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Abstract

Almkvist proved that for a commutative ring A the characteristic polynomial of an endomorphism
α : P −→ P of a finitely generated projective A-module determines (P , α) up to extensions. For a
non-commutative ring A the generalized characteristic polynomial of an endomorphism α : P −→ P of
a finitely generated projective A-module is defined to be the Whitehead torsion [1 − xα] ∈ K1(A[[x]]),
which is an equivalence class of formal power series with constant coefficient 1.

The paper gives an example of a non-commutative ring A and an endomorphism α : P −→ P
for which the generalized characteristic polynomial does not determine (P , α) up to extensions. The
phenomenon is traced back to the non-injectivity of the natural map Σ−1A[x] −→ A[[x]], where Σ−1A[x]
is the Cohn localization of A[x] inverting the set Σ of matrices in A[x] sent to an invertible matrix by
A[x] −→ A; x 7−→ 0.

1. Introduction

We begin by recalling the definition of the characteristic polynomial chx(Cn, α)
of an endomorphism α : Cn −→ Cn:

chx(C
n, α) = det(I −Mx) ∈ 1 + xC[x],

where M is an n × n matrix representing α with respect to any choice of basis.
(The polynomial defined here can be called the ‘reverse characteristic polynomial’
to distinguish between det(I − xM) and det(M − xI).)

Of course, chx is not a complete invariant of the endomorphism; for example
the matrices (

λ 0
0 λ

)
and

(
λ 1
0 λ

)
have the same characteristic polynomial although they are not conjugate. On the
other hand, if one is given the dimension n and the characteristic polynomial
chx(Cn, α), one can compute all the eigenvalues of α. The Jordan normal form
implies that (Cn, α) is determined uniquely up to choices of extension (cf. [8]).

The notion ‘unique up to choices of extension’ can be made precise without
relying on a structure theorem for endomorphisms by introducing the reduced
endomorphism class group Ẽnd0(A) where A denotes any ring [1, 2, 7]. Ẽnd0(A) is
the abelian group with

(1) one generator [An, α] for each isomorphism class of pairs (An, α) where
α : An −→ An;

(2) a relation [An, α] + [An
′′
, α′′] = [An

′
, α′] for each exact sequence

0 −→ An
θ−→An

′ θ′−→An
′′ −→ 0 (1)

such that θα = α′θ and θ′α′ = α′′θ′;
(3) a relation [An, 0] = 0 for each n.
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Figure 1.

(Although free modules An simplify the presentation, the group Ẽnd0(A) is
unchanged if one substitutes finitely generated projective modules throughout (see
section 2.1).) Ẽnd0(C), for example, is a free abelian group with one generator [C, λ]
for each non-zero eigenvalue λ ∈ C\0.

If A is a commutative ring, Almkvist proved [2] that the characteristic polynomial

chx(A
n, α) = det(1− αx : A[x]n −→ A[x]n) (2)

induces an isomorphism

chx : Ẽnd0(A) −→ Ã0 =

{
1 + a1x+ . . .+ anx

n

1 + b1x+ . . .+ bmxm

∣∣∣∣ ai, bi ∈ A} ,
so no further invariants are needed to classify endomorphisms up to extensions.

If we do not assume that A is commutative then the definition (2) above does
not apply. However, 1 − αx : A[[x]] −→ A[[x]] is a well-defined automorphism
(with inverse 1 + αx + α2x2 + . . .) where A[[x]] denotes the ring of formal power
series in a central indeterminate x. One can therefore define the generalized char-
acteristic polynomial ĉhx(A

n, α) to be the element [1 − αx] of the Whitehead group
K1(A[[x]]), inducing a group homomorphism ĉhx : Ẽnd0(A) −→ K1(A[[x]]). As
Pajitnov observed [10, 11], a Gaussian elimination argument (see section 2.2) yields

K1(A[[x]]) = K1(A)⊕W1(A),

where W1(A) is the image in K1(A[[x]]) of the group 1 + xA[[x]] of Witt vectors.
If A is commutative then Ã0 injects naturally into the group of units A[[x]]• and

the commutative square shown in Figure 1 implies that ĉhx is an injection.
The question arises whether ĉhx is still injective when A is non-commutative.

The main result of the present paper is that the answer can be negative.

Proposition 1.1. The non-commutative ring

S = Z〈f, s, g | fg, fsg, fs2g, . . .〉
is such that ĉhx: Ẽnd0(S) −→ K1(S[[x]]) is not injective.

Specifically the two endomorphisms S −→ S given by a 7−→ as and a 7−→
a(1− gf)s will be shown to have the same image under ĉhx although they represent
distinct classes in Ẽnd0(S). The proof depends on the fact that the functor A 7−→
Ẽnd0(A) commutes with direct limits whereas A 7−→ A[[x]] does not.

To put Proposition 1.1 into context and explain the origins of the ring S , we
require a certain universal localization Σ−1A[x] [5, Chapter 7; 14, Chapter 4] which
P. M. Cohn constructed by adjoining formal inverses to a set Σ of matrices. Here,
Σ contains precisely the matrices which become invertible under the augmentation
ε : A[x] −→ A; x 7−→ 0 (or equivalently are invertible in A[[x]]).
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By the universal property of Cohn localization, the inclusion of A[x] in A[[x]]
factors in a unique way through Σ−1A[x]:

A[x]
iΣ−→Σ−1A[x]

γ−→A[[x]]. (3)

In particular iΣ : A[x] −→ Σ−1A[x] is injective for all rings A (which is not true of
some Cohn localizations).

If A is commutative then Σ−1A[x] is the usual commutative localization, inverting

{det(σ) | σ ∈ Σ} = {p ∈ A[x] | ε(p) is invertible},
so γ : Σ−1A[x] −→ A[[x]] is also injective. On the other hand in Section 3 we prove
the following.

Proposition 1.2. The non-commutative ring S is such that

γ : Σ−1S[x] −→ S[[x]]

is not injective.

In fact, Proposition 1.1 is an algebraic K-theory version of Proposition 1.2; for
a theorem due to Ranicki [12, Proposition 10.16] states that for any ring A

K1(Σ−1A[x]) ∼= K1(A)⊕ Ẽnd0(A), (4)

where the split injection Ẽnd0(A) −→ K1(Σ−1A[x]) is [An, α] 7−→ [1 − αx]. One
can reinterpret Proposition 1.1 as the statement that the natural homomorphism
of groups K1(Σ−1S[x]) −→ K1(S[[x]]) is not injective; by Proposition 1.2 the
phenomenon is not peculiar to algebraic K-theory.

Propositions 1.1 and 1.2 are proved in Sections 2 and 3, respectively. The proofs
are independent of each other, and do not assume identity (4).

Section 4 is expository. Firstly we show that, for any ring A, the image of γ is
the ring RA of rational power series; by definition RA is the smallest subring of
A[[x]] which contains A[x] and is such that elements of RA which are invertible
in A[[x]] are invertible in RA, that is, RA ∩ A[[x]]• = (RA)•. We work in greater
generality replacing the single indeterminate x in (3) by a set X = {x1, . . . , xµ} of
non-commuting indeterminates

A〈X〉 iΣ−→Σ−1A〈X〉 γ−→A〈〈X〉〉.
Secondly we prove that each α ∈ Σ−1A〈X〉 can be expressed (non-uniquely) in

the form α = f(1 − s1x1 − . . . − sµxµ)−1g where f ∈ An is a row vector, g ∈ An is a
column vector and s1, . . . , sµ are n× n matrices with entries in A. This is a version of
Schützenberger’s theorem ([15, 16], see also [3, Chapter 1; 4 §6]). One can think of
the elements of Σ−1A〈X〉 as equivalence classes of finite dimensional linear machines
(f, s1, . . . , sµ, g) which generate the power series

γ(α) = fg +

µ∑
i=1

fsigxi +

µ∑
i,j=1

fsisjgxixj + . . . .

Cohn wrote [5, p. 487] that ‘the basic idea . . . to invert matrices rather than elements
was inspired by the rationality criteria of Schützenberger and Nivat . . .’.

Motivated by the theory of multi-dimensional boundary links, Farber and Vogel
proved [6] that if A is a (commutative) principal ideal domain then the Cohn



16 desmond sheiham

localization of the free group ring AFµ (inverting those matrices which are invertible
after augmentation AFµ −→ A) is isomorphic to the ring RA of rational power series.
In Section 5 we show that this localization of the free group ring is isomorphic to
Σ−1A〈X〉 so γ : Σ−1A〈X〉 −→ RA is an isomorphism. By contrast, Proposition 1.2
above says that Σ−1S〈X〉 is larger than RS even when |X| = 1; distinct classes of
linear machines can generate the same rational power series.

2. Algebraic K-theory

2.1. Definitions
Let A be a ring, assumed to be associative and to contain a 1. We recall first the

definitions of the Grothendieck group K0(A), the Whitehead group K1(A) and the
less widely known endomorphism class group

End0(A) = K0(endomorphism category overA).

Definition 2.1. K0(A) is the abelian group with one generator [P ] for each
isomorphism class of finitely generated projective A-modules and one relation [P ′] =
[P ] + [P ′′] for each identity P ′ ∼= P ⊕ P ′′.

Let End(A) denote the category of pairs (P , α) where P is a projective (left) A-
module and α : P −→ P is an A-module endomorphism. A morphism θ : (P , α) −→
(P ′, α′) in End(A) is an A-module map θ : P −→ P ′ such that θα = α′θ. A sequence
of objects and morphisms

0 −→ (P , α)
θ−→(P ′, α′) θ′−→(P ′′, α′′) −→ 0 (5)

is exact if 0 −→ P
θ−→P ′ θ′−→P ′′ −→ 0 is an exact sequence.

Let Aut(A) ⊂ End(A) denote the full subcategory of pairs (P , α) such that
α : P −→ P is an automorphism.

Definition 2.2. The Whitehead group K1(A) is the abelian group generated by
the isomorphism classes [P , α] of Aut(A) subject to the following relations.

(1) If 0 −→ (P , α) −→ (P ′, α′) −→ (P ′′, α′′) −→ 0 is an exact sequence then
[P ′, α′] = [P ′′, α′′] + [P , α].

(2) [P , α] + [P , α′] = [P , αα′].

Alternatively, in terms of matrices,

K1(A) = GL(A)ab =
GL(A)

E(A)
= −→lim GLn(A)

−→lim En(A)
,

where En(A) is the subgroup of GLn(A) generated by elementary matrices eij(a)
which have 1s on the diagonal, a in the ijth position and 0s elsewhere (a ∈ A, 1 6
i, j 6 n and i 6= j). See for example [13] for further details. If M,M ′ ∈ GL(A) and
[M] = [M ′] ∈ K1(A) then we write M ∼M ′.

Definition 2.3. The endomorphism class group End0(A) = K0(End(A)) is the
abelian group with one generator [P , α] for each isomorphism class in End(A) and
a relation

[P ′, α′] = [P ′′, α′′] + [P , α] (6)

corresponding to each exact sequence (5) above.
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Since every exact sequence of projective modules splits, we recover K0(A) by
omitting the endomorphisms in Definition 2.3. The forgetful map

End0(A) −→ K0(A); [P , α] 7−→ [P ]

is surjective and split by [P ] 7−→ [P , 0] so that End0(A) ∼= K0(A)⊕ Ẽnd0(A) with

Ẽnd0(A) = Ker(End0(A) −→ K0(A)) ∼= Coker(K0(A) −→ End0(A)).

Note that End0(−−) and Ẽnd0(−−) are functors; a ring homomorphism p : A −→ A′
induces a group homomorphism

End0(A) −→ End0(A′)
[P , α] 7−→ [A′ ⊗A P , 1⊗ α].

The same group Ẽnd0(A) is obtained if, as in the introduction, one starts with free
modules in place of projective modules: let Kh

0 (A) denote the Grothendieck group
generated by free modules [An] subject to relations [Am+n] = [Am] + [An]. Nearly all
of the rings usually encountered (including the ring S of the present paper) have
‘invariant basis number’, An ∼= Am =⇒ n = m, which implies that Kh

0 (A) = Z.
Let Endh(A) ⊂ End(A) denote the full subcategory of pairs (An, α). Then

Endh0(A) = K0(Endh(A)) satisfies Endh0(A) ∼= Kh
0 (A)⊕ Ẽndh0(A), where

Ẽndh0(A) = Ker(Endh0(A) −→ Kh
0 (A)) ∼= Coker(Kh

0 −→ Endh0(A)).

Lemma 2.4. There is a natural isomorphism Ẽndh0(A) ∼= Ẽnd0(A).

Proof. The homomorphism

Ẽndh0(A) ∼= Endh0(A)

Z
−→ End0(A)

K0(A)
∼= Ẽnd0(A)

[An, α] −→ [An, α]

has inverse [P , α] 7−→ [P ⊕ Q, α⊕ 0], where Q is a finitely generated A-module such
that P ⊕ Q is free. The definition of the inverse does not depend on the choice
of Q and plainly [P , 0] 7−→ 0 so we need only check that the ‘exact sequence
relations’ (6) are respected. Suppose we are given an exact sequence (5). Choose
finitely generated A-modules Q and Q′′ such that P ⊕ Q and P ′′ ⊕ Q′′ are free.
Then P ′ ⊕ Q ⊕ Q′′ ∼= P ⊕ P ′′ ⊕ Q ⊕ Q′′ is free and there is an exact sequence of
endomorphisms

0 −→ (P ⊕ Q, α⊕ 0) −→ (P ′ ⊕ Q⊕ Q′′, α′ ⊕ 0⊕ 0) −→ (P ′′ ⊕ Q′′, α⊕ 0) −→ 0.

q

It follows from Lemma 2.4 that Ẽnd0(A) has an equivalent definition in terms of
matrices: let Mn(A) denote the ring of n × n matrices with entries in A. Regarding
An as a module of row vectors, a matrix M ∈ Mn(A) represents the endomorphism
of An which multiplies by M on the right. Ẽnd0(A) is isomorphic to the group
generated by {[M] |M ∈ ⋃∞n=1 Mn(A)} subject to the following relations.

(1) If M ∈Mn(A) and M ′ ∈Mn′(A) then

[M] + [M ′] =

[
M N

0 M ′
]

for all n× n′ matrices N.
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(2) If M,P ∈Mn(A) and P is invertible then [M] = [PMP−1].
(3) If all the entries in M are zero then [M] = 0.

2.2. Rings of formal power series
Let A[[x]] be the ring of formal power series in the central indeterminate x.
To define the generalized characteristic polynomial of (P , α) we observe that

1 − αx has inverse 1 + αx + α2x2 + . . . when regarded as an endomorphism of
P [[x]] = A[[x]]⊗A P . Thus 1− αx represents an element of K1(A[[x]]). Now

ĉhx : Ẽnd0(A) −→ K1(A[[x]])

[P , α] 7−→ [1− αx : P [[x]] −→ P [[x]] ]

is well defined because ĉhx(P , 0) = 0 ∈ K1(A[[x]]) and an exact sequence (5) gives
rise to an exact sequence

0 −→ (P [[x]], 1− αx) −→ (P ′[[x]], 1− α′x) −→ (P ′′[[x]], 1− α′′x) −→ 0.

Lemma 2.5. (i) K1(A[[x]]) = K1(A) ⊕ W1(A), where W1(A) is the image in
K1(A[[x]]) of the group W (A) = 1 + xA[[x]].

(ii) If A is commutative then W1(A) = W (A) = 1 + xA[[x]].

This result and an argument showing that the abelianized group (1 + xA[[x]])ab

is in general larger than W1(A) can be found in [11].

Proof of Lemma 2.5. (i) Let ε denote the augmentation map A[[x]] −→ A;
x 7−→ 0. We shall prove that the sequence

0 −→W1(A) −→ K1(A[[x]])
ε−→K1(A) −→ 0

is split exact.

The composite

A −→ A[[x]]
ε−→A

is the identity map so ε : K1(A[[x]]) −→ K1(A) is surjective and split.
We have only to show that an element δ of K1(A[[x]]) which becomes zero in

K1(A) can be written δ = [1 + xξ] for some ξ ∈ A[[x]]. We may certainly write
δ = [δ0 + xδ1 + x2δ2 + . . .] with δi ∈ Mn(A) for each i and with δ0 invertible. Now
[δ0] = 0 ∈ K1(A) so δ = [1 + η] where η =

∑∞
i=1 δ

−1
0 δix

i. Since the diagonal entries
of 1 + η are invertible and all other entries are in xA[[x]], we can reduce 1 + η by
elementary row operations to a diagonal matrix with entries in 1 + xA[[x]]. Thus
δ = [1 + xξ] where 1 + xξ is the product of the diagonal entries.

(ii) Taking determinants gives a homomorphism to the group of units

det : K1(A[[x]]) −→ A[[x]]•.

Every element of W1(A) can be written in the form [1 + xξ] so the restriction of det
to W1(A) is inverse to the canonical map 1 + xA[[x]] −→W1(A). q

2.3. Proof of Proposition 1.1
Recall that S denotes the quotient of the free ring Z〈f, s, g〉 by the two-sided
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ideal generated by the set {fsig | i = 0, 1, 2, . . .}. There are two statements to prove
as follows.

Lemma 2.6. [S, s] and [S, (1− gf)s] are distinct classes in Ẽnd0(S).

Lemma 2.7. ĉhx[S, s] = ĉhx[S, (1− gf)s] in K1(S[[x]]).

Proof. We aim to show that [1− sx] = [1− (1− gf)sx] ∈ K1(S[[x]]). In S[[x]]
we have

f(1− sx)−1g = fg + (fsg)x+ (fs2g)x2 + (fs3g)x3 + . . . = 0,

so

1− sx ∼
(

1 0
0 1− sx

)(
1 f

0 1

)(
1 + f(1− sx)−1g 0

0 1

)(
1 0

−(1− sx)−1g 1

)

=

(
1 f

−g 1− sx
)

∼
(

1 f

0 1

)(
1 0
g 1

)(
1 −f
0 1

)(
1 f

−g 1− sx
)(

1 −f
0 1

)

=

(
1 0
0 1− (1− gf)sx

)
since fg = 0

∼ 1− (1− gf)sx. q

Before we prove Lemma 2.6, it is convenient to define a second invariant χ. In
terms of matrices,

χ : Ẽnd0(A) −→ A[[x]]

[M] 7−→
∞∑
i=1

Trace(Mi)xi,

where A denotes the quotient of A by the abelian group generated by commutators
(cf. [9])

A =
A

Z{ab− ba | a, b ∈ A} .

Example 2.8. Let X be a set and suppose that A is the free ring Z〈X〉 generated
by X. The free monoid X∗ of words in the alphabet X is a basis for Z〈X〉 as a
Z-module. Each commutator ab − ba with a, b ∈ Z〈X〉 is a linear combination of
‘basic’ commutators

∑
i λi(uivi−viui) where λi ∈ Z and ui, vi ∈ X∗ so the commutator

submodule Z{ab − ba | a, b ∈ Z〈X〉} ⊂ Z〈X〉 is spanned by elements w − w′ with
w, w′ ∈ X∗ and w′ a cyclic permutation of w (written w ∼ w′). It follows that
Z〈X〉 = Z{X∗/ ∼}.

We emphasize that the abelian group A is in general larger than the commutative
ring Aab, the latter being the quotient of A by the two-sided ideal generated by
{ab − ba | a, b ∈ A}. Nevertheless, if M and N are n × n matrices with entries
in A then Trace(MN) = Trace(NM) ∈ A and it follows that χ is well-defined on
Ẽnd0(A).
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K1(A[[x]])End0(A)

A[[x]]

chx

Tv

Figure 2.

Remark 2.9. χ is in general a weaker invariant then ĉhx. There is a commutative
triangle as shown in Figure 2, where

T [M] = −Trace

((
x
d

dx
M

)
M−1

)
for M ∈ GL(A[[x]]). Differentiation is defined formally by

d

dx

∞∑
n=0

anx
n =

∞∑
n=1

nanx
n−1.

Proof of Lemma 2.6. We define a family of rings

Sm := Z〈f, s, g | fg, fsg, . . . , fsmg〉.
There is an obvious surjection pm : Sm 7−→ Sm+1 for each m ∈ N and S is the direct
limit of the system S = −→lim Sm.

By Lemma A.2 of Appendix A we have Ẽnd0(S) = −→lim Ẽnd0(Sm) so it suffices to
prove that for each m ∈ N

[Sm, s] 6= [Sm, (1− gf)s] ∈ Ẽnd0(Sm).

We shall see that χ is sensitive enough to distinguish these two endomorphism
classes. Indeed, χ[Sm, (1− gf)s] =

∑∞
i=1((1− gf)s)ixi and in particular the coefficient

of xm+1 is

((1− gf)s)m+1 = sm+1 − (gfsm+1 + sgfsm + . . .+ smgfs) + other terms,

where in each of the ‘other terms’ two or more occurrences of gf intersperse
m + 1 copies of s. Since ab = ba ∈ Sm for all a, b ∈ Sm, one may perform a cyclic
permutation of the letters in each term to obtain

((1− gf)s)m+1 = sm+1 − (m+ 1)fsm+1g,

the ‘other terms’ disappearing by the defining relations fg = . . . = fsmg = 0 of
Sm. Now the coefficient of xm+1 in χ[S, s] is sm+1 so it remains to prove that
(m+ 1)fsm+1g 6= 0 in Sm. We shall argue by contradiction.

Let X denote the alphabet {f, s, g}. If (m + 1)fsm+1g = 0 ∈ Sm then there is an
equation in Z〈X〉

(m+ 1)fsm+1g =

l∑
i=1

(wi − w′i) + r0fgr
′
0 + r1fsgr

′
1 + . . .+ rmfs

mgr′m, (7)

where rj , r
′
j ∈ Z〈X〉 for 1 6 j 6 m and wi, w

′
i ∈ X∗ are such that wi ∼ w′i for 1 6 i 6 l

as in Example 2.8.
Let V denote the Z-module generated by the cyclic permutations of fsm+1g and

let W be the Z-module generated by all other words in X∗

Z〈X〉 = V ⊕W = Z{w ∈ X∗ | w ∼ fsm+1g} ⊕ Z{w ∈ X∗ | w 6∼ fsm+1g}.
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Each basic commutator w − w′ is either in V or in W and

r0fgr
′
0 + r1fsgr

′
1 + . . .+ rmfs

mgr′m ∈W,

so by equation (7)

(m+ 1)fsm+1g =
∑
i∈I

wi − w′i ,

where I = {i | wi ∼ fsm+1g} ⊂ {1, . . . , l}. We have reached a contradiction (for
example, put f = g = s = 1) and the proof of Proposition 1.1 is complete. q

3. Cohn localization

In this section, we briefly review Cohn localization before proving Proposition 1.2.

3.1. Definitions
If A is a ring and Σ is any set of matrices with entries in A then a ring

homomorphism A −→ B is said to be Σ-inverting if every matrix in Σ is mapped
to an invertible matrix over B. The Cohn localization iΣ : A −→ Σ−1A is the
(unique) ring homomorphism with the universal property that every Σ-inverting
homomorphism A −→ B factors uniquely through iΣ. Note that iΣ is not in general
an injection; it may even be the case that Σ−1A = 0.

If A is commutative, then Σ−1A coincides with the commutative ring of quotients
S−1R with S = {det(M) |M ∈ Σ}.

For non-commutative A, Cohn constructed Σ−1A by generators and relations
as follows [5, p. 390]. For each m × n matrix M ∈ Σ take a set of mn symbols
arranged as an n × m matrix M ′. Σ−1A is generated by the elements of A together
with all the symbols in the matrices M ′, subject to the relations holding in A and
the equations MM ′ = I and M ′M = I . Schofield [14, Chapter 4] gave a slightly
more general construction, inverting a set Σ of homomorphisms between finitely
generated projective A-modules.

Given any ring homomorphism A −→ B, we may define Σ to be the set of
matrices in A which are invertible in B, obtaining

A
iΣ−→Σ−1A

γ−→B.

Every matrix with entries in Σ−1A can be expressed (non-uniquely) in the form
fσ−1g where f, σ and g are matrices with entries in A and σ ∈ Σ (see for example
[14, p. 52]).

We shall also need the following lemma in Section 4.

Lemma 3.1. A matrix α with entries in Σ−1A is invertible if and only if its image
γ(α) is invertible. In particular, Im (γ)• = B• ∩ Im (γ).

Proof. The ‘only if’ part is easy. Conversely, suppose that γ(α) is invertible and
α = fσ−1g as above. The equation(

1 0
0 σ

)(
1 f

0 1

)(
fσ−1g 0

0 1

)(
1 0

−σ−1g 1

)
=

(
0 f

−g σ

)
(8)
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implies that α is invertible if and only if(
0 f

−g σ

)
is invertible, but applying γ to equation (8) we learn that

γ

(
0 f

−g σ

)
is invertible and hence that (

0 f

−g σ

)
∈ Σ.

Thus (
0 f

−g σ

)
and α are invertible over Σ−1A. q

3.2. Proof of Proposition 1.2
We recall that S denotes the ring

Z〈f, s, g | fg, fsg, fs2g, . . .〉;
let Σ be the set of matrices σ = σ0 + σ1x+ . . .+ σnx

n with entries in S[x] such that
σ0 is invertible (so σ is invertible in S[[x]]).

We will prove the following two statements:
(a) The element f(1− sx)−1g is non-zero in Σ−1S[x].
(b) f(1− sx)−1g lies in the kernel of the natural map γ : Σ−1S[x] −→ S[[x]].

Statement (b) follows directly from the definition of S

γ(f(1− sx)−1g) = fg + (fsg)x+ (fs2g)x2 + . . . = 0 ∈ S[[x]].

To prove (a) we express S once again as the direct limit −→lim Sm with

Sm := Z〈f, s, g | fg, fsg, . . . , fsmg〉
and the augmentations ε : Sm[x] −→ Sm; x −→ 0 fit into a commutative diagram,
Figure 3.

Let Σm denote the set of matrices in Sm[x] which become invertible under ε, so
that pm(Σm) ⊂ Σm+1 and Σ = −→lim Σm. By Lemma A.1 of Appendix A,

Σ−1S[x] = −→lim Σ−1
m Sm[x],

so it suffices to show that f(1 − sx)−1g 6= 0 ∈ Σ−1
m Sm[x] for each m ∈ N. However

γ(f(1− sx)−1g) =
∑∞

n=0(fsng)xn which is non-zero in Sm[[x]] because there does not

Sm[x] Sm + 1[x]

Sm + 1Sm

…

…

…

…

pm

pm

ε ε

Figure 3.
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exist an equation

fsng = r0fgr
′
0 + r1fsgr

′
1 + . . .+ rmfs

mgr′m ∈ Z〈f, s, g〉
with n > m and ri, r

′
i ∈ Z〈f, s, g〉 for 1 6 i 6 m. Thus f(1 − sx)−1g 6= 0 ∈ Σ−1

m Sm[x]
and the proof of Proposition 1.2 is complete. q

4. Many indeterminates

Let A be any ring, let X = {x1, . . . , xµ} be a finite set, and let X∗ be the free
monoid of words in the alphabet X. The free A-algebra

A〈X〉 = A⊗Z Z〈X〉
is graded by word length in X∗ and is therefore a subring of its completion A〈〈X〉〉
the elements of which are formal power series p =

∑
w pww with pw ∈ A for each

w ∈ X∗.
Let Σ denote the set of matrices in A〈X〉 which are sent to an invertible matrix

by the augmentation ε : A〈X〉 −→ Ai; xi 7−→ 0 for all i. Σ is precisely the set of
matrices which are invertible over A〈〈X〉〉, so the inclusion of A〈X〉 in A〈〈X〉〉 factors
uniquely through Σ−1A〈X〉:

A〈X〉 iΣ−→Σ−1A〈X〉 γ−→A〈〈X〉〉.
4.1. Rational power series
In this section we describe the image of γ.

Definition 4.1. Let RA denote the rational closure of A〈X〉. In other words
RA is the intersection of all the rings R such that A〈X〉 ⊂ R ⊂ A〈〈X〉〉 and
R• = R ∩ A〈〈X〉〉•. A power series p ∈ RA is said to be rational.

Proposition 4.2. γ(Σ−1A〈X〉) = RA.

Proof. To prove that RA ⊂ Im (γ), we note that Im (γ)• = Im (γ) ∩ A〈〈X〉〉• by
Lemma 3.1 above.

Conversely, to prove that Im (γ) ⊂ RA it suffices to show that every matrix σ ∈ Σ
has an inverse with entries in RA so that there is a commutative diagram, Figure 4.

Recall that ε : A〈X〉 −→ A is the augmentation given by ε(xi) = 0 for all i.
Multiplying σ by ε(σ)−1 if necessary we can assume that ε(σ) = I . Each diagonal
entry of σ has an inverse in RA so, after elementary row operations (which are of
course invertible), σ becomes a diagonal matrix where each diagonal entry σii has
ε(σii) = 1 (cf. the proof of Lemma 2.5(i)). By the definition of RA, each σii has an
inverse in RA. q

R–1A〈X 〉 A〈〈X 〉〉2A

A〈X 〉
iR

Figure 4.
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4.2. Schützenberger’s theorem

Proposition 4.3. Every matrix α with entries in Σ−1A〈X〉 can be expressed (non-
uniquely) in the form

α = f(1− s1x1 − . . .− sµxµ)−1g, (9)

where f, s1, . . . , sµ and g are matrices with entries in A.

Proof. It suffices to show that α has the form fσ−1g where f and g have entries
in A and σ = σ0 +

∑µ
i=1 σixi is linear with σ0 invertible, for then α = (fσ0)(σ−1

0 σ)g.
Note first that if α1 = f1σ

−1
1 g1 and α2 = f2σ

−1
2 g2 then

α1 − α2 = ( f1 −f2 )

(
σ1 0
0 σ2

)−1(
g1

g2

)
(10)

and

α1α2 = ( f1 0 )

(
σ1 −g1f2

0 σ2

)−1(
0
g2

)
(11)

whenever the left-hand sides make sense (cf. [14, p. 52]. Hence we need only treat
the cases where (i) α has entries in A〈X〉 and (ii) α = σ−1 with σ ∈ Σ.

If α has entries in A〈X〉, then, by repeated application of the equation(
a+ bc 0

0 1

)
=

(
1 −b
0 1

)(
a b

−c 1

)(
1 0
c 1

)
, (12)

in which a, b, c and 1 denote matrices, some stabilization(
α 0
0 1

)
can be expressed as a product of linear matrices. Each linear matrix a0 + a1x1 +
. . .+ aµxµ can be written

(1 0)

(
1 −a0

0 1

)(
0
1

)
+

µ∑
i=1

(1 0)

(
1 −aixi
0 1

)(
0
1

)
,

and equations (10) and (11) imply that

α = ( 1 0 )

(
α 0
0 1

)(
1
0

)
is of the required form fσ−1g.

The case α = σ−1 is similar (but slightly easier); we repeatedly apply equation
(12) to express (a stabilization of) σ−1 as a product of inverses of linear matrices in
Σ and then apply equation (11). q

A power series p ∈ A〈〈X〉〉 is said to be recognizable if it is of the form

p = fg +

µ∑
i=1

fsigxi +

µ∑
i,j=1

fsisjgxixj + . . . ,

where f ∈ An is a row vector, g ∈ An is a column vector and each si is an n × n
matrix in A. Propositions 4.3 and 4.2 imply the following.

Corollary 4.4 (Schützenberger’s theorem). A power series p ∈ A〈〈X〉〉 is
rational if and only if it is recognizable.
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5. Localization of the free group ring

We identify the localization of the group ring of the free group studied in [6]
with the localization Σ−1A〈X〉 of the present paper.

Let Fµ denote the free group on generators z1, . . . , zµ, and as usual let A be a (not
necessarily commutative) ring. AFµ will denote the group ring, in which the elements
of the group Fµ are assumed to commute with elements of A. Let ε : AFµ −→ A;
zi 7−→ 1 for all i and let Ψ denote the set of square matrices M in AFµ such that
ε(M) is invertible. Ψ is denoted Σ in [6].

All the matrices in Ψ become invertible under the Magnus embedding of the
group ring

AFµ −→ A〈〈X〉〉,
zi 7−→ 1 + xi,

z−1
i 7−→ 1− xi + x2

i − x3
i + . . . ,

so the embedding factors through Ψ−1AFµ:

AFµ
iΨ−→Ψ−1AFµ

γ−→A〈〈X〉〉.
Farber and Vogel proved that if A is a (commutative) principle ideal domain then
γ is an injection and the image of γ is the ring RA of rational power series.

Now, for general A, let m : A〈X〉 −→ AFµ be the ring homomorphism defined by
xi 7−→ zi− 1 for all i. There is a commutative diagram, Figure 5, so m(Σ) ⊂ Φ and m
induces a homomorphism m : Σ−1A〈X〉 −→ Ψ−1AFµ which fits into a commutative
diagram, Figure 6.

Proposition 5.1. m : Σ−1A〈X〉 −→ Ψ−1AFµ is an isomorphism.

Proof. The map l : AFµ −→ Σ−1A〈X〉; zi 7−→ xi + 1, indicated by the broken
arrow, fits into the commutative diagram of Figure 6. l is Ψ-inverting and therefore
induces a map Ψ−1AFµ −→ Σ−1A〈X〉 which, by the universal properties of iΣ and
iΨ, is inverse to m. q

AA〈X 〉

l

AFl

ε

ε

Figure 5.

R–1A〈X〉A〈X 〉

m

AFl

A〈〈X〉〉

W–1AFl

ml

c

c
i
Ψ

i
Σ

Figure 6.
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Appendix A. Direct limits

In this appendix we prove that Cohn localization and the functor Ẽnd(−−)
commute with direct limits.

A.1. Cohn localization
First we make the former claim more precise. Suppose that I is a directed

set and ({Am}m∈I , {flm:Am −→ Al}m6l) is a direct system of rings. Suppose further
that for each m ∈ I we have a set of matrices Σm with entries in Am such that
flm(Σm) ⊂ Σl whenever m 6 l. If im:Am −→ Σ−1

m Am is the universal Σm-inverting ring
homomorphism for each m, then when m 6 l the composite

Am
flm−→Al

il−→Σ−1
l Al

is Σm-inverting and therefore factors through a map Σ−1flm : Σ−1
m Am −→ Σ−1

l Al . It is
easy to see that Σ−1fkl ◦ Σ−1flm = Σ−1fkm when m 6 l 6 k.

For any ring A let M(A) denote the set of matrices (of any size and shape) with
entries in A. The inclusions Σm ⊂M(Am) induce an injection

−→lim Σm −→ −→lim M(Am) =M(−→lim Am).

Lemma A.1. There is a natural isomorphism

(−→lim Σm)−1(−→lim Am) ∼= −→lim (Σ−1
m Am).

Proof. One can check that the canonical map −→lim im : −→lim Am −→ −→lim Σ−1
m Am

is universal among (−→lim Σm)−1-inverting homomorphisms. The details are left to the
reader. q

A.2. The endomorphism class group
We consider next the functor Ẽnd0(−−).

Lemma A.2. There is a natural isomorphism

−→lim Ẽnd0(Am) ∼= Ẽnd0(−→lim Am).

Proof. The canonical maps fm : Am −→ −→lim Am induce maps fm : Ẽnd0(Am) −→
Ẽnd0(−→lim Am) satisfying flf

l
m = fm for m 6 l. We aim to prove that any other system

of maps gm : Ẽnd0(Am) −→ T with glf
l
m = gm for m 6 l factors uniquely through

Ẽnd0(−→lim Am); see Figure 7.

Suppose that [M] is a generator of Ẽnd0(−→lim Am) where M ∈ Mn(−→lim Am). M is

{End0(Am)}

Endo0(lim Am)

T
{gm}

g{ fm}

Figure 7.
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the image fm(Mm) of some matrix Mm ∈Mn(Am), so we can define g[M] = gm[Mm].
To show that g is well-defined there are two things to check:

(i) If Ml ∈ Mn(Al) is an alternative choice with fl(Ml) = M then we require
gm[Mm] = gl[Ml]. Indeed, there exists k such that l 6 k, m 6 k and fkl (Mk) =
fkm(Mm) ∈Mn(Ak). Hence gm[Mm] = gkf

k
m[Mm] = gkf

k
l [Ml] = gl[Ml].

(ii) We must check that g respects the defining relations of Ẽnd0(−→lim Am).

(1) A matrix (
M N

0 M ′
)

is the image of some matrix (
Mm Nm

0 M ′m

)
,

so

g

[
M N

0 M ′
]

= gm

[
Mm Nm

0 M ′m

]
6= gm([Mm] + [M ′m]) = g[M] + g[M ′].

(2) Suppose that M ′ = PMP−1 for some invertible matrix P . For large
enough m we can choose Pm, Qm ∈ Mn(Am) to represent P and P−1 respectively.
Since I = fm(Pm)fm(Qm) there exists k > m such that PkQk = I ∈ Mn(Ak) where
Pk = fkmPm and Qk = fkmQm. Thus M ′ = fk(PkMkP

−1
k ) and g[M ′] = gk[PkMkP

−1
k ] =

gk[Mk] = g[M].

(3) If M is the zero matrix, g[M] = 0.

Uniqueness of g follows from the fact that every class [M] in Ẽnd0(−→lim Am) is

an image of a class [Mm] ∈ Ẽnd0(Am). q
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