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The Fundamental Group of the Circle 
Is Trivial 

Florian Deloup 

1. INTRODUCTION. The somewhat provocative title of this article does not refer 
to an actual refutation of a basic theorem of algebraic topology. Rather, it points to 
an experiment I would like to suggest to teachers of introductory courses in algebraic 
topology. 

When I was a undergraduate student, I was often puzzled by the apparent arbitrari- 
ness of the notions that were introduced. At the same time, like many students, I was 
amazed at how those notions would fit together perfectly to produce nice theories. Un- 
derstanding why one definition rather than another one is "right" is a fine art, and there 
is much room for argument about it. However, this kind of understanding lies at the 
core of doing mathematics. 

I will illustrate this point with three closely related examples, all at the undergrad- 
uate level. Each relies on the difference, for a function of two variables, between 
continuity (respectively, smoothness) in each variable separately and continuity (re- 
spectively, smoothness) in both variables together. The idea of linking the second to 
the third example via an inversion in the unit sphere was suggested by one of the 
referees of this article. 

2. WHY IS THE FUNDAMENTAL GROUP FUNDAMENTAL? It is reasonable 
to assume that the typical introductory course in algebraic topology includes the defi- 
nitions of homotopy and homotopy groups. A homotopy between two continuous maps 

f, g : X -> Y of topological spaces X and Y is usually defined as a continuous family 
(ft)te[o,1] of continuous maps from X to Y such that fo = f and fi = g. The prob- 
lem with this definition is that it requires one to define beforehand what is meant by 
a "continuous family of continuous maps." This, of course, is not a problem if we 
know what topology to put on the space C(X, Y) of continuous maps from X to Y. 
Or, we may argue, we can just define a homotopy F between f and g as a continu- 
ous map F : X x [0, 1] - Y such that F(x, 0) = f(x) and F(x, 1) = g(x) for all x 
in X, where X x [0, 1] is endowed with the product topology. This definition makes 
perfect sense. But then, we may ask-and in fact our students should-why is it that 
we require global continuity (or why is it that we choose this particular topology for 
C(X, Y))? 

Let us relax slightly the condition of global continuity and define a pseudo- 
homotopy between f, g : X - Y to be a family (ft)te[o,1] of continuous maps from X 
to Y such that the map (x, t) -- f, (x) is continuous in each variable separately (i.e., 
for fixed x in X the map t - f,(x) is continuous on [0, 1] and for fixed t in [0, 1] 
the map x - ft (x) is continuous on X). From the usual argument that one presents 
in class (or leaves as an exercise for one's students), there is a well-defined not-so- 
fundamental group for any pathwise-connected topological space X and any specified 
basepoint x in X. Its elements are the pseudo-homotopy classes of continuous maps 
y : [0, 1] -- X such that y(0) = y(l) = x. (Such maps are called loops at x.) Just 
as for the fundamantal group, the group operation is induced by the concatenation of 
loops. We make the following bold assertion: 
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Theorem 1. The not-so-fundamental group of the circle S1 = {z e : l|z = 1} is 
trivial. 

Proof We take x = 1 to be the basepoint. What could be a pseudo-homotopy between 
an arbitrary loop yo and the constant loop yi at x = 1 (defined by yi (s) = 1)? The idea 
is that, as the pseudo-homotopy evolves, we can stay longer and longer at the point 1, 
then go along (the image of) the loop yo faster and faster, until in the limit we truly stay 
at the point 1. We look for a pseudo-homotopy of the type yt(x) = yo(f(s, t)), where 
f : [0, 1] x [0, 1] -+ [0, 1] is continuous in each variable separately. When 0 <<]]<![CDATA[> s <<]]<![CDATA[> t, 
we want to sit at the point 1; as s grows from t to 1, we want to go along (the image 
of) the loop Yo. Looking for f(s, t) as an affine function of s on (t, 1], we find that 

s-t 
f(s,t)= (t (tx 1) 1-t 

is an appropriate choice. Hence the formula 

1 if0 <O s <t, 
- o s-j ift <s 1, 

defines a suitable pseudo-homotopy. It is clear that the map 

(s, t) - yYt(s) 

is (jointly) continuous on [0, 1] x [0, 1). In addition, we have 

lim yt(s) = 1 
t-+1- 

for each s in [0, 1], so the partial maps t - y,(s) (s fixed) and s <![CDATA[>]]> yt(s) (t fixed) are 
both continuous on [0, 1] and we are done. U 

Since an arbitrary loop y : [0, 1] -+ X in a pathwise-connected topological space 
X can be written as a composite map [0, 1] -+ S1 - X, we deduce the following 
(rather annoying for the theory of pseudo-homotopy) fact: 

Corollary 2. The not-so-fundamental group is always trivial. 

However, as we all know, the fundamental group of the circle is not trivial. It may 
be worthwhile for the reader to reconsider the proof of this fact and discover where 
global continuity is used. Here we merely check that the pseudo-homotopy that occurs 
in the proof of Theorem 1 is not in general a homotopy. Consider the nontrivial loop 
Yo that goes around the circle once and is defined on [0, 1] by yo(s) = exp(2ris). We 
show that the pseudo-homotopy y, from yo to yi constructed in the proof of Theorem 1 
is not a homotopy. The reason is that the convergence of y, (s) is not uniform in s as 
t - 1. Indeed, the quantity 

Iyt(s) - 1 = exp 2jri- - 1 =2 sin ( )) 

does not converge to 0 as (s, t) -+ (1, 1). In fact, the right-hand side has no limit. To 
see this, let a be an arbitrary real number such that a <![CDATA[>]]> 1. If we choose 

1 a 
Sn = 1 - -, tn = 1- -, 

n n 
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so that Sn - tn = (a - 1)/n <![CDATA[>]]> 0 and 1 - tn = a/n, we find that 

. Sn -tn . - sin - tn sin a - 

for each n. Noting that a = 1 and a = 2 produce different values for 

sn T ---I sin a ) , 

we see that the expression 

sin - t 

has no limit as (s, t) tends to (1, 1). 

3. WHY MUST AN AMBIENT ISOTOPY BE AMBIENT? We now consider a 
second example. Again, it is safe to assume that any introductory course in knot the- 
ory will introduce the notions of isotopy and ambient isotopy. An isotopy from a topo- 
logical space X to a topological space Y is "a continuous one-parameter family of 
embeddings." It is formally defined as a continuous map F : X x [0, 1] -> Y, 

(x, t) H F(x, t) = f (x), 

such that for each t in [0, 1] the map f, : X - Y is an embedding (i.e., f, is a home- 
omorphism between X and f,(X), the latter endowed with the relative topology it 
inherits from Y). Classically, a knot is defined as a smooth (infinitely differentiable) 
embedding of S1 in R3. Equivalently, a knot is a smooth loop y : [0, 1] - R3 whose 
image is a closed curve with no self-intersection (a simple closed curve). Sometimes, 
a knot is taken to be the image of such an embedding. Rather than giving away the 
accepted definition in class, I suggest proceeding differently once more and asking the 
following question: 

Question. What is the "good definition" of knot isotopy? 

A first attempt at answering this question would be to define an isotopy between 
two knots fo : S1 -- R3 and ft : S' -+ R3 to be an isotopy (ft)t[o,1] from S1 to R3, 
that begins and ends with the given knots. We also require the mappings ft (0 <<]]<![CDATA[> t <<]]<![CDATA[> 1) 
to be smooth. Classically, one tells students that this attempt will not work because of 
the following observation: 

Theorem 3. With the foregoing definition, any two knots are isotopic. 

Theorem 3 is usually used as a pretext for introducing another notion of isotopy 
(that of ambient isotopy). We will challenge this notion soon (keep on reading), but 
we first give an idea of the proof of Theorem 3. 

It is not hard to see that the relation "being isotopic to" is an equivalence relation. It 
is therefore sufficient to show that any knot is isotopic to some specified knot. A knot 
is called an unknot if its image in R3 lies in a fixed plane. It follows from a classical 
result in planar topology that any two unknots are isotopic. Hence it is sufficient to 
show that any knot is isotopic to an unknot. 

The idea of a possible isotopy is described by the picture in Figure 1: it consists 
in shrinking the knotted part to a point. Though this idea works (details are left to the 
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Figure 1. Moments in the isotopy of a (part of a) 
knot. 

Figure 2. Moments in another isotopy of a (part 
of a) knot. 

interested reader as an exercise), we proceed in a slightly different fashion. We keep 
the idea of shrinking the knot to a point of R3, but we simultaneously move the knot 
towards the origin, as shown in Figure 2. 

Proof We prove that any knot is isotopic to an unknot. Represent the given knot as 
a smooth map y : [0, 1] -- R3, say y = (yi, Y2, Y3) with y(0) = y(l). Without loss 
of generality, we can assume that y (0) = (0, 0, 0). Furthermore, since y is smooth, 
subjecting y to an isotopy if necessary, we may assume that the following properties 
hold (see Figure 3): 

(1) There exist sl and s2 with 0 <<]]<![CDATA[> sl <<]]<![CDATA[> s2 <<]]<![CDATA[> 1 such that y (s) = (s, 0, 0) whenever 
sl <<]]<![CDATA[> s <<]]<![CDATA[> S2. (In particular, the restriction of y to [sl, S2] describes a straight 
segment.) 

(2) There is a closed ball B such that B n y([0, 1]) = y([0, si]) and (R3 - B) n 

y([0, 1]) is planar. 

Figure 3. A smooth knot satisfying conditions (1) and (2). 

We now work out the idea of shrinking the knot towards the origin from the right 
side (first coordinate positive). Since all the "knottedness" occurs between s = 0 and 
s = sl, we are led to the formula 

I( - t y - 
(s) f ( 1 -s1 -t f - (s, 0, 0) 

y (s) 

if 0 <<]]<![CDATA[> s <<]]<![CDATA[> (1 - t)sl, 

if (1 - t)si <<]]<![CDATA[> s <<]]<![CDATA[> S2, 

if S2 <<]]<![CDATA[> S <<]]<![CDATA[> 1, 
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when 0 <<]]<![CDATA[> t <<]]<![CDATA[> 1, while at the end of the isotopy (i.e., for t = 1), we set 

(s, 0,0) if0 <<]]<![CDATA[> s <<]]<![CDATA[> s2, 
f (s) y (s) if S2 <<]]<![CDATA[> S <<]]<![CDATA[> 1. 

Let us verify that the function (s, t) - f, (s) is continuous. From the formulas, this is 
clear at any point (s, t) with t <<]]<![CDATA[> 1. We must check global continuity when t = 1. Let 
0 <<]]<![CDATA[> s <<]]<![CDATA[> 1. When s <![CDATA[>]]> 0, continuity at (s, 1) still follows from the formulas. So the real 
issue is continuity at (s, t) = (0, 1). For s satisfying 0 <<]]<![CDATA[> s <<]]<![CDATA[> S2, we have 

||/^t S)||^ max M, (l-ry( -) <<]]<![CDATA[> max Isl, |1- tl sup \\y(s)\. IIft(s)I _ max Is|, (1 - t) y - t max )s),|max - sTo,1] ) 
It follows that 

IIf(s)- f,(0)l = IIft(s)1I----0 

as (s, t) - (0, 1). The conclusion follows. U 

In one respect, the proof is incomplete: it should explain why the smoothness of 
the curve implies the existence of an isotopy transforming the given knot to a knot of 
the kind depicted in Figure 3, where the unknotted portion curve lies in a ball disjoint 
from (the interior of a ball containing) the knotted part. Can we imagine a knot so badly 
knotted or so pathological that we cannot straighten out any subarc without creating 
intersections, or even so bad that the complement of any proper subarc is not simply 
connected? The latter can happen if the embedding is a topological embedding (i.e., is 
continuous but not smooth). For this, see [9]. 

Here lies a plausible motivation for the "classic" definition of a tame knot: there 
exists a plane P in R3 such that the projection of the (image of the) knot onto P has 
no multiple points apart from a finite number of double points. Such a definition could 
be classified as "strategic withdrawal" in Lakatos's terminology [5]. We (innocently, 
of course) avoided this problem by decreeing that our embeddings be smooth. I do not 
know whether Theorem 3 holds in general for nontame knots.1 

There are, of course, other motivations for the classical definition of tame knots: 

1. (Combinatorial motivation) Knots should be "finite" objects. Two equivalent 
knots should be seen as equivalent after a finite number of combinatorial op- 
erations (called Reidemeister moves). Nontame knots (also called "wild" knots) 
involve an infinite amount of knotting, as evidenced by the fact that any planar 
diagram of a wild knot has an infinite number of double points (crossings). 

2. (Motivation from physics) Our concept of a knot comes from physical knots, 
made of rope or wire, having nonzero thickness. Such physical knots are in fact 
solid tori. But tameness of a knot K specifically implies the existence of a solid 
torus tubular neigborhood of K. 

3. (Thomian motivation) Knottedness should be a global concept rather than a local 
one. Knots should be locally unknotted. 

The reader who is familiar with isotopies will recognize that the isotopy that ap- 
pears in the proof of Theorem 3 bears some ressemblance to the one appearing in 
Alexander's trick. 

1Specifically for knots K in R3 such that the complement in R3 of any proper subarc in K is not simply 
connected. 
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Theorem 4 (Alexander's Trick). Any self-homeomorphism 4 : D -+ D of a disk 
D that fixes the boundary 3 D pointwise is isotopic to the identity through self- 
homeomorphisms of D fixing the boundary pointwise. 

Proof Define an isotopy (t)te[o,1] by 

4 (x) = t x if 2 t 
x if Il||xll t 

for 0 <<]]<![CDATA[> t <<]]<![CDATA[> 1 and o = idD. This is the required isotopy between o = idD and 
q1 = q. U 

Now students are told that "in view of Theorem 3," a finer notion should be defined, 
that of ambient isotopy. Two embeddings fo, fi : X -+ Y are ambient isotopic in Y if 
there is an isotopy (F)rt[o,1] from Y to itself such that Fo = idy, the identity mapping 
of Y, and f\ = F1 o fo. The main point is that F, is a map from the whole space Y to 
itself. The map F I~ -fo(X) sends the complement of fo(X) homeomorphically to the 
complement of fi (X). 

This notion applies in particular to knots, and it leads to the usual notion of equiv- 
alence for knots: two knots are equivalent if they are ambient isotopic in R3 (for con- 
venience, we do not take orientation into account here). 

However, one can be psychologically impressed by Theorem 3. It says that the re- 
lation "is isotopic to" is not very useful in classifying knots, though we might have 
easily thought otherwise (after all, Alexander's trick plays a fundamental role in both 
high- and low-dimensional topology, in particular in the dynamical study of self- 
homeomorphisms). What is wrong with the usual notion of isotopy? On the one hand, 
we can say that, unlike isotopy, ambient isotopy takes into account the space surround- 
ing the knots; this is reflected in the fact that the topological type of the complement is 
preserved by ambient isotopies. But it is not so clear a priori why isotopies fail to pre- 
serve the topological type of the complement. On the other hand, we may account for 
the failure in a different way. Our intuition tells us that an isotopy of the kind occurring 
in the proof of Theorem 3 cannot be smooth at every point. A second look at the proof 
shows, in fact, that the isotopy (s, t) - f,(s) is not smooth at (1, 0) (provided that 
the knot is indeed nontrivial). Nontriviality of the knot implies that there exists s, with 
0 <<]]<![CDATA[> s <<]]<![CDATA[> sl such that dy/ds(s,) = (1, 0, 0). We have 

af,(s) dy 
= - (s.) = (1, 0, 0)--(1, 0, 0) 

ds s=(1-t)s* ds 

as t -- 1-, whereas 

af,(s) s dy dy - = --(s.)--+-(s.) (1, 0, 0) 
s s=(i-t)s* ds ds 

as t -+ 1-. It follows that lim(s,t)_-(l,o) ft(s)/as does not exist. 
Given the idea that led us to the isotopy in the proof of Theorem 3, one suspects 

that the isotopy in question cannot be made smooth in general (unless the knots are 
really equivalent). This is indeed true. Here a knot isotopy (ft)treo,1] is smooth if the 
map (x, t) - f,(x) from S1 x [0, 1] to IR3 is (jointly) smooth. 

Let (ft)tE[o,1] be an isotopy between two knots fo : S1 -+ IR3 and fi : S1 - R3. We 
say that an ambient isotopy (F)re[o,l of IR3 extends the isotopy (ft)te[o,1I provided that 
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f, = Fto fo for each t in [0, 1]. In other words, the diagram 

S' x [0, 1] 

fox id I3 

R3 x [0, 1] 

is commutative. 

Theorem 5. Any smooth isotopy (s, t) h ft(s) between two knots fo, fi : S1 - R3 
extends to an ambient isotopy of R3. 

This is a particular case of the "Isotopy Extension Theorem." See [4, Theorem 1.3, 
p. 180] for a proof (which definitely uses differentiability) accessible to an undergrad- 
uate. The fact that S5 is compact plays a key role. In particular, Theorem 5 says what 
our intuition suggests, namely, that smoothly isotopic knots are ambient isotopic in R3 
(i.e., equivalent). 

So if any two knots were isotopic through a smooth isotopy (ft)te[o,1], then the 
given isotopy would extend to an ambient isotopy of R3. Hence the knots would be 
equivalent ! But of course there exist nonequivalent knots-although students usually 
have to wait a while before they see an actual example with a complete proof. 

Figure 4. Two nonequivalent knots. 

In particular, a smooth isotopy satisfying the conditions of Theorem 5 does pre- 
serve the topological type of the complement! This point seems to be overlooked in 
all introductory books on knot theory that I checked,2 whereas it is often emphasized 
that a general (i.e., not smooth) isotopy does not invariably have that property (The- 
orem 3). In fact, the intuition that the notion of equivalence between knots coincides 
with isotopy is correct! (Intuition involves only smooth isotopies.) 

An introductory course in knot theory might well begin with the usual notion of 
isotopy. Is it the right definition (with respect to what is expected: for instance, the 
knots in Figure 4 should be nonequivalent)? On intuitive grounds, it is. Why not even 
work with this definition until one is forced by the mathematics to introduce further 
the smooth (or piecewise linear) category? There is some justification to the fact that 
smoothness is a notion that our intuition often takes for granted! 

2See the references at the end of the article. References [2] and [6] use Theorem 3 to "justify" the notion 
of ambient isotopy; [10] does not motivate the notion of ambient isotopy; [8] does not discuss it; interestingly, 
[7, p. 9] defines an ambient isotopy as a smooth isotopy, which is closer to the view we are advocating here. 
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There is another notion that our intuition usually takes for granted, especially when 
a smooth isotopy is involved: compactness. We illustrate this in the next section. 

4. RUNNING OFF TO INFINITY. When isotopies involve noncompact spaces, 
ambient isotopy and smooth isotopy may be two distinct notions. We illustrate this 
with Theorem 6. 

Consider a long knot L in R3: it is (the image of a) smooth embedding t - y (t) = 
(x(t), y(t), z(t)) from the open interval (0, 1) to R3 such that y and z are compactly 
supported, x(t) -+ -oo as t -+ 0+, and x(t) -+ +00 as t -+ 1-. In particular, there 
exists e <![CDATA[>]]> 0 such that both y(0, E) and y(l - 6E, 1) are contained in the x-axis. An 
example is shown in Figure 5. (We are really thinking of y : [0, 1] - S3 = R3 U {o}, 
with y(0) = y(l) = oo supplying the missing point from the knot.) 

Figure 5. A long knot in R3. 

We say that a long knot is a planar if its image lies in some plane. It follows from 
the definition that a planar long knot must lie in a plane containing the x-axis. It is 
a classical exercise to show that any two planar long knots are smoothly isotopic. 
Actually, a stronger statement is true (see [4, Exercise 9, p. 183]): 

Theorem 6. Any two long knots are smoothly isotopic. 

Proof It is sufficient to prove that any two long knots are smoothly isotopic to the 
trivial long knot whose image is the x-axis. Here the isotopy we are looking for is 
smooth, which seems to preclude the kind of solution developed in the proof of Theo- 
rem 3. We can follow the original suggestion of M. Hirsch ("roll the knot to infinity") 
and build the isotopy by hand. However, it is possible to deduce Theorem 6 from The- 
orem 3 as follows. First notice that the isotopy (ft)te[o,1] in the proof of Theorem 3 
is smooth everywhere except at the point (0, 1), where it satisfies fi (0) = (0, 0, 0), 
the origin of R3. Now we can use the inversion I in the unit sphere of R3, the map 
R3 U {00} - R3 U {00} given by 

z 
z I(z) = 

for z ( {0, oo}, with I(0) = oo and /(oo) = 0. Notice that I transforms long knots 
into knots that lie on the x-axis in a neighborhood of the origin (and vice versa). Thus 
each knot I o f is a long knot, a well-defined map from the open interval (0, 1) to R3. 
In particular, the image of I o fi is easily seen to be planar, hence smoothly isotopic to 
the trivial long knot. Moreover, it is not hard to see that any long knot is smoothly iso- 
topic to a long knot that is the image under I of a knot satisfying the conditions (1)-(2) 
of Lemma 3. Since I3-_{0} : 3 - {0} - I R3 is smooth, the map from [0, 1] x [0, 1] 
to R3 given by 

(s, t) I fs(t) 

is the required smooth isotopy. U 
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Basically the idea consists in pushing off to infinity the nonsmoothness of the iso- 
topy (ft)t[o, ]. The reader can check that the isotopy (s, t) H I o f,(s) does not have 
bounded velocity at infinity. Running off to infinity is sometimes a way to escape 
problems of regularity. 

5. CONCLUSION. As a matter of fact, no student has ever complained to the 
author-nor to any teacher whom he knows-that the not-so-fundamental group 
could be ill-defined or trivial. But he wishes he had heard more complaints about the 
right (accepted) definition. 

Questioning the right definition is the only way to understand it. And if it's not the 
right definition, you may discover a better one. 
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