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the projected point of ¥ () to T*(8Q % R) is (cos 8, sin 8, 1,£c08 0, (—sin 6y, cos 0,), e),
where 62=1. This implies that ¥ (f)=(0/B, o, ,0,€,€x) for 0<r<L.

Let us compute the rotated angle A around the origin of the projected ray of
{Y{"(1):0<¢<T} to the (x,y) plane and the rotated angle B around the origin of the
projected ray of {¥():0<t<7} to the (x,y) plane. Since the speed of the projected
ray of y? (1) to the (x,y) plane is B, A= B(F—7)+0,. We assume that y () is on S rays
during the time 2m+1)7 (mz1) and Y( is on gliding P rays during the time
T—(2m+1)r. The angle <COD, where 0O=(0,0) and C, D are projected points of
FO@ED and YO@F@-25 D to the (x,y) plane, respectively, is 208o. So we have
B=2m+ 1)0,+(—(2m+1)DPB. The relation between A and B is A—B=2nmn for
some integer n. The time of passaging of a S ray on the line CD is 2o~ 'sin@, and the
one of a P gliding ray on the arc CD is 2B~ 8,. By 2B 10,<20 sin@y, n=0. The
relation is Po~ (1 —PB2/a?)!/2~0,=tanB,—0,=nn/m=0. This is a contradiction for
0<0,<m/2. The proof is completed.

Remark 3.5. — We explain the reason why we assume the dimension of R"is 2. If
n=3, the statement (i) of Theorem 2.2 is changed as follows (see Theorem 4.4 in [4]);
if ¥ (0) = WF, (4) and v{? (@) N WF, ()=, then we have one of the following two
reflective phenomena; (a) ¥ (@) UY{? (0) = Wi, (), ») ¥9(0) = WF,(u) and
1P (@) " WF, ()=. In the case (a) or (b) the incident S waves are called SV waves
or SH waves in seismology. Thus if n=3, we have a similar phenomenon to the case
n=2 or have a simple reflective phenomenon of S ray. Unfortunatery we do not have
a mathematical condition of separating SV singularities and SH singularities. For n=4
we have the same situation.
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THE STRUCTURE OF ¢-SYMPLECTIC GEOMETRY

By M. de GOSSON

Introduction

Felix Klein defined a geometry by specifying a manifold and a Lie group acting on
that manifold. Jean Leray has shown in the first chapter of his treatise Lagrangian
Analysis and Quantum Mechanics [L] that for every g=1,2, . . ., + o the g-fold covering
group Sq,(n) of the symplectic group Sp(n) acts on the 2 g-fold covering space A, ,(n)
of the lagrangian Grassmannian A (n); each of the groups Sp, (1) thus defines a geometry
on A, , (n), which Leray calls g-symplectic geometry.

The aim of this article is to show that the algebraic and topological structures of
Sp,(n) and A, (n) can be described by using a modified Maslov index, which will be
defined as a function A, (1) X A, (1) = Z, exempted of any transversality assumption. It
will lead us ultimately to an explicit description of the action of Sp, (1) on A, 4(n), that
is, of the structure of g-symplectic geometry.

Some of the results contained in this paper have been announced in our C. R. Acad.
Sci. Paris, Notes [G,] and [G,]. :

This article is divided into three chapters; each chapter is subdivided into sections.

CONTENTS AND MAIN RESULTS:

1. Preliminaries

In Section 1 we briefly review the properties of the covering groups Sp, (n) and of the
covering spaces A, (n) that will be needed; the main result is Theorem I which describes

the action of Sp,(n) on A, ,(n) in terms of the generators o and B of n, (Sp(n)) = (Z, +)

and w, (A (n) > (Z, +) whose natural images in Z are +1; then if s,€Sp, (n) and
I, €A, ,(n) we have (formula (1.9)):

Q)] (@5) L (=B (5,1 ) =3, (B* 1)
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430 M. DE GOSSON

which can be considered as the definition of g-symplectic geometry.

In Section 2 we recall the definition and properties of the Maslov index: it is a
Z-valued function m of pairs (I,,/)€A,(n)xXA,(n) projecting onto pairs
(I,I'Ye A(n)x A (n) such that /" !'={0}; Leray defines that function via the theory of
chain intersection [definition (2.4)], following an idea of V.1. Arnold [A].

A fundamental property of the Maslov index is that it is the only function of pairs
(1,,1%) such that /N I'={0} which is locally constant on its domain and allows the
following decomposition of the index of inertia of a triple (1,1, I')e A (n) x A(n) x A(n)
with INI=r'NI"=1"NIi={0}:

2 m(ly, 1) —m (L, )+ m (I, ) =Inert (1, ", 1")

[Theorem 1, formula (2.9)].

Two other properties of m will be essential in this article: m is invariant under the
action of Sp(n), and:

€) m(B 1, B 1) =m (g, L) +r=r

II. Definition and properties of the Maslov index without transversality assumptions

In Section 1 we expose Kashiwara’s theory of the signature sign(/,/'") of a triple of
lagrangian planes; we are following closely [L.V.], (p.39-45), for the proofs of the
properties of that index, which enjoys an essential cocycle property [Theorem 1, formula

(1. Dk
(©) sign (1, I, 1) —sign (I, /', I"") +sign (1, I, I"") —sign (', ", I"") =0

We show in Proposition (1.6) that the signature is related to Leray’s index of inertia by
the formula:

sign(l,I',I")y=21Inert(,,I',I'")—n
) when
INI=rni'=rni={o}.

In Section 2, Theorem 1 we show that formulae (4) and (5) hereabove make possible the
definition of a variant of the Maslov index on A (1) X A, (n), without any transversality
assumption; more precisely:

(6) there exists a unique function
o Ag(mMxA,(n)>Z
such that
)] W 1) = 1l 1) F (e, 1) =sign (L1, 17),
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®) wy ) —sign(, I, 1") is locally constant on the subset
(Ul Y IO = AL =(0]} of Ay ()X Ag ()X Alr).
That function p, which will also be called Maslov index, is related to the function m
by formula (2.5):
©9) wl,1y=2m(l,, ') —n when [NI={0}.

We then investigate the properties of that Maslov index y; in particular p is invariant
under the action of Sp,, (n) and (3) implies that for every (r, rYeZx Z:

(10) W L, B ) =R (U L) 27 =20

In Section 3 we show that if I, €A (n) has projection /e A(n), and s, e.S.pm(n), then
the integer L(Sq lw» L) depends only on (S, €SP, (M) % A (n), hence definition (3.2) of
the Maslov index y, on Sp,, (n):

Q)] B (5) =1 (S0 Loy Lo)-

We state and prove the properties of that index in theorems 1 and 2, and
Proposition (3.13); in particular Proposition (3. 13) shows that (10) implies:

(12) ul(arsoo):ul(suo)+4r
where o denotes as above a generator of m, (Sp(n))-

In Section 4 we apply the results of Section 2 and 3 to define Maslov indices Fm Fhe
g-fold coverings A, (n) and Sp,(n) for g€ N*: let (I, [ €A, (n)x A (n) be the projection

of (I, ) eA, (M) XAy (n); in view of property (10) the following Definition (4.3) of
the Maslov index p, ,(I,, /%;) makes sense:

(13) p(l,, ;) =class of p(l,,1",) modulo 24.

Similarly, if s, €Sp, (#) has projection s,€Sp, (1), we may define, noting property

(12):
(14) y[s)q o =class of ,(s,,) modulo 4g4.

The properties of the indices Hag(ese) and p[.]s, are then easily deduced from the
properties of p and ;.

III. The structure of g-symplectic geometry
In Section 1 we show, using the previous results, that to every /'€ A(n) one can
associate injective mappings A (n) — A (n) % Z and Sp,, (n) > Sp (n) x Z defined by:
15 Aymal,—(, A eA(n)x Z, where h=n— dim (/N "), modulo2 (Theorem 1;1.)

(16) Sp, ()35, (s, o)eSp(n) X Z, where o=n—dim(s/' N !"), mod2;
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432 M. DE GOSSON

Transporting the topology of A, (n) via the mapping (1.5), the subset
{(L,\; v =n—dim (/N 1), mod2} thus becomes a topological space [A(n)* Z];., which
we identify with A_ (n); in the same way, transporting both the topology and the group
structure of Sp,, (n) via the mapping (16), the subset {(s,0);0=n—dim(s/' N /'), mod 2}
of Sp (1) X Z becomes a topological group [Sp () X Z],., which we identify to Sp,, (n); the
group structure of [Sp (n) X Z],. is given by:

an (5,0)(s’,6)=(ss', o+ o' +sign(l',sl’,ss"I')).

Similarly (Theorem 1, §2), A,(n) [resp. Sp,(n)] is identified with a subset of
A(n)x Z/2qZ [resp. Sp(n) % Z/4 qZ] transporting the topological and algebraical struc-
tures by the mappings induced by (15) and (16), leading to the identifications:

(13) A, (m)=[A(m)*xZ)/29Z,
19) Sp,(m)=[Sp(n) x Z},-/4q Z.
Defining the topological spaces:
(20 [A(n)x2/2q2),.=[A(n)xZ],-/2qZ,
@n [Sp(n)x Z/4qZ),.=[Sp(n) X Z],./4q Z.
We finally describe the action (1) of Sp,(n) on A, ,(n) in terms of the spaces (20), (21)
(Theorem 4):

(22) For I'’e A(n), the topological group [Sp (n) X Z, ], acts transitively on the topologi-
cal space [A (n) X Z, ], by the law:

(5,049 - LAy )=(sh, 04, Ayt signg ,(I', sl’, sD)).

Remark. — G. Lion and M. Vergne have tried, in their monograph [L.V], to construct
directly [A (1) % Z], and [Sp (1) X Z], by equipping A (n) X Z and Sp(n) X Z with topologies
defined by using Kashiwara’s signature, and to deduce the Maslov index from the
properties of these spaces. As we showed in [6,], [6,], their attempt was not conclusive:
the Maslov index cannot be trivially deduced from Kashiwara’s signature.

I. Preliminaries

1. THE COVERING GROUPS OF Sp (1) AND THE COVERING SPACES OF A (). — We are review-
ing here some results of symplectic geometry. Standard references are [G.S];, Chap. IV,
§2; [G.S.],, Chap. I; [L], Chap. I, and the references therein.

Let V=R"xR" be equipped with its usual real vector space structure, and o be the
standard symplectic form on V:

a.n o(z,2)=Y.y; X~ Vi%;
1
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for z=((x;),(y)) and z'=((x}), (y})) in V. The pair (V,w) is called the standard 2n-
dimensional symplectic space.

The symplectic group Sp(n) consists of all linear mappings s:V —V such that
o (sz,sz2')=w(z,z") for every (z,z2)eVxV; Sp(n) is a closed subgroup of the linear
group Gl(2n,R) [in fact of the special linear group SI(2n,R)] and is homeomorphic to
U (n)x R"@* 1 U (n) being the unitary group, from which follows that:

(1.2) Sp(n) is a connected Lie group, and n, (Sp (n)) is isomorphic to (Z, +)
hence:

(1.3) For every g=1,2, ..., + oo there exists a unique g-folded covering Sp,(n) of Sp (n)
and Sp, (n) is the universal covering group of Sp (n);

A subspace of V is called isotropic when the restriction of the symplectic form @ to
that subspace is identically zero; the dimension of an isotropic subspace is inferior or
equal to 1/2dim(V)=n; the isotropic subspaces of maximal dimension n are called
lagrangian planes. The set A(n) of all lagrangian planes is called the lagrangian
grassmannian; it is a connected submanifold of the Grassmannian of all the #-dimensional
planes. Two lagrangian planes / and !’ are said to be transverse if [N I'= {0}, or which
amounts to the same, if V=/@ I’. The action of Sp () on V induces an action of Sp ()
of A (n):

(1.4) Sp(n) acts transitively on A(n), and on the set {(I,I')e A(m)x A(n); IN I'={0}}
of pairs of transverse lagrangian planes.

Let [,=R"x{0}, I5={0}xR" I, and /§ are transverse lagrangian planes. It is
possible to choose a scalar product (.].) on V such that the associated Hermitian
structure satisfies:

o(z2)=Im(z|),  ily=I%

and the unitary group U () can then be identified with a subgroup of Sp (n), also denoted
by U (), and that subgroup acts transitively on A (n); moreover:
(1.5) The mapping:
V: A(@m)al=uli—u'ueU(n)
with ue U (n) is a homeomorphism of A (n) onto the subset W (n)={weU(n); w='w} of

U (n) hence A (n) is identified with the subset W () of U (n); now W (n) is homeomorphic
to U (n)/0 (n) since 0 (n) is the stabilizer of /§ in U (n) = Sp(n); from this follows:

(1.6) The lagrangian Grassmannian A(n) is a connected submanifold of Sp(n), and
nt, (A (n)) is isomorphic to (Z, +).
which immediately implies:

(1.7) For every q=1,2,...,+ 0, A(n) has a unique g-fold covering space A,(n) and
A, (n) is the universal covering space of A (n);
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(1.8) Remark. — For two lagrangian planes | and I', the condition lﬂl’={0} is
equivalent to: (1) — Y (I') is invertible.

The mapping U ()3 u+—> u' ue W (n) induces a monomorphism

@, +)sm (Um) - n, (Wn) S (Z, +)

which is multiplication by 2 on Z; now Sp(n) is homeomorphic to U (n) x R"**Y and
W (n) to A (n), from this follows that the monomorphism 7, (U (#)) = mr; (w(n)) hereabove
induces a monomorphism w, (Sp (7)) — n, (A (1)) which sends o on B2 A consequence
of this is ([L], Chap. I, §2,3, Theorem 3):

THeoreM (Leray). — 1. o acts on Sp,(n), o« does not act as the identity on Sp,(n)
unless r=0, modgq; B acts on A (n), B does not act on A, (n) as the identity unless r=0,
mod g; 2. Sp(n) acts transitively on A, ,(n) and:

(1.9) (@) 12 ,=5,(B* L, ) =B* (5412 for (55, 15 ) in Spy(n) X A, ().
That theorem defines g-symplectic geometry: relation (1.9) is essential.

(1.10) Remark. — It is the case g=2 which is essential in Lagrangian Analysis, i.e. in
the theory of asymptotic solutions to partial differential equations: Sp, (1) has a unitary
representation in L?(R'), the metaplectic group Mp(n) (see [L], Chap. I,§1,2; [G.S],,
Chap. V, §7; [G.S.],, Chap. I, § 11, [Se]), and thus 2-symplectic geometry describes the
action of Mp (n) on A, (n).

2. THE MasLov INDEX. — For the results of this section we refer to [L], Chap. I, §2,3,
2,4 and 2,5. '

J. M. Souriau [5] has given a variant of the definition of the Maslov index that is
considered here.

Let A (n) be the universal covering space of the lagrangian Grassmannian A (n) [see
(1.7)]; we denote by /_ >/ the natural projection of /€A (n) onto /e A(n).

(2.1) DerFINITION. — Y is the subset of A% (n)=A,(n)x A (n) consisting of all pairs

(s, 1) satisfying the condition IN1'#{0}.

We will say that (/,,/’,) is a pair of transverse elements of A (n) if [(\l’={0}, that
is, if (U, 1) £

Let CP(S!,Z) be the group of p-chains in the unit circle S'={zeC;|z|=1} with
coefficients in Z; one can attach to every pair (/,/)eAZ(n) an element
sp(l,,!.,)eCO (S, Z) called the spectrum of (I,,1.,); this is done as follows: { denoting
as in Section 1 the natural homeomorphism A (n) - W (n), the eigenvalues A;,%,, .. ., A,
of Y ()Y (")~ ! have modulus one; denoting by k,, k,, . . ., k,, their respective multipli-
cities, sp (/,,, /%) is defined by:

2.2) sp(Us 1) =k (M) Hhk, (A)+ .. +k, (A,).
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Defining the support |[o| of a O-chain o=m, (A)+m,(A)+...+m,(\,) by
lo|={n: m;#0}, Remark (1.8) implies:

@.3) (o)A N if and only if (+1)¢[sp (1) |

Let us now consider two points ([, /%), (m,m.) of A% (n), and let T be an arc in
AZ (n) joining (I, I%,) to (M, my,); the mapping:

'3 (14, M) > SP (M n)

maps the arc I onto an element Sp (NeCHS',Z). If now:

O = (m 5, M) = (> 1)

then '
dsp (I)=sp (M, my) =P (leos [2)-

Choosing a pair (lo, »» 1§ ) EAL (®\Y, projecting onto (/o I¥)e A (n) and such that [y

and /¥ ., may be joined by an arc y in A, (n) whose spectrum sp (y) belongs to the

upper half-circle {zeS; Imzz0}. Let T be an arc joining (I, 1%,) t0 (o, 13, ) the
Maslov index m(l,,,1’,) is defined by:

(2.4) DEFINITION
m(l,, 1%)=KI(sp (D), (+1))

where KI, the Kronecker index, is the function which to every pair
(v%,7°)eC" (8',2) x C°(S',Z) such that [v*|N|¥°|= D associates KI(c!,6%€eZ, and
is characterized by:

(a) KI is linear in its arguments; . '

(b) KI(y',zo)= +1 (resp.0) if y! is a positively oriented arc in S! and z, an interior
(resp. exterior) points of v; o

(©) KI(y,ay)=—KI (v, 3Y); (see [Le], Chap. IM1, §5, or any theory of chain intersec-
tion);

Remark 1. — Definition (2.4) makes sense since property (b) is indeed satisfied in
view of (2.3).
Remark 2. — m(l,,l')) depends only on the homotopy class of I', that is on

ar:(lmalcx))—(l(), ao’lg, ao)' .
Before we state Leray’s Theorem which characterizes in a very simple way the Maslf)v
index, we have to recall the definition of the index of inertia of a triple of pairwise

transverse lagrangian planes ([L), Chap. I, § 2,4). N
Let (, ',y e A3 (n) be such that /M I=1'N1"=1"NI1={0} then the conditions

2.6) (@2 elxIXI" s+ +: =0,
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define three isomorphisms:

P: Iaz—Z' €l P: I'sZ—Z"€el”,
and
P "3z zel

such that PP”P’, P'PP” and P” P'P are the identity. The quadratic forms on /,/" and
I'" defined by:

R(z)=0(zz)=w(zP2);
R (Z)=0(,z")=0(,P'2)
and
R"(z)=o0(",2)=0(",P"z")

2.7

are such that R(z)=R’(z")=R"(z") in view of (2.6),, hence R=R'P,R'=R"P’ and
R’ =RP", thus these quadratic forms all have the same index of inertia, which is denoted
by Inert (,/',1").

We then have ([L], Chap. I, § 2.5, theorem 5.1):

TueoreM (Leray). — The Maslov index (2.4) is the only function
2.8) m: AL (N~ Z

that is locally constant on its domain and such that:
m(ly, ) —m(l, ln) +m(ly, ) =Inert (,,I',1").
(2.9) Taking into account definition (2.4), the Maslov index has the following properties:
mly, ) +mlg,l)=n  mlo, 18 o)=n
(2.10) and
mly, 18, ) =0
@.11) mB L, B I)=m(y,, ') +r—r for every (r,r')€ 7%
(2.12) m(5yly, 50 1) =m (I, I,) for every s,€Spy, (n).

Remark 3. — The formula in theorem (2.9) giving the decomposition of the index of
inertia clearly implies:

2.13) Inert(/, I, I""y— Inert (I, I', 1"y + Inert (), 1", I"") — Inert (I', 1", ") =0

hence the index of inertia can be viewed as a Z-valued 2-cochain on
(@, reh>@m;Ine=r NI"=1"N1={0}} whose coboundary is zero, hence it is a
cocycle on this set. Defining, for a triple (/,, /%, %) of pairwise transverse elements of
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Ay (n):

(2.14) Inert,, (I, I, ") =Tnert (11", 1)

we can interpret, in view of (2.13), Inert,, as a cocycle on
(U I 1) INE =1 A1 =17 (1= {0} ;

it then follows from Leray’s theorem that Inert,=38m, hence the Maslov index is a
coboundary.

I1. Definition and properties of the Maslov index without transversality assumptions

1. THE SIGNATURE OF A TRIPLE OF LAGRANGIAN PLANES. — Let Q be a quadratic form on
a finite dimensional vector space E. The matrix of Q has p (resp.q) positive (resp.
negative) eigenvalues; the pair (p,q) is usually referred to as the “signature” of the
quadratic form Q. We will slightly modify that classical terminology, by defining the
signature of Q as being the integer p—qeZ; we will denote this integer sign(Q); this
notation is consistent with the case n=1 since in that case we have either p=1 and ¢=0,
or p=0and g=1.

Let (I,I',I")e A (n) be an arbitrary triple of lagrangian planes; the signature of the
quadratic form Q on [x[I"x[":

a.n Q(z, 7, Y)=w(,z) o, ) te @,z

is called the signature (or Kashiwara index) of the triple (/,/'.1"), and denoted by
sign(,,/',1") (the original notation used in [L.V], [G];, [G], is t(,I',I'"); we have
preferred to use the symbol “sign” since it emphasizes in a more convincing way its
relationship (1.6) with Leray’s index of inertia defined in Chap. 1, §2).

The two following properties of the signature are obvious, in view of the definition of
Sp(n) and the antisymmetry of the symplectic form o:

(1.2) sign(sl,sl',sl")=sign(l, I',I"") for every s€Sp(n).
(1.3) sign(l,1',1"") is unchanged (resp. changes sign) by any even (resp. odd) permutation
of the triple (I,I',1"").

The signature of a triple of lagrangian planes is expressed as the signature of a
quadratic form Q in 3n variables; if a slight assumption of transversality is added, it
can be expressed as the signature of a form in only n variables:

(1.4) PROPOSITION. — Assume INr={o }. then sign(l, I',I'"y is the signature of the
quadratic form Q' (z)=o(z',P (", nzy=w @I onl', where P (I,1"") is the projection
operator on | along 1" and P(",)=1—P(l,1") is the projection operator on 1" along [;
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Proof. — We have:

Q(z,7,2)=w(z)tw(,2) (", 2)
=a(PW", D)+ @I, ) tw(",2)
=o®I",PU", D)~ 0@E-PUI") " =P(", ).

Let u=z—P(, "), u'=2, u'=2z"—P(", )z, the signature of Q is then the signature
of the quadratic form:

wu', u"y— o @U@, PU",Du)— o, u')

hence the result since the signature of the form (u,u”")— o (u, u'") is equal to zero.

(1.5) CoroLLARy. — Let l,=R"x{0}, [§={0}xR", I={(x,Ax); xeR"}, A being a
symmetric linear mapping R" — R". Then sign (1%, 1,1,)=sign (A).

Proof. — In view of proposition (1.4) hereabove, sign (I%,1,1,) is the signature of the
quadratic form Q' on [ given by

Q (@=P(5.1) 2P, 18)2)

hence Q' (z)={ x,Ax ) and the corollary follows.

The signature of pairwise transverse lagrangian planes is related to their index of
inertia:

(1.6) ProposiTioN. — Let @I, 1" e N3 (n) be such that INI=rnr=rni={0o};
then:
sign(Z, ', 1"y=2Inert(,/',I")—n

Proof. — By theorem (I.2.9) and property (I.2.12) of the Maslov index the index of
inertia is invariant by the symplectic group: Inert (sl, sI',sl')y=1Inert (I, I',1"") for every
seSp(n). It is hence sufficient in view of (1.3) and (I.1.4) to prove (1.6) for /=[5,
I'={(x,Ax),'A=A }, A being invertible and /" =1, Then in view of corollary (1.5)
we have:

sign(I§,L,l)=p—q

where p (resp. g) is the number of positive (resp. negative) eigenvalues of the symmetric
matrix A.

On the other hand, Inert(/,/’,!”) is the index of inertia of the quadratic form R”
on [ defined by (I.2.6), (I.2.7), that is, since condition (I.2.6) can be written in
the present case x'+x"=0, y+Ax"=0, the index of inertia of the form
R"(z)=0(",z)=(x",Ax" ), hence Inert (4,I',1") is the number g of negative eigen-
values of A; the result follows since p+g=n, A being invertible;

It immediately follows from (1.6) and (I.2.13) in Remark 3 that the signature
sign(/,1’,1"") is a cocycle on the set {(l,l',l")el\3 m); INI=INi'=1" NI={0}}; it is
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in fact a cocycle on A3 (n):
THEOREM. — For (I,I',1",I"") e A* (n) we have:

(1.7) sign (1,1, 1")—sign (I, ', ") +sign (,, 1", I""") —sign (/', ", I"")=0.
Proof (Kashiwara). — In view of (1.3) it is equivalent to show that:
(1) sign(,l',I")=sign(l,I',I"")+sign(/', ", 1"")+sign (", ,I"").

Assume first [N "' =1"N = N ] = { 0 }

By proposition (1.4) the right band side of (1) is the signature of the quadratic form
Q" on Ix]"x[]"" given by:

2 Q'(z,2)=0®@I"),)+o@®U "))+ PU", "),z 2).
Now, the linear mapping (z,z’, z"")— (u, u’, u""), given by
u=z+P(,I") 2, u=z+P{,0I")z" and u'=z"+P(", ")z

is invertible; its inverse is given by
1 o
z=§(u—P(1,l Yu'+P (LI u'")

’

z W =P I")Yu"+PU' " u)

=1
2

7=

%(u" —P{" ")y u+P ", "))
We have:
3) o=@, u)+ouu)
+o, P, I" ")+ @)U, P I u)u)=0,
@ o, 2)=®U, ") u" ")+ oW, u")
+o@ P I" Y+ @I P, 1" u)=0,
6) o 2=0®("I")uu)+o W, u)
+o@" , PULI"u)+o®U", ") u,PULI")u")=0.
Noting that «'=P(/,/")u'+P ("', ))u’, we can write:
o u)+o@, PA" "yw)+o @, ") u, P I") )
=P, Du)+o @I, PU",I")u)
+o P, D, P ")+ P ") u, P )
=0 P, D)+ @, D', PI", 1" u)
=P, hu',PI"I"Yu)=0
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and similarly:
o@, vy +o@ P u)+o®E I, PAI)U)=0
0@’ u)+tow Pl ") +o@®U )W P T W)=0
hence, adding equalities (3), (4), (5):
() +oi, 7)o )=o@dI) W) +o @, ") u) o P A", " u,u)

which shows that the quadratic forms Q in (1.1) and Q" in (2) hereabove are equivalent,
thus establishing the result in the considered case. To prove the theorem in the general
case, let me A (n) be such that:

mAOl=mN\=mNOI"=mNI""={0}.

We have, in view of the first case:

(6) sign(, ', I")y=sign(l,I', m)+sign(I', 1", m) + sign(I"', 1, m)
(@] sign (0, I, I"y=sign(l,I',m)+sign (', " ,m) + sign ("', 1,m)
8) sign (1, 1", ") =sign (I, 1", m)+sign (I", ', m) + sign ("', 1,m)
(&) sign (I, 1", I"")y=sign (I, I',m)+sign (I"", I"",m) + sign(I"',I', m)

hence the result adding together (6) and (8), and substracting (7) and (9), and using the
antisymmetry property (1.3) of the signature.

(1.8) ProposITION 1. The signature is locally constant on the subset
(U Int'=rn=rnil= {0}} of Am)xA(n)xA(n);
2. For any triple (I,I',1"") of lagrangian planes we have:
(1.9) sign( I I")=n+dim (N I)+dim ("N I7)+dim (" N D), mod 2

Proof. — Let us first prove the following general lemma:

Lemma. — Let (LI 1")e A(n)x A(n)x A(n). The kernel of the quadratic form Q in
(1.1) defining sign(l,1',1"") is isomorphic to (IN <" NIMyxd"Ni.

Proof of the lemma. — Set Z=(z,z',2")elxI'x1", and let A be a symmetric matrix
such that Q (Z)={ AZ,Z ), the brackets denoting the scalar product on R"x R"x R". We
have ZeKer (A) if and only if ( AZ,U ) =0 for all U=(u,u',u")elx'x I"”. Now, that
condition is equivalent to:

QZ+V)—Q(U)=0 forall Uelx/'x[",
that is to:

oz u)toE, v+, Wtow2)to@, zZNto@W’,z)=0
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which can be rewritten as:
oiz—z" i)t —zu)to(" —,u)=0

Since /, I’ and [” are lagrangian planes, that relation implies z—z"€el’, z'—zel",
z'"—Zz'el, and thus the relations:

u=z+z"—zel'N 1"
u=z"+z-zelN!"

u"=z+z'—z"el"ﬂl'

define an isomorphism of Ker(A) onto the product (' NI")x (N I")x (" N1I), hence
the Lemma.

Proof of 1. — EINI'=I'NI"=["NI={0}, the Lemma shows that the matrix A
defining the quadratic form Q is invertible, and the result follows.

Proof of 2. — Let p (resp. q) be the number of positive (resp. negative) eigenvalues
of A. In view of the Lemma we have:

rank (A)=p+qg=3n—dim(NI")—dim (' NI")—dim (" N )
hence the result, since:
sign(/,/',I"Yy=p—qg=rank (A)—2gq
2. THE MASLOV INDEX ON A, (1). — At the end of Section 2, Chap. I, we showed that
Leray’s Maslov index m: A2 (n) — Z could be viewed as the coboundary of the index of
inertia. We are going to construct in this section an index p:AZ (1) — Z closely related

to m on their common domain, and which is a coboundary of the signature of a triple
of lagrangian planes.

THEOREM 1. — There exists a unique function:
piAL (m) >R
having the two following properties:
2.0 B i) = U I) + (U, 1) =sign (11, 17).

(2.2) The mapping: (15,1, "y~ pn(l,, 1) —sign(l,l',1") is locally constant on the set
{Ues I 1) INI'=1"N1"={01}}, hence y is locally constant on AL (nN\D..

Proof. — Let us first show that there exists at most one function p for which (2.1)
and (2.2) hold; noting that the second assertion in (2.2) immediately follows from (1.8),
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it is therefore sufficient to prove:

(2.3) Lemma 1. — Let (G, +) be an abelian group. Every function v: A2 (n) > G locally
Y+ V(g 1) =0is identically zero.

constant on A% (W)\Y and such that v (s, 1)—va s

Proof of (2.3). — Choose I € A(n) such that IN 1" =1"N1"={0}; writting:

249 - V(o 12) =V U 1) =V U 1)

not containing /%, it follows that v is

and noting there exist neighborhoods or /., 1,
connected; Taking /=1, in

locally constant on AZ (), hence constant since A, (n) is
(2.4), the value of this constant is zero.

1. Definition of n for (I, I)eA% M\, — Setting in this case:

2.5 P lg)=2m (I, L) =1

it is clear that (2.1) holds, using property (1.2.9) [Theorem (2.8)] of the function m
and the relation (1.6) between the index of inertia and the signature.
2. Definition of u for Uy, ) eN% (n). — Let I and I’ be two elements of A, (n)

such that:
iNnNr=iNnr'=r r\l"=l'ﬂl"'=l”ﬂl"’={0};
in view of property (2. 1) established in the transversal case, we have:
Wl 1)~ n U I+ G, 1) =sign (4, L,
(U, 1) = U, L) R, 1) = sign (117,
hence, substracting both equalities:
(2.6) n(, l’;)-u(lw,1;2’)—u(l'm,1;)+u(1;,1$')=5ign(l, 1,1y —sign (I, 17, 17).
g the cocycle relation in theorem (1.7) from (2.6) we finally get:

Ly +sign (L1,

Substractin
Rl 1) = p (g, 1) +sign (L1, 1) = p(le, lg)—nd

tion of p(l,,/%) which is necessary for

That equality shows that the following defini
€A, (n) such that /N r=rnlr={0}:

(2.1) to hold, is independent of the choice of I},
2.7 0y 1) =1 (U 1) = 1 (U, 1) +sign (L 1, 17).
To prove property (2.2), choose again I €A, (n) such that [N r=rnrr={0}.
Definition (2.7) then yields in view of definition (2.5):
W(l o, 1) —sign (L1, ") =2(m U 1) =m0 1))
t in view of (1.8) and since the function m is locally constant on its

hence the resul
domain in view of the first part theorem (1.2.8).
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F;\om( r)xow on we will call the function p characterized by Theorem 1 “Maslov index
on A (n)”, thus slightly altering the accepted terminolo id i
gy, as we alread
papers [G];, [Glz; i our
Let us next investigate the properties of the Maslov index.

(2.8) PRoPOSITION
R()eZ o)+ uUl) =0 Rkl I8 =0 RU3 wlo )= —n

Proof. — (2.8,) follows from definitions (2.5), (2.7), and the f: i
take their values in Z. @D ° fact that m and e

(2.8,) follows from definitions (2.5), (2.7), property (1.2) of sign and property
g é.)lol) of m. Property (I.2.10,) of m and definition (2.5) immediately imply (2.8,)

-04)- |

Tl}e following result describes the action of m, (A (7)) on the Maslov index; it will be
crucial for our constructions in Chapter II. ,

(2.9) ProrosiTioN. — p(Bl,,p l)= ! g ]
o w(le, ) +2r=2r, being the
nt, (A (n)) whose image in Z is +1. N P ¢ generator of

Proof. — The result is a straightforward conse iti
quence of definition (2.5 d
property (I.2.11) of m when INI"={0}. (2:9) and of the

In the general case let again /e A, (n) be such that IN/"=/
t : ! ©€Aq NI"=I'NI1"={0}, then
definition (2.7) yields, since B/, and B/, have respective projections / and l’{: }

R(B Lo B 1) = (B Ly 1) — U5, B 1) +sign (L1, 1)
=pUa, 1) +2r—p(lg, 1) = 2r +sign (LI, ") =p (g, )+ 2r =21

(2.210) Remark. — Proposition (2.9) together with (2.8,) shows that the range of p
is Z.

(2.11)  PROPOSITION. — W(5,p Ly $10 1) = (Ls I',) for every s, €Spg, (n).

Proof. — The result immediately follows from definiti 2
o e nitions (2.5), (2.7) and the property

) 3. MaAsLOV INDICES ON Sp_, (n). — In [L], Chap.I, Sec. 2.7, Leray defined the Maslov
;ndex of an element s, €Sp., (1) projecting onto seSp (n) such that sl M [,={0} by the
ormula m (s,,) =m (S, lo. s lo. )» lo.  Deing some element of A, (n) projection onto /.

We find it more convenient for our purposes not to single out any particular element
of A (n).
We will first prove that the Maslov index on S j
P (1) only depend i
of the reference element of A (). (n) only depends on the projection

(3.1) LemMA. — Let s, €Sp,,(n)andl eA (n). Thei
® » €A, (). e integer W (S, [y, 1) only de
on s, and the projection le A (n) of . geri Youly depends
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Proof. — Let I, and [, be two elements of A, (n); there exists reZ such that
I' =p'l,, hence, using proposition (2.9) and formula (I.1.9) in Leray’s theorem
(Chap.L§1):

P(S Ur 120) = 1 (g (B 1), BT 1) = 1 (B (50 L), BT 1) = B (S0 o L)-
That Lemma justifies the following definition and notation:

(3.2) DerFiNiTION. — A lagrangian plane le A (n) being given, we call Maslov index on
Sp., (1), and we denote by w,(.) the Sfunction:

SP., (M) 35> W (5)€Z

where Py (50) =1 (S s Lo)-
The following relation gives an explicit formula for the change of I:

(3.3) o (5) — - () =sign (sl, 1, I') = sign (sh, sI', ')

Proof. — In view of formula (2.1) in theorem 1, Section 2 and proposition (2.11), we
have:

(S0 Loos ) = 1 (S Los L)+ U [2) = sign (s, L, 1)
and
l"’(lcoa l;c)_ u(sw Ico? l:zy)+ “(sao 1’00’ I’uo)= Sign (SI’ SI,’ 1’)

hence (3.3), by substracting those two equalities.
Let e (resp. e,,) be the identity of Sp(n) [resp. Sp,, (M) Let (54,55, %) be a triple of
elements of Sp,, (n) such that:

(B.4) 5o S S =500 Se0 50 =St 500 S = €00 and define:

3.5 sign, (s, 5", s"")=sign (s~ ' L, s' L, )=sign(s"~ 1) sl y=sign (s’ 1,s" L, ]).
We then have the analogue of Theorem 1, Section 2:
TueoreM 1. — The Maslov index w, is the only function

Sp, ()~ R
such that:

(3.6) (Seos b1y 1y (s,)—sign (s, L,I") is locally constant on the set
(G LI SINI"=INT"= {o}},

hence (I,5,,) = W (s,) is locally constant on the subset  {(5,,0; SINI={0}} of
Sp, (1) X A (n);
3B.7) wmGe) W (' +py (sio)=sign, (s, 5", 5) for every triple (S50, S%) satisfying
condition (3.4).
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Proof. — Let us first prove the following analogue of Lemma 1, Section 2:

LemMma. — Ewvery function v, on Sp, (n) with values in a abelian group (G, +), locally
constant on { s, €Sp, (n); sl [={0}} and such that:

(3.8) Vi(5,)— Vi (i )+ Vv, (52)=0 for every triple (s,,5,,5y) of elements of Sp,(n)
verifying (3.4), is identically zero.

Proof of the Lemma. — We first note that every element se€ Sp (n) is the product of 5,, s,
in Sp(n) such that s, /N /=5, [={0}: let I'e A (n) be such that INI'=sINI"={0}; in
view of (I.1.4) we can find s,e€Sp(n) such that (s/,I')=s, (!, ]), hence si=s,/" and
s INI={0}. In view of (I.1.4) again, there exists s;€Sp (1) such that /"=y’ [, hence
sl=s, 5,1, and s=s, s,, where s,=s,r, r belonging to the isotropy group of / in Sp(n);
since s, riN I=s5, N I=I' "\ I={0}, we have indeed s=s5, 5,, with 5, IN[=s5,INI={0}.

Let now (s, 5%, 57) be a triple of elements in Sp,, (1) projecting onto (s,s7 tsrY), then

,

ss's""=e, and (3.8) can be written as:
Vi(85) =V (5% 1) — v (55).

Since s’ 1IN I=s,INI={0},s"INI=s,INI={0 }, that relation shows that v, is locally
constant on Sp,, (n), hence constant, since Sp,, (n) is connected; the value of this constant
is zero, taking s, =e, in (3.9).

Now property (3.6) of p, immediately follows from property (2.1) in Theorem 1,
Section 2, and property (3.7) from property (2.2) (ibid);

THEOREM 2. — The Maslov index y, has the following properties:

3.9 W(sy)=n—dim(siN 1), mod 2
(3.10 o=~ L) mle,)=0

3.1 By (S 570) = Wy (50) + 1y (5%) + sign (4, sL, 55" ])
(3.12) WG Lo, 1) =W (50) F (U, 1) +sign (', sl sl).

Proof of (3.9). — Formula (1.9) in proposition (1.8) together with proposition (2.9).
Proof of (3.10). — Choose s, =s., =5 =e in (3.4), then we have by 3. 7) in Theorem 1:
1 (e) — Wy (e) + 1y (e) =sign, (e, e, €)
that is, by definition (3.5) of sign;:
w(ey)=sign(,,/,[)=0

hence (3.10,) is proven; to prove (3.10,), choose si,=e,, st =s,"in (3.4), then (3.7)
yields:

B (50) — 1 (ee) + iy (s ) =signy (s, e, 57 1)
that is:

W(s0) =~ (s3 ) +sign (s LLD= —p(s5").
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Proof of (3.11). — Set 8. =5, 5, then 5%/ s\ ' s, =e,, and (3.7) yields:
e (522 = My (s50) 1y (s ) =signy (™ 7187757
hence, by (3.10,) and definition (3.5):
Wy (50 8) =1y (50) + 1y (s5o) +sign (st s LT L)
hence (3.11) in view of the invariance of the signature by Sp (n) [property (I.1.2)].

Proof of 3.12. — We have, in view of formula (2.1) in Theorem I, Section 2:
WS Lo Soo 10) = 1 (S o Lo 1) T 1 (S0 1, I5p) = sign (1, sl',1")

hence (3.12) in view of the invariance of u by Sp, (1), proposition (2.11).

The action of m, (Sp (1)) on the Maslov index is described as follows, o denoting again
the generator of m, (Sp(n)) whose natural image in Z is +1:
(3.13) PROPOSITION. — (0 $,,) =1, (s,) +4r for every re Z.

Proof. — In view of proposition (2.9) and formula (1 .9) in Leray’s theorem, Chap. I,
Section 1, we have, taking into account definition (4.2) of p;:

W (O 5,0) = RO S0) Logs L) =R (B2 (50 Lo 1) =1 (S0 Loy L) H AP =My (5.) +4

Proposition (3.13) hereabove will allow us in next paragraph to define the Maslov
index on Sp, (n).

4. THE MASLOV INDICES ON A, (1) AND Sp,(n). — Let geN*. We will denote by Z,,
the quotient group Z/2¢Z, and by x,, the natural image in Z,, of xeZ, with the
convention O,,=0. Similarly, if f is a function E — Z, the induced function E~Z,,
will be denoted by f,, The natural projection on A (n) of ;e A, (n) will be denoted
by /, and the natural projection onto A, (n) of Y = Ay (m)x A, (n) by Y.

© q

Let (/,, l,',)eAf M)=A,(n)x A, (n), and (I,1%,), (m,, m.) be two pairs of elements of
A2 (n) with projection (/,, I}); in view of Leray’s theorem, Chap. 1.1, there exists (r,r') € Z*
such that

“@.1) I,=PBmg,ly=p"m,,  withh r=r'=0, modg
hence, in view of propositon (2.9):
4.2) If(,,!.) and (m,, m;,) have same projection (U, 1) e A, (n), then:
Wl 1) — n(my,, my)=0, mod2gq.
The following definition thus makes sense:

(4.3) DerFINITION. — We call “Maslov index of (I,,1) and denote by W, o (05 1) the class
modulo 2 q of p(l,, 1), (., l') being any element of A% (n) projecting onto (I, 7).
The results of paragraph 2 enables us to prove the following:
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THEOREM 1. — The Maslov index p, , on A, (n) is the only function
WHORSEH
having the two following properties:
4.4 Mo g U 1) = Mg g U 1) 15 o U5, 1) = signy , (LT, I,
4.5 py (U, 1) —sign, (L, I1") s locally constant on the subset {151
INI"=I'N1"={0}} of A2(n)x A(n), (hence u, , is locally constant on AZ(N\Y).
q

The Maslov index W, , has the following properties:

(4.6) Mo g (B I, BT 1) =1y (g 1)+ 2r =215,
“4.7) VP (8 1,’,)+p2q(1;, 1)=0.
Proof. — The uniqueness of a function A2 (n) - Z,, satisfying (4. 4), (4.5) follows

from Lemma (2.3). Properties (4.4), (4.5) follow from properties (2.1) and (2.2) of p
(theorem 1, §2); (4.6) is immediately deduced from properties (2.9); (4.7) from (2.8,).

Recalling (Leray’s theorem, Chap.1,§1.2) that Sp, (n) acts on A, ,(n), we also have:
(4.8) ProposSITION. — For every pair (5,15 ) €Az 4 (1) and every s,€Sp,(n),
Raqala g Sol2 ) =Hag(a g l2):

Proof. — Immediate in view of proposition (2.11).

Let us now discuss the Maslov index on the covering group Sp,(n) of Sp(n). We
denote s,€Sp, (n) [resp. seSp(n)] the projection of s, €Sp,, (1) (resp. s,). By the same
argument as was used for the definition of the Maslov index p,, on A, (n), the following
definition makes sense in view of proposition (3.13):

(4.9) DeriNiTiON. — Let s,€Sp, (n), we call Maslov index of s, and denote by W [s,]a,
the class modulo 4q of W, (s,)€Z,s,, being any element of Sp,(n) with projection s, on
Sp, (n).

Since Sp, (n)=Sp(n), we will use in the case g=1 the notation s, =5, wi-le=wl. 1
and call ,[.] the Maslov index on Sp (n).

THEOREM 2. — 1. The Maslov index w[.1,, is the only function:
Sp(n) = 24,
having the two following properties:
(4.10) s lag—mlsy 1]4q + 5714, = (sign (s, 5", 5"))aq when s, Sy =8y8, 8, =57 5,5, lga

@.11) (s, LI pyls s, — (sign LL1")y, is locally  constant  on the subset
{(sp LI SINT"=INT1"={0}} of Sp, (n) % A2 (n); hence (1, 5,) = w[s,] is locally constani
on the subset { (I, 5,); 5,1 I={01}} of A(n)xSp,(n).
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2. The Maslov index p[ .14, has furthermore the following properties:

(4.12)  wlsgla, and n-dim (s! N\ ) have the same image in Zy;

“4.13) W ls,de g — M [Sg)a o = (sign (51, 1, 1) = sign (s, s, 1)) oo
4.14) My [sq_ N=-n [Sq], ul[eq]4q=0‘
.15) a8, = el o+ R SJa o+ (i (51,55 D)

Proof. — 1. is an immediate consequence of theorem 1, Section 3; 2. is an immediate

consequence of theorem 2, ibid.

II1. The structure of g-symplectic geometry

1. THE RELATION BETWEEN A (n) AND A () X Z, Sp,, (n) anND Sp(n)xZ. — The results
of Chap. III, Sections 1 and 2 enable us to prove:

TueoreM 1. — 1. For every I’y € A, (n), the mapping:

a.n Apm)aly (Ll ) eAM X Z

is an injection which is a bijection:
{ hei A ()~ (AMX D),

(1.2) .
A@*xZ).={(, N)eA(M)xZ; r=n—dim (N /"), mod2}.

2. The restriction of this bijection:

(1.3) {ImeAm(n);1m1’={0}}—»{(1,k)e/\(n)xz;1m'={o},xsn,mod2}

is @ homeomorphism when Z is equipped with the discrete topology.

Proof of 1. — If Ml L N=0"nlyg, 1) then /=1", hence there exists re Z such
that I,=p15; since R /0)=K B Lo, 1) =Ry, I5)+2r in view of proposition
(I1.2.9), we have r=0, hence I,=0',and 2.1)isan injection; the range of this injection
is a subset of (A(n)xZ),. = { ,ANeAm*Z; A=n—dim(N 1), mod2} in view of
(I1.2.12); if conversely (/, A)e(A (n) X Z),. then A=n—dim (NI, mod2; let IyeA, (n)
have projection /€ A (n), we have p(, It )=A+2r for some reZ; let us set l,=B7"1;
in view of proposition (II.2.9) we have p Uy 1) =p (B "I, I )=nl%,lx)—2r= A,
hence (/,A) is the image of [ ,, which shows that the range of h;_ is (A (n) X Z),..

Proof of 2. — In view of property (I.2.2) in Theorem 1, Chap. 1, Section 2, p is locally
constant on the set A2 (MY ={ (U, Im)eAL (), INT'= {0}}; the result follows since

hy isa bijection.

CoroLLARY 1. — The set of all homeomorphisms hy: defined by (1 .3), for I'e A(n),
I'NI={0}, is a system of local charts of the manifold A, (n), the transition functions
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being given by:

o bt (L, 1) > (G (L, 1))
with
(1.4) B (s 1) =1 (U 1) =sign (4, 1, 1) = (1, 17).

Proof. — Immediate by formula (I.2.1) in theorem 1, Chap. I, Section 2.

N . - .

covct;)i:gress:alz lsAess(er;tla:‘ lX g-geometry; it shows that one can identify the universal
e Ao(n) o i i i

oolons (n) with the set (A (n)x Z),. equipped with an adequate

Cor - ’

with aot;;/:z:gj .far ulthhor [bEA(n)’ the set (A (n) X Z),. defined by (1.2) can be equipped
ich it 7

2 homeomorphiom: ecomes a topological space [A (n) X Z],., and for which hr'w is

by

o

Ay (1) > [A(n)x Z],..
2" That topology is the topology characterized by the conditions:
(i) for every I" € A (n), the mapping

(1.5) [Am)xZ}, 5, \)—>\—sign(l,I',I")eZ

is locally constant on the subset { (I,\); INI"= {0}} of A(m)x Z;
(ii) the projection: ,

. [A)xZ},. 53, \)—leA(n)

Is continuous.

P _ . .

" (;;zzfz ‘l. lis x'mmedlate by Theorem 1, 1. transporting the toplogy of A_ (n) onto
), v1a. |; 2. follows from the property (II.2.2), Theorem 1, Cha IImS i

of the Maslov index and from Theorem 1. 1. ‘ pIl Section

We are next going to
. prove the analogues of theorem 1 i i F
the universal covering group Sp,, (1) of Sp (n). m 1 and s corollaies 1 and 2 for

THEOREM 2. — 1. For every le A (n), the mapping:
(1.6) Spo, ()35, (5,14, (s,,))€Sp (n) x Z
is an injection which is a bijection:
1.7
1.7 H,: Sp,, (n) - (Sp(n)x Z),

with (Sp (n) X Z),.= {(s,0)eSp(n) X Z; 5ep,[s] }
2. The restriction of this bijection:

1.8 ; =
(1.8) {5, €Sp,, (n); siNI={0}} - {(s,0)eSp(n) x Z; sINI={0}; oey[s]}
is a homeomorphism when 7 is equipped with the discrete topology.
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Proof of 1. — If (5,1, (5,0)) = (s, 1, (5,)), then s=s5 }?e.nce there existshreZ su_cf(; ;h:(;
So=a"s,, and p(s,) =MW (s,)+4r in view. of p.ro.pos.ltlon (IT.3.13), e‘nce r= X
s=s'; this shows that the mapping (1.6) is an injection. By (I1.3.9) in Theorem2,
Chap. II, Section 3, it is a bijection onto (Sp (1) X Z),;

Proof of 2. — Immediate since p, is locally constant on the set
{50 €SP, (n); siMI={0}} (Theorem 1, Chap. II, §3).

COROLLARY 3. — The set of all homeomorphisms H,(l€e A (n)) defined by (1.7) is a
system of local charts of Sp., (n), the transition functions being given by:

H o Hi b (s, (5) = (5, 1 (5))
with:
(1.6) Wy (5) — W (s,) =sign (s, 1, 1") — sign (sl sI', I').
Proof. — Immediate by formula (3.7), Theorem 1, Chap. II, Section 3. .
As we identified in corollary 2, A, (1) with a subset of A(n)xZ by transporting the

topology of A (1) onto (A (n) x Z),, we can identify Sp,, (1) with the set (Sp(n) x Z), by
transporting the topological group structure:

COROLLARY 4. — 1. For every le A(n), the set (Sp(n)*xZ), dej’t:ned by (1.7) can be
equipped with the structure of a topological group [Sp (n) X Z], for which

H,: Sp, () —[Sp(n)xZ),

becomes an isomorphism of topological groups.
2. The composition law of the group [Sp (n) X Z}, is given by:

(1.10) (5,0).(s',0")=(ss',c+ o +sign(,sl, ss'))) with ocepls], o'ewls], hence:

o+ao'+sign(l,sl,ss']) is in w [s'];
3. The topology of [Sp (n) X Z), is characterized by the conditions:
(i) for every I' € A (n), the mapping:

(1.11) [Sp(n) X Z),3(s, 6)—> o —sign(sl, ,I")eZ
is locally constant on the subset:
{s,0) INI"=sINI"={0}} of Sp(n)x Z,
(ii) the projection:
(1.12) [Sp(n)x Z},3(s,0)— seSp(n) is continuous.
Proof of 1. — Immediate by theorem 2, (1.)

Proof of 2. — Immediate by formula (3.11)-(3.12) in theorem 2, Chap. II, §3.
Proof of 3. — Immediate by property (3.6) in theorem 1, Chap. II, § 3.
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The symplectic group Sp (n) acts transitively on the lagrangian Grassmanian A (n); this
action is covered by a transitive action of Sp., (1) on A, () (see Leray’s theorem, Chap. I,
§1); the following result gives a precise description of that action in terms of the signature:

THEOREM 3. — For I'e A (n) the topological group [Sp (n) X Z),. acts transitively on the
topological space [A (n) x Z),. by:

(1.13) (5,0).(LAN)=(sl,c+A+sign (', sI, sI))
where
(1.14) o=n—dim (/' Nsl’), A=n—dim(IN/),
’ sign(/,sl’, s)=n+dim (I’ N sI')+ dim "'ND+dim (' N sl), mod 2:

hence also:
o+A+sign(l,sl', shy=n—dim (s/ /'), mod 2.

Proof. — Immediate in view of the definitions of [Sp(n) x Z),., [A(n)xZ],. using
formula (3.13) in Chapter II, Section 3, Theorem 2.

2. THE ACTION OF Sp,(n) oN A, ,(n). — In view of Leray’s theorem, Chap. 1, § 1, Sp, (n)
acts transitively on A, ,(n) for ge N*. The following results immediately deduced from
Section1 together with the description of Sp,(n) and A, 4(n) made in Chapter II,
Section 4, describes this action.

THEOREM 1. — 1. For every 1 € A (n), the mapping:
2.1 Aq(n)alqr—-»(l,uzq(lq,l;))eA(n)xZ“
is an injection which is a bijection:
2.2) h,;': A(m) > (A(n)x 2z, i

where (A(M) X Z, ). ={ (I, A, ); A=n—dim (/N I'); mod 2 3
2. The restriction of this bijection:

2.3) {lLeA,(n); IN I'={0}}-{¢, AN l’="{0 }, A=n, mod 2}
is @ homeomorphism when Z, q is equipped with the discrete topology.

Proof. — Obvious, in view of theorem 1, Section 1, definition (4.3), Section 4, Chap. IT
of the Maslov index p, 700 Ay (n) and (4.5) (ibid.).

Exactly by the same argument as in the proof of the corollary 1 of theorem 1 of last
section, one proves that the set of all homeomorphisms (2. 3) is a system of local charts
of A, (n), the transition functions being given by the formula:

2.9 Mo o Ugy 1) = b o (g, 1) =signy (1,1, 1) =y (13, 17).
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COROLLARY. — 1. For I'e A (n), the set (A(n)XZ, ) can be equipped with a topology
such that it becomes a topological space [A(n) X Z, 1 for which

by Ay ()= [AMXZ,

q
is a homeomorphism; o
2. that topology is the topology characterized by the conditions:

() for every I' € A(n), the mapping
2.5) [AM) X Z, Ji-3(L A, ) Ay —sign, JLUIeEZy,
is locally constant on the set { (I, X, ); INI"= {o}}
(ii) the projection:
[A()xZ, Ji-a(LA, ) e An)
is continuous.

i “ i is” f of corollary 2 of theorem 1 in
Proof. — Similar, “mutatis mutandis”, to the proof o y

last section. .
Using the definition (4.9), Chap. II, Section 4 of the Maslov 1T1dex 01111 Sp?(n) one
proves gexactly in the same way, using theorem 2 of last section and its corollary:

THEOREM 2. — 1. For every l€ A(n), the mapping:
(2.6) Sp, (1) 35, (5, 1y [55)a ) €SP (M) X Zag
is a bijection onto
2.7 (Sp(M) X Zy ) ={(5,04,); CEM [s1}-
2. the restriction of this bijection:
(2.8) {54,€Sp,(n); sSINI={0}}—{(5,04,) sSiNI={0}, cewlsl,}

is a homeomorphism when 7, , is equipped with the discrete topology. . s
3. the set of all those homeomorphisms (2.8) is a system of local charts of Sp,
transition functions being given by the relations:

(n) their

(2.9) TH N P TP R Py sign (sl, 1, 1"y —sign (s/, sl I).
Similarly, by theorem 2 in Chap. II, Section 2 we have:

ipped
THEOREM 3. — For cvery [€ A(n), the set (SpU1) X Zy ) a’eﬁr?ed by (2. 7) cani:)(fr:Z’z:[;l[;sm
with a topological group structure for which the homeomorphism (2.8) is an s

of topological groups;

(2.10) (5,04 ,;) (5,049 = (58',04,1 04t signg o ([, I, 8 )}
with cew[sl, o' e lss], ot o' +signg (I, sl,ss' Dew [ss'],
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3. the topology of [Sp (n)x 2, ), is characterized by the conditions:
(i) for every I" € A (n), the mapping

@.11) SP(m)xZ, J3(s,04 ) 04, —sign, , (s1, 1, "ez,,

is locally constant on the set {Gs,0, XN =sIN1"={0}}
(i) the projection:

>

(2.12) [Sp(n)x Z,i2(s,0, 2 S€Sp(n) is continuous.

The topological space [A (n)xZ, ], and the topological group [Sp(n)x Z, i being thus
identified with respectively A,,(n) and Sp,(n), the structure of g-geometry is then
described by:

THEOREM 4. — For I"e A(n), the topological group [Sp(n)x Z, e acts transitively on
the topological space [A (n) x Z, ) by -

@13 (5:049).(LAg )= (sl 04 gt Ay tsigng (0, sl si)).

Proof. — Immediate by Theorem 3, Chap. II, Section 1, and theorems 1,2, 3 hereabove.
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