second part of this theorem. The first part can be proven by
starting with this fact and using Spanier-Whitehead duality. See the project
on Spanier-Whitehead duality at the end of this chapter.

These two examples and Theorem 8.19 leads to the following definition.
Recall that X+ denotes the space X with a disjoint base point. In particular,
if A ⊂ X, then (X+/A+) = X/A if A is non-empty and equals X+ if A is
empty.

Definition 8.20. Let K = {Kn, kn} be a spectrum. Define the (unreduced)
homology and cohomology with coefficients in the spectrum K to be the
functor taking a space X to the abelian group

Hn(X;K) = lim
�→∞

πn+�(X+ ∧K�)

and
Hn(X;K) = lim

�→∞
[S�(X+);Kn+�]0,

the reduced homology and cohomology with coefficients in the spectrum K to
be the functor taking a based space X to the abelian group

H̃n(X;K) = lim
�→∞

πn+�(X ∧K�)

and
H̃n(X;K) = lim

�→∞
[S�X;Kn+�]0,
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and the homology and cohomology of a pair with coefficients in the spectrum
K to be the functor taking a pair of space (X, A) to the abelian group

Hn(X, A;K) = lim
�→∞

πn+�((X+/A+) ∧K�)

and
Hn(X, A;K) = lim

�→∞
[S�(X+/A+);Kn+�]0,

It is a theorem that these are generalized (co)homology theories; they
satisfy all the Eilenberg–Steenrod axioms except the dimension axiom. We
will discuss this in more detail later.

For example, stable homotopy theory H̃n(X;S) = πS
nX is a reduced

homology theory; framed bordism Hn(X;S) = πS
nX+ = Ωfr

n(X) is an unre-
duced homology theory.

Note that Hn(pt;K) can be non-zero for n �= 0, for example Hn(pt;S) =
πS

n . Ordinary homology is characterized by the fact that Hn(pt) = 0 for
n �= 0, (see Theorem 1.31). The groups Hn(pt;K) are called the coefficients
of the spectrum.

There are many relationships between reduced homology, unreduced ho-
mology, suspension, and homology of pairs, some of which are obvious and
some of which are not. We list some facts for homology.

• For a based space X, H̃n(X;K) = H̃n+1(SX;K).

• For a space X, Hn(X;K) = H̃n(X+;K).

• For a pair of spaces, Hn(X, A;K) ∼= H̃n(X/A;K).
• For a CW-pair, Hn(X, A;K) fits into the long exact sequence of a

pair.

8.5. More general bordism theories

(Stably) framed bordism is a special case of a general bordism theory, where
one considers bordisms respecting some specific stable structure on the nor-
mal bundle of a smooth manifold. We will give examples of stable structures
now, and then ask you to supply a general definition in Exercise 135. Basi-
cally a property of vector bundles is stable if whenever a bundle η has that
property, then so does η ⊕ εk for all k.

8.5.1. Framing. A stable framing on a bundle [η] is, as we have seen, a
choice of homotopy class of bundle isomorphism

γ : η ⊕ εk ∼= εn+k

subject to the equivalence relation generated by the requirement that

γ ∼ γ ⊕ Id : η ⊕ εk ⊕ ε ∼= εn+k+1.
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8.5.2. The empty structure. This refers to bundles with no extra struc-
ture.

8.5.3. Orientation. This is weaker than requiring a framing. The most
succinct way to define an orientation of a n-plane bundle η of is to choose a
homotopy class of trivialization of the highest exterior power of the bundle,

γ : ∧n(η) ∼= ε.

Equivalently, an orientation is a reduction of the structure group to
GL+(n,R), the group of n-by-n matrices with positive determinant. A
oriented manifold is a manifold with an orientation on its tangent bundle.

Since ∧a+b(V ⊕W ) is canonically isomorphic to ∧aV ⊗ ∧bW if V is a
a-dimensional vector space and W is a b-dimensional vector space, it follows
that ∧n(η) is canonically isomorphic to ∧n+k(η ⊕ εk) for any k ≥ 0. Thus
an orientation on η induces one on η ⊕ ε, so an orientation is a well-defined
stable property.

8.5.4. Spin structure. Let Spin(n) → SO(n) be the double cover where
Spin(n) is connected for n > 1. A spin structure on an n-plane bundle η
over a space M is a reduction of the structure group to Spin(n). This is
equivalent to giving a principal Spin(n)-bundle P →M and an isomorphism
η ∼= (P ×Spin(n) Rn → M). A spin manifold is a manifold whose tangent
bundle has a spin structure. Spin structures come up in differential geometry
and index theory.

The stabilization map SO(n) → SO(n + 1) induces a map Spin(n) →
Spin(n + 1). Thus a principal Spin(n)-bundle P → M induces a principal
Spin(n + 1)-bundle P ×Spin(n) Spin(n + 1)→M , and hence a spin structure
on η gives a spin structure on η ⊕ ε. A spin structure is a stable property.

A framing on a bundle gives a spin structure. A spin structure on a
bundle gives an orientation. It turns out that a spin structure is equivalent
to a framing on the 2-skeleton of M .

8.5.5. Stable complex structure. An complex structure on a bundle η
is a bundle map J : η → η so that J ◦ J = −Id. This forces the (real)
dimension of η to be even. Equivalently complex structure is a reduction
of the structure group to GL(k,C) ⊂ GL(2k,R). The tangent bundle of a
complex manifold admits a complex structure. One calls a manifold with
a complex structure on its tangent bundle an almost complex manifold and
it may or may not admit the structure of a complex manifold. (It can be
shown that S6 is an almost complex manifold, but whether or not S6 is a
complex manifold is still an open question.)
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One way to define a stable complex structure on a bundle η is as a section

J ∈ Γ(Hom(η ⊕ εk, η ⊕ εk))

satisfying J2 = −Id in each fiber. Given such a J , one can extend it canon-
ically to

Ĵ = J ⊕ i ∈ Γ(Hom(η ⊕ εk ⊕ ε2�, η ⊕ εk ⊕ ε2�))
by identifying ε2� with M × C� and using multiplication by i to define
i ∈ Γ(Hom(M ×C�, M ×C�)). As usual, two such structures are identified
if they are homotopic. Note that odd-dimensional manifolds cannot have
almost complex structures but may have stable almost complex structures.

If γ : η ⊕ εk ∼= ε� is a stable framing, up to equivalence we may assume
that F is even. Then identifying ε� with M×C�/2 induces an stable complex
structure on η ⊕ εk. Thus stably framed bundles have a stable complex
structure.

Similarly, a complex structure determines an orientation, since a com-
plex vector space has a canonical (real) orientation. To see this, notice
that if {e1, . . . , er} is a complex basis for a complex vector space, then
{e1, ie1, · · · , er, ier} is a real basis whose orientation class is independent
of the choice of the basis {e1, . . . , er}.

The orthogonal group O(n) is a strong deformation retract of the general
linear group GL(n,R); this can be shown using the Gram-Schmidt process.
This leads to a one-to-one correspondence between isomorphism classes of
vector bundles and isomorphism classes of Rn-bundles with structure group
O(n) over a paracompact base space. An Rn-bundle with a metric has
structure group O(n). Conversely an Rn-bundle with structure group O(n)
over a connected base space admits a metric, uniquely defined up to scaling.
Henceforth in this chapter all bundles will have metrics with orthogonal
structure group.

The following exercise indicates how to define a structure on a stable
bundle in general.

Exercise 135. Let G = {Gn} be a sequence of topological groups with con-
tinuous homomorphisms Gn → Gn+1 and Gn → O(n) so that the diagram

Gn → Gn+1

↓ ↓
O(n) ↪→ O(n + 1)

commutes for each n, where the injection O(n)→ O(n + 1) is defined by

A �→
[
A 0
0 1

]
.

Use this to define a stable G-structure on a bundle η. (Hint: either use clas-
sifying spaces or else consider the overlap functions for the stable bundle.)
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Define what a homomorphism G → G′ should be in such a way that
a bundle with a stable G-structure becomes a bundle with a stable G′-
structure.

There are many examples of G-structures. As a perhaps unusual ex-
ample, one could take Gn to be O(n) or SO(n) with the discrete topology.
This spectrum arises in the study of flat bundles and algebraic K-theory.

For our previous examples, a framing corresponds to Gn = 1, the trivial
group for all n. The empty structure corresponds to Gn = O(n). An orien-
tation corresponds to Gn = SO(n) ⊂ O(n). A spin structure corresponds
to Gn = Spin(n) → SO(n). An stable complex structure corresponds to
Gn = U([n/2]) ⊂ O(n).

Concepts such as orientation and almost complex structure are more
natural on the tangent bundle, while the Pontrjagin-Thom construction and
hence bordism naturally deals with the stable normal bundle. The following
exercise generalizes Theorem 8.13 and shows that in some cases one can
translate back and forth.

Exercise 136.

1. Show that an orientation on the stable tangent bundle of a manifold
determines one on the stable normal bundle and conversely.

2. Show that a complex structure on the stable tangent bundle of a
manifold determines one on the stable normal bundle and conversely.

(Hint/discussion: The real point is that the tangent bundle and normal bun-
dle are (stably) Whitney sum inverses, so one may as well consider bundles
α and β over a finite-dimensional base space with a framing of α ⊕ β. A
complex structure on α is classified a map to Gn(Ck) and β is equivalent
to the pullback of the orthogonal complement of canonical bundle over the
complex grassmannian, and hence β is equipped with a complex structure.
Part 1 could be done using exterior powers or using the grassmannian of
oriented n-planes in Rk.)

Definition 8.21. Given a G-structure, define the n-th G-bordism group of
a space X to be the G-bordism classes of n-dimensional closed manifolds
mapping to X with stable G-structures on the normal bundle of an embed-
ding of the manifold in a sphere. Denote this abelian group (with disjoint
union as the group operation) by

ΩG
n (X).

Thus an element of ΩG
n (X) is represented by an embedded closed sub-

manifold Mn ⊂ Sk, a continuous map f : M → X, and a stable G-structure
γ on the normal bundle ν(M ↪→ Sk). Bordism is the equivalence relation
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generated by replacing k by k + 1, and by

(M0 ⊂ Sk, f0, γ0) ∼ (M1 ⊂ Sk, f1, γ1)

provided that there exists a compact manifold W ⊂ Sk × I with boundary
M0×{0}∪M1×{1} (which we identify with M0�M1), a map F : W → X
and a stable G-structure Γ on ν(W ↪→ Sk × I) which restricts to (M0 �
M1, f0 � f1, γ0 � γ1).

We previously used the notation Ωfr for framed bordism, i.e. Ωfr = Ω1

where 1 = G = {Gn}, the trivial group for all n.
We next want to associate spectra to bordism theories based on a stable

structure. We have already seen how this works for framed bordism:

Ωfr
n(X) = πS

n (X+) = lim
�→∞

πn+�(X+ ∧ S�)

i.e. framed bordism corresponds to the sphere spectrum S = {Sn, kn}.
What do the other bordism theories correspond to? Does there exist a

spectrum K for each structure G so that

ΩG
n (X) = Hn(X;K) = lim

�→∞
πn+�(X+ ∧K�)?

The answer is yes; the spectra for bordism theories are called Thom spectra
MG. In particular, one can define G-cobordism by taking

Hn(X;MG) = lim
�→∞

[S�X+;MGn+�]0.

We are using the algebraic topology terminology where cobordism is the
theory dual (in the Spanier-Whitehead sense) to bordism. It is traditional
for geometric topologists to call bordant manifolds “cobordant,” but we will
avoid this terminology in this book.

Thus we know that M1 is the sphere spectrum. We will give a construc-
tion for MG for any structure G.

8.6. Classifying spaces

The construction of Thom spectral is accomplished most easily via the the-
ory of classifying spaces. The basic result about classifying spaces is the
following. The construction and the proof of this theorem is one of the
student projects for Chapter 4.

Theorem 8.22. Given any topological group G, there exists a principal G-
bundle EG → BG where EG is a contractible space. The construction is
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functorial, so that any continuous group homomorphism α : G→ H induces
a bundle map

EG EH

BG BH

✲Eα

❄ ❄
✲Bα

compatible with the actions, so that if x ∈ EG, g ∈ G,

Eα(x · g) = (Eα(x)) · α(g).

The space BG is called a classifying space for G.
The function

Φ : Maps(B, BG)→ {Principal G-bundles over B}

defined by pulling back (so Φ(f) = f∗(EG)) induces a bijection from the ho-
motopy set [B, BG] to the set of isomorphism classes of principal G-bundles
over B, when B is a CW-complex (or more generally a paracompact space).

The long exact sequence for the fibration G → EG → BG shows that
πnBG = πn−1G. In fact, ΩBG is (weakly) homotopy equivalent to G, as one
can see by taking the extended fiber sequence · · · → ΩEG→ ΩBG→ G→
EG→ BG, computing with homotopy groups, and observing that EG and
ΩEG are contractible. Thus the space BG is a delooping of G.

The following lemma is extremely useful.

Lemma 8.23. Let p : E → B be a principal G-bundle, and let f : B → BG
be the classifying map. Then the homotopy fiber of f is weakly homotopy
equivalent to E.

Proof. Turn f : B → BG into a fibration q : B′ → BG using Theorem
6.18 and let F ′ denote the homotopy fiber of q : B′ → BG. Thus there is a
commutative diagram

B B′

BG

❅
❅❅❘f

✲h

�
��✠ q
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with h a homotopy equivalence. The fact that f is the classifying map for
p : E → B implies that there is a commutative diagram

E EG

B BG
❄

p

✲f̃

❄
✲f

and since EG is contractible, f ◦ p = q ◦ h ◦ p : E → BG is nullhomotopic.
By the homotopy lifting property for the fibration q : B′ → BG it follows
that h ◦ p : E → B′ is homotopic into the fiber F ′ of q : B′ → BG and so
one obtains a homotopy commutative diagram of spaces

E F ′

B B′

BG BG.

❄

p

✲

❄

❄

f

✲h

❄

q

✲=

The left edge is a fibration, h is a homotopy equivalence, and by the five
lemma the map πn(E)→ πn(F ′) is an isomorphism for all n.

In Lemma 8.23 one can usually conclude that the homotopy fiber of
f : B → BG is in fact a homotopy equivalence. This would follow if we
know that B′ is homotopy equivalent to a CW-complex. This follows for
most G by a theorem of Milnor [24].

Exercise 137. Show that given a principal G-bundle E → B there is fibra-
tion

E EG×G E

BG

✲

❄

where EG×GE denotes the Borel construction . How is this fibration related
to the fibration of Lemma 8.23?

8.7. Construction of the Thom spectra

We proceed with the construction of the Thom spectra. We begin with a
few preliminary notions.
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Definition 8.24. If E → B is any vector bundle over a CW-complex B
with metric then the Thom space of E → B is the quotient D(E)/S(E),
where D(E) denotes the unit disk bundle of E and S(E) ⊂ D(E) denotes
the unit sphere bundle of E.

Notice that the zero section B → E defines an embedding of B into the
Thom space.

The first part of the following exercise is virtually a tautology, but it
is key to understanding why the spectra for bordism are given by Thom
spaces.

Exercise 138.

1. If E → B is a smooth vector bundle over a smooth compact manifold
B, then the Thom space of E is a smooth manifold away from one
point and the 0-section embedding of B into the Thom space is a
smooth embedding with normal bundle isomorphic to the bundle E →
B.

2. The Thom space of a vector bundle over a compact base is homeo-
morphic to the one-point compactification of the total space.

Now let a G-structure be given. Recall that this means we have a
sequence of continuous groups Gn and homomorphisms Gn → O(n) and
Gn → Gn+1 such that the diagram

Gn → Gn+1

↓ ↓
O(n) ↪→ O(n + 1)

commutes.
We will construct the Thom spectrum for this structure from the Thom

spaces of vector bundles associated to the principal bundles Gn → EGn →
BGn.

Composing the homomorphism Gn → O(n) with the standard action of
O(n) on Rn defines an action of Gn on Rn. Use this action to form the
universal Rn-vector bundle over BGn

EGn ×Gn Rn

BGn

❄

Let us denote this vector bundle by Vn → BGn. Notice that by our
assumption that Gn maps to O(n), this vector bundle has a metric, and so
the unit sphere and disk bundles are defined.
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Functoriality gives vector bundle maps (which are linear injections on
fibers).

Vn Vn+1

BGn BGn+1

✲

❄ ❄
✲

Let MGn denote the Thom space of Vn → BGn. Thus MGn is obtained
by collapsing the unit sphere bundle of Vn in the unit disk bundle to a point.

Lemma 8.25.

1. If E → B is a vector bundle, then the Thom space of E ⊕ ε is the
reduced suspension of the Thom space of E.

2. A vector bundle map

E E′

B B′

✲

❄ ❄
✲

which is an isomorphism preserving the metric on each fiber induces
a map of Thom spaces.

Proof. To see why the first statement is true, note that an O(n)-equivariant
homeomorphism Dn+1 → Dn×I determines an homeomorphism of D(E⊕ε)
with D(E)× I which induces a homeomorphism D(E ⊕ ε)/S(E ⊕ ε) with

(D(E)× I)/(S(E)× I ∪ D(E)× {0, 1}).
But it is easy to see that this identification space is the same as the (reduced)
suspension of D(E)/S(E).

The second statement is clear.

The following theorem states that the collection MG = {MGn} forms
a spectrum, and that the corresponding homology theory is the bordism
theory defined by the corresponding structure.

Theorem 8.26. The fiberwise injection Vn → Vn+1 extends to a (metric
preserving) bundle map Vn ⊕ ε → Vn+1 which is an isomorphism on each
fiber, and hence defines a map

kn : SMGn →MGn+1.

Thus {MGn, kn} = MG is a spectrum, called the Thom spectrum.
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Moreover, the bordism groups ΩG
n (X) are isomorphic to Hn(X;MG).

Proof. Since the diagram

Gn → Gn+1

↓ ↓
O(n) ↪→ O(n + 1)

commutes, where O(n) ↪→ O(n + 1) is the homomorphism

A �→
[
A 0
0 1

]
,

it follows by the construction of Vn that the pullback of Vn+1 by the map
γn : BGn → BGn+1 splits canonically into a direct sum γ∗n(Vn+1) = Vn ⊕ ε.
Thus the diagram

Vn Vn+1

BGn BGn+1

✲

❄ ❄
✲

extends to a diagram

Vn ⊕ ε Vn+1

BGn BGn+1

✲

❄ ❄
✲

which is an isomorphism on each fiber; this isomorphism preserves the met-
rics since the actions are orthogonal.

By Lemma 8.25, the above bundle map defines a map

kn : SMGn →MGn+1

establishing the first part of the theorem.
We now outline how to establish the isomorphism

ΩG
n (X) = lim

�→∞
πn+�(X+ ∧MG�).

This is a slightly more complicated version of the Pontrjagin-Thom con-
struction we described before, using the basic property of classifying spaces.

We will first define the collapse map

c : ΩG
n (X)→ lim

�→∞
πn+�(X+ ∧MG�).

Suppose [W, f, γ] ∈ ΩG
n (X). So W is an n-manifold with a G-structure

on its stable normal bundle, and f : W → X is a continuous map. Embed W
in Sn+� for some large F so that the normal bundle ν(W ) has a G�-structure.
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Let F → W be the principal O(F)-bundle of orthonormal frames in
ν(W ). The statement that ν(W ) has a G�-structure is equivalent to saying
that there is a principal G�-bundle P →W and a bundle map

P F

W

✲

❅
❅❘

�
�✠

which is equivariant with respect to the homomorphism

G� → O(F).

Let c1 : W → BG� classify the principal bundle P → W . Then by
definition ν(W ) is isomorphic to the pullback c∗1(V�).

Let U be a tubular neighborhood of W in Sn+� and D ⊂ U ⊂ Sn+�

correspond to the disk bundle. Define a map

h : Sn+� →MG�

by taking everything outside of D to the base point, and on D, take the
composite

D ∼= D(ν(W ))→ D(V�)→MG�.

The product
f × h : Sn+� → X ×MG�

composes with the collapse

X ×MG� → X+ ∧MG�

to give a map
α = f ∧ h : Sn+� → X+ ∧MG�.

We have thus defined the collapse map

c : ΩG
n (X)→ lim

�→∞
πn+�(X+ ∧MG�) = Hn(X;MG).

To motivate the definition of the inverse of c, we will make a few com-
ments on the above construction. The figure below illustrates that the
composite of the zero section z : BG� → D(V�) and the quotient map
D(V�)→MG� is a embedding.

z

BG� D(V�) MG�
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We thus will consider BG� to be a subset of MG�. Then in the above
construction of the collapse map c, W = α−1(X ×BG�).

Next we use transversality to define the inverse of this the collapse map
c. Represent α̂ ∈ Hn(X;MG) by

α : Sn+� → X+ ∧MG�.

Observe that the composite

X ×BG� ↪→ X+ ×MG� → X+ ∧MG�

is an embedding, since:

1. BG� misses the base point of MG�, and

2. the base point of X+ misses X.

(The following figure gives an analogue by illustrating the embedding of
X × B in X+ ∧M if B is a point, M is a D2-bundle over B, and X is a
interval.)

base point collapse X ×B

=
B X ×B

M X+ ∧M

Furthermore

X ×BG� ⊂ X+ ∧MG�

has a neighborhood which is isomorphic to the pullback π∗2V� where
π2 : X ×BG� → BG� is the projection on the second factor. Transversality,
adapted to this setting, says that α : Sn+� → X+ ∧MG� can be homotoped
slightly to a map β so that W = β−1(X × BG�) is a smooth manifold,
and whose tubular neighborhood, i.e. the normal bundle of W , has a G-
structure. The composite of β : W → X × BG� and pr1 : X × BG� → X
give the desired element (W → X) ∈ ΩG

n (X).
We sort of rushed through the construction of the inverse map to c, so

we will backtrack and discuss some details. For every point in BG�, there
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is a neighborhood U ⊂ BG� over which the bundle V� → BG� is trivial and
so there is a map

α−1(X × U)→ D�/S�

defined by composing α with projection on the fiber. Transversality then
applies to this map between manifolds and one can patch together to get
β using partitions of unity. Furthermore, transversality gives a diagram of
bundle maps, isomorphisms in each fiber,

ν(W ↪→ Sn+�) X × V� V�

W X ×BG� BG�

❄

✲

❄

✲

❄
✲β ✲pr2

so that the normal bundle of W inherits a G-structure.
Next note that replacing F by F + 1 leads to the same bordism element.

Stabilizing the normal bundle

ν(W ↪→ Sn+�) −→ ν(W ↪→ Sn+�)⊕ ε = ν(W ↪→ Sn+�+1)

corresponds to including W ⊂ Sn+� ⊂ Sn+�+1. Since the composite

SSn+� Sf−→ S(X+ ∧MG�)
k�∧Id−−−→ X+ ∧MG�+1

replaces the tubular neighborhood of X ×BG�, i.e. X ×V� by X × (V�⊕ ε),
the construction gives a well-defined stable G-structure on the stable normal
bundle of W .

The full proof that the indicated map Hn(X;MG) → ΩG
n (X) is well-

defined and is the inverse of c is a careful but routine check of details in-
volving bordisms, homotopies, and stabilization.

Taking X to be a point, we see that the groups (called the coefficients)
ΩG

n = ΩG
n (pt) are isomorphic to the homotopy groups lim

�→∞
πn+�(MG�), since

pt+ ∧M = M .
As an example of how these coefficients can be understood geometrically,

consider oriented bordism, corresponding to Gn = SO(n). The coefficients
ΩSO

n equal πn+�(MSO�) for F large enough. Some basic computations are
the following.

1. An oriented closed 0-manifold is just a signed finite number of points.
This bounds a 1-manifold if and only if the sum of the signs is zero.
Hence ΩSO

0
∼= Z. Also, π�MSO� = Z for F ≥ 2.

2. Every oriented closed 1-manifold bounds an oriented 2-manifold, since
S1 = ∂D2. Therefore ΩSO

1 = 0.
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3. Every oriented 2-manifold bounds an oriented 3-manifold since any
oriented 2-manifold embeds in R3 with one of the two complementary
components compact. Thus ΩSO

2 = 0.

4. A theorem of Rohlin states that every oriented 3-manifold bounds a
4-manifold. Thus ΩSO

3 = 0.

5. An oriented 4-manifold has a signature in Z, i.e. the signature of
its intersection form. A good exercise using Poincaré duality (see
the projects for Chapter 3) shows that this is an oriented bordism
invariant, and hence defines a homomorphism ΩSO

4 → Z. This turns
out to be an isomorphism. More generally the signature defines a
map ΩSO

4k → Z for all k. This is a surjection since the signature of
CP 2k is 1.

6. It is a fact that away from multiples of 4, the oriented bordism groups
are torsion, i.e. ΩSO

n ⊗Q = 0 if n �= 4k.

7. For all n, ΩSO
n is finitely generated, in fact, a finite direct sum of Z’s

and Z/2’s.

Statements 5, 6, and 7 can be proven by computing πn+�(MSO�). How
does one do this? A starting point is the Thom isomorphism theorem, which
says that for all k,

Hn(BSO(F)) ∼= H̃n+�(MSO�)

(where H̃ denotes reduced cohomology). The cohomology of BSO(n) can
be studied in several ways, an so one can obtain information about the
cohomology of MSO� by this theorem. Combining this with the Hurewicz
theorem and other methods leads ultimately to a complete computation of
oriented bordism (due to C.T.C. Wall), and this technique was generalized
by Adams to a machine called the Adams spectral sequence. We will return
to the Thom isomorphism theorem in Chapter 10.

Once the coefficients are understood, one can use the fact that bordism
is a homology theory to compute ΩSO

n (X). For now we just remark that
there is a map ΩSO

n (X) → Hn(X) defined by taking f : M → X to the
image of the fundamental class f∗[M ]. Thus for example, the identity map
on a closed, oriented manifold Mn is non-zero in ΩSO

n (M).
We can also make an elementary remark about unoriented bordism,

which corresponds to Gn = O(n). Notice first that for any α ∈ ΩO
n (X),

2α = 0. Indeed, if f : V n → X represents α, take F : V × I → X to be
F (x, t) = f(x) then ∂(V × I, F ) = 2(V, f). Thus ΩO

n (X) consists only of
elements of order 2. The full computation of unoriented bordism is due to
Thom. We will discuss this more in Section 10.10.
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Exercise 139. Show that ΩO
0 = Z/2, ΩO

1 = 0, and ΩO
2 = Z/2. (Hint: for

ΩO
2 use the classification theorem for closed surfaces, then show that if a

surface F is a boundary of a 3-manifold, then dim H1(F ;Z/2) is even.)

There are several conventions regarding notation for bordism groups;
each has its advantages. Given a structure defined by a sequence G = {Gn},
one can use the notation

ΩG
∗ (X), H∗(X;MG) or MG∗(X).

There is a generalization of a G-structure called a B-structure. It is
given by a sequence of commutative diagrams

Bn Bn

BOn BOn+1

❄

ξn

✲

❄

ξn+1

✲

where the vertical maps are fibrations. A G-structure in the old sense gives
a BG = {BGn}-structure. A B-structure has a Thom spectrum TB =
{T (ξn)}, where ξn here denotes the vector bundle pulled back from the
canonical bundle over BOn. There is a notion of a stable B-structure on a
normal bundle of an embedded M , which implies that there is a map from the
(stablized) normal bundle to ξk. There is a Pontrjagin-Thom isomorphism

ΩB
n (X) ∼= Hn(X;TB).

For a precise discussion of B-bordism and for further information on
bordism in general, see [30], [39] and the references therein.

8.8. Generalized homology theories

We have several functors from (based) spaces to graded abelian groups:
stable homotopy πS

n (X), bordism ΩG
n (X), or, more generally, homology of

a space with coefficients in a spectrum Hn(X;K). These are examples of
generalized homology theories. Generalized homology theories come in two
(equivalent) flavors, reduced and unreduced. Unreduced theories apply to
unbased spaces and pairs. Reduced theories are functors on based spaces.
The equivalence between the two points of view is obtained by passing from
(X, A) to X/A and from X to X+.

There are three high points to look out for in our discussion of homology
theories.

• The axioms of a (co)homology theory are designed for computations.
One first computes the coefficients of the theory (perhaps using the



228 8. Bordism, Spectra, and Generalized Homology

Adams spectral sequence), and then computes the homology of a CW-
complex X, using excision, Mayer–Vietoris, or a generalization of cel-
lular homology discussed in the next chapter, the Atiyah–Hirzebruch
spectral sequence.
• There is a uniqueness theorem. A natural transformation of (co)-

homology theories inducing an isomorphism on coefficients induces
an isomorphism for all CW-complexes X.
• A (co)homology theory is given by (co)homology with coefficients in

a spectrum K.

8.8.1. Reduced homology theories. Let K∗ be the category of com-
pactly generated spaces with non-degenerate base points.

Definition 8.27. A reduced homology theory is

1. A family of covariant functors

hn : K∗ → A for n ∈ Z

where A denotes the category of abelian groups. (Remark: we do not
assume hn is zero for n < 0.)

2. A family of natural transformations

en : hn → hn+1 ◦ S
where S : K∗ → K∗ is the (reduced) suspension functor.

These must satisfy the three following axioms:

A1. (Homotopy) If f0, f1 : X → Y are homotopic, then

hn(f0) = hn(f1) : hn(X)→ hn(Y )

A2. (Exactness) For f : X → Y , let Cf be the mapping cone of f ,
and j : Y ↪→ Cf the inclusion. Then

hn(X)
hn(f)−−−→ hn(Y )

hn(j)−−−→ hn(Cf )

is exact for all n ∈ Z.
A3. (Suspension) The homomorphism

en(X) : hn(X)→ hn+1(SX)

given by the natural transformation en is an isomorphism for
all n ∈ Z.

Exercise 140. Show that ordinary singular homology defines a homology
theory in this sense by taking hn(X) to be the reduced homology of X.

There are two other “nondegeneracy” axioms which a given generalized
homology theory or may not satisfy.
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A4. (Additivity) If X is a wedge product X =
∨

j∈J
Xj , then⊕

j∈J

hn(Xj)→ hn(X)

is an isomorphism for all n ∈ Z.
A5. (Isotropy) If f : X → Y is a weak homotopy equivalence, then hn(f)

is an isomorphism for all n ∈ Z.

If we work in the category of based CW-complexes instead of K∗, then
A5 follows from A1 by the Whitehead theorem. Given a reduced homology
theory on based CW-complexes, it extends uniquely to an isotropic theory
on K∗.

For any reduced homology theory, hn(pt) = 0 for all n, since

hn(pt)→ hn(pt)→ hn(pt/pt) = hn(pt)

is exact, but also each arrow is an isomorphism. Thus the reduced homology
of a point says nothing about the theory; instead one makes the following
definition.

Definition 8.28. The coefficients of a reduced homology theory are the
groups {hn(S0)}.

A homology theory is called ordinary (or proper) if it satisfies

hn(S0) = 0 for n �= 0.

(This is the dimension axiom of Eilenberg–Steenrod.) Singular homology
with coefficients in an abelian group A is an example of a ordinary theory.
It follows from a simple argument using the Atiyah-Hirzebruch spectral se-
quence that any ordinary reduced homology theory is isomorphic to reduced
singular homology with coefficients in A = h0(S0).

If (X, A) is an NDR pair, then we saw in Chapter 6 that the mapping
cone Cf is homotopy equivalent to X/A. Thus hn(A)→ hn(X)→ hn(X/A)
is exact. Also in Chapter 6 we proved that the sequence

A→ X → X/A→ SA→ SX → S(X/A)→ · · ·
has each three term sequence a (homotopy) cofibration. Thus

hn(A)→ hn(X)→ hn(X/A)→ hn(SA)→ hn(SX)→ · · ·
is exact. Applying the transformations en and using Axiom A3 we conclude
that

→ hn(A)→ hn(X)→ hn(X/A)→ hn−1(A)→ hn−1(X)→ · · ·
is exact. Thus to any reduced homology theory one obtains a long exact
sequence associated to a cofibration.
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Exercise 141. Let X be a based CW-complex with subcomplexes A and B,
both of which contain the base point. Show that for any reduced homology
theory h∗ there is a Mayer–Vietoris long exact sequence

· · · → hn(A ∩B)→ hn(A)⊕ hn(B)→ hn(X)→ hn−1(A ∩B)→ · · ·

8.8.2. Unreduced homology theories. We will derive unreduced theo-
ries from reduced theories, to emphasize that these are the same concept,
presented slightly differently.

Let K2 denote the category of NDR pairs (X, A), allowing the case when
A is empty. Given a reduced homology theory {hn, en} define functors Hn

on K2 as follows (for this discussion, Hn does not denote ordinary singular
homology!).

1. Let

Hn(X, A) = hn(X+/A+) =

{
hn(X/A) if A �= φ,
hn(X+) if A = φ

2. Let ∂n : Hn(X, A)→ Hn−1(A) be the composite:

Hn(X, A) = hn(X+/A+)
∼=−→ hn(Ci) −→ hn(SA+)

∼=−→ hn−1(A+) = Hn−1(A)

where Ci is the mapping cone of the inclusion i : A+ ↪→ X+, and
Ci → SA+ is the quotient

Ci → Ci/X+ = SA+.

Then {Hn, ∂n} satisfy the Eilenberg–Steenrod axioms:

A1. (Homotopy) If f0, f1 : (X, A)→ (Y, B) are (freely) homotopic then

Hn(f0) = Hn(f1) : Hn(X, A)→ Hn(Y, B)

A2. (Exactness) For a cofibration i : A ↪→ X, let j : (X, φ) ↪→ (X, A),
then

· · · → Hn+1(X, A)
∂n+1−−−→ Hn(A)

Hn(i)−−−→ Hn(X)
Hn(j)−−−→ Hn(X, A)→ · · ·

is exact.
A3. (Excision) Suppose that X = A ∪ B, with A, B closed, and suppose

that (A, A ∩B) is an NDR pair. Then

Hn(A, A ∩B)→ Hn(X, B)

is an isomorphism for all n ∈ Z.

Exercise 142. Prove that these three properties hold using the axioms of
a reduced theory.

If a reduced theory is additive and/or isotropic, the functors Hn likewise
satisfy
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A4. (Additivity) Let X = �j∈JXj , A ⊂ X, Aj = Xj ∩A. Then⊕
j∈J

Hn(Xj , Aj)→ Hn(X, A)

is an isomorphism for all n ∈ Z.

A5. (Isotropy) If f : X → Y is a weak homotopy equivalence, then
Hn(f) : Hn(X)→ Hn(Y ) is an isomorphism for all n ∈ Z.

Notice that if the reduced theory is ordinary, then Hn(pt) = 0 for n �= 0.
One uses these properties to define an unreduced homology theory.

Definition 8.29. A collection of functors {Hn, ∂n} on K2 is called a (unre-
duced) homology theory if it satisfies the three axioms A1, A2, and A3. It is
called additive and/or isotropic if A4 and/or A5 hold. It is called ordinary
or proper if Hn(pt) = 0 for n �= 0.

The coefficients of the unreduced homology theory are the groups {Hn(pt)}.

One can go back and forth: an unreduced homology theory {Hn, ∂n}
defines a reduced one by taking hn(X) = Hn(X, {∗}). The following theorem
is proved in [43, Section XII.6].

Theorem 8.30. These constructions set up a 1 − 1 correspondence (up to
natural isomorphism) between reduced homology theories on K∗ and (unre-
duced) homology theories on K2. Moreover the reduced theory is additive,
isotropic, or ordinary if and only if the corresponding unreduced theory is.

The uniqueness theorem below has an easy inductive cell-by-cell proof
in the case of finite CW-complexes, but requires a more delicate limiting
argument for infinite CW-complexes.

Theorem 8.31 (Eilenberg–Steenrod uniqueness theorem).

1. Let T : (Hn, ∂n) → (H ′n, ∂′n) be a natural transformation of homol-
ogy theories defined on the category of finite CW-pairs such that
T : H∗(pt) → H ′∗(pt) is an isomorphism. Then T : H∗(X, A) →
H ′∗(X, A) is an isomorphism for all finite CW-pairs.

2. Let T : (Hn, ∂n) → (H ′n, ∂′n) be a natural transformation of addi-
tive homology theories defined on the category of CW-pairs where
T : H∗(pt) → H ′∗(pt) is an isomorphism. Then T : H∗(X, A) →
H ′∗(X, A) is an isomorphism for all CW-pairs.
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8.8.3. Homology theories and spectra.

Theorem 8.32. (Reduced) homology with coefficients in a spectrum K

H̃n(−;K) : X �→ lim
�→∞

πn+�(X ∧K�)

Hn(−;K) : (X, A) �→ lim
�→∞

πn+�((X+/A+) ∧K�)

is a (reduced) homology theory satisfying the additivity axiom.

One needs to prove the axioms A1, A2, A3, and A5. The homotopy
axiom is of course obvious. The axiom A2 follows from the facts about
the Puppe sequences we proved in Chapter 6 by passing to the limit. The
suspension axiom holds almost effortlessly from the fact that the theory is
defined by taking the direct limit over suspension maps. The additivity
axiom follows from the fact that the image of a sphere is compact and that
a compact subspace of an infinite wedge is contained in a finite wedge.

A famous theorem of E. Brown (the Brown representation theorem) gives
a converse of the above theorem. It leads to a shift in perspective on the
functors of algebraic topology by prominently placing spectra as the source
of homology theories. Here is a precise statement.

Theorem 8.33.

1. Let {Hn, ∂n} be an homology theory. There there exists a spectrum
K and a natural isomorphism Hn(X, A) ∼= Hn(X, A;K) for all finite
CW-pairs.

2. Let {Hn, ∂n} be an additive homology theory. There there exists a
spectrum K and a natural isomorphism Hn(X, A) ∼= Hn(X, A;K) for
all CW-pairs.

We have seen several examples: an ordinary homology theory corre-
sponds to the Eilenberg–Maclane spectrum K(A), stable homotopy corre-
sponds to the sphere spectrum S, and the bordism theories correspond to
Thom spectra. Note that the Brown representation theorem shows that for
any homology theory, there is a spectrum, and hence an associated general-
ized cohomology theory.

Exercise 143. Give a definition of a map of spectra. Define maps of spectra
S→ K(Z) and S→MG inducing the Hurewicz map πS

n (X)→ H̃n(X) and
the map Ωfr

n(X)→ ΩG
n (X) from framed to G-bordism.

8.8.4. Generalized cohomology theories. The development of coho-
mology theories parallels that of homology theories following the principle
of reversing arrows.

Exercise 144. Define reduced and unreduced cohomology theories.
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There is one surprise however. In order for Hn( ;K) to be an additive
theory (which means the cohomology of a disjoint union is a direct product),
one must require that K is an Ω-spectrum, a spectrum so that the adjoints

Kn → ΩKn+1

of the structure maps kn are homotopy equivalences. Conversely, the Brown
representation theorem applied to an additive cohomology theory produces
an Ω-spectrum. The Eilenberg–MacLane spectrum is an Ω-spectrum while
the sphere spectrum or more generally bordism spectra are not.

An important example of a generalized cohomology theory is topological
K-theory. It is the subject of one of the projects at the end of this chapter.
Complex topological K-theory has a definition in terms of stable equivalence
classes of complex vector bundles, but we instead indicate the definition in
terms of a spectrum. Most proofs of the Bott periodicity theorem (Theorem
6.51, which states that πnU ∼= Z for n odd and πnU = 0 for n even), actually
prove a stronger result, that there is a homotopy equivalence

Z×BU 1 Ω2(Z×BU).

This allows the definition of the complex K-theory spectrum with

Kn =

{
Z×BU if n is even,
Ω(Z×BU) if n is odd.

(8.1)

The structure maps kn

S(Z×BU)→ Ω(Z×BU)

SΩ(Z×BU)→ Z×BU

are given by the adjoints of the Bott periodicity homotopy equivalence and
the identity map

Z×BU → Ω2(Z×BU)

Ω(Z×BU)→ Ω(Z×BU).

Thus the complex K-theory spectrum is an Ω-spectrum. The corresponding
cohomology theory is called complex K-theory and satisfies

Kn(X) = Kn+2(X) for all n ∈ Z.

In particular this is a non-connective cohomology theory, where a con-
nective cohomology theory is one that satisfies Hn(X) = 0 for all n < n0.
Ordinary homology, as well as bordism theories, are connective, since a
manifold of negative dimension is empty.

A good reference for the basic results in the study of spectra (stable
homotopy theory) is Adams’ book [2].
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8.9. Projects for Chapter 8

8.9.1. Basic notions from differential topology. Define a smooth man-
ifold and submanifold, the tangent bundle of a smooth manifold, a smooth
map between manifolds and its differential, an isotopy, the Sard theorem,
transversality, the tubular neighborhood theorem, the decomposition

TM |P = TP ⊕ ν(P ↪→M),

where P ⊂ M is a smooth submanifold, and show that if f : M → N is a
smooth map transverse to a submanifold Q ⊂ N , with P = f−1(Q), then
the differential of f induces a bundle map df : ν(P ↪→ M) → ν(Q ↪→ n)
which is an isomorphism in each fiber. A good reference is Hirsch’s book
[16].

8.9.2. Definition of K-theory. Define the complex (topological) K-theory
of a space in terms of vector bundles. Indicate why the spectrum for this
theory is {Kn} given in Equation (8.1). State the Bott periodicity theorem.
Discuss vector bundles over spheres. Discuss real K-theory. References for
this material are the books by Atiyah [3] and Husemoller [17].

8.9.3. Spanier-Whitehead duality. Spanier-Whitehead duality is a gen-
eralization of Alexander duality which gives a geometric method of going
back and forth between a generalized homology theory and a generalized
cohomology theory. Suppose that X ⊂ Sn+1 is a finite simplicial complex,
and let Y = Sn+1 − X, or better, Y = Sn+1 − U where U is some open
simplicial neighborhood of X which deformation retracts to X. Recall that
Alexander duality implies that

H̃p(X) ∼= H̃n−p(Y ).

(See Theorem 3.26.) What this means is that the cohomology of X deter-
mines the homology of Y and vice versa.

The strategy is to make this work for generalized cohomology theories
and any space X, and to remove the dependence on the embedding. The
best way to do this is to do it carefully using spectra. Look at Spanier’s
article [35]. There is a good sequence of exercises developing this material
in [36, pages 462-463]. Another reference using the language of spectra is
[39, page 321].

Here is a slightly low-tech outline. You should lecture on the following,
providing details.

Given based spaces X and Y , let

{X, Y } = lim
k→∞

[Sk ∧X, Sk ∧ Y ]0.
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Given a finite simplicial subcomplex X ⊂ Sn+1, let DnX ⊂ Sn+1 be a finite
simplicial subcomplex which is a deformation retract of Sn+1 − X. Then
SDnX is homotopy equivalent to Sn+2 −X.

For k large enough, the homotopy type of the suspension SkDnX de-
pends only on X and k + n, and not on the choice of embedding into Sn+1.
Moreover, for any spaces Y and Z

{SqY, DnX ∧ Z} = {Sq−nY ∧X, Z}(8.2)

As an example, taking Y = S0 and Z = K(Z, p + q−n), Equation (8.2)
says that

{Sq, DnX ∧K(Z, p + q − n)} = {Sq−n ∧X, K(Z, p + q − n)}.(8.3)

Definition 8.20 says that the left side of Equation (8.3) is H̃n−p(DnX;K(Z)).
The right side is H̃p(X;Z), using the fact that [SA, K(Z, k)] = [A,ΩK(Z, k)] =
[A, K(Z, k − 1)].

What this means is that by combining Alexander duality, the result
Hq(X) = [X, K(Z, q)] of obstruction theory, and Spanier-Whitehead du-
ality (i.e. Equation (8.2)), the definition of homology with coefficients in
the Eilenberg–Maclane spectrum given in Definition 8.20 coincides with the
usual definition of (ordinary) homology (at least for finite simplicial com-
plexes, but this works more generally).

This justifies Definition 8.20 of homology with coefficients in an arbitrary
spectrum K. It also gives a duality H̃n−p(DnX;K) = H̃p(X;K), which
could be either considered as a generalization of Alexander duality or as a
further justification of the definition of (co)homology with coefficients in a
spectrum.





Chapter 9

Spectral Sequences

Spectral sequences are powerful computational tools in topology. They also
can give quick proofs of important theoretical results such as the Hurewicz
theorem and the Freudenthal suspension theorem. Computing with spectral
sequences is somewhat like computing integrals in calculus; it is helpful to
have ingenuity and a supply of tricks, and even so, you may not arrive at the
final solution to your problem. There are many spectral sequences which
give different kinds of information. We will focus on one important spectral
sequence, the Leray-Serre-Atiyah-Hirzebruch spectral sequence which takes
as input a fibration over a CW-complex and a generalized homology or
cohomology theory. This spectral sequence exhibits a complicated relation-
ship between the generalized (co)homology of the total space and fiber and
the ordinary (co)homology of the base. Many other spectral sequences can
be derived from this one by judicious choice of fibration and generalized
(co)homology theory.

Carefully setting up and proving the basic result requires very careful
bookkeeping; the emphasis in these notes will be on applications and how
to calculate. The project for this chapter is to outline the proof of the main
theorem, Theorem 9.6.

9.1. Definition of a spectral sequence

Definition 9.1. A spectral sequence is a homological object of the following
type:

One is given a sequence of chain complexes

(Er, dr)

237
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for r = 1, 2, . . .

and isomorphisms:

Er+1 ∼= H(Er, dr) =
ker dr : Er → Er

Im dr : Er → Er
.

The isomorphisms are fixed as part of the structure of the spectral se-
quence so henceforth we will fudge the distinction between “∼=” and “=” in
the above context.

In this definition the term “chain complex” just means an abelian group
(or R-module) with an endomorphism whose square is zero. In many impor-
tant contexts, the spectral sequence has more structure, namely the chain
complexes Er are graded or even bigraded, that is, Er decomposes as a direct
sum of terms Er

p,q for (p, q) ∈ Z ⊕ Z. Moreover the differentials dr have a
well-defined bidegree. For example, in a homology spectral sequence, usually
dr has bidegree (−r, r − 1). In other words dr(Er

p,q) ⊂ Er
p−r,q+r−1.

A student first exposed to this plethora of notation may be intimidated;
the important fact to keep in mind is that a bigrading decomposes a big
object (Er) into bite-sized pieces (Er

p,q). Information about the Er
p,q for

some pairs (p, q) gives information about Er+1
p,q for (probably fewer) pairs

(p, q). But with luck one can derive valuable information. For example,
from what has been said so far you should easily be able to see that if
Er

p,q = 0 for some fixed pair (p, q), then Er+k
p,q = 0 for all k ≥ 0. This simple

observation can sometimes be used to derive highly non-trivial information.
When computing with spectral sequences it is very useful to draw diagrams
like the following.

3

2
q

1

0

0 1 2 3 4

p
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In this picture the short arrow depicts the differential d2 : E2
3,0 → E2

1,1 and
the long arrow corresponds to the differential d3 : E3

3,0 → E3
0,2.

One usually computes with a spectral sequence in the following way. A
theorem will state that there exists a spectral sequence so that:

1. the modules E2 (or E1) can be identified with something known, and

2. the limit

E∞ = lim
r→∞

Er

is related to something one wishes to compute.

It can also work the opposite way, E∞ can be related to something known
and E2 can be related to something we wish to compute. In either case,
this gives a complicated relationship between two things. The relationship
usually involves exact sequences. In favorable circumstances information
can be derived by carefully analyzing this relationship.

As an example to see how this may be used, the Leray–Serre spectral
sequence of a fibration implies that if F ↪→ E → B is a fibration with B
simply connected, then there is a spectral sequence with

E2
p,q
∼= Hp(B;Q)⊗Hq(F ;Q)

and with

Hn(E;Q) ∼= ⊕pE
∞
p,n−p.

This establishes a relationship between the homology of the base, total space,
and fiber of a fibration. Of course, the hard work when computing with this
spectral sequence is in getting from E2 to E∞. But partial computations and
results are often accessible. For example, we will show later (and the reader
may wish to show as an exercise now) that if ⊕pHp(B;Q) and ⊕qHq(F ;Q)
are finite-dimensional, then so is ⊕nHn(E;Q) and

χ(B) · χ(F ) = χ(E).

Another example: if Hp(B;Q)⊗Hn−p(F ;Q) = 0 for all p, then Hn(E;Q) =
0. This generalizes a similar fact which can be proven for the trivial fibration
B × F → B using the Künneth theorem.

The next few definitions will provide us with a language to describe the
way that the parts of the spectral sequence fit together.

Definition 9.2. A filtration of an R-module A is an increasing union

0 ⊂ · · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fp ⊂ · · · ⊂ A.

of submodules. A filtration is convergent if the union of the Fp’s is A and
their intersection is 0.
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If A itself is graded, then the filtration is assumed to preserve the grading
i.e. Fp ∩ An ⊂ Fp+1 ∩ An. If A is graded, then we bigrade the filtration by
setting

Fp,q = Fp ∩Ap+q.

We will mostly deal with filtrations that are bounded below, i.e. Fs = 0
for some s, or bounded above, i.e. Ft = A for some t, or bounded, i.e. bounded
above and bounded below. In this book, we will always have F−1 = 0.

Definition 9.3. Given a filtration F = {Fn} of an R-module A the associ-
ated graded module is the graded R-module denoted by Gr(A, F ) and defined
by

Gr(A, F )p =
Fp

Fp−1
.

We will usually just write Gr(A) when the filtration is clear from context.
In general, one is interested in the algebraic structure of A rather than

Gr(A). Notice that Gr(A) contains some (but not necessarily all) informa-
tion about A. For example, for a convergent filtration:

1. If Gr(A) = 0, then A = 0.
2. If R is a field and A is a finite dimensional vector space, then each

Fi is a subspace and Gr(A) and A have the same dimension. Thus
in this case Gr(A) determines A up to isomorphism. This holds for
more general R if each Gr(A)n is free and the filtration is bounded
above.

3. If R = Z, then given a prime b, information about the b-primary
part of Gr(A) gives information about the b-primary part of A; e.g.
if Gr(A)p has no b-torsion for all p then A has no b-torsion for all
p. However, the b-primary part of Gr(A) does not determine the b-
primary part of A; e.g. if Gr(A)0 = Z, Gr(A)1 = Z/2, and Gr(A)n =
0 for n �= 0, 1, it is impossible to determine whether A ∼= Z or A ∼=
Z⊕ Z/2.

In short, knowing the quotients Gr(A)p = Fp

/
Fp−1 determines A up to

“extension questions,” at least when the filtration is bounded.

Definition 9.4. A bigraded spectral sequence (Er
p,q, d

r) is called a homology
spectral sequence if the differential dr has bidgree (−r, r − 1).

Definition 9.5. Given a bigraded homology spectral sequence (Er
p,q, d

r),
and a graded R-module A∗, we say the spectral sequence converges to A∗
and write

E2
p,q ⇒ Ap+q

if:
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1. for each p, q, there exists an r0 so that dr
p,q is zero for each r ≥ r0 (by

Exercise 145 below this implies Er
p,q surjects to Er+1

p,q for r ≥ r0) and,

2. there is a convergent filtration of A∗, so that for each n, the limit
E∞p,n−p = lim

r→∞
Er

p,n−p is isomorphic to the associated graded module

Gr(A∗)p.

In many favorable situations (e.g. first-quadrant spectral sequences where
E2

p,q = 0 if p < 0 or q < 0) the convergence is stronger, namely for each pair
(p, q) there exists an r0 so that Er

p,q = E∞p,q for all r ≥ r0.
An even stronger notion of convergence is the following. Suppose that

there exists an r0 so that for each (p, q) and all r ≥ r0, Er
p,q = E∞p,q. When

this happens we say the spectral sequence collapses at Er0.

Exercise 145. Fix p, q ∈ Z⊕ Z.

1. Show that if there exists r0(p, q) so that dr
p,q = 0 for all r ≥ r0(p, q),

then there exists a surjection Er
p,q → Er+1

p,q for all r ≥ r0(p, q).

2. Show that if E2
p,q = 0 whenever p < 0 then there exists a number

r0 = r0(p, q) as above.

Theorems on spectral sequences usually take the form: “There exists a
spectral sequence with E2

p,q some known object converging to A∗.” This is
an abbreviated way to say that the E∞-terms are on the one hand the limits
of the Er-terms, and on the other the graded pieces in the associated graded
Gr(A∗) to A∗.

9.2. The Leray-Serre-Atiyah-Hirzebruch
spectral sequence

Serre, based on earlier work of Leray, constructed a spectral sequence con-
verging to H∗(E), given a fibration

F ↪→ E
f−→ B.

Atiyah and Hirzebruch, based on earlier work of G. Whitehead, constructed
a spectral sequence converging to G∗(B) where G∗ is an additive generalized
homology theory and B is a CW-complex . The spectral sequence we present
here is a combination of these spectral sequences and converges to G∗(E)
when G∗ is an additive homology theory. The spectral sequence is carefully
constructed in [43], and we refer you there for a proof.

We may assume B is path connected by restricting to path components,
but we do not wish to assume B is simply connected. In order to deal
with this case we will have to use local coefficients derived from the fibra-
tion. Theorem 6.12 shows that the homotopy lifting property gives rise to
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a homomorphism

π1B → {Homotopy classes of homotopy equivalences F → F}.
Applying the (homotopy) functor Gn one obtains a representation

π1B → Aut (GnF )

for each integer n. Thus for each n, Gn(F ) has the structure of a Z[π1B]
module or, equivalently, one has a system of local coefficients over B with
fiber Gn(F ). (Of course, if π1B = 1 than this is a trivial local coefficient
system.)

Taking (ordinary) homology with local coefficients, we can associate the
group Hp(B;GqF ) to each pair of integers p, q. Notice that Hp(B;GqF ) is
zero if p < 0.

Theorem 9.6. Let F ↪→ E
f−→ B be a fibration, with B a path connected

CW-complex. Let G∗ be an additive homology theory. Then there exists a
spectral sequence

Hp(B;GqF ) ∼= E2
p,q ⇒ Gp+q(E).

Exercise 146. If G∗ is an additive, isotropic homology theory, then the
hypothesis that B is a CW-complex can be omitted. (Hint: for any space
B there is a weak homotopy equivalence from a CW-complex to B.)

As a service to the reader, we will explicitly unravel the statement of
the above theorem. There exists

1. A (bounded below) filtration

0 = F−1,n+1 ⊂ F0,n ⊂ F1,n−1 ⊂ · · · ⊂ Fp,n−p ⊂ · · · ⊂ Gn(E)

of Gn(E) = ∪pFp,n−p for each integer n.
2. A bigraded spectral sequence (Er

∗,∗, d
r) such that the differential dr

has bidegree (−r, r − 1) (i.e. dr(Er
p,q) ⊂ Er

p−r,q+r−1), and so

Er+1
p,q =

ker dr : Er
p,q → Er

p−r,q+r−1

Im dr : Er
p+r,q−r+1 → Er

p,q

.

3. Isomorphisms E2
p,q
∼= Hp(B;GqF ).

This spectral sequence converges to G∗(E). That is, for each fixed p, q,
there exists an r0 so that

dr : Er
p,q → Er

p−r,q+r−1

is zero for all r ≥ r0 and so

Er+1
p,q = Er

p,q

/
dr(Er

p+r,q−r+1)
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for all r ≥ r0.
Define E∞p,q = lim

r→∞
Er

p,q. There is an isomorphism

Fp,q

/
Fp−1,q+1

∼= E∞p,q,

i.e.
Gr(GnE)p

∼= E∞p,n−p

with respect to the filtration of Gn(E).
In this spectral sequence, some filtrations of the groups Gn(E) are given,

with the associated graded groups made up of the pieces E∞p,n−p. So, for
example, if Gn(E) = 0, then E∞p,n−p = 0 for each p ∈ Z.

The filtration is given by

Fp,n−p = Im (Gn(f−1(Bp))→ GnE)

where f : E → B is the fibration and Bp denotes the p-skeleton of B.

As a first non-trivial example of computing with spectral sequences we
consider the problem of computing the homology of the loop space of a
sphere. Given k > 1, let P = Px0S

k be the space of paths in Sk which start
at x0 ∈ Sk. As we saw in Chapter 6 evaluation at the endpoint defines a
fibration P → Sk with fiber the loop space ΩSk. Moreover the path space
P is contractible.

The spectral sequence for this fibration (using homology with integer
coefficients for G∗) has E2

p,q = Hp(Sk;Hq(ΩSk)). The coefficients are un-
twisted since π1(Sk) = 0. Therefore

E2
p,q =

{
Hq(ΩSk) if p = 0 or p = k,

0 otherwise.
(9.1)

In particular this is a first-quadrant spectral sequence.
Since Hn(P ) = 0 for all n �= 0, the filtration of Hn(P ) is trivial for n > 0

and so E∞p,q = 0 if p+ q > 0. Since this is a first-quadrant spectral sequence,
E∞p,q = 0 for all (p, q) �= (0, 0), and, furthermore, given any (p, q) �= (0, 0),
Er

p,q = 0 for some r large enough.
Now here’s the cool part. Looking at the figure and keeping in mind

the fact that the bidegree of dr is (−r, r − 1), we see that all differentials
dr : Er

p,q → Er
p−r,q+r−1 either:

1. start or end at a zero group, or

2. r = k and (p, q) = (k, q) with q ≥ 0, so that

dk : Ek
k,q → Ek

0,q+k−1.
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The following picture shows the Ek-stage and the differential dk : Ek
k,0 →

Ek
0,k−1. The shaded columns contain the only possible non-zero entries, since

E2
p,q = 0 if p �= 0 or k.

k−1 Ek
0,k−1 Ek

k,k−1

0 Ek
0,0 Ek

k,0

0 k

Hence

E2
p,q = E3

p,q = · · · = Ek
p,q.(9.2)

Thus if (p, q) �= (0, 0),

0 = E∞p,q = Ek+1
p,q =


ker dk : Ek

k,q → Ek
0,q+k−1 if (p, q) = (k, q),

Coker dk : Ek
k,q → Ek

0,q+k−1 if (p, q) = (0, q + k − 1),
0 otherwise.

Therefore, the spectral sequence collapses at Ek+1.
Hence dk is an isomorphism, i.e. Ek

k,q
∼= Ek

0,q+k−1 whenever (k, q) �= (0, 0)
or q �= 1− k. Using Equations (9.2) and (9.1) we can restate this as

Hq(ΩSk) ∼= Hq+k−1(ΩSk).

Using induction, starting with H0(ΩSk) = 0, we conclude that

Hq(ΩSk) =

{
Z if q = a(k − 1), a ≥ 0
0 otherwise.

(9.3)
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Exercise 147. If Sk ↪→ S� f−→ Sm is a fibration, then F = 2m − 1 and
k = m − 1. (In fact, it is a result of Adams that there are only such
fibrations for m = 1, 2, 4 and 8.)

Returning to our general discussion, notice that Er+1
p,q and E∞p,q are sub-

quotients of Er
p,q ; in particular, since E2

p,q
∼= Hp(B;GqF ) we conclude the

following fundamental fact.

Theorem 9.7. The associated graded module to the filtration of Gn(E) has
graded summands which are subquotients of Hp(B;Gn−pF ).

This fact is the starting point for many spectral sequence calculations.
For example,

Theorem 9.8. If Hp(B;Gn−pF ) = 0 for all p, then Gn(E) = 0.

Proof. Since E2
p,n−p = 0 for each p, it follows that E∞p,n−p = 0 for each p

and so Gn(E) = 0.

9.3. The edge homomorphisms and the
transgression

Before we turn to more involved applications, it is useful to know several
facts about the Leray-Serre-Atiyah-Hirzebruch spectral sequence. These
facts serve to identify certain homomorphisms which arise in the guts of the
spectral sequence with natural maps induced by the inclusion of the fiber or
the projection to the base in the fibration.

Lemma 9.9. In the Leray-Serre-Atiyah-Hirzebruch spectral sequence there
is a surjection

E2
0,n → E∞0,n

for all n.

Proof. Notice that

Er+1
0,n =

ker dr : Er
0,n → Er

−r,n+r−1

Im dr : Er
r,n−r+1 → Er

0,n

for r > 1.

But, since E2
p,q = 0 for p < 0, we must have E2

−r,q = 0 for all q and so also
its subquotient Er

−r,q = 0 for all q.
Hence (ker dr : Er

0,n → Er
−r,n+r−1) = Er

0,n and so

Er+1
0,n =

Er
0,n

Im dr
.

Thus each Er
0,n surjects to Er+1

0,n and hence also to the limit E∞0,n.
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Proposition 5.14 says that that if V is any local coefficient system over
a path connected space B, then

H0(B;V ) = V
/
〈v − α · v | v ∈ V, α ∈ π1B〉.

Applying this to V = Gn(F ), it follows that there is a surjection

Gn(F )→ H0(B;GnF ).(9.4)

We can now use the spectral sequence to construct a homomorphism
G∗(F ) → G∗(E). Theorem 9.10 below asserts that this homomorphism is
just the homomorphism induced by the inclusion of the fiber into the total
space.

Since F−1,n−1 = 0,

E∞0,n
∼= F0,n/F−1,n+1 = F0,n ⊂ Gn(E).

This inclusion can be precomposed with the surjections of Lemma 9.9 and
Equation (9.4) to obtain a homomorphism (called an edge homomorphism)

Gn(F )→ H0(B;GnF ) ∼= E2
0,n → E∞0,n ⊂ Gn(E).(9.5)

Theorem 9.10. The edge homomorphism given by (9.5) equals the map
i∗ : Gn(F ) → Gn(E) induced by the inclusion i : F ↪→ E by the homology
theory G∗.

Another simple application of the spectral sequence is to compute ori-
ented bordism groups of a space in low dimensions. We apply the Leray-
Serre-Atiyah-Hirzebruch spectral sequence to the fibration pt ↪→ X

Id−→ X,
and take G∗ = ΩSO

∗ , oriented bordism.
In this case the Leray-Serre-Atiyah-Hirzebruch spectral sequence says

Hp(X; ΩSO
q (pt))⇒ ΩSO

p+q(X).

Notice that the coefficients are untwisted; this is because the fibration is
trivial. Write ΩSO

n = ΩSO
n (pt). Note that pt ↪→ X is split by the constant

map, hence the edge homomorphism ΩSO
n → ΩSO

n (X) is a split injection, so
by Theorem 9.10, the differentials dr : Er

r,n−r+1 → Er
0,n whose targets are

on the vertical edge of the first quadrant must be zero, i.e. every element of
E2

0,n survives to E∞0,n = ΩSO
n .

Recall from Section 8.7 that ΩSO
q = 0 for q = 1, 2, 3, and ΩSO

q = Z for
q = 0 and 4. Of course ΩSO

q = 0 for q < 0. Thus for n = p + q ≤ 4, the
only (possibly) non-zero terms are E2

n,0
∼= Hn(X) and E2

0,4 = ΩSO
4 . Hence

E2
p,n−p = E∞p,n−p for n = 0, 1, 2, 3, and 4. From the spectral sequence one
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concludes

ΩSO
n (X) ∼= Hn(X) for n = 0, 1, 2, 3

ΩSO
4 (X) ∼= Z⊕H4(X).

It can be shown that the map ΩSO
n (X) → Hn(X) is a Hurewicz map

which takes f : M → X to f∗([M ]). In particular this implies that any
homology class in Hn(X) for n = 0, 1, 2, 3, and 4 is represented by a map
from an oriented manifold to X. The map ΩSO

4 (X)→ Z is the map taking
f : M → X to the signature of M .

We next identify another edge homomorphism which can be constructed
in the same manner as (9.5). The analysis will be slightly more involved
and we will state it only in the case when G∗ is ordinary homology with
coefficients in an R-module (we suppress the coefficients).

In this context E2
p,q = Hp(B;HqF ) = 0 for q < 0 or p < 0. So E∗∗,∗ is a

first-quadrant spectral sequence, i.e. Er
p,q = E∞p,q = 0 for q < 0 or p < 0.

This implies that the filtration of Hn(E) has finite length

0 = F−1,n+1 ⊂ F0,n ⊂ F1,n−1 ⊂ · · · ⊂ Fn,0 = Hn(E)

since
0 = E∞p,n−p = Fp,n−p/Fp−1,n−p+1

if p < 0 or n− p < 0.
The second map in the short exact sequence

0→ Fn−1,1 → Fn,0 → E∞n,0 → 0

can thus be thought of as a homomorphism

Hn(E)→ E∞n,0.(9.6)

Lemma 9.11. There is an inclusion

E∞n,0 ⊂ E2
n,0

for all n.

Proof. Since Er
n+r,1−r = 0 for r > 1,

Er+1
n,0 =

ker dr : Er
n,0 → Er

n−r,r−1

Im dr : Er
n+r,1−r → Er

n,0

= ker dr : Er
n,0 → Er

n−r,r−1.

Thus
· · · ⊂ Er+1

n,0 ⊂ Er
n,0 ⊂ Er−1

n,0 ⊂ · · ·
and hence

E∞n,0 =
⋂
r

Er
n,0 ⊂ E2

n,0.
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Note that the constant map from the fiber F to a point induces a ho-
momorphism Hn(B;H0F ) → HnB. If F is path connected, then the local
coefficient system H0F is trivial and Hn(B;H0(F )) = Hn(B) for all n.

Theorem 9.12. The composite map (also called an edge homomorphism)

Hn(E) = Fn,0 → E∞n,0 ⊂ E2
n,0
∼= Hn(B;H0F )→ Hn(B)

is just the map induced on homology by the projection f : E → B of the
fibration.

The long differential dk : Ek
k,0 → Ek

0,k−1 in the spectral sequence for
a fibration (for ordinary homology) has an alternate geometric interpreta-
tion called the transgression. It is defined as follows. Suppose f : E → B
is a fibration with fiber F . Fix k > 0. We assemble the homomorphism
f∗ : Hk(E, F ) → Hk(B, b0), the isomorphism Hk(B) ∼= Hk(B, b0), and
the connecting homomorphism δ : Hk(E, F ) → Hk−1(F ) for the long ex-
act sequence of the pair (E, F ) to define a (not well-defined, multi–valued)
function τ : Hk(B)“→”Hk−1(F ) as the “composite”

τ : Hk(B) ∼= Hk(B, b0)
f∗←− Hk(E, F ) δ−→Hk−1(F ).

To make this more precise, we take as the domain of τ the image of
f∗ : Hk(E, F ) → Hk(B, b0) ∼= Hk(B), and as the range of τ the quotient
of Hk−1(F ) by δ(ker f∗ : Hk(E, F ) → Hk(B, b0)). A simple diagram chase
shows τ is well-defined with this choice of domain and range. Thus the
transgression τ is an honest homomorphism from a subgroup of Hk(B) to a
quotient group of Hk−1(F ). Intuitively, the transgression is trying his/her
best to imitate the boundary map in the long exact homotopy sequence for
a fibration (see Theorem 9.15 below).

Assume for simplicity that F is path connected, and consider the differ-
ential

dk : Ek
k,0 → Ek

0,k−1

in the spectral sequence for this fibration (taking G∗ = H∗ = ordinary
homology). Its domain, Ek

k,0, is a subgroup of E2
k,0 = Hk(B;H0(F )) =

Hk(B) because all differentials dr into Ek
k,0 are zero for r < k (this is a

first-quadrant spectral sequence) and hence Ek
k,0 is just the intersection of

the kernels of dr : Er
k,0 → Er

k−r,r−1 for r < k.

Similarly the range Ek
0,k−1 of dk : Ek

k,0 → Ek
0,k−1 is a quotient of E2

0,k−1 =
H0(B;Hk−1(F )), which by Proposition 5.14 is just the quotient of Hk−1(F )
by the action of π1(B).

We have shown that like the transgression, the differential dk : Ek
k,0 →

Ek
0,k−1 has domain identified with a subgroup of Hk(B) and range a quotient
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of Hk−1(F ). The following theorem identifies the transgression and this
differential.

Theorem 9.13 (Transgression Theorem). The differential dk : Ek
k,0 → Ek

0,k−1

in the spectral sequence of the fibration F ↪→ E → B coincides with the
transgression

Hk(B) ⊃ domain(τ) τ−→ range(τ) = Hk−1(F )/δ(ker f∗).

The proofs of Theorems 9.10, 9.12, and 9.13 are not hard, but require
an examination of the construction which gives the spectral sequence. We
omit the proofs, but you should look them up when working through the
project for this chapter.

9.4. Applications of the homology spectral
sequence

9.4.1. The five-term and Serre exact sequences.

Corollary 9.14 (Five-term exact sequence). Suppose that F ↪→ E
f−→ B is

a fibration with B and F path connected. Then there exists an exact sequence

H2(E)
f∗−→ H2(B) τ−→H0(B;H1(F ))→ H1(E)

f∗−→ H1(B)→ 0.

The composite of the surjection H1(F ) → H0(B;H1(F )) with the map
H0(B;H1(F ))→ H1(E) in this exact sequence is the homomorphism induced
by the inclusion F ↪→ E, and τ is the transgression.

Proof. Take G∗ = H∗(−), ordinary homology, perhaps with coefficients.
The corresponding first quadrant spectral sequence has

E2
p,q
∼= Hp(B;HqF )

and converges to H∗(E).
The local coefficient system π1B → Aut(H0(F )) is trivial since F is path

connected. Thus E2
p,0 = Hp(B;H0(F )) = Hp(B).

The following facts either follow immediately from the statement of The-
orem 9.6 or are easy to verify, using the bigrading of the differentials and
the fact that the spectral sequence is a first–quadrant spectral sequence.

1. H1(B) ∼= E2
1,0 = Er

1,0 = E∞1,0 for all r ≥ 2.

2. H2(B) ∼= E2
2,0.

3. H0(B;H1F ) = E2
0,1.

4. E∞2,0 = Er
2,0 = E3

2,0 = ker d2 : E2
2,0 → E2

0,1 for all r ≥ 3.
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5. E∞0,1 = Er
0,1 = E3

0,1 = coker d2 : E2
2,0 → E2

0,1 for all r ≥ 3.

Exercise 148. Prove these five facts.

The last two facts give an exact sequence

0→ E∞2,0 → E2
2,0

d2

−→ E2
0,1 → E∞0,1 → 0.

or, making the appropriate substitutions, the exact sequence

0→ E∞2,0 → H2(B)→ H0(B;H1(F ))→ E∞0,1 → 0.(9.7)

Since the spectral sequence converges to H∗(E), and the E∞p,n−p form
the associated graded groups for Hn(E), the two sequences

0→ E∞0,1 → H1(E)→ E∞1,0 → 0(9.8)

and

E∞1,1 → H2(E)→ E∞2,0 → 0(9.9)

are exact.
Splicing the sequences (9.7), (9.8), and (9.9) together and using the first

fact above one obtains the exact sequence

E∞1,1 → H2(E)→ H2(B)→ H0(B;H1(F ))→ H1(E)→ H1(B)→ 0.

In this sequence the homomorphism Hi(E) → Hi(B) is the edge homo-
morphism and hence is induced by the fibration f : E → B. The map
H0(B;H1(F ))→ H2(E) composes with H1(F )→ H0(B;H1(F )) to give the
other edge homomorphism, induced by the inclusion of the fiber. The map
H2(B) → H0(B;H1(F )) is the transgression. These assertions follow by
chasing definitions and using Theorems 9.10, 9.12 and 9.13.

We have seen, beginning with our study of the Puppe sequences, that
cofibrations give exact sequences in homology and fibrations give exact se-
quences in homotopy. One might say that a map is a “fibration or cofibration
in some range” if there are partial long exact sequences. Corollary 9.14 im-
plies that if π1B acts trivially on H1(F ), then the fibration is a cofibration
in a certain range. A more general result whose proof is essentially identical
to that of Corollary 9.14 is given in the following important theorem.

Theorem 9.15 (Serre exact sequence). Let F
i−→ E

f−→ B be a fibration
with B and F path connected and with π1B acting trivially on H∗F . Suppose
HpB = 0 for 0 < p < m and HqF = 0 for 0 < q < n. Then there is an
exact sequence

Hm+n−1F
i∗−→ Hm+n−1E

f∗−→ Hm+n−1B
τ−→Hm+n−2F

i∗−→ · · ·

· · · f∗−→ H1B → 0.
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Exercise 149. Prove Theorem 9.15.

To understand this result, suppose B is (m − 1)-connected and F is
(n − 1)-connected. The long exact sequence for a fibration shows that E
is (min(m, n) − 1)-connected, so that by the Hurewitz theorem, HqE =
0 for q < min(m, n). So trivially the low-dimensional part of the Serre
exact sequence is exact; indeed all groups are zero for q < min(m, n). The
remarkable fact is that the sequence remains exact for all min{m, n} ≤ q <
m + n.

9.4.2. Euler characteristics and fibrations. Let k be a field. Recall
that the Euler characteristic of a space Z is defined to be the alternating sum
χ(Z) =

∑
n(−1)nβn(Z; k) of the Betti numbers βn(Z; k) = dimk(Hn(Z; k))

whenever this sum is a finite sum of finite ranks. For finite CW-complexes
it is equal to the alternating sum of the number of n-cells by the following
standard exercise applied to the cellular chain complex.

Exercise 150. Let (C∗, ∂) be a chain complex over a field with ⊕iCi finite-
dimensional. Show that the alternating sum of the ranks of the Ci equals
the alternating sum of the ranks of the cohomology groups Hi(C∗, ∂).

Given a product space E = B × F with B and F finite CW-complexes,
the Künneth theorem implies that the homology with field coefficients is a
tensor product

H∗(E; k) ∼= H∗(B; k)⊗H∗(F ; k)

from which it follows that the Euler characteristic is multiplicative

χ(E) = χ(B) · χ(F ).

The following theorem extends this formula to the case when E is only a
product locally, i.e. fiber bundles, and even to fibrations.

Notice that the homology itself need not be multiplicative for a non-
trivial fibration. For example, consider the Hopf fibration S3 ↪→ S7 → S4.
The graded groups H∗(S7; k) and H∗(S3; k)⊗H∗(S4; k) are not isomorphic,
even though the Euler characteristics multiply (0 = 0 · 2).

Theorem 9.16. Let p : E → B be a fibration with fiber F , let k be a field,
and suppose the action of π1B on H∗(F ; k) is trivial. Assume that the Euler
characteristics χ(B), χ(F ) are defined (e.g. if B, F are finite cell complexes).
Then χ(E) is defined and

χ(E) = χ(B) · χ(F ).
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Proof. Since k is a field and the action of π1B on H∗(F ; k) is trivial,

Hp(B;Hq(F ; k)) ∼= Hp(B; k)⊗k Hq(F ; k)

by the universal coefficient theorem. Theorem 9.6 with G∗ = H∗(−; k)
implies that there exists a spectral sequence with

E2
p,q
∼= Hp(B; k)⊗Hq(F ; k).

By hypothesis, E2
p,q is finite-dimensional over k, and is zero for all but

finitely many pairs (p, q). This implies that the spectral sequence collapses
at some stage and so E∞p,q = Er

p,q for r large enough.
Define

Er
n = ⊕pE

r
p,n−p

for each n and r ≥ 2 including r =∞.
Then since the Euler characteristic of the tensor product of two graded

vector spaces is the product of the Euler characteristics,

χ(E2
∗) = χ(B)χ(F ).

Notice that (Er
∗ , d

r) is a (singly) graded chain complex with homology Er+1
∗ .

Exercise 150 shows that for any r ≥ 2,

χ(Er
∗) = χ(H∗(Er

∗ , d
r)) = χ(Er+1

∗ ).

Since the spectral sequence collapses χ(E2
∗) = χ(E∞∗ ).

Since we are working over a field, Hn(E; k) is isomorphic to its associ-
ated graded vector space ⊕pE

∞
p,n−p = E∞n . In particular Hn(E; k) is finite-

dimensional and dim Hn(E; k) = dim E∞n .
Therefore,

χ(B)χ(F ) = χ(E2
∗) = χ(E∞∗ ) = χ(H∗(E; k)) = χ(E).

9.4.3. The homology Gysin sequence.

Theorem 9.17. Let R be a commutative ring. Suppose F ↪→ E
f−→ B is a

fibration, and suppose F is a R-homology n-sphere, i.e.

Hi(F ;R) ∼=
{

R if i = 0 or n,
0 otherwise.

Assume that π1B acts trivially on Hn(F ;R). Then there exists an exact
sequence (R-coefficients):

· · · → HrE
f∗−→ HrB → Hr−n−1B → Hr−1E

f∗−→ Hr−1B → · · ·
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Proof. The spectral sequence for the fibration (using ordinary homology
with R-coefficients) has

E2
p,q
∼= Hp(B;HqF ) =

{
Hp(B;R) if q = 0 or n,
0 otherwise.

The following diagram shows the E2-stage. The two shaded rows (q = 0
and q = n) are the only rows that might contain a non-zero E2

p,q.

n

q

0

p

Thus the only possibly non-zero differentials are

dn+1 : En+1
p,0 → En+1

p−n−1,n.

It follows that

En+1
p,q
∼= E2

p,q
∼= Hp(B;HqF ) =

{
HpB if q = 0 or n,
0 otherwise

and

E∞p,q
∼=


0 if q �= 0 or n,
ker dn+1 : En+1

p,0 → En+1
p−n−1,n if q = 0,

coker dn+1 : En+1
p+n+1,0 → En+1

p,q if q = n.

(9.10)

The filtration of Hr(E) reduces to

0 ⊂ E∞r−n,n
∼= Fr−n,n ⊂ Fr,0 = HrE

and so the sequences

0→ E∞r−n,n → HrE → E∞r,0 → 0
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are exact for each r. Splicing these with the exact sequences

0→ E∞p,0 → En+1
p,0

dn+1

−−−→ En+1
p−n−1,n → E∞p−n−1,n → 0

(obtained from Equation (9.10)) gives the desired exact sequence

· · · → HrE
f∗−→ HrB → Hr−n−1B → Hr−1E → Hr−1B → · · ·

with the map labelled f∗ induced by f : E → B by Theorem 9.12.

Exercise 151. Derive the Wang sequence. If F ↪→ E → Sn is a fibration
over Sn, then there is an exact sequence

· · · → HrF → HrE → Hr−nF → Hr−1F → · · ·

9.5. The cohomology spectral sequence

The examples in the previous section show that spectral sequences are a
useful tool for establishing relationships between the homology groups of
the three spaces forming a fibration. Much better information can often be
obtained by using the ring structure on cohomology. We next introduce the
cohomology spectral sequence and relate the ring structures on cohomology
and the spectral sequence. The ring structure makes the cohomology spec-
tral sequence a much more powerful computational tool than the homology
spectral sequence.

Definition 9.18. A bigraded spectral sequence (Ep,q
r , dr) is called a coho-

mology spectral sequence if the differential dr has bidgree (r, 1− r).

Notice the change in placement of the indices in the cohomology spectral
sequence. The contravariance of cohomology makes it necessary to change
the notion of a filtration. There is a formal way to do this, namely by
“lowering indices”, for example rewrite Hp(X) as H−p(X), rewrite F p as
F−p, replace Ep,q

r by Er
−p,−q and so forth. Unfortunately for this to work

the notion of convergence of a spectral sequence has to be modified; with the
definition we gave above the cohomology spectral sequence of a fibration will
not converge. Rather than extending the formalism and making the notion
of convergence technically more complicated, we will instead just make new
definitions which apply in the cohomology setting.

Definition 9.19. A (cohomology) filtration of an R-module A is an increas-
ing union

0 ⊂ · · · ⊂ F p ⊂ · · · ⊂ F 2 ⊂ F 1 ⊂ F 0 ⊂ F−1 ⊂ · · · ⊂ A.

of submodules. A filtration is convergent if the union of the Fp’s is A and
their intersection is 0.
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If A itself is graded, then the filtration is assumed to preserve the grading
i.e. F p ∩An ⊂ F p−1 ∩An. If A is graded, then we bigrade the filtration by
setting

F p,q = F p ∩Ap+q.

Definition 9.20. Given a cohomology filtration F = {Fn} of an R-module
A the associated graded module is the graded R-module denoted by Gr(A, F )
and defined by

Gr(A, F )p =
F p

F p+1
.

Definition 9.21. Given a bigraded cohomology spectral sequence (Ep,q
r , dr),

and a graded R-module A∗, we say the spectral sequence converges to A∗ and
write

Ep,q
2 ⇒ Ap+q

if:

1. for each (p, q) there exists an r0 so that dr : Ep−r,q+r−1
r → Ep,q

r is zero
for all r ≥ r0; in particular there is an injection Ep,q

r+1 ↪→ Ep,q
r for all

r ≥ r0, and
2. there is a convergent filtration of A∗, so that for each n, the limit

Ep,q
∞ = ∩r≥r0E

p,q
r is isomorphic to the associated graded Gr(A∗)p.

Theorem 9.22. Let F ↪→ E
f−→ B be a fibration, with B a path connected

CW-complex. Let G∗ be an additive cohomology theory. Assume either that
B is a finite-dimensional CW-complex or else that there exists an N so that
Gq(F ) = 0 for all q < N . Notice that π1(B) acts on Gq(F ) determining a
local coefficient system.

Then there exists a (cohomology) spectral sequence

Hp(B;GqF ) ∼= Ep,q
2 ⇒ Gp+q(E).

There is a version of this theorem which applies to infinite CW-complexes,
see [43].

Exercise 152. State and prove the cohomology versions of the Serre, Gysin,
and Wang sequences. Construct the cohomology edge homomorphisms and
the cohomology transgression and state the analogues of Theorems 9.10,
9.12, and 9.13.

As an example we show how to compute the complex K-theory of com-
plex projective space CP k (see Section 8.8.4 and the project for Chapter
8). The computation of complex K-theory was the original motivation for
Atiyah-Hirzebruch to set up their spectral sequence. Complex K-theory is
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a cohomology theory satisfying Kn(X) = Kn+2(X), and its coefficients are
given by

K2n(pt) = π0(Z×BU) = Z

and

K2n+1(pt) = π1(Z×BU) = 0.

Theorem 9.22, applied to the trivial fibration

pt ↪→ CP k Id−→ CP k,

says there exists a cohomology spectral sequence Ep,q
r satisfying

Hp(CP k;Kq(pt)) ∼= Ep,q
2 ⇒ Kp+q(CP k).

The coefficients are untwisted since the fibration is trivial. Since

Hp(CP k) =

{
Z if p is even, 0 ≤ p ≤ 2k

0 otherwise,

it follows that

Ep,q
2 =

{
Z if p and q are even, 0 ≤ p ≤ 2k

0 otherwise.

This checkerboard pattern forces every differential to be zero, since one
of the integers (r, 1 − r) must be odd! Notice, by the way, that this is not
a first-quadrant spectral sequence since the K-theory of a point is non-zero
in positive and negative dimensions.

Therefore Ep,q
2 = Ep,q

∞ and the associated graded group to Kn(CP k),
⊕pE

p,n−p
∞ , is a direct sum of k + 1 copies of Z, one for each pair (p, q) so

that p + q = n, both p and q are even, and 0 ≤ p ≤ 2k. Inducting down the
filtration we see that Kn(CP k) has no torsion and hence is isomorphic to
its associated graded group. Therefore

Kn(CP k) =

{
Zk+1 if n is even,

0 otherwise.

To study the multiplicative properties of the cohomology spectral se-
quence, take G∗ to be ordinary cohomology with coefficients in a commuta-
tive ring R : G∗(E) = H∗(E;R). Let F ↪→ E → B be a fibration. To avoid
working with cup products with local coefficients, we assume that π1B acts
trivially on H∗(F ).

Lemma 9.23. Hp(B;HqF ) ∼= Ep,q
2 is a bigraded algebra over R.
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Proof. The cup product on H∗B induces a bilinear map

Hp(B;HqF )×Hr(B;HsF )→ Hp+r(B;HqF ⊗HsF ).

Composing with the coefficient homomorphism induced by the cup product
on H∗(F )

Hq(F )⊗Hs(F )→ Hq+s(F )

gives the desired multiplication

Ep,q
2 ⊗Er,s

2 =Hp(B;HqF )⊗Hr(B;HsF )→Hp+r(B;Hq+sF )=Ep+r,q+s
2 .

In many contexts the map E∗,02 ⊗ E0,∗
2 → E∗,∗2 is an isomorphism. The-

orem 2.33 can be quite useful in this regard, For example if R is a field
and B and F are simply connected finite CW-complexes then the map is an
isomorphism.

Theorem 9.24. The (Leray-Serre) cohomology spectral sequence of the fi-
bration is a spectral sequence of R-algebras. More precisely:

1. E∗,∗t is a bigraded R-algebra, i.e. there are products

Ep,q
t × Er,s

t → Ep+r,q+s
t .

2. dt : Et → Et is a derivation. This means that if a ∈ Ep,q
t , b ∈ Er,s

t

dt(a · b) = (dta) · b + (−1)p+qa · dtb.(9.11)

3. The product on Et+1 is induced from the one on Et (see Exercise 153
below) starting with the product on E2 given by cup products, as in
Lemma 9.23.

4. The following two ring structures on E∞ coincide. (This assertion is
a compatibility condition which relates the cup products on B, F , and
E.)

(a) Make E∗,∗∞ a bigraded R-algebra by using that each (a, b) ∈
Ep,q
∞ × Er,s

∞ is represented by an element of Ep,q
t × Er,s

t for t
large enough.

(b) The (usual) cup product

∪ : H∗(E)×H∗(E)→ H∗(E)

is “filtration preserving”, i.e. the diagram

F p,q × F r,s
F p+r,q+s

Hp+qE ×Hr+sE Hp+q+r+sE

✲

❄ ❄
✲∪
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commutes (this comes from the construction of the filtration),
and so this cup product induces a product on the associated
graded module, i.e. on E∞. (see Exercise 154).

Exercise 153. Suppose that E is a graded ring and d : E → E is a dif-
ferential (d2 = 0) and a derivation (Equation 9.11), then show that the
cohomology H∗(E, d) inherits a graded ring structure.

Exercise 154. Show that a filtration-preserving multiplication on a filtered
algebra induces a multiplication on the associated graded algebra.

Proposition 9.25. The rational cohomology ring of K(Z, n) is a polyno-
mial ring on one generator if n is even and a truncated polynomial ring one
one generator (in fact an exterior algebra on one generator) if n is odd:

H∗(K(Z, n);Q) =

{
Q[ιn] if n is even,

Q[ιn]/ι2n if n is odd

where deg(ιn) = n.

Proof. We induct on n. For n = 1, K(Z, 1) = S1 which has cohomology
ring Z[ι1]/ι21.

Suppose the theorem is true for k < n. Consider the Leray–Serre spec-
tral sequence for path space fibration K(Z, n − 1) ↪→ P → K(Z, n) for
cohomology with rational coefficients. Then

Ep,q
2 = Hp(K(Z, n);Q)⊗Q Hq(K(Z, n− 1);Q)⇒ Hp+q(P ;Q).

Since Hp+q(P ;Q) = 0 for (p, q) �= (0, 0), The differential

dn : E0,n−1
n → En,0

n

must be an isomorphism. Since E0,n−1
n = Hn−1(K(Z, n − 1);Q) ∼= Q,

generated by ιn−1, and En,0
n = En,0

2 = Hn(K(Z, n);Q) ∼= Q, generated by
ιn, it follows that dn(ιn−1) is a non-zero multiple of ιn. By rescaling the
generator ιn by a rational number assume inductively that dn(ιn−1) = ιn.

Consider the cases n even and n odd separately. If n is even, then since
Hq(K(Z, n − 1);Q) = 0 unless q = 0 or n − 1, Ep,q

2 = 0 unless q = 0
or n − 1. This implies that 0 = Ep,q

∞ = Ep,q
n+1 for (p, q) �= (0, 0) and the

derivation property of dn says that dn(ιn−1ι
r
n) = ιr+1

n which, by induction
on r, is non-zero. It follows easily from 0 = Ep,q

∞ = Ep,q
n+1 for (p, q) �= (0, 0)

that Hp(K(Z, n);Q) = 0 if p is not a multiple of n, and is isomorphic to Q
for p = nr. Since ιrn is non-zero it generates Hnr(K(Z, n);Q) ∼= Q and so
H∗(K(Z, n);Q) is a polynomial ring on ιn as required.
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If n is odd, the derivation property of dn implies that

dn(ι2n−1) = dn(ιn−1)ιn−1 + (−1)n−1ιn−1dn(ιn−1) = 2ιn−1ιn.

Hence dn : E0,2n−2
n → En,n−1

2 is an isomorphism. More generally by induc-
tion one sees that dn(ιrn−1) = rιnιr−1

n−1, so that dn : E
0,r(n−1)
n → E

n,(r−1)(n−1)
2

is an isomorphism. It is then easy to see that the spectral sequence collapses
at En+1, and hence Hp(K(Z, n);Q) = Q for p = 0 or n and zero otherwise.

We will show how to use Theorem 154 to compute π4S
3. This famous

theorem was first proven by G.W. Whitehead and Rohlin (independently).
The argument is effortless using spectral sequences.

Theorem 9.26. π4S
3 = Z/2.

Proof. Since Z = H3(S3) = [S3, K(Z, 3)] , choose a map f : S3 → K(Z, 3)
representing the generator. For example, K(Z, 3) can be obtained by adding
5 cells, 6 cells, etc. to S3 inductively to kill all the higher homotopy groups
of S3 and then f can be taken to be the inclusion. The Hurewicz theorem
implies that f∗ : π3S

3 → π3(K(Z, 3)) is an isomorphism.
Pull back the fibration

K(Z, 2)→ ∗ → K(Z, 3)

(this is shorthand for ΩK(Z, 3) ↪→ P → K(Z, 3) where P is the contractible
path space) via f to get a fibration

K(Z, 2)→ X → S3.(9.12)

Alternatively, let X be the homotopy fiber of f , i.e. X → S3 → K(Z, 3)
is a fibration up to homotopy. Then ΩK(Z, 3) ∼ K(Z, 2) is the homotopy
fiber of X → S3 by Theorem 6.40. (We will use the fibration (9.12) again
in Chapter 10.)

In the long exact homotopy sequence for a fibration, ∂ : π3S
3
∼=−→

π2(K(Z, 2)). Hence

πkX =

{
0 if k ≤ 3,
πkS

3 if k > 3.

In particular, H4X = π4X = π4S
3. We will try to compute H4X using a

spectral sequence.
Consider the cohomology spectral sequence for the fibration (9.12). Then

Ep,q
2 = Hp(S3;HqK(Z, 2)). Recall that K(Z, 2) is the infinite complex pro-

jective space CP∞ whose cohomology algebra is the 1-variable polynomial
ring H∗(K(Z, 2)) = Z[c] where deg(c) = 2.
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Exercise 155. Give another proof of the fact that H∗(K(Z, 2)) = Z[c]
using the spectral sequence for the path space fibration

K(Z, 1)→ ∗ → K(Z, 2)

and the identification of K(Z, 1) with S1. (Hint: the argument is contained
in the proof of Proposition 9.25.)

Let i ∈ H3(S3) denote the generator. Then the E2-stage in the spectral
sequence is indicated in the following diagram. The labels mean that the
groups in question are infinite cyclic with the indicated generators. The
empty entries are zero. The entries in this table are computed using Lemma
9.23.

q

5

4 c2 ic2

3

2 c ic

1

0 Z i
p

0 1 2 3

Since H2X = 0 = H3X it follows that d3c = i. Therefore,

d3c2 = ic + ci = 2ci

This implies that Z/2 ∼= E3,2
4 = E3,2

∞ ∼= H5X and 0 = E0,4
4 = E0,4

∞ = H4X.
The universal coefficient theorem implies that H4X = Z/2. We conclude
that Z/2 ∼= π4X = π4S

3, as desired.

Corollary 9.27. πn+1S
n = Z/2 for all n ≥ 3. In particular, πS

1 = Z/2.

Proof. This is an immediate consequence of the Freudenthal suspension
theorem (Theorem 8.7).

Corollary 9.28. π4S
2 = Z/2.
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Proof. Apply the long exact sequence of homotopy groups to the Hopf
fibration S1 ↪→ S3 → S2.

The reader should think about the strategy used to make these compu-
tations. On the one hand fibrations were used to relate homotopy groups of
various spaces; on the other spectral sequences are used to compute homol-
ogy groups. The Hurewitz theorem is then used to conclude that a homology
group computation in fact gives a homotopy group computation.

9.6. Homology of groups

Definition 9.29. Let G be a group. Define the cohomology of G with Z
coefficients by

Hk(G;Z) = Hk(K(G, 1);Z).

Similarly define the homology of G

Hk(G;Z) = Hk(K(G, 1);Z).

More generally define the homology and cohomology of G with coeffi-
cients in any R-module A to be the corresponding homology or cohomology
of K(G, 1).

Corollary 7.27 implies that the homology and cohomology of a group are
well-defined. Moreover, the assignment G �→ K(G, 1) is functorial and takes
short exact sequences to fibrations. (The functoriality can be interpreted
in two different ways. For every group one associates a homotopy type
of spaces, and a group homomorphism leads to a homotopy class of maps
between the spaces. Alternatively, one can construct an honest functor from
the category of groups to the category of spaces by giving a specific model
of K(G, 1) related to the bar resolution in homological algebra.)

Groups are very mysterious nonabelian things and thus are hard to
study. Homology of groups gives abelian invariants, and has been very
useful in group theory as well as topology.

It follows that to understand the homology of groups related by exact
sequences amounts to understanding the homology of a fibration, for which,
as we have seen, spectral sequences are a good tool.

It is easy to see that K(A × B, 1) = K(A, 1) × K(B, 1), and so the
Künneth theorem can be used to compute the cohomology of products of
groups. Therefore the following result is all that is needed to obtain a com-
plete computation of the cohomology of finitely generated abelian groups.
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Theorem 9.30. The cohomology of Z/n is given by

Hq(Z/n;Z) =


Z if q = 0,
0 if q is odd, and
Z/n if q > 0 is even.

Proof. The exact sequence 0 → Z ×n−−→ Z → Z/n → 0 induces a fibration
sequence

K(Z, 2)→ K(Z, 2)→ K(Z/n, 2)

(see Proposition 7.28). By looping this fibration twice (i.e. taking iterated
homotopy fibers twice; see Theorem 6.40) we obtain the fibration

K(Z, 1)→ K(Z/n, 1)→ K(Z, 2).

The fiber K(Z, 1) is a circle.
Consider the spectral sequence for this fibration. The base is simply

connected so there is no twisting in the coefficients. Notice that

Ep,q
2 = Hp(K(Z, 2);HqS1) =

{
0 if q > 1, and
Hp(K(Z, 2);Z) if q = 0 or 1.

Using Lemma 9.23, the E2-stage is given by the following table, with the
empty entries equal to 0 and the others infinite cyclic with the indicated
generators (where i is the generator of H1(S1)).

q

1 i ic ic2 ic3

0 1 c c2 c3

p
0 1 2 3 4 5 6

Of course d2(i) = kc for some integer k, and the question is: what might
k be? We can find out by “peeking at the answer.” Since E0,2

∞ = 0 = E1,1
∞ ,

we see that H2(K(Z/n, 1)) = E2,0
∞ ∼= Z/k. Since π1(K(Z/n, 1)) = Z/n, by

the universal coefficient theorem, we see that H2 must be Z/n and hence
k = ±n. (Neat, huh?)

Let c be the image of c in E2,0
3 . Here is a picture of the E3-stage.
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q

1

0 1 c c2 c3

p
0 1 2 3 4 5 6

From this we see that the spectral sequence collapses at E3, and that as
graded rings E∗,0∞ ∼= H∗(K(Z/n, 1)). This not only completes the proof of
the theorem, but also computes the cohomology ring

H∗(K(Z/n, 1)) = Z[c̄]
/
〈nc̄〉.

Also, we can get the homology from the cohomology by using the uni-
versal coefficient theorem:

Hq(Z/n) =


Z if q = 0,
Z/n if q is odd, and
0 if q > 0 is even.

In applications, it is important to know the mod p-cohomology ring
(which is the mod p-cohomology ring on an infinite-dimensional lens space).
By the Künneth theorem (which implies that, with field coefficients, H∗(X×
Y ) ∼= H∗(X) ⊗H∗(Y )), it suffices to consider the case where n is a prime
power. Let Fp denote the field Z/pZ for a prime p.

Exercise 156. Show that H∗(Z/2;F2) ∼= F2[a] where a has degree one,
and if pk �= 2, H∗(Z/pk;Fp) ∼= Λ(a) ⊗ Fp[b], where a has degree one and b
has degree 2. Here Λ(a) is the 2-dimensional graded algebra over Fp with
Λ(a)0 ∼= Fp with generator 1, and Λ(a)1 ∼= Fp with generator a. (Hint: Use
RP∞ = K(Z/2, 1) and that a · a = −a · a for a ∈ H1.)

Exercise 157. Compute Hp(K(Z/2, n);Z/2) for as many p and n as you
can. Hint: try induction on n, using the fibration

K(Z/2, n)→ ∗ → K(Z/2, n + 1).

9.7. Homology of covering spaces

Suppose that f : X̃ → X is a regular cover of a path connected space X.
Letting G = π1(X)/f∗(π1(X̃)), f : X̃ → X is a principal G-bundle (with G
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discrete). Thus G ↪→ X̃ → X is pulled back from the universal G-bundle
G ↪→ EG→ BG (see Theorem 8.22). In other words, there is a diagram

G G

X̃ EG

X BG.

❄

✲=

❄

❄
f

✲

❄
✲h

It follows that the sequence

X̃ → X → BG

is a fibration (up to homotopy). (One way to see this is to consider the Borel
fibration X̃ ↪→ X̃ ×G EG → X. Since G acts freely on X̃, there is another
fibration EG ↪→ X̃×GEG→ X/G. Since EG is contractible we see that the
total space of the Borel fibration is homotopy equivalent to X.) Since G is
discrete, BG = K(G, 1). Applying the homology (or cohomology) spectral
sequence to this fibration immediately gives the following spectral sequence
of a covering space (we use the notation H∗(G) = H∗(K(G, 1))).

Theorem 9.31. Given a regular cover f : X̃ → X with group of covering
automorphisms G = π1(X)/f∗(π1(X̃)), there is a homology spectral sequence

Hp(G;Hq(X̃)) ∼= E2
p,q ⇒ Hp+q(X)

and a cohomology spectral sequence

Hp(G;Hq(X̃)) ∼= Ep,q
2 ⇒ Hp+q(X).

The twisting of the coefficients is just the one induced by the action of G on
X̃ by covering transformations.

Applying the five-term exact sequence (Corollary 9.14) in this context
gives the very useful exact sequence

H2(X)→ H2(G)→ H0(G;H1(X̃))→ H1(X)→ H1(G)→ 0.

Exercise 158. Use the spectral sequence of the universal cover to show
that for a path connected space X the sequence

π2(X)
ρ−→H2(X)→ H2(π1(X))→ 0

is exact, where ρ denotes the Hurewicz map.
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As an application we examine the problem of determining which finite
groups G can act freely on Sk. Equivalently, what are the fundamental
groups of manifolds covered by the k-sphere? First note that if g : Sk → Sk

is a fixed-point free map then g is homotopic to the antipodal map (can you
remember how to prove this?), and so is orientation-preserving if k is odd
and orientation-reversing if k is even. Thus if k is even, the composite of
any two non-trivial elements of G must be trivial, from which it follows that
G has 1 or 2 elements. We shall henceforth assume k is odd, and hence that
G acts by orientation-preserving fixed-point free homeomorphisms.

Thus the cohomology spectral sequence for the cover has

Ep,q
2 =

{
Hp(G;Hq(Sk)) = Hp(G) if q = 0 or q = k,

0 otherwise

and converges to Hp+q(Sk/G). This implies that the only possible non-zero
differentials are

dk : Ep,k
k+1 → Ep−k−1,0

k+1

and that the spectral sequence collapses at Ek+2.
Notice that Sk/G is a compact manifold of dimension k, and in particular

Hn(Sk/G) = 0 for n > k. This forces Ep,q
∞ = 0 whenever p + q > k. Hence

the differentials dk : Ep,k
k+1 → Ep+k+1,0

k+1 are isomorphisms for p ≥ 1, and since
these are the only possible non-zero differentials we have

Ep,k
k+1 = Ep,k

2
∼= Hp(G) and Ep+k+1,0

k+1 = Ep+k+1,0
2

∼= Hp+k+1(G)

so that Hp(G) ∼= Hp+k+1(G) for p ≥ 1.
Thus G has periodic cohomology with period k + 1. Any subgroup of G

also acts freely on Sk by restricting the action. This implies the following
theorem.

Theorem 9.32. If the finite group G acts freely on an odd-dimensional
sphere Sk, then every subgroup of G has periodic cohomology of period k+1.

As an application, first note the group Z/p×Z/p does not have periodic
cohomology; this can be checked using the Künneth theorem. We conclude
that any finite group acting freely on a sphere cannot contain a subgroup
isomorphic to Z/p× Z/p.

9.8. Relative spectral sequences

In studying maps of fibrations, it is useful to have relative versions of the ho-
mology and cohomology spectral sequence theorems. There are two relative
versions, one involving a subspace of the base and one involving a subspace
of the fiber.
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Theorem 9.33. Let F ↪→ E
f−→ B be a fibration with B a CW-complex.

Let A ⊂ B a subcomplex. Let D = p−1(A).

1. There is a homology spectral sequence with

Hp(B, A;GqF ) ∼= E2
p,q ⇒ Gp+q(E, D).

2. If B is finite-dimensional or if there exist an N so that Gq(F ) = 0
for all q < N , there is a cohomology spectral sequence with

Hp(B, A;GqF ) ∼= Ep,q
2 ⇒ Gp+q(E, D).

Theorem 9.34. Let F ↪→ E
f−→ B be a fibration with B a CW-complex.

Let E0 ⊂ E so that f |E0 : E0 → B is a fibration with fiber F0.

1. There is a homology spectral sequence with

Hp(B;Gq(F, F0)) ∼= E2
p,q ⇒ Gp+q(E, E0).

2. If B is finite-dimensional or if there exist an N so that Gq(F, F0) = 0
for all q < N , there is a cohomology spectral sequence with

Hp(B;Gq(F, F0)) ∼= Ep,q
2 ⇒ Gp+q(E, E0).

9.9. Projects for Chapter 9

9.9.1. Construction of the spectral sequence. Give (or outline) the
construction of the Leray-Serre-Atiyah-Hirzebruch spectral sequence and
prove the main theorem, Theorem 9.6. References include [43, Sect XIII.5]
and [36, Ch. 9] (only for ordinary homology).



Chapter 10

Further Applications of
Spectral Sequences

10.1. Serre classes of abelian groups

Definition 10.1. A Serre class of abelian groups is a nonempty collection
C of abelian groups satisfying:

1. If 0→ A→ B → C → 0 is a short exact sequence, then B ∈ C if and
only if A, C ∈ C.

Moreover, there are additional axioms which can be useful:

2A. If A, B ∈ C, then A⊗B ∈ C and Tor(A, B) ∈ C.
2B. If A ∈ C, then A⊗B ∈ C for any abelian group B.

3. If A ∈ C, then Hn(A;Z) = Hn(K(A, 1);Z) is in C for every n > 0.

Exercise 159. Prove that Axiom 2B implies Axiom 2A. (Hint: Show that
Tor(A, B) ⊂ A⊗ F for some F .)

There are many examples of Serre classes, including the trivial class,
the class of all abelian groups, the class of torsion abelian groups, torsion
abelian groups such that no element is pr-torsion for a fixed prime p, the
class of finite abelian groups, and the class of abelian p-groups. You should
think about which of the axioms these classes satisfy.

It suffices for our exposition to consider the following two examples.

1. The class CFG of finitely generated abelian groups. Axioms 1, 2A
clearly hold (see Exercise 28 and the remark preceding it). Note,
however, that Z ∈ CFG, but Z⊗Q is not in CFG, so 2B does not hold.

267
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Axiom 3 follows from Theorem 9.30, the Künneth theorem, and the
fact that K(Z, 1) = S1.

2. Let P denote a subset of the set of all prime numbers. Let CP denote
the class of torsion abelian groups A so that no element of A has order
a positive power of p for p ∈ P . Thus for example, if P is empty then
CP is the class of all torsion abelian groups. If P denotes all primes
then CP is the class containing only the trivial group. If P consists of
the single prime p then we use the notation Cp for CP .

We will show that the class CP satisfies Axioms 1, 2B, and 3. First some
terminology: given a prime p, the p-primary subgroup of an abelian group
consists of the subgroup of those elements whose order is a power of p. Thus
CP consists of those torsion abelian groups whose p-primary subgroup is
trivial for any p ∈ P .

Lemma 10.2. The class CP satisfies Axioms 1, 2B, and 3.

Proof. Say that an integer n �= 0 is prime to P if p does not divide n for
all p ∈ P . Then an abelian group A is in CP if and only if for all a ∈ A,
there is an n prime to P so that na = 0.

We first prove axiom 1. Let 0→ A
α−→ B

β−→ C → 0 be an exact sequence
of abelian groups. If B ∈ CP , then for a ∈ A, there is an n prime to P so
that nα(a) = 0. Hence na = 0, and so A ∈ CP . If B ∈ CP , then for c ∈ C,
choose b ∈ β−1(c), and n prime to P so that nb = 0. Then nc = nβ(b) = 0
and hence C ∈ CP . Conversely assume A, C ∈ CP . Then for b ∈ B, there
exists an n prime to P so that nβ(b) = 0. By exactness nb = α(a) for some
a. Choose m prime to P so that ma = 0. Then mnb = mα(a) = 0, so
B ∈ CP .

Next comes Axiom 2B. Suppose that A ∈ CP and let B be an arbitrary
abelian group. Pick an element t =

∑
i ai ⊗ bi ∈ A ⊗ B. Since A ∈ CP , we

can find integers ni prime to P so that niai = 0. Let n =
∏

ni; this is prime
to P and nt = 0. Thus A⊗B ∈ CP .

We turn to the proof of Axiom 3. Let A ∈ CP . Suppose first that A is
finitely generated. Then A is isomorphic to the finite direct sum of cyclic
groups A ∼= ⊕i Z/pri

i where pi �∈ P . Using Theorem 9.30, the Künneth
theorem, and induction it follows that Hn(K(A, 1);Z) is a finitely generated
torsion abelian group with trivial p-primary subgroup for any p ∈ P .

Next let A ∈ CP be arbitrary and pick an α ∈ Hn(K(A, 1);Z). Choose
a cycle z representing the homology class α. Since z is a finite sum of sin-
gular simplices there is a finite subcomplex X ⊂ K(A, 1) containing the
image of every singular simplex in z. Therefore α lies in the image of
Hn(X)→ Hn(K(A, 1)). Let A′ ⊂ A denote the finitely generated subgroup
Im (π1(X) → π1(K(A, 1))). Since π1(K(A, 1)) = A ∈ CP , the subgroup A′
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is also in CP . The space K(A′, 1) can be constructed by adding k-cells to X
for k ≥ 2 and since A′ → A is injective the inclusion X ⊂ K(A, 1) can be
extended to give the commutative diagram

X K(A, 1)

K(A′, 1).

✲
◗

◗
◗◗� ✑

✑
✑✑✸

Thus α ∈ Im (Hn(K(A′, 1)) → Hn(K(A, 1))) and since A′ is finitely
generated, α is torsion with order relatively prime to p for p ∈ P . Thus
Hn(K(A, 1)) ∈ CP .

Definition 10.3. Given a Serre class C, a homomorphism ϕ : A → B
between two abelian groups is called:

1. a C-monomorphism if ker ϕ ∈ C,
2. a C-epimorphism if coker ϕ ∈ C, and
3. a C-isomorphism if ker ϕ ∈ C and coker ϕ ∈ C.
Two abelian groups A and B are called C-isomorphic if there exists an

abelian group C and two C-isomorphisms f : C → A and g : C → B.

Lemma 10.4. Let α : A→ B and β : B → C be homomorphisms of abelian
groups. If two of the three maps α, β, and β ◦ α are C-isomorphisms, then
so is the third.

Proof. This follows from the exact sequence

0→ ker α→ ker β ◦ α
α−→ ker β → coker α

β−→ coker β ◦ α→ coker β → 0.

We will sometimes write A ∼= B mod C to indicate that A and B are
C-isomorphic.

Exercise 160. Let Cφ be the class of torsion abelian groups. Show that
A ∼= B mod Cφ if and only if A⊗Q ∼= B ⊗Q.

Exercise 161. Prove the five-lemma “mod C.”

The Hurewicz theorem has the following extremely useful generalization.

Theorem 10.5.

1. (mod C Hurewicz theorem) Let X be 1-connected, and suppose C sat-
isfies Axioms 1, 2A, and 3.

(a) If πiX ∈ C for all i < n, then HiX ∈ C for all 0 < i < n and
the Hurewicz map πnX → HnX is a C-isomorphism.



270 10. Further Applications of Spectral Sequences

(b) If HiX ∈ C for all 0 < i < n, then πiX ∈ C for all i < n and
the Hurewicz map πnX → HnX is a C-isomorphism.

2. (mod C relative Hurewicz theorem) Suppose A ⊂ X, A and X are
1-connected, and π2(X, A) = 0. Suppose C satisfies Axioms 1, 2B,
and 3.

(a) If πi(X, A) ∈ C for all i < n, then Hi(X, A) ∈ C for all
i < n and the Hurewicz map πn(X, A) → Hn(X, A) is a C-
isomorphism.

(b) If Hi(X, A) ∈ C for all i < n, then πi(X, A) ∈ C for all
i < n and the Hurewicz map πn(X, A) → Hn(X, A) is a C-
isomorphism.

Actually, as you can easily check, the part (b)’s above follow from the
part (a)’s. We will give a proof of the theorem using spectral sequences and
the fact that π1Y → H1Y is an isomorphism when the fundamental group
is abelian. By taking C to be the class consisting of the trivial group, we
obtain proofs of the classical Hurewicz and relative Hurewicz theorems. The
proof we give simplifies a bit in the classical case. A proof of the classical
case without the use of spectral sequences was a project in Chapter 6.

The mod C relative Hurewicz theorem implies the mod C Whitehead
Theorem.

Theorem 10.6 (mod C Whitehead theorem ). Let f : A→ X, where A, X
are 1-connected, and suppose f : π2A→ π2X is an epimorphism. Let C sat-
isfy Axioms 1, 2B, and 3. Then the following two statements are equivalent.

1. f∗ : πiA→ πiX is an C-isomorphism for i < n and a C-epimorphism
for i = n.

2. f∗ : HiA→ HiX is a C-isomorphism for i < n and a C-epimorphism
for i = n.

Exercise 162. Show that Theorem 10.6 follows from Theorem 10.5.

Since the homology groups of a finite CW-complex are all in CFG, the
mod C Hurewicz theorem has the following important consequence.

Corollary 10.7. If X is a simply connected finite CW-complex, then all
the homotopy groups of X are finitely generated. More generally a simply
connected space has finitely generated homology groups in every dimension
if and only if it has finitely generated homotopy groups in each dimension.

This sounds great, but we warn you that only time homotopy groups
of a simply connected finite CW-complex have been computed is when the
complex is contractible.

The hypotheses in the Corollary that X be simply connected is necessary.
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Exercise 163. Prove that π2(S1 ∨ S2) is not finitely generated.

Exercise 164. Show that Corollary 10.7 holds more generally when π1X
is finite.

We turn now to the proof of the Hurewicz theorem.

Proof of Theorem 10.5. Here is the idea of the proof. For a space X,
consider the path fibration

ΩX → PX
f−→ X.

There is a commutative diagram

πn(X, x0) πn(PX, ΩX) πn−1(ΩX)

Hn(X, x0) Hn(PX, ΩX) Hn−1(ΩX),
❄

ρ

✛ f∗
∼=

✲∂
∼=

❄
ρ

❄
ρ

✛f∗ ✲∂
∼=

(10.1)

where the vertical maps are Hurewicz maps. The boundary maps ∂ are
isomorphisms since PX is contractible. The top f∗ is an isomorphism since
f is a fibration (see Lemma 6.54). With the mod C-connectivity hypothesis,
a spectral sequence argument given below shows that the bottom f∗ is a C-
isomorphism. Inductively, the right-hand ρ is a C-isomorphism, so thereby
the left-hand ρ is a C-isomorphism. There are three difficulties with this
outline. We have to get the induction started, we have to make the mod C
spectral sequence argument, and we have to deal with the fact that if π2X �=
0, then ΩX is not simply-connected, so, strictly speaking, the inductive
hypothesis does not apply.

We will use the following lemma, which shows why Serre classes are
tailor-made to be used with spectral sequences.

Lemma 10.8. Let (Er
∗,∗, d

r) be a first quadrant spectral sequence spectral
sequence. Let C denote a class of abelian groups.

1. For any bigraded spectral sequence, if C satisfies Axiom 1, En
p,q ∈ C

for some p, q implies that Er
p,q ∈ C for all r ≥ n.

2. Let F ↪→ E
f−→ B be a fibration over a simply connected base space.

If C satisfies Axioms 1 and 2A, if HpB ∈ C for 0 < p < n, and if
HqF ∈ C for 0 < q < n − 1, then f∗ : Hi(E, F ) → Hi(B, b0) is a
C-isomorphism for i ≤ n.

Proof. 1. A subgroup or a quotient group of a group in C is in C by Axiom
1. Thus a subquotient of a group in C is in C. Since Er

p,q is a subquotient of
En

p,q, the first statement follows.
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2. Consider the spectral sequence of the relative fibration (Theorem
9.33)

F → (E, F )→ (B, b0).

The E2-term is

E2
p,q
∼= Hp(B, b0;HqF ) ∼= (Hp(B, b0)⊗HqF )⊕ Tor(Hp−1(B, b0), HqF )

and the spectral sequence converges to H∗(E, F ). Thus E2
p,q ∈ C and hence

E∞p,q ∈ C when p = 0, 1 or when 1 < p < n and 0 < q < n−1 (see the shaded
area in the picture below).

q

n 0 0

n− 1 0 0

0 0 C

0 0 0
p

0 1 n

The picture gives a convincing argument that

Hi(E, F ) ∼= Hi(B, b0) mod C for i ≤ n,

but here is a precise one.
The spectral sequence gives a filtration

0 = F−1,i+1 ⊂ F0,i ⊂ F1,i−1 ⊂ · · · ⊂ Fi−1,1 ⊂ Fi,0 = Hi(E, F )

with
E∞p,i−p = Fp,i−p/Fp−1,i−p+1.

It follows by induction on p, that Fp,i−p ∈ C for p < i, and hence that

Hi(E, F )→ E∞i,0 is a C-isomorphism.(10.2)

On the other hand, for r ≥ 2, the exact sequence

0→ Er+1
i,0 → Er

i,0
dr

−→ Er
i−r,r−1
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with the range of dr in C shows that Er+1
i,0 → Er

i,0 is a C-isomorphism. Since
the composite of C-isomorphisms is a C-isomorphism, it follows by induction
that

E∞i,0 → E2
i,0 is a C-isomorphism.(10.3)

(10.2) and (10.3) is a C-isomorphism. But this composite is identified with
the edge homomorphism (see Theorem 9.12).

f∗ : Hi(E, F )→ Hi(B, b0).

We return to the proof of Part 1(a). The proof is by induction on n. For
n = 1, π1X = 0 = H1X. For n = 2, π1X = 0 = H1X, and so Lemma 10.8
shows that f∗ : H2(PX, ΩX)→ H2(X, x0) is an isomorphism (use the class
consisting only of the trivial group). Hence diagram (10.1), the fact the
π1(ΩX) is abelian since ΩX is an H-space, and Theorem 1.6 (the π1-version
of the Hurewicz theorem) show that ρ : π2X → H2X is an isomorphism for
any simply connected X.

Now suppose n > 2 and inductively assume for simply connected spaces
Y with πiY ∈ C for i < n− 1, that HiY ∈ C for 0 < i < n− 1 and that the
Hurewicz map ρ : πn−1Y → Hn−1Y is a C-isomorphism. Let X be a simply
connected space so that πiX ∈ C for i < n. There will be two cases: where
π2X = 0 and where π2X �= 0.

In the first case π1(ΩX) = π2X = 0, and πi(ΩX) = πi+1X, so we can
apply the inductive hypothesis to ΩX and conclude that the right-hand
ρ : πn−1(ΩX)→ Hn−1(ΩX) in diagram (10.1) is a C-isomorphism and that
Hi(ΩX) ∈ C for i < n− 1. Then Lemma 10.8 applied to the path fibration

ΩX → PX
f−→ X

shows that the lower f∗ in diagram (10.1) is a C-isomorphism. Then Lemma
10.4 applied repeatedly to diagram (10.1) shows that πnX → Hn−1X is a
C-isomorphism as desired.

Now suppose we are in the case where π2X �= 0. By hypothesis, π2X ∈ C.
There is a map f : X → K(π2X, 2) inducing the identity on π2. Let X2 → X
be the homotopy fiber of this map. Now turn this map into a fibration (see
Theorem 6.40) to obtain the fibration

K(π2X, 1)→ X2 → X.

Note by Axiom 3, Hi(K(π2X, 1)) ∈ C for i > 0. This has two consequences,
first that

Hi(X2)→ Hi(X2, K(π2X, 1))
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is a C-isomorphism for i > 0, and second that Lemma 10.8 applies and so

Hi(X2, K(π2X, 1))→ Hi(X, x0)

is a C-isomorphism for 0 < i < n. Thus the composite of the last two maps
Hi(X2)→ HiX is a C-isomorphism for 0 < i < n. Summarizing,

1. HiX2 ∈ C for all 0 < i < n,

2. HnX2
∼= HnX mod C,

3. πiX2 = πiX for all i > 2,

4. π1X2 = 0 = π2X2.

Thus ρ : πn(X2) → Hn(X2) is a C-isomorphism and Hi(X2) ∈ C for
0 < i < n by the π2 = 0 case, hence the same is true for X. This completes
the proof of Part 1(a) of the mod C Hurewicz Theorem.

Part 1(b) follows formally from Part 1(a). Indeed, let X be simply-
connected and suppose HiX ∈ C for 0 < i < n. Then use induction on i to
show ρ : πiX → HiX is a C-isomorphism for 1 < i ≤ n.

We now show how to deduce the relative Hurewicz theorem from the ab-
solute theorem. We assume that X and A are simply connected, nonempty,
and that π2(X, A) = 0. The diagram

π2A π2X

H2A H2X

✲

❄

ρ

❄

ρ

✲

commutes, with the vertical maps Hurewicz isomorphisms and the horizontal
maps induced by inclusion. Since the top horizontal map is surjective, so
is the bottom one, and it follows from the long exact sequence in homology
that H2(X, A) = 0.

Now suppose n > 2 and inductively assume that for any simply con-
nected pair B ⊂ Y with π2(Y, B) = 0, and πi(Y, B) ∈ C for i < n − 1,
that Hi(Y, B) ∈ C and that the Hurewicz map ρ : πi(Y, B) → Hi(Y, B) is
a C-isomorphism for i < n − 1. Let (X, A) be a pair of simply connected
spaces with Hi(X, A) ∈ C for i < n.

Now let n > 2 and assume that πk(X, A) ∈ C for k < n. Then by
induction Hk(X, A) ∈ C for k < n. We must show that ρ : πn(X, A) →
Hn(X, A) is a C-isomorphism.

Let f : PX → X denote the path space fibration, and let L = L(X, A) =
f−1(A). Thus we have a relative fibration

ΩX → (PX, L)→ (X, A).
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Recall from page 155 in Chapter 6 that πk−1(L) ∼= πk(X, A) for all k. The
Leray–Serre spectral sequence for this fibration has

E2
p,q = Hp(X, A;Hq(ΩX))

and converges to Hp+q(PX, L). The coefficients are untwisted since X and
A are simply connected.

We have

Hp(X, A;Hq(ΩX)) = Hp(X, A)⊗Hq(ΩX) ⊕ Tor(Hp−1(X, A), Hq(ΩX)) ∈ C
for p < n. This follows from the fact that Hp(X, A) ∈ C for p < n and
Axiom 2B. (Don’t let this point slip by you, this is where we needed the
axiom 2B which is stronger than 2A.)

Therefore (see the picture on page 272 again):

1. all differentials out of Er
n,0 have range in C, and so Hn(X, A) ∼= Er

n,0
∼=

E∞n,0 mod C for all r, and

2. E∞p,n−p ∈ C for p > 0, and so Hn(PX, L) ∼= E∞n,0 mod C.
Arguing as above we have:

Hn(PX, L) ∼= E∞n,0 mod C
∼= Hn(X, A) mod C.(10.4)

This C-isomorphism is induced by the edge homomorphism and hence coin-
cides with the homomorphism induced by f : (PX, L)→ (X, A).

The diagram

πn(X, A) πn(PX, L) πn−1(L)

Hn(X, A) Hn(PX, L) Hn−1(L)
❄

ρ

✛f∗

❄

ρ

✲∂
∼=

❄

ρ

✛f∗ ✲∂
∼=

commutes, with the two right horizontal arrows isomorphisms by the long
exact sequence of the pair in homology and homotopy groups and the fact
that PX is contractible.

The top left horizontal arrow is an isomorphism since f : PX → X is a
fibration (see Lemma 6.54). Since πk−1(L) = πk(X, A) = 0, π1(L) = 0 and
πk(L) ∈ C for all k < n − 1. The absolute Hurewicz theorem implies that
ρ : πn−1(L)→ Hn−1(L) is a C-isomorphism.

Finally the bottom left horizontal map is a C-isomorphism by (10.4).
Moving around the diagram shows that the Hurewicz map ρ : πn(X, A) →
Hn(X, A) is a C-isomorphism. This proves Part 2(a) of Theorem 10.5. As
before, Part 2(b) follows from Part 2(a).
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10.2. Homotopy groups of spheres

In this section we will use the machinery of spectral sequences and Serre
classes to obtain more non-trivial information about the elusive homotopy
groups of spheres. An immediate consequence of Corollary 10.7 is the fol-
lowing.

Corollary 10.9. The homotopy groups of spheres πkS
n are finitely gener-

ated abelian groups.

Here is a result which follows easily from Serre mod C theory.

Theorem 10.10. If n is odd, πmSn is finite for m �= n.

Proof. If n = 1, then πmS1 = πmR = 0 for m �= 1. If n > 1 is odd, then a
map f : Sn → K(Z, n) inducing an isomorphism on πn, induces an isomor-
phism on homology with rational coefficients by Proposition 9.25. Taking
the Serre class Cφ as in Exercise 160, we see f∗ induces a Cφ-isomorphism
on homology, and hence, by the mod C Whitehead theorem, also a Cφ-
isomorphism on homotopy. Thus for all m, the kernel and cokernel of

f∗ : πmSn → πm(K(Z, n))

are torsion groups. However the homotopy groups of spheres are finitely
generated. The result follows.

Corollary 10.11. The stable homotopy groups of spheres πS
n are finite for

n > 0.

Exercise 165. Prove that if n is even, then πkS
n is finite except for k = n

and k = 2n − 1, and that π2n−1S
n is the direct sum of Z and a finite

abelian group. (Hint: Let Sn−1 → T → Sn be the unit tangent bundle
of Sn for n even. Show that πnT → πnSn is not onto, by, for example,
showing that a lift of Id : Sn → Sn leads to a nonzero vector field on Sn,
and hence a homotopy from the identity to the antipodal map. Conclude
that πnT → πnSn is the zero map. By looking at the transgression, deduce
that Hn(T ) is finite except for H0T = H2n−1T = Z. Find a map inducing
an isomorphism Hk(T ) ∼= Hk(S2n−1) mod Cφ. Then πk(T ) ∼= πk(S2n−1)
mod Cφ via the Whitehead theorem. Then apply Theorem 10.10.)

For the next sequence of results, let K(Z, 2)→ X → S3 be the fibration
from (9.12). Thus X is the homotopy fiber of the map S3 → K(Z, 3)
inducing an isomorphism on π3. It follows that πnX = 0 for n ≤ 3 and
πnX = πnS3 for n > 3.
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Lemma 10.12.

HkX =


0 if k is odd,
Z if k = 0, and
Z/n if k = 2n.

Proof. The integral cohomology ring of K(Z, 2) = CP∞ is a polynomial
ring H∗(K(Z, 2);Z) ∼= Z[c], where deg c = 2 (see Exercise 155).

Consider the cohomology spectral sequence for the fibration (9.12). This
has

E2 = H∗(S3)⊗ Z[c].

More precisely,

Ep,q
2 = Hp(S3;Hq(K(Z, 2)))

=


0 if p = 1, 2 or p > 3, or if q is odd,
Z · ck if p = 0 and q = 2k is even, and
Z · ιck if p = 3 and q = 2k is even,

where ι ∈ H3(S3) denotes the generator, using Theorem 2.33 (the universal
coefficient theorem for cohomology). Notice also that since all the differen-
tials d2 are zero, E2 = E3.

Since H2X = 0 = H3X, the differential d3 : E0,2
3 → E3,0

3 must be an
isomorphism, and so d3c = ι (after perhaps replacing ι by −ι). Thus

d(c2) = (dc) · c + c · dc = ι · c + c · ι = 2ι · c.
More generally, one shows by an easy induction argument that

d(cn) = nι · cn−1.

All other differentials in the spectral sequence are zero since either their
domain or range is zero. Therefore E3,2n−2

∞ = Z/n and hence H2n+1(X) =
Z/n if n ≥ 1. The universal coefficient theorem now implies that H2n(X) =
Z/n for n ≥ 1.

Corollary 10.13. If p is a prime, the p-primary component of πiS
3 is zero

if 3 < i < 2p, and is Z/p if i = 2p.

Proof. We use the class Cp. As before, let X be the space from the fibration
(9.12). Lemma 10.12 implies that Hi(X) ∈ Cp for 0 < i < 2p. Using the
mod C Hurewicz theorem we conclude that πi(X) ∈ Cp for 0 < i < 2p, and
Z/p = H2p(X) ∼= π2p(X) mod Cp. This implies that the p-primary part of
π2p(X) is Z/p. The corollary now follows from the fact that πi(X) = πi(S3)
for i �= 3.
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With a bit more work one can show that the p-primary component of πS
n

is trivial for n < 2p−3 and equals Z/p for n = 2p−3 (see [36]). Take a look
at the table on page 208 to verify this in low dimensions. So for example, πS

2

has trivial p-primary part for p > 2 and πS
3 = Z/3 ⊕ (2-primary subgroup).

We turn now to the computation of πS
2 .

In Theorem 9.28 we computed that π4S
2 = Z/2. Consider the suspen-

sion map s : S2 → ΩS3, i.e. the adjoint of the identification S(S2) = S3.
Let F be the homotopy fiber of s. The long exact sequence of homotopy
groups of the fibration

F → S2 s−→ΩS3(10.5)

shows that π1F = π2F = 0. Thus by the Hurewicz theorem π3F = H3F .
The spectral sequence for the fibration (10.5) shows that the transgression
τ : H3F → H4(ΩS3) is an isomorphism. In Chapter 9 we computed that
Z ∼= H4(ΩS3) (see Equation (9.3)), and hence Z ∼= H3(F ) = π3(F ).

The long exact sequence in homotopy groups for (10.5) is

· · · → π4S
2 s∗−→ π4(ΩS3)→ π3F → π3S

2 → π4S
3 → 0.

From the Hopf fibration S1 → S3 → S2 we know that π3S
2 = Z, and from

Theorem 9.26 we know π4S
3 = Z/2. Since π3F = Z it follows from this

exact sequence that the suspension map s∗ : π4S
2 → π4(ΩS3) = π5S

3 is
onto. Therefore, π5S

3 is either 0 or Z/2. We will show that π5S
3 = Z/2.

Consider once again our friend the space X of the fibration (9.12). Since
π4X = π4S

3 = Z/2, Let f : X → K(Z/2, 4) be a map inducing an iso-
morphism on π4 and let Y denote the homotopy fiber of f . Since Y is
4-connected, H5(Y ;Z) = π5Y = π5X = π5S

3. Since π5S
3 is either 0 or Z/2,

the universal coefficient theorem implies that π5S
3 = H5(Y ;Z/2).

In the spectral sequence in Z/2-cohomology for the fibration Y → X →
K(Z/2, 4), the differential

H5(F ;Z/2) = E0,5
2 = E0,5

6
d6−→ E6,0

6 = E6,0
2 = H6(K(Z/2, 4);Z/2)

is surjective. This follows from the facts that Y is 4-connected, K(Z/2, 4)
is 3-connected, and Lemma 10.12 which implies that H6(X;Z/2) = 0 (you
should check this fact).

We will show in Section 10.5 below (Equation (10.12)) that

H6(K(Z/2, 4);Z/2) = Z/2.

Hence H5(F ;Z/2) surjects to Z/2 and therefore equals Z/2. Thus we have
computed π5S

3 = Z/2.
The homotopy exact sequence for the Hopf fibration S3 → S7 → S4

shows that πS
2 = π6S

4 ∼= π5S
3. In particular this shows that the sequence
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of suspension homomorphisms

π2S
0 → π3S

1 → π4S
2 → π5S

3 → π6S
4 = πS

2

is

0→ 0→ Z/2
∼=−→ Z/2

∼=−→ Z/2.

The long exact sequence of homotopy groups for the Hopf fibration S1 →
S3 → S2 shows that π5S

2 = π5S
3, and so π5S

2 = Z/2 also.

10.3. Suspension, looping, and the transgression

For any space X, identify the reduced cone CX as a quotient of [0, 1] ×X
with the inclusion X ⊂ CX corresponding to x �→ (1, x). Take the reduced
suspension SX to be CX/X, and let c : CX → SX denote the quotient map.
Unless otherwise specified, in this section Hk denotes (ordinary) homology
with some fixed (untwisted) coefficients.

Now consider the two fundamental maps

s : X → ΩSX, x �→ (t �→ (t, x))

and

F : SΩX → X, (t, α) �→ α(t).

Then s : Y → ΩSY induces the suspension map

[X, Y ]0
s∗−→ [X, ΩSX]0 = [SX, SY ]0.

In particular, taking X = Sk yields the suspension homomorphism

s∗ : πk(Y )→ πk+1(SY ).

The map F : SΩX → X induces the “looping” map

[X, Y ]0
�∗−→ [SΩX, Y ]0 = [ΩX, ΩY ]0

which takes a function to the induced function on loop spaces. The purpose
of this section is to prove the Freudenthal suspension theorem (Theorem 8.7)
and to develop material for a dual result about stable cohomology operations
given in the next section.

We will relate these maps to the transgression for the path space fi-
bration. For simplicity we assume throughout that X and Y are simply
connected.

We begin with the map s. Consider the path space fibration over SY :

ΩSY → PSY
e−→SY
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where e evaluates a path at its endpoint. The transgression in homology for
this fibration is the “composite” (with domain a submodule of of Hk(SY )
and range a quotient module of Hk−1(ΩSY )):

τ : Hk(SY, ∗) ⊃ Im(e∗)
e∗←− Hk(PSY ,ΩSY ) ∂−→ Hk−1(ΩSY )/∂(ker e∗).

Let S∗ : Hk−1(Y ) → Hk(SY ) denote the suspension isomorphism, defined
as the composite of isomorphisms

S∗ : Hk−1(Y ) ∂←− Hk(CY, Y ) c∗−→ Hk(SY, ∗) ∼= Hk(SY ).

Theorem 10.14. The domain of τ is all of Hk(Y ). Moreover, the map
s∗ : Hk−1(Y )→ Hk−1(ΩSY ) induced by s is a lift of τ ◦ S∗.

In particular, if τ : Hk(SY ) → Hk−1(ΩSY ) is an isomorphism then so
is s∗ : Hk−1(Y )→ Hk−1(ΩSY ).

Proof. Consider the map f : CY → PSY defined by

f(t, y) = (r �→ (rt, y)).

Then e ◦ f : CY → SY is just the map (t, y) �→ (t, y), i.e. the natural
collapse map c. Moreover, the restriction of f to Y = {1} × Y ⊂ CY is the
map y �→ (r �→ (r, y)); this is just the map s. In other words, f induces a
map of pairs f : (CY, Y )→ (PSY,ΩSY ) whose restriction to the subspaces
is s. Thus f induces a map of the long exact sequences of the pairs; since
PSY and CY are contractible every third term vanishes and so we obtain
commuting diagrams with the horizontal arrows isomorphisms:

Hk(CY, Y ) Hk−1(Y )

Hk(PSY ,ΩSY ) Hk−1(ΩSY )

✲∂

❄
f∗

❄
s∗

✲∂

Since e ◦ f = c, the diagram

Hk(CY, Y ) Hk(PSY ,ΩSY )

Hk(SY, ∗)

✲f∗

❍❍❍❍❍❥
c∗ ✟✟✟✟✟✙

e∗

commutes, with c∗ an isomorphism. It follows that e∗ is onto, so that the
domain of τ is all of Hk(SY ). Moreover ∂ ◦ f∗ ◦ (c∗)−1 is a lift of τ , and so
using the definition of S∗ and the commuting square above we compute:

τ ◦ S∗ = ∂ ◦ f∗ ◦ (c∗)−1 ◦ S∗ = ∂f∗∂
−1 = s∗.
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As an application of Theorem 10.14, we prove the Freudenthal suspen-
sion theorem (Theorem 8.7).

Suppose that Y is a (n − 1)-connected space, with n > 1. Using
the Hurewicz theorem and the suspension isomorphism S∗ : Hk(Y ;Z) ∼=
Hk+1(SY ;Z) we see that SY is n-connected. Since πk(ΩSY ) = πk+1(SY ),
ΩSY is (n − 1)-connected, and hence its homology vanishes in dimensions
less than n by the Hurewicz theorem.

The Serre exact sequence (Theorem 9.15) for the fibration

ΩSY → PSY
e−→SY

is

H2n(ΩSY ;Z)→ H2n(PSY ;Z) e∗−→ H2n(SY ;Z) τ−→H2n−1(ΩSY ;Z)→ · · ·

and since the path space PSY is contractible it follows that the transgres-
sion τ : Hk(SY ;Z) → Hk−1(ΩSY ;Z) is an isomorphism for all k ≤ 2n.
Theorem 10.14 implies that s∗ : Hk−1(Y ;Z)→ Hk−1(ΩSY ;Z) is an isomor-
phism for all k ≤ 2n. Hence the relative homology groups Hk(ΩSY, Y ;Z)
vanish for k ≤ 2n−1. From the relative Hurewicz theorem we conclude that
πk(ΩSY, Y ) = 0 for k ≤ 2n− 1 and so s∗ : πk(Y )→ πk(ΩSY ) is an isomor-
phism for k < 2n − 1 and an epimorphism for k = 2n − 1. The composite
πk(Y ) s∗−→ πk(ΩSY ) = πk+1(SY ) is the suspension homomorphism and so
we have proven the Freudenthal suspension theorem.

We turn our attention to the map F : SΩX → X. This induces a map

F∗ : Hk(SΩX)→ Hk(X)

which we can precompose with the suspension isomorphism to obtain

F∗ ◦ S∗ : Hk−1(ΩX)→ Hk(X).

The transgression for the path space fibration over X,

ΩX → PX
e−→X.

is the homomorphism

τ : Hk(X, ∗) ⊃ Im(e∗)
e∗←− Hk(PX, ΩX) ∂−→ Hk−1(ΩX)/∂(ker e∗).

The following theorem is the analogue of Theorem 10.14 for the map F.

Theorem 10.15. The homomorphism F∗ ◦ S∗ is a left inverse for τ on its
domain, i.e. F∗ ◦ S∗ ◦ τ(x) = x if x lies in the domain of τ . Hence τ is
injective.

In particular, if τ : Hk(X)→ Hk−1(ΩX) is an isomorphism then τ and
F∗ ◦ S∗ are inverses.
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Proof. This time we use the map g : CΩX → PX defined by

(t, α) �→ (s �→ α(st)).

Thus g(0, α) and g(t, const∗) are both the constant path at ∗, so that this
indeed well-defines a map on the reduced cone. Moreover, g(1, α) = α, and
so g defines a map of pairs g : (CΩX, ΩX) → (PX, ΩX) which restricts
to the identity map on ΩX. Since both CΩX and PX are contractible it
follows that the maps between the long exact sequences of these pairs reduce
to a commuting triangle of isomorphisms

Hk(CΩX, ΩX) Hk(PX, ΩX)

Hk−1(ΩX).

✲g∗

❍❍❍❍❍❥
∂ ✟✟✟✟✟✙

∂

The composite e ◦ g : CΩX → X is the map (t, α) �→ α(t). Since ΩX is
the fiber of the fibration e, e ◦ g factors through the suspension SΩX, and
in fact the diagram

CΩX X

SΩX

✲e◦g

◗
◗◗�
c

✑
✑✑✸�

commutes.
Thus

F∗S∗τ = F∗S∗∂(e∗)−1 = F∗S∗∂(g∗)−1(e∗)−1

= F∗S∗∂(F∗c∗)−1 = F∗c∗(c∗)−1(F∗)−1 = Id.

One of course needs to be careful with domains and ranges in this calculation.

Theorems 10.14 and 10.15 have their cohomology analogues, whose state-
ments and proofs are given essentially by reversing all the arrows. We will
use the cohomology analogue of Theorem 10.15 in our discussion of stable co-
homology operations. Let S∗ : Hk(SY ) → Hk−1(Y ) denote the suspension
isomorphism in cohomology.

Corollary 10.16. Suppose that the cohomology transgression

τ∗ : Hk−1(ΩX)→ Hk(X)

for the path space fibration ΩX → PX → X is an isomorphism.
Then the composite S∗ ◦ F∗ is the inverse of τ∗.
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The following exercise gives a “dual” description of the isomorphism S∗.

Exercise 166. From the perspective of the Eilenberg–MacLane spectrum,
prove that S∗ : Hk(SY )→ Hk−1(Y ) is the composite of the adjoint and the
map induced by the homotopy equivalence ΩK(A, k) ∼ K(A, k − 1):

Hk(SY ;A)∼=[SY,K(A, k)]0∼=[Y,ΩK(A, k)]0∼=[Y,K(A, k−1)]0∼=Hk−1(Y ;A).

10.4. Cohomology operations

We have seen that the cohomology of a space with coefficients in a ring has
a natural ring structure. Cohomology operations are a further refinement
of the structure of the cohomology of a space. We have already come across
cohomology operations in Chapter 7 (see Definition 7.25 and Exercise 120).

10.4.1. Definition and simple examples. We recall the definition.

Definition 10.17. If A, C are abelian groups, a cohomology operation of
type (n, A; q, C) is a natural transformation of functors

θ : Hn(−;A)→ Hq(−;C).

The set of all cohomology operations of type (n, A; q, C) is denoted by
O(n, A; q, C).

The following are some standard examples.
Coefficient homomorphisms. If h : A → C is a homomorphism, then h
induces homomorphisms

h∗ : Hn(X;A)→ Hn(X;C)

for all n; these are natural, so h defines an operation h∗ of type (n, A;n, C)
for any n.

Bockstein homomorphisms. If

0→ A→ B → C → 0(10.6)

is a short exact sequence of abelian groups, then 0 → Hom(C∗X, A) →
Hom(C∗X, B) → Hom(C∗X, C) → 0 is exact, where C∗X denotes the sin-
gular or cellular chain complex of X. Thus one obtains a long exact sequence
in cohomology.

· · · → Hk(X;A)→ Hk(X;B)→ Hk(X;C)→ Hk+1(X;A)→ · · ·

The connecting homomorphisms

βk : Hk(X;C)→ Hk+1(X;A)

are called the Bockstein operators associated to the short exact sequence
(10.6). For each k this construction defines a cohomology operation βk of
type (k, C; k + 1, A).
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Squaring. If R is a ring, Let θn : Hn(X;R)→ H2n(X;R) be the map

x �→ x ∪ x.

Then θn is a natural transformation since f∗(x ∪ x) = f∗(x) ∪ f∗(x), and
hence a cohomology operation of type (n, R; 2n, R).
Remark. At this point we would like to avoid using the symbol “∪” for
the product in the cohomology ring of a space and will use juxtaposition to
indicate multiplication whenever it is convenient.

Notice that θn is not a homomorphism, since (x + y)2 �= x2 + y2 in
general. In fact the definition of a cohomology operation does not require it
to be a homomorphism.
Main example. Let A, C be abelian groups, and let

u ∈ Hq(K(A, n);C).

For CW-complexes Theorem 7.22 says that

[X, K(A, n)] ∼= Hn(X;A), via
(
f : X → K(A, n)

)
�→ f∗(ι),

where ι ∈ Hn(K(A, n);A) is the fundamental class of K(A, n) (see Definition
7.21).

Thus, u ∈ Hq(K(A, n);C) defines a map (up to homotopy)

fu : K(A, n)→ K(C, q)

and hence u defines a cohomology operation θu as the composite

Hn(X;A) = [X;K(A, n)]
(fu)∗−−−→ [X, K(C, q)] = Hq(X;C).

So u ∈ Hq(K(A, n);C) defines the operation θu of type (n, A; q, C).
In Exercise 120 you showed that the correspondence u �→ θu gave a

bijection between Hq(K(A, n);C) and O(n, A; q, C); the inverse map is θ �→
θ(ι).

10.4.2. Stable operations.

Definition 10.18. Given a cohomology operation θ ∈ O(n, A; q, C), the
suspension of θ, σ∗(θ), is the operation of type (n − 1, A; q − 1, C) defined
by requiring the following diagram to commute,

Hn−1(X;A) Hq−1(X;C)

Hn(SX;A) Hq(SX;C)

✲σ∗(θ)

✻∼=

✲
θ

✻∼=

where the vertical maps are the usual suspension isomorphisms,

S∗ : Hn(SX;A) ∼= Hn−1(X;A) and S∗ : Hq(SX;C) ∼= Hq−1(X;C).
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(The name “suspension” is perhaps not the best choice for σ∗, since
as we will see below it is induced by the “looping” map F of Section 10.3
and so is more properly thought of as a desuspension. However this is its
traditional name and so we will stick to it. The reader should not confuse it
with the suspension isomorphism S∗ : Hk(SX) → Hk−1(X) although they
are of course related.)

Thus to any cohomology operation θ we can associate the sequence
σ∗(θ), σ∗(σ∗(θ)), · · · . This motivates the following definition.

Definition 10.19. A stable cohomology operation of degree r and type (A, C)
is a sequence of operations θ = {θn} where

θn ∈ O(n, A;n + r, C) and σ∗(θn) = θn−1.

Thus a stable operation of degree r and type (A, C) is the same thing as an
element in the inverse limit of the sequence

· · · σ
∗
−→Hn+r(K(A,n);C) σ∗−→Hn+r−1(K(A,n−1);C) σ∗−→· · · σ∗−→Hr+1(K(A,1);C).

Denote by Ar(A;C) the set of all stable cohomology operations θ = {θn} of
degree r and type (A, C).

To decide whether a cohomology operation θ ∈ O(n, A; q, C) forms a
component of a stable cohomology operation, at the very least we need to
know whether θ = σ∗(θ′) for some θ′. This is possible if θ is transgressive,
as we now explain.

The map

σ∗ : O(n, A; q, C)→ O(n− 1, A; q − 1, C)

is defined for each (n, A; q, C). Using Exercise 120 we think of σ∗ as a map

σ∗ : Hq(K(A, n);C)→ Hq−1(K(A, n− 1);C)

or, equivalently, a map

σ∗ : [K(A, n), K(C, q)]0→ [K(A,n− 1), K(C,q − 1)]0
∼=−→ [ΩK(A, n),ΩK(C, q)]0.

(10.7)

Exercise 167. Show that in Equation (10.7), σ∗ is given by “looping”, i.e.

σ∗ = Ω : [K(A, n), K(C, q)]0 → [ΩK(A, n),ΩK(C, q)]0,

where (Ωf)(α)(t) = f(α(t)). Conclude that the composite of σ∗ with the
isomorphism given by the adjoint

[ΩK(A, n),ΩK(C, q)]0 = [SΩK(A, n), K(C, q)]0

is F∗, the map induced by F : SΩK(A, n)→ K(A, n) of Section 10.3.
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Since the suspension isomorphism S∗ : Hq(SX;C)→ Hq−1(X;C) is the
composite of the adjoint and the identification ΩK(C, q) = K(C, q − 1):

S∗ : [SX, K(C, q)]0 = [X, ΩK(K, q)]0 = [X, K(C, q − 1)]0,

it follows immediately from Exercise 167 that

σ∗ = S∗ ◦ F∗.(10.8)

Consider the cohomology transgression τ∗ for the path space fibration
over K(A, n)

K(A, n− 1)→ P
e−→K(A, n).(10.9)

Corollary 10.16 implies that the homomorphism σ∗ is a left inverse of τ∗.
This immediately implies the following.

Corollary 10.20. If the class θ ∈ Hq(K(A, n);B) is transgressive (i.e. in
the domain of the transgression τ), then σ∗(τ∗(θ)) = θ.

What this corollary says is that θ ∈ O(n, A; q, C) is of the form σ∗(θ′)
if θ is transgressive for the fibration (10.9), when viewed as an element in
Hq(K(A, n);C).

Theorem 10.21. If n ≥ 2, the transgression for the fibration (10.9) induces
isomorphisms

τ : Hq−1(K(A, n− 1);C)→ Hq(K(A, n);C)

for 2n ≥ q + 2.

Proof. Consider the Leray–Serre cohomology spectral sequence (with C
coefficients) for the fibration (10.9). Since Ep,q

2 = Hp(K(A, n);Hq(K(A, n−
1)), the Ep,q

2 terms vanish if 1 ≤ p ≤ n− 1 or if 1 ≤ q ≤ n− 2.
This implies that if 2n ≥ q + 2,

Hq−1(K(A, n− 1)) ∼= E0,q−1
2 = E0,q−1

q

and

Hq(K(A, n)) ∼= Eq,0
2 = Eq,0

q .

Since the total space is contractible, Ep,q
∞ = 0 if p + q �= 0. Hence the

differential dq : E0,q−1
q → Eq,0

q is an isomorphism. Theorem 9.13 states that
this differential coincides with the transgression, and so we conclude that
the transgression τ : Hq−1(K(A, n− 1))→ Hq(K(A, n)) is an isomorphism
for 2n ≥ q + 2.
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Since σ∗ and τ∗ are inverses, if one starts with a cohomology operation
θ ∈ Hq(K(A, n);C), then the sequence θ, σ∗(θ), σ∗(σ∗(θ)), · · · can be ex-
tended to the left to give a stable operation provided θ, τ∗(θ), τ∗(τ∗(θ)) etc.
are transgressive.

A convenient way to organize this information is the following. If we
write

Ar(A;C) = lim←−
n

Hn+r(K(A, n);C),

then Theorem 10.21 shows that the limit is attained at a finite stage:

Ar(A;C) = lim←−
n

Hn+r(K(A, n);C) = H2r+1(K(A, r + 1);C).(10.10)

and so a class θ ∈ H2r+1(K(A, r + 1);C) defines the stable operation

· · · , τ∗(τ∗(θ)), τ∗(θ), θ, σ∗(θ), σ∗(σ∗(θ)), · · ·
Exercise 168. Show that the composition of two stable cohomology oper-
ations is a stable cohomology operation.

The proof of the following proposition is easy and is left to the reader.

Proposition 10.22. If G is an abelian group then the sum and composition
give A(G) = ⊕

r
Ar(G, G) the structure of a graded, associative ring with unit.

Exercise 169. Prove Proposition 10.22.

Exercise 170. Use Exercise 167 to show that if θ is a stable cohomol-
ogy operation, then θ(f + g) = θ(f) + θ(g). (Hint: if f, g ∈ Hn(X;A) =
[X, K(A, n)]0 = [X, ΩK(A, n − 1)]0, then the group structure is given by
taking composition of loops, which is preserved by σ∗.)

An interesting consequence of Proposition 10.22 and Exercise 170 is that
for any space X, the cohomology H∗(X;G) has the structure of a module
over A(G). This additional structure is functorial.

Definition 10.23. Take G = Z/p, p a prime. Then Ap = A(Z/p) is called
the mod p Steenrod algebra. It is a graded algebra over Z/p.

Thus the Z/p cohomology algebra of a space is a module over the mod
p Steenrod algebra.

Exercise 171. Given two spectra K and K′, define what a map of degree
r from K to K′ is, and what a homotopy of such maps is. Then show that
taking K(A) (resp. K(B)) to be the Eilenberg–MacLane spectrum for the
abelian group A (resp. B),

A∗(A, B) = [K(A),K(B)]∗.
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Can you define stable cohomology operations for arbitrary generalized
homology theories?

10.5. The mod 2 Steenrod algebra

The goal in this section is to explore the mod 2 Steenrod algebra. We will
take an ad-hoc, hands-on approach. A systematic exposition of this impor-
tant algebra can be found in many homotopy theory texts. The standard
reference is [31].

The complete structure of the mod 2 Steenrod algebra is described in
the following result, most of whose proof we will omit.

Theorem 10.24. Let T be the (bigraded) tensor algebra over Z/2 generated
by the symbols Sqi for i ≥ 0. (Thus, if V is the graded Z/2 vector space
spanned by a basis Sq0, Sq1, · · · , then T = T (V ) = Z/2⊕V ⊕ (V ⊗V )⊕· · · )
Let I ⊂ T be the two-sided homogeneous ideal generated by:

1. 1 + Sq0 and
2. (Adem relations)

Sqa ⊗ Sqb +
[a/2]∑
c=0

(b− c− 1
a− 2c

)
Sqa+b−c ⊗ Sqc

for all 0 < a < 2b.

Then A2 is isomorphic to T/I. The identification takes the Sqi to stable
operations satisfying:

a. Sqi(x) = 0 if x ∈ H i−p(X), p > 0.
b. Sqi(x) = x2 if x ∈ H i(X).
c. Sq1 is the Bockstein associated to the short exact sequence

0→ Z/2→ Z/4→ Z/2→ 0.

d. (Cartan formula)

Sqi(xy) =
∑

j

Sqjx Sqi−jy.

In this theorem the Sqi should be interpreted as a stable operations
in the sense that Sqi = {Sqi

(n)} where Sqi
(n) : Hn(X) → Hn+i(X) and

σ∗(Sqi
(n)) = Sqi

(n−1).

Exercise 170 says that each component θn of a stable operation is a
group homomorphism. Thus the Sqi are additive, i.e. Sqi

(n) : Hn(X) →
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Hn+i(X) is a group homomorphism for all n. The operation Sqi is not a
ring homomorphism, this is clear from the Cartan formula. For example,

Sq1(ab) = Sq1a · b + a · Sq1b

so Sq1 is a derivation. However, if we define the total square by the formula

Sq =
∞∑
i=0

Sqi

(on each element x ∈ Hp(X) the sum is finite; Sq(x) = x+Sq1x+ · · ·+Sqpx
since Sqp+kx = 0 for k > 0) then the Cartan formula simplifies to

Sq(xy) = Sq(x)Sq(y)

What this says is that the Sqi are the homogeneous components of a ring
endomorphism Sq of the cohomology algebra H∗(X;Z/2).

There are several ways of constructing the Sqi and verifying their proper-
ties. We will not prove Theorem 10.24 in general, but instead will construct
the operations Sqi and focus on some special cases, taking the point of view
that computing Ar

2 is the same, using Equation (10.10), as computing the
cohomology H2r+1(K(Z/2, r + 1);Z/2).

As a first simple computation, notice that

A0
2 = H1(K(Z/2, 1);Z/2) = Z/2 = Hn(K(Z/2, n);Z/2).

The generator is

ιn ∈ Hn(K(Z/2, n);Z/2) = Hom(Hn(K(Z/2, n)),Z/2),

i.e. the generator is the fundamental class, which corresponds to te identity
map via the identification Hn(K(Z/2, n);Z/2) = [K(Z/2, n), K(Z/2, n)]0.
This implies that the corresponding cohomology operation is the identity
operation, which we denote by Sq0.

Next consider

A1
2 = H3(K(Z/2, 2),Z/2) ∼= Hn+1(K(Z/2, n),Z/2) for all n ≥ 2.

Recall that the isomorphism is given by the transgression in the spectral
sequence for the (path space) fibration

K(Z/2, n− 1)→ ∗ → K(Z/2, n).

Proposition 10.25. The transgression

τ∗ : H2(K(Z/2, 1);Z/2)→ H3(K(Z/2, 2),Z/2)

is an isomorphism.
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Notice that the statement falls just out of the range of Theorem 10.21.
Before we prove this proposition, we draw some conclusions. Recall that

infinite-dimensional real projective space RP∞ has the homotopy type of a
K(Z/2, 1). Therefore the cohomology ring H∗(K(Z/2, 1)) is isomorphic to
the polynomial ring Z/2[ι1]. In particular,

H2(K(Z/2, 1);Z/2) = Z/2,

generated by ι21. Hence A1
2
∼= Z/2. It is represented by an element which we

denote by Sq1.

Explicitly, define Sq1
(n) ∈ Hn+1(K(Z/2, n);Z/2) by

Sq1
(n) =


τ∗ ◦ · · · ◦ τ∗︸ ︷︷ ︸

n−1

(i21) if n ≥ 1;

0 if n = 0.
(10.11)

From earlier remarks it follows that Sq1
(n) = σ∗(Sq1

(n+1)) if n ≥ 1. By
construction it is immediate that

Sq1
(1) : H1(X;Z/2)→ H2(X;Z/2)

is the map x �→ x2. The following exercise shows that σ∗(Sq1
(1)) = 0 = Sq1

(0)

confirming that Equation (10.11) gives the correct definition for Sq1
(0).

Exercise 172. Show that for any space X, the map

Hn(SX)→ H2n(SX)

given by x �→ x2 is zero for n > 0. (Hint: Consider the cup product
Hn(CX, X)×Hn(CX)→ H2n(CX, X) of Corollary 3.24.)

Proof of Proposition 10.25. Consider the cohomology spectral sequence
for the path space fibration

K(Z/2, 1)→ ∗ → K(Z/2, 2).

The E2 level in low degrees is tabulated in the following diagram.
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q

i31 0

i21 0

i1 0 i2i1

0 i2
p

Since d2(i1) = i2 it follows that d2(i21) = d2(i1)i1 + i1d2i1 = i2i1 + i1i2 =
2i1i2 = 0. Thus i21 survives to E3, and hence is transgressive. Moreover d3 :
E0,2

3 → E3,0
3 must be an isomorphism, since Ep,q

∞ = 0 for all (p, q) �= (0, 0).
Thus i21 transgresses to a generator τ(i21) of H3(K(Z/2, 2);Z/2).

We next turn our attention to

A2
2
∼= H5(K(Z/2, 3);Z/2) ∼= Hn+2(K(Z/2, n),Z/2)

for n ≥ 3. The spectral sequence for the fibration

K(Z/2, 2)→ ∗ → K(Z/2, 3)

in low dimensions is described in the diagram:

q

i22 0 0

τ(i21) 0 0

i2 0 0 i2i3

0 0 0 0 0 0

Z/2 0 0 i3
p

We have used the fact from the proof of Proposition 10.25 that τ(ι22)
generates H3(K(Z/2, 2);Z/2).
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Three differentials are drawn. The differential d3 : E0,2
3 → E3,0

3 is
an isomorphism since E0,2

3 = E0,2
2 = H2(K(Z/2, 2)) = Z/2〈ι2〉. Also

E3,0
3 = H3(K(Z/2, 3)) = Z/2〈ι3〉 and since Ep,q

∞ = 0 for all (p, q) �= (0, 0) we
conclude that d3ι2 = ι3.

Now observe that since

E3,2
2 = H3(K(Z/2, 3))⊗H2(K(Z/2, 2)) = Z/2〈ι2ι3〉,

the differential d3 : E0,4
3 → E3,2

3 = E3,2
2 takes ι22 to 2ι2ι3 = 0.

Lemma 10.26. E0,4
3 is isomorphic to Z/2, spanned by ι22.

Assuming Lemma 10.26 for a moment, it follows that d5 : E0,4
5 → E5,0

5

is an isomorphism, so that ι22 is transgressive, and

E5,0
5 = E5,0

2 = H5(K(Z/2, 3),Z/2) = Z/2〈τ(ι22)〉.

Thus

Z/2 = A2
2 = Hk+2(K(Z/2, k);Z/2) for k ≥ 3,(10.12)

spanned by τ(ι22). We denote τ(ι22) by Sq2. More precisely, denote τ(ι22)
by Sq2

(3). Then let Sq2 = {Sq2
(n)} where Sq2

(n) = τ (n−3)(Sq2
(3)) for n > 3,

Sq2
(2) = ι22, and Sq2

(1) = Sq2
(0) = 0.

Since Sq2
(2) = ι22, it follows that Sq2x = x2 if x ∈ H2(X;Z/2). Exercise

172 shows that σ∗(Sq2
(2)) = 0 = Sq2

(1), so we have correctly defined the stable
operation Sq2.

Proof of Lemma 10.26. First,

E0,4
3 = E0,4

2 = H0(K(Z/2, 3);H4(K(Z/2, 2)) = H4(K(Z/2, 2)).

Hence it must be shown that H4(K(Z/2, 2)) ∼= Z/2, generated by ι22.
Let f : K(Z, 2) → K(Z/2, 2) be a map representing the generator c of

H2(K(Z, 2);Z/2) = Z/2. Recall that K(Z, 2) ∼ CP∞, so that its cohomol-
ogy ring H∗(K(Z, 2);Z/2) is isomorphic to Z/2[c], the polynomial ring with
generator c. In particular, c2 �= 0. By definition of the map f , f∗(ι2) = c. So
f∗(ι22) = c2 �= 0. Hence ι22 is non-zero in H4(K(Z/2, 2);Z/2). To complete
the proof it therefore suffices to show that H4(K(Z/2, 2)) = Z/2.

Consider the spectral sequence for the path space fibration

K(Z/2, 1)→ ∗ → K(Z/2, 2).

The facts d2(ι21) = 0 and d3(ι21) �= 0 established in the proof of Proposition
10.25 imply that d2 : E2,1

2 = Z/2〈ι2ι1〉 → E4,0
2 is an isomorphism. Thus

Z/2 = E4,0 = H4(K(Z/2, 2)) as desired.
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The construction of Sq1 and Sq2 suggests we define Sqn in the following
way. Let ιn ∈ Hn(K(Z/2, n),Z/2) denote the fundamental class. Let

y0 = ι2n ∈ H2n(K(Z/2, n);Z/2).

In the spectral sequence for the fibration

K(Z/2, n)→ ∗ → K(Z/2, n + 1),

the differential dn+1 takes ιn to ιn+1. Thus dn+1(y0) = 2ιnin+1 = 0 and
hence y0 is transgressive.

Let

y1=d2n+1(y0)=τ∗(y0)∈E2n+1,0
2n+1 =E2n+1,0

2 = H2n+1(K(Z/2, n + 1);Z/2).

Then σ∗(y1) = y0.
The transgressions are isomorphisms

τ∗ : H2n+k(K(Z/2, n + k);Z/2)→ H2n+k+1(K(Z/2, n + k + 1);Z/2)

for k ≥ 1. Thus we define

yr = (τ∗)r(y0) ∈ H2n+r(K(Z/2, n + r);Z/2).

This defines a sequence {yr} with σ∗(yr) = yr−1 for r ≥ 1.
If we extend this sequence by defining xr = 0 for r < 0, then we still have

σ∗(yr) = yr−1 by Exercise 172. Hence the sequence {yr} defines a stable
cohomology operation Sqn

(k) = yn−k in An
2 . By construction, Sqnx = x2 if

x ∈ Hn(X;Z/2).
This completes the construction of the Steenrod operations Sqn. This

approach does not reveal much about their structure beyond showing that
Sqn(x) = x2 if x ∈ Hn(X;Z/2). Showing that the Sqn generate the Steen-
rod algebra A2, establishing the Adem relations, and proving the rest of
Theorem 10.24 is more involved and requires a more detailed analysis of
the cohomology of the Eilenberg–Maclane spaces. We will content ourselves
with proving part (c) of Theorem 10.24, identifying Sq1 with the Bockstein
operator.

Lemma 10.27. The stable operation Sq1 is the Bockstein associated to the
exact sequence

0→ Z/2→ Z/4→ Z/2→ 0.

Proof. Consider the long exact sequence in cohomology of K = K(Z/2, k)
associated to the short exact sequence 0→ Z/2→ Z/4→ Z/2→ 0. This is
the sequence

· · · → Hk−1(K;Z/2)→ Hk(K;Z/2)→
Hk(K;Z/4)→ Hk(K;Z/2)

β−→ Hk+1(K;Z/2)→ · · ·
By definition the map labeled β is the Bockstein.
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The Hurewicz and universal coefficient theorems show that

Hk−1(K;Z/2) = 0.

Also,

Hk(K;Z/2) = Hom(Hk(K),Z/2) = Hom(Z/2,Z/2) = Z/2

and

Hk(K;Z/4) = Hom(Hk(K);Z/4) = Hom(Z/2,Z/4) = Z/2.

It follows that β is an injection.
Induction using the spectral sequences for the fibrations

K(Z/2, n− 1)→ ∗ → K(Z/2, n)

and the fact that the cellular chain complex for K(Z/2, 1) = RP∞ is

· · · → Z 0−→Z ×2−→ Z 0−→Z→ 0

shows that

Hk+1(K;Z) ∼= Hk(K(Z/2, k − 1);Z)

· · · ∼= H2(K(Z/2, 1);Z)

= 0.

Thus

Hk+1(K;Z/2) = Hom(Hk+1(K,Z),Z/2))⊕ Ext (HkK,Z/2)

= 0⊕ Z/2,

so that β is an isomorphism.
By definition, the cohomology operation β corresponds to the element

β(ik) in Hk+1(K;Z/2) = Z/2, but Sq1 was constructed to be the generator
of Hk+1(K;Z/2). Thus β = Sq1.

Here is an interesting application of the Steenrod squares to the homo-
topy groups of spheres. Consider the Hopf fibration S3 → S7 h−→ S4. Using
h as an attaching map for an 8-cell to S4, we obtain the quaternionic pro-
jective plane X = HP 2. This has Z/2-cohomology Z/2 in dimensions 0, 4
and 8. Poincaré duality implies that the intersection form on fourth coho-
mology is non-degenerate. Therefore, (using Z/2-coefficients) if x ∈ H4(X),
x2 = Sq4(x) ∈ H8(X) = Z/2 is non-zero.

If we use the suspension Sh : S8 → S5 to attach an 9-cell to S5, we obtain
the suspension SX (prove this). We will show that Sh is not nullhomotopic,
and hence the suspension homomorphism π7S

4 → π8S
5 = πS

3 (which is onto
by the Freudenthal suspension theorem) is non-zero.
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Let y ∈ H5(SX) denote the non-zero element. Suppose to the contrary
that Sh is nullhomotopic. Then SX is homotopy equivalent to the wedge
S5 ∨ S8. In particular the map Sq4 : H5(SX)→ H8(SX) is trivial, since if
y is the non-zero element of H5(S5∨S8), then y is pulled back from H5(S5)
via the projection S5 ∨ S8 → S5, but H8(S5) = 0 and so by naturality
Sq4(y) = 0.

But, since Sq4 is a stable operation, the diagram

H4(X) H8(X)

H5(SX) H9(SX)

✲Sq4

✻∼=

✲Sq4

✻∼=

commutes, and so Sq4(y) �= 0.
Thus Sh : S8 → S5 is non-nullhomotopic, and so πS

3 is non-zero.
A similar argument, using the Hopf fibration S7 → S15 → S8 solves the

following exercise.

Exercise 173. Show that the suspension

π15S
8 → π16S

9 = πS
7

is non-trivial on the homotopy class of the Hopf map S15 → S8.

10.6. The Thom isomorphism theorem

The Thom isomorphism theorem is a generalization of the fact that sus-
pension induces an isomorphism Hn(B) ∼= Hk+n(SkB). Roughly speak-
ing, the Thom isomorphism theorem says that the suspension isomorphism
continues to hold when one “twists” the suspension construction. More
precisely, the k-fold suspension SkB can be considered as the quotient
(B × Dk)/(B × Sk−1). This is generalized by replacing the space B × Dk

by the disk bundle of some vector bundle over B and replacing B×Sk−1 by
the corresponding sphere bundle.

Recall that the Thom space M(E) of a vector bundle E → B with
metric is identified with D(E)/S(E), where S(E) denote the unit sphere
bundle and D(E) denote the unit disk bundle of E → B. The collapsing
map defines, via excision, an isomorphism (with any coefficients)

Hm(E, E0)→ Hm(M(E), p)

where E0 denotes the complement in E of the zero section. The inclusion of
a fiber Rk ∼= Eb ⊂ E can be viewed as a vector bundle map from a bundle
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over the point b ∈ B to E, and so induces a restriction homomorphism (for
any choice of coefficients C)

Hm(E, E0;C)→Hm(Eb, (E0)b;C)∼=Hm(Rk,Rk − {0};C)∼=
{

C if m = k,
0 if m �= k.

(10.13)

We will be concerned only with the two fundamental cases of C = Z/2
and C = Z.

Exercise 174. Prove that a vector bundle Rk ↪→ E → B is orientable (i.e.
its structure group reduces from O(k) to SO(k); see Definition 4.10) if and
only if the the local coefficient system

π1(B)→ Aut(Hk(Rk,Rk − {0};Z)) = Aut(Z) ∼= Z/2

(determined by Corollary 6.13) is trivial. Notice that by pulling back bun-
dles, it is enough to prove this for B = S1. Prove that a vector bundle
over S1 is orientable if and only if it is trivial. (Hint: use the clutching
construction and the fact that O(k) has exactly two path components.)

In preparation for the statement of the Thom isomorphism theorem,
notice that given a vector bundle Rk ↪→ E

p−→ B, there is a cup product
(with any ring coefficients)

Hp(B)×Hq(E, E0)
∪−→ Hp+q(E, E0)(10.14)

obtained by pre-composing the cup product

Hp(E)×Hq(E, E0)→ Hp+q(E, E0)

(see Corollary 3.24) with the isomorphism p∗ : Hp(B)→ Hp(E) induced by
the bundle projection.

Theorem 10.28 (Thom isomorphism theorem). Given a vector bundle

Rk ↪→ E → B

with k ≥ 1,

1. There exists a unique class u ∈ Hk(E, E0;Z/2) so that for each b ∈ B,
the restriction to the fiber over b,

Hk(E, E0;Z/2)→ Hk(Eb, (E0)b;Z/2) ∼= Z/2

(see Equation (10.13)) takes u to the unique non-zero element. This
class u has the property that the homomorphism

Φ : Hn(B;Z/2)→ Hk+n(E, E0;Z/2), x �→ x ∪ u

(Using the cup product (10.14)) is an isomorphism for all n.



10.6. The Thom isomorphism theorem 297

2. If the vector bundle E → B is orientable, then there exists a class
ũ ∈ Hk(E, E0;Z) so that for each b ∈ B the restriction to the fiber
over b,

Hk(E, E0;Z)→ Hk(Eb, (E0)b;Z) ∼= Z
takes ũ to a generator. The class ũ is unique up to sign. It has the
property that the homomorphism

Φ̃ : Hn(B;Z)→ Hk+n(E, E0;Z), x �→ x ∪ ũ

is an isomorphism for all n. Moreover the coefficient homomorphism
Hk(E, E0;Z)→ Hk(E, E0;Z/2) takes u to ũ.

The classes u and ũ are natural with respect to pulling back vector bundles:
if f : B′ → B is a continuous map, and E′ = f∗(E) the pulled back bundle,
then (with the obvious notation) u′ = f∗(u) and ũ′ = f∗(ũ).

Definition 10.29. The cohomology class u ∈ Hk(E, E0,Z/2) (resp. ũ ∈
Hk(E, E0,Z)) whose existence is assured by Theorem 10.28 is called the
Thom class for Rk ↪→ E → B. If we wish to emphasize the bundle E → B,
we will denote its Thom class by uE (resp. ũE).

Proof of Theorem 10.28. We prove the two cases (Z and Z/2) simulta-
neously. To simplify the notation we replace the pair (E, E0) by the pair
(D(E), S(E)) where D(E) denotes the unit disk bundle and S(E) the unit
sphere bundle of E for some riemannian metric. We lose no information
since the inclusions (D(E), S(E)) ↪→ (E, E0) and (Dk, Sk−1) ↪→ (Eb, (E0)b)
are deformation retracts.

Consider the spectral sequence for the relative fibration

(Dk, Sk−1)→ (D(E), S(E))→ B

with Z/2 or Z coefficients.
Using the universal coefficient theorem, (and, for the orientable case, the

fact that the coefficients are untwisted)

Ep,q
2 = Hp(B;Hq(Dk, Sk−1))
∼= Hp(B)⊗Hq(Dk, Sk−1)

∼=
{

0 if q �= k

Hp(B) if q = k.

The isomorphism Hp(B) → Ep,k
2 is given by γ �→ γ ⊗ τ where τ generates

Hk(Dk, Sk−1).
Clearly

Ep,q
2 = Ep,q

∞ =

{
Hp+k(D(E), S(E)) if q = k,
0 otherwise.
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Thus Hp(B) ∼= Hp+k(D(E), S(E)).
Let u (resp. ũ) generate Hk(D(E), S(E)) ∼= H0(X), which is isomor-

phic to Z/2 (resp. Z). Clearly u is unique and ũ is unique up to sign.
Then the multiplicative properties of the spectral sequence imply that the
isomorphism Hp(B) ∼= Hp+k(D(E), S(E)) is given by γ �→ γ ∪ u (resp.
γ ∪ ũ).

Naturality of the classes u and ũ follow from the naturality properties
of the spectral sequences with respect to cellular maps and the cellular
approximation theorem.

The fact that u (resp. ũ) restricts to the generator in each fiber fol-
lows from naturality by considering the inclusion of the fibrations induced
by the inclusion of a point b in B. The fact that ũ is mapped to u via
Hk(D(E), S(E);Z)→ Hk(D(E), S(E);Z/2) follows from uniqueness of the
Thom class and commutativity of the diagram

Hk(D(E), S(E);Z) Hk(D(E), S(E);Z/2)

Hk(Dk, Sk−1;Z) Hk(Dk, Sk−1;Z/2)
❄

✲

❄
✲

where the vertical arrows are induced by the inclusions and the horizontal
arrows by the coefficient homomorphism Z→ Z/2.

The Thom isomorphism theorem has a homology counterpart. We will
use the following corollary below.

Corollary 10.30. Taking the cap product with u ∈ Hk(E, E0;Z/2) induces
isomorphisms

u ∩ : Hn+k(E, E0;Z/2)→ Hn(B;Z/2).

Proof. (Use Z/2-coefficients throughout the proof.) For any space X,
Hn(X) is isomorphic to Hom(Hn(X),Z/2) via x �→ 〈−, x〉, where 〈 , 〉
denotes the Kronecker pairing.

The composite isomorphism

Hn+k(E, E0)∼=Hom(Hn+k(E,E0),Z/2)
(∪u)∗−−−→ Hom(Hn(B),Z/2)∼=Hn(B)

is given by x �→ z, where x and z are related by

〈β, z〉 = 〈β ∪ u, x〉 for all β ∈ Hn(B).

Since 〈β ∪ u, x〉 = β ∩ (u ∩ x), we conclude that z = u ∩ x.
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10.7. Intersection theory

One very useful consequence of the Thom isomorphism theorem is the iden-
tification of intersection numbers with cup products in manifolds. For sim-
plicity we will only discuss the case of smooth compact manifolds, but ev-
erything we say holds in greater generality (with trickier proofs). In this
section all homology and cohomology is taken with Z coefficients.

Resolving the various notions of orientability is necessary, and so our
exposition will involve a sequence of exercises to relate the various notions.
These exercises are all straightforward but they can be a bit confusing. A
mastery of orientation issues is quite useful for a working mathematician,
and you should keep in mind that such a mastery comes only from a thorough
understanding of the equivalence between different points of view. (In other
words: solve these exercises!)

Recall that an orientation of a real finite-dimensional vector space V is
an equivalence class of bases of V where two bases are considered equivalent
if the determinant of the change of basis matrix is positive. Notice that a
choice of basis identifies V with Rm for some m. This in turn induces an
isomorphism

Hm(V, V − {0})
∼=−→ Hm(Rm,Rm − {0}) ∼= Z.(10.15)

Exercise 175. Show that changing the orientation of V changes the iden-
tification of Equation (10.15) by a sign.

It follows from this exercise that an orientation of V can be defined as a
choice of generator of Hm(V, V − {0}). By choosing the dual generator an
orientation of V can also be defined as a choice of orientation of Hm(V, V −
{0}).

We have come across several notions of orientability for smooth mani-
folds. One notion is that a smooth manifold M is orientable if its tangent
bundle is orientable; i.e. the structure group of TM can be reduced from
O(m) to SO(m). An orientation is a choice of such a reduction.

Exercise 176. Show that an orientation in this sense determines an equiv-
alence class of bases at each tangent space TpM . (Hint: use Exercise 174.)
More generally show that a reduction of the structure group of a vector
bundle E from O(n) to SO(n) determines an equivalence class of bases in
each fiber Ex so that these equivalence classes are compatible with the lo-
cal trivializations of E; i.e. the homeomorphism E|U ∼= U ×Rn takes the
orientation of Ex to the same orientation fo Rn for all x ∈ U .

Another notion of orientability says that a compact, connected manifold
M is orientable if Hm(M, ∂M) ∼= Z and that an orientation is a choice
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[M, ∂M ] ∈ Hm(M, ∂M) of generator, called the fundamental class of the
oriented manifold M . In the course of the proof of the Poincaré duality
theorem one shows that if [M, ∂M ] is the fundamental class of M , then for
each p ∈M the inclusion Hm(M, ∂M)→ Hm(M, M−p) is an isomorphism.

Given p ∈M (and a choice of riemannian metric on M) the exponential
map exp : TpM →M restricts to a diffeomorphism in a small ball W ⊂ TpM ,
exp: W → U ⊂ M and hence gives isomorphisms (the first and third are
excision isomorphisms)

Hm(TpM, TpM − 0) ∼= Hm(W, W − 0) exp−−→ Hm(U, U − p) ∼= Hm(M, M − p).

This shows that the choice of fundamental class [M, ∂M ] ∈ Hm(M, ∂M)
orients the tangent space TpM .

Exercise 177. Prove that this sets up an identification between the two
notions of an orientation of a smooth manifold (the choice of [M, ∂M ] and
an orientation of the vector bundle TM .)

The fundamental class [M, ∂M ] ∈ Hm(M, ∂M) of an oriented manifold
determines the dual cohomology fundamental class [M, ∂M ]∗ ∈ Hm(M, ∂M)
(and conversely) by the equation

〈[M, ∂M ]∗, [M, ∂M ]〉 = 1

where 〈 , 〉 denotes the Kronecker pairing.
Suppose that V and W are oriented subspaces of an oriented vector

space Z, and that dim (V ) + dim (W ) = dim (Z). Suppose that V and W
are transverse, i.e. V ∩W = 0. Then the intersection number of V and W is
the number in {±1} defined to be the sign of the determinant of the change
of basis matrix from the (ordered) basis {bV ,bW } to bZ , where bV ,bW ,
and bZ denote bases in the given equivalence classes. Notice that reversing
the order of V and W changes the intersection number by (−1)dim(V )dim(W ).

Now suppose that A and B are smooth, compact, connected, oriented
submanifolds of dimensions a and b of a compact oriented manifold M of
dimension m. (A smooth manifold is oriented if its tangent bundle is ori-
ented.) Assume that A is properly embedded, i.e. the boundary of A is
embedded in the boundary of M . Assume also that the boundary of B is
empty and that B is contained in the interior of M . Finally assume that A
and B are transverse. This means that at each point p ∈ A∩B, the tangent
subspaces TpA and TpB span TpM .

Definition 10.31. Suppose that a + b = m. Then since A and B are
transverse and compact, their intersection consists of a finite number of
points. Because A, B, and M are oriented, we can assign an intersection
number εp to each intersection point p ∈ A ∩ B by taking the intersection
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number (as above) of the oriented subspaces TpA and TpB in TpM . Then
define the intersection number of A and B to be the integer

A ·B =
∑

p∈A∩B

εp.

Notice that A ·B = (−1)abB ·A.
Since A and B are oriented, they have fundamental classes [A, ∂A] ∈

Ha(A, ∂A), [B] ∈ Hb(B). Let eA : A ⊂ M and eB : B ⊂ M denote the
inclusions. Then eA([A, ∂A]) ∈ Ha(M, ∂M) and eB([B]) ∈ Hb(M).

Theorem 10.32. Let α ∈ Hb(M) be the Poincaré dual to eA([A, ∂A]), and
β ∈ Ha(M, ∂M) the Poincaré dual to eB([B]), i.e.

α ∩ [M, ∂M ] = eA([A, ∂A]) and β ∩ [M, ∂M ] = eB([B]).

Then

A ·B = 〈α ∪ β, [M, ∂M ]〉(10.16)

where 〈 , 〉 denotes the Kronecker pairing.

Theorem 10.32 justifies the terminology “intersection pairing” for the
cup product

Hb(M)×Ha(M, ∂M) ∪−→ Hm(M, ∂M)
∼=−→ Z

(see Section 3.6.2). Moreover, it implies that the intersection number A ·B
depends only on the homology classes eA([A, ∂A]) and eB([B]). In partic-
ular, given any not necessarily transverse submanifolds A and B as above,
the transversality theorems imply that B can be isotoped to be transverse to
A. This preserves the class eB([B]) and so the resulting intersection number
A ·B is independent of the choice of the isotopy.

With more work one can define x · y for any classes x ∈ Ha(M, ∂M) and
y ∈ Hb(M), or even on the chain level for a simplicial complex and its dual
cell complex (by thinking of a simplex as a submanifold). Theorem 10.32 is
true in this greater generality. Alternatively, this approach can be reversed
to give a proof of Poincaré duality and a definition of cup products in terms
of intersections.

There is also a mod 2 version of Theorem 10.32 in which orientation
issues do not play a role; one defines A ·2 B to be the number of intersection
points of A and B when A and B are transverse. It holds in greater gener-
ality since none of the manifolds need to be orientable, but the conclusion
is correspondingly weaker; it only holds mod 2. To help you digest the fol-
lowing argument you might first consider the mod 2 case, thereby avoiding
sign and orientation issues which complicate the proof.
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Proof of Theorem 10.32. Let E denote the normal bundle of B ⊂ M .
The tubular neighborhood theorem implies that E can be embedded as a
neighborhood of B in M , with B itself corresponding to the zero section.
Give E a metric.

It is a straightforward consequence of the fact that A and B are trans-
verse that for ε > 0 small enough, the disk bundle D(E) of vectors of E of
length less than or equal to ε intersects A in a finite number of disks Dp, one
for each p in A∩B, with each Dp isotopic rel boundary in (D(E), ∂D(E)) to
a fiber of the disk bundle D(E)→ B. Using the isotopy extension theorem
(and maybe making ε smaller if necessary), we may assume A intersects
D(E) exactly in a union of fibers, one for each point p ∈ A ∩ B. In other
words, after an isotopy supported in E which fixes each p ∈ A ∩B,

A ∩D(E) =
⋃

p∈A∩B

D(E)p.

For convenience we simplify notation by setting D = D(E). Thus the
boundary ∂D is the ε-sphere bundle of E. The subanifold A intersects D in
a union of disks Dp, one for each p ∈ A ∩ B. The situation is illustrated in
the following figure.

A
B

Dp

The manifold D is oriented as a submanifold of M . To see this, notice
that there are excision isomorphisms

Hm(D, ∂D) ∼= Hm(D, D − x) ∼= Hm(M, M − x) ∼= Hm(M, ∂M)(10.17)

for any x ∈ Int(D). Moving from left to right orients D compatibly with
M . Alternatively, TD = TM |D so the orientation of the tangent bundle of
M orients the tangent bundle of D.
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The normal bundle E → B is orientable. One way to see this is to use
the Whitney sum decomposition

E ⊕ TB ∼= TM |B
(since E = ν(B ⊂ M) ). The fact that TB and TM are orientable implies
that E is orientable. Orient E so that the intersection number of a fiber Ex

of E with the zero section B equals 1:

Ex ·B = 1.

Exercise 178. Show that this condition uniquely specifies an orientation
of the normal bundle E.

This orients the fibers Dx, i.e. for each x ∈ B one gets a preferred
generator [Dx, ∂Dx] of Ha(Dx, ∂Dx).

The Thom isomorphism theorem says that there is a unique Thom class
ũ ∈ Ha(D, ∂D) so that ∪ũ : Hk(B)→ Hk+a(D, ∂D) is an isomorphism for
all k so that the restriction of ũ to the fiber Dx satisfies ũ|Dx = [Dx, ∂Dx]∗,
i.e. 〈ũ, [Dx, ∂Dx]〉 = 1.

Now [B]∗ ∪ ũ generates Hm(D, ∂D) and so equals [D, ∂D]∗ up to sign.
The sign is equal to (−1)ab. To see this one can use naturality of the Thom
class and work over a small open set in B diffeomorphic to a ball of dimension
a.

Exercise 179. Prove that ũ∪[B]∗ = [D, ∂D]∗ (and hence, by Theorem 3.13
[B]∗∪ũ = (−1)ab[D, ∂D]∗) by pulling E → B back over a small neighborhood
U ⊂ B.

Thus, using Exercise 37 and Proposition 3.21,

(−1)ab = 〈[B]∗ ∪ ũ, [D, ∂D]〉
= ([B]∗ ∪ ũ) ∩ [D, ∂D]
= [B]∗ ∩ (ũ ∩ [D, ∂D])
= 〈[B]∗, ũ ∩ [D, ∂D]〉

and so, since Hb(D) ∼= Z and Hb(D) ∼= Z,

ũ ∩ [D, ∂D] = (−1)ab[B].

In other words, (−1)abũ is the Poincaré dual to [B] in D.
The inclusion i1 : (D, ∂D) ⊂ (M, M−Int(D)) induces excision isomor-

phisms in homology and cohomology. Hence Hn(M, M−Int(D)) is isomor-
phic to Z. The inclusion i2 : (M, ∂M) ⊂ (M, M−Int(D)) is not an excision,
but induces an isomorphism

Hn(M, ∂M)→ Hn(M, M − Int(D))
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since both groups are isomorphic to Z and the inclusions of both pairs to
(M, M −x) are excisions. Because the orientations were chosen compatibly,

i1([D, ∂D]) = [M, M − Int(D)] = i2([M, ∂M ]).

It follows from naturality of the cap product

Hp(X, Y )×Hq(X, Y ) ∩−→ Hq−p(X)

for any pair (X, Y ) that the diagram

Hp(D, ∂D) Hn−p(D)

Hp(M, M − Int(D)) Hn−p(M)

Hp(M, ∂M) Hn−p(M)

✲∩[D,∂D]

❄

i1

✻
i1

❄

i2

✲∩i1([D,∂D])

✲∩[M,∂M ]

✻
Id

commutes.
Denote by j∗ the composite i2 ◦ (i1)−1 : Hp(D, ∂D) → Hp(M, ∂M).

The diagram above shows that if x ∈ Hp(D, ∂D), i1(x∩ [D, ∂D]) = j∗(x)∩
[M, ∂M ]. Taking x = ũ and using the notation [B] for the image of the
fundamental class of B in either D or M we conclude that

j∗(ũ) ∩ [M, ∂M ] = i1(ũ ∩ [D, ∂D]) = (−1)ab[B].

In particular
β = (−1)abj∗(ũ).

We can think of the homomorphism j∗ as being induced by the quotient
map j : M/∂M → D/∂D. Thus we have a corresponding homomorphism
j∗ : Hp(M, ∂M) → H∗(D, ∂D). Using the notation [A, ∂A] for the funda-
mental class of A in Ha(M, ∂M), the class j∗([A, ∂A]) is represented by the
union of fibers Dp, one for each p ∈ A ∩ B, but oriented according to the
local intersection number of A and B at p. Precisely:

j∗([A, ∂A]) =
∑

p∈A∩B

εp[Dp, ∂Dp],

where εp = 1 or −1 according to whether or not the two orientations of
Dp ⊂ (A ∩D) given by

1. restricting the orientation of A to Dp, and,

2. The orientation of Dp as a fiber of the normal bundle D
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agree. This is because the map j : M/∂M → D/∂D takes A/∂A to

∪p(Dp/∂Dp) = ∨p(Dp/∂Dp).

By definition, ∑
p

εp = A ·B.

We now compute:

〈α ∪ β, [M, ∂M ]〉 = 〈α ∪ (−1)abj∗(ũ), [M, ∂M ]〉
= 〈j∗(ũ) ∪ α, [M, ∂M ]〉
=

(
j∗(ũ) ∪ α

)
∩ [M, ∂M ]

= j∗(ũ) ∩
(
α ∩ [M, ∂M ]

)
= j∗(ũ) ∩ [A, ∂A]
= 〈j∗(ũ), [A, ∂A]〉
= 〈ũ, j∗([A, ∂A])〉
=

∑
p∈A∩B

εp〈ũ, [Dp, ∂Dp]〉

= A ·B.

Exercise 180. State (and prove) the mod 2 version of Theorem 10.32.

During the proof of Theorem 10.32 we also proved the following.

Corollary 10.33. Let e : B ⊂ M be an embedding of a smooth, closed,
oriented manifold in a compact, oriented manifold. Let D denote a closed
tubular neighborhood of B in M , with Thom class ũ ∈ Hn−b(D, ∂D), and let
j : M/∂M → D/∂D denote the collapse map. Then j∗(ũ) is the Poincaré
dual to e∗([B]) (up to sign).

The sign ambiguity in Corollary 10.33 comes from the fact that there
are two possible choices of Thom classes ũ; during the proof of Corollary
10.33 we made a specific choice by requiring that 〈ũ, [Dx, ∂Dx]〉 = Dx ·B.

We describe the usual way that a geometric topologist thinks of the
Poincaré dual β ∈ Ha(M, ∂M) to a cycle represented by a submanifold B ⊂
M . Given a cycle x ∈ Ha(M, ∂M) represented by an oriented submanifold
(A, ∂A) ⊂ (M, ∂M), the class β is represented by the cochain whose value
on x is given by the formula

〈β, x〉 = B ·A.

In brief, “the Poincaré dual β to B is given by intersecting with B.”
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To see why this is true, we compute:

B ·A = (−1)abA ·B
= (−1)ab〈α ∪ β, [M, ∂M ]〉
= (−1)ab(α ∪ β) ∩ [M, ∂M ]
= (β ∪ α) ∩ [M, ∂M ]
= β ∩ (α ∩ [M, ∂M ])
= β ∩ [A, ∂A]
= 〈β, [A, ∂A]〉.

Exercise 181. Show that if A and B are closed submanifolds of Sn inter-
secting transversally in finitely many points then they intersect in an even
number of points.

Exercise 182. Let M be a closed manifold and f : M →M a smooth map.
Let ∆ ⊂M ×M be the diagonal and

G(f) = {(m, f(m))} ⊂M ×M

the graph of f . Show that if ∆ ·G(f) is non-zero then any map homotopic
to f has a fixed point. Can you show that ∆ · G(Id) equals the Euler
characteristic of M , or more generally, that ∆ · G(f) equals the Lefschetz
number of f?

Exercise 183. Think about how to modify the proof of Theorem 10.32 to
handle the situation when A and B are only immersed, instead of embedded.

A more ambitious exercise is the following, which says that the inter-
section of submanifolds is identified with the cup product even when the
dimensions are not complementary.

Exercise 184. Show that if A and B are embedded, transverse, but a +
b > m, then the intersection A ∩ B is an oriented, closed submanifold of
dimension m − a − b. Prove that the Poincaré dual of [A ∩ B] is the class
α ∪ β. Use the fact that A ∩D is the pull-back of the disk bundle D → B
over A ∩ B, use naturality of the Thom class, and apply Corollary 10.33.
(You might try the Z/2 version first, to avoid orientation issues.)

10.8. Stiefel–Whitney classes

Denote by uk the “universal” Thom class for the universal vector bundle
over BO(k), Vk → BO(k). Recall that the inclusion of matrices

A �→
(

A 0
0 1

)
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induces a map of vector bundles Vk−1 ⊕ ε → Vk which is an isomorphism
on fibers and covers the natural map BO(k − 1) → BO(k). The Thom
isomorphism theorem implies that the cup product

Φk = ∪uk : Hn(BO(k);Z/2)→ H̃n+k(MO(k);Z/2)

is an isomorphism for all n.

Proposition 10.34. The diagram

Hn(BO(k)) Hn+k(MO(k))

Hn(BO(k − 1)) Hn+k−1(MO(k − 1))
❄

✲Φk

❄
✲Φk−1

commutes, where the left vertical map is induced by the inclusion

BO(k − 1)→ BO(k)

and the right vertical map is induced by the composite of the inclusion

Hn+k(MO(k))→ Hn+k(M(Vk−1 ⊕ ε)) = Hn+k(SMO(k − 1))

and the suspension isomorphism

S∗ : Hn+k(SMO(k − 1)) ∼= Hn+k−1(MO(k − 1)).

Proof. Notice that M(E⊕ ε) = SM(E). Restricting to a fiber corresponds
to the suspension S(Dk, Sk−1) = (Dk+1, Sk). It follows by naturality of the
suspension isomorphism that the Thom class for E ⊕ ε is the suspension of
the Thom class for E.

If

E E′

X X ′
❄

✲f̃

❄
✲f

is a map of Rk-vector bundles which is an isomorphism on each fiber (equiv-
alently, E ∼= f∗(E′)), then the Thom class pulls back, uE = f̃∗(uE′); this
follows again by uniqueness of the Thom class and by restricting to fibers.

The corollary now follows from these observations and the fact that if
i : BO(k − 1) → BO(k) is the map induced by inclusion, then i∗(Vk) ∼=
Vk−1 ⊕ ε.
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Proposition 10.35. The homomorphism

Hn(BO(k);Z/2)→ Hn(BO(k − 1);Z/2)

induced by the natural map BO(k − 1) → BO(k) is an isomorphism for
n < k − 1.

Proof. Consider the fibration

O(k − 1) ↪→ O(k)→ Sk−1

taking a matrix in O(k) to its last column. This deloops twice (see Theorem
6.40) to give a fibration

Sk−1 → BO(k − 1)→ BO(k).

The spectral sequence for this fibration (or the Gysin sequence) shows that
the sequence

· · ·→Hn−k(BO(k))→Hn(BO(k))→Hn(BO(k−1))→Hn−k+1(BO(k))→· · ·

is exact. Thus if n − k + 1 < 0, Hn(BO(k)) → Hn(BO(k − 1)) is an
isomorphism.

The Stiefel–Whitney classes can now be defined using the Steenrod op-
erations and the Thom isomorphism theorem.

Definition 10.36. Define the nth (universal) Stiefel–Whitney class to be

wn = Φ−1
k

(
Sqn(uk)

)
∈ Hn(BO(k);Z/2);

where uk ∈ Hk(MO(k);Z/2) denotes the Thom class and

Φk = ∪uk : Hn(BO(k);Z/2)→ Hk+n(MO(k);Z/2)

denotes the Thom isomorphism.

Proposition 10.34, Proposition 10.35, and naturality of the Steenrod
operations imply

Proposition 10.37. The restriction

Hn(BO(k);Z/2)→ Hn(BO(k − r);Z/2)

takes wn for BO(k) to wn for BO(k − r).

Hence the notation wk is unambiguous. Notice that if n > k, then
Sqn(uk) = 0, and so wn = 0 in Hn(BO(k);Z/2) for n > k.
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Definition 10.38. The nth Stiefel–Whitney class of an Rk-vector bundle
E → B is the class

wn(E) = f∗E(wn) ∈ Hn(B;Z/2)

where fE : B → BO(k) denotes the classifying map for E (see Theorem
8.22).

It follows immediately from their definition that the Stiefel–Whitney
classes are natural with respect to pulling back bundles. In particular, if
E and E′ are isomorphic bundles over B, then wn(E) = wn(E′) for all n.
Moreover, since the wn are compatible with respect to the maps BO(k) →
BO(k + 1),

wn(E ⊕ ε) = wn(E).

In other words, the Stiefel–Whitney classes are invariants of the stable equiv-
alence class of a vector bundle.

Exercise 185. Show that a vector bundle E is orientable if and only if
w1(E) = 0. (Hint: first relate Sq1 to the Bockstein associated to the exact
sequence 0→ Z ×2−→ Z→ Z/2→ 0.)

The Cartan formula (see Theorem 10.24) easily implies the following
theorem.

Theorem 10.39. The Stiefel–Whitney numbers of a Whitey sum of vector
bundles satisfy

wk(E ⊕ F ) =
∑

n

wn(E) ∪ wk−n(F ).

Exercise 186. Suppose that E and F are vector bundles over a finite-
dimensional CW-complex so that E ⊕ F is trivial (i.e. E and F are stable
inverses. For example, take E to be the tangent bundle of a smooth compact
manifold and F its normal bundle for some embedding in Sn.) Use Theorem
10.39 to prove that

w1(F ) = w1(E), w2(F ) = w1(E)2 + w2(E), w3(F ) = w1(E)3 + w3(E),

and, in general, that

wn(F ) =
∑

i1+2i2+···+kik=n

(i1 + · · ·+ ik)!
i1! · · · ik!

w1(E)i1 · · ·wk(E)ik .

The Stiefel–Whitney classes generate the cohomology ring of BO(k), as
the following theorem shows.
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Theorem 10.40. The Z/2-cohomology ring of BO(k) is a polynomial ring
on the Stiefel–Whitney classes of degree less that or equal to k:

H∗(BO(k);Z/2) = Z/2[w1, w2, · · · , wk]

where wi ∈ H i(BO(k);Z/2) denotes the ith Stiefel–Whitney class.

Proof. (Use Z/2 coefficients.) First we show that that wk ∈ Hk(BO(n))
is non-zero if k ≤ n. To see this it suffices by naturality to find one Rn-
bundle with wk non-zero. let R1 ↪→ E → S1 denote the “Möbius band”
bundle over S1, i.e. the bundle with clutching function S0 → O(1) the non-
constant map. This bundle has w1 �= 0 (for example, it is not orientable).
Thus w1 is non-zero in H1(BO(1)) and, since the restrictions

Hk(BO(n))→ Hk(BO(n− 1))

preserve the wi by Proposition 10.37, w1 is non-zero in H1(BO(n)) for all
n ≥ 1.

Since BO(1) = K(Z/2, 1) = RP∞ and w1 �= 0, H∗(BO(1)) = Z/2[w1].
Let E → BO(1) be a bundle with w1(F ) = w1. Then Theorem 10.39 (and
induction) shows that

wk(F ⊕ · · · ⊕ F︸ ︷︷ ︸
k times

) = w1(F )k,

which is non-zero in Hk(BO(1)). Therefore wk ∈ Hk(BO(n)) is non-zero
for all n ≥ k.

We prove the theorem by induction. The case n = 1 is contained in
the previous paragraph. Let i : BO(n − 1) → BO(n) denote the inclusion.
The induced map i∗ : H∗(BO(n)) → H∗(BO(n − 1)) is surjective since by
induction H∗(BO(n− 1) is generated by the wi for i ≤ n− 1, and these are
in the image of i∗.

The fiber of i : BO(n − 1) → BO(n) is Sn−1; in fact the fibration
obtained by taking an orthogonal matrix to its last column

O(n− 1) ↪→ O(n)→ Sn−1

deloops twice to give the fibration

Sn−1 → BO(n− 1)→ BO(n).

Consider the cohomology spectral sequence for this fibration. It has
Ep,q

2 = Hp(BO(n))⊗Hq(Sn−1) which is zero if q �= 0 or n− 1. Hence

Ep,q
k =

{
Ep,q

2 = Hp(BO(n))⊗Hq(Sn−1) if k ≤ n,

Ep,q
∞ if k > n.
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This leads to the exact sequence (this is just the Gysin sequence in coho-
mology)

· · · → Hk−1(BO(n))→ Hk−1(BO(n− 1))→
Hn−1(Sn−1)⊗Hk−1(BO(n)) dn−→ Hk(BO(n))→ Hk(BO(n− 1))→ · · ·

which reduces to short exact sequences

0→ Hn−1(Sn−1)⊗Hk−1(BO(n)) dn−→ Hk(BO(n))→ Hk(BO(n− 1))→ 0

(10.18)

since H∗(BO(n))→ H∗(BO(n−1)) is onto. The map labelled dn in (10.18)
is the differential dn Eq,n−1

n → Eq+n,0
n .

Taking k = n in the sequence (10.18) we obtain

0→ Hn−1(Sn−1) dn−→ Hn(BO(n))→ Hn(BO(n− 1))→ 0.

Since Hn−1(Sn−1) = Z/2, generated by the fundamental class [Sn−1]∗, and
since wn ∈ Hn(BO(n)) is non-zero and in the kernel of the restriction
Hn(BO(n))→ Hn(BO(n− 1)), it follows that dn([Sn−1]∗) = wn.

Applying the sequence (10.18), the fact that dn([Sn−1]∗∪α) = wn∪α for
α ∈ Hk−1(BO(n)), and induction competes the proof, since this sequence
shows that any element in Hk(BO(n)) can we written uniquely as a sum of
classes of the form

wi1
1 · · ·w

in−1

n−1 with i1 + 2i2 + · · ·+ (n− 1)in−1 = k

and classes of the form

dn([Sn−1]∗)α = wnα

for some α ∈ Hk−n(BO(n)).

Exercise 187. Show that if E → B is an Rk-vector bundle, then wk(E) is
the image of the Thom class under the composite

Hk(E, E0;Z/2) i∗−→ Hk(E;Z/2) z∗−→ Hk(B;Z/2)

where z : B → E denotes the zero section.

If E → B is an oriented Rk-vector bundle, the class

e(E) = z∗(i∗(ũ))) ∈ Hk(B;Z)

is called the Euler class of E and reduces to wk(E) mod 2. Compare this
with the definition we gave of Euler class in Section 7.11.
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10.9. Localization

Given a subset P of the set of prime numbers, let Z(P ) denote the integers
localized at P . This is the subring of the rationals consisting of all fractions
whose denominator is relatively prime to each prime in P ;

Z(P ) = { r
s | (r, s) = 1 and (s, p) = 1 for each prime p ∈ P}.

Thus
Z ⊂ Z(P ) ⊂ Q.

If P consists of a single prime p we write Z(P ) = Z(p).

Definition 10.41. Given a set P of prime numbers, an abelian group A is
called P-local if the homomorphism

A→ A⊗Z Z(P ), a �→ a⊗ 1

is an isomorphism.

If p is a prime and r > 0,

Z/pr ⊗ Z(P ) =

{
Z/pr if p ∈ P,

0 if p �∈ P.
(10.19)

More generally, if A ∈ CP , then A ⊗ Z(P ) = 0. This is because if a ∈ A,
choose r > 0 relatively prime to each p ∈ P so that ra = 0. Then r is
invertible in Z(P ) and so for each z ∈ Z(P ),

a⊗ z = a⊗ zr
r = ra⊗ z

r = 0.

Since Z(P ) is torsion free, it is flat as an abelian group (see Exercise 27),
i.e. the functor − ⊗Z Z(P ) is exact. In particular, if f : A → B is a CP
isomorphism, then tensoring the exact sequence

0→ ker f → A
f−→ B → coker f → 0

with Z(P ) and using the fact that

ker f ⊗ Z(P ) = 0 = coker f ⊗ Z(P )

we conclude that
f ⊗ 1 : A⊗ Z(P ) → B ⊗ Z(P )

is an isomorphism. This implies that if A and B are CP -isomorphic then
A ⊗ Z(P ) is isomorphic to B ⊗ Z(P ). Conversely, suppose that A and B
are finitely generated abelian groups so that A⊗Z(P ) is isomorphic to B ⊗
Z(P ). Then A and B have the same rank and their p-primary subgroups are
isomorphic for p ∈ P . Thus there is a CP -isomorphism from A to B.

The (relative) Hurewicz theorem mod C implies the following result,
when applied to CP .
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Theorem 10.42. Let A, X be spaces such that Hi(A) and Hi(X) are finitely
generated for each i, such that π1(A) = π1(X) = 0.

Let f : A→ X be a map with π2(X, A) = 0. Then the statements:

1. f∗ : Hi(A;Z(P )) → Hi(X;Z(P )) is an isomorphism for i < n and an
epimorphism for i = n,

2. Hi(X, A;Z(P )) = 0 for i ≤ n,
3. Hi(X, A;Z) ∈ CP for i ≤ n,
4. πi(X, A) ∈ CP for i ≤ n,
5. πi(A)→ πi(X) is a CP -isomorphism for i < n and a CP -epimorphism

for i = n,
6. πi(A) ⊗ Z(P ) → πi(X) ⊗ Z(P ) is an isomorphism for i < n and an

epimorphism for i = n,

are equivalent, and imply that if i < n, then πi(A) and πi(X) have equal
rank and isomorphic p-primary components for each p ∈ P .

Proof. Since Z(P ) is flat, the universal coefficient theorem (Corollary 2.35)
implies that Hk(Y ;Z(P )) = Hk(Y ;Z)⊗Z(P ) for any space Y and any k. Since
X and A have finitely generated Z-homology it follows from the discussion
preceding this theorem that the second and third assertions are equivalent.
The long exact sequence in homology and homotopy for a pair and the
relative Hurewicz theorem mod CP imply that 1. through 7. are equivalent.

The Hurewicz theorem mod CFG implies that πi(A) and πi(X) are
finitely generated for each i. Thus 6. and Equation (10.19) imply that πi(A)
and πi(X) have isomorphic p-primary components and equal rank for i < n.

An application of the universal coefficient theorem shows that a map
f : A→ X induces a Z(P )-homology isomorphism in all degrees if and only
if it induces a Z(P )-cohomology isomorphism in all degrees.

Theorem 10.42 can be used to construct a functor (called the localization
of a space at P )

L(P ) :
{ simply connected spaces with

finitely generated homology

}
→ {simply connected spaces }

so that:

1. there exists a natural transformation from the identity functor to
L(P ),Φ : Id→ L(P ),

2. for each X, Φ : X → L(P )(X) induces an isomorphism in Z(P )-
homology, and

3. H∗(L(P )(X);Z(P )) = H∗(L(P )(X);Z).
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We write
L(P )(X) = X(P ).

The space X(P ) is a good enough approximation to X to compute the p-
primary part of its homotopy groups for p ∈ P , i.e. the p-primary part of
πnX is isomorphic to the p-primary part of πn(X(P )) for p ∈ P and the
q-primary part of πn(X(P )) = 0 for q �∈ P . In this manner one can study the
algebraic topology of spaces one prime at a time, by taking P = {p}, and
also the rational homotopy of a space, by taking P empty.

Such a functor L(P ) : X �→ X(P ) exists, and can be constructed by first
constructing it for an Eilenberg–Maclane space K(π, n) and then using a
Postnikov decomposition of an arbitrary space into K(π, n)s.

We outline how to construct the localization functor L(P ). For K(π, n)
with π a finitely generated abelian group one just replaces π by π ⊗ Z(P ).
The natural map π → π⊗Z(P ) defines a (homotopy class of) map K(π, n)→
K(π ⊗ Z(P ), n). Thus we define

K(π, n)(P ) = K(π ⊗ Z(P ), n).

For a general space one constructs X(P ) inductively by assembling the
pieces of its Postnikov tower, pulling back its k-invariants using the Z(P )

cohomology isomorphisms. Thus, if X has Postnikov system(
πn = πn(X), Xn, pn : Xn → Xn−1, k

n ∈ Hn(Xn−1;πn−1)
)
,

then first define (X2)(P ) = K(π2 ⊗ Z(P ), 2). Since X2 = K(π2, 2), the
homomorphism π2 → π2 ⊗ Z(P ) induces a map X2 → (X2)(P ). The fibra-
tion p3 : X3 → X2 is obtained by pulling back the path space fibration
K(π3, 3) → ∗ → K(π3, 4) via k4 ∈ H4(X2;π3) = [X2, K(π3, 4)]. Since the
map X2 → (X2)(P ) induces an isomorphism

H4((X2)(P );π3 ⊗ Z(P ))→ H4(X2;π3 ⊗ Z(P ))(10.20)

(using the universal coefficient theorem), it follows that there is a unique
k4

(P ) ∈ H4((X2)(P );π3 ⊗ Z(P )) so that the image of k4
(P ) via the homo-

morphism of Equation (10.20) coincides with the image of k4 under the
coefficient homomorphism

H4(X2;π3)→ H4(X2;π3 ⊗ Z(P )).

Inductively, if (Xk)(P ) and fibrations (Xk)(P ) → (Xk−1)(P ) with fiber
K(πk ⊗ Z(P ), k) classified by kk+1

(P ) ∈ Hk+1((Xk−1)(P );πk ⊗ Z(P )) have been

defined for k ≤ n, define kn+2
(P ) ∈ Hn+2((Xn)(P );πn+1⊗Z(P )) to be the image

of the (n + 2)-nd Postnikov invariant of X, kn+2, under the composite

Hn+2(Xn;πn+1)→ Hn+2(Xn;πn+1 ⊗ Z(P )) ∼= Hn+2((Xn)(P );πn+1 ⊗ Z(P )).
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Then take (Xn+1)(P ) to be total space in the fibration pulled back from the
path space fibration K(πn+1 ⊗ Z(P ), n + 1) → ∗ → K(πn+1 ⊗ Z(P ), n + 2)
using kn+2

(P ) ∈ Hn+2((Xn)(P );πn+1⊗Z(P )) = [(Xn)(P ), K(πn+1⊗Z(P ), n+2)].

Notice that the construction also gives a map Xn → (Xn)(P ) inducing
the homomorphisms πk(X) = πk(Xn) → πk(Xn) ⊗ Z(P ) = πk((Xn)(P )) for
all k ≤ n. Thus if X(P ) denotes the space determined by the Postnikov
system (Xn)(P ) with k-invariants kn+1

(P ) , there is a map X → X(P ) (this gives
the natural transformation Φ) so that the induced map πn(X)→ πn(X(P ))
coincides with

πn(X)→ πn(X)⊗ Z(P ), a �→ a⊗ 1.

From Theorem 10.42 we conclude that X → X(P ) induces an isomor-
phism on homology with Z(P ) coefficients (and so also on cohomology with
Z(P ) coefficients). The facts that localization is functorial and that X →
X(P ) defines a natural transformation Φ :Id→ L(P ) can be proven by carry-
ing out the construction we gave in a systematic fashion.

Here are some examples with P = φ to show you why localization is
useful. The space X(φ) is usually denoted by X(0) and is called the rational-
ization of X.

From Proposition 9.25 it follows that if n is odd, the map Sn → K(Z, n)
generating Hn(Sn) induces an isomorphism on rational cohomology, and
hence a homotopy equivalence Sn

(0) → K(Q, n) = K(Z, n)(0). Therefore

πk(Sn)⊗Q = πk(K(Q, n)) = 0 for q �= n.

This implies that πk(Sn) is finite for k �= n.
For n even, Sn → K(Q, n) induces an isomorphism in rational homology

through dimensions 2n−1. Hence πk(Sn) is finite for k ≤ 2n−1, k �= n. We
can do better by taking E to be the homotopy fiber of the map K(Q, n)→
K(Q, 2n) representing ι2n ∈ H2n(K(Q, n)). The map Sn → K(Q, n) lifts to
E since H2n(Sn;Q) = 0. The long exact sequence in homotopy shows that

πk(E) =

{
Q if k = n, 2n− 1
0 otherwise.

Again, a simple application of the Leray–Serre spectral sequence for the
fibration K(Q, 2n − 1) → E → K(Q, n) and Proposition 9.25 shows that
H∗(E;Q) = H∗(Sn;Q); the isomorphism is induced by the map Sn → E.
Thus Sn

(0) = E and so πk(Sn)⊗Q = πk(E). This shows that πk(Sn) is finite
for k �= n, 2n− 1 and that the rank of πk(Sn) is 1 for k = n or 2n− 1.

These two calculations were obtained in Theorem 10.10 and Exercise
165 by similar arguments; the point is that the argument using localization
is conceptually much simpler since calculating with the Leray-Serre spectral
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sequence using rational coefficients is easier than using integer coefficients;
for example Ep,q

2 = Hp(B)⊗Hq(F ). Moreover, the rational cohomology of
K(Q, n) is simple and so constructing rational Postnikov systems which do
what we want is a more manageable problem than constructing an arbitrary
Postnikov system.

As a new example, consider the space CPn. The (rational) cohomol-
ogy ring of CPn is a truncated polynomial ring and the cohomology of
CP∞ is a polynomial ring. The inclusion CPn → CP∞ = K(Z, 2) in-
duces isomorphisms on (rational) cohomology through dimension 2n. Let
c ∈ H2(K(Q, 2)) denote the generator. Think of cn+1 ∈ H2n+2(K(Q, 2))
as a map cn+1 : K(Q, 2) → K(Q, 2n + 2) and let E be its homotopy fiber.
The map CPn → K(Q, 2) lifts to E since H2n+2(CPn) = 0. The spectral
sequence for the fibration K(Q, 2n+1)→ E → K(Q, 2) and the calculation
(9.25) shows that CPn → E induces an isomorphism on rational cohomol-
ogy.

Exercise 188. Prove this to see how easy it is.

Using the long exact sequence in homotopy we conclude that

πk(CPn)⊗Q = πk(E) =

{
Q if k = 2, 2n + 1,

0 otherwise.

Since CPn is a finite complex this shows that πk(CPn) is finite for k �=
2, 2n + 1 and has rank 1 for k = 2 and k = 2n + 1.

Another application is to Chern classes and Bott periodicity for the
unitary group. First, we have the following complex analogue of Theorem
10.40.

Theorem 10.43. Let BU(n) denote the classifying space for U(n). Then
The cohomology ring of BU(n)is a polynomial ring:

H∗(BU(n);Z) = Z[c1, c2, · · · , cn]

where the generators ck have degree 2k. The inclusion U(n − 1) → U(n)
induces a map H∗(BU(n))→ H∗(BU(n− 1)) which preserves the ck.

Exercise 189. Prove Theorem 10.43 using induction, and the multiplica-
tive properties of the Leray–Serre spectral sequence for the fibration

S2n−1 → BU(n− 1)→ BU(n)

obtained by delooping the fibration U(n − 1) → U(n) → S2n−1 twice. You
may use the proof of Theorem 10.40 as a guide, but the argument in this
case is much simpler.
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The class ck ∈ H2k(BU(n);Z) is called the kth Chern class. Since
isomorphism classes of Cn-vector bundles are classified by homotopy classes
of maps to BU(n), the Chern classes determine characteristic classes of
complex vector bundles. By construction, ck is a stable class, i.e. if E is
a complex vector bundle and εC denotes the trivial 1-dimensional complex
vector bundle, then ck(E⊕εC) is sent to ck(E) by the map Hk(BU(n+1))→
Hk(BU(n)).

Now consider the map BU(n) →
∏n

k=1 K(Q, 2k) given by the product
of the Chern classes, thinking of ck ∈ H2k(BU(n);Q) = [BU(n);K(Q, 2k)].
By the Künneth theorem and 9.25 this map induces an isomorphism on ratio-
nal cohomology. Therefore the rationalization of BU(n) is just

∏n
k=1 K(Q, 2k).

Since Ω(X × Y ) = ΩX × ΩY , ΩZ =pt if Z is discrete, and ΩK(G, n) ∼
K(G, n− 1), we see that

Ω2BU(n)(0) = Ω2(
n∏

k=1

K(Q, 2k)) ∼
n−1∏
k=0

K(Q, 2k) ∼ Q×BU(n− 1)(0).

In particular, letting n go to infinity we obtain a proof of the rational form
of Bott periodicity:

Ω2(Q×BU(0)) ∼ Q×BU(0).

10.10. Construction of bordism invariants

We finish this chapter with some comments on Thom’s computation of the
unoriented bordism groups. An invariant of unoriented bordism is a homo-
morphism w : ΩO

n → G for some abelian group G. Since 2M = ∂(M×I), the
group ΩO

n is a 2-torsion abelian group. Thus to construct bordism invariants
one might as well restrict to constructing homomorphisms w : ΩO

n → Z/2.
Thom computed ΩO

n in this fashion for all n in his famous 1954 paper [40].
He did this by finding enough bordism invariants (the Stiefel-Whitney num-
bers) wα : ΩO

n → Z/2 so that the sum

⊕
α

wα : ΩO
n → ⊕

α
Z/2

is an isomorphism.
We will outline some of the ingredients in Thom’s arguments.

Proposition 10.44. Let

w = wi1
1 · · ·win

n ∈ Hn(BO(n)),

so i1 + 2i2 + · · ·+ nin = n. If M is a smooth n-manifold then the number

〈w(TM), [M ]〉 ∈ Z/2

is a bordism invariant.
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Proof. Since the expression 〈w(TM), [M ]〉 is additive with respect to the
sum in the bordism group (disjoint union), it suffices to show that if M is
null-bordant, i.e. M = ∂W , then 〈w(TM), [M ]〉 = 0.

The tangent bundle of W and M are related by TM⊕ε = TW |M . Hence
if i : M ⊂W denotes the inclusion,

〈w(TM), [M ]〉 = 〈w(TM ⊕ ε), [M ]〉
= 〈w(i∗(TW )), [M ]〉
= 〈i∗(w(TW )), [M ]〉
= i∗(w(TW )) ∩ [M ]
= w(TW ) ∩ i∗[M ] = 0,

since in the sequence Hn+1(W, M) ∂−→ Hn(M) i∗−→ Hn(W ) the map labelled
∂ takes the generator [W, M ] to [M ].

Definition 10.45. A partition of the positive integer n is an n–tuple of
non-negative integers (i1, · · · , in) so that i1 + 2i2 + · · ·+ nin = n.

Given a partition (i1, · · · , in) of n, the number

〈wi1
1 · · ·win

n (TM), [M ]〉 ∈ Z/2

is called the Stiefel–Whitney number associated to the partition (i1, · · · , in).

Thus to each partition α = (i1, · · · , in) of n we have associated the
bordism invariant whose value on the manifold M is

wα(M) = 〈wi1
1 · · ·win

n (TM), [M ]〉.

Thom’s theorem is the following.

Theorem 10.46. Let S denote the set of partitions of n so that ik = 0
whenever k has the form 2� − 1. Then the map taking a manifold to its
Stiefel–Whitney numbers induces an isomorphism

⊕α∈S wα : ΩO
n → ⊕α∈S Z/2.

In other words, the unoriented bordism class of a manifold is determined by
its Stiefel–Whitney numbers, and given any partition α ∈ S there exists an
n-manifold M with wα(M) �= 0, but wβ(M) = 0 for β �= α.

Thom proves this theorem by a method analogous to the example of
BU(0) we gave in the previous section. First, Thom finds sufficiently many
examples of manifolds with the appropriate Stiefel–Whitney numbers, and
then he uses these to define a map from the Thom spectrum to a prod-
uct of Eilenberg-MacLane spectra K(Z/2). He shows this map induces an
isomorphism on homology, using the Thom isomorphism to compute the
cohomology of the Thom spectrum as a module over the mod 2 Steenrod
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algebra. The Whitehead theorem then implies that the map is a homotopy
equivalence, and so the Stiefel–Whitney numbers classify bordism.

10.11. Projects for Chapter 10

10.11.1. Unstable homotopy theory. Unstable homotopy theory is much
harder than the stable theory, essentially because πn(X, A) �∼= πn(X/A).
There are some useful results; you should lecture on some or all of these.

Since Sm has a cell structure with only one 0-cell and one m-cell, the
product Sk × Sn has a cell structure with 4 cells, a 0-cell e0 × e0, a k-cell
ek × e0, an n-cell e0 × en, and a (k + n)-cell ek × en. Removing the top cell
leaves the wedge

Sk × Sn − (ek × en) = Sk ∨ Sn.

Let a : Sk+n−1 → Sk∨Sn denote the attaching map for the (top) (k+n)-cell
of Sk × Sn.

The map a can be used to construct interesting elements in πnX.

Definition 10.47. Given f ∈ πkX and g ∈ πnX, define the Whitehead
product [f, g] ∈ πk+n−1X to be the (homotopy class of) the composite

Sk+n−1 a−→ Sk ∨ Sn f∨g−−→ X.

For example, if k = n = 1, the attaching map for the 2-cell of a torus
represents the commutator of the two generators, and hence the Whitehead
product π1X×π1X → π1X takes a pair of loops to their commutator. Since
π2(X) is abelian, the suspension map s∗ : π1X → π1(ΩSX) = π2(X) takes
any commutator to zero. More generally show (or look up) the following
fact.

Proposition 10.48. The suspension of the attaching map for the top cell
of Sk × Sn,

Sa : S(Sk+n−1) = Sk+n → S(Sk ∨ Sn),

is nullhomotopic. Hence s∗([f, g]) = 0 for any f ∈ πkX, g ∈ πnX, i.e. the
Whitehead product [f, g] is in the kernel of the suspension homomorphism
πn+k−1(X)→ πn+kSX.

Thus Whitehead products produce decidedly unstable elements in πmX.
The map s : X → ΩSX (defined in Section 10.3) induces the suspension
homomorphism s∗ : π�(X) → π�(ΩSX) = π�+1SX. It can be studied in a
large range (the “metastable range”) by using the EHP sequence:
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Theorem 10.49. If X is an (n − 1)-connected space, there is an exact
sequence

π3n−2(X) s∗−→ π3n−1(SX)→ π3n−1(SX ∧X)→ π3n−3(X)→ · · ·
· · · → πk(X)→ πk+1(SX)→ πk+1(SX ∧X)→ · · ·

The map s∗ is sometimes denoted “E” in the literature (from the German
word “Einhängung” for suspension), the map πk+1(SX)→ πk+1(SX∧X) is
usually denoted by “H” since it generalizes the Hopf invariant, and the map
πk+1(SX ∧X)→ πk(X) is usually denoted “P” since its image is generated
by Whitehead Products. Hence the name EHP sequence.

Thus, in the range k ≤ 3n−2, the EHP sequence gives some control over
what the kernel and cokernel of the suspension map on homotopy groups is.

An important special case of the EHP sequence is obtained by setting
X = Sn. The sequence is

π3n−2S
n → π3n−1S

n+1 → π3n−1S
2n+1 → π3n−3S

n → · · ·(10.21)

A proof of Theorem 10.49 can be found in [43] (although it is hard to
reconstruct the argument since it is explained as a consequence of a more
general result of James). The proof that (10.21) is exact as well as the
material below on the Hopf invariant can be found in [36, Section 9.3].

After substituting π2n+1S
2n+1 = Z a part of the sequence (10.21) can

be written:

· · ·π2nSn → π2n+1S
n+1 H−→ Z→ π2n−1S

n → · · ·
If n is even, Theorem 10.10 implies that the map H is zero and therefore
π2nSn → π2n+1S

n+1 is onto. The Freudenthal suspension theorem implies
that π2n+1S

n+1 → π2n+2S
n+2 = πS

n is onto, and so we conclude that for n
even, π2nSn → πS

n is onto.
If n is odd, then Exercise 165 shows that π2n+1S

n+1/torsion= Z. Since
π2nSn is finite the map H : π2n+1S

n+1 → Z is non-zero; it is called the Hopf
invariant.

The famous “Hopf invariant one” problem, solved by J.F. Adams, asserts
that H is onto only for n+1 = 1, 2, 4, and 8; and in fact the Hopf fibrations
are the only maps which have Hopf invariant one. The Whitehead product
[i, i] ∈ π2n−1S

n+1, where i ∈ πn+1S
n+1 denotes the generator, has Hopf

invariant 2.
There are several other definitions of the Hopf Invariant for a map f :

S2n+1 → Sn, and you should lecture on some of these. Here are two.

1. Assume that f is smooth (this can always be arranged by a small
homotopy) and let x0, x1 ∈ Sn+1 be two regular values of f . Let
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M0 = f−1(x0) and M1 = f−1(x1). Then H(f) =lk(M0, M1), where
“lk” denotes the linking number.

2. Let X be the CW-complex obtained by attaching a (2n + 2)-cell to
Sn+1 using f as the attaching map. Then Hq(X) = Z for q = 0, n+1,
and 2n + 2, and is zero otherwise. Let en+1 ∈ Hn+1(X) and e2n+2 ∈
H2n+2(X) denote the generators. Then (en+1)2 = H(f)e2n+2.





Chapter 11

Simple-Homotopy
Theory

Two basic references for the material in this chapter are Cohen’s book [7]
and Milnor’s article [28].

11.1. Introduction

Whitehead’s theorem says that a map f : X → Y between CW-complexes
is a homotopy equivalence if f∗ : πnX → πnY is an isomorphism for all n.
Thus homotopy groups and hence the tools of homotopy theory give impor-
tant information about the homotopy type of a space. However, important
questions in geometric topology center around distinguishing homeomor-
phism types within a class of homotopy equivalent manifolds, to which the
methods we have studied so far do not directly apply.

For example, suppose W is a compact manifold with two boundary com-
ponents: ∂W = M0 �M1. Suppose the inclusion M0 ↪→ W is a homotopy
equivalence. Is W homeomorphic to M0 × [0, 1], and, in particular, is M0

homeomorphic to M1? The answer to this question is provided by the s-
cobordism theorem (see Section 11.7) which states that there exists a functor

Wh: {Groups} → {Abelian groups}

so that in the situation described above, an element τ(W, M0) ∈Wh(π1W )
is defined and vanishes if W is homeomorphic to M0 × [0, 1]. Conversely,
if the dimension of M0 is greater than 4 and τ(W, M0) = 0, then W is
homeomorphic to M0 × [0, 1].

323
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Of course the point of this theorem is that the functor Wh has a functo-
rial, geometric, and somewhat computable definition. (One could stupidly
define Wh(π) = Z/2 for all groups π and define τ(W, M0) to be 0 or 1
according to whether or not W is homeomorphic to a product.)

In this chapter we will give the complete definition of the Whitehead
group Wh(π) and the Whitehead torsion τ .

Exercise 190. Use the fact that Wh(1) = 0 to prove the generalized Poin-
caré conjecture for n > 5: a closed manifold Σ which has the homotopy
type of Sn is homeomorphic to Sn. (Hint: Remove two open disks; it can
be shown that the complement has the homotopy type of a CW-complex.
Assume this and apply the s-cobordism theorem.)

Another collection of examples is provided by lens spaces. We will use
obstruction theory to give a homotopy classification of 3-dimensional lens
spaces, and then use the machinery of simple-homotopy theory to prove the
following theorem.

Theorem 11.1.

1. Three–dimensional lens spaces L(p, q) and L(p′, q′) are homotopy equiv-
alent if and only if p = p′ and there exists an integer b so that
q ≡ ±b2q′ mod p.

2. Moreover, L(p, q) is homeomorphic to L(p, q′) if and only if p = p′

and q ≡ ±(q′)±1 mod p.

In particular L(7, 1) and L(7, 2) are closed three-manifolds which have
the same homotopy type but are not homeomorphic. Whitehead torsion
must be a subtle and powerful invariant to make such a distinction.

J.H.C. Whitehead developed the theory of simple-homotopy equivalence,
a refinement of homotopy equivalence for finite CW-complexes which takes
into account the cell structure. It was proven by Chapman that homeomor-
phic finite CW-complexes are simple-homotopy equivalent. Hence simple-
homotopy theory provides a weapon by which to attack homeomorphism
problems that are impervious to the homotopy theoretic machinery devel-
oped in the previous chapters.

Suppose X, Y are finite CW-complexes. Then a cellular map f : X → Y
is a homotopy equivalence if and only if the mapping cylinder of f deforma-
tion retracts to X via a cellular map.

Exercise 191. Prove this using obstruction theory.

The geometric approach of simple-homotopy theory is to investigate
when a pair (K, L) which admits a deformation retract of K to L admits a
particular “simple” type of deformation.
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In this chapter a finite CW-pair (K, L) will mean a CW-complex K with
finitely many cells and a subcomplex L ⊂ K. Thus L is a closed subspace
of K which is a union of cells. (See Definition 1.3 for the definition of a
CW-complex.) We will also use infinite CW-pairs, but these will always be
of the form (K̃, L̃) where (K, L) is a finite CW-pair, K̃ → K a covering
space, and L̃ the inverse image of L in K̃.

Definition 11.2. If (K, L) is a finite CW-pair, we say K collapses to L
by an elementary collapse, denoted K ↘e L, if the following two conditions
hold.

1. K = L ∪ en−1 ∪ en where the cells en−1 and en are not in L.
2. Write ∂Dn = Sn−1 = Dn−1

+ ∪Sn−2 Dn−1
− . Then there exists a charac-

teristic map ϕ : Dn → K for en so that
(a) ϕ|Dn−1

+
: Dn−1

+ → K is a characteristic map for en−1, and

(b) ϕ(Dn−1
− ) ⊂ L.

Thus K is obtained by gluing Dn to L along a map Dn−1
− −→ L, where

Dn−1
− ⊂ ∂Dn ⊂ Dn.

en−1

en

L

K

Note K can be viewed as the mapping cylinder of a map Dn−1
− → L.

Thus L is a deformation retract of K.

Definition 11.3.

1. One says that K collapses to L, or L expands to K, if there are
subcomplexes K = K0 ⊃ K1 ⊃ · · · ⊃ Kn = L so that K0 ↘e K1 ↘e

· · · ↘e Kn. Write K ↘ L, or L↗ K.
2. A map f : K → L is called a simple-homotopy equivalence if there

exists a finite sequence of CW-complexes K = K0, K1, . . . , Kn = L
so that f is homotopic to a composite K0 → K1 → K2 → · · · → Kn

where each map Ki → Ki+1 is either the inclusion map of an expan-
sion, the deformation retraction of a collapse, or a cellular homeo-
morphism.



326 11. Simple-Homotopy Theory

Exercise 192. Prove that simple-homotopy equivalence is an equivalence
relation.

We now give two examples concerned with collapsing. Suppose L is a
finite simplicial subcomplex of a triangulated open subset of Euclidean space.
Then the regular neighborhood K = N(L) is the union of all simplices whose
closure intersects L. This is an analogue of a normal bundle, but L does not
have to be a manifold. It is not difficult to see that K ↘ L.

The second example is where K is the “house with two rooms” pictured
below. Here K is a 2-dimensional CW-complex. To get to the large room
on the lower floor, you must enter the house from the top through the small
cylinder on the left. Similarly, one enters the upper room via the small right
cylinder. Then it is not difficult to see that K is simple-homotopy equivalent
to a point, but that K does not collapse to a point, i.e. some expansions
are needed.

11.2. Invertible matrices and K1(R)

In this section we will define the Whitehead group and in the next section
define torsion. Since there are two sections of algebra coming up, we will
give you some geometric motivation to help you through.

It will turn out that the question of whether a homotopy equivalence is
simple can be understood in the following way. Assume f : L → K is a
cellular inclusion, and a homotopy equivalence. Then if π = π1L = π1K,
the relative chain complex C∗(K̃, L̃) (where K̃, L̃ denotes universal covers)
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is a free and acyclic Zπ-chain complex, and has a Zπ-basis labeled by the
cells of K − L.

Elementary collapses and changing base points change the cellular chain
complex C∗(K̃, L̃), and so one wants to classify acyclic, based chain com-
plexes over Zπ up to some equivalence relation, so that C∗(K̃, L̃) is equiv-
alent to 0 if and only if K ↪→ L is a simple-homotopy equivalence. The
main result will be that the chain complex C∗(K̃, L̃) determines an element
τ(K, L) ∈ Wh(π) which vanishes if and only if the map f is a simple-
homotopy equivalence.

Once the machinery is set up, other useful applications will follow from
considering rings R more general than the integral group ring Zπ. For
example, if Zπ → R is a ring homomorphism, it may be easier to work with
the chain complex R⊗ZπC∗ than to work directly with C∗. This is especially
true if R is a commutative ring or, even better, a field.

The simplest acyclic, based chain complexes are of the form:

0→ Cn
∂−→ Cn−1 → 0.

Since this complex is based, ∂ is given by a matrix, which is invertible since
(C∗, ∂) is acyclic.

Motivated by the previous discussion, we study invertible matrices over a
(not necessarily commutative) ring R. We assume that all our rings are rings
with 1. Unfortunately, two bizarre phenomena can arise when considering
free modules over a ring R.

• It may be the case that Rm ∼= Rn with m �= n.
• It may be the case that M ⊕Rm ∼= Rn, but that M itself is not free.

In this case we say the module M is stably free but not free.

Fortunately, the first problem does not occur for group rings, because
there is a homomorphism ε : Zπ → Z,

∑
agg �→

∑
ag. Thus (Zπ)m ∼= (Zπ)n

implies
Zm = Z⊗Zπ (Zπ)m ∼= Z⊗Zπ (Zπ)n = Zn

and so m = n. Henceforth

We assume all rings have the property that Rm ∼= Rm implies m = n.

Thus we exclude rings like the endomorphism ring of an infinite-dimensional
vector space.

The second pathology does occur for certain group rings, so we cannot
assume it away. It will be a thorn in our side in the next section, but we
will deal with it.

Definition 11.4. Denote by GL(n, R) the group of all n× n matrices over
R which have a two-sided inverse. An inclusion GL(n, R) ↪→ GL(n + 1, R)
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is defined by

A �−→
(

A 0
0 1

)
.

Let GL(R) =
⋃

n GL(n, R). Think of GL(R) as the group of all invert-
ible infinite matrices which are “eventually” the identity. We will always
identify an invertible n×n matrix with its image in GL(R). In particular, if
A and B are invertible matrices, their product in GL(R) makes sense even
if their sizes are different.

We next define an important subgroup of GL(R), the subgroup gener-
ated by elementary matrices.

Definition 11.5. E(R) ⊂ GL(R) is the subgroup generated by the elemen-
tary matrices, i.e. the matrices of the form:

I + rEij (i �= j)

where I is the identity matrix, Eij is the matrix with 1 in the ij spot and
0’s elsewhere, and r ∈ R.

The effect of multiplying a matrix A by the elementary matrix I + rEij

on the right is the column operation which replaces the jth column of A by
the sum of the jth column of A and r times the ith column of A. Multiply-
ing A on the left by an elementary matrix performs the corresponding row
operation.

Recall that the commutator subgroup of a group G is the subgroup [G, G]
generated by all commutators ghg−1h−1 where g, h ∈ G. This is the smallest
normal subgroup of G such that the corresponding quotient group is abelian.

Lemma 11.6 (Whitehead’s Lemma). The group generated by elementary
matrices equals the commutator subgroup of GL(R)

E(R) = [GL(R), GL(R)].

Proof. First, (I + rEij)−1 = I − rEij , and

EijEk� =

{
0 if j �= k

Ei� if j = k.

Thus if i, j, k are distinct,

I + rEik = (I + rEij)(I + Ejk)(I + rEij)−1(I + Ejk)−1.

So any n× n elementary matrix with n ≥ 3 can be expressed as a commu-
tator. Hence E(R) ⊂ [GL(R), GL(R)].

The opposite inclusion follows from the matrix identities
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(
ABA−1B−1 0

0 I

)
=

(
A 0
0 A−1

) (
B 0
0 B−1

) (
(BA)−1 0

0 BA

)
(

A 0
0 A−1

)
=

(
I A
0 I

) (
I 0

I −A−1 I

) (
I −I
0 I

) (
I 0

I −A I

)
(

I X
0 I

)
=

m∏
i=1

n∏
j=1

(I + xijEi,j+m)

which are valid for A ∈ GL(m, R), B ∈ GL(n, R), and X = (xij) an m× n
matrix. The identities show that any commutator in GL(n, R) can be ex-
pressed as a product of elementary matrices in GL(2n, R). All three iden-
tities are easily checked; the last two are motivated by the elementary row

operations one would do to transform
(

A 0
0 A−1

)
and

(
I X
0 I

)
to

(
I 0
0 I

)
.

So E(R) is a normal subgroup of GL(R) with abelian quotient.

Definition 11.7.
K1(R) = GL(R)/E(R)

The quotient homomorphism GL(R) → K1(R), A �→ [A] should be
thought of as a generalized determinant function.

Exercise 193.

1. For a commutative ring R, there is a well-defined map K1(R) →
R×, [A] �→ det A, which is a split epimorphism. Here R× is the
group of units of R, where a unit is an element of R with a two-sided
multiplicative inverse.

2. For a field F , show that K1(F ) ∼= F× = F − {0}.
3. Show that K1(Z) = {[(±1)]} ∼= Z/2.

Exercise 194. Show that K1 is a functor from the category of rings with
1 to the category of abelian groups.

In fact, for every n ∈ Z, there is a functor Kn, with the various Kn’s
intertwined by Künneth Theorems. Composing Kn with the functor taking
a group π to its integral group ring Zπ defines a functor π �→ Kn(Zπ) from
the category of groups to the category of abelian groups.

The following equalities in K1(R) are useful in computations and appli-
cations. They are reminiscent of properties of determinants.
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Theorem 11.8.

1. Let A ∈ GL(R, m), B ∈ GL(R, n), X be an m× n matrix, and Y an
n×m matrix. Then[(

A X
0 B

)]
=

[(
A 0
0 B

)]
=

[(
AB 0
0 I

)]
∈ K1(R),

[(
A 0
Y B

)]
=

[(
A 0
0 B

)]
=

[(
AB 0
0 I

)]
∈ K1(R).

2. Let P ∈ GL(n, R) be the permutation matrix obtained by permuting
the columns of the identity matrix using the permutation σ ∈ Sn. Let
sign(σ) ∈ {±1} be the sign of the permutation. Then

[P ] = [(sign(σ))] ∈ K1(R).

Proof. Note (
A X
0 B

)
=

(
I XB−1

0 I

) (
A 0
0 B

)
and the middle matrix is in E(R) as in the proof of Whitehead’s Lemma.
Likewise (

A 0
0 B

)
=

(
AB 0
0 I

) (
B−1 0

0 B

)
The last matrix is in E(R) as in the proof of Whitehead’s Lemma. The
first equation in Part 1 above follows. The proof of the second equation is
similar.

For Part 2, note(
0 1
1 0

)
=

(
−1 0
0 1

) (
1 −1
0 1

) (
1 0
1 1

) (
1 −1
0 1

)
.

The last three matrices are in E(R), so we see the assertion is true for
2 × 2 matrices. For a general 2-cycle σ, the same method shows that P
is equivalent to a diagonal matrix with 1’s down the diagonal except for a
single −1. By Part 1, this is equivalent to the 1× 1 matrix (−1).

Every permutation is a product of 2-cycles so the result follows.

Theorem 11.8 shows that the group operation in the abelian group
K1(R) = GL(R)/E(R) can be thought of either as matrix multiplication

([A], [B]) �→ [AB]

or as block sum

([A], [B]) �→
[(

A 0
0 B

)]
.
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The group operation in K1(R) will be written additively. Hence

[A] + [B] = [AB] =
[(

A 0
0 B

)]
.

Definition 11.9. Define the reduced K-group

K̃1(R) = K1(R)/[(−1)].

Using this group will allow us to use unordered bases for free modules.

Exercise 195. Let i : Z→ R be the unique ring map from the integers to
R taking the 1 of Z to the 1 of R. Show that K̃1(R) is the cokernel of the
induced map K1(Z)→ K1(R).

Now we switch to group rings. For a group ring, the map i : Z → Zπ
is split by the augmentation map ε : Zπ → Z,

∑
agg �→

∑
ag. Hence

K1(Zπ) = Z/2⊕ K̃1(Zπ).
If X is a CW-complex with fundamental group π and universal cover

X̃, then C∗(X̃) is a free Zπ-chain complex with generators corresponding to
the cells of X. However, the generators are not uniquely determined by the
cells, in addition one must choose an orientation and a lift of the cell to the
cover. In other words, generators are determined only up to a multiple ±g
where g ∈ π. This helps motivate the definition of the Whitehead group.

Definition 11.10. Let Eπ be the subgroup of GL(Zπ) generated by E(Zπ)
and 1× 1 matrices (±g), where g ∈ π. Then the Whitehead group of π is

Wh(π) = GL(Zπ)/Eπ = K1(Zπ)/{[(±g)] : g ∈ π}.

The elements that we mod out by are represented by matrices of the
form 

±g
1

1
. . .

 for g ∈ π.

The Whitehead group is a functor from groups to abelian groups. There is
a short exact sequence of abelian groups

0→ {±1} × πab → K1(Zπ)→Wh(π)→ 0,

where πab = π/[π, π]. The reason for injectivity is that the composite of the
maps

{±1} × πab → K1(Zπ)→ K1(Z[πab]) det−−→ Z[πab]×

is the inclusion.
The elements of the subgroup ±π = {±g : g ∈ π} of (Zπ)× are called

the trivial units of Zπ. The ring Zπ might contain other units, depending
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on what π is. To some extent the existence of nontrivial units is measured
by the nontriviality of the Whitehead group, but the only precise statement
in this direction is that if π is abelian and Zπ contains nontrivial units, then
the Whitehead group Wh(π) is nontrivial. This uses that the determinant
map K1(R)→ R× is a split epimorphism for a commutative ring.

Here are three interesting examples.

1. Let Z/5 have generator t. Then in Z[Z/5],

(1− t + t2)(t + t2 − t4) = 1.

Thus 1− t + t2 is a nontrivial unit and the Whitehead group is non-
trivial. It can be shown that Wh(Z/5) is infinite cyclic with this unit
as generator.

2. It is easy to see that Z[Z] has only trivial units (exercise!). It can be
shown that Wh(Z) = 0.

3. This next example due to Whitehead is a nontrivial unit which rep-
resents the zero element of Wh(π).

Let π = 〈x, y | y2 = 1〉 = Z ∗Z/2. Let a = 1− y and b = x(1 + y)
in Zπ. Notice 1 − ab is a nontrivial unit, since (1− ab)(1 + ab) = 1.
However we will show [(1 − ab)] is zero in the Whitehead group. It
can be shown that Wh(π) = 0.

Note that (1− y)(x(1 + y)) = x + xy − yx− yxy �= 0 and (x(1 +
y))(1− y) = x(1− y2) = 0. So ab �= 0 and ba = 0.

Then(
1 0
b 1

)(
1 a
0 1

)(
1 0
b 1

)−1(1 a
0 1

)−1

=
(

1 0
b 1

)(
1 a
0 1

)(
1 0
−b 1

)(
1 −a
0 1

)
=

(
1− ab 0

0 1

)
.

Thus one must stabilize (i.e. include the 1 × 1 matrices into the
2×2 matrices) before 1−ab becomes “trivial”, i.e. becomes a product
of elementary matrices.

The actual computation of Whitehead groups can be a difficult business,
involving number theory in the case of finite groups and geometry in the
case of infinite groups. We mention a result and a conjecture. The result,
due to Bass-Milnor-Serre, is that Wh(Z/n) is a free abelian group of rank
[n/2] + 1− d(n) where d(n) is the number of positive divisors of n [4]. The
conjecture (proven in many cases) is that Wh(π) = 0 when π is a torsion-free
group.

The next lemma will enable us to remove the dependence on base points
when we move to a geometric context. In particular, it shows that the
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assignment X → Wh(π1X) gives a well-defined functor from the category
of path-connected spaces to the category of abelian groups.

Lemma 11.11. If f : π → π is the inner automorphism given by f(g) =
xgx−1 for some x ∈ π, then the induced map on Whitehead groups f∗ :
Wh(π)→Wh(π) is the identity map.

Proof. The automorphism f induces f : Zπ → Zπ by the formula

f(
∑

ngg) =
∑

ngxgx−1 = x(
∑

ngg)x−1,

which in turn induces a group automorphism f : GL(n,Zπ) → GL(n,Zπ)
by A �→ (xI)A(x−1I). Hence,

f∗[A] = [xI ·A · x−1I]

= [xI · x−1I ·A] since Wh(π) is abelian

= [A].

This is reminiscent of the fact that an inner automorphism of π induces
the identity on H∗(π), pointing out an analogy between the two functors
from groups to abelian groups.

We conclude this section with a remark about matrices over noncommu-
tative rings. If f : M → M ′ is an isomorphism of R-modules and if M and
M ′ have bases {b1, . . . , bn} and {b′1, . . . , b′n} respectively, we wish to define
[f ] ∈ K1(R) to be [F ], where F is a matrix representative of f . There are
several ways to define a matrix for f , and the result depends on whether we
are working with right or left R-modules.

For our main application, the modules we take are the the cellular n-
chains on the universal cover of a CW-complex X. These are right Zπ-
modules. For that reason we consider right R-modules and define the matrix
of a map f : M →M ′ of right based R-modules to be (fij) where

f(bi) =
n∑

i=1

b′jfij .

With this definition, assigning a matrix to a map of right based R-modules

(−) : HomR(M, M ′)→Mn(R)

is an homomorphism, i.e. (f + g) = (f) + (g) and (fg) = (f)(g) and taking
the equivalence class defines a homomorphism

IsoR(M, M ′)→ K1(R), f �→ [(fij)].

We will write [f ] = [(fij)] ∈ K1(R).
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11.3. Torsion for chain complexes

We next make the transition from matrices to acyclic, based chain com-
plexes. A based R-module is a free, finite-dimensional R-module with a
specified basis. A chain complex C∗ over a ring R is bounded if there exists
an N so that Cn = 0 for |n| ≤ N , bounded below if there exists an N so
that Cn = 0 for n ≥ N , based if each Cn is based and C∗ is bounded, free if
each Cn is free, projective if each Cn is projective, finite if ⊕Cn is finitely
generated, and acyclic if the homology of C∗ is zero. We will often write
C instead of C∗. As above we assume that the ring R has the property
that Rm ∼= Rn implies that m = n. For example, a group ring Zπ has this
property since it maps epimorphically to Z.

Let K̃1(R) = K1(R)/[(−1)] where (−1) ∈ GL(1, R). An isomorphism
f : M ′ → M of based R-modules determines an element [f ] ∈ K̃1(R).
(The reason that we use K̃1 rather than K1 is that it is both messy and
unnecessary for us to fuss with ordered bases.)

We wish to generalize [f ] is two ways. First, we wish to replace M and
M ′ by chain complexes. Given a chain isomorphism f : C ′ → C between
based chain complexes, define the torsion of f by

τ(f) =
∑

(−1)n[fn : C ′n → Cn] ∈ K̃1(R).

The second way we will generalize [f ] is to consider f : M ′ →M as a acyclic,
based chain complex

· · · → 0→M ′ f−→M → 0→ · · ·
Then we will have [f ] = ±τ(f).

The following theorem gives an axiomatic characterization of the torsion
τ(C) of a acyclic, based chain complex. Its proof will be an easy consequence
of Theorem 11.14 discussed below.

Theorem 11.12. Let C be the class of acyclic, based chain complexes over
R. Then there is a unique map C → K̃1(R), C �→ τ(C) satisfying the follow-
ing axioms:

1. If f : C → C ′ is a chain isomorphism, then τ(f) = τ(C ′)− τ(C).

2. τ(C ⊕ C ′) = τ(C) + τ(C ′).

3. τ(0→ Cn
f−→ Cn−1 → 0) = (−1)n−1[f ].

Definition 11.13. For an R-module M and an integer n, define the ele-
mentary chain complex E(M, n)

E(M, n)i =

{
0 if i �= n, n− 1
M if i = n, n− 1,
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and with all differentials zero except ∂n = Id : E(M, n)n → E(M, n)n−1. A
simple chain complex is a finite direct sum of elementary chain complexes
of the form E(Rkn , n).

For example, if K collapses to L by an elementary collapse, then C(K̃, L̃)
is an elementary chain complex with M = R = Zπ. If K collapses to L,
then C(K̃, L̃) is a simple chain complex.

Note that a simple chain complex is a acyclic, based complex. It is of
the shape pictured below.

Rkn
Id−→ Rkn Rkn−2

Id−→ Rkn−2

⊕ ⊕ ⊕ ⊕
Id−→ Rkn+1 Rkn−1

Id−→ Rkn−1 Rkn−3
Id−→

Theorem 11.14.

1. Let f : C → C ′ be a chain isomorphism between simple chain com-
plexes. Then τ(f) = 0 ∈ K̃1(R).

2. Let C be a finite, free, acyclic chain complex. There are simple chain
complexes E and F and a chain isomorphism f : E → C ⊕ F .

Corollary 11.15. Let C be a acyclic, based chain complex. If E, F , E′,
F ′ are simple chain complexes and if f : E → C ⊕ F and g : E′ → C ⊕ F ′

are chain isomorphisms, then τ(f) = τ(g).

Proof. Consider the three chain isomorphisms

f̃ = f ⊕ IdF ′ : E ⊕ F ′ → C ⊕ F ⊕ F ′

p̃ = IdC ⊕ s : C ⊕ F ⊕ F ′ → C ⊕ F ′ ⊕ F

g̃ = g ⊕ IdF : E′ ⊕ F → C ⊕ F ′ ⊕ F

where s : F ⊕ F ′ → F ′ ⊕ F is the obvious switch map. We then have

0 = τ(g̃−1 ◦ p̃ ◦ f̃) by Theorem 11.14, Part 1

= τ(g̃−1) + τ(p̃) + τ(f̃)

= −τ(g) + τ(f) Theorem 11.8, Part 2 shows that τ(p̃) = 0.

We can now use the previous theorem and corollary to define torsion.

Definition 11.16. Let C be a acyclic, based complex. Define the torsion
of C by

τ(C) = τ(f : E → C ⊕ F )
where E, F are simple chain complexes and f is a chain isomorphism.
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Exercise 196. Prove Theorem 11.12 assuming Theorem 11.14 and Corol-
lary 11.15.

What remains is to prove Theorem 11.14. We strongly advise you to
put down this book and prove the theorem by yourself, assuming (at first),
that all stably free modules are free.

Welcome back! The proof that we give for Part 1 is the same as you
found, but the proof we will give for Part 2 uses the fundamental lemma
of homological algebra and is much slicker and less illuminating that the
inductive proof you figured out.

We separate out Part 1 as a Lemma.

Lemma 11.17. Let f : C → C ′ be a chain isomorphism between simple
chain complexes. Then τ(f) = 0 ∈ K̃1(R).

Proof. Write

Cn = E(Rkn , n)n ⊕ E(Rkn+1 , n + 1)n = C ′n.

It is easy to see using that f is a chain map that the block matrix form of
fn : Cn → C ′n is (

An 0
Bn An+1

)
Then

τ(f) =
∑

(−1)n

[(
An 0
Bn An+1

)]
definition of τ(f)

=
∑

(−1)n([An] + [An+1]) by Theorem 11.8

= 0.

Before we prove Part 2 we need some preliminaries.

Definition 11.18. A chain contraction s : C → C for a chain complex C
is a sequence of maps sn : Cn → Cn+1 satisfying ∂n+1sn + sn−1∂n = IdCn .

A chain contraction is a chain homotopy between the identity map and
the zero map. If C has a chain contraction then H∗(C) = 0.
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Proposition 11.19. Let s : C → C be a chain contraction. Let Bn =
∂(Cn+1) ⊂ Cn.

1. Cn = Bn ⊕ s(Bn−1).
2. ∂ : s(Bn)→ Bn is an isomorphism with inverse s : Bn → s(Bn).
3. C is isomorphic to the direct sum of chain complexes ⊕nE(Bn, n+1).

Proof. Consider the short exact sequence

0→ Bn ↪→ Cn
∂−→ Bn−1 → 0.

The formula x = ∂s(x)+s∂(x) is valid for all x. So ∂s(x) = x−s∂(x) = x
for x ∈ Bn and for s(y) with y ∈ Bn, s∂s(y) = s(y) − s∂∂(y) = s(y). This
shows that this short exact sequence is split by sn−1 : Bn−1 → Cn, proving
the first and second assertions.

The map

Cn = Bn ⊕ s(Bn−1)→ Bn ⊕Bn−1 = E(Bn, n + 1)n ⊕ E(Bn−1, n)n

a⊕ b �→ a⊕ ∂b

is an isomorphism by the second assertion. It is easy to check that this is a
chain map.

Lemma 11.20.

1. If C is projective, acyclic, and bounded below, then C has a chain
contraction.

2. If C is finite, free, and acyclic, the modules s(Bn) are stably free for
all n.

Proof.

1. By reindexing if necessary, assume that Cn = 0 for n negative. Then
by the fundamental lemma of homological algebra (Theorem 2.22),
the identity and the zero map are chain maps from C to C inducing
the same map on H0, hence are chain homotopic.

2. By Proposition 11.19, Cn
∼= Bn ⊕ Bn−1. Using induction on n, one

sees Bn is stably free for all n.

Proof of Theorem 11.14. We have already proven Part 1.
Let C be a finite, free, acyclic chain complex. Then there is a chain

contraction s : C → C by Lemma 11.20, and hence C is chain isomorphic
to ⊕nE(Bn, n + 1) by Proposition 11.19. Now for every n there is a finitely



338 11. Simple-Homotopy Theory

generated free module Fn so that Bn⊕Fn is free. Give it a finite basis. Then
C ⊕ (⊕nE(Fn, n + 1)) is chain isomorphic to the simple complex ⊕nE(Bn⊕
Fn, n + 1).

Exercise 197. Show that for a acyclic, based chain complex C with a chain
contraction s, that s + ∂ : Codd → Ceven is an isomorphism and [s + ∂] =
τ(C) ∈ K̃1(R). Here Codd = ⊕C2i+1 and Ceven = ⊕C2i. This is called
“wrapping up” the chain complex and is the approach to torsion used in [7].

An isomorphism of based R-modules f : M → M ′ determines an ele-
ment [f ] ∈ K̃1(R). We generalized this in two ways: to τ(f) for a chain
isomorphism between based chain complexes, and to τ(C) for an acyclic,
based chain complex. We wish to generalize further and define τ(f) for
f : C → C ′ a chain homotopy equivalence between based complexes. We
need some useful constructs from homological algebra.

Definition 11.21. Let f : C → C ′ be a chain map between chain com-
plexes. Define the algebraic mapping cone of f to be the chain complex
C(f) where

C(f)n = Cn−1 ⊕ C ′n

∂ =
(
−∂ 0
f ∂′

)
: C(f)n → C(f)n−1.

Define the algebraic mapping cylinder of f to be the chain complex M(f)
where

M(f)n = Cn−1 ⊕ Cn ⊕ C ′n

∂ =

−∂ 0 0
−Id ∂ 0
f 0 ∂′

 : M(f)n →M(f)n−1.

For a chain complex C, define the cone on C

Cone(C) = C(Id : C → C),

the cylinder on C

Cyl(C) = M(Id : C → C),

and the suspension of C, which is the chain complex SC where (SC)n =
Cn−1 and ∂SC(x) = −∂C(x). Note Hn(SC) = Hn−1(C).

If the chain complexes involved are based, then C(f), M(f), Cone(C),
Cyl(C), and SC have obvious bases.
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All of these constructions are interrelated. There are short exact se-
quences of chain complexes

0→ C ′ → C(f)→ SC → 0(11.1)

0→ C →M(f)→ C(f)→ 0(11.2)

0→ C ′ →M(f)→ Cone(C)→ 0.(11.3)

Here is some geometric motivation. If f : X → Y is a cellular map
between CW-complexes, and f∗ : C∗(X)→ C∗(Y ) is the associated cellular
chain map, then the mapping cone C(f), the mapping cylinder M(f), the
reduce cone CX, and the reduced suspension SX all have CW-structures.
One can make the following identifications

C(f∗) = C∗(C(f),pt)

M(f∗) = C∗(M(f))

Cone(C∗(X)) = C∗(CX, pt)

Cyl(C∗(X)) = C∗(I ×X)

S(C∗(X)) = C∗(SX, pt).

The exact sequence 11.1 gives a long exact sequence in homology

· · · → Hn(C)→ Hn(C ′)→ Hn(C(f))→ Hn−1(C)→ · · ·
and one can check easily that the map Hn(C) → Hn(C ′) is just the map
induced by f . In particular, if f induces an isomorphism in homology, then
C(f) is acyclic.

Definition 11.22. A chain map f : C → C ′ is a weak homotopy equivalence
if it induces an isomorphism on homology. If f is a weak homotopy equiv-
alence between finite, based chain complexes, then C(f) is a finite, acyclic,
based chain complex. Define

τ(f) = τ(C(f)).

Exercise 198. If f : C → C ′ is a chain isomorphism of finite, based com-
plexes, we unfortunately have two different definitions of the torsion τ(f):
as

∑
(−1)n[fn : C ′n → Cn] and as τ(C(f)). Show that they coincide.

The justification for the term weak homotopy equivalence is given by
the following algebraic analogue of Whitehead’s theorem.

Exercise 199. If f : C → C ′ is a weak homotopy equivalence between
acyclic, projective chain complexes which are bounded below, then C(f)
has a chain contraction and f is a chain homotopy equivalence, i.e. there is
a chain map g : C ′ → C so that f ◦ g and g ◦ f are homotopic to identity
maps.
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Theorem 11.23. Let

0→ C ′
i−→C

p−→C ′′ → 0

be a short exact sequence of acyclic, based chain complexes. Assume the
bases are compatible, which means that for every n, the basis of Cn is of the
form

{i(b′1), i(b′2), . . . , i(b′ij ), c
′′
1, c
′′
2, . . . , c′′ik} ⊂ Cn

where
{b′1, b′2, . . . , b′ij} ⊂ C ′n

is the given basis for C ′n and

{p(c′′1), p(c′′2), . . . , p(c′′ik)} ⊂ C ′′n

is the given basis for C ′′n. Then τ(C) = τ(C ′) + τ(C ′′).

Lemma 11.24. Let
0→ C ′

i−→C
p−→C ′′ → 0

be a short exact sequence of free chain complexes which are bounded below.
If i is a weak homotopy equivalence, there is a chain map s : C → C ′ which
splits i. Hence C ∼= C ′ ⊕ C ′′.

Proof. The algebraic mapping cone C(i) is free, acyclic, and bounded be-
low. Hence there is a chain contraction(

s11 s21

s12 s22

)
: Cn(i) = Cn−1 ⊕ C ′n → Cn−1(i) = Cn−2 ⊕ C ′n−1.

It is easy to see that s21 = 0 and that s12 : C → C ′ is a chain map which
splits i.

Proof of Theorem 11.23. Let f : C → C ′⊕C ′′ be the chain isomorphism
given by Lemma 11.24. Since f is a chain isomorphism,

τ(f) = τ(C ′ ⊕ C ′′)− τ(C)

= τ(C ′) + τ(C ′′)− τ(C)

On the other hand, since the bases are compatible, then the matrix of fn is(
Id ∗
0 Id

)
in block matrix form after partitioning each basis into its ′ part

and its ′′ part. But such a matrix is trivial in K̃1(R) by Theorem 11.8.

Corollary 11.25. If f : C → C ′ is a chain map of acyclic, based chain
complexes, then τ(f) = τ(C ′)− τ(C).

This follows from Lemma 11.23 and the short exact sequence 11.1.
We wish to prove homotopy invariance and additivity of torsion. The

next lemma is a key ingredient.
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Lemma 11.26. If C is a based chain complex, then Cone(C) is a acyclic,
based chain complex with trivial torsion.

Proof. Cone(C) is finite with an obvious basis; we will show Cone(C) is
acyclic by induction on the total rank

∑
dim Ci. If the total rank is 1,

both assertions are clear.
Suppose C is a based chain complex of total rank n > 1. Let b be a

basis element of C of minimal degree. Let C ′ = {· · · → 0→ Rb→ 0 · · · →}
be the corresponding subcomplex of C and let C ′′ = C/C ′ be the quotient
complex. There is a short exact sequence of finite complexes

0→ C ′ → C → C ′′ → 0

with compatible bases. It is easy to see there is a short exact sequence of
finite complexes

0→ Cone(C ′)→ Cone(C)→ Cone(C ′′)→ 0

with compatible bases. By induction, Cone(C ′) and Cone(C ′′) are acyclic
with trivial torsion. By the long exact sequence in homology, Cone(C) is
acyclic, and by Theorem 11.23, Cone(C) has trivial torsion.

Theorem 11.27. Let C and D be based chain complexes and let f, g : C →
D be weak homotopy equivalences which are chain homotopic. In symbols,

f 1 g : C
∼−→ D.

Then τ(f) = τ(g).

Proof. Let s = {sn : Cn → Dn+1} be a chain homotopy from f to g
satisfying s∂ + ∂s = f − g. Then F =

(
s f g

)
: Cyl(C) → D is a chain

map. There is a short exact sequence

0→ C(f)→ C(F )→ Cone(C)→ 0

of chain complexes. Then τ(f) = τ(F ) by Lemma 11.26 and Theorem 11.23.
Likewise τ(g) = τ(F ).

Exercise 200. Let X and Y be finite complexes and f and g be cellu-
lar homotopy equivalences from X to Y which are homotopic. Show that
the mapping cylinder of f is simple-homotopy equivalent to the mapping
cylinder to g.

Finally, there an additivity property of torsion.

Theorem 11.28. Let f : C → C ′ and g : C ′ → C ′′ be weak homotopy
equivalences between based chain complexes. Then

τ(g ◦ f) = τ(f) + τ(g).
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The idea is to convert g to an inclusion and analyze what happens. To
this end we need a definition and a lemma.

Definition 11.29. A chain map f : C → C ′ between based complexes is
a based injection if for all n, the map f : Cn → C ′n is an injection and f
applied to the basis of Cn is a subset of the basis of C ′n.

Lemma 11.30.

1. Let g : C ′ → C ′′ be a based injection which is a weak homotopy
equivalence. Then τ(g) = τ(C ′′/C ′).

2. Let f : C → C ′ and g : C ′ → C ′′ be weak homotopy equivalences
between based chain complexes. If g is a based injection, then

τ(g ◦ f) = τ(f) + τ(C ′′/C ′).

Proof. We prove Part 2 first. There is a based injection(
Id 0
0 gn

)
: C(f)n = Cn−1 ⊕ C ′n → C(g ◦ f) = Cn−1 ⊕ C ′′n.

This is part of a short exact sequence of chain complexes

0→ C(f)→ C(g ◦ f)→ C ′′/C ′ → 0

with compatible bases. The result follows by Theorem 11.23. Part 1 is a
special case of Part 2 taking f = Id and applying Theorem 11.23 and Lemma
11.26.

Proof of Theorem 11.28. As advertised, we convert g to an inclusion and
consider chain maps

C
g◦f−−→ C ′′ ↪→M(g).

Then

τ(C →M(g)) = τ(g ◦ f) + τ(M(g)/C ′′) by Lemma 11.30

= τ(g ◦ f) + τ(Cone(g)) by 11.3

= τ(g ◦ f) by Lemma 11.26.

Finally, we consider the chain maps

C
f−→ C ′ ↪→M(g).

and see

τ(g ◦ f) = τ(C →M(g)) we just proved this

= τ(f) + τ(M(g)/C ′) by Lemma 11.30

= τ(f) + τ(C(g)) by 11.2

= τ(f) + τ(g).
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Perhaps the homotopy invariance and additivity of torsion are analogous
to the homotopy invariance and functoriality of homology.

11.4. Whitehead torsion for CW-complexes

Let K be a finite CW-complex. Assume that K is connected. Let x0 ∈ K
and let π = π1(K, x0). We identify π with the group of covering transfor-
mations of the universal cover K̃ → K in the usual way. We have seen (in
Chapter 5) that C∗(K̃) is a free Zπ-chain complex. A basis of this chain
complex is obtained by choosing a lift ẽ ⊂ K̃ for each cell e of K, and
choosing an orientation of e or, equivalently, ẽ. The set of lifts of cells of K
with the chosen orientations defines a basis over Zπ for the free Zπ-chain
complex C∗(K̃).

Now suppose that f : K → L is a homotopy equivalence of finite CW-
complexes. We can homotop f to a cellular map g : K → L, which in turn
defines a weak homotopy equivalence of based Zπ-chain complexes

g∗ : C∗(K̃)→ C∗(L̃).

Hence we have all the data needed to define torsion as in the previous
section. Define

τ(f) = τ(g∗) ∈Wh(π) = K̃1(Zπ)/± π.

The main geometric result of simple-homotopy theory is the following.

Theorem 11.31. Let f : K → L be a homotopy equivalence of finite CW-
complexes. Define the torsion τ(f) as above.

1. The torsion τ(f) is well-defined, independent of choice of orienta-
tions, lifts, base point x0, identification of π with the group of covering
transformations, and cellular approximation g.

2. If f is a simple-homotopy equivalence, then τ(f) = 0.

3. If τ(f) = 0, then f is a simple-homotopy equivalence.

Proof. We give complete proofs of Part 1 and 2, but only the vaguest of
sketches for the proof of Part 3.
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Changing the lift and orientation of a cell replaces ẽ by ±γẽ for some
γ ∈ π. Thus the torsion changes by the change of basis matrix


1

. . .
±γ

. . .
1



 = 0 ∈Wh(π).

The choice of base point and the identification of π with the group of covering
transformations is dealt with by Lemma 11.11 which says that conjugation
in π induces the identity map on Wh(π). Independence of the choice of
cellular approximation follows from Theorem 11.27, the homotopy invariance
of torsion.

Next we need to show that if f : K → L is a simple-homotopy equiv-
alence then τ(f) = 0. Now f is a simple-homotopy equivalence if f is
homotopic to a composite K0 → K1 → K2 → · · · → Kn where each map
Ki → Ki+1 is either the inclusion map of an elementary expansion, the
deformation retraction of an elementary collapse, or a cellular homeomor-
phism. We analyze the pieces. A cellular homeomorphism clearly has trivial
torsion. If i : A ↪→ B is the inclusion map of an elementary collapse then
τ(i) = τ(C(i∗ : C∗(Ã) ↪→ C∗(B̃))) which is τ(C∗(B̃, Ã)) by Lemma 11.30.
But C∗(B̃, Ã) is a elementary chain complex so has trivial torsion. Finally,
if d : B → A is the associated deformation retract, then

τ(d) = τ(d∗ : C∗(B̃)→ C∗(Ã))

= τ(d∗ ◦ i∗)− τ(i∗) additivity of torsion

= τ(IdC∗(Ã))− τ(i∗) homotopy invariance of torsion

= 0.

The composite K0 → K1 → K2 → · · · → Kn must have trivial torsion since
all the pieces do. Thus τ(f) = 0.

For the proof of Part 3, suppose that f : K → L is a cellular map between
finite complexes with trivial torsion. Then f factors as K ↪→ M(f) →
L. The second map is a collapse map and hence is a simple-homotopy
equivalence and has trivial torsion. By the additivity of torsion, τ(K ↪→
M(f)) = 0, and it suffices to show that this map is a simple-homotopy
equivalence.

Recycling our notation, we will assume K is a subcomplex of L and
that the torsion of the inclusion map is trivial. The first step in showing
that K ↪→ L is a simple-homotopy equivalence is cell-trading [7, 7.3]. If e
is a cell of L−K of minimal dimension (say k), one constructs a a simple-
homotopy equivalence L → L′ rel K so that L′ has one less k-cell than L,



11.4. Whitehead torsion for CW-complexes 345

one more (k + 1)-cell, and for i �= k, k + 1, the number of i-cells of L and
of L′ are the same. By a simple-homotopy equivalence h : L → L′ rel K,
we mean that K is a subcomplex of both L and L′ and that h restricted to
K is the identity. By continuing to trade, one reduces to proving that an
inclusion i : K ↪→ L with trivial torsion is a simple-homotopy equivalence
when the cells of L−K all are in two adjoining dimensions, say n and n+1.
Then the chain complex C(L̃, K̃) is described by a matrix! We can stabilize
the matrix, if desired, by making expansions. Since the torsion is zero, we
may assume that the matrix is a product of elementary matrices. There
is a technique called cell-sliding [7, 8.3] (changing the attaching map of an
(n + 1)-cell) which gives a simple-homotopy equivalence L → L′ rel K so
that the matrix in the chain complex is replaced by the matrix multiplied
by an elementary matrix. Thus one reduces to the case where K ↪→ L has
the chain complex

C(L̃, K̃) = {· · · → 0→ Z[π]m Id−→ Z[π]m → 0→ · · · }
in which case there is one last technique, cell-cancellation [7, 8.2], which
says that K ↪→ L is a simple-homotopy equivalence.

Two finite CW-complexes are said to have the same simple-homotopy
type if there is a simple-homotopy equivalence between them. Homeomor-
phic CW-complexes could have drastically different CW-structures. Do they
they have the same simple-homotopy type? A fundamental theorem of
Chapman implies that simple-homotopy type is a homeomorphism invariant:

Theorem 11.32 (Chapman [6]). If f : X → Y is a homeomorphism be-
tween finite CW-complexes then f is a simple-homotopy equivalence.

It follows that the torsion of a homotopy equivalence f : X → Y between
finite CW-complexes depends only on the underlying topological spaces.

How does simple-homotopy theory apply to manifolds? Typically, a
smooth manifold is given the structure of a simplicial complex (and hence a
CW-complex) by constructing a triangulation. This triangulation is unique
up to subdivision, and it is not difficult to show [28] that the identity map
between a complex and a subdivision has trivial torsion. Thus compact
smooth manifolds have a well-defined simple-homotopy type. A deep theo-
rem of Kirby-Siebenmann shows that this theory also applies for topological
manifolds (Hausdorff spaces which are locally Euclidean). They show that
a compact topological manifold has a canonical simple-homotopy type.

In the next section we will define Reidemeister torsion for certain fi-
nite CW-complexes. This will be an interesting and computable invariant
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of simple-homotopy type. If two manifolds have different Reidemeister tor-
sions, by Chapman’s theorem they cannot be homeomorphic.

11.5. Reidemeister torsion

Suppose that (C, ∂) is a finite, based (with basis {bi}) chain complex, not
necessarily acyclic, over a ring S. Let f : S → R be a ring homomorphism.
Then (C⊗S R, ∂⊗ IdR) is a finite, based (with basis {bi⊗1}) chain complex
over S.

If (C, ∂) is acyclic with chain contraction s, then (C ⊗S R, ∂ ⊗ IdR) is
acyclic since it has the chain contraction s⊗IdR. The torsions are related
by

τ(C ⊗S R) = f∗τ(C)

where f∗ : K̃1(S) → K̃1(R) is the induced homomorphism. However, in
many interesting cases it may happen that C ⊗S R is acyclic although C is
not, so that τ(C ⊗S R) may be defined even though τ(C) is not.

Moreover, if R is a commutative ring, or better yet, a field, then the
determinant defines a homomorphism (an isomorphism if R is a field)
det : K̃1(R)→ R×/± 1 (see Exercise 193).

Definition 11.33. Let C be a based chain complex over a ring S, and
f : S → R be a ring homomorphism to a commutative ring. Suppose that
C ⊗S R is acyclic. Then

∆R(C) = det(τ(C ⊗S R)) ∈ R×/± 1

is called the Reidemeister torsion of C with respect to f : S → R. Since
∆R(C) is a unit in R we use multiplicative notation for Reidemeister torsion.

Let X be a CW-complex. Let R be some ring, which for our purposes
may be taken to be commutative. Suppose

ρ : Zπ1X → R,

is a ring homomorphism. The chain complex

C∗(X̃)⊗Zπ1XR

was used in Chapter 5 to define homology with twisted coefficients H∗(X;R).
A choice of lifts and orientations of cells makes this a based (right) R-

complex. If it happens to be acyclic, then the torsion τ ∈ K̃1(R) is defined,
and so we can take the Reidemeister torsion

∆R(X) = ∆R(C∗(X)) ∈ R×

to be the determinant of τ .
The following exercise shows how to remove the dependence of ∆R on

the choice of lifts, orientation, and ordering of cells.
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Exercise 201. Let G ⊂ R× be the subgroup generated by −1 and det(ρ(γ))
for γ ∈ π1(X), where ρ : Zπ1X → R is the given ring homomorphism.
Show that the Reidemeister torsion ∆R(X), taken in R×/G, is well defined,
independent of the choice of lifts, orientation, or ordering of cells.

We usually abuse notation and consider Reidemeister torsion as an ele-
ment of R×, and omit mentioning that it is only well-defined up to multi-
plication by an element of G.

The disadvantage of Reidemeister torsion is that it requires a map ρ so
that C∗(X̃) ⊗Zπ S is acyclic. Perhaps for a given X, no useful map exists.
The advantage is that when ρ does exist, the Reidemeister torsion gives an
invariant of the space. The following proposition is a corollary of Corollary
11.25.

Proposition 11.34. Let f : X → Y be a homotopy equivalence between
finite, connected CW-complexes. Let π = π1X = π1Y . Suppose ρ : Zπ → R
is a ring homomorphism to a commutative ring so that C∗(X̃) ⊗Zπ R and
C∗(Ỹ )⊗Zπ R are acyclic. Then

ρ∗τ(f) = ∆R(Y )−∆R(X) ∈ R×/G.

Thus Reidemeister torsion is an invariant capable of distinguishing simple-
homotopy type for homotopy type, and of showing two homotopy equivalent
spaces are not homeomorphic. In the next section we apply this idea to lens
spaces.

Reidemeister torsion can also lead to interesting invariants, for example,
the Alexander polynomial of a knot. Let K ⊂ S3 be a knot, that is, a
smooth submanifold of S3 diffeomorphic to S1. Let X = S3−N(K), where
N(K) is an open tubular neighborhood of K. Alexander duality implies
that H1(X) ∼= Z, and so every knot has a canonical (up to multiplication
by ±1) homomorphism a : π1X → H1X → Z.

Let R = Q(t), the field of rational functions. Then define ρ : Zπ1X →
Q(t) by

ρ(
∑

aγγ) =
∑

aγta(γ).

It turns out (see the exercise below) that the chain complex

C = C∗(X̃)⊗Zπ1X Q(t)

is acyclic. Its Reidemeister torsion ∆Q(t)(X) is a nonzero rational function
and is well defined up to sign and powers of t. Moreover ∆Q(t)(X) is always
of the form

∆Q(t)(X) = (t− 1)/∆K(t)
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for some polynomial ∆K(t) ∈ Z[t]. This polynomial is called the Alexander
polynomial of K. It is a useful invariant for distinguishing isotopy classes of
knots.

Exercise 202. Let µ ⊂ X be a meridian of the knot K, that is, the bound-
ary circle of a small embedded disk in S3 intersecting K transversely in one
point. Show that the inclusion µ ↪→ S3 induces an isomorphism on integral
homology. Conclude that H∗(X, µ;Z) = 0 and so the cellular chain complex
C∗(X, µ) is acyclic.

Let s : C∗(X, µ) → C∗(X, µ) be a chain contraction. Lift s to a map
s̃ : C∗(X̃, µ̃) ⊗Zπ1X Q(t) → C∗(X̃, µ̃) ⊗Zπ1X Q(t) and show that s̃∂ − ∂s̃ is
a chain isomorphism. Conclude that C∗(X̃, µ̃)⊗Zπ1(X) Q(t) is acyclic. The
long exact sequence for the pair (X̃, µ̃) then shows that C∗(X̃)⊗Zπ1X Q(t)
is acyclic.

11.6. Torsion and lens spaces

In this section we will use Reidemeister torsion to classify 3-dimensional
lens spaces up to simple-homotopy and prove Theorem 11.1. The homotopy
classification differs from the simple-homotopy classification, but the simple-
homotopy classification is the same as the homeomorphism classification, the
diffeomorphism classification, and the isometry classification.

Let (p, q) be a pair of relatively prime integers, with p > 0. For con-
venience let r denote an inverse for q mod p, so rq ≡ 1 mod p. There are
many descriptions of L(p, q). We will give a description which makes the
cell structure on its universal cover easy to see.

Let X = S1×D2 be the solid torus, which we parameterize as the subset
{(z1, z2)| |z1| = 1, |z2| ≤ 1} ⊂ C2. The quotient of X by the equivalence
relation (z1, z2) ∼ (z′1, z2) if |z2| = 1 is the 3-sphere S3. In fact the map
f : X → S3 defined by

f(z1, z2) = (z1

√
1− |z2|2, z2)

defines a homeomorphism from X/ ∼ to S3 ⊂ C2.

Write ζ = e2πi/p and let Z/p act on X by

(z1, z2) · g = (z1ζ, z2ζ
q)

where Z/p is written multiplicatively as 〈g | gp = 1〉 (we use a right action to
be consistent with the previous sections). This defines the free Z/p-action
on S3 = X/ ∼

(w1, w2) · g = (w1ζ, w2ζ
q).

The map f : X → S3 is an equivariant map. By definition the quotient
space S3/(Z/p) is the lens space L(p, q).
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We use the description X/ ∼ to construct an equivariant cell structure
on S3. Let ẽ0 be the image under f of the point (1, 1) ∈ X. We take the
0-cells of S3 to be the p points ẽ0, ẽ0g, · · · , ẽ0g

p−1. Notice that

ẽ0g
n = f((1, 1)gn) = f(ζn, ζqn) = f(1, ζqn).

Next, let ẽ1 be the image under f of the arc {(1, eiθ) | 0 ≤ θ ≤ 2π
p }, and

take as 1-cells the translates ẽ1, ẽ1g, · · · , ẽ1g
p−1. Then

∂ẽ1 = f(1, ζ)− f(1, 1)

= f(1, ζqr)− f(1, 1)

= ẽ0(gr − 1),
(11.4)

since qr ≡ 1 mod p.
Let ẽ2 be f(1 × D2). We take as 2-cells the translates of ẽ2 by g,

ẽ2, ẽ2g, · · · , ẽ2g
p−1. Then

∂ẽ2 = f({(1, eiθ) | 0 ≤ θ ≤ 2π})
= ẽ1 + ẽ1g + · · ·+ ẽ1g

p−1

= ẽ1(1 + g + · · ·+ gp−1).

(11.5)

For the 3-cells, consider the solid cylinder

[0, 2π
p ]×D2 ∼= {eiθ |θ ∈ [0, 2π

p ]} ×D2 ⊂ X.

This is homeomorphic to a closed 3-ball. Its image in S3

f([0, 2π
p ]×D2) = ([0, 2π

p ]×D2)/ ∼

is a “lens”, also homeomorphic to a closed 3-ball.

[0, 2π
p ]×D2 f([0, 2π

p ]×D2)
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We let ẽ3 be the 3-cell f([0, 2π
p ]×D2). Then

∂ẽ3 = f({ζ} ×D2)− f({1} ×D2)

= f({ζ} × (D2ζq))− f({1} ×D2)

= f(({1} ×D2)ζ)− f({1} ×D2)

= ẽ2(g − 1).

(11.6)

Thus we have described a Z/p-equivariant cell structure for S3; this
defines a cell structure on L(p, q) with one 0-cell e0, one 1-cell e1, one 2-cell
e2, and one 3-cell e3. We calculated the Z[π]-chain complex for the universal

cover L̃(p, q) = S3 of L(p, q) to be

0 −→ Zπ(ẽ3)
∂3−→ Zπ(ẽ2)

∂2−→ Zπ(ẽ1)
∂1−→ Zπ(ẽ0) −→ 0(11.7)

with ∂3 = g − 1, ∂2 = 1 + g + g2 + · · ·+ gp−1, and ∂1 = gr − 1.
Notice that the map from the lens to L(p, q) is a quotient map which is

a homeomorphism on its interior. Therefore L(p, q) can be described as the
identification space of the lens, where the left 2-disk in the boundary of the
lens is identified with the right 2-disk by a 2πq

p -twist.

Exercise 203. Draw a picture of this cell structure on S3 for p = 5 and
q = 2 by thinking of S3 as R3 − {∞}. Label the i-cells ẽi, gẽi, · · · , g4ẽi.

Exercise 204. Show that L(2, 1) is the real projective plane. Show that
L(p, q) is the union of two solid tori.

Since π1(L(p, q)) = Z/p, if L(p, q) is homotopy equivalent to L(p′, q′)
then p = p′. The following theorem gives the homotopy classification of
3-dimensional lens spaces.

Theorem 11.35. Suppose f : L(p, q)→ L(p, q′) takes g to (g′)a, where g, g′

are the generators of π1(L(p, q)), π1(L(p, q′)) as above. Assume (a, p) = 1,
so that f induces an isomorphism on fundamental groups. Then

1. q deg(f) ≡ q′a2 mod p.

2. f is a homotopy equivalence if and only if deg(f) = ±1.

Moreover, if there exists an integer a so that a2q′ ≡ ±q mod p, then
there is a homotopy equivalence f : L(p, q) → L(p, q′) whose induced map
on fundamental groups takes g to (g′)a.

Proof. Let L = L(p, q), L′ = L(p, q′). First note that f∗ : π1L → π1L
′ is

an isomorphism since (a, p) = 1 implies (g′)a generates Z/p = π1L
′. Using

the cellular approximation theorem and the homotopy extension property,
we may assume that f is cellular. Denote the the cells of L′ by e′.
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Recall that the group of covering transformations of a universal cover
p : X̃ → X is identified with the fundamental group of X by taking the
covering transformation h : X̃ → X̃ to the loop p(α), where α is a path in
X̃ from x̃0 to h(x̃0). Since ẽ1 is a path in S3 from ẽ1 to ẽ1g

r by (11.4), e1

(which is a loop since there is only one 0-cell in L) represents gr in π1L.
Similarly e′1 represents (g′)r′ in π1L

′.
Because f is cellular and takes g to (g′)a on fundamental groups, it

follows that the loop f(e1) represents (g′)ar = (g′)r′q′ar, and so the chain
map f∗ : C1(L)→ C1(L′) takes e1 to (q′ar)e′1.

Lift f to f̃ : L̃ → L̃′, so that f̃(ẽ0) = ẽ′0. Then since f(e1) wraps q′ar
times around e′1, f(ẽ1) lifts to a sum of q′ar translates of ẽ′1. Precisely,

f̃(ẽ1) = ẽ′1 + ẽ′1(g
′)r′ + · · ·+ ẽ′1(g

′)r′(q′ar−1)

= ẽ′1(1 + (g′)r′ + · · ·+ (g′)r′(q′ar−1)).
(11.8)

To avoid being confused by isomorphic rings, write

Λ = Z[Z/p] = Z[t]/(tp − 1).

Identify Z[π1L] with Λ using the isomorphism determined by g �→ ta, and
identify Z[π1L

′] with Λ via g′ �→ t. With these identifications, the equivari-

ant chain complexes of L̃(p, q) and L̃(p, q′) and the chain map between them
are given by the diagram

0 Λ Λ Λ Λ 0

0 Λ Λ Λ Λ 0

✲ ✲∂3

❄
f3

✲∂2

❄
f2

✲∂1

❄
f1

✲

❄
f0

✲ ✲
∂′3

✲
∂′2

✲
∂′1

✲

where the differentials in two chain complexes are given by multiplication
by an element in Λ as follows.

∂3 = ta − 1
∂2 = 1 + ta + · · ·+ (ta)p−1 = 1 + t + · · ·+ tp−1

∂1 = tar − 1
∂′3 = t− 1
∂′2 = 1 + t + · · ·+ tp−1

∂′1 = tr
′ − 1.

These equations follow from Equations (11.4), (11.5), and (11.6) and the
identifications of Λ with Z[π1L] and Z[π1L

′].
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Since f̃(ẽ0) = ẽ′0 and f takes g to (g′)a, it follows that f0 =Id. From
Equation (11.8) we conclude that

f1 = 1 + tr
′
+ · · ·+ tr

′(q′ar−1).

Now f1∂2 = ∂′2f2, i.e. (1+ t+ · · ·+ tp−1)f1 = (1+ t+ · · ·+ tp−1)f2. This
implies that

f2 = f1 + ξ(1− t) for some ξ ∈ Λ.(11.9)

Similarly we have that f2∂3 = ∂′3f3 i.e. f2(ta − 1) = (t − 1)f3, and
therefore (t− 1)(ta−1 + · · ·+ 1)f2 = (t− 1)f3. Hence

f3 = (ta−1 + · · ·+ 1)f2 + β(1 + t + · · ·+ tp−1) for some β ∈ Λ.(11.10)

Let ε : Λ→ Z be the augmentation map defined by map
∑

nit
i �→

∑
ni.

Then H3L̃ = ker ∂3 = span(1 + t + · · · + tp−1) ∼= Z. The isomorphism is
given by

(1 + t + · · ·+ tp−1) · α �→ ε(α).

(Check that this indeed gives an isomorphism. Facts like this come from the
identity (1 + t + · · ·+ tp−1)(1− t) = 0 in Z[Z/p].)

Similarly

H3L̃
′ ∼= ker ∂′3 = span(1 + t + · · ·+ tp−1) ∼= Z.

Thus, deg f̃ = n if and only if f3(1+t+ · · ·+tp−1) = n(1+t+ · · ·+tp−1).
Now

f3(1 + t + · · ·+ tp−1) = ε(f3)(1 + t + · · ·+ tp−1)

and, using the computations above,

ε(f3) = ε((ta−1 + t + · · ·+ 1)f2 + β · (1 + t + · · ·+ tp−1))

= aε(f2) + ε(β) · p
= aε(f1 + ξ(1− t)) + ε(β) · p
= aε(f1) + ε(β) · p
= a · q′ar + ε(β) · p.

In these equations, ξ and β are the elements defined in Equations 11.9 and
11.10. Thus the degree of f̃ equals a2 · q′r + ε(β) · p and in particular the
degree of f̃ is congruent to a2q′r mod p.

The covers L̃ → L, L̃′ → L′ both have degree p. Since the degree
multiplies under composition of maps between oriented manifolds, it follows
that p deg f = p deg f̃ , and so deg f = deg f̃ = a2q′r + ε(β)p, proving the
second assertion.



11.6. Torsion and lens spaces 353

If deg f = deg f̃ = ±1, then since L̃ ∼= S3 ∼= L̃′, the map f̃ : S3 → S3

is a homotopy equivalence. Thus f : L → L′ induces an isomorphism on
all homotopy groups and is therefore a homotopy equivalence by Theorem
6.71.

It remains to prove 3. Define a map on the 1 skeleton f (1) : L(1) → L′

so that the induced map on fundamental groups takes g to (g′)a. Since
((g′)a)p = 1, f (1) extends over the 2 skeleton. The obstruction to extending
over the 3-skeleton lies in H3(L;π2L

′). Notice that π1L
′ acts trivially on

πkL
′ for all k, since the covering transformations S3 → S3 have degree 1

and so are homotopic to the identity. Thus the results of obstruction theory
(Chapter 7) apply in this situation.

Since π2L
′ = π2S

3 = 0, H3(L;π2L
′) = 0 and so this obstruction van-

ishes. Hence we can extend over the 3-skeleton; since this does not alter the
map on the 1-skeleton we obtain a map f : L→ L′ so that f∗(g) = (g′)a.

If a2q′r ≡ ±1 mod p, then f̃ has a degree ±1 mod p. We assert that f
can be modified so that the resulting lift f̃ is replaced by another equivariant
map f̃ ′ such that deg f̃ ′ = deg f̃ ± p. This is a formal consequence of the
technique used to extend f over the 3-skeleton in obstruction theory; we
outline the construction in this specific case.

Let x ∈ L, and redefine f on a neighborhood of x as indicated in the
following figure.

x

x
L′

collapse f ∨ h

L L ∨ S3

Here h : S3 → L′ is a degree ±p map (e.g. take h to be the universal
covering). Denote by f ′ this composition of the collapsing map L→ L∨ S3

and f ∨ h. There are many ways to see that the degree of f ′ equals the
deg(f)± p. Notice that since f is only modified on a 3-cell, f and f ′ induce
the same map on fundamental groups.

If a2q′r ≡ ±1 mod p, then repeating this modification as needed we
can arrange that deg f = ±1, and so f is a homotopy equivalence. This
completes the proof of Theorem 11.35.
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Exercise 205.

1. Show that L(5, 1) and L(5, 2) have the same homotopy and homology
groups, but are not homotopy equivalent.

2. Show that L(7, 1) and L(7, 2) are homotopy equivalent. Show that
any homotopy equivalence is orientation preserving, i.e. has degree
1. Is this true for any pair of homotopy equivalent lens spaces?

Having completed the homotopy classification, we turn now to the simple-
homotopy classification. This is accomplished using Reidemeister torsion.
The chain complex of the universal covers of a lens space L = L(p, q) is
not acyclic, since it has the homology of S3. We will tensor with C to turn
them into acyclic complexes and compute the corresponding Reidemeister
torsion. Thus we need a ring map Z[Z/p]→ C.

Let ζ = e2πi/p ∈ C. Let ρ : Z[Z/p] → C be the ring homomorphism
defined by

h(t) = ζ.

Note that h(1 + t + · · ·+ tp−1) = 0, and that if p � | a, then ζa �= 1.
In this notation we assumed Z/p had the generator t. Let g be the gen-

erator of π1L, and chose an isomorphism π1L ∼= Z/p so that g corresponds
to ta where (a, p) = 1. Let D∗ = C∗(L̃)⊗π1LC. This is a based complex over
the complex numbers with basis of the form e ⊗ 1 where e is an (oriented)
cell of L. Since L has one cell in each dimension d = 0, 1, 2, 3,

Dn =

{
C if n = 0, 1, 2, 3,
0 otherwise.

Moreover, from the chain complex (11.7) one easily sees that

D∗ = { 0 C C C C 0✲ ✲ζa−1 ✲0 ✲ζar−1 ✲ }
and hence D∗ is acyclic.

The following diagram exhibits a chain isomorphism of D∗ with an ele-
mentary complex.

0 C C C C 0

0 C C C C 0

✲ ✲ζa−1

❄
ζa−1

✲0

❄
Id

✲ζar−1

❄
ζar−1

✲

❄
Id

✲ ✲Id ✲0 ✲Id ✲

and so the Reidemeister torsion is

∆C(L) = (ζa − 1)(ζar − 1)

(recall that we are using multiplicative notation). Notice that the Reide-
meister torsion takes its values in C×/± {1, ζ, · · · , ζp−1}.
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Now suppose f : L(p, q) → L(p, q′) is a homotopy equivalence which
takes g to (g′)a for some a so that (a, p) = 1. Then if we choose the isomor-
phism π1L

′ ∼= Z/p so that g′ corresponds to t, we have

∆C(L′) = (ζ − 1)(ζr′ − 1).

If f is a simple-homotopy equivalence, τ(f) = 0. so by Proposition
11.34, ∆C(L) and ∆C(L′) are equal in the quotient C×/±{1, ζ, · · · , ζp−1}.
We summarize this conclusion (and the conclusion of Theorem 11.35 for
convenience) in the following proposition.

Proposition 11.36. If f : L(p, q)→ L(p, q′) is a simple-homotopy equiva-
lence which takes the generator g ∈ π1L to (g′)a ∈ π1L

′, then

1. a2q′ ≡ ±q mod p.
2. For each pth root of unity ζ �= 1, there exists an s ∈ Z/p so that

(ζa − 1)(ζar − 1) = ±ζs(ζ − 1)(ζr′ − 1)

where r and r′ are determined by the equations rq ≡ 1 mod p and
r′q′ ≡ 1 mod p.

Example of L(7,1) and L(7,2). Let L(7, 1) = L and L(7, 2) = L′. Then
the equation a2 = ±2 mod 7 has only the solutions a = 3, a = 4. We have
r = 1 and r′ = 4.

Exercise 205 shows that L and L′ are homotopy equivalent. Suppose
that L and L′ were simple-homotopy equivalent.

1. If a = 3, then for each seventh root of unity ζ there exists an s ∈ Z
with

(ζ3 − 1)2 = ±ζs(ζ − 1)(ζ4 − 1).
This implies that

|ζ3 − 1|2 = |ζ − 1||ζ4 − 1|.
Note that |ζ3− 1| = |ζ4− 1|. But we leave it to you as an exercise to
show |ζb − 1| = 2 cos(bπ/p), and we will allow the use of a calculator
to show |ζ − 1| �= |ζ3 − 1|.

2. If a = 4 the equation reads:

(ζ4 − 1)2 = ±ζs(ζ − 1)(ζ4 − 1).

For similar reasons as in the first case this is impossible.

Thus L(7, 1) is homotopy equivalent but not simple-homotopy equiv-
alent to L(7, 2). Theorem 11.32 implies that L(7, 1) and L(7, 2) are not
homeomorphic.



356 11. Simple-Homotopy Theory

We will now give the simple-homotopy classification for 3-dimensional
lens spaces. The proof will rely on a number-theoretic result about roots of
unity.

Theorem 11.37. If f : L(p, q) → L(p, q′) is a simple-homotopy equiva-
lence, with f∗(g) = (g′)a, then L(p, q) is homeomorphic to L(p, q′) and either

a = ±1 and q ≡ ±q′mod p

or
a = ±q and q ≡ ±(q′)−1mod p.

In particular, q ≡ ±(q′)−1mod p.

Proof. Suppose that f : L(p, q) → L(p, q′) is a simple-homotopy equiva-
lence. Proposition 11.36 shows that for any pth root of unity ζ �= 1 there
exists an s with

(ζa − 1)(ζar − 1) = ±ζs(ζ − 1)(ζr′ − 1).

Note that |ζs|2 = 1 and for any x, |ζx − 1|2 = (ζx − 1)(ζ−x − 1). Thus

1 = (ζa − 1)(ζ−a − 1)(ζar − 1)(ζ−ar − 1)(ζ − 1)(ζ−1 − 1)(ζr′ − 1)(ζ−r′ − 1).

For each j so that 0 < j < p and (j, p) = 1 define

mj = #{x ∈ {a,−a, ar,−ar}|x ≡ j mod p}
and

nj = #{x ∈ {1,−1, r′,−r′}|x ≡ j mod p}.
Then clearly

∑
j mj = 4 =

∑
j nj .

Let aj = mj − nj . Then

(a)
∑

aj = 0.
(b) aj = mj − nj = mp−j − np−j = ap−j .
(c)

∏
j(ζ

j − 1)aj = 1.

A theorem of Franz (for a proof see [19]) says that if aj is a sequence of
integers so that (a), (b), and (c) hold for all pth roots of unity ζ �= 1, then
aj = 0 for all j.

Thus mj = nj for each j. It follows that either

1. a ≡ ε1 and ar ≡ ε2r
′ mod p for some εi ∈ {±1}, or,

2. a ≡ ε1r
′ and ar ≡ ε2 mod p for some εi ∈ {±1}.

The first part of the theorem follows from this and the facts that rq ≡ 1
mod p and r′q′ ≡ 1 mod p.

The homeomorphism h : S3 → S3 taking (w1, w2) to (w1, w̄2) is equi-
variant with respect to the actions (w1, w2)g = (w1ζ, w2ζ

q) and (w1, w2)g =
(w1ζ, w2ζ

−q). This implies that L(p, q) and L(p,−q) are homeomorphic.
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The homeomorphism k : S3 → S3 taking (w1, w2) to (w2, w1) is equi-
variant with respect to the actions (w1, w2)g = (w1ζ, w2ζ

q) and (w1, w2)g =
(w1ζ

q, w2ζ). The quotient space of the Z/p action (w1, w2)g = (w1ζ
q, w2ζ)

is the same as the quotient space the Z/p action (w1, w2)g = (w1ζ, w2ζ
r),

since p and q are relatively prime and (w1ζ
q, w2ζ) = (w1ζ

q, w2(ζq)r). This
implies that L(p, q) and L(p, r) are homeomorphic (where r = q−1 mod
p). Thus if L(p, q) and L(p, q′) are simple-homotopy equivalent they are
homeomorphic.

Proof of Theorem 11.1. The homotopy classification was obtained in
Theorem 11.35. Theorem 11.37 shows that if q′ = ±q±1 then L(p, q) and
L(p, q′) are homeomorphic.

If q′ �= ±q±1 then L(p, q) and L(p, q′) are not simple-homotopy equiv-
alent, and so by Chapman’s theorem (Theorem 11.32) L(p, q) and L(p, q′)
are not homeomorphic.

11.7. The s-cobordism theorem

Finally, we end this chapter with the statement of the s-cobordism theorem,
a fundamental result of geometric topology.

Theorem 11.38 (s-cobordism theorem). Let W be a smooth {respectively
piecewise-linear, topological} compact manifold of dimension 6 or more whose
boundary consists of two path components M0 and M1. Suppose that the in-
clusions M0 ↪→W and M1 ↪→W are homotopy equivalences. Let τ(W, M0) ∈
Wh(π) denote the Whitehead torsion of the acyclic, based Z[π1W ]–complex
C∗(W̃ , M̃0).

Then W is diffeomorphic {respectively PL-homeomorphic, homeomor-
phic} to M0 × [0, 1] if and only τ(W, M0) = 0 vanishes.

A good exposition of the proof in the smooth case is given in [18] and
in the PL-case in [34]. The topological case is much harder and is based on
the breakthroughs of Kirby and Siebenmann [20] for topological manifolds.
The theorem is false in the smooth case if W has dimension 5 even by results
of Donaldson [9], and is true in the topological case in dimension 5 for many
fundamental groups (e.g. π1W finite) by work of Freedman-Quinn [11].

The method is of proof of the s-cobordism theorem is to develop han-
dlebody structures on manifolds. A handlebody structure is an enhanced
analogue of a CW-decomposition. Provided the dimension of the manifold
is high enough, then handles can be manipulated in a manner similar to the
way cells are manipulated in the proof of Theorem 11.31, and the proof of
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the s-cobordism theorem proceeds using handle-trading, handle-sliding, and
handle-cancellation.

11.8. Projects for Chapter 11

11.8.1. Handlebody theory and torsion for manifolds. Discuss han-
dlebody theory for smooth (or PL) manifolds and use it to indicate how tor-
sion can be useful in the study of diffeomorphism (or PL homeomorphism)
problems for manifolds. In particular, discuss how handlebody structures
relate Theorems 11.31 and 11.38.



Bibliography

[1] J.F. Adams, Algebraic Topology: a Student’s Guide. London Mathematical Society
lecture notes series 4, Cambridge University Press, 1972.

[2] J. F. Adams, Stable Homotopy and Generalized Cohomology. Chicago Lectures in
Mathematics, University of Chicago Press, 1974.

[3] M. Atiyah, K-Theory, Notes by D. W. Anderson, Second edition. Advanced Book
Classics. Addison-Wesley Publishing Company, 1989.

[4] H. Bass, J. Milnor, and J.P. Serre, “Solution of the congruence subgroup problem for

SLn (n ≥ 3) and Sp2n (n ≥ 2).” Inst. Hautes Études Sci. Publ. Math. No. 33, 1967,
59–137.

[5] G. Bredon, Introduction to Compact Transformation Groups. Pure and Applied Math-
ematics, Volume 46, Academic Press, 1972.

[6] T. A. Chapman, “Topological invariance of Whitehead torsion.” Amer. J. Math. 96,
1974, 488–497.

[7] M. Cohen, A Course in Simple Homotopy Theory. Graduate Texts in Mathematics
No. 10, Springer–Verlag, 1973.

[8] A. Dold, Lectures on Algebraic Topology. Die Grundlehren der mathematischen Wis-
senschaften, Band 200, Springer–Verlag, 1972.

[9] S. K. Donaldson,“Irrationality and the h-cobordism conjecture.” J. Differential Geom.
26, 1987.

[10] J. Dugundjii, Topology. Allyn and Bacon, 1965.

[11] M. H. Freedman and F. Quinn, Topology of 4-manifolds. Princeton Mathematical
Series, 39. Princeton University Press, 1990.

[12] R. Fritsch and R. A. Piccinini, Cellular Structures in Topology. Cambridge Studies
in Advanced Mathematics, 19. Cambridge University Press, 1990.

[13] M. Greenberg and J. Harper, Algebraic Topology, a First Course. Advanced Book
Program, Benjamin/Cummins, 1981.

[14] P. A. Griffiths and J. W. Morgan, Rational Homotopy Theory and Differential Forms.
Progress in Mathematics, 16. Birkhäuser, 1981.
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pg. 3, Definitions 1.2 and 1.3. The definition of cells, attaching cells, and CW complexes
can be clarified as follows.

First, if X is a topological space, A a closed subspace, then say that X is obtained from
A by attaching n-cells {en

i }i∈I if there exist maps φn
i : (Dn, Sn−1) → (X, A) so that the

function from the disjoint union i q φn
i : A qi∈I Dn

i → X is a quotient map determined by
the restrictions of the φn

i to Sn−1.
Precisely, the disjoint union A qi∈I Dn

i is topologized by declaring a set to be closed
if its intersection with A and each disk Dn

i is closed. An equivalence relation is given by
declaring points x 6= y in A qi∈I Dn

i to be in the same equivalence class if either x ∈ Sn−1
i

and y ∈ Sn−1
j and φn

i (x) = φn
j (y) for some i, j (allowing i = j) or if x ∈ Sn−1

i , y ∈ A and
φn

i (x) = y for some i, or if y ∈ Sn−1
i , x ∈ A and φn

i (y) = x. This equivalence relation
defines a quotient space A qi∈I Dn

i / ∼ and a bijective map to X which is required to be a
homeomorphism.

The cells of X rel A are the images en
i of the interiors of the disks Dn

i via φn
i . In

particular, X is the disjoint union (set-theoretically) of A and the cells of X rel A.
Similarly, a relative CW complex (X, A) is a topological space and a closed subspace A

endowed with a filtration

A = X−1 ⊂ X0 ⊂ X1 · · · ⊂ Xn ⊂ · · · ⊂ X

so that X = ∪nXn. The filtration satisfies the conditions that X0 is the disjoint union of A
with a discrete space, Xn is obtained from Xn−1 by attaching n-cells, and the topology on
X satisfies the requirement that a subset B ⊂ X is closed if and only if B ∩Xn is closed for
all n. Then X is (set theoretically) the disjoint union of A and the cells en

i = φn
i (Int(Dn

i )).

pg. 4, line -13. Change “The largest n” to “The smallest n”

pg. 17, Definition 1.23, part 2. Change “γ : C → A” to “γ : C → B.”

pg. 24. In the right top corner of the first commutative diagram replace “Z” by “Z/2.”
Thus the sequence should read:

0 → Hom(Z/2,Z) → Hom(Z/2,Z) → Hom(Z/2,Z/2)

pg. 26. In the first displayed exact sequence of the proof of Proposition 2.4, replace “R/A”
by “R/a.” Thus the sequence should read:

0 → R
×a−→R → R/a → 0

pg. 36 line -7. Note that in Definition 2.21, an acyclic chain complex C∗ need not have
H0(C∗) = 0, and in particular C∗ is not exact at C0. This contrasts with the definition
of acyclic complex used in Chapter 11, (c.f. pg. 334) where in that context one assumes
H0(C∗) = 0.

pg. 38 line -4. Change the C0 to M ′. The sentence should read “ Since ε′ ◦ (f0 − g0) −
(ϕ− ϕ) ◦ ε = 0 : P0 → M ′, ...”
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pg. 39. In the first commutative diagram, the vertical arrow is mislabelled. It should be
labelled fn − gn − sn−1∂n. Also, the C1 at the lower left should be replaced by Cn+1.

pg. 40 line 3. Change to “Since Rn is projective...”

pg. 40 line 10. Change the “−” sign to a “+” sign; i.e. iε(p) + Φ(r).

pg. 46. Add a paragraph at the end of Part 2 of Exercise 30: The splitting of this map is
obtained by splitting the inclusion i : Z∗ → C∗, passing to a chain map

(C∗, ∂) → (H∗(C∗), 0),

applying HomR(−,M), and taking cohomology.

pg. 49. The definition of a free functor F : A → C is not complete. The precise definition is
as follows. For each q ∈ Z one is given an indexed set {bj ∈ Fq(Mj)}j∈J where Mj ∈M such
that for every X ∈ A, Fq(X) is a free R module with basis {Fq(u)(bj) | u ∈ HomA(Mj , X)}.

pg. 53. If C∗ and D∗ are free chain complexes, the splitting in the Kun̈neth exact sequence
is obtained just like the splitting in the Universal Coefficient Theorem. If D∗ is not free, then
reasoning is more complicated and involves finding a chain homotopy equivalence D′

∗ → D∗
where D′

∗ is a free chain complex. For details, see the discussion in A Course in Homological
Algebra, by Hilton and Stammbach.

pg. 54. In the statement of the Eilenberg-Zilber Theorem, replace everything after “nat-
urally equivalent;” and before “for any” with “more precisely, there exist natural transfor-
mations A : F → F ′ and B : F ′ → F so that A(σ) = prXσ ⊗ prY σ and B(τ ⊗ ρ) = τ × ρ
for any singular 0-simplices σ, τ , and ρ in X × Y , X, and Y respectively. Furthermore,”

pg. 57. In the exact sequence of Definition 3.8 change “H∗(X × Y )” to “Hp+q(X × Y ).”

pg. 60. The proof that 1 ∪ α = α is wrong. Instead, first extend 1 ∈ S0(X) to act
on all chains by declaring 1(z) = 0 if z ∈ Sp(X) with p > 0. Then define a natural
transformation C : S∗(X) → S∗(X) as the composite of a diagonal approximation τ :
S∗(X) → S∗(X) ⊗ S∗(X) and the map E : S∗(X) → S∗(X) given by E(z ⊗ w) = 1(z)w.
The map E is easily checked to be a natural chain map, and hence C is a natural chain map.
By the uniqueness part of the acyclic models theorem, C is chain homotopic to the identity.
If α ∈ S∗(X), E∗(α)(z ⊗ w) = α(E(z ⊗ w)) = α(1(z)w) = 1(z)α(w) = (1 ×alg α)(z ⊗ w).
Therefore, C∗(α) = τ∗(E∗(α)) = τ∗(1 ×alg α) = 1 ∪ α. Passing to cohomology and using
the fact that C is chain homotopic to the identity gives 1 ∪ α = α.

pg. 62. In Definition 3.14 change “Sq(X)” to “Sp(X).”

pg. 71, line 8. Change to “If M is closed...”

pg. 71, Theorem 3.26. Add: “The integers Z can be replaced by Z/2 in Theorem 3.26,
and all assertions continue to hold. Moreover, with Z/2 coefficients the assertions hold for
non-orientable manifolds as well.”
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pg. 72, line 8. Solving Exercise 48 requires knowing that the homology groups of a
compact manifold are finitely generated abelian groups. This can be shown by proving
that any manifold embeds in RN for some N in such a way that it is a retract of a finite
subcomplex of RN . Morse theory gives an easy proof that a smooth compact manifold
admits a CW structure with finitely many cells.

pg. 73, Theorem 3.27. As stated, the last sentence of Theorem 3.27 is only true for
forms with non-negative signature. A more precise and complete statement is the following.
If an even indefinite form Q has signature σ and rank r, let m = 1

8 |σ|, ε be the sign of σ,
i.e. ε = σ

|σ| if σ 6= 0 and ε = 0 if σ = 0, and let ` = 1
2 (r − |σ|), so that ` > 0. Then Q is

equivalent to

⊕`

(
0 1
1 0

)
⊕m εE8.

pg. 74, lines 8–11. The list should read:
There are

1 even, positive definite rank 8 forms
2 ” rank 16 ”
24 ” rank 24 ”

≥ 107 ” rank 32 ”
≥ 1051 ” rank 40 ”

This data is taken from the book Symmetric Bilinear Forms by Milnor and Husemoller.

pg, 75, line -6. Insert “oriented”, i.e. “Now suppose that M is a closed and oriented
manifold of dimension 2k − 1.”

pg, 77, line -1. Change “g(x)” to g · x.”

pg, 80, line 1. That a locally trivial bundle is the same thing as a fiber bundle with
structure group Homeo(F ) depends on what topology one uses on Homeo(F ), since with
our definition we require the transition functions U → G to be continuous. One (unsatisfac-
tory) solution is to give Homeo(F ) the indiscrete topology. A better solution would be to
topologize Homeo(F ) so that a map X → Homeo(F ) is continuous if and only if the adjoint
map X × F → F is continuous. Often, but not always, this condition is satisfied by the
compact open topology.

pg, 85, line 7. Change “E/G” to “P/G.”

pg. 88, line -4. Change the sentence starting “This is clearly a homomorphism...” to
“This is an anti-homomorphism: if a ∈ A, γ̃1 is a lift of γ1 starting at a, and γ̃2 is a lift of
γ2 starting at γ̃1(1), then γ̃1γ̃2 is a lift ot γ1γ2 starting at a. Thus the function π1(B, ∗) →
Aut(A) is an anti-homomorphism, which can be turned into a homomorphism by composing
with the map Aut(A) → Aut(A) given by f 7→ f−1.” See the comment below concerning
page 97.

pg, 90, line -7. Change “p−1(U ′)” to “(p′)−1(U ′).”

pg. 97, line 29, and Definition 4.3, pg 84. The π1(X, x0)-action on the universal cover
p : X̃ → X and the fiber p−1(x0) is usually defined (e.g. in Massey’s book) as follows.
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First, if α and β are paths with α(1) = β(0), then αβ means the composite where one
first follows α, then β.

Next, if x ∈ p−1(x0) and α ∈ π1(X, x0), then one usually defines x ·α to be the endpoint
of the unique lift of α to X̃ starting at x. Then for α, β ∈ π1(X, x0), x · (αβ) = (x · α) · β,
so that π1(X, x0) acts on p−1(x0) on the right.

Finally, if one chooses a basepoint x̃0 ∈ p−1(x0) for X̃, then given x ∈ X̃ and α ∈
π1(X, x0), one usually defines α · x to be the endpoint of the unique lift of p(γx) starting at
x̃0 · α, where γx is a path in X̃ starting at x̃0 and ending at x. Then (αβ) · x = α · (β · x).
Thus π1(X, x0) acts on X̃ on the left. Hence with this definition, π1(X, x0) acts on the
singular chain complex S∗(X̃) on the left.

An alternative way to describe these actions is to take the construction of X̃ as the space
of homotopy rel endpoint classes of paths in X starting at x0, with p : X̃ → X the endpoint
map. Then if γ is such a path and α ∈ π1(X, x0), α · γ is just the composite αγ. Also,
p−1(x0) is the homotopy classes of loops (i.e. p−1(x0) = π1(X, x0)). If γ ∈ p−1(x0) then
γ · α = γα.

On the other hand, it is usual (e.g. Steenrod’s book) to consider a principal G-bundle
P → B to be a fiber bundle with fiber G and structure group G action on G by left
translation, as we do in Definition 4.3 on page 84. Thus G acts on the fiber on the left and
on the total space X on the right.

Hence, the conventions are inconsistent if one wishes to consider the universal cover (or
more generally a regular cover) as a principal G-bundle.

In the book we assert that π1(X, x0) acts on X̃ on the right. Thus we use a convention
which is oposite from the usual one described above. This can be done cheaply by starting
with the left action and converting it to a right action by defining x · α := α−1 · x, or
equivalently by modifying the geometric construction (e.g. let X̃ be the homotopy rel
endpoint classes of paths in X ending at x0). Then the universal cover becomes a principal
π1(X, x0)-bundle.

pg. 99, line -4. Delete “with the trivial left π action”.

pg. 99, line -2. Replace the “M” with “m”.

pg. 100, lines 11 and 12. Replace “HomZ(S∗X,Z)” with “HomZ(S∗X̃,Z)” and “com-
pact,” with “a CW-complex of finite type (i.e. a finite number of cells in each dimension),
then”.

pg. 100, line 20. Change to “For each cell e of X, choose a cell ẽ above e in X̃.”

pg. 101, line -15. Change to “let V be an open set in M .”

pg. 108, line 12. Replace “C∗(B̃ ⊗Zπ V )” with “C∗(B̃)⊗Zπ V ”

pg. 112, line 13. Delete “with finitely many cells in each dimension” and add a line:
“4. The product of two CW-complexes, one of which has a finite number of cells in each

dimension.”

pg. 113, line 20. Add a line: “3. If X and Y are CW-complexes, so is k(X × Y ).”
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pg 116, line 11. Change f∗(E) → B to f∗(E) → X.

pg 122, line 5. Change “((” to “(”.

pg. 124, line -3. After the displayed equation change to “where αs is the path t 7→ α(st).”

pg. 126. In the left commutative triangle near the bottom of the page, label the southwest
arrrow “p.”

pg. 128. The first two diagrams on pg. 128 are wrong. The first should be:

Z

XI X

Y I Y

p p p p p p p p ps
S

S
S

S
S
Sw

PPPPPPPPPPq

?
fI

-
eval. at 0

?
f

-eval. at 0

and the second:
Z

X × I X

Y × I Y

ppppppppp
ppk

�
i0

PPPPPPPPPPPi

6
f×I

S
S

S
S

S
S

So

� i0

6
f

pg. 133, line -2. Replace “H(−, 1)” by “F (−, 1).”

pg. 136. The displayed equation in Definition 6.32 has a typo: one of the “∪” should be a
“×.” It should read

X ∧ Y =
X × Y

X ∨ Y
=

X × Y

X × {y0} ∪ {x0} × Y
.

pg. 127, 138 and the proof of Theorem 6.39 part 1, pg. 138. The following result
is needed to justify the the notion of “the” fiber of a map.

Proposition. Let p : E → B and p′ : E′ → B be fibrations and suppose there exists a
homotopy equivalence h : E → E′ so that p′h is homotopic to p. Then p and p′ are fiber
homotopy equivalent. In particular the fibers of p and p′ are homotopy equivalent.

A simple consequence of this fact is that if one turns a map into a fibration in two different
ways, then the resulting fibrations are fiber homotopy equivalent. This is needed to justify
the last step of the proof of Theorem 6.39. The commutative triangle on pg. 140 shows
that the inclusion F → E can be replaced by the fibration (Pf )0 → E with homotopy fiber
Ωb0B. But this is not the same fibration as Pi → E in Theorem 6.18 starting with the
inclusion map i : F ⊂ E. The proposition shows that if the fiber of some fibration replacing
i : F ⊂ E is Ωb0B, then the fiber of every fibration replacing i : F ⊂ B has the homotopy
type of Ωb0B.
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Proof. (due to Dold) First, we may assume that p′h = p by using the homotopy lifting
property (HLP) for p′: just lift a homotopy from p′h to p starting at h. Its other endpoint
is a map ĥ homotopic to h satisfying p′ĥ = p. Since h and ĥ are homotopic, ĥ is also a
homotopy equivalence.

So assume p′h = p and let h′ : E′ → E be a homotopy inverse for h. Let F : E′× [0, 1] →
E′ be a homotopy between hh′ and IdE′ . Let Ḡ = p′F , so Ḡ : E′ × [0, 1] → B. Since
Ḡ(e′, 0) = p′(F (e′, 0)) = p′(h(h′(e′))) = p(h′(e′)), the HLP for p implies that there is a lift
G : E′ × [0, 1] → E of Ḡ with G(e′, 0) = h′(e′). Then p(G(e′, 1)) = Ḡ(e′, 1) = p′(F (e′, 1)) =
p′(e′). In other words, if we define h′′ : E′ → E to be G(−, 1), i.e. h′′(e′) = G(e′, 1), then
h′′ is a homotopy inverse for h which preserves fibers, i.e. ph′′ = p′. We will show that h′′

is a fiber homotopy inverse of h.
Given a homotopies R,S : X × [0, 1] → Y let R−1 denote the reverse homotopy, i.e.

R−1(x, t) = R(x, 1 − t) and let R ∗ S denote the composite homotopy (assuming R(x, 1) =
S(x, 0))

R ∗ S(x, t) =

{
R(x, 2t) if t ≤ 1/2,

S(x, 2t− 1) if t ≥ 1/2.

Let H : E′ × [0, 1] → E′ be the composite H = (hG)−1 ∗ F , which is defined since
hG(e′, 0) = hh′(e′) = F (0). Thus H is a homotopy from hh′′ to IdE′ . Since p′F = Ḡ =
pG = p′hG, p′H(e′, t) = p′H(e′, 1 − t). In other words, viewing p′H as a loop [0, 1] →
Map(E′, B), this loop is obtained by traveling along a path and then returning along the
same path. There is an obvious nullhomotopy obtained by traveling less and less along the
path and returning. Precisely, define K̄ : E′ × [0, 1]× [0, 1] by

K̄(e′, t, s) =

{
p′H(e′, (1− s)t) if t ≤ 1/2,

p′H(e′, (1− s)(1− t)) if t ≥ 1/2.

Then K̄(e′, t, 0) = p′H(e′, t), K̄(e′, t, 1) = p′(e′), K̄(e′, 0, s) = p′(e′), and K̄(e′, 1, s) = p′(e′).
We will use the HLP to lift K̄ to a fiber preserving homotopy using an argument similar

to the argument on the bottom of page 118. Let U ⊂ I × I be the union of the three sides

U = {(t, s) | s = 0 } ∪ {(t, s) | t = 0 } ∪ {(t, s) | t = 1 }.

Let K : E′ × U → E′ be the map

K(e′, t, s) =


H(e′, t) if s = 0,

h(h′′(e′)) if t = 0,
e′ if t = 1.

Since there is a homeomorphism I × I ∼= I × I taking U to I × {0} = {(t, s) | s = 0 },
the HLP implies that K extends to a map K : E′ × I × I → E′ satisfying p′K = K̄.
Let D : E′ × I → E′ be the endpoint of this map, i.e. D(e′, t) = K(e′, t, 1). Then
D(e′, 0) = h(h′′(e′)), D(e′, 1) = e′, and p′(D(e′, t)) = K̄(e′, t, 1) = p′(e′). In other words, D
is a fiber preserving homotopy between hh′′ and IdE′ .

Now repeat the entire argument to h′′ to find a map h′′′ : E → E′ and fiber preserving
homotopy between h′′h′′′ and IdE . Use the notation “∼F ” for fiber preserving homotopic.
Then

h′′h ∼F h′′hh′′h′′′ ∼F h′′h′′′ ∼F IdE .

In other words h : E → E′ and h′′ : E′ → E are fiber homotopy inverses.

pg. 142, line -7. Change to “... an “inversion” map ϕ : Z → Z which ...”

pg.147, line 2. Replace “Chapter 3” by “Chapter 5.”
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pg.167-187. The n-skeleton of a CW complex X is denoted by Xn in these pages, and by
Xn in the rest of the book.

pg.176, line 19. Change “f can be extended to Xn−1” to “f can be extended to Xn.”

pg.189, line -6. Change “n-simple” to “n-simple.”

pg.212, line -15. Change “leads” to “lead”

pg.217, line -6. Change “spectral” to “spectra”

pg.219, line -9. Change “...the homotopy fiber of f : B → BG is in fact a homotopy
equivalence.” to “...the homotopy fiber of f : B → BG is in fact homotopy equivalent to
E.”

pg. 225, line 3. Replace “α−1(X × U)” with “α−1(X+ ∧ p−1(U)) where p : EG` ×G`

int Dn → BG`”.

pg. 232, line 6. Replace “... axioms A1, A2, A3, and A5.” by “... axioms A1, A2, A3,
and A4.”
pg. 237, line -1. Replace “1.2 · · · ’ by “1, 2, · · · ”

pg. 240, line 1. To say the filtration preserves the grading means that Fp = ⊕n(Fp∩An) =
⊕nFp,n−p where we think of A = ⊕nAn.

pg. 241, Definition 9.21, part 2. The second condition should read:

2. there is a convergent filtration of A∗ so that for each n the colimit
E∞

p,n−p = colim
r→∞

Er
p,n−p is isomorphic to the associated graded module Gr(An)p.

pg. 245, line 1. Replace “H0(ΩSk) = 0” by “H0(ΩSk) = Z.”

pg. 246, line 13. Replace “Since F−1,n−1 = 0” by “Since F−1,n+1 = 0”

pg. 250, Equation (9.8) and the exact sequence on line 19. Replace “E∞
1,1” by

“F1,1.” Thus the exact sequence should read

F1,1 → H2(E) → H2(B) → H0(B;H1(F )) → H1(E) → H1(B) → 0.

Also, further in that paragraph (line -11) Change “H2(E)” to “H1(E).”

pg. 251, line -13. Change ”cohomology” to ”homology.”

pg. 255, line 10. Similar comment as pg 240.

pg. 255, Definition 9.21. The second condition should read:

2. there is a convergent filtration of A∗ so that for each n the limit Ep,n−p
∞ = ∩r≥r0E

p,n−p
r

is isomorphic to the associated graded module Gr(An)p.
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pg. 258, line -9. Replace “... for path space...” by “... for the path space...”

pg. 264, line 21. Change “X̃ → X̃ ×G EG → X” to “X̃ → X̃ ×G EG → BG.”

pg. 273, line -7. Change “Hn−1(X)” to “Hn(X)”

pg. 276, line -3. Change “Hn(T ) is finite...” to “Hk(T ) is finite...”

pg. 278, line -6. Change “H5(F ;Z/2)” to “H5(Y ;Z/2)”

pg. 279, line -14. Change “[X, ΩSX]0” to “[X, ΩSY ]0”

pg. 286 Theorem 10.21 is an immediate consequece of the Serre exact sequence for coho-
mology.

pg. 289, line 20. Change “te” to “the”.

pg. 291, line -2. Change “τ(ι22)” to “τ(ι21)”.

pg. 293, line 16. Change “defining xr = 0 for r < 0” to “defining yr = 0 for r < 0”.

pg. 295, first paragraph. All occurences of the digit “8” should be changed to a “9” in
this paragraph. Thus the paragraph should read as follows.

Let y ∈ H5(SX) denote the non-zero element. Suppose to the contrary that Sh is
nullhomotopic. Then SX is homotopy equivalent to the wedge S5 ∨ S9. In particular the
map Sq4 : H5(SX) → H9(SX) is trivial, since if y is the non-zero element of H5(S5 ∨ S9),
then y is pulled back from H5(S5) via the projection S5 ∨ S9 → S5, but H9(S5) = 0 and
so by naturality Sq4(y) = 0.

pg. 306, line 15. Change “no-zero” to “non-zero”.

pg. 309, statement of Theorem 10.39. Change “Stiefel-Whitney numbers” to “Stiefel-
Whitney classes”.

pg. 310, line -11. Replace “H∗(BO(n− 1)” by “H∗(BO(n− 1))”

pg. 311. The first exact sequence should read:

· · · → Hk−1(BO(n)) → Hk−1(BO(n− 1)) →
Hk−n(BO(n))⊗Hn−1(Sn−1) dn−→Hk(BO(n)) → Hk(BO(n− 1)) → · · ·

and the sequence (10.18) should read:

0 → Hk−n(BO(n))⊗Hn−1(Sn−1) dn−→Hk(BO(n)) → Hk(BO(n− 1)) → 0

Also, on line 15, change “dn([Sn−1]∗ ∪ α) = wn ∪ α” to “dn(α⊗ [Sn−1]∗) = α ∪ wn ”.

pg. 313, last line. The third condition should read: “3. Hi(L(P )(X);Z(P )) = Hi(L(P )(X);Z)
for i > 0.”
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pg. 320, line 7. Change “πk(X)” to “πk−1(X)”

pg. 327, line -8. This line should read
We assume all rings have the property that Rm ∼= Rn implies m = n.

pg. 333, line -7. The summation should be over j, not i.

pg. 334, line 5. Change “|n| ≤ N” to “|n| ≥ N .”

pg. 334, line 20. Change “a acyclic” to “an acyclic”

pg. 335, line 11. Change “an chain” to “a chain”

pg. 335, line 11. Change “an chain” to “a chain”

pg. 337, line 9. Change “s∂∂(y)” to “ss∂(y)”

pg. 339, line -8. Replace “C ′
n → Cn” by “Cn → C ′

n”

pg. 339, line -4. Delete “acyclic”

pg. 340, line -15. Replace the proof of Lemma 11.24 by the following :

Proof. (taken from [7, pg. 48]). Equivalently we will find a chain map t : C ′′ → C
which splits p. Let δ′′ be a chain contraction for C ′′. Let σ : C ′′ → C be a sequence of
homomorphisms σk : C ′′

k → Ck which split Ck → C ′′
k . Finally let t = ∂σδ′′ + σδ′′∂′′. Note

that ∂t = ∂σδ′′∂′′ = t∂′′, so t is a chain map. Note pt = p∂σδ′′ + δ′′∂′′ = ∂′′pσδ′′ + δ′′∂′′ =
∂′′δ′′ + δ′′∂′′ = IdC′′ , so p splits t.

pg. 340, line -3. Change “Lemma 11.23” to “Theorem 11.23.”

pg. 341, line -11. Change “Cone(C)” to “SCone(C).”

pg. 342, line 13. Change “C(g ◦ f)” to “C(g ◦ f)n.”

pg. 345, line 1. Change “(k +1)-cell” to “(k +2)-cell” and “i 6= k, k +1” to “i 6= k, k +2.”

pg. 345, line 7 and line 15. Change “C(L̃, K̃)” to “C∗(L̃, K̃).”

pg. 346, line 5. Change “over S” to “over R.”

pg. 346, line -4. Change “∆R(C∗(X)) ∈ R×” to “∆R(C∗(X̃)) ∈ R×/± 1.”

pg. 347. The displayed equation in Proposition 11.34 should read:

det(ρ(τ(f)) = ∆R(Y )/∆R(X) ∈ R×/±G.

pg. 348, Exercise 203. Change “s̃∂ − ∂s̃” to “s̃∂ + ∂s̃.”
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pg. 350, Exercise 204. Change “R3 − {∞}” to “R3 ∪ {∞}.”

pg. 350, Exercise 205. Change “the real projective plane” to “real projective 3-space.”

pg. 354, line 3. Change “covers” to “cover.”

pg. 355, line -14. Change “2 cos(bπ/p)” to “2 sin(bπ/p).”

pg. 356, line 9. Change

1 = (ζa − 1)(ζ−a − 1)(ζar − 1)(ζ−ar − 1)(ζ − 1)(ζ−1 − 1)(ζr′
− 1)(ζ−r′

− 1)

to

1 = (ζa − 1)(ζ−a − 1)(ζar − 1)(ζ−ar − 1)
[
(ζ − 1)(ζ−1 − 1)(ζr′

− 1)(ζ−r′
− 1)

]−1

pg. 356, line -11. Change “first” to “second.”
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