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Abstract

We show how the space of complex spin structures of a closed oriented three-manifold embeds naturally into
a space of quadratic functions associated to its linking pairing. Besides, we extend the Goussarov—Habiro theory
of finite type invariants to the realm of compact oriented three-manifolds equipped with a complex spin struc-
ture. Our main result states that two closed oriented three-manifolds endowed with a complex spin structure are
undistinguishable by complex spin invariants of degree zero if, and only if, their associated quadratic functions are
isomorphic.
© 2004 Elsevier Ltd. All rights reserved.

MSC:57M27; 57R15

Keywords:Three-manifold; Quadratic function; Complex spin structure; Goussarov—Habiro theory

Complex spin structures, or Sphstructures, are additional structures with which manifolds may
be equipped. They are needed to define the Seiberg-Witten invariants of 4-manifolds, as well as the
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Heegaard—Floer homologies of 3-manifolds by Ozsvath and Szabé. Any closed oriented 3-ninifold
can be endowed with a Sgistructure and, in that case, Spistructures are in canonical correspondence
with Euler structures. The latter are classes of nonsingular vector fieldsadrich have been introduced
by Turaev in order to refine Reidemeister torsion.

In this paper, we investigate the role played by quadratic functions in the topology of closed oriented
3-manifolds equipped with a Sgistructure or, equivalently, an Euler structure.

Extending constructions froifi8,19,24] we associate, to any closed oriented 3-manifdiavith a
Spirf-structures, its linking quadratic function

Hy(M; Q/7) — M, qyz.

The function¢,, , is quadratic in the sense that the symmetric pairing defined by) — ¢, ,(x +
¥) = dp.6(x) — ¢y 5(y) is bilinear. Moreover, this symmetric bilinear pairing coincides Wit :=
Am o (B x B) where

TorsHy(M: 7) x TorsHy(M; 7) — ", 07

is the linking pairing ofM and B denotes the Bockstein homomorphism associated to the short exact
sequence of coefficients-8 7 — Q@ — Q/Z — 0. In contrast withp,, ,, the bilinear pairing., does

not depend o@. Spirf-structures on a given manifol are determined by their corresponding quadratic
functions.

Theorem 1. Let M be a closed connected orientédnanifold. The map — ¢,, , defines a canonical
embedding

Spirf (M) d&” QuadLy)

from the set ofSpirf-structures on M to the set of quadratic functions witfy as associated bilinear
pairing.

Via the mapé,,, topological notions can be put in correspondence with algebraic ones. For in-
stance, the Chern clasés) € H?(M) of the Spiri-structures corresponds to the homogeneity defect
dqu,g : Ho(M; Q/7) — Q/7 of the quadratic functiog,, ,, which is defined bqu&M,g(x) =dpy.o(x) —
(:bM,o'(_x)-

When the Chern clasgo) is torsion,¢$,, , happens to factor throughito a quadratic function

TorsHy(M: 7) — ", /7
with 1, as associated bilinear pairing and is equivalent to the quadratic function constructed by Looijenga
and Wah[[19] (see als¢4,9]). In particular, the Spiftstructure may arise from a classical spin structure,
or Spin-structure. In that case, which is detected by the vanishiagrpfthe quadratic functiom,, ,
is homogeneous and coincides with yet earlier constructions due to Lannes and[L8}pas well as
Morgan and Sullivafi24] (see alsq17,27).

The linking quadratic function is used here to solve a problem related to the theory of finite type
invariants by Goussarov and Habiro. Their thef8yl1,12]deals with compact oriented 3-manifolds
and is based on an elementary move caWezlirgery. They-equivalence, which is defined to be the
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equivalence relation among such manifolds generated by this move, has been characterized by Matveev
in the closed casg?2]. This characterization amounts to recognize the degree 0 invariants of the theory.
His result, anterior to the work of Goussarov and Habiro, can be re-stated as follows: two closed oriented
3-manifoldsM and M’ areY-equivalent if and only if they have isomorphic pairs (homology, linking
pairing). A Spin-refinement of the Goussarov—Habiro theory (the possibility of which was announced in
[11] and[12]) has also been considered21], where Matveev’s theorem is extended to closed oriented
3-manifolds equipped with a Spin-structure.

We show that th&-surgery move makes sense for closed oriented 3-manifolds equipped witlfa Spin
structure as well. The equivalence relation generated by this move among such manifolds is called, here,
Y¢-equivalencelt follows that there exists a Sgirrefinement of the Goussarov—Habiro theory. Our main
result is a characterization of th&-equivalence relation in terms of the linking quadratic function. In
order to state this more precisely, let us fix a few notations.

Given an isomorphisny : Hy(M; Z) — H1(M'; Z), the dual isomorphism t¢ by the intersection
pairings is denoted by* : Hy(M'; Q/Z) — Hx(M; Q/Z):

Vx € Hi(M; Z), Ny € Hy(M'; Q/7), x o lpﬁ(y’) =y(x)ey € Q/Z.

Also, given sectionsands’ of the surjection® : Ho(M; Q/Z) — TorsH1(M; Z) andB : Hx(M'; Q/7)
— TorsH1(M'; 7) respectively, we say thatands’ arey-compatible if the diagram

Hy (M';Q/Z) <— Tors Hy(M';Z)

= iE

Hy (M;Q/Z) <—— Tors Hi(M;Z)

commutes. We denote By a Poincaré isomorphism and we recall that the Gauss sum of a quadratic
functiong : G — Q/Z, defined on afinite Abelian group, is the complex numbéx_, _; exp(2ing (x)).

Theorem 2. Let(M, ) and(M’, ¢") be two closed connected orientgdnanifolds withSpirf -structure.
The following assertions are equivalent

(1) TheSpirf-manifolds(M, ¢) and (M’, ¢') are Y¢-equivalent
(2) There is an isomorphism : Hi(M; Z) — Hi(M'; Z) such thatp,, = ¢y, 0 Y.
(3) There is an isomorphism : H1(M; Z) — H1(M'; Z) such that

o /iy =y o (Y| X Y),

o (P Ye(9) = Pre(d),

o forsomey-compatible sections s andof the Bockstein homomorphisyis, , os ande,, , os’
have identical Gauss sums

Two special cases deserve to be singled out. First, consider manifolds whose first homology group is
torsion free. The following result is deduced from Theorem 2.

Corollary 1. Let (M, ) and (M’, ¢") be two closed connected orient@manifolds with Spirf-
structure such that H1(M;7Z) and H1(M';7) are torsion free. The following assertions are
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equivalent

(1) TheSpirf-manifolds(M, ¢) and (M’, ¢") are Y¢-equivalent
(2) There is an isomorphist : Hi(M; Z) — H1i(M'; Z) such thaty(P~1c(c)) = P~ 1e(d)).

Second, consider the case of rational homology 3-spheres. According to what has been said above,
if M is an oriented rational homology 3-sphere, thiga , can be regarded as a quadratic function
Hi(M;7) — Q/7 with /), as associated bilinear pairing. In that case, Theorem 2 specializes to the
following corollary.

Corollary 2. Let(M, o) and(M’, ¢) be two oriented rational homolo@tspheres wittSpirf -structure.
The following assertions are equivalent

(1) TheSpirf-manifolds(M, ) and(M’, ¢’) are Y“-equivalent
(2) There is an isomorphism : Hi(M; Z) — Hi(M'; Z) such thatp,, , = ¢y 5 o .
(3) There is an isomorphism : H1(M; 7) — H1(M’; 7) such that

o Ay =iy oy xy),

o (P le(0) = P re(d),

® ¢y, and¢,,  have identical Gauss sums

The paper is organized as follows. In Section 1, we briefly review “Sgtiuctures from a general
viewpoint. Next, we restrict ourselves to the dimension 3, in which case one can work with Euler structures
as well. At the end of the section, the technical problem of gluing ‘Sgiiructures is considered. This
is needed to define thésurgery move in the setting of manifolds equipped with a Spiructure,
since this move is defined as a “cut and paste” operation. Our gluing lemma involvéss8pitures,
on a compact oriented 3-manifold with boundary, which are relative to a fixed Spin-structure on the
boundary.

Section 2 is devoted to the construction and study of the linking quadratic function. First, we give
a combinatorial description of the Spistructures of a given closed oriented 3-manifold presented
by surgery along a link ir63. This leads to a Spfarefinement of Kirby’s theorem. Next, we define
the quadratic functiow,, , associated to a closed 3-dimensional Spmanifold (M, ¢): this is done
essentially by defining a cobordism invariant of singular 3-dimensionat Spanifolds ovelK (Q/7, 1).

The quadratic functiog,, , can be computed combinatorially as soori s o) is presented by surgery
along a link inS®. We prove Theorem 1 and some other basic properties of thegaalpastly, regarding

as an Euler structure, we give fgy, , anintrinsic formula that does not make reference to the dimension
4 anymore. This is obtained by presenting, a la Sullivan, elemerfis @ ; Q/7) as immersed surfaces
with n-fold boundary.

In Section 3, th&“-surgery move is defined using the above-mentioned gluing lemma. Next, Theorem
2 is proved working with surgery presentations of Spimanifolds. We use the material of the previous
section and a result due to Matveev, Murakami and Nakaf2&h25]on ordered oriented framed links
having the same linking matrix. Some algebraic ingredients about quadratic functions on torsion Abelian
groups are needed as well. Those results, some of them well-known in the case of finite Abelian groups,
have been proved aside [iB]. We conclude this paper by giving some applications of Theorem 2 and
stating some problems.
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1. Complex spin structures on three-manifolds

In this section, we review Spirstructures and other related structures, with special emphasis on the
dimension 3. We also give a gluing lemma for Spstructures.

1.1. Some conventions

In this paper, any manifolt!l is assumed to be compact, smooth and oriented. We denotelby
the manifold obtained fronM by reversing its orientation. 1 has non-empty boundargM has the
orientation given by the “outward normal vector first” rule. The oriented tangent bunddatlenoted
by TM.

Vector bundles will be stabilized from the left side. A section of a vector bundle is saidantséngular
if it does not vanish at any point.

If Gis an Abelian group, &-affine space #s a sefA on whichG acts freely and transitively. The affine
action is denoted additively; thus, fara’ € A, the unique element € G satisfyinga’ = a + g will be
writtena’ — a.

Unless otherwise specified, all (co)homology groups are assumed to be computed with integer coeffi-
cients.

1.2. Complex spin structures

In this subsection, we considemamanifold M. We recall basic facts about Spistructures or,
adopting a viewpoint which is analogous to that usefB]rfor Spin-structures.

1.2.1. FromSpirf ontoSO
Letn >1 be aninteger. The group Sgin is the 2-fold covering of the special orthogonal group(8©
1— 72 — Spin(n) — SO(n) — 1.
The group Spifin) is defined by

Spin(n) x U(L)
Z2 ’

whereZ- is generated bj{—1, —1)], hence the following short exact sequence of groups:

Spirf (n) =

1 — U(1) — Spirf (n) — SOn) —> 1,

where the first map sendso [(1, z)] and wherer is induced by the projection of Sgim) onto SQn).
The inclusion of S@) into SOn + 1), defined byA — (1) & A, induces a monomorphism
Spirf (n)— Spirf (n + 1) such that the diagram

Spin‘(n)>—— Spin®(n + 1)

SO(n)>—> SO(n + 1).
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commutes, hence a diagram at the level of classifying spaces:

BSpin®(n) —— BSpin®(n + 1)

o N

BSO(n) — BSO(n + 1). (1.1)

Here, we take BSQ) to be the Grassman manifold of orienteglanes inkR> and the map BS@) —
BSO(n + 1) to be the usual one. We fix the classifying spaces B$p)jr(in their homotopy equivalence
classes) and, next, we fix the maps BBSpirf (n) — BSO(n) (in their homotopy classes) to be fibrations.
Then, the map from BSpii) to BSpirf (n + 1) is choosen (in its homotopy class) to make diagram
(1.1) strictly commute.

We denote bysg,) the universanh-dimensional oriented vector bundle over B&D Lety gy (,) be the
pull-back ofysq,) by Br. Thanksto (1.1), there is a well-defined morphism betweenl)-dimensional
oriented vector bundIl€R © yspirr )y — Yspire(n+1) INduced by the usual o ® yso,) — Ysom+1)-

1.2.2. RigidSpirf-structures
Recall thatV is an-manifold to which some conventions, stated in Section 1.1, apply.

Definition 1.1. A rigid Spirf-structureon M is a morphism ™ — ygyi¢(,) betweenn-dimensional
oriented vector bundles. A Sgistructure(or complex spin structujeon M is a homotopy class of rigid
Spirf-structures oM. We denote by SpfiiM) the set of rigid Spifrstructures oM, and by Spifi(M)
the set of its Spifrstructures.

Obviously, a different choice of the classifying space BSgii (in its homotopy type) or a different
choice of the map B(in its homotopy class) would lead to a different notion of rigid Sgstructure, but
would not affect the definition of a Spirstructure. Rigid structures will be used later to define gluing
maps.

Let g be the Bockstein homomorphism associated to the short exact sequence of coefficients

O—>Zi>Z—>Zz—>O.

The fibration Br : BSpirf (n) — BSO(n) has fiber BY1) ~ K (7, 2) and, indeed, is a principal fibration
with characteristic class := fw> € H3(BSO(n)), wherews is the second Stiefel-Whitney class. Then,

by obstruction theory, we obtain the following well-known fact about existence and parametrization of
Spirf-structures.

Proposition 1.1. The manifold M can be given @pirf-structure if and only if the cohomology class
Bwo(M) € H3(M) vanishes. In that cas&pirf (M) is a H?(M)-affine space

One may easily verify that the homotopy-theoretical definition of a ‘Sgiructure, which we have
adopted here, agrees with the usual one.

Lemma 1.1. Suppose that M is equipped with a Riemannian metric and den@©byM ) the bundle
of its oriented orthonormal frames.@pirf -structure on M is equivalent to an isomorphism class of pairs
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(n, H), wherey is a principal Spirf (n)-bundle over M and wher# : y/U(1) — SO(TM) is a principal
SQ(n)-bundle isomorphism

To go to the point, we have only defined (rigid) Spstructures on the manifoldl. Nevertheless, the
notion of a (rigid) Spifi-structure obviously extends to any oriented vector bundle over any base space.

Remark 1.1. Thanks to the ma® @ yspirr(ny = 7spirf(n+1) CONstructed at the end of Section 1.2.1, a
rigid Spirf-structure on T gives rise to one oft @ TM. This induces a canonical map

Spirf (M) = Spirf (TM) — Spirf (R ® TM),
which is H?(M)-equivariant and, so, bijective. Thus, a Spstructure orM is equivalent to a Spin
structure on its stable oriented tangent bundle.

1.2.3. Orientation reversal

The time-reversingmap is the orientation-reversing automorphisnrob TM defined by(z, v) —
(—t, v). Composition with that map transforms a rigid Spstructure orR® TM to one orRH T(—M).
So, by Remark 1.1, we get a canoniégd (M )-equivariant map

Spirf (M) — Spirf (—M).

1.2.4. Relativeéspirf-structures
Suppose thad¥l has some boundary and fix a rigid structsre Spirf.(TM|,,,) overoM.

Definition 1.2. A Spin-structure on M relative to & a homotopy class rélV of rigid Spirf-structures
on M that extends. We denote by Spii{M, s) the set of such structures.

The following relative version of Proposition 1.1 is also proved by obstruction theory applied to the
fibration Br.

Proposition 1.2. There exists a rigidpirf-structure on M that extends s if and only if a certain coho-
mology class
w(M,s) € H3(M, M)

vanishes. In that cas&pirf (M, s) is a H%(M, dM)-affine space.
1.2.5. Restriction to the boundary

Suppose thatl has some boundary. Observe that there is a well-defined homotopy class of isomor-
phisms between the oriented vector bundtes ToM and T™M|,,,, which is defined by any section of
TM|,y, transverse to M and directed outwards.

In particular, a Spiftstructure on ™| ,,, can be identified without ambiguity to a Spistructure on
oM. Thus, we get a canonicadstrictionmap

Spirf (M) — Spirf (M),

which is affine over the homomorphisi?(M) — H?(¢M) induced by inclusion.
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1.2.6. FromSpinto Spirf

Proceeding as in Section 1.2.2, we define the set.&pfn of rigid Spin-structureson M and the set
Spin(M) of Spinstructureson M. The latter is aH?(M; Z,)-affine space as soon as(M) vanishes.
The reader is referred {8] for details! The group homomorphism

Spinn) - Spirf (n)

defined byp(x) = [(x, 1)], makes the two projections onto &) agree. This allows us to define a
morphismys,inn — Vspirrny Petween oriented-dimensional vector bundles, the composition with
which transforms a rigid Spin-structuteto a rigid Spiri-structure denoted bg(u). Thus, we get a
canonical map

spin(M) > spirf (M)

which is affine over the Bockstein homomorphism HY(M; Z») — H2(M).
If M has some boundary, we defiredative Spin-structureson M as well. Their construction goes as
in Section 1.2.4. Thus, for a fixede Spin.(TM|;,,), we get a map

Spin(M., s) 2> Spirf (M, ps),

which is affine over the Bockstein homomorphismHY(M, oM 7,) — H?(M, iM).

1.2.7. FromU to Spirf

Let m be an integer such that<2m. We take BUm) to be the Grassman manifold of complex
planes inC*. The map BUm) — BSO(2m), which consists in forgetting the complex structure on a
complexm-plane, represents the usual inclusion d@fi) into SQ2m). We defineyym, to be the pull-
back ofysoon,) by this map BUm) — BSO(2m), which can be identified with thenz-dimensional
oriented vector bundle underlying the universatiimensional complex vector bundle. Then, as we did
in the Spin and Spihcases, we could define a “rigid U-structure” BA" " @ TM to be a morphism
RZ" " @ TM — Jum) between #Z-dimensional oriented vector bundles. Such a morphism induces
a complex structure oR?"~" @ TM by pulling back the canonical one 90m) and, conversely, any
complex structure of®?"~" & TM inducing the given orientation arises that way. Then, a “U-structure”
onR?"~" @ TM is equivalent to a homotopy class of complex structure®®” @ TM compatible
with the given orientation.

There is a canonical way to embeds) into Spirf(2m): see, for instancg;L0, Proposition D.5Q]
This inclusion

U(m) = Spirf (2m)

makes the two maps to §2n) commute. This allows us to define a morphisg,,, — 7spirr 2m)
between orientedri2-dimensional vector bundles, the composition with which transforms a “rigid U-
structure” onR?"~" @ TM to a rigid Spiri-structure on it. As a consequence of Remark 1.1, we get a

LIn[3], rigid Spin-structures are called%-structures” and are defined on the stable oriented tangent bundle. An observation
similar to that given in Remark 1.1 for Sphstructures applies to Spin-structures.
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canonical map
U (M) -2 Spirf (M)

from the set of stable complex structures dv Tompatible with the orientation to the set of Spin
structures oM. (See[10, Proposition D.57for a construction ofy involving the usual definition of a
Spirf-structure.)

1.2.8. Chern class

A Spinf-structurex on M induces an isomorphism class of principal Spin-bundles oveM and, so,
an isomorphism class of principak-bundles thanks to the homomorphism Sgin — U(1) defined
by [(x, y)] — y2. The first Chern class of the latter is denoted-by). We get aChern classnap

Spirf (M) — H?(M)

which is affine over the doubling map defined by— 2x. Whenc(x) belongs to TorsH?(M), the
Spirf-structurex is said to beorsion

1.3. Complex spin structures in dimension 3

In this subsection, we turn to 3-manifolds which, by Section 1.1, are assumed to be compact smooth
and oriented. The preliminary remark is that any 3-manifdldan be endowed with a Sphstructure,
sincewz(M) is well-known to vanish.

We start by removing the rigidity of relative Sphstructures which is still remaining along the boundary.
Next, we recall Turaev’s observation that Spatructures can be regarded as classes of vector fields. This
holds true in the relative case as well.

1.3.1. Relativeéspirf-structures

Let M be a 3-manifold with boundary and lebe a Spin-structure odW. We define Spifrstructures
onM which are relative ta. Note that, thanks to the observation initiating Section 1.2.5, one can identify
o € SpiN(dM) to a Spin-structure onM ;.

Lemma 1.2. For any rigid Spinstructure s onl M |,,, representings (which we denote by € ), the
rigid Spirf-structuref(s) can be extended to M. Moreoyéor anys, s’ € o, there exists a canonical
H2(M, dM)-equivariant bijection

Spirf (M, Bs) 225 Spirf (M, ps').

Lastly, for anys, s’, s” € o, we have thapy ;o p; o = pg g

Definition 1.3. A Spin°-structure on M relative t@ is a pair(u, s) wheres € ¢ andu € Spirf (M, Bs),
two such pairgu, s) and («', s") being considered as equivalent when= p (x). The set of such
structures is denoted by SpitM, ¢) and can naturally be given the structure off&(M, dM)-affine
space.

Remark 1.2. There is an analogue to Lemma 1.1 that formulates what & Sprincture orM relative
to ¢ is in terms of principal bundles.
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Example 1.1. Suppose thatM is a disjoint union of tori. The 2-torus has a distinguished Spin-structure
0 that is induced by its Lie group structure. Using the previous remark, it can be verified thata Spin
structure orM relative to the union of copies ef is equivalent to a relative Sgirstructure in the sense

of Turaev[30, Section 1.2]

Proof of Lemma 1.2. Let wa(M, s) € H2(M, dM; Z») denote the obstruction to extesdo a rigid
Spin-structure oM. We have that

Bwa(M, s)) = w(M, Bs) € HX(M, oM).

Thus,w(M, Bs) is of order at most 2 and, so, vanishes.

We now prove the second statement. ket[—1, 0] x M — M be a collar neighborhood @iV/. In
particular,p induces a specific isomorphism betwée® ToM and TM|,,,: the rigid Spin-structures on
R @& ToM corresponding te ands’” are denoted byp ands1, respectively. By assumptiosy ands; are
homotopic: letS = (s;),<(0,1; b€ such a homotopy. This defines a rigid Spin-strucBoe[0, 1] x M by
identifying, at each tim¢ R & ToM with the restriction of T[0, 1] x dM) tot x éM. The same collar
neighborhood allows us to define a smooth glukhg ([0, 1] x M), as well as a positive diffeomorphism
¢ : M — MU ([0, 1] x dM) (based on the affine identification betwderl, 0] and[—1, 1]). Consider
the map

Spirf (M, Bs) 23 Spirf (M, ps')

defined, for any: € Spirf.(M) extendingf(s), by pg([u]) = [(u U p(S)) o To].

The mapp is H?(M, dM)-equivariant and is independent of the choice@o8o, we are left to prove
thatpg does not depend on the choice of the homotSjaetweensg andsy, which will allow us to set
ps.s =ps- 10 see that, consider the maponstructed in Section 1.2.6 from S[i@, 1] x M, 0x (—sg) U
1 x s1) to Spirf ([0, 1] x M, 0 x (—fsg) U 1 x (fs1)), where—sg € Spin.(R & T(—JdM)) is obtained
from so by time-reversing. The Bockstein homomorphigrfrom H1([0, 1] x oM, d[0, 1] x M Z5)
to HZ([O, 1] x oM, [0, 1] x dM) is trivial, since its codomain is isomorphic to the free Abelian group
Hy(6M). It follows that the former majg collapses, and the conclusion follows

Remark 1.3. The set of Spirstructures on M relative te is defined to be
SpINM, 6) = {a € SPIN(M) : uly, = o},

which may be empty. One can construct a canonical map
SpIn(M, o) —> Spirf (M, )

by means of a rigid Spin-structuson TM|,,, representing and the map defined in Section 1.2.6
from Spin(M, s) to Spirf (M, Bs).

1.3.2. Spirf-structures as vector fields: the closed case
Let M be a closed 3-manifold. We recall Turaev’s definit[@8] of an Euler structure ok, and how
this corresponds to a Spistructure orM.
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Lemma 1.3. The groupSpirf (3) can be identified witlJ(2) in such a way that the diagram

SO(2) —=—=U(1) U(2)
SO(3) — Spin®(3)

commutes. Heter is the canonical projectionSO(2) is identified withU(1) in the usual way and is
embedded int&O(3) by A — (1) ® A, whereadJ(1) is embedded intt)(2) by A — A & (1).

Proof. There is a well-known way to construct a 2-fold covering from@lbnto SQ3), which consists
in identifying SU2) with the group of unit quaternion&2 with the space of pure quaternions and making

the former act on the latter by conjugation. Thus, we get a unique group isomorph'(é]h%l) Spin(3)
which makes the two projections onto @commute. Then, the isomorphism

SU(2) x U(1) = U@
Vi)

sending (A, z)] to zAinduces a group isomorphism(®) = Spirf (3). The reader may easily verify the
commutativity of the above diagram[J

Definition 1.4. An Euler structureon M is a punctured homotopy class of nonsingular vector fields on
M. Precisely, two nonsingular vector fieldeindv’ onM are considered as equivalent, when there exists
a pointx € M such that the restrictions efandv’ to M\x are homotopic among nonsingular vector
fields onM\ x. The set of Euler structures dhis denoted by EWlM).

If a cellular decomposition o is given, punctured homotopy coincides with homotopy on the 2-
skeleton ofM. Then, obstruction theory applied to the bundle of non-zero vectors tangeinddgs that
Euler structures do exist (Poincaré—Hopf theorg) = 0) and that they form &2(M; m2(Ty M\0))-
affine space (where € M). SinceM has come with an orientation, EM) is naturally aH?(M)-affine
space.

Lemma 1.4(Turaev[29]). There exists a canonicaf %(M)-equivariant bijection
Eul(M) -5 Spirf (M).

Proof. Letv be a nonsingular vector field dv. We are going to associate #ca Spirf-structure in the
usual sense (see Lemma 1.1) and, for this, we need to e¥deith a metric. Orientv)*, the orthogonal
complement ofv) in TM, with the “right hand” rule ¢ being taken as right thumb). Then, 8®1) is
a reduction of SQT M) with respect to the inclusion of S@) into SQ(3) defined byA — (1) ® A. The
bundle SQ(v)1), together with the homomorphism $8 ~ U(1) — U(2) defined byA — A & (1),
induces a principal (2)-bundley. According to Lemma 1.3; can be declared to be a principal Sii)-
bundle and can be accompanied with an isomorphism n/U(1) — SO(TM). The Spifi-structure
[(n, H)] on M only depends on the punctured homotopy class,@nd we sel([v]) = [(y, H)]. The
mapy can be verified to bé&/2(M)-equivariant. O
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Remark 1.4. Let[v] be an Euler structure dd. The isomorphism class of principa(l)-bundles induced
by the Spili-structureu([v]) in Section 1.2.8 is represented by &©")), since the homomorphism
Spirf(3) — U(1) used there corresponds to the determinant map through the isomorphisit85pin
U(2) of Lemma 1.3. Consequently, the Chern class@b]) is the Euler clasg(TM/(v)), i.e., the
obstruction to find a nonsingular vector field bhtransverse t@.

According to the previous remark, Spiatructures arising from Spin-structures correspond to nonsin-
gular vector fields o which can be completed.

More precisely, let @arallelizationof M be a punctured homotopy class of trivializatioas(z1, 2, t3)
of the oriented vector bundleM, and denote the set of such structures by Ram@ll Obstruction theory
applied to the bundle of oriented framesways that parallelizations do exist (Stiefel theorems(M) =
0) and that they form & 1(M; z,)-affine space. (In the case of trivializations d#fiThomotopy on the
2-skeleton coincides with homotopy on the 1-skeleton sin€¢&L . (3)) = 0.) Thus, one obtains the
following well-known fact[16,23]

Lemma 1.5. There exists a canonicaf 1(M; Z,)-equivariant bijection
Parall M) LN Spin(M).

Define a magg : Paral{M) — Eul(M) by ([¢]) =[1] for any trivializations = (¢1, t, t3) of TM. The
next lemma follows from the definitions.

Lemma 1.6. The following diagram is commutative

Parall(M) % Spin(M)

5| |?

Eul(M) —Z> Spin®(M),

1.3.3. Spirf-structures as vector fields: the boundary case

LetM be a 3-manifold with boundary. We define Euler structurelavhich are relative to a homotopy
class of trivializations ofR & ToM. We start with a preliminary observation.

What has been done in Section 1.3.2 for the oriented tangent bundle of a closed 3-manifold works
for any 3-dimensional oriented vector bundle. In particulagig a closed surface, Section 1.3.2 can be
repeated foiR @ TS. This repetition ends with the following commutative diagram:

Parall (R ® TS) —— Spin(R @ TS) <—=— Spin(S)

5| |s

Eul (R ® T'S) ——=> Spin°(R ® TS) <=— Spin®(S).

The only change is that, because the base spi&aow 2-dimensional, homotopies are not punctured
anymore. ArEuler structureon R @ TS is defined to be a homotopy class of nonsingular sections of this
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vector bundle and, similarly, parallelizationon R @ TS is a homotopy class of trivializations of this
oriented vector bundle.

Example 1.2. Thus, the section = (1, 0) of R ® TS determines a Spfrstructureu([v]) on the surface
S By Remark 1.4, the Chern class;afv]) coincides with the Euler claggTS) of the surfaces.

In the sequel, we fix a parallelizatiaron R & ToM. The observation at the beginning of Section 1.2.5
allows us to identifyr with a homotopy class of trivializations ofM | ;.

Fix, in this paragraph, a nonsingular sect®af TM|;,,. An Euler structure on M relative to s a
punctured homotopy class i@V of nonsingular vector fields avl that extend. We denote by EGlM, )
the set of such structures. Obstruction theory says that there is an obstiuetior) € H3(M, M) to
the existence of such structures and, when the latter happens to vanish, that thégest Eiglnaturally
a H%(M, oM)-affine space. (Here, again, we use the given orientatidv tf makez the coefficients
group.)As an application of the Poincaré—Hopftheorem and obstruction calculi on the sibugle- M),
one obtains that

2-(w(M,s), [M,oM]) = (e(TM|gp/(s)), [0M]) € Z. (1.2)

The following lemma can be proved formally the same way as Lemma 1.2. The first statement is also
a direct consequence of (1.2).

Lemma 1.7. For any trivializations = (11, t2, t3) of TM|;,, representing (which we denote by € 1),
the nonsingular vector field can be extended to M. Moreovéor anyt, ' € z, there exists a canonical
H?(M, dM)-equivariant bijection

D 4
Eul (M, 1) —> Eul(M, 1}).
Lastly, for anyz, ¢, t” € 7, we have thap, ;» o p, » = p; .

Definition 1.5. An Euler structure on M relative teis a pair(v, ) wherer € t andv € Eul(M, t1), two
such pairgv, ) and(v’, t') being considered as equivalent whee= p, ,/(v). The set of such structures
is denoted by E@lM, ) and can naturally be given the structure df&(M, dM)-affine space.

Remark 1.5. Following Turaev, one can describe concretely howea H?(M, M) acts on d(v, 1)] €
Eul(M, 7). Let P~1x € H1(M) be represented by a smooth oriented kkot™ int(M), and letv’ be
the vector field obtained from by “Reeb turbulentization” alonl (see[28, Section 5.2} Then,(v’, 1)
represent§(v, t)] + x.

The following relative version of Lemma 1.4 can be proved similarly.
Lemma 1.8. There exists a canonicdl (M, dM)-equivariant bijection

Eul(M, t) - Spirf (M, u(7)).

1.3.4. Relative Chern classes
Let M be a 3-manifold with boundary and letbe a Spin-structure oM. In the relative case too,
there is aChern classnap

Spirf (M, 6) = H?(M, 0M),
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which is affine over the doubling map. It can be defined directly (using Remark 1.2), or undirectly
regarding relative Spinstructures as classes of vector fields (Section 1.3.3). This is done in the next
paragraph.

Let = be the parallelization ot @ ToM corresponding t@ by u. For any trivializationt of TM|,,,
representing and for any nonsingular vector fieldon M extending, we can consider the relative Euler
class

e(TM/(v), 1) € HX(M, dM),

i.e., the obstruction to extend the nonsingular seatiaf TM/(v) from dM to the whole oM. Clearly,
this only depends on the equivalence clgss?)] of (v, t) in the sense of Definition 1.5. Thus, we get a
canonical map

Eul(M, ©) — H?(M, M)

which can be verified to be affine over the doubling map thanks to Remark 1.5. Its compositigT with
is defined to be&. (Compare with Remark 1.4.)

Remark 1.6. For anyx € Spirf (M, o), the Chern class(«) vanishes if and only i comes from the set
Spin(M, o) defined in Remark 1.3.

We now compute the modulo 2 reduction of a relative Chern class. First, recall that the cobordism group
pr'” is isomorphic taZ, [16,23] For a closed surfacg there is the Atiyah—Johnson correspondence

Spin(S) —> Quads)

between spin structures dhand quadratic functions with the modulo 2 intersection pairing afs
associated bilinear pairingd.,13]. The quadratic functiog, : H1(S; Z2) — Z» corresponding t& €
Spin(S) is defined by

27D = [(7, ol)] € Q37" =~ 7,

for any oriented simple closed cury®n S,

Lemma 1.9. The following identity holds for any € Spirf (M, o):
Vy € Ha(M,0M), (c(2), y) mod 2= q,(0x(y)).

Here 0. : Ho(M, M) — Hi(¢M) denotes the connecting homomorphism of the HiréM) and is
followed by the modul@ reduction

Proof. The modulo 2 reduction af(«) is
w2(M, 0) € H*(M, 0M; Z>),

i.e., the obstruction to extenglto the whole manifoldM. Let ¥ be a connected immersed surface in
M such thatoX is oM N X, 62 has no singularity and' represents the modulo 2 reductionyofThen,
(c(2), y) mod 2= (w2(M, o), [2]) is equal to{w2(Z, al;5), [2]) and so is the obstruction to extend the
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Spin-structures| 5y to the whole surface. SinceX is connected, this is the class @&, o],5) in pri”.
Thus, we have thak(«), y) mod 2= ¢,([02]) = g5(é«(y)). O

Example 1.3. Suppose tha@M is a disjoint union of tori. Let® be the distinguished parallelization
corresponding to the distinguished Spin-structfren the 2-torus (see Example 1.1). An Euler structure
onM relative to the union of copies ef is equivalent to a relative Euler structure in the sense of Turaev
[28, Section 5.1]Lemma 1.9 is a generalization &1, Lemma 1.3]

1.3.5. Spirf-structures as stable complex structures
We conclude this subsection devoted to the dimension 3 by recalling that, in this case-st&miture
is equivalent to a stable complex structure on the oriented tangent bundle.

Lemma 1.10. If M is a closed3-manifold then the canonical map
U (M) -2 Spirf (M)
introduced in Sectiod.2.7is bijective

Proof. EndowM with a Riemannian metric and consider a nonsingular vectordfiefoM. Then R@TM

splits as(R @ (v)) & (v)*, which is the sum of two oriented 2-dimensional vector bundles. So, via the
inclusion of U1) x U(1) into U(2) defined by A, B) — (A) @ (B), v defines a complex structusg on

R TM. Thus, we get a map from Eulf) to the set of stable complex structures avi Uip to punctured
homotopy. By obstruction theory applied to the fibration Bt BSO with fiber type SQU, the latter

set is aH ?(M)-affine space and that map#g*(M)-equivariant. Thus, sinces(SO/U) is zero, we get a
bijective map

Eul(M) -5 U* (M).

It can be verified thab o J is the mapu from Lemma 1.4. (This verification amounts to checking that
some two group homomorphisms from{) to Spirf (4) coincide.) O

1.4. Gluing of complex spin structures

In this subsection, we deal with the technical problem of gluing Spiructures. We formulate the
gluing in terms of (rigid) Spiftstructures, but the reader may easily translate the statement and the proof
in terms of vector fields and Euler structures.

Let M be a closed-manifold obtained by gluing twa-manifoldsi, andM> along their boundaries:

M = MUy M>.

This involves a positive diffeomorphisti : —0M> — dM4 as well as a collar neighborhood @¥7; in
M;. The inclusionM; — M will be denoted byj;.

Lemma 1.11. Fori =1, 2, lets; be a rigid Spirf-structure onT M; |,,,,. Having identifiedR © ToM;
with TM; |y, thanks to the collgrwe assume thah o (—Id @ T f) = s2. If the relative obstructions
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w(M;, s;)’'s vanishthen the absolute obstructian(M) does too and there is a canonigglliing map
Spirf (M1, s1) x Spirf (M2, s2) i Spirf (M)

which is affine over

H2(M178M1)®H2(A{278M2) .............. > HQ(M)

E

Hy_o(M).

P—le—lt

H,,_o(My) ® Hy,—2(Ma) RIS
Proof. Fori =1, 2, leta; € Spirf (M;, s;) be represented by a rigid structure The structures; anda;
can be glued together by means éfWe obtain a rigid Spiftstructure oM whose homotopy class does
not depend on the choices@f anday in «1 anduxy, respectively. We denote it U oo € Spirf (M).

Let us prove that this map, is affine. Fori = 1,2, let%; be a smooth triangulation d¥; such
that%1|,y, corresponds t@>|,,, by f. We denote by the cellular decomposition d¥; dual to the
triangulation®;.

On the one hand, we consider tin@ion% of the triangulationg’; and%>: a simplex of¢ is a simplex
of ¢; fori =1 or 2, and simplices afM are identified with simplices @fM> by f. On the other hand, we
consider thegluing ¢* of the cellular decompositiors] and%7: a cell of¢* either is a cell of¢”” which
does not interseatM;, either is the gluing by of a cell belonging ta} with a cell of %7 along a face
lying in dM1 = —dM>. Then,% is a smooth triangulation &fl and#* is its dual cellular decomposition.
Cohomology will be calculated wité while homology will be computed witf™*.

Fori =1, 2, consider some;, o, € Spirf(M;, s;) and setr = «qU rorp ando’ = o U pay. We want to
prove the following equality:

JrsP Yo — o)) + jos P2 — ob) = P — o) € Hy_2(M). (1.3)

Fori =1,2, letq;,al € Spirf(M;) represent; andc; respectively and coincide on the 1-skeleton
of #; (and, of course, o@M;). Suppose that we have fixed a morphism of oriented vector bundles
TM; — ysom): then, the rigid structures; anda; can be identified with lifts\f; — BSpirf (n) by Br
of the base mapaf; — BSO(n). The obstruction; — «; € H?(M;, dM;) is the class of the 2-cocycle
which assigns to each 2—simple’k}<of ; outsideoM;, this element;; of to(BU(L)) ~ n2(K (Z,2)) >~ 7
obtained by gluing; |,; anda;],; alongde! . So, we have thab (4 —of) =[Y 2% - e 1if e denotes
the (n — 2)-cell dual toe: .

Moreovera = a1Uraz anda’ := ajU ra;, represent ando’ respectively. Using these rigid structures,
we can describe explicitely a 2-cocycle represeniingo’ as well. This 2-cocycle sends any 2-simplex

of 41U ;%> contained i0M, = —dM>t0 0 € Z so thatP~1(a — o) is represented by, z,% . e,’:’l +

2 *,2
diie - O

Suppose now that the manifolds have dimensiea 3. This is the gluing lemma that we will use in
the next sections.
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Lemma 1.12. Lets1 € Spin(éM1) and o, € Spin(dM2) be such thatf*(c1) = —a2. Then there is a
canonicalgluingmap

Spirf (M1, 1) x Spirf (M2, 62) i Spirf (M)
which is affine over
H2(M,,0My) & H2(My, OMy) ~---> H2(M)
P*le*ll P

j *@ j *
Hy(My) @ Hy (M) —222" o H,(M).
Moreover for any oy € Spirf (M1, o1) anday € Spirf (M2, o2), the following identity between Chern
classes holds

Pl (aUpap) = juo P re(on) + o P re(o2) € Hu(M).

Proof. Choose a rigid Spin-structusg on TM1|,,,, representing, which we denoted by, € 43. This
induces a2 € g2 by settingso =51 0 (—1d ® T f). By Lemma 1.2, the obstructions(M;, fs;)’s vanish
and so, by Lemma 1.11, there is a gluing map with domain“$pin, fs1) x Spirf (Ma, Bs2).

Another choice’] € o1 would induce anothey, € o2 and would lead to another gluing map this time
with domain Spifi(My, fs1) x Spirf (M2, fs5). Nevertheless, using the “double collar"@#; = —oM>
in M, one easily sees that the identificaticmﬁgi andp&sé from Lemma 1.2 make those two gluing
maps agree.

The first assertion of the lemma then follows. The second one is proved with arguments similar to those
used in the proof of Lemma 1.11 (gluing of obstructions in compact oriented manifolds using Poincaré
duality). O

Remark 1.7. If M is obtained by gluind/; andM> along only part of their boundaries (so th&f # ¢),
Lemma 1.12 can easily be generalized to produce“Sginuctures o relative to a fixed Spin-structure
on its boundary.

2. Linking quadratic function of a three-manifold with complex spin structure

In this section, we define the quadratic functigy) , associated to a closed oriented 3-manifivld
equipped with a Spfirstructures. We present its elementary properties and connect it to previously
known constructions.

2.1. Quadratic functions on torsion Abelian groups

We fix some notations. A andB are Abelian groups and if : A x A — B is a symmetric bilinear
pairing, we denote by : A — Hom(A, B) the adjoint map. The pairingis said to benondegenerate
(respectivelynonsingulaj if b is injective (respectively bijective). We denote Ay the group HongA, 7)
whenA is free, the group Hoii, @) whenA is aQ-vector space and the group Hom Q/Z) whenA
is torsion. Lastly, application of the functer ® Q is indicated by a subscri.
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2.1.1. Basic notions about quadratic functions
Let G be a torsion Abelian group.
A mapg : G — Q/7 is said to be @uadratic functioron G if
by(x,y)=q(x +y) —q(x)—q(y)

defines a (symmetric) bilinear pairing, : G x G — Q/Z. The quadratic functiom is said to be
nondegenerat#é b, is nondegenerate, atmogeneous g (—x) = ¢ (x) for anyx € G. Apart from the
bilinear pairingb,, one can associate tpits radical

Ker(g) = KerE; C G,
its homogeneity defect
dg:G— Q/Z, x> q(x)—q(—x)

and, in case whe® happens to be finite, itGauss sum

1(g) =) exp2ing(x)) € C.
xeG
Given a symmetric bilinear pairing : G x G — Q/Z, we say thay : G — Q/Z is a quadratic
functionover bif b, = b. The groupG* acts freely and transitively on Qudd, the set of quadratic
functions ove, just as map&; — Q/Z add up. So, Quad) is aG*-affine space.
There is a procedure to produce quadratic functions on torsion Abelian groups, known as the
“discriminant” construction.

2.1.2. The discriminant construction

In the literature, the discriminant construction is usually restricted to nondegenerate bilinear lattices
and produces quadratic functions on finite Abelian groups. The general case has been conditlgred in
to which we refer for details and proofs. Here, we briefly review the construction.

A lattice His a free finitely generated Abelian groupbflinear lattice (H, f) is a symmetric bilinear
pairing f : H x H — 7 on a latticeH. Let also

H*={x € Hg : fa(x, H) C Z}

be the dual lattice. AVu clasdor (H, f) is an elementv € H such that
Vx e H, f(x,x)— f(w,x) e 27.

A characteristic fornfor (H, f) is an element € H* = Hom(H, 7) satisfying
Vx € H, f(x,x)—c(x) € 27.

The sets of characteristic forms and Wu classegorf) are denoted by Chef) and WU f) respectively.
Those sets are not empty and are related by theunap f(w), Wu(f) — Charf).
Let (H, f) be a bilinear lattice. Consider the torsion Abelian gréup= H*/H and the map

Ly:GyrxGy— Q/Z, (Ix],[yD) = falx,y) mod 1
The pairingL ; is symmetric and bilinear, with radical Kd/r} ~ (Kerf) ®0Q/Z.
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Observe that the adjoint maﬁ : Ho — H{ restricted toH* induces an epimorphisé ; —
Tors Cokerf. Hence the short exact sequence

0— Ker L; — Gy — Tors Cokerf — 0, (2.1)

which can be verified to split (non-canonically). Therefarg, is the direct sum of a finite Abelian group
with as many copies af)/Z as the rank of Kerf. It follows also from (2.1) that the pairing ; factors
to a nondegenerate symmetric bilinear pairing

~ ~
Tors Cokerf x Tors Coker f -, Q/7.
The bilinear map?* x H* — Q defined by(«, x) — «g(x) induces a bilinear pairing

Coker f x G ="', q/z (2.2)
which is left nondegenerate and right nonsingular. It is left nonsingular if and ohiy ifondegenerate.

Let now (H, f, c¢) be a bilinear lattice equipped with a characteristic feren H*. One can associate
to this triple a quadratic function ovér;, namely

1
bpe:Gyr—>Q/Z, [x]— E(f@(x,x) — cg(x)) mod 1
Definition 2.1. The assignatiot, f, c) — (G, ¢,) is called thediscriminantconstruction.

Letus make afew observations about this construction. First, note thatepends ononly mod 2f (H).
Second, the Abelian group™/ f (H)=Coker f acts freely and transitively on Ch@ft) /2 f (H) by setting

V[a] € Coker £, V[c] € Charf)/2f(H), [c]+ [«]=I[c+ 24] € Charf)/2f(H).

Third, since KerL ; is canonically isomorphic teker f) ® @/z, any form Kerf — 7 induces a
homomorphism Kel y — Q/Z. Thus, we get a homomorphisyn : (Ker f)* — (Ker L y)*.

Theorem 2.1([5]). The assignatior > ¢ ;. induces an embedding

¢
Char( f)/2f(H) < QuadLy)

whichis affine over the opposite of the left adjoint of the pai(ihg).Moreover a functiong € Quad’L ;)
belongs tdm ¢, if and only ifq |, L; belongs tdm .

Remark 2.1. The maps ; is bijective if and only iff is nondegenerate.
We now use the algebraic notions above as combinatorial descriptions of topological notions.
2.2. Combinatorial descriptions associated to a surgery presentation

In this subsection, we fix an ordered oriented framemponent link_ in S°.
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(D*0),

Fig. 1. The preferred basis éfo(Wy).

We call V;, the 3-manifold obtained fror8® by surgery alond. and we denote by, thetraceof the
surgery:

V., =0W, with W, =D*U U(D2 x D?);,
i=1
where the 2-handléD? x D?); is attached by embedding(St x D?); into S® = éD* in accordance with
the specified framing and orientation bf.

The groupH2(Wy) is free Abelian of rank, and is given th@referredbasis([S1], . . ., [S,]) defined
as follows. The closed surfacg is taken to bgD? x 0); U (—Z;), whereZ; is a Seifert surface for
L; in S2 which has been pushed off into the interior@f as shown irFig. 1L The groupH2(W;) is
identified with Honm{H2(WL), Z) by Kronecker evaluation, and is given the dual basis. In the sequel, we
simplify the notations by settingg = H>(W.) (so thatH?(W, ) is identified withH*) and by denoting
by f : H x H — 7 the intersection pairing o/, . The matrix off relatively to the preferred basis bif
is the linking matrix

Br = (bij); j-1

of L. Since(H, f) is a bilinear lattice, the constructions of Section 2.1 apply.

2.2.1. Combinatorial description of Spin-structures
We recall a combinatorial description of Spin ) due to Blanchef2]. Define the set

n
SL=_1r1=(r}_1 € @)" : Yi=1....n, Y bjrj=b; mod 2{ .
j=1
The elements of/;, are calleccharacteristic solutionsf B; .

Lemma 2.1. There are canonical bijections

Spin(Vy) — Wu(f)/2H — &L.
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Thus, 1, shall be referred to as tlewmbinatorial description dbpin(Vy). A refined Kirby’s theorem
dealing with surgery presentations of closed 3-dimensional Spin-manifolds can be derived from this
lemma[2, Theorem (l.1)]

Proof of Lemma 2.1. The preferred basis ¢f induces an isomorphistH /2H ~ (Z»)": the bijection

between Wf)/2H and.¥#; is obtained this way. We now describe a bijection between(®pinand

Wu(f)/2H. Let ¢ be a Spin-structure oW, . The obstructionv2 (W, o) to extends to Wy belongs
to the groupH2(Wy, Vi: Z) ~ Ha(Wp; Z2) ~ H/2H. Sincew>(Wy, ¢) is sent tow»(W;) by the

restriction mapH2(Wyr, Vi: Z2) — H?(Wy; Z»), a representative fow>(Wy, o) in H has to be a
Wu class forf. O

2.2.2. Combinatorial description @&pirf-structures
Define the set
s=()j,€eZ" : ¥Vi=1,...,n, s5; =b; mod 2

e
L= 2-lm Bp,

the elements of which are callé&hern vectorof B; . According to the following lemma, this set shall
be referred to as theombinatorial description oBpirf (V7).

Lemma 2.2. There are canonical bijections

Spirf (V1) — Chat()/2f (H) —> 7L

Proof. The preferred basis dfl defines an isomorphisn* =~ 7", which induces a bijection be-
tween Chatf)/2f(H) and ;. The restriction map SpitWw;) — Spirf (V) is affine over the map
H?(Wp) — H?(Vy)induced by |ncIu3|on By exactness of the p@if., V), the latter is surjective and

its kernel coincides with the image gST H — H* (by Poincaré duality). Moreover, sindé?(W;) is

free Abelian, a Spifistructure orW; is determined by its Chern classh?(W;) ~ H*. Such aclass has

to be a characteristic form fdrsince its modulo 2 reduction coincides with the second Stiefel-Whitney
classwz(Wy) € H?%(Wp; Z) ~ Hom(H, Z»). Therefore, there is a bijection between Spif) and
Chat(f)/Zf(H) defined bys — [c(6)] whereg is an extension of to W, . (This extension exists since
w(Wy, o) lives in H3(Wy, V) =0, see Proposition 1.2.)J

Ifthe Chern vectofs] corresponds to the Sgisstructures, we say thatL, [s]) is asurgery presentation
of the closed 3-dimensional Spimanifold (Vz, o). On a diagram, we draw the framed libkusing the
blackboard framing convention, indicate its orientation and decorate each of its compbnetits the
integers;.

Next, Kirby's theorem[15] can easily be extended to deal with surgery presentations of-Spin
manifolds. This Spifiversion of Kirby’s calculus will be used in the next section.

Theorem 2.2. Let L andL’ be ordered oriented framed links83. Equip them with Chern vectofs] and
[s’], which correspond t&pirf -structuress ands’ on Vv, andV; respectively. ThemheSpirf -manifolds
(VL, o) and (V;,, ¢') are Spirf-diffeomorphic if and only if the pairéL, [s]) and (L’, [s']) are, up to
re-ordering and up to isotopyelated one to the other by a finite sequence of the moves drawig o
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* Stabilization: Ls) <> (Ls A Q?l

Ls) <> L9 JL@
-1

* Orientation reversal:

* Handle sliding:

&

Fig. 3. Spiff slam dunk move.

Proof. This follows from the usual Kirby's theorem. It suffices to show that, for each Kirby’s move
L1 — Lj, the corresponding canonical diffeomorphi$in — V., acts at the level of Spfastructures
as combinatorially described défig. 2 This is a straightforward verification.[

Example 2.1. Look at theslam dunkmove depicted irFig. 3. Here, we are considering the ordered
unionL U (K1, K2) of ann-component ordered oriented framed linkvith an oriented framed kndt'1
together with its oriented meridiaki,. The move is

(L U (Kl’ KZ)» [(S]_, L] sna ys 0)]) < (Lv [(S17 ceey SI’L)])7

whereyisthe framing number &€ 1. It relates two closed Spirmanifolds which are Spiadiffeomorphic,
as can be shown by re-writing the proof[@f Lemma 5]with Spirf Kirby's calculi.
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Remark 2.2. There exists a canonical isomorphismCoker f — H2(V;), as defined by the following
commutative diagram:

H2(WL, VL) —_— HQ(WL) E— Hz(VL) —>0

A
:TP :[ zgg
f :

H H* Coker f — 0.

Then, the affine action aff2(V;) on Spiri (V) writes combinatorially:
V[x] € Coker 7, V[c] € Char f)/2f(H), [c]+ [x] = [c + 2x].

The Chern class map: Splrf(VL)—>H (VL) is combinatorially described by the
mapc : Char(f)/2f(H) — Cokerf 1~ [c].

2.2.3. FromSpinto Spirf in a combinatorial way
We now relate the combinatorial description of Spip) to that of Spifi(Vy).

Lemma 2.3. The canonical mag : Spin(V.) — Spirf (VL) corresponds to the map: Wu(f)/2H —
Char(f)/2f(H) defined bys([w]) = [f(w)] or, equivalently to the mapg : ¥; — 7t defined by

prD) =[Br -rl.

Proof. Takes € Spin(Vy) and letr, € H%(Wy, V1) ~ 7" be an integral representative for the obstruc-
tion wa(Wy, o) € H2(Wy, Vi; Z2) ~ (Z»)" to extends to Wy . Let alsog € Spirf (W;) be an extension

of B(o) € Spirf(Vy). Then, the lemma will follow from the fact thag goes toc(s) by the natural map
H?(Wp, Vi) — H?(Wp) provideds is appropriately choosen with respect/to This can be proved
undirectly as follows. In case whencan be extended t#; , this is certainly true: indeed, we can take
r. = 0 and choose a& the image byp of the unique extension of to Wy, so thatc(a) vanishes. The
general case can be reduced to this particular one for the following two reasons. First, it is easily verified
that for each Kirby’s movd.1 — L> between ordered oriented framed links, the induced bijections
S, — S1,and? 1, — 7¥"1,, which are respectively described[#) Theorem (I.1)land Theorem 2.2,
are compatible with the mags: 1, — 71, (k=1, 2) defined bys([r]) =[By, - r]. Second, according

to a theorem of Kaplafi4], there exists an oriented framed liikin S° related td_ by a finite sequence

of Kirby's moves, and through whickh € Spin(V.) goes tos” € Spin(V,/) with the property that’ can

be extended tdv,;,. O

2.2.4. A combinatorial description d>(Vy; Q/7)
We maintain the notations used in Section 2.1.

Lemma 2.4. There exists a canonical isomorphism

H'
= Hy(Vy; Q/2).
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Proof. Consider the following commutative diagram with exact rows and columns:

0 0

0 —— Hy(V1,; Q/Z) —— Hy(Wr,;Q/Z) — Ho(W1,,Vi,; Q/Z)

T a
0 —— H(Vy; Q) Hy(Wp;Q) S > Hy(W1,Vi; Q)

a b

0

Hy(Vy,; Z)

Hy(Wy; Z)

Hy(Wy, Vi, Z)

0 0

The groupH?® is the subgroup o ® Q = H»(W;; @) comprising those: € Ho(Wy; @) such that
c(x) € Hy(Wy, Vi; Q) satisfiez:(x)ea(y) € Zforally € Ho(Wy; Z), wheree is the rational intersection
pairing in Wy . So, we have that

H* =7 Yb(Hy(WL, Vi; 7).

SeeingH>(Vy; Q/7) as a subgroup ofl2(Wy; Q/7), we deduce the announced isomorphism from the
mapd. O

Recall that the quotient groufs®/ H, which is denoted by ; in Section 2.1, appears in the short exact
sequence (2.1). We now interpret this sequence as an application of the universal coefficients theorem to
V. We denote by the Bockstein homomorphism associated to the short exact sequence of coefficients

0—7—0Q—Q/7Z—0.

Lemma 2.5. The following diagram is commutative

00— Ker i; Gy Tors Coker f_> 0

i |- -

0 — H(V2) ® Q/Z —> H(V1; Q/Z) =5 Tors H* (V) —> 0.

Proof. Itis enough to prove the commutativity of the right square. Start with a elas>(Vy; Q/Z7).
It can be written asn =[S ® [%]] wheren is a positive integerSis a 2-chain inVy with boundary
0S =n - X andXis a 1-cycle. Then, we have thAtm) = x € H1(Vy) if xdenote§ X]. Let alsoY be a
relative 2-cycle inWy, V) with boundarydY = X and sety = [Y] € Ho(Wy, V). Lastly, consider the
2-cycleU =n-Y — Sin W, andseu =[U] € H = Hx(Wy).
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Note tha1u®% € H®Q belongsto the dual lattice*: indeed,P‘lf(u):i*(u) € Ho(Wr, Vi) equals
n-yso thatf(u) =n- P(y). This also shows thaﬁ(u ® %)|H =P(y). So, the maig; y — Tors Cokerf
that is featured by the short exact sequence (2.1) s[en@s}l] to[P(y)].

The canonical mapl ® Q ~ Hp(W1; Q) — Hp(W1; Q/Z) sendsu ® L to[(n-Y — §) @ [2]] =
[—S ® [2]]. Consequently, we get thaf[u ® 1) = —m.

The conclusion then follows from the commutativity of the diagram

8*
Hy(Wp, Vi) —— H1 (V1)

ol

HY(W;) ——— H*(V),

which implies thab([P(y)]) = P(x). O
Remark 2.3. Similarly, the pairing (2.2) can easily be interpreted as the intersection pairivig of

Hi(VL) x Ha(Vy; Q/7) —> Q)7
via the isomorphism#® 1 : Cokerf—> H1y(Vy) andk : Gy — Ha(Vp; Q/2).

2.3. A 4-dimensional definition of the linking quadratic function

LetM be a closed connected oriented 3-manifold equipped with & Sinctures. In this subsection,
we construct the quadratic functign, , announced in the introduction.

Lemma 2.6. Fix a homology class: € Hx(M; Q/7). Consider a quadrupletW, y, o, w) formed by a
compact oriented-manifold Wa positive diffeomorphism : W — M, a Spirf-structurex on W which
restricts toy*(¢) on the boundary and a class € Ho(W; Q), the reduction of which i (W; Q/Z)
coincides with the image of m. Thehe quantity

oM, o, m)= |:% {c(o), w) —w e w):| e Q/z

does not depend on the choice of such a quadruplet

Remark 2.4. If Wis a compact oriented 4-manifold such thft(W) = 0 and there exists a positive
diffeomorphismy : 0W — M, then the paikW, /) can be completed to a quadrup{®, v, «, w) with
the above property. In particular, such quadruplets do exist $ingessesses surgery presentations.

Proof. Let (W', y/, o, w’) be another such quadruplet. We wish to compare the rational numhers
wew — {c(a), w) andA’ := w’ e w’' — (c(&'), w').

The homology classn of M can be written as = [S ® [,—11]], wheren is a positive integerSis a
2-chain with boundaryS = n - X andX s a 1-cycle. Then, we have th&{m) = [X]. Since the image
of min Ho(W; Q/7) belongs to the image dii,(W; Q), the image of X] € Hi(M) in H{ (W) is zero.
So, one can find a relative 2-cycYein (W, dW) with boundarydY = y~1(X). Consider the 2-cycle
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U=n-Y —y 1S)inW. Then, by assumptiony can be written as) = [-U ® 711] + wo € Ho(W; Q),
wherewg € Ho(W; Q) belongs to the image dfi>(W; 7). We do the same fow’ in W’ (getting thus
somey’, U’, wp).

Next, we consider the closed oriented 4-manifold

W= WU, (=W).

Gluing rigid Spirf-structures, it is easy to find a Spistructurex on W which restricts tax and—o’ on
Wand—W’, respectively.

SetY =i(Y) —i'(Y’), wherei andi’ denote the inclusions &% andW’ respectively. This is a 2-cycle
in W with the property that the identity

[Y®1=[i(U)®1/n—i'(U)®1/n] = (—ix(w) + ix(wo)) + (ij(w) — i} (wp))
holds in H>(W; @). It follows from this identity that

[Y]e[Y]=(wew+ wyewy—2-w e wp)
+ (—w'ew —wpewy+2-w ewp), (2.3)

and that
(c@), [Y]) = (—(c(@), w) + {c(x), wo)) + ({c(), w) — (c(&), wg)). (2.4)

Recall thatwg € H2(W; Q) andwy € Ho(W'; Q) come from integral classes. Then, by the Wu formula
and the fact that a Chern class reduces modulo 2 to the second Stiefel-Whitney class, the Ifitegérs
woewo andwgewg are congruent modulo 2 to(z), (Y1), (c(a), wo) and(c (o), wg), respectively. Adding
(2.3) to (2.4), we find that

A—A’—Z-w.wo+2-w/.w650mod2

Because the image af € H>(W; Q) in Ho(W; Q/7Z) comes fromH(M; Q/7) and becausag €
H>(W; @) comes fromH,(W; Z), the rational numbew e wo belongs taZ. The same holds fap’ e wy,.
We conclude that the rational numhér— A’ belongsto 2 7. O

Remark 2.5. A universal class € H(K (Q/Z, 1); @/Z) induces a homomorphism
o”" (K(@/z.1) — a/z
defined by{(M, o, f)] — ¢(M, o, P~ f*(u)). This follows from the definition of in Lemma 2.6.

Consider the linking pairingy, : TorsHi(M) x TorsHi(M) — @Q/Z. Composing this with the
BocksteinB, one gets a symmetric bilinear pairing

Hy(M: ©/7) x Hy(M: Q/7) 2% /2

with radical Ho(M) ® Q/7. Using a cobordisriV as in Remark 2.4, one easily proves, for anymn’ €
Ho(M; Q/7), the following identity:

dM,o,m+m') —p(M,e,m) — dp(M,c,m') =m e B(m') = Ly (m,m’).
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Definition 2.2. Thelinking quadratic functiorof the Spiri-manifold (M, o) is the map denoted by

Hy (M: Q/7) "7, /7
and defined byn — ¢(M, o, m).

The discriminant construction allows us to compute combinatorially the quadratic furgion as
sSoon as a surgery presentation of the Spiranifold (M, o) is given. Indeed, ldt be an ordered oriented
framed link in S® together with a positive diffeomorphisg : V; — M. With the notations from
Section 2.2(H, f) still denotes the bilinear latticeH2(W, ), intersection pairing o%;), to which the
constructions from Section 2.1 apply. Let alse Char f) represent/*(s) € Spirf(V.) (in the sense
of Lemma 2.2). Then, as can be verified from the definitions, the following diagram commutes:

¢M,a'

Hy(M;Q/2) ————=Q/Z

’d’*T:

Hy(Vy;Q/Z)

ET:

Gy (2.5)

—bf.c

Note that, in this context, the pairings and L ; are topologically interpreted asiy and —Ly,
respectively.

2.4. Properties of the linking quadratic function

In this subsection, we fix a closed connected oriented 3-mariiladshd prove properties of the map
¢y - Spirf(M) — QuadLy) defined bys — ¢, ,. Those properties are proved “combinatorially”
using (2.5), but may also be proved directly from the very definitios f,.

Next lemma says thaf, , is determined orf>(M) ® Q/Z by the Chern class(s). Recall that the
modulo 2 reduction of(s) is wa(M) = 0.

Lemma 2.7. For anys € Spirf (M), the functiong,, , is linear on Ha(M) ® Q/Z:

{c(0), x)
2

VxQ®[rle Ho (M) ® Q/Z, ¢y (x®[r]) = [r] e @/Z.

Proof. Thefirst statementfollows from the fact that K@:HZ(M)@)@/Z. As for the second statement,
it suffices to prove it wheM = V. Suppose that is represented by the characteristic farr Char f)
and thatv € H>(V;) goestoyin H= Ho(Wy). Thenx ® [r] as an element dffo(Vy; Q/7) corresponds
to[y®r]in H*/H. Consequently, we have thaf, ,(x ®[r)=—¢ ; ([y®r)=—3G2f(y, y)—r-c(y))

mod 1. Sincey belongs to Kerf, we obtain tha, ,(x ® [r]) = 27 - ¢(y) mod 1= 17 - (c(e), x) mod 1,
by Remark 2.2. O
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Let us consider, for a while, the case wher Spirf (M) is torsion. Then, Lemma 2.7 implies that
$n .. Vanishes ondo(M) ® @/Z: Consequentlyg,, , factors to a quadratic function ovey,. In this
torsion case, our linking quadratic function is readily seen to agree with tHa} ahd, up to a minus
sign, with that of|9]. In the next subsection, it is also shown to coincide with tha1 7.

In particulare may arise from a Spin-structure dh which happens if and only if(¢) vanishes. Then,
the factorization ofp,, , to Tors H1(M) coincides with the linking quadratic form defined|[t8,24]
or[27]. In [21], this quadratic form is used to classify degree 0 invariants in the Spin-refinement of the
Goussarov—Habiro theory.

In the sequel, we will use the homomorphism

H2(M) 2% Hom (Hx(M; Q/7), Q/7)
defined by, (y) = (y, —).

Lemma 2.8. For any ¢ € Spirf (M), the Chern class (o) is sent byu,, to the homogeneity defect
dy,, . H2(M; Q/7) — Q/7 of the quadratic functiom,, ,.

M,

Proof. Again suppose thaif =V, and thaw is represented by € Chari( f). Takex € Ho(Vy; Q/Z) rep-

resented by € H%. One computes thﬁ)tM’U(x)—d)M’U(—x):—qSf’c([y])-i-(,bf’c(—[y]):cag(y) mod 1=
(c(0), x), by Remark 2.2. O ‘

Recall that SpifiM) is an affine space ovelf?(M) and that Quad. ) is an affine space over
Hom(Hx(M; Q/Z), Q7). Let

Hom (Hx(M), 7) 2% Hom (Ho(M) ® Q/7, ©/7)

be the homomorphism defined by, (/) =1 ® @/Z. Next result, which contains Theorem 1, is a direct
application of Theorem 2.1 and Remark 2.3.

Theorem 2.3. The mapp,, : Spirf (M) — Quad L ) is an affine embedding over the group monomor-
phismpu,,. Moreover a functiong € QuadL ) belongs tdm ¢, if and only ifg| x,m)ga0,/z belongs to
Im M-

Remark 2.6. The mapg,, is bijective if and only ifM is a rational homology 3-sphere.
2.5. Anintrinsic definition of the linking quadratic function

LetM be a closed connected oriented 3-manifold equipped with & Sinctures. In this subsection,
we give for the quadratic function,, , an intrinsic formula which does not refer to 4-dimensional
cobordisms.

Here is the idea. Takexae Ho(M; Q/7). It follows from Lemma 2.8 that

2. $yp.0(x) =Ly (x,x) + (c(o), x) € Q/Z.

Foranyy € Q/7,we denote b)% -y the set of elemenizof Q /7 such that +z=y. We are going to select,
correlatively, an elementy in 3 - Ly (x, x) andan elementz in 3 - (c(0), x) such thap, ,(x) =z1 +z2.
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Writex € Ho(M; Q/7) asx =[S ® [1/n]], wheren s a positive integer an8lis an oriented immersed
surface inM with boundaryn - K, a bunch ofn parallel copies of an oriented knkitin M. Apply now
the following stepwise procedure:

e Stepl: Choose a nonsingular vector fialdon M representings as an Euler structure, and which is
transverse t& (we claim that it is possible to find suaf).

e Step2: LetV be a sufficiently small regular neighborhoodkfn M and letK, be the parallel of
K, lying on éV, obtained by pushing along the trajectories af. By an isotopy, ensure th&tis in
transverse position with respectXg with boundary contained in the interior gf

e Step3: Define a Spin-structure, on d(M\int(V)) by requiring its Atiyah—Johnson quadratic form
4+, (Section 1.3.4) to be such that

qs,([meridian of K]) =0 and g¢,, ([K,]) =1

e Step4: Together with the vector field tangent kg, v represents a Sgirstructures, on M\int(V)
relative to the Spin-structurg, (we claim this). Consider the Chern clasg,) € H2(M\int(V),
A(M\iInt(V))).

Proposition 2.1. By applying the above procedyree get

1 1 . 1
Gp.o(x) = [E -Kye S] + [Z - {c(oy), [S N (M\Int(V))]) + §i| e Q/7. (2.6)

e%-LM(x,x) E%-(C(G),X)

In [19], Looijenga and Wahl associate a quadratic function dygeto each paiKM, #) formed by

e a closed connected oriented 3-manifd
e a homotopy class of complex structurgson R & TM whose first Chern class is torsion.

There is a Spifistructuren( ¢) associated tgZ (see Section 1.2.7). By assumption, its Chern class is
torsion so that,, ., factors to a quadratic function ovej;. One can verify, using the inverse of
described in the proof of Lemma 1.10, that formula (2.6) is equivalent in this case to formula (3.4.1)
in [19].

Proof of Proposition 2.1. First of all, we have to justify that the above procedure can actually be carried
out.

We begin by proving the claim of Step 1. Lebe an arbitrary nonsingular vector field grrepresenting
o. It suffices to prove the following claim.

Claim 2.1. Let w be an arbitrary nonsingular vector field tangentalefined onK. Then,v can be
homotoped so as to coincide withon K.

Proof. Choose a tubular neighborhodt of K, plus an identificatiol? = (2D?) x S! such thatk
corresponds to & S. We denote bye1, e) the standard basis & > 2D2. We definer : W — K to
be the projection on the core. The solid towss parametrized by the cylindric coordinates

((rel0,2],0 € R/2n2Z), ¢ € R/2rZ).
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If p, g € W are such thai(p) = r(g) (i.e., they belong to the same meridional digk2« ), we define
the transport map, , : T,W — T,W as the unique linear map fixing the bagis, e, %). Deform the

vector fieldv through the homotopyv”), (0.1 given at timet and pointp € W by

(n —
v, =

{tn(p),p(vn(p)) if r(p) € [0, 7]
tapp@ap) I (p) € 11,21, with g(p, 1) = (5275, 0(p). 6(p))

and at timet and pointp ¢ W by v;” = v,,. After such a deformation, the vector fieldsatisfies the

following property:Vp € D? x S, tp.a(p)(Vp) = Vn(p). NOW, sincer1(S?) is trivial, v|x andw have to
be homotopic; letw "), 0.1) be such a homotopy, beginningwa® = v|x and ending at> = w. The
homotopy given by

v = tn(p),p(w,(:(_p;(p))) if r(p) €0, 1]
p Up if r(p) €lt, 2]

if p e Wand byvg) =v, if p ¢ W, allows us to deformy to a nonsingular vector field which coincides

withwonK. O

Sincew is now transverse tK, we can find a regular neighborhoddf K in M plus an identification
vV =D? x S, such thaK corresponds to & St and such that|y corresponds te; (recall that(e, e2)
denotes the standard basigBf> D?). We apply steps 2 and 3 (note th&t then corresponds tox Sh)
and we now prove the claim of Step 4. kgte Spin(V) be defined by the trivializatiofe1, eo, #) of TV.
Since(ty |y ) |14 st IS the non-bounding Spin-structure and sigg;y )| ,p21 SPIN bounds, we have that
Tylgy = —oy, i.€.7, belongs to SpiV, —a,) with the notation of Remark 1.3. Thus|yint(v) together
with the trivialization(es, e>, %Nav of T(M\int(V))|,ydefine as,, € Spirf (M\int(V), «,), as claimed
in Step 4. For further use, note thais the gluings, U (1), wherep : Spin(V, —a,) — Spirf (V, —uy)
has been defined in Remark 1.3.

Setz1=[1/2n-K,eS8] € Q/Zandzo=[1/2n-(c(cy), [S'])+1/2] € @/Z, whereS’=SN(M\int(V)).
We have that

2-z1=[1/n- Ky e S]=[im(B(x), B(x))] = Ly(x,x).
Moreover, we have that
2-z22=[1/n-{c(ay), [SD]
=[1/n- P_l(c(av)) e [S]] (intersection inM\int(V))
= P~ 1(c(0)) o x (intersection inM)
=(c(0), x)
where the third equality follows from the facts that= [S ® [1/1]], P~ 1(c(0)) = ix P~ 1(c(5y)) +
i« P~ Y(c(B(1))) € Hi(M) (sinces = o, U B(1,)) andc(B(ty)) = 0 (by Remark 1.6).
We now prove formula (2.6), i.e., the equality; ,(x) =z1+z2. Letus work with surgery presentations
(even if we could use more general cobordisms as well) M'ebe the 3-manifold obtained froiM by

doing surgery along the framed knd, (e1, e2)). ConverselyM is the result of the surgery ovi” along
the dual knotK’ of K. Pick a surgery presentatidry, of M’; up to isotopy, the knoK’ c M’ is in
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n.A-S n.K,

WL

Fig. 4. Two representants afin transverse position.

SP\L'. We then find a surgery presentatitp of M by settingL to be L’ union K’ with the appropriate
framing. This surgery presentation lif has the following advantag& bounds in the trac&; of the
surgery a diskD whose normal bundle is trivialized by some extension of the trivializatéane,) of
the normal bundle oK in M. We use the notations fixed in Section 2.2. In particuthe= H>(W) and
f : Hx H — 7isthe intersection pairing d¥. We define the 2-cycl& =n - D — S wheren - D is
a bunch ofn parallel copies of the disk with boundaryn - K; we also sez = [U] € H. Thenu ® %
belongs toH* and the isomorphism : H*/H — Hy(M; Q/7) sendfu ® %] to—x=—[S® [%]] (see
the proof of Lemma 2.5). So, by diagram (2.5), we obtain that

1 1/1 1
Py (X)) ==y, (— [u ® —D =— (—Zf(u, u) + —C(u)) mod 1,

n 2\n n

wherec is a characteristic form representative éor
We calculate the quantity («, u). The 2-cycleU is a representant af. Let D’ be a push-off oD by

the extension of1 = v|y in such away thaiD’ is K. Let alsoA be the annulus of an isotopy fromk,
toKinV(e.g.,A=—[0, 1] x Stin V =D? x S!). A second representative fois U’ =n-D'+n- A —§.
By adding a collar td¥;, and stretching the top @f’, we can mak&J in transverse position with’ (see
Fig. 4). So, we have thaf (u, u) = U ¢ U’ = —nS e K, where the first intersection is calculatedw,
and the second one M; we are led to

by.o(x) = % Se K, — %c(u) mod 1 (2.7)

We are now interested in the quantitf). Let ¢ be an extension of to the manifoldWw;, and leté be
the isomorphism class of principal)-bundles orv;, defined byz; thenc can be choosen to kg (¢).
Let p be a representant ¢fand let tr be a trivialization gb on 0V. Decompose the singular surfagé
asU'=U;UUy,UUg, whereU; =n-D',Uy=n-AU(=SNV)andU;= —S". By desingularizing/’
S0 as to be reduced to a calculus of obstructions in an oriented manifold, we obtain that

3
c(u) = (ea(plon). (U =Y (er(pluy. trlapn). [U])) € Z, (2.8)
i=1
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wherec1(plyr, trlay) € H2(Ul./, aU!) is the obstruction to extend the trivialization g of p|,» onoU/!

to the whole ofU/. Let V' C Wy, be the solid torus such that” = M\int(V) U V'. For an appropriate
choice ofg, there exists a Spirstructures; € Spirf (V’, —a,) such that, U 61 = 5. Also, for some
appropriate choices @fin the class’ and tr, we have

c1(ply, t) =c(o1) € HA(V', V"),

c1(ply, tn) = c(B(x,)) € HX(V, V),

c1(plm\intv), ) = c(oy) € HZ(M\iInt(V), o(M\int(V))).
Then, Eq. (2.8) becomes

c(u) =n-(c(o1), [D]) + (c(B(xv)), [U3]) — (c(av), [S']) € Z.
From the fact that (S(z,)) = 0, we deduce that

! S S+ 2 D) e
o, C)=—5--{clon), [S]) + 5 - (c(on), [D]) € Q.

Then, showing thalc(s1), [D’]) is an odd integer together with (2.7) will end the proof of the proposition.
Since(c(a1), [D']) = g—u, (0x[D']) = ¢4, ([Ky]) = 1 mod 2 (by Lemma 1.9), we are donel]

3. Goussarov—Habiro theory for three-manifolds with complex spin structure

In this section, we explain how the Goussarov—Habiro theory can be extended to the context of
3-manifolds equipped with a Spistructure. Then, using the linking quadratic function, we prove
Theorem 2 stated in the introduction. This amounts to identifying the degree 0 invariants in the gen-
eralized theory.

3.1. Review of the Y-equivalence relation

Recall that the Goussarov—Habiro theory is a theory of finite type invariants for compact oriented
3-manifoldg8,11,12]and is based on thésurgery as elementary move. In this subsection, we just recall
how this surgery move is defined.

Suppose thatl is a compact oriented 3-manifold. Lgt: H3 < M be a positive embedding of the
genus 3 handlebody into the interiordf Set

M = M\Int(Im(j)Ujy,,, (Ha) g

Here,(H3) 5 is the surgered handlebody along the six-component framedlgitown inFig. 5with the
blackboard framing convention.

Remark 3.1. Observe that there is a canonical inclusignint(Im(j)) < M;. One can define a self-
diffeomorphismh of dH3 (explicitely, as the composition of 6 Dehn twists) such that there exists a
diffeomorphism

M = M\Int(IM(j)Ujjj.,,.0n H3 (3.1)

restricting to the identity od/\int(Im(;)). Moreover,h can be verified to act trivially in homology.
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Fig. 5. The framed liniB.

@ One of the

The node

One of the
three leaves

Fig. 6. AY-graph.

AY-graph Gin M is an embedding of the surface drawrFig. 6into the interior oM. This surface, of
genus 0 with 4 boundary components, is decomposed beteaess edgesandnode Letj : Hz3 <~ M
be atrivialization of a regular neighborhood®fn M. The embeddingis unique, up to ambient isotopy.

Definition 3.1. The manifold obtained fronM by Y-surgery along Gdenoted byM, is the positive
diffeomorphism class of the manifold ;. TheY-equivalencés the equivalence relation among compact
oriented 3-manifolds generated ¥hsurgeries and positive diffeomorphisms.

Remark 3.2. TheY-surgery move has been introduced by GoussHrbyand is equivalent to Habiro’s

“A1-move” [12]. It is equivalent to Matveev’s “Borromean surgery” as well, henceYteguivalence
relation is characterized {22].

3.2. Therc-equivalence relation

We define theY “-surgery move announced in the introduction, and we outline how this suffices to
extend the Goussarov—Habiro theory to manifolds equipped with &-Strincture.
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3.2.1. Twist andbpirf-structures
As in Section 1.4, we consider a closed oriented 3-manifold

M=M1Us M

obtained by gluing two compact oriented 3-manifolds and M> with a positive diffeomorphisny :
—0M> — 0My. We add the assumption tha¥/, is connected.
Leth : 0M> — 0M> be a diffeomorphismvhich acts trivially in homologgnd consider the manifold

Al/::A41UfbhA42

The manifoldM’ is said to be obtained from by atwist By Remark 3.1, th&-surgery move is an
instance of a twist move.

By a Mayer-Vietoris argument, there is an isomorphiBmH1(M) — Hi(M') which is unambigu-
ously defined by the commutative diagram

H, (M)

J1,x Jo,x

Hq (M)

1R
=

Hq(M>)

jl,* j2,m
Hy(M")

whereji, j2, j; andj, denote inclusions.

Proposition 3.1. The twist from M taV” induces a canonical bijection
Spirf (M) > Spirf (M)
which is affine oveP@P~1: H2(M) — H2(M'). Moreover the diagram

Spin®(M) LN Spin¢(M")
H*(M) ——— H*(M")
POP™
is commutative.
Proof. Foranyx € Spirf (M), we define2(«) as follows.Choosery € Spin(dM2) and set1= f,(—a2) €

Spin(oM1). Sinceh, : H1(0My; 72) — Hy1(0Mo; Z5) is the identity,h acts trivially on SpiidM>):
this follows from the naturality of the Atiyah—Johnson correspondence(&diy) — QuaddoMor)
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(see Section 1.3.4). According to Lemma 1.12, there are two gluing maps
U
Spirf (M1, 61) x Spirf (Ma, 62) — Spirf (M)

Spirf (M, o1) x Spirf (Ma, 02) —% Spirf (M)

which are affine, via Poincaré duality, ovar, ® jz.« andji* @jé’* respectively. SincéM> is connected,
the mapJ is surjective Chooser; € Spirf (M1, o1) anday € Spirf (M>, a2) such thati=oyU rap, next
set

o =g Ugon oz € Spirf (M)

and define2(«) to beo/ .

We have to verify tha@(«) is well-defined by that procedure. Assume other intermediate ch&jces
21 andas instead ofs, 1 anday respectively, leading t& := 21U ronoi2. We claim that' = 7.

Consider first the particular case whén= o2 € Spin(dM>). SincexyU rop = o = a1U pap, We have
that

J1xP Mo = 3) + oo P Moz — 32) = PTHa— ) =0 € Hi(M).
Applying ¢ to that identity, we obtain the equation
P o — ) + j5 P N2 — 32) =0 € Hi(M)

whose left term equal® ~1(o/ — &'). We conclude that’ = &'
We now turn to the general case. For this, choose an arbitrary element

19 € Spirf ([0, 1] x dM>, 0 x (—a2) U1l x 62).
Having sets; = f.(—a2), define
11=(Id x f),(—12) € Spirf ([0, 1] x M1, 0 x (—c1) U1 x &1).

Here,—12 € Spirf (—[0, 1] x dM>, 0x a2U1 x (—a2)) is obtained from by time-reversing. Far=1, 2,
the collar ofdM; in M; and Lemma 1.12 give a map

Spirf (M;, a;) x Spirf (10, 1] x aM;, 0 x (—a7) U1 x &;) =2 Spirf (M;, &).

From the definition of the gluing map, and by using the “double collar’ agfM; = —0M> in M, one
sees that = a1U rap may also be written as

o= (o1 Ugol T1) Ug (02 Ucol 72) -

It follows from the special case treated previously that, whatever the choiégsafia, have been,
& = (o1 Ueol 71) U fon (22 Ugol 72) -

On the other hand, having set

)= (Id x (f o h)),(—12) € SPIrf([0, 1] x IM1, 0 x (—a1) U1 x &1),
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one sees that = o1U ¢o,02 may also be written as
o = (Ofl Ucol Tll) Ugon (a2 Ucol 72) -
Consequently, it is enough to prove that
11 =17 € Spirf ([0, 1] x dM1,0 x (—o1) U1 x &1). (3.2)

The latter space of relative Spkstructures is classified by the Chern class map sifiég0, 1] x
0M1, 9[0, 1] x dM1) has no 2-torsion. Moreover, the naturality of the Chern class and the fadt that
preserves the homology imply that

c(t1) = (Id x f)u(c(=12)) = (Id x (f 0 h)),(c(=12)) = c(7}).

We conclude that identity (3.2) holds and that the mdp well-defined.

The fact thatQ is affine and the last statement of the proposition are readily derived from the
properties of the gluing maps; and Uy, stated in Lemma 1.12, and from the definition of the
isomorphismg. 0

Remark 3.3. We could have considered as well the case whgrand M» have disconnected boundary,
but are glued together along a connected component of their boundary M (geg¢hatt M = oM’ # 0).
Then, in view of Remark 1.7, Proposition 3.1 can easily be generalized to involvé Spictures oM
andM’ relative to a fixed Spin-structure on their identified boundaries.

3.2.2. Definition of th&’“-surgery move

We explain howy-surgery makes sense in the setting of Spiranifolds. For simplicity, we consider
only the case of a closed oriented 3-manifild

Let j : H3 — M be an embedding. We denote &y : H1(M) — H1(M ;) the isomorphism defined
by the commutative diagram

/

Hy (M \ int (Tm(5)) = o)

Hy(M)

¥
Hy (M;)
wherek : M\int(Im(j)) <= M andk’ : M\int(Im(j)) < M; denote inclusions.

Lemma 3.1. There exists a canonical bijection

. Q; .
Spirf (M) — Spirf (M), o+ o;
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which is affine oveP®; P~1. Moreover the diagram

Spin®(M) LN Spin®(M;)

(M) o H2OA))

is commutative.

Proof. By Remark 3.1, one can define a self-diffeomorphisof 0 H3 acting trivially in homology and
such that there exists a diffeomorphism
M; = M\int (Im(j)) U

Jlon

[(Ha) g =5 M\Int (1M () Ui, o Ha

which restricts to the identity oM/ \int(Im(;)). This diffeomorphism induces a bijection
Spirf (M) i; Spirf (M\int am@)) u_,-‘mthg) .

Also, by Section 3.2.1, there is a canonical bijection
Spirf (M) % Spirf (M\int am(j)) uﬂ%ohHg) .

We defineQ; to be the compositg,f*‘lg. This composite is easily verified to be independent of the pair
(h, f) with the above property. O

Let G be aY-graph inM. Let alsoj : H3 < M andj’ : H3 < M be some trivializations of regular
neighborhoods d&in M. There exists an ambiantisoto@y : M — M), 1; betweer and;’: go=Idy
andgyo j = j'. Letq : M; — M be the positive diffeomorphism induced by in the obvious way.
One can verify thal, o Q; = Q. Thus, for any Spif¥structurex on M, the Spiri-manifolds(M, «;)
and(M;, o) are Spiri-diffeomorphic.

Definition 3.2. The Spiri-manifold obtained froniM, «) by Y<-surgery along Gdenoted by Mg, ag),
is the Spifi-diffeomorphism class of the manifold/;, «;). We callY “-equivalencehe equivalence rela-
tion among closed 3-dimensional Spimanifolds generated ¥ -surgeries and Spirdiffeomorphisms.

In the sequel, the notatios will sometimes refer to a representatig¢; obtained by fixing a
trivializationj of a regular neighborhood @ in M. Similarly, o, 2 and®¢ will stand for«;, Q; and
@, respectively.

Remark 3.4. In the case of compact oriented 3-manifolds with boundaryythsurgery move is defined
similarly using Spifi-structures relative to Spin-structures. (See Remark 3.3.)

It follows from the definition that, for any two disjoitgraphsG1 andGy in M, the Spiri-manifolds
((MG,)G, (4G, G,) and((Mg,) ¢, . (2G,) g,) are Spiti-diffeomorphic. So, th&“-surgery along a family
of disjointY-graphs makes sense.
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Fig. 7. A 4°-move.

Definition 3.3. Let| be an invariant of 3-dimensional Spimanifolds with values in an Abelian group
A. The invariant is said to beof degree at most i, for any 3-dimensional Spinmanifold (V, ¢) and
for any family Sof at least/ + 1 pairwise disjoint-graphs inN, the identity

Y 1T I(Ng.og)=0€ A (3.3)
s'cS

holds. Here, the sum is taken over all sub-famifésf S

Thus, theY“-surgery move is the elementary move of a Spigfinement of the Goussarov—Habiro
theory of finite type invariants. In particular, two 3-dimensional Spiranifolds aré “-equivalent if and
only if they are not distinguished by degree 0 invariants. It can be shown that the “calculus of clovers”
from [8], which is equivalent to the “calculus of claspers” fr¢h2], extends to Spiirmanifolds.

Remark 3.5. A Spin-refinement of the Goussarov—Habiro theory has been considg&4].im partic-
ular, it is shown that th¥-surgery alonds induces a canonical bijectioBg : SpinM) — Spin(Mg).
Both refinements of the theory are compatible, in the sense that the following diagram commutes:

Spin(M) LN_G> Spin (M¢)

1

Spin®(M) % Spin®(Mg).

3.2.3. A combinatorial description of tH&-equivalence relation

A given equivalence relation among closed oriented 3-manifolds can sometimes be derived from an
unknotting operation via surgery presentationSinlt is well-known that theéy-equivalence relation can
be formulated that way with theé-moveof [25] as unknotting operation. We refine this to the context of
Spirf-manifolds.

Lemma 3.2. TheY“-equivalence relation is generated8pirf -diffeomorphisms and‘-movesif the 4¢-
move is defined to be the move depictedign 7 between surgery presentations of clo8edimensional
Spirf-manifolds(seeSection 2.2.2).
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Fig. 8.Y-surgery as surgery along a 2-component link.

Proof. Let M be a closed connected oriented 3-manifold anélee aY-graph inM. Lety : M — Vi

be a surgery presentation b, whereL is ann-component ordered oriented framed linkS# Isotope

G in M so thaty,(G) becomes disjoint from the link dual 19 theny/(G) can be regarded as a subset
of S3\ L. In the image by of the regular neighborhood & in M, put the 2-component framed lirkk
depicted orFig. 8 The linkK can be obtained from the lirkof Fig. 5by some slam dunks (see Example
2.1) and handle slidings if3. In particular, there is an obvious surgery presentationMs — Viuk
induced byy. With the viewpoint from Section 2.2.2, we want to identify the combinatorial analog of
the bijectionQs. In other words, we look forthe mad making the diagram

SpinC(VL) Spinc(VLuK)

NT'J;* wLTN

Spin‘(M) —— Spin® (M)
a

commute. This is contained in the next claim, which will allow us to prove thauthmove and the
Y¢-surgery move are equivalent.

Claim 3.1. Let B;, denote the linking matrix of and letK be appropriately oriented so that the ordered
union of ordered oriented framed linksU K has its linking matrix of the form

I 0

By, S

Brukx = r O
ry - x| x 1

o0 --- 01 O

Then, the ma; sends a Chern vectfy] to the Chern vectd(s, x, 0)].
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3\% K M/

Fig. 9. A 4-move can be realized by¥ -surgery.
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Fig. 10. AY“-surgery can be realized by44-move.

Proof. As pointed out in Remark 3.5, ésurgery alongG induces a bijectior@s : SpinM) —
Spin(M¢), a combinatorial analog of which is given [21]. Using the compatibility betwee@s and
Q¢ together with Section 2.2.3, we see that the claim holds at least for those Chern vectors that come
from 7.

Denote by(H, f) the lattice corresponding to the intersection pairingiqf, and by(H’, f') that
of Wruk. Recall from Remark 2.2 that there are canonical isomorphisfhg/;) ~ Cokerf and
H2(Viug) ~ Cokerf/ The isomorphismP &g P~ : H2(M) — H?(Mg) corresponds then to the
isomorphism Cokef — Cokerf/ defined by[y] — [(y, 0,0)].

Take now[s] € 7' arising from.%; and let[y] € 7"/ImB; ~ Cokerf We aim to calculate
O ([s1+ [y]) € ¥ Luk. The “+” here corresponds to the action BZ(V;) on Spirf(V;) (see Remark
2.2). The map2¢ being affine overP @ P~1, we have thaDg([s] + [y]) = Og([s]) + [(y,0,0)] =
[(s, x,0)] 4+ [(y,0,0]=[(s + 2y, x, 0)]. Therefore, the claim also holds fpr] + [y] = [s + 2y]. The
transitivity of the action of72(Vy) on Spirf(V;) allows us to conclude. O

Figs. 9and10 prove that, up to Spindiffeomorphisms, al®-move can be realized by ¥f-surgery
and vice versa.
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In Fig. 9, the first Spifi-diffeomorphism is obtained by applying Claim 3.1, while the second one is
obtained from one handle sliding and one slam dunk.

In Fig. 10 the first Spifi-diffeomorphism is obtained from three slam dunks. Nextiamove is
applied. The second Spitiffeomorphism is obtained by SpirKirby’s calculi (in particular, two slam
dunks have been performed), and the last one is obtained from Claim(3.1.

3.3. Proof of Theorem 2

In this subsection, we prove the characterization offthequivalence relation, as announced in the
introduction. We need two results concerning classification of quadratic functions up to isomorphism,
proved in[5].

3.3.1. Isomorphism classes of quadratic functions

There is a natural notion of isomorphism among triplés f, ¢) defined by bilinear lattices with
characteristic form (see Section 2.1): we say that two triphesf, ¢) and(H’, f’, ¢’) areisomorphicif
there is anisomorphisi: H — H’ suchthatf = f’ o (f x y) andc = ¢’ oy mod 2f (H). Such triples
form a monoid for the orthogonal sum. Two triples(H, f,c) and(H’, f’, ¢’) are said to bestably
equivalenif they become isomorphic after stabilizations with some copi€g of-1, Id), which denotes
the bilinear lattice defined anby (1, 1) — 41 and equipped with the characteristic forrddd;. Note
that, for any bilinear latticegH, f) and(H’, f'), there is a map

Y > Y, Iso(Cokerf, Cokerf’) — Iso(G s, G s)

since the pairing (2.2) is right nonsingular.

Theorem 3.1(Deloup and Massuyed8]). Two bilinear lattices with characteristic forigH, f, ¢) and
(H', f', ¢) are stably equivalent jifand only if there exists an element

y* € Im(Iso(Coker f, Coker f") — I1S0(G 7, G f))

such that the associated quadratic functie@s, ¢ ) and(G s/, ¢/ ») are isomorphic via)®. Further-
morg any such isomorphism betwe@ s, ¢ » ) and(G, ¢ ;) lifts to a stable equivalence between
(H, f,c)yand(H', f', ')

Remark 3.6. Let ¥ be an isomorphism betwe€6 ', ¢ ») and(G s, ¢ ;) and suppose thzmandf/

are degenerate. Thel,does not necessarily arise from an |somorphqlsmCokerf — Cokerf’ In
fact, it does if and only |1‘P|KerLf/ KerLf/ — KerLfllfts to an isomorphism Key’ — Ker f. (See

[5] for details.)

Let nowg : G — Q/Z be a quadratic function on an Abelian gro@pWe shall say thadj meets the
finiteness conditioif

o G/Ker b is finite,
e the extensmlG of Ker b by G/Kerb is split.

We shall also denote by, the homomorphism obtained by restrictiggo Ker15;.
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Theorem 3.2(Deloup and Massuyed6]). Two quadratic functiong : G - Q/Z andq’ : G’ — Q/Z
satisfying the finiteness condition are isomorphj@iid only if there is an isomorphisn¥ : G’ — G
suchthaty =b, o (¥ x ¥),dy =dy o ¥, ry =140 Y| andy(q’ os’) =y(q o s) for some?-compatible
sections s and’ of the canonical epimorphisns — G/Kerlg,; andG’ — G’/Kerli;.

Here, the?-compatibility condition refers to the commutativity of the diagram

Q' <— G' /Ker Eq\/

o o

G <—— G/Ker b;
where[ ] is the isomorphism induced by.

Remark 3.7. Theorem 3.2 does not claim th@t= g o ¥ if the four conditions hold. Nevertheless, as
follows from the proof in[5], it is true that there exists an isomorphigsm G’ — G such thayy’ =g o ¢

andq’|Kerb’;, = 'P|KerbAq/'

We now go into the proof of Theorem 2. In the sequel, we consider two closed connected 3-dimensional
Spirf-manifolds,(M, ¢) and(M’, ¢’).

3.3.2. Proof of the equivaleng®) < (3) of Theorem 2
Next lemma is easily proved from the definitions.

Lemma 3.3. Lety : Hi(M) — H1(M’) be an isomorphisgrwhich induces a dual isomorphisgf :
Hx(M'; Q/7) — Ha(M; Q/7) with respect to the intersection pairings. The following assertions are
equivalent

(@) Ly =Ly o (YF x y%),
(D) Am = Amr o (Y1 x Y1),
(c) The following diagram is commutative

Hy (M';Q/Z) —2> Tors Hy(M’)

= e

Hy (M;Q/Z) —2 Tors Hy(M).

Suppose that condition (2) of Theorem 2 is satisfied. This impliesithat= Ly, o (y* x y*) and so
thatly = Ay o (Y] x ]) by Lemma 3.3.

Condition (2) also implies the relatiafy,, , =dg,, o " between homogeneity defects of quadratic
functions. So, by Lemma 2.8, we haye(¢’), x’) = (c(o), y*(x")) for all x’ € Ho(M'; Q/Z). By left
nondegeneracy of the pairing : Hi(M') x H»(M'; Q/7) — @/Z, we conclude tha? ~1c(¢’) =
Y (P~ 1c(0)).



F. Deloup, G. MassuyeauTopology 44 (2005) 509-555 551

Last, the quadratic function

Prg0S=hpysov os ol =y g 08 oyl

is isomorphic top,, » o s": hence, these two quadratic functions have identical Gauss sums. Therefore
condition (3) holds.
Conversely, suppose that the condition (3) of Theorem 2 is satisfied. The short exact sequence

0 — Hy(M)® Q/7 — Ho(M; Q/7) 2> Tors Hi(M) —> 0

is split, we have thatl>(M) ® Q/Z = Ker LAM and TorsH1(M) is finite: thus,¢,, , meets the finiteness
condition of Section 3.3.1. Sindg; =2 o (Y| x ¥|), we obtain by Lemma 3.3 thdity; = Ly o (y* x y¥).
Sincey (P~ tc(e)) = P~1c(d), we deduce from Lemmas 2.7 and 2.8 thgf, , =rg,, o | and that
Aoy =doy,, oy?, respectively. Also, sinag| o B oy* = B (by Lemma 3.3),the-compatibility condition
betweersands’ required by condition (3) of Theorem 2 coincides withiecompatibility in the sense of
Section 3.3.1. Therefore, by Theorem 3.2, the quadratic funcfignsandé,, , are isomorphic. More
precisely, according to Remark 3.7, there exists an isomorphisid,(M'; Q/7) — H>(M; @/Z) such
that,y =dy 00 ande| m,mneo,z coincideswithpﬁ|H2(M/)®@/z=lpﬁ®@/z. This latter fact, together
with Remark 3.6, allows us to precise thaequals;® for a certain isomorphism: Hy(M) — Hy(M').
Consequentlyg ;o = ¢y, o 1

3.3.3. Proof of the equivalencé) <= (2) of Theorem 2

We prove implicationl) = (2) first. By Lemma 3.2, it suffices to prove it whéM , ¢) and(M’, ¢’)
are related by one Spirdiffeomorphism or, for some fixed surgery presentations, byASagove. The
first case follows immediately from the definition of the linking quadratic function. The second case is
deduced from the combinatorial formula for the latter given at the end of Section 2.3, and from the fact
that a4-move between ordered oriented framed links preserve the linking matrices.

Suppose now that condition (2) is satisfied. We can assume@#hkatV, andM’ = V;,, whereL and
L’ are ordered oriented framed links 83. As in Section 2.2, we denote 4, f) and (H’, f’) the
intersection pairings oW, andW,/, respectively. Let also € Char f) andc’ € Char f’) represent
andd’, respectively. By hypothesis, the quadratic functigns : Gy — Q/Zandé s . : Gy — Q/Z
are isomorphic via an isomorphism which is induced by an isomorphism Q%kerCokerf/. So, by
Theorem 3.1, the bilinear lattices with characteristic foff f, ¢) and(H’, f', ¢’) are stably equivalent.

An isomorphism of bilinear lattices with characteristic form can be topologically realized by a fi-
nite sequence of SpirKirby’s moves (see Theorem 2.2): handle slidings and reversings of orientation.
Similarly, a stabilization byZ, 1, Id) corresponds to a stabilization by the unknot. Therefore, we can
suppose, without loss of generality, thiat, f, c) ~ (H’', f’, ¢’) through the isomorphism that identifies
the preferred basis ¢ with that of H'. Concretely, this means that the linking matridggsand B, are
equal and that there is a multi-integesuch that the Chern vectolg € v and[s] € ¥ represent
andd’, respectively.

A theoren? of Murakami and NakanisHR5, Theorem 1.1ktates that two ordered oriented framed
links have identical linking matrices if, and only if, they ateequivalent. Then, the “decorated” links

2n fact, the first reference [22] but the proof there is not detailed.
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(L,s)and(L’, s) are 4-equivalent: therefore, by Lemma 3.2, the Spmanifolds(M, ¢) and(M’, ¢’)
areY‘“-equivalent.

Remark 3.8. Observe that the present proof allows for a more precise statement of the equivalence
(1) < (2) of Theorem 2. Any finite sequence of Spidiffeomorphisms and “-surgeries

(M, ) = (Mo, 60)~(M1, 61)~ (M2, 62)~ - - - ~+(My, 5,) = (M', 7"

yields an isomorphisng : Hi(M) — Hi(M’). This is the composite of the isomorphistHs(M;) —
Hi1(M; 1), which is taken to be eithey, if the step(M;, g;)~(M;11, g;11) is a Spiri-diffeomorphism
0, either the isomorphisng if the step is the“-surgery along &-graphG C M; (Section 3.2.2). This
isomorphismy satisfiesp,; , = ¢y, 0 y¥. Conversely, given an isomorphisgn: H1(M) — Hy(M')
with this property, one can find a finite sequence of Spiiffeomorphisms and “-surgeries fromM, o)
to (M’, ¢’) inducingy at the level ofH1(—). Here, we use the second statement of Theorem 3.1.

3.4. Applications and problems

We conclude this paper with some applications of our results illustrated by a few examples. We also
state a few problems.

3.4.1. The quotient s&pirf (M)/Y¢
Given a closed oriented 3-manifdld, one may consider the quotient set

Spirf (M)/Y¢

of Spirf-structures oM modulo theY “-equivalence relation. Let us consider a few examples.

Example 3.1. Take M = RP. This manifold has two distinct Spirstructuressg andqs1, both arising
from Spin-structures. The quadratic functiopg ,, and ¢, ,, have different Gauss sums (which are
exp(2in/8) and exg—2in/8) € C). Therefore, by Corollary 239 is notY“-equivalent tas;.

Example 3.2. TakeM such thatH1(M) >~ 7". According to Corollary 1, the set SpifM)/ Y can be
identified with(22")/GL(n; 7Z) by the Chern class map.

In particular, if M = S* x St and if an isomorphisni{1(M) ~ Z is fixed, we denote by; the unique
element of Spif\M) such that (o) = 2k € 7, with k € 7. Then, theY“-equivalence classes af®}
and{oy, «_j} with k > 0. Observe from Theorem 2.2, that these classes coincide with the diffeomorphism
classes.

Example 3.3. Take M = (S* x SHRP3. By applying equivalenceél) < (2) of Theorem 2, the
Y¢-equivalence classes are seen to{lagioo}, {oofio1}, {oxtoo, axfor, a—rfoo, a—rfor} with k>0
odd{oxfloo, o_rfioo} and{oxfic1, a_rfic1} with k > 0 even. Again, observe from Theorem 2.2, that these
classes coincide with the diffeomorphism classes.

In light of the previous examples, it is natural to ask whether the diffeomorphism classes 6f Spin
structures of a given closed oriented 3-manifelctoincide with theY ¢-equivalence classes. To answer
this question by the negative, let us consider a class of manifolds for which th&$piotures have
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been classified: the family of lens spaces. het2 be an integer, let1, g2 be some invertible elements of
Z, and letL(p; q1, q2) be the corresponding lens space with the orientation induced from the canonical
orientation ofS®.

Theorem 3.3(Turaev[28]). The number of orbits dbpirf-structures under the action of the group of
positive self-diffeomorphisms d{ p; g1, g2) is

o [p/2]1+1,if gF # g3 or g1 = +qp,
e p/2—b(p;q1,q2)/4+ c(p; g1, q2) /2, if ¢% = g3and g1 # £q2.

Here for x € Q, [x] denotes the greatest integer less or equal thab(¥; g1, g2) is the number of
i € Z, forwhich i, g1 +¢2 —i and qqu‘li are pairwise differentand c(p; g1, g2) is the number of

i € Z, such that :q1+q2—iZQ2Q{li-

Proof. In [28, Section 9.2.1]the Euler structures oh(p; g1, g2) are classified up to diffeomorphisms.
The same kind of arguments can be used to classify thesepgsitivediffeomorphisms. Details are left
to the reader. O

The classification of the Sgirstructures orL(p; g1, g2) up toY“-equivalence is easily obtained from
Corollary 2. For instance, let us suppose that odd. Then, Spif(L(p; q1, g2))/ Y€ can be identified
via the Chern class map with the quotient2gf ~, where

Vi,j ez, (i~]) < (@rez, r’=1andj=ri).

Example 3.4. Letk >4 be an even integer and lpt= k% — 1. Then, there are some Spistructures on
L(p; 1, 1) which areY“-equivalent but which are not diffeomorphic. Indeed, according to Theorem 3.3,
Spirf(L(p; 1, 1)) contains(p — 1)/2 + 1 diffeomorphism classes. But? = 1 € Zp,andk # £l e 7,

so the cardinality of Spi(L(p; 1, 1))/Y¢ is strictly less tharip — 1)/2 + 1.

3.4.2. Reidemeister—Turaev torsions

Lett(M, o) denote the maximal Abelian Reidemeister—Turaev torsion of a closed oriented 3-manifold
M equipped with an Euler structure or, equivalently, a Sgitnuctures [32]. If M is a rational homology
sphere, it turns out thag,, , can be explicitely computed from(M, ¢) [6,26]. Thus, according to
Corollary 2, part oft(M, o) is of degree 0.

Problem 3.1. Derive from Reidemeister—Turaev torsions higher degree finite type invariants of closed
3-dimensional Spiitmanifolds.

In the last chapter of20], it is studied how Reidemeister—Turaev torsions vary under those twists
defined in Section 3.2.1. This variation is difficult to control for a gen¥rgraph. Nevertheless, this
variation can be calculated explicitely in case of “looped clovers”. It is shown that Reidemeister—Turaev
torsions satisfy a certain multiplicative degree 1 relation involving surgeries along looped clovers.

3.4.3. From the Spin-refinement of the theory t&ipét -refinement
According to Remark 3.5, any Sgiinvariant of degreel in the Goussarov—Habiro theory induces a
Spin-invariant of degred. The converse is not true.
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Example 3.5. The Rochlin invarianR (M, ¢) € 716 0f a closed Spin-manifoldM, ¢) of dimension 3 is
a finite type invariant of degree[21]. But, it does not lift to an invariant of Spirmanifolds in general.
Indeed, consider the tort&® and its canonical Spin-structusd (induced by its Lie group structure),
choose alse’ in Spin(T?3) different froma®. Then,(¢’) and f(¢°) coincide, butR (T2, %) = 8 is not
equal toR (T3, ¢’) = 0.

On the contrary, we have in degree 0 the following consequence of both Theorem [21and
Theorem 1]

Corollary 3.1. Let (M, s) and (M, ¢’) be closed3-dimensionalSpinmanifolds. Then(M, ) and
(M', ¢") are distinguished by degre@ Spininvariants if and only if(M, f(¢)) and (M’, B(¢’)) are
distinguished by degrde Spirf-invariants

Problem 3.2. Compare in higher degrees the Spimefinement of the Goussarov—Habiro theory with its
Spin-refinement.
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