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LINKING FORMS, RECIPROCITY FOR GAUSS SUMS AND
INVARIANTS OF 3-MANIFOLDS

FLORIAN DELOUP

Abstract. We study invariants of 3-manifolds derived from finite abelian
groups equipped with quadratic forms. These invariants arise in Turaev’s
theory of modular categories and generalize those of H. Murakami, T. Ohtsuki
and M. Okada. The crucial algebraic tool is a new reciprocity formula for
Gauss sums, generalizing classical formulas of Cauchy, Kronecker, Krazer and
Siegel. We use this reciprocity formula to give an explicit formula for the
invariants and to generalize them to higher dimensions.

1. Introduction

1.0. Overview. Let M be a closed oriented 3-manifold. We consider a C-valued
topological invariant τ(M ; G, q) depending on a finite abelian group G equipped
with a quadratic form q : G → Q/Z. This invariant arises in the theory of mod-
ular categories (see [Tu1, Chap. 1]) and generalizes an invariant introduced by H.
Murakami, T. Ohtsuki and M. Okada [MOO].

The aim of the paper is to compute τ(M ; G, q) in terms of classical invariants and
to describe its main properties. In particular, τ(M ; G, q) is completely determined
by (G, q), the first Betti number of M and the linking form of M (Theorems 1
and 4). We also compute the absolute value of τ(M ; G, q) (Theorem 1) which only
depends on the order of a certain cohomology group of M .

The crucial algebraic result of this paper is a new reciprocity formula for Gauss
sums (Theorem 3). It allows us to establish an explicit formula for the invariant
τ(M ; G, q) (Theorem 4). As another application of the reciprocity formula, we
generalize the invariant τ(M ; G, q) to closed oriented (4n− 1)-manifolds. Here we
apply the reciprocity formula in a topological context but we expect it to have
algebraic applications as well.

1.1. Definition of τ(M ; G, q) and first properties. Fix a finite abelian group G.
A quadratic form q : G → Q/Z is a function satisfying q(nx) = n2q(x) for any n ∈ Z
and x ∈ G and such that the function defined by bq(x, y) = q(x + y)− q(x) − q(y)
is a (symmetric) bilinear form on G, called the bilinear form associated to q. Let
ad bq : G → Hom(G,Q/Z) denote the adjoint homomorphism of bq. We define the

Received by the editors April 22, 1997.
1991 Mathematics Subject Classification. Primary 11E81, 57N10.
Key words and phrases. Reciprocity, quadratic form, Gauss sum, Witt group, manifold, linking

form, modular category.

c©1999 American Mathematical Society

1895

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1896 FLORIAN DELOUP

Gauss sum by

γ(G, q) = | ker ad bq|−1/2|G|−1/2
∑
x∈G

e2πiq(x).(1)

Here the normalization factor | ker ad bq|−1/2|G|−1/2 ensures that γ(G, q) is either
0 or an 8-th root of unity ([Sc, chapter 5]). The following lemma gives a necessary
and sufficient condition for γ(G, q) to vanish (the proof is given in §2.3).

Lemma 1.1.

|γ(G, q)| =
{

0 if q(ker ad bq) 6= 0,
1 if q(ker ad bq) = 0.

It is not hard to see that if q is non-degenerate or if |G| is odd, then q(ker ad bq) =
0 and hence γ(G, q) 6= 0.

Let M be a closed connected oriented 3-manifold. There is a simply connected
compact smooth 4-manifold W such that ∂W = M (see [Rok]). As a consequence
of Poincaré duality, the second homology group of W is a free abelian group and
carries a symmetric bilinear pairing BW : H2(W ;Z) ×H2(W ;Z) → Z (which may
be degenerate, since W has a boundary). Let σ(BW ) be the signature of BW , which
is equal to the number of positive eigenvalues of BW minus the number of negative
eigenvalues of BW . Denote by b2(W ) the second Betti number of W .

For any pair (G, q) such that γ(G, q) 6= 0, we define the following complex
number:

τ(M ; G, q) = γ(G, q)
σ(BW )

(|G|| ker ad bq|)−
b2(W )

2

∑
x∈G⊗H2(W ;Z)

e2πi(q⊗BW )(x).(2)

Bar denotes complex conjugate. Here q ⊗ BW denotes the Q/Z-valued quadratic
form on G⊗H2(W ;Z) defined by (q ⊗ BW )(

∑
j xj ⊗ yj) =

∑
j q(xj)BW (yj , yj) +∑

j<k bq(xj , xk)BW (yj , yk) where xj ∈ G, yj ∈ H2(W ;Z). See [MH] for further

details. The terms γ(G, q)
σ(BW )

and (|G|| ker ad bq|)−
b2(W )

2 in the right hand side
of (2) are normalization factors which are better understood in light of Theorem 1
below. Theorem 1 says that the complex number we have defined does not depend
on the choice of W , which in particular justifies the fact that we made the notation
dependent on M rather than on W in formula (2).

Before we state Theorem 1, we recall a few facts about the linking form LM of
an oriented and closed 3-manifold M . Let u, v be two transversal singular 1-cycles
in M respectively representing torsion elements [u], [v] in H1(M ;Z). There exists
n ∈ Z such that nv = ∂C, where C is a singular 2-chain in M . Then the linking
form LM is the bilinear pairing defined on Tors H1(M ;Z) by

LM ([u], [v]) =
u · C

n
mod 1

where u ·C denotes the intersection number of u and C in M . The fact that [u] is a
torsion element ensures that the right hand side does not depend on the particular
choice of C. Since a change of representatives for [u] and [v] will change u · C only
up to a multiple of n, the right hand side only depends on [u] and [v]. Properties
of intersection numbers in odd dimension ensure that LM is symmetric. It is a
consequence of Poincaré duality that LM is non-degenerate.
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Theorem 1. The complex number τ(M ; G, q) is a topological invariant of M , in-
dependent of the choice of W . If the pair (G, q) is fixed, τ is completely determined
by the following data:

(i) the first Betti number, dim H1(M ;R);
(ii) the linking form LM on Tors H1(M ;Z), considered up to isomorphism.

Moreover, if τ(M ; G, q) 6= 0, then τ(M ;G,q)
|τ(M ;G,q)| is an 8-th root of unity and the phase

of τ(M ; G, q) only depends on the linking form LM on Tors H1(M ;Z).

A useful expression for τ(M ; G, q) can be obtained by choosing W as follows.
Present the 3-manifold M as the result of surgery in S3 = ∂B4 on a framed link L
with components L1, . . . , Lm. Let W be the simply connected compact smooth
4-manifold obtained by attaching m 2-handles to the 4-ball B4 (the attaching
map being determined by the framed link L). These m 2-handles yield a basis
of H2(W ;Z) (which is free of rank m). The intersection form BW , with respect
to this basis, is given by an (m ×m) matrix of integers (whose (j, k)-entry is the
linking number of Lj and Lk). The definition (2) of τ(M ; G, q) can be rewritten in
terms of the linking matrix A = (ljk)1≤j,k≤m for L:

τ(M ; G, q) = γ(G, q)
σ(A)

(|G|| ker ad bq|)−m
2

∑
x∈G⊗Zm

e2πi(q⊗A)(x),(3)

where q ⊗A : G⊗ Zm → Q/Z denotes the tensor product of the quadratic form q
and the symmetric bilinear form defined by A. See [MH] for details.

The invariants M 7→ τ(M ; G, q) arise in the theory of modular categories (see
[Tu1]). We refer to the appendix A for the construction of τ(M ; G, q) from a
modular category.

These invariants also generalize the invariants M 7→ ZN(M ; ω) introduced by H.
Murakami, T. Ohtsuki and M. Okada [MOO] and further studied by J. Mattes, M.
Polyak and N. Reshetikhin (see [MPR]). Here N is a positive integer and ω is an
N -th primitive root of unity (resp. 2N -th primitive root of unity) if N is odd (resp.
if N is even). The relation is as follows: ZN (M, ω) = τ(M ; G, q) where G = Z/NZ
and the quadratic form q : G → Q/Z is chosen so that ω = exp(2πiq(1 mod N)).

One property of τ is the multiplicativity on connected sums. Let M#M ′ denote
the connected sum of two closed oriented 3-manifolds M and M ′. Then

τ(M#M ′; G, q) = τ(M ; G, q) · τ(M ′; G, q).(4)

Another property is the behavior of τ under a reversal of orientation. Let M
be a closed oriented 3-manifold and let −M denote the same manifold with the
orientation reversed. Then

τ(−M ; G, q) = τ(M ; G, q).(5)

Note also that τ is multiplicative with respect to orthogonal sums of pairs (G, q)
of finite abelian groups equipped with quadratic forms. All these properties follow
from the definition of τ and elementary properties of Gauss sums.

Elementary considerations show that we can always assume, without loss of
generality, that q is non-degenerate. More precisely we have

Lemma 1.2. Let G be a finite abelian group equipped with a quadratic form q such
that γ(G, q) 6= 0. Then

τ(M ; G, q) = τ(M ; G/ ker ad bq, q̃)(6)
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where q̃ is the non-degenerate quadratic form on G/ ker ad bq induced by q.

The following theorem computes the absolute value of τ .

Theorem 2. Let M be a closed oriented 3-manifold. If τ(M ; G, q) 6= 0, then

|τ(M ; G, q)| = |H1(M ; G/ ker ad bq)|1/2.

In particular, the absolute value of τ(M ; G, q) does not depend on the quadratic
form q unless q is degenerate.

Using Theorem 2, one can rewrite τ(M ; G, q) as a product of Gauss sums nor-
malized as in (1):

τ(M ; G, q) = γ(G, q)
σ(BW )

γ(G⊗H2(W ;Z), q ⊗BW ) |H1(M ; G̃)| 12 ,(7)

where G̃ = G/ ker ad bq.
Necessary and sufficient conditions for τ(M ; G, q) to vanish are given in Theorem

6 (see §3.4). Theorems 1 and 2 indicate that the interesting topological information
is concentrated in the phase of τ(M ; G, q). The question arises as to how to deter-
mine its algebraic dependence on q and LM . Theorem 1 shows that if τ(M ; G, q)
is not zero, the phase can take at most 8 values. In fact, we can show that

τ(M ; G, q)
|H1(M ; G̃)| 12

depends on q only modulo hyperbolic quadratic forms and on LM only modulo
hyperbolic symmetric bilinear forms. See Theorem 5, §3.3 for a precise statement.

1.2. The reciprocity formula. Further study of the invariant τ(M ; G, q) is based
on a new reciprocity formula for Gauss sums. The following reciprocity formula goes
back to the 19-th century:

Lemma 1.3 (Cauchy, Kronecker). Let a and b be two nonzero integers.

|b|− 1
2

∑
x∈Z/bZ

eπi a
b x2+πiax = e

πi
4 (sign(ab)−ab)|a|− 1

2

∑
x∈Z/aZ

e−πi b
a x2+πibx.(8)

An analytical proof of this lemma can be found in [Ch, Chapter IX], where some
historical background is given. Early proofs, due to Cauchy and Kronecker, are
analytical; one of them consists in studying the limiting case of a transformation
formula for the theta-function θ3(u, τ) =

∑n=∞
n=−∞ eπin2τ+2πiu. Another reciprocity

formula appears as an important step of H. Braun’s classification of quadratic forms
in [Br]. We formulate it as follows. Let A be a symmetric m×m matrix of integers
and let r (resp. σ(A)) be the rank (resp. the signature) of A. There exists a matrix
A′ with integer entries and nonzero determinant and a unimodular matrix P such
that P tAP = A′⊕ (0m−r) where 0m−r is the zero matrix of size m− r [Ky, lemma
1].

Lemma 1.4. Let d be a nonzero integer. Assume that either d is even or A is even
(i.e., its diagonal entries are even). Then

d−
m
2

∑
x∈(Z/dZ)m

e
πixtAx

d =
d

m−r
2 e

πi
4 σ(A)

| detA′| 12
∑

y∈Zm/A′Zm

e−πidytA′−1y.(9)
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According to [Br], the formula (9) is due to A. Krazer [Kr]. The proof is an-
alytical and also involves the limiting case of a transformation formula for theta-
functions. A particular case of (9) also appears in the work of C. Siegel [Si] in the
context of modular transformations. The formula (9) is discussed in [MPR, lemma
(8.5)], with a slight imprecision. Recently, R. Dabrowski [Dab] found a proof of (9)
using p-adic numbers, in which analysis is kept to a minimum. Note that (8) is not
a particular case of (9).

In order to generalize both formulas (8) and (9) to our setting, we need a con-
struction relating symmetric bilinear forms on free abelian groups to bilinear and
quadratic forms on finite abelian groups. This is a particular case of a correspon-
dence between isomorphism classes of bilinear (resp. quadratic) forms on modules
over a Dedekind ring R and isomorphism classes of bilinear (resp. quadratic) forms
with values in R/R where R denotes the quotient field of R. This correspondence
was studied by C.T.C. Wall, M. Kneser, A. Durfee and others. We refer to [Du, §2]
for the general construction and further references.

A lattice is defined as a finitely generated free abelian group. A symmetric
bilinear form f on a lattice F gives rise to a symmetric bilinear form Lf on
Tors(coker ad f), where ad f is the homomorphism F → Hom(F,Z) adjoint to f .
The construction is as follows. The homomorphism ad f induces a homomorphism
af : F ⊗Q → Hom(F,Q). Set K = Hom(F,Z) ∩ Im af . Set

Kf = K/ Im ad f = Tors(coker ad f).

The formula

Lf (x + Im ad f, y + Im ad f) = xQ(ỹ) mod Z(10)

where x, y ∈ K, xQ denotes the rational extension of x and ỹ ∈ a−1
f (y), does not

depend on the choice of the lift ỹ and defines a non-degenerate symmetric form
Lf : Kf ×Kf → Q/Z.

The form f : F × F → Z on F is said to be even if f(x, x) ∈ 2Z for all x ∈ F ,
odd otherwise. A quadratic form Q is said to be over a symmetric bilinear form
B if B is the bilinear form associated to Q. In the case when f is even, one can
unambiguously define a quadratic form φf : Kf → Q/Z over Lf by the formula

φf (x + Im ad f) =
1
2
xQ(x̃) mod Z(11)

where x ∈ K, xQ is the rational extention of x and x̃ ∈ a−1
f (x).

The construction of φf can be generalized in terms of Wu classes. A Wu class
for f is an element w ∈ F such that f(w, x) ≡ f(x, x) mod 2, for any x ∈ F . In
particular, f is even if and only if 0 is a Wu class for f . Given a Wu class w for f ,
one can associate a quadratic form φf,w : Kf → Q/Z over Lf by

φf,w(x + Im ad f) =
1
2
(xQ(x̃)− x(w)) mod Z.(12)

Clearly, φf,0 = φf if f is even and φf,w depends only on w mod 2. All quadratic
forms over Lf arise as φf,w: more precisely, there is a one-to-one correspondence
between quadratic forms over Lf and Wu classes w ∈ F modulo 2 [BM, Theorem
2.4].

Clearly (K−f , L−f ) = (Kf ,−Lf) and

(K−f , φ−f,w) = (K−f , φ−f,−w) = (Kf ,−φf,w).
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It is also clear that the correspondences f 7→ Lf , f 7→ φf and (f, w) 7→ φf,w take
unimodular forms to the trivial form and preserve direct sums. In general, they do
not preserve the tensor product.

Let f : V × V → Z and g : W ×W → Z be symmetric bilinear forms on lattices
V and W respectively, equipped with Wu classes v ∈ V and w ∈ W respectively.
We are now ready to state our reciprocity formula for the Gauss sum

γ(Kf ⊗ V, φf,v ⊗ g) = | ker ad (Lf ⊗ g)|− 1
2 |Kf ⊗W |− 1

2

∑
x∈Kf⊗W

e2πi(φf,v⊗g)(x).

We recall that φf,v ⊗ g denotes the quadratic form Kf ⊗ W → Q/Z uniquely
determined by (φf,v ⊗ g)(x⊗ y) = φf,v(x)g(y, y), x ∈ Kf , y ∈ W .

Theorem 3 (Reciprocity formula). The following relation holds:

γ(Kf ⊗W, φf,v ⊗ g) = e
πi
4 (σ(f)σ(g)−f(v,v)g(w,w))γ(Kg ⊗ V, φg,w ⊗ f).(13)

Note the symmetry in f and g in (13).
In the case when one of the Wu classes is 0 (which implies that one of the forms is

even), the formula (13) simplifies. We denote by qLf
the quadratic form defined by

qLf
(x) = Lf(x, x); 1

2g denotes the symmetric bilinear form W ×W → 1
2Z, (x, y) 7→

1
2g(x, y).

Corollary. Suppose that g is even. Then

γ(Kf ⊗W, qLf
⊗ 1

2g) = e
πi
4 σ(f)σ(g)γ(Kg ⊗ V, φg ⊗ f).(14)

Proof. We have φg,0 = φg. Let now Q be any quadratic form over Lf . Since
Lf(x, x) = 2Q(x), we have qLf

⊗ 1
2g = Q⊗ g. Choose Q = φf,v and apply (13).

Formula (13) generalizes the formulas (8) and (9). Formula (8) is the particu-
lar case of (13) when both f and g are 1-dimensional and is used in the proof of
Theorem 3. The reciprocity formula gives a new proof of (9), which can be de-
duced from (14) as follows. In the case when A is even in (9), set g = A, choose
f : Z × Z → Z, (x, y) 7→ dxy and apply (14). The case when d is even in (9) is
treated similarly by exchanging the roles of f and g in formula (14).

1.3. The main theorem. This section is devoted to the application of the reci-
procity formula (13) to the study of the invariant τ(M ; G, q). Let us denote by T
the finite abelian group Tors H1(M ;Z). Recall that LM denotes the linking form
on T .

Theorem 4. Let f : F ×F → Z be a symmetric bilinear form on a lattice F , with
a Wu class v ∈ F such that (Kf , φf,v) = (G, q). Let Q : T → Q/Z be a quadratic
form over LM . Then

τ(M ; G, q) = γ(T, Q)
f(v,v)

γ(T ⊗ F, Q ⊗ f) |H1(M ; G)| 12 .(15)

For the definition of φf,v, see the previous section, §1.2.

Remarks. 1. Theorem 1 implies that the right hand side of (15) does not depend
on the particular choice of Q.

2. Since the linking form LM is non-degenerate, so is Q. By lemma 1.1, γ(T, Q) 6=
0.
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3. It is known that there always exists a form f : F × F → Z satisfying the
hypothesis of Theorem 4 (see [Du, Corollary 4.2] or lemma 2.1, part (b), §2.2).

The case when f is even, with Wu class equal to 0 in (15), is interesting enough to
be formulated explicitly. By 1

2f , we denote the bilinear form F ×F → 1
2Z, (x, y) 7→

1
2f(x, y); the quadratic form qLM is defined by qLM (x) = LM (x, x), x ∈ T .

Corollary. For any even integral symmetric form f : F × F → Z on a lattice F
such that φf = q, the following formula holds:

τ(M ; G, q) = γ(T ⊗ F, qLM ⊗ 1
2f) |H1(M ; G)|1/2.(16)

Remark. This result provides an explicit formula for τ(M ; G, q) in terms of the clas-
sical invariants of 3-manifolds listed in Theorem 1, so that the invariant τ(M ; G, q)
can be interpreted in a purely 3-dimensional setting (compare with (2)).

Proof of Theorem 4. Using formula (7), we have

τ(M ; G, q) = γ(G, q)
σ(BW )

γ(G⊗H2, q ⊗BW ) |H1(M ; G)| 12 ,

where H2 = H2(W ;Z). Equip B with a Wu class w such that Q = −φBW ,w. Then

γ(G⊗H2, q ⊗B) = γ(Kf ⊗H2, φf,v ⊗BW )
= e

πi
4 (σ(f)σ(BW )−f(v,v)BW (w,w))γ(KBW ⊗ F, φB,w ⊗ f)

= e
πi
4 (σ(f)σ(BW )−f(v,v)BW (w,w))γ(T ⊗ F, Q⊗ f)

where the first equality follows from the equality (G, q) = (Kf , φf,v), the second
one from (13) and the last one from the fact that (KBW , φB,w) = (T,−Q). We now
use Van der Blij’s formula [Bl], which states that

γ(G, q) = e
πi
4 (σ(f)−f(v,v)).

Thus

τ(M ; G, q)
|H1(M ; G)| 12 = e

πi
4 f(v,v)(σ(BW )−BW (w,w))γ(T ⊗ F, Q ⊗ f)

= γ(T, φB,w)f(v,v)γ(T ⊗ F, Q ⊗ f)

= γ(T, Q)
f(v,v)

γ(T ⊗ F, Q ⊗ f),

where we used Van der Blij’s formula in the first and third equalities. This is the
desired result.

1.4. Plan of the paper. §2 is devoted to generalities on quadratic forms and
elementary properties of Gauss sums. In §3, we prove the algebraic and topological
properties of τ(M ; G, q): Theorems 1 and 2, the dependence of τ(M ; G, q) on q and
LM modulo hyperbolic forms (Theorem 5) and a necessary and sufficient condition
for τ(M ; G, q) to vanish (Theorem 6). The technical tool is lemma 2.1. §4 is devoted
to the proof of the reciprocity formula (Theorem 3). Appendix A contains an
introduction to the theory of modular categories and establishes how our invariant
τ(M ; G, q) can be recovered from such a category. In appendix B, we indicate how
to define τ(M ; G, q) for a closed oriented (4n− 1)-manifold.
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2. Quadratic forms on abelian groups

2.1. The monoids M̂Q and M̂.

Note. This section is a very brief review of quadratic forms intended to fix notation.

Let A be a lattice (resp. a finite abelian group) and let R = Z (resp. Q/Z). A
quadratic form q : A → R is a function satisfying q(nx) = n2q(x) for any n ∈ Z and
x ∈ A and such that the function defined by bq(x, y) = q(x + y)− q(x) − q(y) is a
bilinear form on A (called the bilinear form associated to q). We say that q is non-
degenerate (resp. non-singular) if its associated bilinear form bq is non-degenerate
(resp. non-singular) 1. If A is a finite abelian group, then q is non-singular if and
only if q is non-degenerate.

A subgroup N of A is said to be orthogonal to a subgroup N ′ of A with respect
to a symmetric bilinear form b if b(N, N ′) = 0. Orthogonality for a quadratic
form is defined with respect to the associated bilinear form. We say that A is the
orthogonal sum with respect to b of two subgroups N and N ′ if M is the direct
sum of N and N ′ and b(N, N ′) = 0. In this case, N and N ′ are called orthogonal
summands of A. We write (A, b) = (N, b|N×N )⊕ (N ′, b|N ′×N ′). There is a similar
notation for quadratic forms. We say that a (quadratic or symmetric bilinear) form
on A is irreducible if A has no nontrivial orthogonal summands. The negative −b
of a bilinear form b : A × A → R is defined by (−b)(x, y) = −b(x, y). A quadratic
form q is said to be over a bilinear form b : A × A → R if bq = b. A bilinear
form b : A × A → R gives rise to a quadratic form qb : A → R by qb(x) = b(x, x).
The following relations hold between the forms qb and bq: qbq (x) = 2q(x) and
bqb

(x, y) = b(x, y) + b(y, x).
We recall the notion of hyperbolic form. Given a finite abelian group G, we

define its dual by G∗ = Hom(G,Q/Z). We say that a symmetric bilinear form
b : G × G → Q/Z is hyperbolic if it is isomorphic to bH : H × H → Q/Z with
H = M ⊕M∗ where M is a finite abelian group and

bH

(
(x, α), (y, β)

)
= α(y) + β(x), x, y ∈ M, α, β ∈ M∗.

We say that a quadratic form q : G → Q/Z is hyperbolic if it is isomorphic to
qH : H → Q/Z with H = M ⊕M∗ where M is a finite abelian group and

qH(x, α) = α(x), x ∈ M, α ∈ M∗.

Note that if a quadratic form q is hyperbolic, then its associated form is also
hyperbolic.

Given a quadratic form q : G → Q/Z and an integral symmetric bilinear form
f : F ×F → Z on a lattice, there is a unique quadratic form q⊗ f : G⊗F → Q/Z
such that (q ⊗ f)(x ⊗ y) = q(x)f(y, y) for all x ∈ G and y ∈ F . Cf. [Fr], [Sa].
In general, the tensor product of non-singular forms gives rise to pairings of Witt
groups. However, the product of a non-degenerate quadratic form and a non-
degenerate symmetric bilinear form need not be non-degenerate. (For example,
take q : Z/2Z → Q/Z, 1 7→ 1

4 and the symmetric bilinear form on Z which maps
(1, 1) to 2.)

We now fix the notation which we use throughout the rest of the paper. For the
applications we have in mind, it is convenient to introduce the following monoids
(for direct sum):

1A symmetric bilinear form b : A×A→ R is said to be non-degenerate (resp. non-singular) if
its adjoint homomorphism ad b : A→ HomR(A, R) is injective (resp. is an isomorphism).
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· MZ denotes the monoid of (isomorphism classes of) pairs (F, f) where f :
F × F → Z is a symmetric bilinear form on a lattice F .

· MWu
Z denotes the monoid whose elements are (isomorphism classes of) triples

(a lattice F , a symmetric bilinear form on F , a Wu class considered modulo
2F for this form).

· M denotes the monoid of (isomorphism classes of) pairs (G, b) where b :
G×G → Q/Z is a non-degenerate symmetric bilinear form on a finite abelian
group G.

· MQ denotes the monoid (for direct sum) of isomorphism classes of pairs (G, q)
where q : G → Q/Z is a non-degenerate quadratic form on a finite abelian
group G.

· M̂ is the monoid of equivalence classes of M for the following equivalence
relation: (G, b), (G′, b′) ∈ M are equivalent if there exist hyperbolic symmetric
bilinear forms b1 : G1 × G1 → Q/Z and b2 : G2 × G2 → Q/Z such that
(G, b)⊕ (G1, b1) = (G′, b′)⊕ (G2, b2) in M.

· M̂Q is the monoid of equivalence classes of MQ for the following equiv-
alence relation: (G, q), (G′, q′) ∈ MQ are equivalent if there exist hyper-
bolic quadratic forms q1 : G1 → Q/Z and q2 : G2 → Q/Z such that
(G, q) ⊕ (G1, q1) = (G′, q′)⊕ (G2, q2) in MQ.

The monoids introduced above fit in the following (non exact) sequences of maps:

MZ
L→ M

proj→ M̂,

MWu
Z

φ→ MQ
proj→ M̂Q.

Here L and φ are the maps defined by (10) and (12) respectively (see §1.2).
For a nonzero integer m, we denote by (m) the unique bilinear form on Z sending

(1, 1) to m. Let a and b be coprime integers such that 0 < |a| < b. We denote by
(a

b ) the unique bilinear form on Z/bZ sending (1, 1) to a
b ∈ Q/Z. We denote by Ek

0

(1 ≤ k) and Ek
1 (2 ≤ k) the bilinear forms on Z/2kZ ⊕ Z/2kZ determined by the

matrices (
0 2−k

2−k 0

)
and

(
21−k 2−k

2−k 21−k

)
respectively. Notice that all these forms are non-degenerate and Ek

0 is hyperbolic.
These notations agree with those of [KK] and [Mu].

2.2. The correspondence from integral forms to forms over finite abelian
groups. We need to formulate the main result about the correspondence discussed
in §1.2. This result will be instrumental in the proof of Theorem 1.

In MZ, we consider the equivalence relation, denoted by ∼, generated by the
following operation: (F, f) 7→ (F ⊕ Z, f ⊕ (±1)).

In MWu
Z , we define the equivalence relation, also denoted by ∼, generated by

the following operation: (F, f, w) 7→ (F ⊕ Z, f ⊕ (±1), w ⊕ w′) where w′ is an odd
integer.

Lemma 2.1. (a) The homomorphism MZ → M, (F, f) 7→ (Kf , Lf) is surjective.
For (F, f),
(F ′, f ′) ∈ MZ, the following two conditions are equivalent:
(a.1) (F, f) ∼ (F ′, f ′);
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(a.2) ker ad f ∼= ker ad f ′ and (Tors (coker ad f), Lf ) ∼= (Tors (coker ad f ′), Lf ′).
(b) The homomorphism MWu

Z → MQ, (F, f, w) 7→ (Kf , φf,w) is surjective. For
(F, f, w), (F ′, f ′, w′) ∈ MWu

Z , the following two conditions are equivalent:
(b.1) (F, f, w) ∼ (F ′, f ′, w′);
(b.2) ker ad f ∼= ker ad f ′ and (Tors(coker ad f), φf,w) ∼= (Tors(coker ad f ′), φf ′,w′).

Proof. Denote by M0
Z the monoid which consists of isomorphism classes of pairs

(F, f) where f : F ×F → Z is an even symmetric bilinear form on a lattice F . The
surjectivity of the maps MZ → M, (F, f) 7→ (Kf , Lf) and M0

Z → MQ, (F, f) 7→
(Kf , φf ) was proved by C.T.C. Wall [Wa, Theorem 6]. See also [Du, Theorems 4.4
and 4.7] and [La] for generalizations. The surjectivity of MWu

Z → MQ, (F, f, w) 7→
(Kf , φf,w) is a direct consequence of the surjectivity of M0

Z → MQ, (F, f) 7→
(Kf , φf ) since M0

Z ⊂ MWu
Z (for f even, φf = φf,0). The implications (a.1) =⇒ (a.2)

and (b.1) =⇒ (b.2) are straightforward. The converse (a.2) =⇒ (a.1) can be
found in [Du, Corollary 4.2], in the case when f and g are non-degenerate, but
the argument given applies in our case as well: simply decompose f (resp. g) as a
direct sum of a 0-form and of a non-degenerate form on a summand of the lattice
F (resp. of the lattice F ′). For the implication (b.2) =⇒ (b.1), note that, since
φf,w is a quadratic form over Lf , there is an isomorphism (Tors(coker ad f), Lf) ∼=
(Tors(coker ad f ′), Lf ′). Applying (a), we obtain that (F, f) ∼ (F ′, f ′). We can
assume that k = rank F ′− rank F ≥ 0. Thus there exist k integers v1, . . . , vk such
that w′ = w ⊕⊕k

j=1 vj . It follows from the definition of φf,w that vj ≡ 1 mod 2
for j = 1, . . . , k. This is the desired result.

The importance of the constructions described in §1.2 and lemma 2.1 in algebraic
topology lies in the following fact. Let BW : H2(W ;Z) × H2(W ;Z) → Z be the
intersection form of a compact simply connected 4-manifold, let M = ∂W and let
LM : Tors H1(M ;Z)× Tors H1(M ;Z) → Q/Z be the linking form of M . Then

(KBW ,−LBW ) = (Tors H1(M ;Z),LM ).

Furthermore, even though we will not use it, we recall the following fact: M always
admits a spin structure (see [Ki2] for example) and it is known (see [Rok]) that this
spin structure can be extended to the 4-manifold W ; in this case, BW is even and
the form φBW defined by (11) is a quadratic form over LBW = −LM and depends
only on the spin structure on M [Tu2].

2.3. Elementary properties of Gauss sums.

Lemma 2.2. Let f : G → Q/Z be a homomorphism where G is a finite group.
Then ∑

α∈G

e2πif(α) =
{ |G| if f = 0,

0 otherwise.

An application of lemma 2.2 leads to

Lemma 2.3. Let G, H be finite abelian groups and f be a bilinear pairing G×H →
Q/Z. Let ad f : H → Hom(G,Q/Z) be the left adjoint homomorphism. For any
β ∈ H, ∑

α∈G

e2πif(α,β) =
{ |G| if β ∈ ker ad f ,

0 otherwise.
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Corollary. Let G be a finite abelian group and G∗ = Hom(G,Q/Z). For any
bilinear pairing f : G×G∗ → Q/Z, the sum∑

(x,α)∈G×G∗
e2πif(x,α)

is a positive real number.

We now proceed to the proof of the lemma 1.1 preliminary to the definition of
the invariant τ(M ; G, q) in §1.1.

Proof of lemma 1.1. We rewrite
∣∣∣∣∑g∈G e2πiq(g)

∣∣∣∣2 as

∑
g∈G

e2πiq(g)
∑
h∈G

e2πiq(h) =
∑
g∈G

e2πiq(g)
∑
h∈G

e−2πiq(h) =
∑
g∈G

(∑
h∈G

e2πibq(g,h)

)
e2πiq(g).

Applying lemma 2.3, we obtain∣∣∣∣∑
g∈G

e2πiq(g)

∣∣∣∣2 = |G|
∑

g∈ker ad bq

e2πiq(g).

We observe that the restriction of q to ker ad bq is a homomorphism ker ad bq →
{1,−1} ∼= Z/2Z. Consequently,∑

g∈ker ad bq

q(g) =
{ | ker ad bq| if q(ker ad bq) = 0,

0 otherwise.

The proof is complete.

We need to make the condition q(ker ad bq) = 0 more explicit. This is the purpose
of the next lemma.

Lemma 2.4. Let q be a quadratic form G → Q/Z on a finite abelian group G.
The following assertions are equivalent:

(1) q(ker ad bq) = 0;
(2) q(H) = 0 for any 2-cyclic summand H of G which lies in ker ad bq.

Proof. The implication (1) =⇒ (2) is obvious. We show the implication (2) =⇒ (1).
For any g ∈ G, 2q(g) = bq(g, g). If |G| is odd, then 2q(g) = 0 implies q(g) = 0 (since
the order of q(g) in Q/Z must be odd). It follows that q(ker ad bq) = 0. Assume |G|
to be even. There is an orthogonal splitting (G, q) =

⊕
p(Gp, qp) where p runs over

prime numbers, Gp is a p-subgroup of G, G =
⊕

p Gp and qp = q|Gp . Therefore
we may assume that G itself is a (finite abelian) 2-group. Let x ∈ ker ad bq and
let H be the cyclic subgroup of G generated by x. Its order is a power of 2. By
definition of x, H is orthogonal to G. If H is a summand of G, then condition
(2) applies, so that q|H = 0 and hence q(x) = 0. If H is not a summand of G,
then H ⊂ 2G. Therefore there exists an element y ∈ G such that x = 2y. Then
q(x) = q(2y) = 4q(y) = 2bq(y, y) = bq(2y, y) = bq(x, y) = ad bq(x)(y) = 0.

Remarks. 1. The proof shows that a sufficient, but not necessary, assumption to
ensure condition (1) of lemma 2.4 is ker ad bq ⊂ 2G.

2. From lemma 2.4, one deduces the following condition: q(ker ad bq) = 0 if and
only if there exists a 2-cyclic summand H of G which lies in ker ad bq such that
q|H(x) = 1

2 if x generates H , q|H(x) = 0 otherwise.
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The next two lemmas are preparation for the proof of lemma 1.2.
Let G be a finite abelian group and q : G → Q/Z be a quadratic form on G. Set

K = ker ad bq and G̃ = G/K.

Lemma 2.5. The following relation holds:

∑
x∈G

e2πiq(x) =


0 if q(K) 6= 0,

| ker ad bq|
∑
x∈G̃

e2πiq̃(x) if q(K) = 0,(17)

where q̃ : G̃ → Q/Z is the quadratic form induced by q.

Proof. If q(K) 6= 0, then the result follows from lemma 1.1. If q(K) = 0, then it
is clear that q : G → Q/Z induces a non-degenerate quadratic form q̃ : G̃ → Q/Z.
The result follows easily.

Lemma 2.6. Let B : F × F → Z be a symmetric bilinear form on a lattice F .
Then

∑
x∈G⊗F

e2πi(q⊗B)(x) =


0 if (q ⊗B)(K ⊗ F ) 6= 0,

|K ⊗ F |
∑

x∈G̃⊗F

e2πi(q̃⊗B)(x) if (q ⊗B)(K ⊗ F ) = 0,

where q̃ ⊗B = q̃ ⊗B : G̃⊗ F → Q/Z is the quadratic form induced by q ⊗B.

Proof. Analogous to the proof of the previous lemma. The key observation is that
K ⊗ F ⊂ ker(ad bq ⊗ adB).

Proof of lemma 1.2. We keep the same notation as in the two lemmas above. Since
γ(G, q) 6= 0, lemma 1.1 ensures that q(K) = 0. Lemma 2.5 applies and yields

γ(G, q) = γ(G̃, q̃).(18)

Next, q(K) = 0 implies (q ⊗BW )(K ⊗H2(W ;Z)) = 0. So lemma (2.6) applies:∑
x∈G⊗H2(W ;Z)

e2πi(q⊗BW )(x) = |K ⊗H2(W ;Z)| ·
∑

x∈G̃⊗H2(W ;Z)

e2πi ˜(q⊗BW )(x).(19)

Comparing equations (18) and (19) with the definition (2) of τ(M ; G, q), we obtain
the desired result.

The following two lemmas (2.7 and 2.8) will be useful in proving Theorems 1, 3
and 5. We denote by µ8 the group of complex 8-th roots of unity.

Lemma 2.7. Let f : F → Z be a symmetric bilinear form on a lattice. Let q : G →
Q/Z be a quadratic form on a finite abelian group. The map MQ → C, (G, q) 7→
γ(G⊗ F, q ⊗ f) induces a homomorphism M̂Q → µ8 ∪ {0}.
Proof. For multiplicativity of Gauss sums and the fact that the image is in µ8∪{0},
see for example [Sc, chapter 5]. It suffices to show that γ(G ⊗ V, q ⊗ f) = 1 for
q hyperbolic. Suppose G = M ⊕ M∗ where M is a finite abelian group and ∗
denotes usual duality, i.e. (.)∗ = Hom(.,Q/Z) and q(x, ν) = ν(x). Choose a base
(e1, . . . , em) for F . Then q ⊗ f can be viewed as a quadratic form

G⊗ F = Mm ⊕ (Mm)∗ → Q/Z, (x, ν) 7→
∑
i,j

fijνj(xi)
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where (fij)1≤i,j≤n is the matrix of f , x = (x1, . . . , xm) and ν = (ν1, . . . , νm).
Observe that the map

Mm × (Mm)∗ → Q/Z, (x, ν) 7→
∑
i,j

fijνj(xi)

is a bilinear pairing. Therefore it follows from the corollary of lemma 2.3 that∑
x∈Mm×(Mm)∗

e2πi(q⊗f)(x)

is a nonzero real number. Since γ(G ⊗ F, q ⊗ f) ∈ µ8 ∪ {0} (or by lemma 1.1), we
deduce that γ(G⊗ F, q ⊗ f) = 1.

Lemma 2.8. Let f : F → Z be a symmetric bilinear form on a finitely generated
abelian group. Let q : G → Q/Z be a quadratic form on a finite abelian group. Let
B : MZ → µ8 ∪ {0} be the map defined by

(F, f) 7→ γ(G, q)
σ(f)

γ(G⊗ F, q ⊗ f).

It induces a homomorphism B̃ : M̂ → µ8 ∪ {0} making the following diagram
commute:

MZ
B

//

L

��

µ8 ∪ {0}

M
projection

//
M̂.

B̃

OO

Proof. To simplify notation, we write B(f) instead of B(F, f). The multiplicativity
of B is clear. First, we show that B(f) only depends on (the isomorphism class of)
Lf . Observe that

B(f ⊕ (±1)) = γ(G, q)
σ(f⊕(±1))

γ(G⊗ (F ⊕ Z), q ⊗ (f ⊕ (±1)))

= γ(G, q)
σ(f)

γ(G⊗ F, q ⊗ f)γ(G, q)
±1

γ(G,±q)
= B(f).

If f and f ′ are isomorphic forms, it is clear that B(f) = B(f ′). By lemma 2.1, (a),
it follows that B only depends on the isomorphism class of Lf and ker ad f . We
prove that B does not depend on ker ad f . Let f : F ′ × F ′ → Z be a symmetric
bilinear form on a finitely generated abelian group such that Lf ′ = Lf . We can
assume k = rank (ker ad f ′)− rank (ker ad f) ≥ 0. Consider the symmetric bilinear
form f̃ on F̃ = F ⊕ (

⊕k
j=1 Z) defined by

(F̃ , f̃) = (F, f)⊕
k⊕

j=1

(Z, 0).

It is easy to see that (Kf̃ , Lf̃ ) = (Kf , Lf ) = (Kf ′ , Lf ′). Furthermore,

rank (ker ad f̃) = rank (ker ad f) + k = rank (ker ad f ′).

We deduce that B(f̃) = B(f ′). The multiplicativity of B yields

B(f̃) = B(f) ·
k∏

j=1

B(0) = B(f)
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since B(0) = B(Z, 0) = 1. Therefore, B(f ′) = B(f), which is the claimed property.
To conclude, it suffices to show that B(f) = 1 for Lf hyperbolic. The canonical
decomposition of Kf in p-primary components is orthogonal with respect to Lf .
Moreover, the property of being hyperbolic is preserved by restriction on each p-
primary component. Since by lemma 2.1 the map (F, f) 7→ (Kf , Lf) is a surjective
homomorphism, we can assume that (Kf , Lf) is irreducible. In particular, it is
a bilinear pairing on a (finite abelian) p-group, isomorphic, for some prime p and
positive integer m, to the bilinear pairing on Z/pmZ × Z/pmZ determined by the
matrix (

0 p−k

p−k 0

)
.

We can choose f to be the bilinear form on Z2 determined by the matrix(
0 pk

pk 0

)
.

Thus q ⊗ f can be viewed as the quadratic form

G⊕G → Q/Z, (x, y) 7→ pkbq(x, y).

We observe that the map

G×G → Q/Z, (x, y) 7→ pkbq(x, y)

is a bilinear pairing. Therefore, from the corollary of lemma 2.3, it follows that∑
x∈G⊕G

e2πi(q⊗f)(x)

is a positive real number. Lemma 1.1 implies that γ(G ⊗ Z2, q ⊗ f) = 1. Since
σ(f) = 0, the result follows.

3. Properties of τ(M ; G, q)

By lemma 1.2, we can assume q to be non-degenerate (ker ad bq = 0).

3.1. Proof of Theorem 1. Since the expression defining τ(M ; G, q) depends on
the intersection form BW , we write temporarily τ(BW ; G, q) throughout this para-
graph. Set H2 = H2(W ;Z). We first prove the first statement in the theorem.
Recall that ker adBW

∼= H1(M ;Z) (cf. lemma 3.2). By means of the lemma 2.1,
(a), and the remark we made thereafter, it suffices to show invariance of τ(BW ; G, q)
on the equivalence class of (H2, BW ) in MZ. The change of the form BW into an
isomorphic form clearly does not affect the expression. If (H2, BW ) is changed into
(H2 ⊕ Z, BW ⊕ (±1)), then

τ(BW ⊕ (±1); G, q)

= γ(G, q)
σ(BW )±1|G⊗H2|− 1

2 |G|− 1
2

∑
x∈G⊗H2

e2πi(q⊗BW )(x)
∑
x∈G

e±2πiq(x).

It follows from the definition of γ(G, q) that τ(BW ⊕ (±1); G, q) = τ(BW ; G, q).
This is the desired result.

To prove the second statement, we observe that the phase of τ(M ; G, q) is exactly

γ(G, q)
σ(BW )

γ(G⊗H2, q⊗BW ). Therefore, the result follows from lemma 2.8.
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3.2. Proof of Theorem 2. We begin with some elementary algebraic lemmas.

Lemma 3.1. Let F be a lattice and B : F × F → Z be a symmetric bilinear form.
Let g : G × G → Q/Z be a non-degenerate symmetric bilinear form on an abelian
group G. Then

ker(ad g ⊗ ad B) = ker(idG⊗ adB).

Proof. There is an obvious commutative diagram:

G⊗ F
ad g⊗ad B

//

=

��

Hom(G,Q/Z)⊗Hom(F,Z)

G⊗ F
idG ⊗ ad B

// G⊗Hom(F,Z)

ad g⊗id

OO

The homomorphism ad g : G → Hom(G,Q/Z) is an isomorphism. Since, as a Z-
module, F is free (hence flat), the map ad g ⊗ id is also an isomorphism. Hence
ker(ad g ⊗ ad B) = ker(idG⊗ adB).

Lemma 3.2. Let W be a simply connected oriented 4-manifold such that ∂W = M .
Let BW : H2(W ;Z)×H2(W ;Z) → Z be the intersection form on W . Then for any
abelian group G,

ker(idG⊗ adBW ) ∼= H1(M ; G) and coker (idG⊗ adBW ) ∼= H1(M ; G).

Proof. This follows from the Poincaré duality and the homological sequence of the
pair (W, ∂W ) with coefficients in G.

Lemma 3.3. The following relation holds for an arbitrary non-degenerate qua-
dratic form q : G → Q/Z on a finite abelian group G:∣∣∣∣∣∣

∑
x∈G⊗H2(W ;Z)

exp(2πi(q ⊗BW )(x))

∣∣∣∣∣∣
2

(20)

=
{ |G⊗H2(W ;Z)||H1(M ; G)| if (q ⊗BW )(ker(ad bq ⊗ adBW )) = 0,

0 otherwise.

Proof. Apply lemma 1.1 to the finite abelian group G ⊗H2(W ;Z) equipped with
the quadratic form q⊗BW . The bilinear form bq⊗BW associated to q⊗BW is equal
to bq ⊗BW . So | ker ad bq⊗BW | = | ker(ad bq ⊗ adBW )| and the result follows from
lemmas 3.1 and 3.2.

Now Theorem 2 follows from the definition (2) of τ(M ; G, q) and lemma 3.3.

3.3. The phase of τ(M ; G, q). In this section, we shall use the notations intro-
duced in §2.1. Denote by µ8 the group of 8-th roots of unity and by T the finite
abelian group Tors H1(M ;Z).

Consider the phase of τ(M ; G, q):

βq(LM ) =
τ(M ; G, q)
|H1(M ; G)| 12 .
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The following theorem shows that the invariant βq can be interpreted as an invariant
of the class of LM in M̂.

Theorem 5. The map β induces a bilinear pairing

β̃ : M̂Q× M̂ → µ8 ∪ {0}, ([G, q], [T,LM ]) 7→ βq(LM )

making the following diagram commute:

MQ×M
β

//

��

µ8 ∪ {0}
=

��

M̂Q× M̂
β̃

// µ8 ∪ {0}
where the left vertical arrow is the canonical projection.

As a consequence of Theorem 5, we mention the following result.

Corollary. If |G| or |T | is odd, then βq(LM ) is a 4-th root of unity.

Remark. Theorem 5 and the commutative diagram above are reminiscent of the
action of the Witt group W (Z) of unimodular symmetric bilinear forms on (finitely
generated) free Z-modules on the Witt group WQ(Q,Z) of quadratic forms on
finite abelian groups with values in Q/Z. See for example [La] for a careful treat-
ment of this action (as well as its algebraic generalizations). From the topological
point of view, however, if the form BW is unimodular, the invariant is trivial. The-
orem 5 suggests that one can still define an action of (non necessarily unimodular)
symmetric bilinear forms in the context of Witt monoids.

Proof of Theorem 5. As a consequence of Theorem 2, we have (cf. (7))

βq(LM ) = γ(G, q)
σ(BW )

γ(G⊗H2(W ;Z), q ⊗BW ).(21)

We already know, by Theorem 1, that the right hand side of (21) only depends
on LM . It follows from lemma 2.8 that for a fixed pair (G, q), the homomorphism
(T,LM ) 7→ βq(LM ) depends only on the class [T,LM ] ∈ M̂. This proves half of
Theorem 5. The second half (statement about (G, q)) follows from the equality (21)
and lemma 2.7.

Finally, we make one observation about the phase of τ(M ; G, q). It follows from
Theorems 1 and 2 that the phase of the right hand side of (7) only depends on
LM = −LBW and not on BW itself. Therefore, we can rewrite this formula without
any reference to the particular choice BW in the preimage of −LM . We obtain the
following modified version of (21):

βq(LM ) = γ(G, q)
σ(B)

γ(G⊗ F, q ⊗B),(22)

where B : F ×F → Z is any symmetric bilinear form on the finite abelian group F
such that (KB,−LB) ∼= (Tors H1(M ;Z),LM ).

3.4. A condition of nullity for τ(M ; G, q). In this section, we give a necessary
and sufficient condition for τ(M ; G, q) to vanish. Given two symmetric bilinear
pairings (G, b) and (G′, b′) on finite abelian groups, we shall say that they have an
isomorphic orthogonal summand if there exists orthogonal summands H , H ′ of G
and G′ respectively such that H ∼= H ′ as groups.
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Theorem 6. The following conditions are equivalent:
(1) τ(M ; G, q) = 0;
(2) (G, bq) and (T,LM ) have an isomorphic 2-cyclic orthogonal summand;
(3) There exists a 2-cyclic orthogonal summand K of (G, q) and a cohomology

class α ∈ H1(M ; K) such that α∪ α∪α 6= 0 (here ∪ denotes the cup product
in cohomology of M with coefficients in the ring K).

Remark. Theorem 6 accounts for our introduction of Witt monoids (instead of
Witt groups). Suppose that LM is the metabolic form (1/2k) ⊕ (−1/2k). Then
by Theorem 6, τ(M ; G, q) is zero if (and only if) there is an orthogonal splitting
(G, q) ∼= (Z/2kZ, q1)⊕ (G′, q′). Since the cases when τ(M ; G, q) is zero are topolog-
ically significant, we cannot rule out metabolic forms; whereas if LM is hyperbolic,
then by Theorem 5, βG,q(M) = 1 for any non-degenerate quadratic form q on G.

Before we proceed to the proof of Theorem 6, we need one algebraic lemma.

Lemma 3.4. Assume that (G, q) is non-degenerate. Then γ(G ⊗ V, q ⊗ f) = 0 if
and only if (G, bq) and (Kf , Lf ) have an isomorphic 2-cyclic orthogonal summand.

Our original proof in [Del] of lemma 3.4, which relies on the classification of sym-
metric bilinear forms on finite abelian 2-groups (see [Wa] and [KK]), goes roughly
as follows. Since the condition (1) of lemma 2.4 is always satisfied for finite abelian
groups of odd order, we can assume G to be a finite abelian 2-group. Using the
classification in [Wa] or [KK], there are essentially three (isomorphism classes of)
symmetric bilinear pairings to consider, for which it is a straightforward matter
to verify lemma 3.4. The following alternative proof, which does not require any
classification result, is more natural and was suggested to the author by P. Vogel.

Proof. Without loss of generality, we can assume f to be non-degenerate, so that
by lemma 3.1, ker ad(bq ⊗ f) = ker ad(idG⊗f). Then, tensoring by G the exact
sequence

0 // V
ad f

// V ∗ // Kf // 0

yields

0 // Tor(G, Kf ) // G⊗ V
id⊗ad f

// G⊗ V ∗ // G⊗Kf // 0

which shows that ker ad(idG⊗f) = Tor(G, Kf ). Since Tor preserves direct sums
and G and Kf are direct sums of cyclic groups, it follows that ker ad(bq ⊗ f) is
generated by elements x ⊗ y where x ∈ G and y ∈ V such that x ⊗ (ad f)(y) = 0
in G ⊗ V ∗. The latter condition is equivalent to: (ad f)(y) is divisible by n in V ∗

where n is the order of x in G. Hence, by lemma 1.1, γ(G ⊗ V, q ⊗ f) = 0 if and
only if there exist x and y as above such that (q⊗ f)(x⊗ y) = q(x)f(y, y) 6= 0. We
deduce that q(x)f(y, y) 6= 0 if and only if n is even (here we use the fact that q is
non-degenerate) and x generates an orthogonal summand of G. Denote by val2(n)
the 2-valuation of n. Since Z/nZ is isomorphic to Z/2val2(n)Z×Z/(n/2val2(n))Z by
the Chinese theorem, it follows that (G, bq) and (Kf , Lf) both have an orthogonal
summand isomorphic to Z/2val2(n)Z.

Remark. In the general case, i.e. (G, q) possibly degenerate, γ(G⊗ V, q ⊗ f) = 0 if
and only if (G̃, q̃) and (Kf , Lf) have an isomorphic 2-cyclic orthogonal summand,
with the same notation as in lemma 2.5.
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Proof of Theorem 6. Proof of (1) ⇐⇒ (2). By our hypothesis on q, γ(G, q) 6= 0.
Hence τ(M ; G, q) is 0 if and only if γ

(
G⊗H2(X ;Z)

)
is 0. Now apply lemma 3.4.

Proof of (2) ⇐⇒ (3). Assume first that both (T,LM ) and (G, bq) have an orthog-
onal summand of order 2k. Denote that of T by 〈a〉 for some element a ∈ T . Since
〈a〉 is an orthogonal summand of T and LM is non-degenerate on T , the restriction
LM |〈a〉×〈a〉 is non-degenerate. Thus a determines an element α ∈ Hom(T,Z/2kZ) ⊂
Hom(H1(M ;Z),Z/2kZ) by LM (a, x) = α(x)

2k . Since Hom(H1(M ;Z),Z/2kZ) ∼=
H1(M ;Z/2kZ), we view α as an element in H1(M ;Z/2kZ) and apply Turaev’s
formula [Tu2, Theorem I]:

1
2k

(α ∪ α ∪ α)[M ] (mod 1) = 2k−1LM (a, a) 6= 0.

Conversely, if K ∼= Z/2kZ is an orthogonal summand of G such that the inequality
above holds, there exists an element a ∈ T of order 2k such that LM |〈a〉×〈a〉 (where
〈a〉 denotes the subgroup generated by a in T ) is non-degenerate. Then it follows
from [Wa, lemma (1)] that 〈a〉 is an orthogonal summand of T . It is isomorphic to
K.

4. Proof of the reciprocity formula

Outline of the proof. We interpret the reciprocity formula as an identity involving
a bilinear pairing (see lemma 4.2). Using a stabilization argument (lemma 4.3), we
reduce the reciprocity formula to an identity between classical Gauss sums, already
known to Cauchy and Kronecker (relation (8)).

We shall prove the following version of the reciprocity formula.

Theorem 7. Denote by (∗) the following condition: (Kf , Lf ) and (Kg, Lg) have
isomorphic 2-cyclic orthogonal summands. Then

γ(Kf ⊗W, φf,v ⊗ g) · γ(Kg ⊗ V, φg,w ⊗ f)

=

{
0 if (∗),
e

πi
4 (σ(f)σ(g)−f(v,v)g(w,w)) otherwise.

(23)

In the case when (∗) is satisfied, it follows from lemma 3.4 that

γ(Kf ⊗W, φf,v ⊗ g) = γ(Kg ⊗ V, φg,w ⊗ f) = 0

and therefore (13) holds. In the case when (∗) is not satisfied, again by lemma 3.4,
the formula (23) is equivalent to (13).

Since the reciprocity formula is verified in the case (∗), we assume from now on
that (Kf , Lf ) and (Kg, Lg) have no isomorphic 2-cyclic orthogonal summands.

Lemma 4.1. Let q : G → Q/Z be a hyperbolic quadratic form. There exists
(f, v) ∈ MWu

Z such that φf,v = q, σ(f) = 0 and f(v, v) ≡ 0 mod 8.

Proof. The fact that there exists (f, v) ∈ MWu
Z such that φf,v = q follows from

the surjectivity of the map φ (see lemma 2.1, (c)). Since Lf is the bilinear form
associated to φf,v, Lf is hyperbolic. Among the integral forms g such that Lg = Lf ,
choose one of minimal rank, as in the proof of lemma 2.8. The signature of such a
form is 0. Use lemma 2.1, (b), to equip it with a Wu class such that its image by φ
is still q. Next, it follows from Van der Blij’s formula [Bl] (as formulated in [BM])
that

γ(Kf , φf,v) = e
πi
4 (σ(f)−f(v,v)) = e−

πi
4 f(v,v).
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On the other hand, from lemma 2.7 γ(Kf , φf,v) = 1. The comparison of these two
equalities leads to f(v, v) ≡ 0 mod 8.

Given two integral forms f : V × V → Z and g : W ×W → Z equipped with Wu
classes v and w respectively, denote by F((f, v), (g, w)) (or simply by F(f, g), if no
confusion is likely to occur) the product

e−
πi
4 (σ(f)σ(g)−f(v,v)g(w,w))γ(Kf ⊗W, φf,v ⊗ g)γ(Kg ⊗ V, φg,w ⊗ f).

The next lemma sets up the framework in which formula (23) is interpreted.

Lemma 4.2. The map F : MWu
Z ×MWu

Z → µ8 ∪ {0},
((f, v), (g, w)) 7→ F((f, v), (g, w))

induces a bilinear pairing M̂Q × M̂Q → µ8 ∪ {0} such that the following diagram
is commutative:

MWu
Z ×MWu

Z
F

//

φ×φ

��

µ8 ∪ {0}

MQ×MQ
projection

// M̂Q× M̂Q.

OO

Proof. The first step consists in establishing that F((f, v), (g, w)) only depends on
φf,v and φg,w. Let us show that if (g, w) is fixed in MWu

Z , then F((f, v), (g, w)) only
depends on φf,v. Using lemma 2.1, (b), it is sufficient to show that F((f, v), (g, w))
= F((f ′, v′), (g, w)) where (f ′, v′) = (f ⊕ (±1), v ⊕ v0) where v0 is an odd integer.
We obtain: φf ′,v′ = φf,v and

σ(f ′)σ(g) − f ′(v′, v′)g(w, w) = σ(f)σ(g) − f(v, v)g(w, w) ± (σ(g)− g(w, w)).

Thus, using the multiplicativity of γ and the equality

e±
πi
4 (σ(g)−g(w,w)) = γ(Kg,±φg,w),

we deduce that F((f ′, v′), (g, w)) = F((f, v), (g, w)). Since (f, v) and (g, w) play
symmetric roles, this proves the first step. Furthermore, since φ : MWu

Z → MQ

is a homomorphism, the map M̂Q × M̂Q → µ8 ∪ {0} through which F factors
is a bilinear pairing. To conclude, since (f, v) and (g, w) play symmetric roles,
it suffices to show that F((f, g), (g, w)) = 1 if φf,v is hyperbolic. By lemma 2.7,
γ(Kf ⊗W, φf,v⊗g) = 1. We apply lemma 4.1 so that we can assume that σ(f) = 0
and f(v, v) ≡ 0 mod 8. Thus

e−
πi
4 (σ(f)σ(g)−f(v,v)g(w,w))γ(Kg ⊗ V, φg,w ⊗ f) = γ(Kg ⊗ V, φg,w ⊗ f) = 1,

where the last equality follows from lemma 2.8. This achieves the proof.

Lemma 4.2 says that the equality we want to prove should be understood as a
relation between invariants of M̂Q. To achieve the proof, it suffices to prove that
F(f, g) = 1.

As another step towards (23), we observe that the special case of (23) when f
and g are 1-dimensional (i.e., the lattices V and W both have rank equal to 1) is
exactly given by formula (8).

The following result is a tool to reduce (23) to the 1-dimensional case already
treated in (8); it is a variation of a lemma due to T. Ohtsuki [Oh]. Recall that the
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2-valuation of an integer m, denoted v2(m), is the greatest nonnegative integer n
such that 2n divides m.

Lemma 4.3 (Stabilization). Let (G, L) ∈ M̂. There exist positive integers a1, . . . ,

ar and b1, . . . , bs such that the following identity holds in M̂ :

(G, L)⊕
(±1

a1

)
⊕ · · · ⊕

(±1
ar

)
=

(±1
b1

)
⊕ · · · ⊕

(±1
bs

)
.(24)

Furthermore, one can impose the following condition: if a representative pairing
(G, L) has no orthogonal cyclic summand of order 2k, then one can choose the
integers a1, . . . , ar and b1, . . . , bs in such a way that their 2-valuation is different
from k.

See §2.1 for notation. Roughly speaking, lemma 4.3 says that by adding cyclic
pairings, one can diagonalize (G, L) in M̂. We say that the relation (24) is a
stabilization of (G, L). This stabilization argument really relies on the algebraic
structure of M̂.

Proof. According to [Wa], the form L is a direct sum of (a
b ) with a and b coprime

such that 0 < |a| < b and El
0 for 1 ≤ l and El

1 for 2 ≤ l (see the end of §2.1 for
notation). Since El

0 is hyperbolic, it is 0 in M̂ and it suffices to treat the two other
cases. Consider the case L = (a

b ) first. Using the identity [Mu, proof of lemma 2.2](a

b

)
⊕

(
sign(a)
|a|b

)
=

(
1
|a|

)
⊕

(
1
|a|

)
⊕

(
sign(a)b
|a|

)
,(25)

we deduce by induction that there exist integers a1, . . . , ar and b1, . . . , bs, such that
in M, (a

b

)
⊕

(±1
a1

)
⊕ · · · ⊕

(±1
ar

)
=

(±1
b1

)
⊕ · · · ⊕

(±1
bs

)
.(26)

If (G, L) has no orthogonal cyclic summand of order 2k, then v2(b) 6= k. It is then
clear from (25) and the identity (a

b

)
=

(
a− b

b

)
that we can require a1, . . . , ar and b1, . . . , bs to be of valuation different from k.
Consider next the case L = El

1 for some 2 ≤ l. If l 6= k, we use the following
relations (cf. relations (0.3) in [KK]) in M:

El
1 ⊕

(
3
2l

)
=

(
1
2l

)
⊕

(
1
2l

)
⊕

(
1
2l

)
for l ≥ 3,(27)

E2
1 ⊕

(−1
4

)
=

(
1
4

)
⊕

(
1
4

)
⊕

(
1
4

)
for l = 2.(28)

If l = k, then we use the relation (cf. relation (1.3) in [KK]):

Ek
1 ⊕

(
1

2k+1

)
= Ek

0 ⊕
( −3

2k+1

)
.(29)

And one can use once more relation (26) to stabilize ( −3
2k+1 ), that is,( −3

2k+1

)
⊕

( −1
3 · 2k+1

)
=

(
1
3

)
⊕

(
1
3

)
⊕

(
(−1)k

3

)
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(the (−1)k on the right hand side is the residue modulo 3 of −2k+1), which combined
with (29) yields the desired equality. This finishes the proof.

Lemma 4.4. Assume that f or g is 1-dimensional, that is V or W has rank 1.
Then F(f, g) = 1, i.e., formula (23) holds.

Proof. Suppose, with no loss of generality, that g is 1-dimensional. Then Kg is a
cyclic group. Let k be the 2-valuation of its order. Since (Kf , Lf ) has no orthogonal
cyclic summand of order 2k, we apply lemma 4.3 to stabilize (Kf , Lf ). There exist
positive integers a1, . . . , ar and b1, . . . , bs such that

(Kf , Lf)⊕
(±1

a1

)
⊕ · · · ⊕

(±1
ar

)
=

(±1
b1

)
⊕ · · · ⊕

(±1
bs

)
,(30)

where all numbers a1, . . . , ar and b1, . . . , bs are of valuation different from k.
Choose Wu classes u1, . . . , ur ∈ Z for the forms (±a1), . . . , (±ar) respectively,
and Wu classes u′1, . . . , u′s ∈ Z for the forms (±b1), . . . , (±bs) respectively. Then
z = v⊕⊕r

j=1 uj (recall v is a Wu class for f) is a Wu class for f ⊕⊕r
j=1(±aj) and

z′ =
⊕s

j=1 u′j is a Wu class for
⊕s

j=1(±bj). For this choice of Wu classes and by
additivity of Wu classes with respect to direct sums, we apply F(·, g) to (30) and
obtain:

F(f, g)F((±a1), g) · · · F((±ar), g) = F((±b1), g) · · · F((±bs), g).

Since (±aj) (resp. (±bj) and g are both 1-dimensional forms, F((±aj), g) = 1
(resp. F((±bj), g) = 1). It follows that F(f, g) = 1. This is the desired result.

End of the proof. Since F is bilinear (bimultiplicative with respect to orthogonal
sums), we can assume that (Kf , Lf) and (Kg, Lg) are irreducible. Hence Kf (resp.
Kg) is either a p-group, where p ≥ 2 is prime, or a product of two copies of a 2-
cyclic group [Wa]. Since by hypothesis (Kf , Lf) and (Kg, Lg) have no isomorphic
orthogonal 2-cyclic summands, we deduce that one of them, for example (Kg, Lg),
has no orthogonal cyclic summand of order 2k, where k is the 2-valuation of the
exponent of Kf . Then we apply lemma 4.3 to (Kg, Lg). There exist positive integers
a1, . . . , ar and b1, . . . , bs such that

(Kg, Lg)⊕
(±1

a1

)
⊕ · · · ⊕

(±1
ar

)
=

(±1
b1

)
⊕ · · · ⊕

(±1
bs

)
,

where the 2-valuations of a1, . . . , ar, b1, . . . , bs, respectively, are different from k.
Choose Wu classes for the forms (±aj), 1 ≤ j ≤ r and (±bj), 1 ≤ j ≤ s respectively.
For this choice of Wu classes and by additivity of Wu classes with respect to direct
sums, we obtain

F(f, g)F(f, (±a1)) · · · F(f, (±ar)) = F(f, (±b1)) · · · F(f, (±bs)).

Lemma 4.4 yields F(f, (±aj)) = 1 for 1 ≤ j ≤ r and F(f, (±bj)) = 1 for 1 ≤ j ≤ s.
It follows that F(f, g) = 1. This finishes the proof of Theorem 7.

Remark. The following formula, due to Cauchy and Kronecker, is more general
than (8):

|b|− 1
2

∑
x∈Z/bZ

eπi a
b (x+u)2 = e

πi
4 sign(ab)|a|− 1

2

∑
x∈Z/aZ

e−πi b
a x2+2πiux(31)

where a and b are nonzero integers, u ∈ Q, such that ab + 2au ∈ 2Z. We note that
(8) can be deduced from the formula above by substituting u = b

2 but (31) is not

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1916 FLORIAN DELOUP

a particular case of (13). We conjecture that there exists a formula, analogous to
(13), which does generalize both (9) and (31).

Appendix A. Relation with modular categories

We explain how the invariants τ(M ; G, q) arise from the theory of modular cate-
gories. We first give a brief survey of this theory (we refer to [Tu1] for more details)
and then we describe the relation with our work.

Modular categories are tensor categories with certain additional algebraic struc-
tures (braiding and twist) and properties of semisimplicity and finiteness. Semisim-
plicity and finiteness mimic the corresponding properties in the representation the-
ory of semisimple Lie algebras. In particular, simple objects play the role of irre-
ducible modules. The braiding is a generalization of the permutation isomorphism
U ⊗ V → V ⊗ U for modules over a commutative ring. Given a tensor (monoidal)
category V , a braiding is a family of isomorphisms

c = {cU,V : U ⊗ V → V ⊗ U}U,V ∈V

which satisfy some naturality and compatibility conditions. A twist in V is a family
of isomorphisms

θ = {θU : U → U}U∈V

which satisfy the identity

θU⊗V = cV,UcU,V (θU ⊗ θV )

for any objects U and V in V . As all the algebraic formalism involved in the theory,
the braiding and twist are best seen graphically, once a proper connection between
ribbon graphs (or colored framed links) and ribbon categories is established. A
ribbon category is a monoidal category with braiding and twist plus one more fea-
ture which generalizes the usual duality in linear algebra. From a ribbon category
V , one can construct a certain category of ribbon graphs RibV , which consists of
geometric objects. There is a canonical functor RibV → V which “represents” geo-
metric framed links (more generally ribbon graphs) in terms of the ribbon category
V we started with. Furthermore, this functor yields isotopy invariants of framed
links in R3. Using properties of semisimplicity and finiteness, one derives from this
functor an invariant of closed oriented 3-manifolds.

Let G be a multiplicative finite abelian group equipped with a bilinear form
c : G × G → U(1) (here U(1) denotes the unit group of complex numbers of
absolute value 1). The form c induces a quadratic form qc : G → Q/Z by qc(x) =
exp(2πic(x, x)) for any x ∈ G. Using this form and presenting M as the result of
surgery in S3, we can define an invariant τ(M ; G, qc) by (3). This invariant M 7→
τ(M ; G, qc) coincides with the one coming from the following modular category V
(see [Tu1, p. 29]): objects are elements of G (written multiplicatively); for g, h ∈ G,
the set of morphisms g → h is a copy of C if g = h and is {0} otherwise; the
composition of morphisms is defined as the product of the corresponding elements
in C; the tensor product of objects is their product in G. This category is a strict
monoidal category. For g, h ∈ G, the braiding gh → hg is defined to be the element
c(g, h) ∈ C; the twist g → g is defined to be c(g, g) ∈ C. If, moreover, we define the
duality by g? = g−1 for all g ∈ G, then this category becomes an abelian ribbon
category. It can be seen that the category is modular if and only if the S-matrix
(c(g, h)c(h, g))g,h∈G is invertible over C. Under this condition, the invariant τV
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coming from the category V is essentially the same as our invariant τ(M ; G, qc).
More precisely, the following relation holds:

τV (M ; G, qc) = |G|− 1
2 · τ(M ; G, qc).

In other words, the invariant M 7→ τ(M ; G, qc) comes from the modular category V
if qc is non-degenerate. On the other hand, a weaker condition than the invertibility
of the S-matrix is known ([Tu3]): one can associate an invariant of closed oriented
three-manifolds to a semisimple category if ∆V∆V 6= 0 where ∆V is a certain
element of the ground ring of the category V and where V denotes the mirror
category of V . In our case, ∆V =

∑
x∈G e−2πiqc(x) and ∆V =

∑
x∈G e2πiqc(x)

(because the category is hermitian) so the above condition amounts to the non-
nullity of γ(G, q) and we recover all invariants M 7→ τ(M ; G, qc) in this way. We
see in particular that different braidings c and c′ may give rise to the same invariant;
this happens if and only if c(x, x) = c′(x, x) for all x ∈ G.

Appendix B. Generalization to closed oriented (4n− 1)-manifolds

At first sight, or as the construction from the theory of modular categories maybe
would suggest, the definition of the invariant τ(M ; G, q) seems to be rather specific
to dimension 3. However, Theorem 4 enables us to define such an invariant for
(4n − 1)-manifolds as well. More precisely, let M be a closed oriented (4n − 1)-
manifold. There is a well defined linking form of M , LM : T × T → Q/Z, where
T = Tors H2n−1(M ;Z), which is a non-degenerate, symmetric, bilinear pairing.
We define τ(M ; G, q) by (16). In the case when M = ∂W where W is a compact,
oriented 4n-manifold, we obtain a reciprocity formula between the intersection form
BW on H2n(W ;Z) (or on the free part of H2n(W ;Z)) and the linking form T . Let
f : F ⊗ F → Z be a symmetric bilinear form on a finitely generated free abelian
group F , with a Wu class w ∈ F , such that (Kf , φf,v) = (G, q) and let Q : T → Q/Z
be a quadratic form over LM . Then

γ(G, q)
σ(BW )

γ(G⊗H2n(W ;Z), q ⊗BW ) = γ(T, Q)
f(v,v)

γ(T ⊗ F, Q⊗ f).
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[Fr] A. Fröhlich, Hermitian and quadratic forms over rings with involution, Quart. J. Math.
Oxford 20 (1969), 297-317. MR 40:5642

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1918 FLORIAN DELOUP

[KK] A. Kawauchi and S. Kojima, Algebraic classification of linking pairings on 3-manifolds,
Math. Ann. 253 (1980), 29-42. MR 82b:57007

[Ki1] R. Kirby, A calculus for framed links in S3, Invent. Math. 45 (1978), 35-56. MR 57:7605
[Ki2] R. Kirby, The topology of 4-manifolds, Lectures Notes in Mathematics 1374, Berlin, New

York, Springer Verlag, 1989. MR 90j:57012
[Kr] A. Krazer, Zur Theorie der mehrfachen Gaußschen Summen, H. Weber Festschrift,

Leipzig (1912), s. 181.
[Ky] R. Kyle, Branched covering spaces and the quadratic forms of links, Ann. of Math. 59

(1954), 539-548. MR 15:979a
[La] J. Lannes, Formes quadratiques d’enlacement sur l’anneau des entiers d’un corps de

nombres, Ann. Sci. Ecole Norm. Sup., 4ème série 8 (1975), 535-579. MR 54:231
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