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Differential structures on a
product of spheres: II"

By R. DE Sario

1. Introduction

In this paper we complete the classification of differential structures on
a product of spheres that was begun in [2] (see Theorem 3.3 in § 3). At the
same time we show that the pairing

Tt On @ T (SOM — 1)) — 0,., (n # 3)

of Milnor-Munkres-Novikov is zero if £ = n — 8 (see Theorem 3.1 in § 3).
These two results are related through the pairing

Onis 00 @ T k(S™) — 0,44 fork<n—1

that was defined recently by G. Bredon [1] and which generalized 7, , (see
Lemma 2.2 below). Here 6, is the group of h-cobordism classes of homotopy
n-spheres under the connected sum operation +, and S* denotes the standard
unit n-sphere in real (n + 1)-space R"+'. In particular, we show the following.
Let A" be a homotopy m-sphere, and let I(S* x A") denote the set of
diffeomorphism classes of those homotopy (n + k)-spheres V"+* such that
(S* x A") + V+* is diffeomorphic to S* x A”. We assume that n + k = 5.
Then I(S* x A") is the cyclic subgroup of 4,., such that
I(S* x A") = 7, (A" ® m,(SO(n — 1)) .

Thus if k¥ < n — 1, then I(S* x A") may be described as the set of elements
of the form p, (A" @ x), where x lies in the image of the Hopf-Whitehead
homomorphism J: 7,(SO(n)) — ,.,(S"). If either k > n — 3ork = 2,4,5,6
(mod 8), then I(S* x A") = 0, and hence the pairing 7, , is trivial in these
dimensions. On the other hand, the pairing 7, , corresponds to composition in
the stable homotopy groups of spheres. Thus for example, if A" represents
the non-zero element of 6,, ~ Z,, then I(S® x A") is of order two in the group
0., of order sixteen.

This result is of interest in the following connection. Let M be a mani-
fold that is homeomorphic to a product of standard spheres S* x S* such that
2<k=mnand n+ k=6. In [2] we showed that M is diffeomorphic to

* The work on this paper was supported in part by National Science Foundation Grant
¥ GP-7036.



306 R. DE SAPIO

(S* x A") + V***¥ where A" and V"+* are homotopy spheres. If n —3<k < n,
then M is diffeomorphic to (S*x S™) 4+ V*+* and V"+* is unique (see [2, Th. 1]).
More generally, it was shown that if B* and U"*+* are homotopy spheres such
that M is also diffeomorphic to (S* x B*) + U"**, then S* x A* and S* x B"
are diffeomorphic. Furthermore, if &k = 2,4,5,6 (mod 8), then V*** is diffeo-
morphic to U"+*, This last conclusion is not true precisely when the pairing
Tt 0, @ T(SO(M — 1)) — 0, is non-trivial. In fact, it is shown here that if
A" and V"** are homotopy spheres, then (S* x A") + V*** ig diffeomorphic
to S* x A" if and only if there exists an element & € 7,(SO(n — 1)) such that

V'n+k = T,n,k(An ® a) .

As an example we show that S® x S* has exactly twenty-four differential
structures. In general the complete classification of differential structures on
S* x S™ (up to diffeomorphism) is given by Theorem 3.3 in § 3.

2. The pairings

Differentiable means of class C= here, and diffeomorphisms are orienta-
tion preserving. We begin by giving the usual construction of the pairing
Tt 0, QT (SO(m — 1)) —0,,, for n 3,4, Let A" represent an element of 4,,,
and let a: S* — SO(n — 1) be a differentiable map that represents an element
of m,(SO(n —1)). Itis known that A" may be represented by a diffeomorphism
¢': R*'— R that is the identity outside of some compact set. Define diffeo-
morphisms F’ and G’ of S* x R*' by writing

F'(u, v) = (u, a(u)-v) and G'(u, v) = (u, g'(v)) .

Here a(u)-v denotes the action of the rotation group SO(n — 1) on R*~'. Then
F'-'G'F’ is a diffeomorphism of S* x R"~' that is the identity outside of some
compact set. Furthermore, F'~'G'F’ induces a diffeomorphism of S"**! by
embedding S* x B*~'in S"+*~'in the standard way, sending (u, v) € S* x R"*
into (u,)/||(%, v)||. Then this diffeomorphism of S"+*~* represents 7, (A" Q «).
It can be shown by standard arguments that this correspondence defines a
pairing. In fact, this follows by application of Lemma 2.2 below and
[1, Prop. 1.2].

Now we give an interpretation of 7, , (A" ® «) that will be useful here.
Up to diffeomorphisms of S”* that extend to diffeomorphisms of the unit -
disc D", the class of A" in 6, is completely determined by a diffeomorphism
g: S*'— S, Specifically, A" is diffeomorphic to D* U, D2, the disjoint union
of two copies of the n-disc with u € 6D? and g(u) € 0D? identified and with the
orientation of D}. In fact, we can take g to be that diffeomorphism induced
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by the diffeomorphism ¢’: R*'— R*' of the preceding paragraph via the
standard embedding of R*~! in S*! (stereographic projection from the south
pole of S*~'). We can assume that ¢ is the identity on the southern hemi-
sphere D, Now let
$: SO(n — 1) C SO(n)
denote the natural inclusion, and define diffeomorphisms F' and G of S* x S~
by writing
F(u, v) = (u, sa(u)-v) and  G(u, v) = (u, 9(v)) .
Let v, = (0, ++-, 0, — 1) denote the south pole of S*~'. Since each element of
SO(n — 1) leaves v, fixed it follows that F' is the identity on the k-sphere
S* x v,. Furthermore, there is a closed (n — 1)-disc neighborhood B"~! of v, in
D' such that
F(S* x B~ S* x D~
Since G is the identity on S* x D' it follows that F—'GF is the identity on
S* x B*', Thus if B*** is a small (n + k)-disc embedded in the interior of
D*+ % 8§71 then it follows that F'~'GF may be extended to a diffeomorphism
of D** x S*!' — Int B***, This gives rise to a diffeomorphism of the
(n + k — 1)-sphere 0B"** and hence determines an element of 4,,,. It is not
hard to see that this element is 7, (A" ® «). We state this as follows.

LEMMA 2.1. 7, (A" ® a) is the obstruction to extending the diffeomor-
phism F'GF of S* x S™ ! to one of D**' x S™'.

The pairing p,,.: 60, ® 7,.,(S™) — 0,+, of Bredon [1] is constructed as fol-
lows for n > 4. Let A" be a homotopy n-sphere and let 2z e x,,,(S"). Repre-
sent A" by a diffeomorphism g: S*~'-— S"~'. By means of the Pontrjagin-Thom
construction we can represent « € 7,.,(S") by a framed k-manifold X* in S"+*,
Let

fi1 X% x D" —— Sn+k
be a corresponding product representation of a tubular neighborhood of X*
in S*** and define a diffeomorphism G of X* x S*' by the equation G(u, v) =
(u, g(v)). Now we define a homotopy (n + k)-sphere by writing
(S™* — f(X* x Int D")) U ;o(X* x D).

‘This represents an element p, (4" Q ) of 4,.,, and one must show that this
element is independent of the choices made. Bredon shows that the function
0., 18 linear in the second variable for all integers n and %, and that p,,, is
linear in the first variable provided that « is a suspension element. Thus if
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k <mn — 1, then p, , is bilinear. The reader is referred to [1] for details.
Let J: m,(SO(n)) — 7,..(S") denote the Hopf-Whitehead homomorphism,
and let s,: 7,(SO(n — 1)) — m,(SO(n)) be induced by the inclusion.
LEMMA 2.2. The following diagram is commutative (n # 3):
0, X nk(SO('n — 1))

I \ﬂ:‘t’n,k
N
1® (Josx) 0n+k
l /
/Pn,k
011 ® n-'n+k(Sn)

Remark. The ambiguity +7, , in Lemma 2.2 can be removed by estab-

lishing orientation conventions in the definition of the Hopf-Whitehead homo-
morphism J.

Proor. We write S*+* in the form
(1) Sn+k — (Dk+1 X Sn—l) Ul(Sk X Dn) ,
and give it the orientation of S* x D", Let g: S"'— S be a diffeomorphism

that represents an element A" of 4,, and let a: S* — SO(n — 1) be a differen-

tiable map. Then +p, (A" ® Js,(@)) is represented by the homotopy (n + k)-
sphere

(2) (Dt < 8™ U p16(S* x D),
where F' and G are diffeomorphisms of S* x S~ defined by the equations

(3) - F(u,v) = (u, sa(u)-v) and  G(u,v) = (u, g(v)) .

The homotopy sphere (2) is given the orientation of S* x D". Now we
attempt to define a diffeomorphism from (1) to (2). First we map
(w, v) € S* x D™ of (1) into F(u, v) € S* x D" of (2) and then try to extend this
to a diffeomorphism of the complements D**! x S*~!, The diffeomorphism on
the boundary of D*+' x S"~'is clearly F'~'GF and by Lemma 1, the obstruc-
tion to extending this to a diffeomorphism of D**' x S*~'is 7, (A" R @). It
follows that the obstruction to extending our mapping to a diffeomorphism
from (1) to (2) is (—1)**'z, (A" @ «) since the orientation of D*+' x S is.
changed by (—1)**' in both (1) and (2). This implies that (2) represents
(—1)k7, (A® ® «), completing the proof.

3. Relationship to the action of 6,,,,
In this section we prove the following.

THEOREM 3.1. Let A" be a homotopy n-sphere and let V*** be a homotopy
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(n + k)-sphere such that n + k=6 and k = 1. Then (S* x A") + V' +* 45
diffeomorphic to S* x A" if and only 1if there exists an element
a e m,(SO(n — 1)) such that V"+* =7, (A" Q). In particular, if k=n — 3,
then 7,, = 0.

PROOF. Suppose that (S* x A") + V"+* is diffeomorphic to S* x A", It
was proved in [2, Lem, 2] that if £ = n — 3, then V"** is diffeomorphic to
S+, Therefore we can assume that £ <n — 1. Since 6, =0, we can further
assume that n > 4. Now let g: S*~'— S be a diffeomorphism that represents
A", It was shown in the proof of [2, Lem. 2] that there is a differentiable
map a: S* — SO(n) such that V"** is diffeomorphic to either

(D**' x S™) U po1g(S* x D*)

or

(D*¥* x 8™ U p-14-1(S* x D),
where F' and G are diffeomorphisms of S* x S* ' defined by the equations
F(u, v) = (u, a(u)-v) and G(u, v) = (4, g(v)). Since k < n — 1, it follows that
84: T(SO(m — 1)) — m,(SO(n))

is surjective, and hence we can assume that « represents an element in
7(SO(n — 1)). Now it follows from Lemma 2.2 that V"** = +7, (A" Q a).

Conversely, suppose that a: S* — SO(n — 1) is a differentiable map such
that V*+* = (-1)*r, (A" ® a). Now we refer to the proof of Lemma 2.2
above. First we note that V*** is diffeomorphic to the manifold (2), where F
and G are diffeomorphisms of S* x S**' defined by (3). We define a mapping
from (1) to (2) by sending (u, v) € D**' x S*~* of (1) into (u, g(v)) € D*+' x S
of (2) and try to extend this to a diffeomorphism of the complements S* x D*,
The diffeomorphism on the boundary (—1)¥(S* x S*') of S* x D" is G"'FG.
Now we can assume that « maps the southern hemisphere D* of S* into the
identity of SO(n — 1), and hence it follows that G—'FG is the identity on
D* x S*', Thus if B*** is a small (n + k)-disc embedded in the interior of
S* x D, then it follows that G—'FG can be extended to a diffeomorphism of
S* x D* — Interior B***, This induces a diffeomorphism of the (» + k& — 1)-
sphere 0B*+* which must represent (—1)**'7, (A" @ o). We state this result
as follows.

LEMMA 3.2. The obstruction to extending the diffeomorphism G—'FG of
(—=1)*¥S* x S ) = 3(S* x D") to one of S* x D" is (—1)*'7, (A" R «).
Now we can write S* x A" in the form

(4) Sk x DrUgS* x Dy,
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where D and D2 are two copies of the n-dise, and (u, v) € S* x 0D} is iden-

tified with G(u, v) e S* x aD?. The correspondence (u, v) — F(u, v) defines a

diffeomorphism of S* x D and we try to extend this to a diffeomorphism of

the manifold (4). The diffeomorphism induced on the boundary of S* x Dy is

clearly G-'FG and hence we can apply Lemma 3 to extend to a diffeomorphism
Sk % A" —— (S* x A™) + V+F

as desired.

The final statement in the theorem now follows from [2, Lem. 2].

We conclude this section with some remarks that relate the above theo-
rem to the classification of differential structures on S*x S™ up to diffeomor-
phism. Let ®**! be the subgroup of 6, consisting of those homotopy n-spheres
that embed in R*+*+! with a trivial normal bundle. It is known that if n >4
and k£ =1, then ®**' contains the subgroup bP, ,, of those homotopy n-spheres
that bound parallelizable manifolds. If, in addition, n < 2k + 1and n # 2* — 2,
then we have the exact sequence of Hsiang-Levine-Szczarba:

¥ T, (S
JE+t

where J**! is the image of the Hopf-Whitehead homomorphism, and + is the
homomorphism defined via the Pontrjagin-Thom construction. Finally, let A%
denote the class of 4" in 6, /®E+.

First we consider manifolds of the form S* x A" such that A" is a homo-
topy m-sphere, n = 5, and k > 2. It was shown in [2, Th. 2] that two such
manifolds S* x A" and S* x B* are diffeomorphic if and only if A} = +Bj.
It was also shown in [2, Lem. 2] that 6,., acts non-trivially on the usual
differential structure of S* x S™ and hence it follows from Theorem 3.1 above
that the pairing 7, induces a pairing
(5) Tt (0./P5) @ (SO — 1)) —— 0,4, (k=2).
Now let M be a manifold that is homeomorphic to S* x S such that n +%k =6
and n =k = 2. We recall that there are homotopy spheres A" and V"** such
that M is diffeomorphic to (S* x A") + V+ (ef.[2, Th.1]). If M is also
diffeomorphic to (S* x B*) + U™, then S* x A" and S* x B" are diffeomorphic
(cf.[2, Lem. 3]). Thus we can state the following classification theorem.

THEOREM 3.3. Let S* x S* be a product of standard spheres such that
2<k<nand n+k=6. Then, under the relation of orientation preserving
diffeomorphism, the diffeomorphism classes of manifolds homeomorphic to
S* x S™ are in a one-to-one correspondence with the equivalence classes
on the set (0,/PE) X 0,.,, where (A%, V"% and (B%, U"**) are equivalent

-0,

0 an-H (lercn+1
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if and only if A% = +B% and there exists acm,(SO(n — 1)) such that
T, (AL @ a) = Vb — Urtk,

In the next section we compute the number of differential structures on
S® x S*and S® x S*; these correspond to the non-trivial pairings 7, , and
Tu,;. On the other hand, if either k = 2,4,5,6 (mod 8) or n = k = n — 3, then
the equivalence relation on (4, /®%*') x 8, collapses to (A%, V") is equivalent
to (B, U***) if and only if A = +B" and V*t* = U*+tk,

4. Two calculations in the case where 7, ; is non-trivial

In this section we indulge in some numbers to show that there are exactly
twenty-four distinct (non-diffeomorphic) differential structures on S* x S*.
We also show that there are 4d differential structures on S® x S where d is
ambiguously 1 or 2.

In what follows IT, denotes the stable g-stem 7., (S™) for m > ¢ + 1, and
J, denotes the image of the stable J-homomorphism J: 7,(SO(m)) — 1 m(S™)
form > q + 1. Let

p':0, — 1./,
be the homomorphism of Kervaire-Milnor defined via the Pontrjagin-Thom
construction. It is known that p’ is surjective if n = 2* — 2, and that its
kernel bP,., is zero if n is even. Now if &k < n — 1, then the following
diagram is commutative, where the bottom map is induced by the composition
IL, @ II, — 11, 44:

6. ® m(SO(n — 1) —=2 4,
(6) P s*>j jp'
(Hn/Jn) ® Hk E— Hn+k/Jn+k

We believe that this is originally due to Milnor and follows from [1, Cor. 2.2]
and Lemma 2.2 above.

First consider the case where n = 10 and k = 3. It is known that 6,,~ Z,,
T(S009)) ~ Z, 0,y ~ Zy, My~ Z,, and Jos,:7w(SO9) —1II, is surjective.
Furthermore, the groups bP,, bP,, J,, and J,, are zero and hence we have
isomorphisms

't 0, ~ 11, and Py~ .
Thus we have a commutative diagram
0, @ 7(SO(9))
Qe S*)l zlp'
11, ® I1, — H13

+710,3
— Oy
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Now according to Toda [4, p. 189] the composition IT,,® I1,—II,, is non-trivial
and hence, if X is a generator of 6, ~ Z; and «¢ is a generator of m,(SO(9)),
then 7,,,(Z° Q@ a) generates 6,, ~ Z,. It follows that ®!, is either zero or of
order two. If @i, is zero, then it follows that S* x S has exactly eight dif-
ferential structures. If @}, is of order two, then 6,,/d*, is of order three and
S? x S* has four differential structures. The ambiguity exists here because
we do not know if 3% embeds in R" with a trivial normal bundle. In fact,
it is not known if 3X* embeds in R* at all (cf.[3, p.48]) In either case it
follows that neither Z' nor 2X" embeds in R* with a trivial normal bundle.
Actually, Levine [3] has shown that these homotopy 10-spheres do not even
embed in R“,

Now we consider the case where n = 14 and k¥ = 3. We note that 6, ~ Z,
and that 6, has order sixteen. Furthermore, the groups b P, and .J,, are zero
whereas the groups bP, and .J,, are each of order two. Thus we have a
monomorphism p’: 0,, —» 11, ~ Z, + Z,. According to Toda [4, p. 189] IT,, has
two generators, a composition 0> = 0 - 0 and an element £, where ¢ is of order
sixteen in II, ~ Z,,. Furthermore, if \ is a generator of II, ~ Z,,, then Toda
shows that the composition Ao ¢® = 0 whereas Ao £ is a non-zero element of
,~Z,+ Z, + Z, + Z, that does not lie in J,,. Now we show that if Z* rep-
resents the non-zero element of 6, ~ Z,, then p’'(Z*) == ¢*. In fact, it is known
that o® is represented by the framed manifold (S’, ) x (S7, ), where @ is the
framing defined as follows. Consider the standard sphere S” c R™*" (m large)
and let ¢ denote the framing of the normal bundle of S” that corresponds to
a generator of m(SO(m)) ~ Z. Since J: 7,(SO(m)) — I, ~ Z,, is surjective,
it follows that (S”, @) represents a generator of IT, via the Pontrjagin-Thom
construction. Furthermore, according to Milnor (S7, ) x (S’, ) has Arf
invariant one and represents ¢%. On the other hand, since 7,,(SO) = 0, =" has
an essentially unique framing + such that the framed manifold (Z“, ) rep-
resents p’'(X"). Moreover, (£, ) has Arf invariant zero and hence it follows
that p'(Z") # o®. Consequently p’(Z“) is equal to either £ or £ + ¢* which
implies that the composition X o p’(2*) = N o £ does not lie in J,,. Since (6) isa
commutative diagram, it follows that p'z,, (2" @ a) == 0, where a generates
n's(SO(13)) ~ Z. Consequently 7, ,(Z“®a) is of order two in 6, which implies
that ®i,=0. It follows that S®x S'* has exactly twenty-four differential strue-
tures. Moreover, we see that X* does not embed in R' with a trivial normal
bundle.

UNIVERSITY OF CALIFORNIA, LOoS ANGELES
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