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Abstract. We provide an explicit algorithm of computing the mapping degree
of a rational mapping from the real projective line to itself. As a corollary
we prove Sturm’s theorem and a number of its generalizations. These gener-
alizations are used to prove Tarski’s theorem about real semialgebraic sets.
Similarly a version of Tarski’s theorem can be proved for an arbitrary alge-
braically closed field.
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This paper discusses a topological proof of the classical theorems of Sturm and
Tarski. It also contains new results. A rational function of one real variable defines
a mapping of the real projective line (which is homeomorphic to a circle) to itself.
How the degree of such a mapping can be computed for a given rational function
f = P/Q? We suggest a simple explicit formula for the degree, using a representa-
tion of f as a continued fraction. Such a representation can be found using Euclid’s
algorithm (that computes the greatest common divisor of P and Q). Thus a new
application of this ancient algorithm is established.

The fundamental theorem of algebra (about the number of complex roots of a
polynomial) has a topological explanation: the topological degree of a polynomial
mapping of the complex projective line to itself is equal to the algebraic degree
of the polynomial that defines this mapping. We show that Sturm’s problem of
counting the number of real roots of a real polynomial reduces to finding the
topological degree of a mapping of the real projective line to itself, given by a
certain rational function. This observation allows us to find a new solution of
Sturm’s problem and also to solve more general problems. For instance, it allows
one to find the number of real roots satisfying Q > 0, where Q is a given real
polynomial. These one-dimensional generalizations of Sturm’s theorem allow us to
prove Tarski’s theorem, which is a wide multidimensional generalization of Sturm’s
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theorem. Tarski’s theorem states that the image of a real semialgebraic set under
a polynomial mapping is a real semialgebraic set.

Tarski’s theorem has a complex counterpart. It is significantly simpler than
the real version and was known long before. It is interesting that our topological
proof of Tarski’s theorem extends almost word for word to the complex version.
One only has to use the topological degree of a complex rational mapping instead
of that of a real rational mapping. Because of the fundamental theorem of algebra
this topological degree can be defined in purely algebraic terms. Thus our proof
of Tarski’s theorem extends to any algebraically closed field.

To make our paper self-contained, we recall some classical facts that we will
need.

In Sections 1 and 2 auxiliary material is presented: in Section 1 we recall the
notion of degree of a mapping from a circle to itself, and in Section 2 we recall the
representation of a rational function as a continued fraction. In Section 3, which
is central to this paper, we compute the topological mapping degree of a rational
mapping of the projective line to itself. In Section 4 we show that this topological
degree depends “constructively” on the coefficients of the rational function. In
Section 5 we use the results of Section 4 to prove Tarski’s theorem. In Section 7
we discuss the complex counterpart of that theorem.

The material of this note was presented by Khovanskii in his lectures on
differential topology in the University of Toronto. Burda wrote up the notes of
these lectures, which served as the first version of this paper.

1. Degree of a mapping from a circle to itself

For a continuous mapping f : M1 → M2 of an oriented compact manifold M1 to
a connected oriented compact manifold M2 of the same dimension, the mapping
degree is defined. For us the main example will be the mapping degree of a mapping
from a circle to itself, M1 = S1

1 , M2 = S1
2 . The theory of mapping degree is

especially simple in this case (see for example [1]) and in this section we present
its outline.

Let the circle S1
1 be represented by the interval I = [0, 1] with ends identified,

S1
1 = I/∂I. Let also S1

2 be represented as the real line R factored by the lattice Z.
A continuous mapping x : I/∂I → R/Z can be lifted to a continuous mapping
x̄ : I → R. The mapping x̄ is defined up to an additive constant. The difference
x̄(1)− x̄(0) is thus a well defined integer, called the mapping degree of x : I/∂I →
R/Z. The mapping degree is invariant under continuous homotopy. Indeed, from
the definition one sees that under a continuous change of x the mapping degree
changes continuously. But the degree is an integer, hence it is in fact constant
under homotopy.

The mapping degree is a complete homotopy invariant : any two mappings
having the same degree are homotopic. Indeed, for a mapping x of degree k the
function x̄ is of the form x̄(t) = kt + f(t), where f(t) is a continuous periodic
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function with period 1. The homotopy x̄(t, τ) = kt + τf(t) shows that x can be
continuously deformed to a mapping x0 which lifts to the mapping x̄0(t) = kt.
For every integer k there is a mapping of degree k: an example is the mapping x0,
which lifts to kt.

We will need the following geometric way of computing the degree. We will
say that a value a ∈ S1

2 is almost regular for the continuous mapping x : S1
1 → S1

2

if it has finitely many preimages. Let b be a preimage of a, i.e. x(b) = a. Let t
be a local coordinate in a small neighborhood of b (with t(b) = t0) on the circle
S1

1 , let u be a local coordinate in a small neighborhood of a (with u(a) = u0) on
S1

2 and suppose that these coordinates are compatible with the orientations of the
circles. The function Fb(t) = u(x(t)) − u0 has a well defined sign on each of the
two connected components t < t0 and t > t0 of the punctured neighborhood of b.
We define the index of the function x at the point b depending on the change of
the sign of Fb from the component t < t0 to t > t0. The index at b is +1 if the
sign changes from minus to plus; it is −1 if the sign changes from plus to minus;
and it is 0 if the sign does not change.

Claim 1. The degree of a continuous mapping from a circle to itself is equal to the
number of preimages of any almost regular value, counted with the corresponding
indices.

Proof. Let āi ∈ R denote all the lifts of a ∈ R/Z to R (the difference between
any two lifts āi is an integer). The set of preimages of a under x consists of the
preimages of the points āi under x̄. The degree k of x is x̄(1)− x̄(0). Suppose for
definiteness that k = x̄(1) − x̄(0) > 0. Then there are exactly k numbers āi ∈ R
satisfying the inequalities x̄(0) ≤ āi < x̄(1). For every such āi, the number of
preimages x̄−1(āi), counted with indices, is readily seen to be one. For every āi
not satisfying any of the inequalities, the number of preimages x̄−1(āi) counted
with indices is zero. This proves Claim 1.
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In the following we will consider the circle as the real projective line (topo-
logically RP 1 is just a circle). We will think of RP 1 as the standard line R1,
compactified by one point at infinity and oriented in the usual way.
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Example. Consider a real polynomial P = a0x
n + a1x

n−1 + · · ·+ an as a mapping
P : RP 1 → RP 1. The degree [P ] of this mapping is

[P ] =

+1 if n is odd and a0 > 0,
−1 if n is even and a0 < 0,
0 if n is even.

Indeed, when x → ±∞ a nonconstant polynomial P tends to plus or minus
infinity. The sign of the infinity depends on the parity of the degree of and on the
sign of the leading coefficient a0. By considering all possible combinations we get
the above formula.

n even, a0 < 0
deg=− 1deg=+1

n odd, a0 > 0
n odd, deg=0

2. Representation of a rational function as a continued fraction

A very nice introduction to the theory of continued fractions can be found in [2].
Every rational function f can be represented as a finite continued fraction

f = P0 +
1

P1+... +
1
Pk

, (1)

where P0, . . . , Pk are polynomials. We recall how this can be done.
To represent f = P/Q as a continued fraction one has to repeat the following

two operations:
1) Division with remainder. This operation is performed if the degree of Q is

smaller than that of P . This operation results in representing P/Q as P0 +
P̃ /Q, where P0 is the quotient and P̃ , with deg P̃ < degQ, is the remainder
of division of the polynomial P by the polynomial Q.

2) Taking inverse of fraction. This operation is performed if the degree of P is
smaller than that of Q. This operation results in representation of the fraction
P/Q as 1/QP .
Consider the pair P,Q. If degP ≥ degQ, by applying the first operation we

can represent P/Q as P0 + P̃ /Q. Thus we get a new pair of polynomials P̃ , Q
that has smaller sum of degrees than the pair P,Q. If degP < degQ, then we
apply the second operation to represent P/Q as 1/F , where F = Q/P . Then we
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can apply the first operation to F , and represent it as Q/P = Q0 + Q̃/P . We
get a new pair of polynomials Q̃, P , which has a smaller sum of degrees than the
initial pair P,Q. Now the problem of representing P/Q as a continued fraction is
reduced to the problem of representing P̃ /Q or Q̃/P as a continued fraction, which
is simpler, since these functions have a smaller sum of degrees of the numerator
and denominator.

If we continue this process we will represent the rational function P/Q as a
continued fraction. The algorithm described above in fact coincides with Euclid’s
algorithm for finding the greatest common divisor of P , Q.

3. Degree of a rational mapping from the real projective line to
itself

Let f be a real rational function. We will consider it as a mapping f : RP 1 → RP 1

of the real projective line to itself. We will answer the following problem:

Problem 1. For given real polynomials P,Q compute the degree of the mapping
f : RP 1 → RP 1, where f = P/Q.

A nonconstant rational function attains each of its values finitely many times.
Hence we can use Claim 1 to compute the mapping degree.

Claim 2. If rational functions f1, f2 do not have common poles on RP 1, then
deg(f1 + f2) = deg f1 + deg f2.

Proof. We will compute the degree of a rational function as the number of preim-
ages of the point ∞ counted with indices. Every pole b of f1 + f2 is either a pole
of f1, or a pole of f2. Suppose b is a pole of f1. Then the assumption tells us that
f2 is regular near b. Hence f1 and f1 + f2 behave in the same manner near b. This
means that b has the same index as the preimage of∞ under f1 and under f1 +f2.
The same considerations apply to poles of f2, which are regular points for f1. This
proves Claim 2.

index +1

∼ ± 1

(x−x0)2k∼ 1

(x−x0)2k+1∼ − 1

(x−x0)2k+1

index 0index − 1

If f1 and f2 have common poles, in general deg(f1 +f2) 6= deg f1 +deg f2. For
example. if f1 = f2 and deg f1 6= 0, then deg(f1 + f2) = deg f1 6= deg f1 + deg f2.



84 A. Khovanskii and Y. Burda JFPTA

Claim 3. For a rational function f that is not identically zero, deg f−1 = −deg f .

Proof. We can assume that f is not identically 1. We will compute the degree of
the rational functions f and f−1 as the number of preimages of the point 1 counted
with indices. It is clear that the preimages of 1 for f and f−1 are the same. Also
the index of b as a preimage of f is minus the index of b, considered as a preimage
of 1 for f−1. This proves Claim 3.

To solve Problem 1 we will need to represent the rational function f as a
continued fraction. The following theorem is one of the main results of this paper.

Theorem 4. Let a rational function f be represented as a continued fraction (1).
Then the degree deg f of the mapping f : RP 1 → RP 1 is given by

deg f = [P0]− [P1] + · · ·+ (−1)k[Pk].

Proof. Induction on the number k + 1 of polynomials appearing in the represen-
tation (1) of f as a continued fraction. Theorem 4 was already considered in the
Example of Section 1 for functions f that are polynomials. We can assume that
the polynomial P0 from the representation (1) of f is not zero. Indeed, if P0 is zero,
then we can compute the degree of f−1 instead of the degree of f (see Claim 3),
for which the polynomial P1 plays the role of P0.

If for f = P/Q the polynomial P0 is not zero, then P/Q = P0 + P̃ /Q, where
P̃ is the remainder of division of P by Q. The only pole of P0 is ∞, where P̃ /Q
is zero. Claims 2 and 3 show that in this case deg(P/Q) = degP0 + deg(P̃ /Q) =
[P0]− deg(Q/P̃ ). The representation of Q/P̃ as a continued fraction is

Q/P̃ = P1 +
1

P2+... +
1
Pk

.

It contains k polynomials. By induction hypothesis, deg(Q/P̃ ) = [P1]− [P2]+ · · ·+
(−1)k−1[Pk]. Hence deg(P/Q) = [P0] − [P1] + · · · + (−1)k[Pk], which proves the
theorem.

4. Constructivity of the degree of a rational function as a function
of its coefficients

In the previous section we have computed explicitly the degree of a rational map-
ping of the projective line to itself. Here we will prove that our computation was
“constructive”. The function sign on the real line there has value +1 at positive
arguments, 0 at the point 0, and −1 at negative arguments. In this section we
will compute

∑
Q(a)=0 sign(P (a)) for a pair of polynomials P,Q. This number is

closely related to the mapping degree and is important for what follows.

Definition. A basic semialgebraic set in Rn is a subset defined by a system of
algebraic equations and inequalities R1 = 0, . . . , Rµ = 0, Q1 > 0, . . . , Qν > 0,
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where Ri, Qj are real polynomials. A semialgebraic set is a finite union of basic
semialgebraic sets.

Lemma 5. Finite unions, finite intersections and complements of semialgebraic
sets are semialgebraic. The preimage of a semialgebraic set under a polynomial
mapping is a semialgebraic set.

The proof follows directly from definitions (the last property relies on the
fact that superposition of polynomials is a polynomial).

Definition. A real function defined on a real semialgebraic set in Rn is called
constructive if it attains finitely many values and all its level sets are real semial-
gebraic.

Lemma 6. Constructive functions defined on a given semialgebraic set form a real
algebra (i.e. the set of constructive functions is closed under arithmetic operations
and multiplication by real constants).

We will identify a pair of polynomials P = a0x
N + · · ·+aN and Q = b0x

M +
· · · + bM with the point (a0, . . . , aN , b0, . . . , bM ) in the space RN+1 × RM+1. Let
f = P/Q, where the polynomial Q is not identically zero. Consider the degree of
the mapping f : RP 1 → RP 1 as a function deg : RN+1 × (RM+1 r {0})→ Z.

Theorem 7. The function deg defined above is constructive.

Proof. Induction on the sum N +M of the degrees of P and Q. Let P = a0x
N +

· · · + aN , Q = b0x
M + · · · + bM . If N = M = 0, then deg is identically zero. We

will present the level sets of deg as unions of semialgebraic sets as follows.
If P is identically zero (which defines a semialgebraic condition on the co-

efficients), then deg(P/Q) = 0. If P 6= 0, we will subdivide further. On the sets
a0 = 0 and b0 = 0, the function deg is constructive by the induction hypothesis.

If a0 6= 0 and b0 6= 0, we can assume that M ≥ N , for otherwise we can use
the fact that deg(P/Q) = −deg(Q/P ) (the polynomial P is not identically zero).
Divide P byQ with remainder: P/Q = P0+R/Q, where P0, R are polynomials with
coefficients that are rational functions on RN+1 ×RM+1, whose denominators are
powers of the variable b0 (e.g. P0 = a0

b0
xM−N + a1b0−b1a0

b20
xM−N−1 + · · · ). We have

deg(P/Q) = degP0+deg(R/Q). Divide the space of coefficients into the half-spaces
b0 > 0 and b0 < 0. In the half-space b0 > 0 multiply P0 and R by a power of b0 large
enough to make the coefficients of P0 and R polynomials in a0, . . . , aN , b0, . . . , bM .
When we multiply the polynomials by a positive constant, the degrees of the
mappings P0 and R/Q do not change and we can apply the inductive hypothesis.
In the half-space b0 < 0 we can achieve the same by multiplying P0 and R by a
large enough power of −b0. By the induction hypothesis the function deg(R/Q) is
constructive. The function degP0 is clearly also constructive (see the Example from
Section 1). Hence the function deg(P/Q), which is equal to degP0 + deg(R/Q), is
constructive. This proves Theorem 7.
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We will need the following simple observation.

Lemma 8. Every zero of a polynomial P is a pole of the function P ′/P , having
index −1.

Proof. If near the zero x0 the polynomial P is equal to ak(x − x0)k + · · · , where
k > 0, then P ′/P = k/(x− x0) + · · · .

In the same manner we can prove the following lemma:

Lemma 9. Every zero x0 of the polynomial P which is not a zero of the polynomial
Q is a pole of the function QP ′/P , of index −1 if Q(x0) > 0, and +1 if Q(x0) < 0.

Let P,Q be real polynomials and set f = QP ′/P . Let (1) be the representa-
tion of f as a continued fraction.

Lemma 10. The sum
∑
P (x)=0 sign(Q(x)) is equal to deg(QP ′/P )−degP0. Using

the representation (1), this sum can also be written as∑
P (x)=0

sign(Q(x)) = [P1]− [P2] + · · ·+ (−1)k+1[Pk].

Proof. Consider the mapping f = QP ′/P : RP 1 → RP 1. The finite poles of f are
exactly at the zeros of P where Q does not vanish. According to Lemma 9, the
poles have the following indices. If P (x0) = 0 and Q(x0) > 0, then x0 is a pole
of f of index −1. If P (x0) = 0 and Q(x0) < 0, then x0 is a pole of f of index +1. If
P (x0) = 0 and Q(x0) = 0, then x0 is not a pole of f . We have not yet considered
the point at infinity. To do so, divide QP ′ by P with remainder and represent f
as a continued fraction: f = P0 + R/P . The difference f − P0 is continuous at
infinity. Hence the index of ∞ as a pole of f is [P0]. This computation implies
the first statement of Lemma 10. The second statement follows from the first and
from Theorem 4.

Corollary 11. Let X = (RN+1 r {0}) × RM+1 be the subset of the space of
coefficients of polynomials P,Q where P does not vanish identically. The sum∑
P (x)=0 sign(Q(x)) is a constructive function on X.

5. Sturm theorem and its generalizations

We will start from the following question.

Problem 2. How many different real roots does a given real polynomial P have?

The number of different zeroes of P is equal to the sum∑
P (x)=0

sign(Q(x))

for Q identically equal to 1. We can compute this sum explicitly. Thus we have
an explicit way of answering Problem 2. Here is one of the formulations for the
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answer: the number of different real roots of the polynomial P is equal to minus
the degree of the mapping f : RP 1 → RP 1, where f = P ′/P . If f = P ′/P
is represented as a continued fraction (1), then the number of real roots of P is
−[P0] + [P1]− · · ·+ (−1)k+1[Pk].

Let us now consider a more general problem.

Problem 3. How many different real roots does a given real polynomial P have in
the domain Q > 0, where Q is another polynomial?

Denote by Q+ the number of zeroes of P in the domain Q > 0, and by Q−
the number of zeroes of P in Q < 0. Lemma 10 allows us to compute Q+ −Q− =∑
P (x)=0 sign(Q(x)). Applying Lemma 10 to the function Q2 instead of Q, we get

Q+ +Q− =
∑
P (x)=0 sign(Q(x)2). This allows us to find Q+, namely

Q+ =
1
2

∑
P (x)=0

sign(Q) +
1
2

∑
P (x)=0

sign(Q2).

Problem 3 is now solved. We see that to solve Problem 3 it is enough to compute
the representations of QP ′/P and Q2P ′/P as continued fractions.

Corollary 12. The number of different zeroes of a real polynomial P in a given
interval (a, b) can be computed explicitly.

Indeed, the interval (a, b) has the form Q > 0 for the polynomial Q(x) =
(b− x)(x− a).

The famous theorem of Sturm gives another way of proving Corollary 12
(Sturm’s theorem provides the solution to a very special case of Problem 3).

Problem 4. How many different real roots does a given real polynomial P have
in the set defined by the conditions R1 = 0, . . . , Rµ = 0, Q1 > 0, . . . , Qν(x) > 0,
where P,R1, . . . , Rµ, Q1, . . . , Qν are given real polynomials?

In the computation of the number Q+ (see Problem 3) we encountered the
formula 1

2 (sign(Q) + sign(Q2)). This formula is related to the polynomial L of one
variable q, given by L(q) = 1

2 (q2 + q). This polynomial has the following property:
it vanishes when q = −1 or q = 0, and it is equal to 1 when q = 1. Hence
L(sign(Q(x))) = 1 if and only if Q(x) > 0.

To solve problem 4 we will generalize this polynomial. Define the polynomial
L of the variables (r1, . . . , rµ, q1, . . . , qν) by the following formula:

L = (1− r1)(1 + r1) . . . (1− rµ)(1 + rµ)
q1(1 + q1)

2
. . .

qν(1 + qν)
2

=
1
2ν

∑
εi=0 or 1
σi=1 or 2

(−1)ε1+···+εµr2ε11 . . . r2εµµ qσ1
1 . . . qσνν .

The polynomial L has the following property. Let Y be the finite subset in the
domain of the polynomial L, consisting of the points where every coordinate is
either −1, 0 or +1. The polynomial L vanishes at all points of Y except the point
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r1 = · · · = rµ = 0, q1 = · · · = qν = 1, where it is 1. Hence the number of interest
in Problem 4 can be expressed as∑

P (x)=0

L(sign(R1(x)), . . . , sign(Rµ(x)), sign(Q1(x)), . . . , sign(Qν(x))).

This sum can be rewritten as

1
2ν

∑
εi=0 or 1
σi=1 or 2

(−1)ε1+···+εµ
∑

P (x)=0

sign(R1(x)2ε1 . . . Rµ(x)2εµQ1(x)σ1 . . . Qν(x)σν ).

Every summand∑
P (x)=0

sign(R1(x)2ε1 . . . Rµ(x)2εµQ1(x)σ1 . . . Qν(x)σν )

can be computed explicitly by using Lemma 10.
This solves Problem 4.

Theorem 13. Let RN be the space of coefficients of all the polynomials appearing
in Problem 4. Let X be the semialgebraic subset corresponding to the coefficients
for which P does not vanish identically. The function f which assigns to x ∈ X
the number of roots of P in Problem 4 is constructive.

Proof. This follows from the explicit formula for the number of roots in Problem 4
and from Corollary 11.

Problem 5. Determine whether the system of inequalities Q1 > 0, . . . , Qν > 0, has
a real solution, where Q1, . . . , Qν are given real polynomials.

It is enough to consider the case when none of the polynomials Q1, . . . , Qν
is identically zero: otherwise the problem reduces to the same problem with a
smaller number of inequalities. Consider the polynomial Q = Q1 . . . Qν . Let N be
an integer greater than the sum of the degrees of Q1, . . . , Qν . The rational function
R = Q/(1 + xN ) cannot be constant. The zeroes of its derivative are the roots of
the nonzero polynomial P = Q′(1 + xN )−NQxN−1. By Rolle’s theorem, R has a
zero of its derivative in every connected component of the set Q1 > 0, . . . , Qν > 0.
Thus the system of inequalities Q1 > 0, . . . , Qν > 0 has a solution if and only if
the system P = 0, Q1 > 0, . . . , Qν > 0, containing the nontrivial equation P = 0,
has a solution. According to Theorem 13, the number of solutions of this system
is a constructive function in the space of its coefficients. Thus Problem 5 has a
constructive solution. We have proved the following theorem.

Theorem 14. Let RN be the space of all the coefficients of polynomials from Prob-
lem 5. The subset of RN corresponding to the systems having a solution is semi-
algebraic.
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6. Tarski’s theorem

We will prove the following theorem.

Tarski’s theorem ([3]–[6]). The image of a semialgebraic set X ⊂ Rm under a
polynomial mapping T = (T1, . . . , Tk) : Rm → Rk is a semialgebraic set.

Proof. Step 1 (reduction). It is enough to prove the theorem for the projection π0 :
Rn+1 → Rn, forgetting one coordinate: π0(x0, . . . , xn) = (x1, . . . , xn). Indeed, let
X be a semialgebraic set. Define the semialgebraic set Y in Rm+k with coordinates
(x1, . . . , xm, y1, . . . , yk), by the conditions

(x1, . . . , xm) ∈ X, y1 = T1(x1, . . . , xm), . . . , yk = Tk(x1, . . . , xm).

The set Y is the graph of the mapping T . The image of Y under the projection
π : Rm+k → Rk, π(x1, . . . , xm, y1, . . . , yk) = (y1, . . . , yk), coincides with T (X).
Hence by proving the theorem for projections, we will prove it for every polynomial
mapping. The projection π can be written as the composition of projections, each
forgetting only one coordinate. Thus it is enough to prove the theorem for π0.

We can assume that X is a basic semialgebraic set (every semialgebraic set is
a union of basic semialgebraic sets, and the image of a union is the union of images).
So let X = {x ∈ Rn+1 | R1(x) = 0, . . . , Rµ(x) = 0, Q1(x) > 0, . . . , Qν(x) > 0}.
We want to prove that π0(X) is semialgebraic.

Step 2: Reduction of Tarski’s theorem to Problems 4–5. Write every polyno-
mial defining X as a polynomial of one variable x0 with coefficients which
are polynomials in x1, . . . , xn, for example R1(x0, . . . , xn) will be considered as
a0(x1, . . . , xn)xN1

0 + · · · + aN1(x1, . . . , xn). The question whether (x1, . . . , xn) be-
longs to π0(X) is equivalent to the question whether the system R1 = 0, . . . ,
Rµ = 0, Q1 > 0, . . . , Qν > 0 has a solution (for the coefficients evaluated at
(x1, . . . , xn)).

Let Xi denote the subset in the space of coefficients where R1, . . . , Ri−1

are identically zero, but Ri is not. According to Theorem 13, on Xi the number
of different solutions of the system Ri = 0, . . . , Rµ = 0, Q1 > 0, . . . , Qν > 0
is a constructive function. The union of non-zero level sets of this function is a
semialgebraic set, i.e. the intersection of π0(X) with Xi is semialgebraic.

Let Y denote the subset of the space of coefficients where all R1, . . . , Rµ
are identically zero. According to Theorem 14, the subset of Y where the system
Q1 > 0, . . . , Qν > 0 has a solution, is semialgebraic. This is the intersection of
π0(X) with Y . As π0(X) is the union of its intersections with the sets Xi and Y ,
it is semialgebraic. This proves Tarski’s theorem.

Tarski was interested in the following problem: does any formula that uses
semialgebraic sets, finite unions, intersections and symbols ¬,∃,∀ define a semi-
algebraic set? For example does the expression (y ∈ R | ∀ε > 0 ∃x ∈ X such that
−ε < x − y < ε), which gives the closure of the semialgebraic set X ⊂ R, always
define a semialgebraic set in R? Tarski proved that the answer to this question
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is positive. Indeed, finite intersections, unions and complements of semialgebraic
sets are semialgebraic, the ∃ quantifier corresponds to projection (the formula
y | ∃x ∈ X means that y belongs to the projection of X along the coordinate
x), and the ∀ quantifier is equivalent to the formula (¬(∃(¬))). In particular, the
closure of a semialgebraic set is semialgebraic.

7. Complex version of Tarski’s theorem

A basic complex semialgebraic set in Cn is defined by a system R1 = · · · = Rµ = 0,
Q1 6= 0, . . . , Qν 6= 0 of polynomial equalities and inequalities. A complex semial-
gebraic set is a finite union of basic complex semialgebraic sets.

Complex semialgebraic sets differ strongly from real semialgebraic sets. For
instance, a complex semialgebraic set in Cn either covers almost all of it, or only
a very small part of it. More precisely, for a complex semialgebraic set F ⊂ Cn in
Cn the following holds.

Claim 15. Either F is contained in some algebraic hypersurface Σ ⊂ Cn, or F
contains some Zariski open set U ⊂ Cn (i.e. U = Cn \Σ, where Σ is an algebraic
hypersurface).

Proof. The first case occurs when in the definition of every basic complex semi-
algebraic set in the definition of F there are nontrivial equations, and the second
when at least one of the basic sets is defined only by inequalities.

Corollary 16. (1) If a complex semialgebraic set F is not a subset of measure zero,
then it contains some Zariski open set.

(2) On the complex line C the only complex semialgebraic sets are finite sets and
their complements.
However, complex and real semialgebraic sets share some properties. Most

significant of them is Tarski’s theorem:

Complex version of Tarski’s theorem. The image of the complex semialgebraic set
X ⊂ Cm under a polynomial mapping T = (T1, . . . , Tk) : Cm → Ck is a complex
semialgebraic set.

The complex version of Tarski’s theorem is simpler than the real one and
was known long before. Surprisingly, our topological proof of Tarski’s theorem
also applies to the complex case. We will show how this can be realized.

The degree deg f of a complex rational function f = P/Q is the degree
of the mapping f : CP 1 → CP 1. It is clear that if the polynomials P and Q
have no common divisors, then the degree of f is the maximum of the degrees of
the polynomials P and Q. If P and Q do have a common divisor, then for the
computation of the degree of f we have to cancel the common divisor first. To do
this we apply Euclid’s algorithm. By using it we can represent f as a continued
fraction (1).
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Claim 17. For the function f represented as a continued fraction (1), the following
equality holds: deg f = degP0 + degP1 + · · ·+ degPk.

Proof. If f is a polynomial, then its degree is equal to the algebraic degree of f .
For every rational function f we have deg f = deg f−1. If f and g are complex
rational functions with no common poles, then deg(f + g) = deg f + deg g. The
proof is now the same as the proof of Theorem 4.

A function defined on a complex semialgebraic set is complex constructive if
it attains only finitely many values and all its level sets are complex semialgebraic.
Consider deg(P/Q) as a function on the space CN+1× (CM+1 \{0}) of coefficients
of polynomials P of degree ≤ N and non-zero polynomials Q of degree ≤M .

Corollary 18. The function deg : CN+1 × (CM+1 \ {0})→ Z is complex construc-
tive.

Corollary 18 follows from Claim 17 (cf. the proof of Theorem 7).

Define sn : C → Z to be 0 at zero and 1 for all other arguments. For a pair
of polynomials P,Q consider the function f = QP ′/P and the representation of f
as a continued fraction (1).

Lemma 19. The sum
∑
P (x)=0 sn(Q(x)) is equal to deg(QP ′/P ) − degP0. Using

the representation (1) of f , this sum can also be represented as∑
P (x)=0

sn(Q(x)) = degP1 + degP2 + · · ·+ degPk.

Lemma 19 can be proved in the same manner as Lemma 10. This lemma
immediately implies the following corollary:

Corollary 20. Let X = (CN+1 r {0}) × CM+1 be the subset of the space of
coefficients of polynomials P,Q where P is not identically zero. Then the sum∑
P (x)=0 sn(Q(x)) is a constructive function on X.

Problem 4′. How many different zeroes does a polynomial P have on the set defined
by R1 = 0, . . . , Rµ = 0, Q1 6= 0, . . . , Qν 6= 0, where P,R1, . . . , Rµ, Q1, . . . , Qν are
given complex polynomials?

Define the polynomial L̃ of the variables (r1, . . . , rµ, q1, . . . , qν) by the follow-
ing formula:

L̃ = (1− r1) . . . (1− rµ)q1 . . . qν =
∑

εi=0 or 1

(−1)ε1+···+εµrε11 . . . rεµµ q1 . . . qν .

It has the following property. Let Ỹ be the finite subset in the domain of L̃,
consisting of the points where every coordinate is either 0 or +1. The polynomial
L̃ vanishes at all points of Ỹ except the point r1 = · · · = rµ = 0, q1 = · · · = qν = 1,
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where L̃ is 1. Hence the number of solutions of Problem 4′ at a point x in the
space of parameters is∑

P (x)=0

L̃(sn(R1(x)), . . . , sn(Rµ(x)), sn(Q1(x)), . . . , sn(Qν(x))).

This sum can be rewritten as∑
εi=0 or 1

(−1)ε1+···+εµ
∑

P (x)=0

sn(R1(x)ε1 . . . Rµ(x)εµQ1(x) . . . Qν(x)).

Every summand ∑
P (x)=0

sn(R1(x)ε1 . . . Rµ(x)εµQ1(x) . . . Qν(x))

in this formula can be computed explicitly by using Lemma 19.
This solves Problem 4′.

Corollary 21. Let CN be the space of coefficients of polynomials appearing in Prob-
lem 4′. Let X be the semialgebraic subset corresponding to the coefficients for which
P does not vanish identically. The function f which assigns to x ∈ X the number
of solutions of Problem 4′ is constructive.

Proof. This follows from the explicit formula for the number of solutions of Prob-
lem 4′ and from Corollary 20.

The complex analogue of Problem 5 is very easy: the system of polynomial
inequalities Q1 6= 0, . . . Qν 6= 0 has a solution if and only if at least one of the
polynomials Qi is nonzero.

The proof of the complex version of Tarski’s theorem now repeats the proof
of the real version.

Corollary 22. Any bounded complex semialgebraic set in Cn consists of finitely
many points.

Proof. The only complex semialgebraic sets on the complex line C are finite sets or
their complements. The projection of a bounded complex semialgebraic set on any
coordinate line is a bounded complex semialgebraic set (complex Tarski theorem)
on the complex line, hence is a finite set. Thus the original set is also finite.

The proof of the complex Tarski theorem given above extends automatically
to any algebraically closed field. For such fields the degree of a rational function
f = P/Q, where P and Q are polynomials having no common divisors, should
be defined as the maximum of the degrees of P and Q. In the case of arbitrary
algebraically closed fields the topological definition of the degree of a rational
function as the topological degree of a mapping from the projective line to itself is
impossible. However, all the arguments that we used to prove the complex version
can be repeated also in the case of arbitrary algebraically closed fields.
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