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K; OF UPPER TRIANGULAR MATRIX RINGS

R. KEITH DENNIS! AND SUSAN C. GELLER

ABSTRACT. Standard techniques are used to compute K; (i = 0,1,2) of
generalized triangular matrix rings.

For R an associative ring with unit, let 7 denote the ring of upper triangular
2 by 2 matrices over R. Quillen? has announced that K;(T) =~ K;(R) ® K;(R)
for all i > 0. The purpose of this note is to give a proof of a generalization of
this theorem for i = 0, 1, 2 using standard techniques. This generalization is
probably true for the higher K’s.

For R and S rings with unit and M an R-S-bimodule, let T denote the ring
of all upper triangular matrices of the form

<r m)’ reRseSmeM,
0 =

with addition and multiplication defined in the obvious way. We will prove the
following:

THEOREM 1. Fori = 0, 1, 2 the canonical map K;(T) — K;(R) ® K;(S) is an
isomorphism.

An induction argument yields

COROLLARY 2. Let T, be the ring of upper triangular n by n matrices over the
ring R. Then for i = 0, 1, 2, K,(T,) ~ K;(R)".

1. The cases i = 0, 1. Let J denote the ideal of T which consists of those
matrices whose only nonzero entries lie in M. As J 2 — 0, J is contained in the
Jacobson radical of T. Thus T is J-adically complete and the map Ky(7T')
— Ky(T/J) is an isomorphism [B, Proposition 1.3, p. 449]. This yields the
result in case i = 0.

Since the map T — T/J splits and T/J ~ R & S, the exact sequence for an
ideal yields

(1 1 = K(T,J) > K(T) = K;(R) ® K;(S) > L.

According to Swan [Sw, Theorem 2.1] K(T,J) =~ | + J/W(T,J) where
W(T,J) is the subgroup of T* (the group of units of T) generated by all
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elements of the form (1 +ji)(1 + 4)" ', ¢t € T, J € J. But an arbitrary ele-
ment of 1+ J,(}7), lies in W(T,J) as is seen by taking ¢+ = (J9) and
J = (3™). Hence K,(T,J) is trivial and the result follows from exact sequence
(1.

It should be noted that Swan’s theorem is not really necessary. Upon
observing that the diagonal elements of a matrix congruent to 1 modulo J are
units, the usual process of row and column reduction together with the
equation

diag(l +j,1) = E\y(j)Ey () Eja(—Jj) Ey (—2)
yields the result.

2. The case i = 2. Throughout this section unexplained notation will be that
of [D-SI]. Let a, b € R be such that 1 + ab € R*. Note that 1 + ba € R*.
For each pair of indices « = ij, let —a denote the reversed pair, ji, and define

Hy(a,b) = x_ (=b(1 + ab) ") x, (@) x_,(b)x,(—a(l + ba)™").

Denote by H(n, R) the subgroup of St(n, R) generated by all elements H,(a, b).
Note that ¢(H,(a,b)) = diag(y, ... ,u,), where

w=1+ab, u=(1+ba)",

and u, = 1 for k # i, j. According to [D-S1, 8(a), p. 248] it follows that, for
H € H(n,R),n > 3, o(H) = diag (v}, ...,y,),

) Hxw(r) = xp(werofh).

In particular, it follows that K,(n, R) N H(n, R) is central in St(n, R) for all
n > 3.

Let J be any ideal contained in the Jacobson radical of the ring R and define
H(n,J) to be the subgroup of H(n,R) generated by all elements H,(a,b)
where at least one of a, b lies in J. We define K,(n,J ) to be the kernel of the
map K,(n, R) = K,(n,R/J). The techniques of [St] and [S-D] applied to the
case of an arbitrary ring R immediately yield the first part of the following
theorem.

THEOREM 3. Let J be an ideal contained in the Jacobson radical of the ring R.
Then K,(n,J) C H(n,J) for all n > 3. Consequently the maps K,(n,J)
— K,(n + 1,J) = K,(J) are surjective for all n > 2.

The proof of surjectivity and the proof of Theorem 1 depend on certain
identities in H(n, R) listed below. Throughout this section we write & = ij, 8
= jk, and y = ki for distinct integers i, j, .

LEMMA 4. The following identities are valid in St(n, R):
(i) If H € H(n, R) is such that o(H) = diag(v,,...,v,), then for n > 3,

BH (a,b) = H,(v; av ' vbu .
(ii) If n > 2, then
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H(a,b) = H_ (~b,—a)"".
(iii) If n > 3, then
Hy(ay + a,0) = Hy(ay,b(1 + a5) ') Hy(ay, b)
and
Hy(a,b, + by) = Hy(a,b;)H,(a(l + bya)™",by).
(iv) If n > 3, then
Hm(a,bc)—lHﬁ(b,ca)—lHy(c,ab)—1 = 1.
V) If n > 3, then
H,(a,b) = H_,(b,—a(1 + ba)™")
and

H,(a,b) = H (a1 + ba)™',-b)7".

Identity (i) is immediate from equation (2). The proofs of (ii)(iv) involve
writing certain expressions in the unique LHU form of Stein as in [St, Lemma
2.7] or [S-D, Proposition 1.1]. This is accomplished with the aid of the formula

xal@)y_ (b) = x_,(b(1 + ab)"")H,(a,b)x,(~aba(l + ba)™")

when 1 + ab € R*.
To prove (ii) put the left and right sides of

xa(a)x—a(b) = x—a(b)(x_a(_b)xa(—a))—lxa(_a)
in the LHU form. The first part of (iii) is obtained similarly by considering

xo(a)+a, )x—a (b) — xa(ay)xa(a )x_a (b)

Note that we must assume that n > 3 in order to apply (2) to put the right-
hand side in the LHU form. The second part of (iii) is obtained from the first
part by applying (ii), taking inverses and renaming.

Part (iv) is obtained by using the Philip Hall identity

o 2l Al eyl =1

with x = x,(a), y = x4(b), and z = x,(c). The expression is then simplified
using the Steinberg relations and (2) with the final step an application of (ii).
For an outline of the computation see [D-S2, Proposition 1.1] (cf. [Sw, Lemma
7.7)).

To prove the first part of (v), note that, if n > 3, then

Hal@Dx_ (b(1 + ab)) = x_o(B(1 + ab)™),
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and hence

H,(a,b) = x_o,(b(1 + ab)™")H,(a,b)x_o(—b(1 + ab))
= H_,(b,—a(l + ba)h).

The last equality follows from the definition of H, after one simplifies the
preceding expression. The second part of (v) follows from the first by an
application of (ii).

LEMMA 5. Let J be an ideal contained in the Jacobson radical of the ring R.
Then for alln > 2

(a) the map K,(n,R) N H(n,R) = Ky(n + 1,R) N H(n + 1,R) is surjec-
tive and

(b) the map Ky(n,J) N H(n,J) = Ky(n + 1,J) N H(n + 1,J) is surjective.

By taking ¢ = 1 and k = 1 in (iv) and applying (i) we obtain
Hy(a,b) = Hy(b,0)" Hy(1,ab)™" = Hi;(~a,~b) Hi;(1,ab)"".

Thus elements of the form Hj;(a,b) generate H(n + 1, R) By applying (i) we
see that any z € H(n + 1,R) can be written a5z =2y Zpy where z; is a
product of elements of the form Hj;(a, b)*!. Thus 1f z € Ky3(n+ 1LR)
n H(n + 1,R), we have ¢(z) = 1. Hence ¢(z;) = diag(w, ..., u,, ) where
;= 1for2<i<n+ 1 1If j> 2 then Z’Wz (1) = wy;(1) by equation (2)
and hence z; = WZJ() . Now by [Mi, Corollary 9.4] it follows that z;, and
hence z, is a product of elements of the form 1112((1, b)*'. These elements
clearly lie in the image of K,(2,R) N H(2, R), proving the ﬁrst assertion. The
proof of the second is analogous. This also yields the second part of Theorem
3.

We now proceed to the proof of Theorem 1 in the case i = 2. For all
n > 3, K,(n, ) preserves finite products, and thus there is a short exact
sequence as in (1). We thus need only show that K,(n,J) is trivial for all
n 2> 3. For the rest of this section, let n > 3. By Theorem 3 we may assume
that the elements of K,(n,J)) are products of elements of the form H,,(a, b)*!
and H,, (a, b)*' where one of g, b is in J. Note that by the second equation of
(v) we may assume that the exponent is +1, and by the first equation of (v) we
may assume that only the Hj,(a, b) occur. Let ¢, and e, denote the images in
T of the identity elements of R and S, respectively. Then any element of T
may be written uniquely as re; + se; + j, r € R, s € S, j € J. First note that
if j, j* € J, then an application of (iv) using a = j', b = ¢, c = j yields

3) H,(j’,j) =1 forany a.
Now by applying (iii) twice and (3) once we obtain
4) H,(re; + sey +j',j) = H,(re;,j)H,(sey,j) for any a.

A similar equation is valid in case the variables are switched.
By applying (iv) with a = re|, b = j, ¢ = e,, we obtain
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) =1
H,(re;.j) = H,(ey, 1))

and with a = ¢, b = rj, ¢ = e,, we obtain

) H,(e,,1j) = H,(e,rj)”"
These two equations yield

(6) H,(re;,j) = Hy(ey,1j)
and similarly one obtains

Q) H,(sey,j) = H,(e;,)s).

We can thus rewrite equation (4) as

(8) Ha(rel + se2 +j,’j) = Ha(e]”j)Ha(e2ajs)'

As before, a similar result holds when the variables are switched. Also by
applying the second part of (iii) we obtain

(9) Ha(ei’j +.],) = Ha(ei’j)Ha(ei’j/)'
Applying (i), (iii) and (3) shows that
(10) [Ha(e]sj)s Ha(eZ’j/)] =1

Taking r = 1 in (5) and applying (6) and (ii) yields
Hy(e1j) = Hy(e2,j)™" = H/~ep,—j)™" = H_,(j, ).
Next, (2) shows that H—v(j’ez)wﬂ(l) = wg(1) and thus using [Mi, Corollary 9.4],

H—y(j’eZ) = wﬂ(l)H—y(j’eZ) = Ha(.js eZ)

which yields

(11) Ha(el’j) = Ha(j’eZ)'
Similarly one obtains
(12) Ha(e2’j) = Ha(j’ el)-

To complete the proof that K,(n,J) is trivial, observe that by (8) we may
assume that any element of K,(n,J) is a product of elements of the form
Hy,(e1./), Hyz(ey,)), Hiz(j,e), and Hy,(j, e;). By (11) and (12) we may omit
the last two of these. By (10) we can collect the elements of the two types, and
by (9) we can combine them. Hence we may assume that any element of
K,(n,J) is of the form H,,(e,,/;)H,5(e,,/5). Upon applying ¢ we must obtain
1 and thus j; = j, = 0. Hence K,(n,J) is trivial, completing the proof of
Theorem 1.
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