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ABSTRACT. A new invariant, the Pontryagin-Viro form, of algebraic surfaces is
introduced and studied. It is related to various Rokhlin—Guillou-Marin forms
and generalizes Mikhalkin’s complex separation. The form is calculated for all
real Enriques surfaces for which it is well defined; in most cases it distinguishes
deformation classes of surfaces with homeomorphic real parts.

Introduction

In this paper we introduce a new invariant, the so-called Pontryagin- Viro form
of a real algebraic surface or, more generally, of a closed smooth 4n-manifold X
with involution ¢: X — X. The invariant, which is only well defined in certain
special cases, is a quadratic function P: F — Z/4, where F C H,(Fixc;Z/2) is
a subgroup of the total homology of the fixed point set of ¢ (or, in the case of an
algebraic surface, of the real part of the surface). We mainly concentrate on the
case dim X = 4; in this case P turns out to be closely related to the Rokhlin-
Guillou-Marin forms (see 2.2) of various characteristic surfaces in X and X/c and,
thus, is a direct generalization of the notion of complex separation introduced by
Mikhalkin [Mik]. (Mikhalkin’s complex separation is defined when H,(X;Z/2) =
0.) The relation to the Rokhlin—~Guillou—Marin form gives a number of congruences
that the Pontryagin-Viro form must satisfy (see 4.2).

This work was mainly inspired by our study of real Enriques surfaces (joint
work with I. Itenberg and V. Kharlamov). Recall that an Enriques surface is a
complex analytic surface E with m;(E) = Z/2 and 2¢;(E) = 0. Such a surface is
called real if it is supplied with an anti-holomorphic involution conj: £ — E; the
fixed point set Eg = Fixconj is called the real part of E. The set of components
of the real part of a real Enriques surface naturally splits into two disjoint halves

EH(;) , E],(f) (see 5.1); this splitting is a deformation invariant of pair (E;conj).
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The topology of real Enriques surfaces is studied in ([DK1] and [DK2], where

they are classified up to homeomorphism of the triad (Eg; E]f{l) , Eg)). Currently,
we know the classification up to deformation equivalence (which is the strongest
equivalence relation from the topological point of view); a preliminary report is
found in [DK3]; details will appear in [DIK]. (In [DK3J there are a few erroneous
statements, which are corrected here.) For a technical reason, real Enriques surfaces
are divided in [DK3] into three types, hyperbolic, parabolic, and elliptic, according
to whether the minimal Euler characteristic of the components of Eg is negative,
zero, or positive, respectively. It turns out that in most cases a real Enriques
surface is determined up to deformation equivalence by such classical invariants as
the homeomorphism type of the triad (£g; Eﬂg), Eﬂ(f)) and whether the fundamental

classes [Egr] and [EE(;)], i = 1,2, vanish or are characteristic in the homology of E
or some auxiliary manifolds. The few exceptions, mainly M-surfaces of parabolic
and elliptic types, differ by the Pontryagin-Viro form.

In this paper the Pontryagin-Viro form is calculated for all real Enriques sur-
faces for which it is well defined (see Section 7). There is a necessary condition
(x(Er) = 0 mod 8) and certain sufficient conditions {(Lemma 5.2.1) for P to be well
defined, and, when defined, P must satisfy certain congruences (Proposition 5.2.2),
which follow from the general congruences in 4.2. The result of the calculation
can be roughly stated as follows (see Theorems 7.1.1, 7.2.1, and 7.3.1 for the pre-
cise statements): Consider a triad (ER;Eﬂgl),EHg2)) with x(Er) = 0 mod 8. Any
(partial) quadratic form P: H, (Eﬂg)) ® H*(Eﬂgz)) — Z /4 satisfying the congruences
of Proposition 5.2.2 can be realized as the Pontryagin-Viro form of a real Enriques
surface. If (ER; Eﬂgl) , Eﬂ(f) ) does not satisfy the sufficient conditions of Lemma 5.2.1,
it can also be realized by a real Enriques surface not admitting a Pontryagin-Viro
form. Note that, in fact, the deformation type of a surface admitting Pontryagin-
Viro form is determined by the topology of (Eg; Eﬂgl), En(f)) and the isomorphism
type of P: H,(EY") @ H,(ES)) — Z/4 (see [DIK)).

Originally, in order to distinguish nonequivalent real Enriques surfaces, we cal-
culated the Pontryagin-Viro form by explicitly constructing membranes in E /conj.
In Section 6 I develop a different approach, which facilitates the calculation and,
on the other hand, covers all real Enriques surfaces that are of interest. The ap-
proach is applicable to a specific construction (which, as is shown in [DIK], pro-
duces all M-surfaces of elliptic and parabolic types): the surface in question is
constructed starting from a pair of real curves P, @ on a real rational surface Z,
and the Pontryagin-Viro form is given in terms of the topology of their real parts
(Zm; Pr, @r)- The fact that P is related to the complex orientation of the branch
curve was indicated to me by G. Mikhalkin.

Contents. Section 1 introduces the primary tool, the so-called Kalinin spectral
sequence. Section 2 recalls the basic notions related to quadratic forms and to the
Rokhlin—Guillou—Marin form of a characteristic surface. The Pontryagin-Viro form
is introduced in Section 3, and its basic properties, including the congruences,
are studied in Section 4. In Section 5 the general results are carried over to real
Enriques surfaces. In Section 6 we calculate the Pontryagin-Viro form of a real
Enriques surface obtained by a specific construction, using the so-called Donaldson
trick; these results are applied in Section 7 to produce the complete list of possible
values of the Pontryagin-Viro form on a real Enriques surface.
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Notation. Unless stated otherwise, all homology and cohomology groups are
with coefficients in Z/2. We freely denote by 2: Z/2 — Z/4 the nontrivial ho-
momorphism, as well as the induced homomorphisms H.(-:Z/2) — H.(-;Z/4),
ete.

Given a vector bundle £, we denote by w;(£) and u;(£) its Stiefel-Whitney and
Wu classes, respectively. w = 14wy +... and v = 14+wu;+... are the corresponding
total classes. If X is a smooth manifold and 7X its tangent bundle, we abbreviate
wi(TX} = wi(X) and u;(7X) = u;(X). For a smooth submanifold V C X we
denote by vV = vx V its normal bundle in X.

Let X be a closed manifold of dimension n. Then [X] € H,(X) is its funda-
mental class and {X) € Hy(X) is the 0-class defined by the union of points, one in
each component of X. (Certainly, the latter definition applies to any polyhedron.)
Poincaré duality n[X]: H*(X) — H,_;(X) is denoted by Dx = D.

If X is a complex manifold, ¢;(X) € Hy;(X;Z) stand for its Chern classes and
Kx, for both the canonical class in Pic(X') and its image Dxc1(Kx) in Hap_2(X)
(so that we can write [D] = K x for a divisor D).

1. Kalinin’s spectral sequence

1.1. Basic concepts. Let X be a good topological space (say, a finite-dimen-
sional CW-complex) and c: X — X an involution. Unless stated otherwise, we
assume X to be connected. Denote by F' the fixed point set Fixc and by X, the
orbit space X/c. Let pr: X — X be the projection and in: F <= X andn: F — X
the inclusions.

Recall that the Borel-Serre spectral sequences "Ep, and "EP? are the Serre
spectral sequences of the fibration §° x. X — Rp*°, where §° x. X is the Borel
construction S x X/(s,z) ~ (—s,cx). As is shown in (Ka], multiplication by the
generator h € H'(Rp™) establishes isomorphisms "E, ;o1 — "E,, and "EP9 —
TEP9*! for p > 0 and thus produces stabilized spectral sequences ("H,,"d,) and
("H*,"d*), which we call Kalinin’s spectral sequences of (X, c), so that

(1} 'H, = H,(X) and *H* = H*(X),

(2) Ydy = (1+c,) and 'd* = (1 +¢*),

(3) "H, = H,(F) and "H* = H*(F).
An alternative, geometrical, description of Kalinin’s spectral sequences and related
objects is found in [DK2].

The convergence in (3) means that there is an increasing filtration {F?} on
H,(F), a decreasing filtration {F,} on H*(F'), and homomorphisms bv,: F? —
*H, and bvP: *H” — H*(F)/F,—1 that establish isomorphisms of the graded
groups. (Note that in general the filtrations do not respect the grading on H,(F)
and H*(F).) We will call bvy, and bv” the Viro homomorphisms; often they will be
considered as additive relations (partial homomorphisms) H,(F) --+ Hp(X) and
HP(X) --» H*(F).
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1.2, Multiplicative structures. The homology and cohomology versions of
Kalinin’s spectral sequences are dual to each other, i.e., "H? = Hom("Hy, Z/2) and
"d? = Hom("dp,idz,5). The cup- and cap-products convert "H* and "H, to a graded
Z/2-algebra and a graded "H*-module, respectively, so that all the differentials
except 1d are differentiations. Furthermore, if X is a closed n-manifold and F' # &,
the Poincaré duality Dx induces isomorphisms D: "H? — "H,,_,, and in the usual
way one can define intersection pairings *: "Hp, ® "H; — "Hy4—pn. The induced
(via bv,) pairing on the graded group Gr’r H,(F) is called Kalinin’s intersection
pairing. The ordinary intersection pairing on H,(F') will be denoted by o.

1.2.1. THEOREM ([DKZ2]). Let X be a smooth closed n-manifold and c: X —
X a smooth involution. Then for a € FP and b € F9, one has w(vF)n(aob) €
FPEI=" gnd
bv,aobvyb=bv, ¢ n|w(¥F)n(aob)].

1.3. Relation to the Smith exact sequence. Recall that the Smith exact
sequences of (X, c) are the exact sequences

— Hpp1 (X, F) = Hp(X, F) @ Hy(F) = Hy(X) 2 Hy(X, F) —
— HP(X,F) 25 HP(X) 25 HP(X,F) @ HP(F) 2 HPYY(X, F) — .

The connecting homomorphisms A are given by z — wnz @ 0z (in homology) and
2@ f — wuz+4df (in cohomology), where w € H (X \ F) is the characteristic class
of the double covering X ~ F — X\ F. In [DK2] it is shown that Kalinin’s spectral
sequences can be derived from the Smith exact sequences. In this paper we only
need the corresponding description of the differentials and Viro homomorphisms:

1.3.1. THEOREM ([DKZ2]). The differentials "d, and "d?, considered as additive
relations Hy(X) ~-+ Hpir—1(X) and HP(X) --+ HP~"t1(X), are given by

"dy =tryoto (A" o) topr,, "d* =prro(mo A Lo motr,

where v: Hy(X,F) — H,(X,F)® H,(F) and 7: H?(X,F) ® HP(F) — HP(X,F)
are, respectively, the inclusion and the projection.

A (nonhomogeneous) classz =3, pTir Ti € H;(F), belongs to F? if and only
if there are elements y; € H(X,F) such that A(y;r1) = y; © z; for i < p. In this
case bvy T = tr.(yp ® =) (modulo the indeterminacy subgroup).

A class x € HP(X) survives to “HP if and only if tr* z = y* ® zP extends to a
sequence y* ©z' € H{(X,F)® H'(F), i < p, such that y**! = A(y* D x?) fori < p.
In this case bv’ z =Y, &' mod F,_;.

1.4. The groups "B and "Z. Let "B, C "Z, C H,(X) be the pullbacks of
Im "~ 'd, and Ker "~d,, respectively, so that "H, = "Z,/"B,. Denote B, = |J,."Bp
and *®Z, =,."Zp. Then *Hy = *Z,/*°B,. There are obvious cohomology analogs
"BP C "ZP C HP(X), and "H? ="ZP /"B? for 1 < p £ o0.

1.4.1. PROPOSITION. One has *°Z, = Ker[pr, : Hy(X) — Hp(X, F)] and *°B?
= Im[pr*: H?(X,F) — H?(X)].

PrOOF. The statement follows from Theorem 1.3.1. Since all the spaces in-
volved are finite-dimensional, both Smith exact sequences terminate. Hence, an
element x € H,(X) is anuihilated by all "d,,, p > 0, if and only if (¢ o pr,)(x) = 0.
Similarly, for any element z € HP(X, F), the multiple image A™"?(z) belongs to
Im(m o tr*) for r > 0. O
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1.4.2. CorOLLARY. If X is a closed smooth manifold, ¢ is a smooth involution,
and F # (0, then

*B, = Im[tr,: H,(X \F) - H,(X)], ©Z* = Ker[tr*: H*(X) — H*(X \ F)).
Proor. This follows from Proposition 1.4.1 and Poincaré duality. 4

1.5. Miscellaneous statements. In this section we state several simple re-
sults needed in the sequel.

1.5.1. ProposiTION ([DKZ2]). Denote by Sq, the homology Bockstein homo-

morphism. Then for any class z =3, ., z; € FP, z; € H;(F), one has

Sq, bv,z =bvy_y (Sq1 T+ Z le) = bvy_1 (Sql T+ Z(i + 1)3:1-).

(In particular, the classes in parentheses belong to FP~1.)

1.5.2. PROPOSITION. Let X be an oriented closed smooth n-dimensional man-
ifold, Hi(X) = 0, and B C X a c-invariant oriented closed smooth submanifold
of pure codimension 2 such that [B] =0 in H,_o(X). Assume that ¢ reverses the
co-orientation of B. Let, further, p: Y — X be the (unique) double covering of X
branched over B and w, its characteristic class. Then for x € Hy(F ~ B) one
has {wp, ) = bvaz o 3[B], where 3[B] is obtained by dividing the integral class
[B] € Hp—2(X;Z) by 2.

PROOF. Realize z by an oriented simple loop [. After multiplying it by an odd
integer, we may assume that [ bounds an oriented membrane 9 in X, which may be
chosen transversal to B. Then {(w,,z) = Card(9 N B) mod 2. On the other hand,
[MUC(9M)] = bva z and the statement follows from Card(MNB) = £ [WMUc(9)]o[B].
(Note that c reverses the orientation of 9.) O

1.5.3. PROPOSITION. Assume that X 4s a closed 4-manifold, H (X ;Z) = 0,
and F is a surface. Then X is a Z-homology 4-sphere if and only if c is an M-
involution (i.e., dim H,(F) = dim H,(X)) and F is connected. If this is the case,
¢, acts as multiplication by (—1) on Ho(X; Z).

PROOF. Assume that F # @& (since otherwise H;(X) = Z/2). Then H;(X;Z)
= 0 and the first statement follows if we compare the Euler characteristics using the
Riemann—Hurwitz formula. For the second statement, observe that H,(X; Q) is the
c.-skew-invariant part of H,(X;Q); this determines the action of ¢, on H,(X;Z) C
H.(X;Q). O

2. Rokhlin—Guillou—Marin congruence

2.1. Quadratic forms and Brown invariant. The results of this section
can be found in most textbooks in arithmetics; see also [vdB, Br, GM, KV].

Let V' be a Z/2-vector space and o: V @ V — Z/2 a symmetric bilinear form.
A function q: V' — Z/4 is called a quadratic extension of o if g(z+y) = q(z)+¢(y)+
2(z o y) for all z,y € V. The pair (V,q) is called a quadratic space. (Obviously, o
is recovered from g.) A quadratic space is called nonsingular if the bilinear form
is nonsingular, i.e., V' = 0; it is called informative if q|,,.. = 0. The following is
straightforward:
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2.1.1. PROPOSITION. Let V be a Z/2-vector space and o: V@V — Z/2 a
symmetric bilinear form. Then

(1) g(z) = z® mod 2 for any z € V and any quadratic extension q of o;

(2) quadratic extensions of o form an affine space over V¥V = Hom(V,Z/2) via
(g +1)(z) = q(z) +2l(z) forle VY and z € V;

(3) if o is nonsingular, its quadratic extensions form an affine space over V via
(¢ +v)(z) =q(z)+2(voz) forv,z eV,

The Brown invariant Br(V,q) (or just Brg) of a nonsingular quadratic space
is the (mod 8)-residue defined by

1 ; 1
exp (Z im Br q) = 92dimV Z exp (5 iwq(w)).
eV

This notion extends to informative spaces: since ¢ vanishes on V1, it descends to
a quadratic form ¢': V/V ' — Z/4, and one lets Brq = Br¢'.

2.1.2. PROPOSITION. For any informative quadratic space (V,q), one has:

(1) Brg =dim(V/V+) mod 2;

(2) Brg = ¢g(u) mod 4 for any characteristic element u € V;

(3) Br(g + v) = Brq — 2¢(v) for any v € V (see Proposition 2.1.1(3));

(4) Brq = 0 if and only if (V,q) is null cobordant; i.e., there is a subspace

H CV such that H- = H and q|g = 0.

The Brown invariant is additive: for any pair (Vi,q;), i = 1,2, of quadratic spaces
one has Br(V1 ® V5, q1 @ g2) = Br(V1, 1) + Br(V2, ¢2).

2.1.3. PROPOSITION. Let L be a unimodular integral lattice (i.e., o free Abelian
group with a nonsingular symmetric bilinear form LQ L — Z). Let V =L Q Z/2
and define a quadratic form ¢:V — Z/4 viaq(z) = 2> mod 4 forz €V and T € L
such that T = z mod 2L. Then Br(V,q) = o(L) mod 8.

A subspace W of an informative quadratic space (V, ¢) is called informative if
WL C W and q|w. = 0. (Clearly, an informative subspace is an informative space;
hence, its Brown invariant is well defined.)

2.1.4. PropPOSITION. If W is an informative subspace of an informative qua-
dratic space (V,q), then Br(W, ¢lw) = Br(V, q).

REMARK. The notion of informative subspace still makes sense if the quadratic
form ¢ is defined only on W. Proposition 2.1.4 can then be interpreted as follows:
the Brown invariant of any extension of ¢ to a quadratic form on V equals Brg.

2.2. Rokhlin—Guillou—Marin congruence (see [GM]). Let Y be an ori-
ented closed smooth 4-manifold and U a characteristic surface in Y, i.e., a smooth
closed 2-submanifold (not necessarily orientable) with [U] = u2(Y) in H2(Y). De-
note by i: U — Y the inclusion and let K = Ker[i,: H;(U) — H1(Y)]. Then there
is a natural function q: K — Z/4, which is a quadratic extension of the intersection
index form on H;(U). We call it the Rokhlin-Guillou-Marin form of (Y,U). It can
be defined as follows: pick a class x € K and realize it by a union [ of disjoint
simple closed smooth loops in U. It spans an immersed surface 9 in Y, which
can be chosen normal to U along [ = 89 and transversal to U at its inner points.
(Such a surface is called a membrane.) Consider a normal line field £ on [ tangent
to U and define the index ind M € %Z as one half of the obstruction to extending £
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to a normal line field on M. (Since 7 @ vIM is an oriented vector bundle, the
obstruction is well defined as an integer. If [ is two-sided in U, the index is usually
defined using vector fields instead of line fields; this explains the factor 1/2.) Then
q(z) = 2ind M + 2 Card(int M N F) mod 4.

2.2.1. THEOREM ([GM]). Let Y, U, and (K,q) be as above. Then (K,q) is
an informative subspace of H1(U) and 2Brq =0(Y) — U oU mod 16, where Uo U
stands for the normal Euler number of U in Y.

REMARK. There is an alternative construction of the Rokhlin-Guillou—Marin
form. Since U is characteristic, Y \\ U admits a Spin-structure which does not
extend through any component of U. Its restriction to the boundary of a tubular
neighborhood of U induces in a natural way a Pin™-structure on U (cf. [Fin]),
which defines a quadratic form ¢ on H,(U). It is not difficult to see that ¢ is well
defined up to adding elements of Im[i*: H1(Y) — H'(U)] (see Theorem 2.1.1(2))
and, hence, its restriction to K does not depend on the choice of the Spin-structure;
it coincides with q.

3. Pontryagin-Viro form

3.1. Definition of the Pontryagin-Viro form. The Pontryagin square is
the cohomology operation P?": H*"(X) — H*"(X;Z/4) uniquely defined by the
following properties (see, e.g., [EM]):

(1) P?"(z + y) = P?(z) + P (y) + 2(z u y) for any z,y € H"(X);

(2) P?*(z) = z? mod 2 for any z € H**(X);

(3) P?™(z mod 2) = z2 for any T € H*"(X;Z/4).
Constructively P?" can be defined via P?"(z) = (Z up = + Z u; 0Z) mod 4, where
T € C?"(X;Z) is an integral cochain representing z and u; are the cup-i-products
used in one of the definitions of Steenrod squares.

From now on we assume that X is a connected oriented closed smooth manifold
of dimension 4n and ¢ is a smooth involution. Denote by Pa,: H,(X) — Z/4 the
composition

1 2n
Hon(X) 22, g (x) 225, goe(x, z4) 22, 24,

3.1.1. PROPOSITION-DEFINITION. If P»,(*Bs,) = 0, then Pa, descends to a
well-defined quadratic function “Hz, — Z/4. The composition of this function
and the Viro homomorphism bva,: F2™* — ®H,,, is denoted by P and is called the

Pontryagin-Viro form. It is a quadratic extension of Kalinin’s intersection form
*: FR @ F2 — Z/2, ie., Pz +y) =P(z) + Py) + 2(z * y) for any z,y € F>".

PROOF. The statement follows immediately from the fact that *°B, o ®Z, =0
(where o stands for the intersection pairing) and property 3.1(1) above. O

3.1.2. PROPOSITION. P is well defined if and only if ugn(X ~ F) = 0.

ProOOF. The statement is a consequence of Corollary 1.4.2 and the obvious
relation Py, (tr,z) = 2(z 0 ) = 2(ug,(X ~\ F),z) for £ € Hap(X N\ F). The
latter follows from properties 3.1(1) and (2) of Pontryagin squares and the fact
that tr,, when restricted to the manifold X \ F, coincides with the inverse Hopf
homomorphism pr'. U
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3.1.3. COROLLARY. Assume that I’ has pure dimension dim X — 2, so that X
is a manifold. Then P is well defined if and only if D 5 uo,(X) belongs to the image
of h.: Hop (F) — Hay(X).

3.1.4. ProproSITION. If P is well defined, then BrP = ¢(X) mod 8.

PROOF. By definition, P is well defined if and only if *°Z5, is an informa-
tive subspace of (Hy,(X), P2,). (Due to the Poincaré duality *Z;5, = *Bay;
see [DK2].) Hence, BrP = BrP,. On the other hand, Ho,(X;Z) ® Z/2 is
also an informative subspace, and the congruence follows from Proposition 2.1.3
applied to Hs, (X;7)/ Tors. D

3.2. Some sufficient conditions.

3.2.1. PrROPOSITION. Let ¢ be orientation preserving. Then I, descends to
’Hy,, if and only if the 2n-dimensional component of im(u(TF)u~ (vx F)) equals
’u»gn(X).

Proor. As known, the 2n-dimensional component of iny(u(7u '(vx F)) co-
incides with the characteristic class 85, of the twisted intersection form (z,y) —
z o c.y (see, e.g., [CM]). On the other hand, for x € Ha,(X) onc has

PQ'n(ld‘znl') = P‘zn(-T + C*ﬂ’f) = 21)2n(x) + 2(3: o C*.Q’,‘) = 2<92n + Uon, .T)

(since Py, (x) = 2% mod 2), and the statement follows. OJ

3.2.2. COROLLARY. A necessary condition for P to be well defined is that 0,,,
the 2n-dimensional component of iny(u(t F)u™"(vx F)), coincides with us, (X). The
following are sufficient conditions:

(1) ¢ is an M-involution (i.e., "d, =0 forr = 1);
(2) O = u2n(X) and ¢ is Z/2-Galois maximal (i.e., "d, =0 for r = 2);
(3) Oop = U9, (X) and Hi(X) =0 for 0 <1 < 2n.

REMARK. If dim F' € 2n. the condition of Proposition 3.2.1 (and, hence, the
necessary condition of Corollary 3.2.2) reduces to [Fla, = Duon(X) in Ha, (X)),
where [Fla, is the fundamental class of the union of 2n-dimensional components
of F. In this case Proposition 3.2.1 can be proved using the following observation:

3.2.3. ProrosiTioN (V. Arnold). Ifdim X = 2k is even and dim F < k, then
the fundamental class [F|i. of the union of k-dimensional components of F' realizes
in Hi(X) the characteristic class of the twisted intersection form (z,y) — x o c.y.

REMARK. If dim X = 4 and F is a surface, Proposition 3.2.1 follows also from
the projection formula Dxus(X) = tr. Dyua(X) + [F]: since Dyus(X) comes
from F, its pullback in X is zero.

REMARK. Note that conditions (1), (2) in Corollary 3.2.2 do not require actual
calculation of the differentials. Indeed, from Kalinin’s spectral sequence it follows
that ¢ is an M-involution if and only if dim /1. (F) = dim H,(X) (and in this case
02, = uon(X), as ¢, = id and the twisted intersection form coincides with the
ordinary one). Furthermore, ¢ is Z/2-Galois maximal if and only if dim H,.(F) =
dim 'H,, the latter group being equal to Ker(1 4 ¢,)/Im(1 +¢,).
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3.3. Membranes. The first statement below, which is a direct consequence
of the definitions, allows us to calculate the Pontryagin square in a 4-manifold.

3.3.1. LEMMA. Let X be an oriented closed smooth 4-manifold and M — X an
immersed closed surface. Then P|9M] = MM o M + 2x (M) mod 4, where Mo M =
e(uIM) + 2i mod 4 is the normal Euler number of M plus twice the number of its
self-intersection points mod 4. (If M is oriented, M o M = [IM]|2 mod 4, where
[M]z € Ha(X; Z) is the integral class realized by IM.)

The next two statements provide for geometrical means of calculating bvso and,
hence, the Pontryagin-Viro form in a 4-manifold.

3.3.2. LEMMA. Let M be a closed surface with involution c so that Fixc con-
ststs of several two-sided circles l1,...,1lp, several one-sided circles ny,...,ng, and
several simple isolated points Py,...,P.. Then [IN] = bva 3, where

=2 W]+ _[n] + D[P+ (ma).

PrOOF. Without loss of generality we may assume that 9% is connected. Then,
due to Proposition 3.2.3, bvi (3 [Li] + X5[nj]) equals wy(9M) in *°H;; hence, ¢ =
dim H,(9M) mod 2. Due to the Smith congruence, we have x(Fixc¢) = x(9) mod
2, and also r = dim H,(9) mod 2. Thus, bvgs = 0 and bvy s is well defined.
Now one can easily check that bvy » annihilates ®°H; (which is generated by the
images under bv; of [I;], [n,], and elements of the form {Q, — Q2), @1, Q2 € Fixc).
Since Kalinin’s intersection form is nondegenerate, bv; s = 0. Hence, bvs i is well
defined, and it must coincide with the only nontrivial element [9] € *Hj. ]

3.3.3. COROLLARY. Let M and ¢ be as in Lemma 3.3.2. If M is equivariantly
immersed in a topological space X with involution, then (M| realizes bvy . If,
further, dim X =4 and P is well defined, then P(3¢) = M o M + 2x (M) mod 4.

4. Congruences

4.1. Characteristic surfaces in X. Let us assume that X is an oriented
closed smooth 4-manifold, ¢: X — X is a smooth orientation-preserving involution,
and F' = Fixc # @ has pure dimension 2. Under these assumptions X is also an
oriented closed manifold.

We keep the notation introduced in Section 1. In addition, we denote by .77-’;]

and fﬁ], respectively, the intersection FP N H;(F) and the projection of F? to

H;(F). Recall that the connecting homomorphism A of the homology Smith exact
sequence is given by y — wny @ dy, where w € H 1(X \ F) is the characteristic
class of the covering X ~ F — X ~ F. Since the covering X — X is branched
along F', one has dDgw = [F.

4.1.1. LEMMA. bv, .7-?0] = tr, H2(X) mod *®B,. Furthermore, for y € Ha(X)

one has tr, y = bvy(ih'y) mod *®°By; in particular, P(@'y) = 2y* mod 4 pmmded
that P is well defined.

PrOOF. It follows from Theorem 1.3.1 that the image bvs fﬁ)] consists of all
elements of the form tr, y2, where y2 € Hy(X,F) extends to a sequence y; €
H{(X,F),i=0,1,2, such that A(yz) = y; and A(y;) = yo © Tp for some z¢ €
Hy(F). Thus, y; may be an arbitrary element, and the only restriction to yo is
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Oys = 0, i.e., yo = rely for some y € Hy ()_( ). For the ‘furthermore’ part observe
that tr, y = tr, yo = bvo g and

g =0(wnrely) =8(Dwn D 'y) = [Flnm* D ly=Drm* D 'y =m'y,
where D = Dy. d
4.1.2. LEMMA. bv,; .7-'[10] = tr, H1(X, F) mod *B;.

4.1.3. LEMMA. fﬁ] = Ker[,: H;(F) — H1(X)].

PROOF OF LEMMAS 4.1.2 AND 4.1.3. The statements follow directly from
Theorem 1.3.1. a

4.1.4. COrROLLARY. Ker[,: Ho(F) — Ho(X)] is the annihilator of .on} with
respect to the intersection index pairing Hy(F) ® Ho(F) — Z/2 (or, equivalently,
Kalinin’s intersection pairing Ho(F) ® .7:'[20] — Z/2).

PROOF. Let K = Ker[th,: Ha(F) — Ho(X)]. Since the restrictions of the
ordinary intersection index pairing and Kalinin’s intersection pairing to Hy (F)®.7-"[20]
coincide (see Theorem 1.2.1), it suffices to verify that u € K if and only if bvy u
annihilates bvy .F[%] = tr, Ho(X) in ®H;. For y € Ho(X) one has in,uotr,y =
m, u o y; this product vanishes for all y € Ho(X) if and only if m, u = 0. O

4.1.5. COROLLARY. Assume that P is well defined. Then an element u €
H;(F) realizes Du2(X) if and only if P(z) = 2(uoxz) mod 4 for all x € .7:'[%].

4.2. Pontryagin-Viro form and Rokhlin—Guillou—Marin forms. We
still assume that X is an oriented closed smooth 4-manifold, c¢ is smooth and ori-
entation preserving, and F' # & has pure dimension 2. Assume also that P is well
defined; due to Corollary 3.1.3 this implies that us(X) is realized by a union of
components of F.

4.2.1. PROPOSITION. Let F' C F be a union of components of F' such that
P(z) = 2(|[F'] o z) mod 4 for all z € .7-"[20]. Let H' = H,(F") ﬂfﬁ] and define
a quadratic function P': H' — Z/4 via 1 — P(z1 + xo) + 2([F'] o zp), where
zg € Ho(F) is any element such that 1 + o € F2. Then P’ coincides with the
Rokhlin-Guillou-Marin form g’ of the characteristic surface F' in X. In particular,
(H',P'") is an informative subspace of Hy(F").

ProoOF. First notice that ¢’ is well defined and, due to Lemma 4.1.3, its domain
coincides with that of q’. Choose an element z € H’ and consider a membrane 90t
as in 2.2. Let 9 = pr 19M; it is a closed c-invariant surface in X. The index
ind M (see 2.2) equals the normal Euler number ' o ', (Indeed, 2ind M is the
obstruction to the existence of a normal line field on 9V'; it is twice as big as the
obstruction to the existence of a normal vector field.) The intersection points of
int 9t and F' correspond to isolated fixed points of c|gn/, and all the 1-dimensional
components of Fixc|gy are two-sided in 9. The statement follows now from
comparing the definitions of q’ and ¢’ and Lemma 3.3.3. (Note that the total
number of intersection points of int MM and F is even and, hence, so is x(9M').) O

4.2.2. THEOREM. If F' and P’ are as in Proposition 4.2.1, then

F'oF +BrP' = i[FoF+a(X)] mod 8.
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PRrooF. The statement follows from Proposition 4.2.1, Theorem 2.2.1 applied
to £ C X, and the well-known calculation of the ingredients of Theorem 2.2.1: the
self-intersection numbers of £ in X and X are related via (F'oF')y = 2(F'oF')x,
and the signature of X is given by the Hirzebruch formula o(X) = 20(X)—Fok. U

4.2.3. THEOREM. The restriction Py of P to .7:{21] coincides with the Rokhlin—
Guillou—-Marin form q of the characteristic surface F in X. In particular, (.7:21 Puyp)
is an informative subspace of H(F) and

FoF+2BrP; =0(X)mod 16.

PROOF. The two forms are compared as in the previous proof: g is calculated
via a generic membrane I as in 2.2 and Py}, via MM’ = MU c(IM). We may assume
that 9 is an immersed surface. It realizes bv,(09), as all the components of 09
are two-sided in 9" and the intersection points of int 9t N F are nof lixed points of
the lift of ¢ to the normalization of 9. Note also that the self-intersection points
of I’ that are not on F appear in pairs and thus do not contribute to 9 o 9. [C

REMARK. Let X be the complexification of a real algebraic surface and let
¢ = conj be the Galois involution on X. (More generally, one can assume that
X is a compact smooth complex analytic surface and ¢ is an anti-holomorphic
involution.) Then Fixc = Xj is the real part of X and multiplication by /=1
establishes an isomorphism 7Xi = vXg. In particular, for any component I
of Xz one has F; o F; = —x(F;), and the congruences of Theorems 4.2.2 and 4.2.3
take the form

4.1) x(F) = %[X(X:«a) — o{X)] + Br P’ mod 8,
(4.2) x(Xz) = 2Br Py — ¢(X) mod 16.

Since x(F') = Br P’ mod 2, (4.1) implies

(4.3) y(Xg) = o(X) mod 8.

(Certainly, (4.3) follows also from the Arnold congruence for real algebraic surfaces

5. Real Enriques surfaces

5.1. Real Enriques surfaces. Recall that an algebraic surface X is called
a K3-surface if m1(X) = 0 and ¢;(X) = 0. An algebraic surface E is called an
Enriques surface if m(F) = Z/2 and the universal covering X of E is a K3-
surface. (The classical definition of Enriques surfaces is ¢ (E) # 0, 2¢;(E) = 0, and
the relationship to K3-surfaces follows from the standard classification.) All K3-
surfaces form a single deformation family; they are all diffcomorphic to a degree 4
surface in P3. Similarly, all Enriques surfaces form a single deformation family and
are all difftomorphic to each other. The intersection forms of K3- and Enriques
surfaces are, respectively, H2(X;Z) = 3Es @ 2U and Ho(E;Z) = Eg© U, where Fy
is the even unimodular form of signature —8 and U is the hyperbolic plane.

A real Enriques surface is an Enriques surface I supplied with an anti-holomor-
phic involution conj: E — FE., known as its real structure. The fixed point set
Iz = Fixconj is called the real part of E. (Obviously, these definitions apply to
any algebraic variety.)
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Fix a real Enriques surface E and denote by p: X — E its universal covering
and by 7: X — X, the Fnriques involution (i.e., deck translation of p). The real
structure conj on E lifts to two real structures ,t(2): X — X , which commute
with each other and with 7. Let XE(;) = Fixt®, § = 1,2, be their real parts. The
projections EIE: ) = p(X]]({)) are called halves of Eg. It is easy to see that Eﬁl)
and E’H(f) are disjoint, Er = En(al) U Eg), and both EIE: ) consist of whole components
of Eg. Furthermore, two components Fi, F» C Er belong to the same half if and
only if bvy (F} — Fy) = 0 (see [DK2]).

A real Enriques surface is said to be of hyperbolic, parabolic, or elliptic type
if the minimal Euler characteristic of the components of Ey is negative, zero, or
positive, respectively.

5.2. The Pontryagin-Viro form on a real Enriques surface. Fix a real
Enriques surface E. For the topological types of the connected components of Eg,
we will use the notation § = $2, S, = #,(S' x §'), and V, = #,Rp®. The
decomposition of Eg into two halves will be written as Iy = {EH(:)} L {Eg)}.

E is said to be of type I if [Eg] = 0 in (Hy(E;Z)/ Tors) ® Z/2 or, equivalently,
[X][(ll)] + [Xﬂgz)] = 0 in Ho(X); otherwise F is said to be of type II. Type I is further
subdivided into Iy and I,,, depending on whether [Eg] = 0 or Dus(E) in Hy(E).

5.2.1. LEMMA. The following are sufficient conditions for the existence of the
Pontryagin-Viro form P: F?> — Z/4 on a real Enriques surface E:

(1) E is an M-surface;
(2) E is of type I, and either Egr is nonorientable or both E]gkl) and Eﬂ(f) are
nonempty;

(3) E is of type 1, Egr is nonorientable, and either both Eﬂ({l) and Eﬂ(f) are
nonempty or Eg contains a nonorientable component of odd genus.

PROOF. As is shown in [DK2], the subgroup 72 C H,(Eg) is generated by
elements of the form [Fy| and (F} — Fy) & z1, where Fy, Fy, F; are components
of Eg, 1 € H1(ER), and cither 22 =1 and Fy, F; are in distinct halves, or zZ =0
and Fy, F; are in the same half. In particular, F is Galois maximal if and only if
Ey is nonorientable or both EI&I), Eg) are nonempty. If /' satisfies the hypotheses
of (3), then Duy(E) # 0 in ®°H;. Since [Ez] = Dua(FE) in *Hs, type I implies I,,.
All the statements follow now from Corollary 3.2.2. O

From now on we assume that P is defined. Two components F}, Fs of the same
half are said to be in onc quarter if P(F; — Fy) = 0. Since P is linear on F;, each

half Eﬂ(: ) splits into two quarters, which consist of whole components of E]l(:). We

denote this by Eg’) = (quarter 1)UI(quarter 2). Following [Mik], the decomposition
of ER into four quarters is called complex separation. Due to Corollary 4.1.5, it has
the following geometrical meaning: a subsurface F’' C Ep is characteristic in £ /conj
if and only if it is the union of two quarters which belong to distinct halves.

Let Bz = {(Q") 1 (@)} u {(@®) U (@)} be the decomposition of Fg

z(;) and q;-f) the restriction

to Hl(Qz(l)) (respectively, Hl(Q;?))) of the Rokhlin-Guillou-Marin form of the

into quarters. If both halves are nonempty, denote by g
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characteristic surface QEE) U Q§-2). As follows from Proposition 4.2.1,
qg) = qg) + le(le)) and, hence, Br qg) = —Br qgé),

qﬁ) = q_gg) + le (ng)) aﬂd, hence, Br qﬁ) = —Br qgg)

(see Propositions 2.1.2 and 2.1.1). If one of the halves, say E']gf), is empty, denote
by qgl) the restriction of P to Hp (le)); this form is defined on the annihilator of

wy (le)) and is informative. In this notation congruence (4.1) takes the following
form:

5.2.2. PROPOSITION. If both the halves are nonempty, then for i,j = 1,2
X(Qi(-l)) + x(Qﬁz)) =2+ 1x(Er) +Br qi(-;-) + Br qﬁ) mod 8.
IFEQ = @, then fori=1,2
X(QEI)) =2+ ;x(Er) +Br qgl) mod 8.

Another invariant used in the classification is the valuc P(w; ), where w; is the
characteristic class of a nonorientable component of Ei of cven Euler characteristic.

5.2.3. PROPOSITION. Let F,F, C Egr be two nonorientable components of
even Euler characteristic. Then P(w1(F1)) = P(wi(F2))-

PROOF. Asisshown in [DK1], if E has two nonorientable components of even
Euler characteristic, it has no other nonorientable components. Hence, w,(Eg) =
w1 (F1) + w1 (Fy). On the other hand, w; (ER) is a characteristic element in 72 and,
due to Propositions 2.1.2(2) and 3.1.4, P(w;(ER)) = 0. O

6. The Pontryagin-Viro form via Donaldson’s trick

6.1. Constructing surfaces via Donaldson’s trick. Let Z be a rational
surface with real structure ¢: Z — Z and nonempty real part, and P, @ C Z a pair
of nonsingular real curves.

6.1.1. AsSUMPTION. In this and next sections we assume that
(1) [P] and [@)] are even in Hy(Z;Z) and [P] + [Q] = —2K z,
(2) dim Ker[inclusion,: Ho(P) — H3(Z)] =1,
(3) the multiplicity of each intersection point of P and @Q is at most 2.
Since [P] is even, Py divides Zg into two parts with common boundary Pg. Denote
their closures by Z*F = Z*. Similarly, introduce two parts Z*9 with common
boundary Qg. Let Z% = Z%F N Z%Q for §,e = + and assume that

(4) Ztt =2,ie, R CZ %and Qg C Z~F.

Consider the double covering Y — Z branched over P and denote by B the
pullback of ). Let Y’ be the minimal resolution of singularities of B (which occur
at the tangency points of P and @ and are all nondegenerate double points) and B’
the proper transform of B. The real structure ¢ on Z lifts to two real structures c*
on Y’'. With respect to one of them, c¢¥, the real part Yy projects to Zt+ and
By = @.

6.1.2. PrRopPoSITION. The surfaces Y andY’ above are rational, [B] = —2Ky,
and [B'] = —2Ky:. The double covering X — Y’ of Y’ branched over B’ is a
K3-surface.
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PRoOF. The relations [B] = —2Ky and [B’] = —2Ky- follow from the pro-
jection formula and Assumption 6.1.1(1). Thus, the anti-bicanonical class of ¥ is
effective and, hence, Y is either rational or ruled. On the other hand, from the
Smith exact sequence and (2) it follows that H;(Y) = 0. Hence, Y is rational.
Now the projection formula gives 2K x = 0; i.e., X is a minimal surface of Kodaira
dimension 0. Using the Riemann-Hurwitz and adjunction formulas, one obtains
x(X) = 2x(Y’") + 2K2, = 24. Hence, X is a K3-surface. O

Denote by t(!) the deck translation of X — Y’. Duc to (4) above, one of the
two lifts of ¢t to X is fixed point free; denote it by 7. One can now apply to (t3),7)
the following equivariant version of Donaldson’s trick:

6.1.3. PROPOSITION (cf. [DK3]). Let X be a K3-surface and (cp,c,) a pair of
commuting involutions on X, one holomorphic and one anti-holomorphic. Then
there is a complex structure on X with respect to which cp, is anti-holomorphic and
o s holomorphic.

Let X be the resulting K3-surface. Then the quotient £ = X /7 is an Enriques
surface and ¢() descends to a real structure conj on E. Clearly, Eﬂ(ll) = B'/ct and

Eg) = Yj, and there is a projection 7: Eg — Q U Z*, which is a branched double
covering outside the tangency points of Pr and Qr. The pullback 7—!(T') of each
tangency point T' consists of a one-sided loop in E1|(12) and a point in Elgkl). Let
p: Egr — ER be the deck translation of .

6.1.4. NOTATION. For a subset S C QU Z*, we denote by {(7~1(Q)) € Ho(ER)
the class generated by the connected components of 7!(S), and by [r~1(S)] €
H,(ER) the fundamental class of its components of highest dimension (provided
that they are all closed manifolds).

6.2. Existence of P and complex separation. Let E be a real Enriques
surface obtained as in 6.1 from a configuration (Z; P,@). For all intermediate
objects we keep the notation introduced in 6.1.

A nonsingular real curve C' C Z is said to be of type I, or separating, if C/c
is orientable. The real part of each real component C; of C has a distinguished
pair of opposite orientations, called complex orientations, which are induced from
an orientation of C;/c. The complement C; \ C;r consists of two components C',;i
with common boundary C;g; their natural orientations induce the two complex
orientations of C; .

A triple (Z; P,Q) as in 6.1 is said to be of type I if P is of type T and Z~ \ Qg
is orientable. Let P;, i =1,...,p, and @;, j = 1,...,q, be the real components of
the curves; Z_, k = 1,...,27, the connected components of Z~t and Z—; and
Z",1=1,...,2z7%, the connected components of Z*. Fix some orientations of Z,
and some complex orientations of P; g; this determines an orientation of P; and a
distinguished half P;' for each real component F;. Thus, the fundamental classes
[P;] and [Z;] are well defined mod 4 in all homology groups where they make sense.
The classes [Q;] and [Z;"] are defined mod 2.

6.2.1. DEFINITION. We say that a triple (Z; P, Q) of type I admits a funda-
mental cycle if there are some odd integers A;, i =1,...,p,and >, k=1,...,27,
and some integers u;, j =1,...,q, and %l'", l=1,...,z7, such that

(6.1) Yo MPRl+ D [027]1=2  uilQirl +2) x4 [0Z}]
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in Hy(Pr UQR;Z/4). The combination
(6.2) =Y NP1+ 4 1Z71+2) wlQi]+2) 5 7],

which is a (mod 4)-cycle in Z, is called a fundameﬁtal cycle. It is called proper if
[€] = 2Dwy(Z) in Ho(Z;Z/4).

6.2.2. PROPOSITION. A triple (Z; P, Q) of type 1 admits a fundamental cycle if
and only if 3 [P; r] belongs to the subgroup in Hy(Z~;Z/4) spanned by the classes
2[P;r), 2[Qjr], and 20[Z}"]. If Z is an M-surface with Zp connected, any funda-
mental cycle is proper.

PROOF. The first part follows from the exact sequence of pair (27, Fg U Qr).
If Z is an M-surface with Zg connected, then Z is a Z-homology sphere (see Propo-
sition 1.5.3) and [€] = 2w2(Z) holds trivially. O

The Pontryagin-Viro form on a real Enriques surface F is said to have p-
invariant complex separation if all quarters are fixed by p. Since P is obviously
p«-invariant, for cach half E]g ), i = 1,2, one has either p(Qg.z)) = Q;’), j=12, or
p(Q&i)) = Q,(f). This remark is sufficient to exclude the possibility of noninvariant
complex separation in all cases considered in Section 7 below.

6.2.3. THEOREM. The real Enriques surface resulting from a triple (Z; P, Q)
has Pontryagin-Viro form with p-invariant compler separation if and only if all
tangency points of P and Q are real and (Z; P, Q) is of type 1 and admits a proper
fundamental cycle. If this is the case, the complex separation is determined by a
proper fundamental cycle (6.2):

(1) the components 7~ 1(Q,), 7 1(Qs) corresponding to real components Qq, Qs
of @ belong to the same quarter if and only if pe — pp = 0 mod 2;

(2) the components 7=Y(Z}), #~1(Z]) corresponding to Z},Z} C Z* belong
to the same quarter if and only if »} — st = 0 mod 2.

6.2.4. COROLLARY. A proper fundamental cycle (6.2) is unique mod 4 up lo
2|Zg], 2([Z*] + [P]), and 2([Z 1] + [Q]).

6.3. Proof of Theorem 6.2.3. Note that the construction of 6.1 still works
if Assumption 6.1.1(1) and (2) are replaced by the weaker assumption
(1) [P] and [Q] are divisible by 2 in H2(Z;Z).
Certainly, Proposition 6.1.2 does not hold in this case and 6.1.3 does not apply; thus,
E is just a 4-manifold with orientation-preserving involution. In view of Corollary
3.1.3, Theorem 6.2.3 would follow from the following more general result:

6.3.1. THEOREM. Let (E,conj) be the manifold with involution resulting from
a triple (Z; P, Q) satisfying (1') above and Assumption 6.1.1(3), (4). Then Er C
E [conj contains a p-invariant characteristic surface if and only if all tangency
points of P and Q are real and (Z; P,Q) is of type 1 and admits a proper funda-
mental cycle. If this is the case, the p-invariant characteristic subsurfaces of Eg
are those of the form Y pu;[m~1(Q;)] + 3 s [~ (Z;")], where p; and »;" are the
coefficients of a proper fundamental cycle.

In order to prove Theorem 6.3.1, we replace E/conj by Y/ = Y//c*. In the
construction ¥’ is obtained from Y by blow-ups of the tangency points of P and @-
If such a point is real, the blow-up results in connected summation of ¥ and
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Cp?/conjugation = $* and thus does not affect the topology. A pair of conju-
gate tangency points results in the (topological) blow-up of their common image
in Y. This produces a (—1)-sphere in Y’ which is (mod 2)-orthogonal to all pull-
backs [r~ '(P;)] and [r~1(Z;")], which shows that Eg does not contain a p-invariant
characteristic surface. Thus, we can assume that P and ¢ do not have imaginary
tangency points and replace Y’ by Y.

Clearly, Y is the double covering of Z = Z/c branched over the Arnold surface
A~ = PU Z~. Denote by pr: Y — Z the projection and by w € HY(Z \ 27)
its characteristic class. Since 8: H3(Z,%~) — Ho(2™) is a monomorphism, w is
uniquely characterized by the property 8Dw = [A~]. Note also that, since Z is
orientable, w n Dw = 8q, Dw € Ho(Z,A~) and 88Sq, Dw = 8q;[A~] = Dw; (A™).

6.3.2. LEMMA. Y pu;[m~ Q)] + 3 247 [r ™ (Z;F)] = Dwy(Y) in Ha(Y) if and
only if the following relation holds in Ho(Z,27):

(6.3) > wilQi1+ ) # (2] = Say Dw + Dwa(2).
PrOOF. The statement follows immediately from the projection formula and
the Smith exact sequence. O

6.3.3. LEMMA. The linear combination (6.2) is a fundamental cycle if and only
if S pi10Q;]1 + 3 #4021 = Dw (A™) in Hy(A7).

ProOF. This is a direct consequence of the definition of Bockstein homomor-
phism via chains. O

From Lemma 6.3.3 it follows that a necessary condition for (6.3) to hold is
that u;, xfr must be coefficients of a fundamental cycle; in particular, this implies
that (Z; P, Q) must be of type L. If this is the case, Sq; Dw is the relativization
of a class z € Hy(Z, Px U Qg), which is well defined up to the image of Ha(2")
and has the property 2z = Y [Pi] + Y_[Z; ] mod 2H(2") in Ha(Z, Fe U Qr; Z/4).
Since both x2: H2(Z PrUQRr) — Hy(Z,Pr UQR;Z/4) and the relativization
Hy(Z;Z/4) — Hy(Z, Pr U Qg;Z/4) are monomorphisms, (6.3) is equivalent to the

fact that u; and "‘1+ are coefficients of a proper fundamental cycle. O

6.4. Values on 1-dimensional classes. Fix a triple (Z; P, ()) satisfying the
conditions of Theorem 6.2.3, so that the Pontryagin-Viro form P on E is well
defined and the complex separation is p-invariant.

Denote & = Zr U P U Q and for an immersed (in the obvious scnse) loop
[ C G transversal to Pr and Qg define its ‘normal Euler number’ e(l) € Z/2 to
be 1 or 0 mod 2 depending on whether [ is disorienting or not. (If { passes through
an isolated intersection point of P and @, the orientation is transferred so that
the point has intersection index +1.) The following obvious observation is helpful
in evaluating e(l): let an oriented arc U belong to a half CT of a type 1 curve C
(which, in our case, can be the union of real components of P and separating real
components of Q) so that O C Cr and V' is normal to Cr. Then the coorientation
induced from the complex orientation of Cr at the initial point of ' is transferred
by U to the coorientalion opposite to the complex orientation of Cr at the terminal

point of V.
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6.4.1. PRoPOSITION. For ! C & as above one has
P([ﬂ_l([)] & (m71(1))) = 2e(l) + 2ig(0) + 2i*t (1) + ipng(f) mod 4,

where ig(f) and it (l) are the numbers of isolated intersection points of | with Q and
Z*, respectively, and ipng(l) is the number of interseclion points P N Q) through
which | passes.

PROOF. Let 9t be a membrane in Z normal along 80 = [ and transversal
in int 9 to all strata of &. Then the value in question can be found by using
My = pr—!(9M) (cf. Proposition 4.2.1). Clearly, indMy = 2ind M + Lipng(l).
(To define ind MM, we use a normal line field on [ tangent to all strata of & and
patch it at the points of PN @ using local orientations.) Further,

Card(int My N ELY) = ig(l) 4+ 2 Card(int M N Q),
Card(int My N ESY) = it (1) + 2 Card(int M N Z7T).

It remains to notice that 2ind 9t = 0 or 1 mod 2 depending on whether the line
field is orientable or not. d

6.4.2. PROPOSITION. Given an intersection point T € PaNQr, for its pullback
one has P([r~1(T)] + (=~ 1(T))) = 1.

Let S be a connected component of one of Q, P, or Zg \ (Pr U Qr). Assume
that 0S does not contain a tangency point of P and . Then 95 is a loop in Eg.

6.4.3. PROPOSITION. Let Z, be a connected component of Z~ with 8%, dis-
joint from Pr N Qr. Then P[0Z, | = 2x(Z; ) mod 4.

6.4.4. PROPOSITION. Let P; be a real component of P with Pig disjoint Jrom
PrNQg. Then P([Pig] + {x~1(P;NQ))) = 3[P]? mod 4.

PROOF OF PROPOSITIONS 6.4.2, 6.4.3, AND 6.4.4. We lift Z, (respectively,
P; or the exceptional curve appearing when T is blown up in Y) to X and then
project the result to . This gives a conj-invariant closed surface in E, and the
value in question is found via Corollary 3.3.3. O

In the rest of this section we consider the case in which S is either Q; for a
real component @; of @ or a component Z;" of Z*. Fix a proper fundamental
cycle € and denote by U the corresponding characteristic surface in Y. Assume
that U contains 7 ~1(§) C Er and denote by q¢ the Rokhlin—-Guillou-Marin form
of U. The choice of € determines a preferred orientation of P (which induces
3" Xi[P; r] mod 4 on 8P) or, equivalently, a half Pt of P < Fg.

Let w € H'(ZR) be the class Poincaré dual to [Cg|, where C' C Z is a real curve
with 2[C] = [P] in H2(Z;Z). The restriction of w to Zg . Fg is the characteristic
class of the restricted covering Y — Z (see Proposition 1.5.2). For each real com-
ponent @; of @ denote by w; € H'(Q; \ P) the characteristic class of the covering
Y — Z restricted to Q; \ P. (w; can be interpreted as the linking number with 2~
in Z.)

Assume that (w,[l]) = 0 for each boundary component | C 6S and define the
‘linking number’ lkg wy(S) € Z/4 of the characteristic class of S with the Arnold
surface. Fix some orientations of the boundary components and, if § = Qj, some
local orientations at the intersection points § N P. This defines a lift of w;(S)
to a class wj € H(S,85 U (S N P)) (which can be defined as the obstruction to
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extending the chosen orientations {o the whole surface). We let
ke w1 (S) = 2{w, Dwy) if S = Z}} or 2{w;, Dw}) — (int So P) if § = Q;.

(In the latter case the intersection index is defined mod 4 using the chosen local
orientations of S; the condition (w;, [0S]) = 0 implies that 85 is not linked with 2~
and, hence, int S o > = 0 mod 2.)

In the case § = @Q;, for a real component Q; of Q the above definition is
cumbersome and not ‘seen’ in the real part. If ); is of type I, it can be simplified:
ke wy(S) = Card(Q; N P7) — Card(QJ! NP7 ) mod 4 for any half Q; of Q;.

6.4.5. PROPOSITION. Let S be either Q; for a real component Q; of @, or a
component Z,\ of ZT. Assume that S is disjoint from P N Qz and (w,[l]) =0
for each boundary component | C 3S. Then q¢[0S] = lke w,(S).

REMARK. Proposition 6.4.5 applies to the gencralized construction described
in 6.3. In the case of Enriques surfaces, due to Corollary 6.2.4, the preferred
orientation of I’ is defined up to total reversing and lke w; (S) does not depend on
the choice of €. Furthermore, due to the assumption made, 95 is a collection of
two-sided circles in Eg. Hence, q¢[05] = P[9S].

Proor. Let My C Y be an oriented membrane normal along 09y = 85 and
transversal in int MM to both U and A~. Let M be its projection to Z. Clearly,
ind My = ind MM and the intersection points of int My and U project one-to-one.
Furthermore, 9 is tangent to A~ at its inner points; hence,

2Card(int Iy NU) = (int Mo €) — 2(int M o A~ } mod 4.

(Recall that U consists precisely of those components of Er whose coefficients in ¢
are 2 mod 4.) Since [€] = 2wy (Z) mod 4 and [2 | = 0 mod 2 in Z, the expressions
2ind M + (int M o €) mod 4 and (int Mo A" } mod 2 do not depend on the choice
of 1; one can replace M by another membrane, which does not have to lift to Y.
(Strictly speaking, to claim this, one should fix the orientation of 09 induced
from 9; however, il is chosen arbitrarily for 9y and does not affect the result.)
For the new membranc take S shifted along a normal vector field. To make it
orientable, fix some choices used to define lke wy(S), cut S along a simple loop [
representing w}, pick a generic orientable membrane 2 spanned by [, and attach
20 to the cut. Let 9 be the result. Then int M oA = Card(S N ) mod 2 and

intMo€ =2indS + (intSoA™) + 2Card(NNA ) mod 1.

(The first term here is due to the original shift of S along a normal ficld: recall that
S has coecflicient 2 mod 4 in €. The second term stands for the intersection index
of P and the cut of S, which are both oriented.) Since ind 9t = ind S mod 2, one
obtains g¢ (05) = 2Card(MNA ") — (it S o P) = lke w1 (S) mod 4. -

6.5. Resolving singularities of I’ and Q. Let (Z'; P’, Q') be a triple sat-
isfying Assumption 6.1.1(1)—(4), except that P’ and @’ may be singular. Assume
that the curve P’ +@Q' has at most simple singular points (i.e., those of type A,, Dy,
Eg, E7, or Eg). Then there is a sequence of blow-ups which converts (27; ', Q') to
a triple (Z; P, Q) with P> and @ nonsingular and satisfying Assumption 6.1.1(1)—(4).
More precisely, the singularities of P’ + ()’ can be resolved by blowing up double or
triple points. Let O be a singular point of, say, P’. Blow it up and denote by e the
exceptional divisor and by P, the proper transform of P’. Then the new pair (P, Q)
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on the resulting surface is constructed as follows: @ is the full transform of Q' and
P is either P or P + e, depending on whether O is a double or triple point of P’.
The singular points of Q' are resolved similarly, with P’ and @’ interchanged. If
the resulting curves (P, Q) are still singular, the procedure is repeated.

7. Calculation for real Enriques surfaces

7.1. M-surfaces of elliptic and parabolic type.

TABLE 1. M-surfaces of elliptic type (Eg = 4V; U 25)

EViuSYu2viusS) © ViUSL(S) (w)uM)
(4V1) U (25) @ (V1) U (25) (2V1) U (V1)
@Eunus)u(rius) W) (8V1) U (S) (V1) U (5)
(3V1) U (25) (V1) (2V)uU(VviuS) (Vi)u(s)

(2L U S)Uu(S) (V1) U (V1) evi)u(ius) (Vius)
(ViuS)u(ius)  (Vuw) | (SHU(S) (2V3) U (211)
(2V1) U (25) (Vi)u(vi) | (25) (2V1) U (2W1)
(nuS)u(mus) (2v1) (2v1) U (S) (viuS)u (W)
(2v1) U (25) (2v1) (viuSHu(vy) (viusS)u(vi)
(3Vi) U (V1 U S) (S) (2V1) U (S) (2va) U (8)

7.1.1. THEOREM ([DIK)). A real Enriques M-surface E of parabolic or elliptic
type is determined up to deformation equivalence by its complex separation and the
value P(wy) of P on the characteristic element of a nonorientable component of Eg
of even Euler characteristic (if such a component exists). The deformation types
of such surfaces are given in Tables 1 and 2, which list the separations of the two
halves and the possible values of P(wq).

OO O O
OO0 O O

{@V)u (@)} u{(25)u(29)}, Pwun) =0  {(2V2)U }U{ 25)U (28)}, P(ur) =
(Z' is a hyperboloid Rp' x ]Rp )

O O

{(n)u(R)u{ES)u(2S)}, Plw) =0  {(V2)U(V2)} U {(8S)U(S)}, P(w1) =
(Z' is a real projective plane Rp?)

FIGURE 1. Models of real Enriques surfaces with the real part
Egr = {2V5} LU {4S}
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TABLE 2. M-surfaces of parabolic type

Case Ex =85, +V, + 45

(V2 + 25) + (25) ($1) + () 0
Case Er = 2V2 + 48
(V2) + (V2) (25) + (25) 0
(V2) + (V2) (38) + (5) 2
(2V2) + {®) (25) + (25) 0,2
(V2 + 25) + (25) (V2) + (@) 0
(V2 + S) + (25) (Va + S) + (2) 2
(Va2 +28) +(S) (V2) + (S) 2
(V2 + 8) + (S) (V2 + S) +(8) 0

Case Er = V2 4 2V1 + 385

(Va +5) + (25) (V1) + (V1)

(V2 + 8) + (29) (2n1) + (9)

(V2 +25) +(S) (V1) + (V1)

(V2 + 5) +(S) (211) + (5)
(Va+8) +(S5) (Vi+8)+ (W)
(Va) + (S) Vi+8)+(Vi+8)
(Va) + (S) (2Vi + 8) + (S)

(Va+ 8) + ()
(Va+5) +(2)
(V2) + (©)

i+ 8+ (Vi +5)
(2W1) + (25)
(2V1 + S) + (25)

(Va +28) + (2V1 + S) & 0
(Va+2V1 + S) + (25) & 0,2
(Va+Vi+8)+(Vi+8) (S)+(2) 0,2
(Va2 + 8) + (2V1) (S) +(9) 0
(V2 + 8) + (2V1) (25) + () 2
(V2 +2V1) + (5) (8)+(S) 0,2
(Va+ V1) + (V1) (28) + (5) 0,2
(V2 +25) + (Vi +5) (V1) + () 0
(Va+ V1 + 8) + (25) (V1) + (=) 0,2
(Va+S) + (V1 + S) (V1) + (S) 0
(V2+S)+ (V1 +S) (Vi+S)+(2) 2
(Va+ Vi +S)+(S) (V1) + (S) 0,2
(V2 + 8) + (V1) (Vi +5S)+(8) 0
(V2 + 8) + (V1) (V1) + (25) 2
(V2 + V1) + (S) (Vi+8)+(S) 0,2
(V2) + (V1) (Vi + 8) +(29) 0
(V2) + (V1) (Vi +25) + (S) 2
(Va+ V1) + (2) (Vi + 5) + (25) 0,2

0

2

0

0

2

0

2

0

2

0

2

(Vo) + (@)

(Vi+25) + (Vi + 5)

REMARK. In [Kii] it is shown that in all cases listed in the tables P is uniquely
recovered (up to autohomeomorphism of Eg preserving the complex scparation)
from the complex separation and P(w;) via Proposition 5.2.2 and, moreover, all
forms satisfying the congruences of Proposition 5.2.2 are realized by real Enriques
surfaces.

The calculation of Pontryagin-Viro forms is based on the results of Section 5
and the following statement, which gives explicit models of M-surfaces of elliptic
and parabolic types:
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7.1.2. THEOREM ([DIK]). Up to deformation, any real Enriques M -surface of
parabolic or elliptic type can be obtained by the construction of 6.1 and 6.5 from a
triple (Z'; P!, Q)'), where either

(1) Z' =Rp?, P’ is an M-curve of degree 4, and Q' is a pair of lines; or
(2) Z’' is a hyperboloid Rp' x Rp!, P’ is a nonsingular M -curve of bi-degree
(4,2), and Q' is a pair of generatrices of bi-degree (0,1).

Figure 1 illustrates the construction of the four nonequivalent surfaces with
Ep = {2V3} U {45} (see Table 2). To emphasize the difference, the linear com-
ponents of @’ (the lines) are shown tangent to I’; in reality they must be shifted
away from P’.

7.2. M-surfaces of hyperbolic type.

TABLE 3. M-surfaces of hyperbolic type

Case Fr = V3 + V1 + 45 Other cases

(Vau'Vy) U () (2S) L (25) (Vau S)u (@) 25)u@s) o
(VaLUS)U () ViuS)u (29 (VuuW)u(e) o

(Vs LI S) Ui (V2) (25) U (5) VU@  (WU(@)
(VsUS)U (S) (ViuS)u(s) (Vie) U (@) (V2)u(z) 0
(VsUVLLUS)U(S) (S)u (S) (Vo)u (2) (Va) U (@)
(Vau2S)u(S) (V1) U (S) (V) U (2) (Va)u (@) 2
(VaU2S)L(Vius)  (S)u (@) (Vr)u (2) (Vs) U (2)
(rU28)U(28)  (V)L(9) (Vo) U (2) (Ve)U(e) 0
(Vsuviu2s)u(25) @ (Vio) U (@) (S1)u(@) 0

7.2.1. THEOREM ([DK3]). A real Enriques surface of hyperbolic type is deter-
mined up to deformation by the decomposition Eg = {E'[él)} U {Eﬂ(f)}. The realized
decompositions are listed in Table 3.

As one can easily see, the Pontryagin-Viro form of an M-surface of hyperbolic
type is uniquely recovered from Proposition (5.2.2). The corresponding complex
separations and values P(w;) are given in Table 3.

7.3. Other surfaces with Pontryagin-Viro form. Below we consider the
remaining cases, i.e., those real Enriques surfaces admitting Pontryagin-Viro form
that are not M-surfaces.

7.3.1. THEOREM. Nonmazimal real Enrigues surfaces admitting Pontryagin-
Viro form are those and only those listed in Table 4. The Pontryagin-Viro form
of such a surface is determined, via Proposition (5.2.2), by the decomposition

Ex = {Eél)} ] {Eﬂ(f)}. Table 4 lLists the complex separations and values P(w1)
on the characteristic class of a nonorientable component of even genus, if such
a component is present. An asterisk * marks the decompositions which are also
realized by a real Enriques surface of type II; a double asterisk ** marks the decom-
positions which are also realized by a real Enrigues surface of type 1 not admitling
a Pontryagin-Viro form.
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TABLE 4. Other surfaces with Pontryagin-Viro form

(M — 2)-surfaces (M — 2)-surfaces (continued)
(Va) U (2) (Vyu(i) o * (W)u ) 25)u (S)
VJu()  (Wu@ o | * @RUu®s) (S)u(S)
(Va) U (2Wh) & 0 * viusS)u(vius) (S)u(@)
(V) U (1) ()u(2) 2 enus)u@s) e
(Wu(@)  (WuV) 2 | * (WuSiuE)  (U()
(Ve) U (2) (S)u(s) o ¥ (iuS)u(28) () u ()
(Vs) Ul (@) (Vi) U (S) o (Vzu28)u(28) 1] 0
(Vs) U (V1) (S)u(2) (Va2U8)U(S) (S)u(s) o
u(s)  (Ku(e@) (Va) U (2) (25)U(25) O
(VsuWV)U(S) @ **  (S1)u (@) (25) U (29)
(V)u(®)  (BUE) 2 | * (eu(@) 2 0
(Va) U (S) (V2)u(@) 0 (M — 4)-surfaces
(V3) U (S) (Va) L (@) (Vo) Uu(S) @ 0
(Va) U (S) (Si)u(e) o ** o (28)u(29) 1]
(Vo) u (V) (S1)u (@) 2 (S)U(S) (S)U(S)

Proof of Theorem 7.3.1 is based on the classification of real Enriques surfaces,
which will appear in full in [DIK] (see also [DK1, DK2, DKS3]). The necessary
partial results are cited below.

The fact that in all cases listed in Table 4 the Pontryagin-Viro form is deter-
mined by Proposition (5.2.2) is straightforward. Thus, it remains to enumerate
the surfaces for which the Pontryagin-Viro form is well defined. In view of (4.3),
for such a surface E one has x(Eg) = 8, 0, or —8. If bg(Er) = 1, Proposition
5.2.2 applied to an empty quarter gives x(Er) = —8. Thus, it suffices to consider
(M — d)-surfaces with either x(Er) = 8 and d = 2,4, or x(Er) =0 and d = 2,4, or
X(ER) =—-8and d=2.

Case 1: x(Er) = —8, d = 2. The only topological type Er = Vig. There are
two deformation families of real Enriques surfaces E with Er = Vig; they are both
of type 1 and differ by whether wo(E/conj) is or is not 0 (see [DK3] and [DIK]).
Since Eg has a single component, such a surface admits the Pontryagin-Viro form
if and only if wa(F/conj) = 0.

Case 2: x(Er) =0, d = 2. All such surfaces are of type I (see [DK2]); hence,
they satisfy the hypotheses of Lemma 5.2.1(3) and the Pontryagin-Viro form is well
defined.

Case 3: x(Eg) =0, d = 4. Among the five topological types, with Eg = 25,
S1UVs, 2V5, VUV, and V3US (see [DK1]), only the last one can satisfy Proposition
5.2.2. (Recall that an S; component must form a separate half.) Furthermore, the
complex separation must be {(V4)U(S)}U{@}; in particular, both the components
of E are in one half. There are two deformation families of real Enrigues surfaces E
with Eg = {V4U S} U {@} (see [DIK]).! They can be obtained by the construction
of 6.1 from a triple (Z; P, Q), where Z = ¥4 is a rational ruled surface with a (—4)-
section, P € |2ex|, and Q € |eg + ex|. (Here e is the exceptional (—4)-section
and e is the class of a generic section.) One type is obtained when Zg = S;
and Pr = &; the other one, when Zr = &. In the former case, Zgp = S;, one
can apply Theorem 6.2.3: since P is of type II, the Pontryagin-Viro form is not

'In [DKS3] it is erroneously stated that there is one family with Fg = {V, U S} 1 {@}.
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defined. Thus, it suffices to construct a surface with Eg = V, U .S and well-defined
Pontryagin-Viro form. This can be done as in 6.1 and 6.5, where Z’ = Rp! x Rp/,
P’ is a pair of conjugate generatrices of bi-degree (0,1), and Q' is the union of a
pair of generatrices of bi-degree (1,0) and a nonsingular curve of bi-degree (2, 2).

Case 4: x(Er) = 8, d = 2. There are three topological types, with Eg =
2V1 U 38, Vo U 4S5, and S; U4S (see [DK1]), which we consider separately.

Each decomposition Fg = {Eu(zl)} u {Eﬂ(f)} of Eg = 2V7 U 3S is realized by two
deformation families of real Enriques surfaces, one of type 1, and one of type 11
(see [DIK]). The surfaces of type I satisfy the hypotheses of Lemma 5.2.1(3) and,
hence, have well-defined Pontryagin-Viro forms.

There is one deformation family of real Enriques surfaces E with Eg = {V2}U
{4S}, one family of surfaces with Er = {Va U 28} U {25}, and two families of
surfaces with Eg = {Vo U4S} U {@} (see [DK3] and [DIK]).2 All these surfaces
are of type 1. In the first two cases the surfaces satisfy the hypotheses of Lemma
5.2.1(3) and, hence, have well-defined Pontryagin-Viro forms. In the last case the
surfaces can be obtained by the construction of 6.1 and 6.5: one takes for Z’ the
projective plane Rp?; for P/, the union of two conics with two conjugate tangency
points (so that Pr = @); and for @', the union of a generic real line and the line
through the singular points of P’. The conics of @' may be either both real or
complex conjugate: in the former case @' is of type II and the Pontryagin-Viro
form is not defined; in the latter case Q' is of type I and the Pontryagin-Viro form
is defined due to Theorem 6.2.3.

There are two deformation families of real Enriques surfaces E with Er =
{S1} U {4S} (see [DK3] and [DIK]). They are obtained by the construction of 6.1
and 6.5 from a triple (Z'; P!, Q'), where Z' is the plane Rp? (or hyperboloid Rp* x
Rp!), P’ is a nonsingular M-curve of degree 4 (respectively, bi-degree (4,2)), and
Q' is a pair of conjugate lines (respectively, generatrices of bi-degree (0,1)). From
Theorem 6.2.3 it follows that the Pontryagin-Viro form is well defined in the latter
case and is not defined in the former case (since Z~ \ Qg is nonorientable).

Case 5: x(Er) =8, d =4, i.e., Eg = 45. Only the decompositions {45} U {@}
and {25} U {25} can satisfy Proposition 5.2.2 (and, in fact, only these surfaces are
of type I). Consider the two cases separately.

There are four deformation families of real Enriques surfaces E with Exp =
{4S} U {@} (see [DIK]). They differ by the classes realized by the image of Xlg_l)
in X/ = E and X/t® (see 5.1); the four possibilities are (w2, w2), (ws,0),
(0, ws), and (0,0). (Note that X/t(?) is diffeomorphic to an Enriques surface and
wao( X/t £ 0.) Since E/conj can as well be represented as the quotient space of

X/t? by an involution whose fixed point set is Xﬂgl) /t®) only the first of the four
families may possess Pontryagin-Viro form. Such a surface can be obtained by the
construction of 6.1 and 6.5. Take for Z’ the hyperboloid Rp! x Rp'. Let (L;, L)
and (M;, M>) be two pairs of conjugate generatrices of bi-degree (1,0) and (N7, N3)
a pair of conjugate generatrices of bi-degree (0,1). Pick a generic pair (C;,C3) of
conjugate members of the pencil generated by L, + M; + N, and Ls + My + N»
and let P = C; + Cz and @' = Ny + Na. (P’ is a real curve of type I with four
nodes, which lie on @Q'.) The existence of the Pontryagin-Viro form follows from
Theorem 6.2.3.

2In [DK3] it is erroneously stated that there is one family with Eg = {Va U485} u {&}.
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There is one deformation family of real Enriques surfaces E with Eg = {25} U
{25} (see [DIK]). A surface with Pontryagin-Viro form is constructed similarly
to the previous case. One takes for Z’ the hyperboloid Rp! x Rp!; for P, a real
M-curve of bi-degree (4, 2) with two conjugate double points; and for ¢/, the union
of two conjugate generatrices through the singular points of P’. O
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