NON-COMMUTATIVE CHARACTERISTIC POLYNOMIALS
AND COHN LOCALIZATION

DESMOND SHEIHAM

ABSTRACT

Almkvist proved that for a commutative ring A the characteristic polynomial of an endomorphism
o : P —> P of a finitely generated projective A-module determines (P,«) up to extensions. For a
non-commutative ring 4 the generalized characteristic polynomial of an endomorphism o : P — P of
a finitely generated projective A-module is defined to be the Whitehead torsion [1 — xa] € Ky(A4[[x]]),
which is an equivalence class of formal power series with constant coefficient 1.

The paper gives an example of a non-commutative ring 4 and an endomorphism « : P — P
for which the generalized characteristic polynomial does not determine (P,2) up to extensions. The
phenomenon is traced back to the non-injectivity of the natural map Z~'4[x] — A[[x]], where Z~' 4[x]
is the Cohn localization of A[x] inverting the set £ of matrices in A[x] sent to an invertible matrix by
A[x] — A;x+— 0.

1. Introduction

We begin by recalling the definition of the characteristic polynomial ch,(C",«)
of an endomorphism o : C" — C":

ch (C", o) = det(I — Mx) € 1 + xCJ[x],

where M is an n X n matrix representing o« with respect to any choice of basis.
(The polynomial defined here can be called the ‘reverse characteristic polynomial’
to distinguish between det(I — xM) and det(M — xI).)

Of course, chy is not a complete invariant of the endomorphism; for example

the matrices
A0 d A1
o . ) 0

have the same characteristic polynomial although they are not conjugate. On the
other hand, if one is given the dimension n and the characteristic polynomial
ch(C",«), one can compute all the eigenvalues of «. The Jordan normal form
implies that (C", «) is determined uniquely up to choices of extension (cf. [8]).

The notion ‘unique up to choices of extension’ can be made precise without
relying on a structure theorem for endomorphisms by introducing the reduced
endomorphism class group Endg(4) where 4 denotes any ring [1,2,7]. Endg(A) is
the abelian group with

(1) one generator [A",«] for each isomorphism class of pairs (4",o) where
o A" —> A";

(2) a relation [4",a] + [A", o] = [A", o] for each exact sequence

0—a"La’ Loat 0 (1)

such that 0o = o0 and 0'a/ = o"0’;
(3) a relation [4",0] = O for each n.
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End(4) — > K (AR])

chxlz ldct

Ay ——— A

FIGURE 1.

(Although free modules 4" simplify the presentation, the group E;Ei()(/l is
unchanged if one substitutes finitely generated projective modules throughout (see
section 2.1).) Endy(C), for example, is a free abelian group with one generator [C, 4]
for each non-zero eigenvalue 4 € C\0.

If A is a commutative ring, Almkvist proved [2] that the characteristic polynomial

ch (4", o) = det(1 —ax : A[x]" — A[x]") (2)
induces an isomorphism

14+ax+...4+a,x"
14+bix+...4 byx"

so no further invariants are needed to classify endomorphisms up to extensions.

If we do not assume that 4 is commutative then the definition (2) above does
not apply. However, 1 —ax : A[[x]] — A[[x]] is a well-defined automorphism
(with inverse 1 + ax + o?x? +...) where A[[x]] denotes the ring of formal power
series in a central indeterminate x. One can therefore define the generalized char-
acteristic polynomial chy(A",0) to be the element [1 — ax] of the Whitehead group
Ki(A[[x]]), inducing a group homomorphism ch, : Endyo(4A) — Kji(A[[x]]). As
Pajitnov observed [10, 11], a Gaussian elimination argument (see section 2.2) yields

Ki(A[lx]]) = Ki(4) © Wi(A),

where Wi(A) is the image in K;(A[[x]]) of the group 1+ xA[[x]] of Witt vectors.
If A is commutative then A, injects naturally into the _group of units A[[x]]* and
the commutative square shown in Figure 1 implies that ch, is an injection.
The question arises whether ch, is still injective when A is non-commutative.
The main result of the present paper is that the answer can be negative.

Chx : El\lao(A) e ;10 = {

a,»,bl- S A},

ProPOSITION 1.1.  The non-commutative ring

S=Z{f.s.g|fg.fsg.f5°g...)
is such that (:Ahx:mio(S) —> K (S[[x]]) is not injective.

Specifically the two endomorphisms S — S given by a — as and a —
a(l — gf)s will be shown to have the same image under ch, although they represent
distinct classes in Endg(S). The proof depends on the fact that the functor 4 —
Endy(A) commutes with direct limits whereas 4 — A[[x]] does not.

To put Proposition 1.1 into context and explain the origins of the ring S, we
require a certain universal localization ~'A[x] [5, Chapter 7; 14, Chapter 4] which
P. M. Cohn constructed by adjoining formal inverses to a set X of matrices. Here,
X contains precisely the matrices which become invertible under the augmentation
€ : A[x] — A;x+— 0 (or equivalently are invertible in A[[x]]).
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By the universal property of Cohn localization, the inclusion of A[x] in A[[x]]
factors in a unique way through Z~'4[x]:

Alx] 25 1A = A[[X]). (3)

In particular is : A[x] — XZ7'A4[x] is injective for all rings A (which is not true of
some Cohn localizations).
If A is commutative then X ~' A[x] is the usual commutative localization, inverting

{det(0) | 0 € X} = {p € A[x] | e(p)is invertible},

so 7 : 71 4[x] — A[[x]] is also injective. On the other hand in Section 3 we prove
the following.

PROPOSITION 1.2.  The non-commutative ring S is such that
y 1278 [x] — S[[x]]

is not injective.

In fact, Proposition 1.1 is an algebraic K-theory version of Proposition 1.2; for
a theorem due to Ranicki [12, Proposition 10.16] states that for any ring 4

Ki(E7'A[x]) = K/(A) ® Endy(A), (4)

where the split injection E;l?io(A) —s K {(Z7'4[x]) is [A", 0] —> [1 — ax]. One
can reinterpret Proposition 1.1 as the statement that the natural homomorphism
of groups K{(Z7'S[x]) — K;(S[[x]]) is not injective; by Proposition 1.2 the
phenomenon is not peculiar to algebraic K -theory.

Propositions 1.1 and 1.2 are proved in Sections 2 and 3, respectively. The proofs
are independent of each other, and do not assume identity (4).

Section 4 is expository. Firstly we show that, for any ring A4, the image of y is
the ring #4 of rational power series; by definition % is the smallest subring of
A[[x]] which contains A[x] and is such that elements of #4 which are invertible
in A[[x]] are invertible in %4, that is, 21 N A[[x]]* = (#4)*. We work in greater
generality replacing the single indeterminate x in (3) by a set X = {xi,...,x,} of
non-commuting indeterminates

AX) 314X s AU,

Secondly we prove that each o € 2~ 14(X) can be expressed (non-uniquely) in
the form o = f(1 —s;x; —... — s,X,)"'g where f € A" is a row vector, g € A" is a
column vector and sy,...,s, are n X n matrices with entries in A. This is a version of
Schiitzenberger’s theorem ([15, 16], see also [3, Chapter 1; 4 §6]). One can think of
the elements of 7' 4(X) as equivalence classes of finite dimensional linear machines
(f.s1,...,54, g) which generate the power series

u u
7(0) = fg+ > fsigxi+ Y fsisjgxixj+ ...
i=1 ij=1
Cohn wrote [5, p. 487] that ‘the basic idea ... to invert matrices rather than elements
was inspired by the rationality criteria of Schiitzenberger and Nivat ...

Motivated by the theory of multi-dimensional boundary links, Farber and Vogel
proved [6] that if A is a (commutative) principal ideal domain then the Cohn
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localization of the free group ring AF, (inverting those matrices which are invertible
after augmentation AF, —> A) is isomorphic to the ring #4 of rational power series.
In Section 5 we show that this localization of the free group ring is isomorphic to
S1A(X) so y : T7'A(X) — %4 is an isomorphism. By contrast, Proposition 1.2
above says that Z7'S(X) is larger than #° even when |X| = 1; distinct classes of
linear machines can generate the same rational power series.

2. Algebraic K-theory
2.1. Definitions
Let A be a ring, assumed to be associative and to contain a 1. We recall first the
definitions of the Grothendieck group Ko(A), the Whitehead group K;(A4) and the
less widely known endomorphism class group

Endy(A4) = Ko(endomorphism category over A4).

DEerFINITION 2.1.  K((A4) is the abelian group with one generator [P] for each
isomorphism class of finitely generated projective 4-modules and one relation [P'] =
[P]+ [P”] for each identity P’ = P @ P".

Let End(A4) denote the category of pairs (P,x) where P is a projective (left) A-
module and o : P — P is an A-module endomorphism. A morphism 6 : (P,a) —
(P’,o/) in End(A4) is an A-module map 0 : P — P’ such that 0u = '0. A sequence
of objects and morphisms

0 —> (P, )~ (P', o) ~>(P", o) —> 0 (5)

. . 0 0’ .
is exact if 0 — P — P’ — P” — 0 is an exact sequence.

Let Aut(4) < End(4) denote the full subcategory of pairs (P,«) such that
o : P —> P is an automorphism.

DEerINITION 2.2. The Whitehead group K;(A) is the abelian group generated by
the isomorphism classes [P, «] of Aut(A4) subject to the following relations.

(1) If 0 — (P,0) — (P’,o/) — (P",&") —> 0 is an exact sequence then
[P',o/1=[P",&"] + [P,q].

(2) [P,o] + [P,d/] = [P,od].

Alternatively, in terms of matrices,

e GL(A)  lim GL(4)
Kid) = GLAY™ = 5o = lim E,(4) °

where E,(A4) is the subgroup of GL,(A4) generated by elementary matrices e;;(a)
which have 1s on the diagonal, a in the ijth position and Os elsewhere (a € 4,1 <
i,j < nandi=# j). See for example [13] for further details. If M, M’ € GL(A) and
[M] = [M'] € K{(A) then we write M ~ M.

DEerINITION 2.3. The endomorphism class group Endy(A4) = Ko(End(A4)) is the
abelian group with one generator [P, ] for each isomorphism class in End(A4) and
a relation

[P', o] = [P",0"] + [P, ] (6)

corresponding to each exact sequence (5) above.
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Since every exact sequence of projective modules splits, we recover Ko(A4) by
omitting the endomorphisms in Definition 2.3. The forgetful map

Endo(4) — Ko(4); [P,o] — [P]
is surjective and split by [P] —> [P,0] so that Endy(4) = Ko(4) ® Endg(4) with
Endy(4) = Ker(Endo(4) —> Ko(4)) = Coker(Ko(4) —> Endg(A)).

Note that Endg(—) and Eﬁo(_) are functors; a ring homomorphism p : 4 — A4’
induces a group homomorphism

End()(A) —> End()(A/)
[P,a] —> [A/ ®4P,1®0q].

The same group I:ZEiO(A) is obtained if, as in the introduction, one starts with free
modules in place of projective modules: let K{(4) denote the Grothendieck group
generated by free modules [4"] subject to relations [A"™™"] = [A™] + [A"]. Nearly all
of the rings usually encountered (including the ring S of the present paper) have
‘invariant basis number’, A" = 4™ = n = m, which implies that K/'(4) = Z.

Let End"(4) = End(4) denote the full subcategory of pairs (4",a). Then
End{(A4) = Ko(End"(A)) satisfies End{)(4) = K//(4) ® End}}(4), where

Endl(4) = Ker(End}\(4) — K{/(4)) = Coker(K{ —> End/i(4)).
LEmMMA 2.4.  There is a natural isomorphism Eaig(A) = E;lao(A).

Proof. The homomorphism

— End}(A4) Endo(4) _ —
h ~ 0 ~
Endg(d) = — 7~ — T End(A)

[A)‘l, a] SN [AH, a]

has inverse [P,a] —> [P @ Q,a @ 0], where Q is a finitely generated A-module such
that P @ Q is free. The definition of the inverse does not depend on the choice
of Q and plainly [P,0] — 0 so we need only check that the ‘exact sequence
relations’ (6) are respected. Suppose we are given an exact sequence (5). Choose
finitely generated A-modules Q and Q” such that P @ Q and P” @ Q" are free.
Then PPoQ@ Q"' X P @®P’' @®Q@a Q" is free and there is an exact sequence of
endomorphisms

00— P@Qod0)— (PeQaQ /o000 — (P"®Q",a®0)— 0.
O

It follows from Lemma 2.4 that Eaio(A) has an equivalent definition in terms of
matrices: let M,(A4) denote the ring of n X n matrices with entries in 4. Regarding
A" as a module of row vectors, a matrix M € M,(A) represents the endomorphism
of A" which multiplies by M on the right. Endy(A4) is isomorphic to the group
generated by {[M] | M € |J,_, M,(A4)} subject to the following relations.

n=1

(1) If M € M,(A) and M’ € My(A) then

[M]-I—[M’]={A(;I AJH

for all n x n’ matrices N.
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(2) If M,P € M,(A) and P is invertible then [M] = [PMP~'].
(3) If all the entries in M are zero then [M] = 0.

2.2. Rings of formal power series

Let A[[x]] be the ring of formal power series in the central indeterminate x.

To define the generalized characteristic polynomial of (P,«) we observe that
1 — ox has inverse 1 + ax + o’x?> + ... when regarded as an endomorphism of
P[[x]] = A[[x]] ®4 P. Thus 1 — ax represents an element of K;(A[[x]]). Now

chy : Endo(4) —> Ki(A[[x]])
[P, o] — [1 —ax : P[[x]] — P[[x]]]

is well defined because cAhX(P,O) = 0 € K{(A[[x]]) and an exact sequence (5) gives
rise to an exact sequence

0 — (P[[x]], 1 — ox) — (P[[x]], 1 — o/x) — (P"[[x]], 1 — o"x) —> O.

LemmMma 2.5. (1) Ki(A[[x]]) = Ki(4) @ Wi(A), where Wi(A) is the image in
K (A[[x]]) of the group W(A) =1+ xA[[x]].
(i) If A is commutative then Wi(A) = W(A) = 1 4+ xA[[x]].

This result and an argument showing that the abelianized group (1 + xA[[x]])*°
is in general larger than W;(A4) can be found in [11].

Proof of Lemma 2.5. (i) Let e denote the augmentation map A[[x]] — A4;
x — 0. We shall prove that the sequence

0 — Wi(A) — Ki(A[[x]]) — K(4) — 0

is split exact.
The composite

A — A[[x]] -> 4

is the identity map so € : K;(A4[[x]]) — K{(A) is surjective and split.

We have only to show that an element ¢ of K{(A[[x]]) which becomes zero in
K{(A) can be written 0 = [1 + x&] for some ¢ € A[[x]]. We may certainly write
& = [69 + x01 + x?95 +...] with &; € M,(A) for each i and with §, invertible. Now
[00] =0 € K1(A4) so & = [1 +n] where n = >, 5'8;x'. Since the diagonal entries
of 1+ n are invertible and all other entries are in xA[[x]], we can reduce 1+ 5 by
elementary row operations to a diagonal matrix with entries in 1 + xA[[x]]. Thus
0 = [1 4+ x&] where 1 + x¢ is the product of the diagonal entries.

(i1) Taking determinants gives a homomorphism to the group of units
det : K{(A[[x]]) — A[[x]]".
Every element of W{(A) can be written in the form [1 + x&] so the restriction of det
to Wi(A) is inverse to the canonical map 1 4+ xA[[x]] — W;(A). O

2.3.  Proof of Proposition 1.1
Recall that S denotes the quotient of the free ring Z(f,s,g) by the two-sided
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ideal generated by the set {fs'g | i =0,1,2,...}. There are two statements to prove
as follows.

LeEMMA 2.6. [S,s] and [S,(1 — gf)s] are distinct classes in Eﬁ/do(S).

LemMa 2.7. chy[S,s] = chy[S, (1 — gf)s] in Ki(S[[x]]).

Proof. We aim to show that [1 —sx] = [1 — (1 — gf)sx] € K{(S[[x]]). In S[[x]]
we have

f(l=sx)""g = fg+ (fse)x + (fs’)x" + (fs’)x’ +... =0,

e ()G T ) (Lt )
(lg 1—sx>

(o 1>(g MICEPIENENI (Y

(o

—_

¢

1—(1—gf) ) since fg =0

(1—gf)sx. O

~

Before we prove Lemma 2.6, it is convenient to define a second invariant y. In
terms of matrices,

7 Endg(4) — A[[x]]

[M] —> Z Trace(M")x',
i=1
where A denotes the quotient of A by the abelian group generated by commutators
(cf. [9])
A
Z{ab—ba|abe A}

Z:

ExaMPLE 2.8. Let X be a set and suppose that A is the free ring Z(X) generated
by X. The free monoid X of words in the alphabet X is a basis for Z(X) as a
Z-module. Each commutator ab — ba with a,b € Z(X) is a linear combination of
‘basic’ commutators >, A;(ujv; —vju;) where 4; € Z and u;,v; € X~ so the commutator
submodule Z{ab — ba | a,b € Z(X)} = Z{X) is spanned by elements w — w’ with
w,w € X" and w' a cyclic permutation of w (written w ~ w’). It follows that
Z(X)=7Z{X"] ~}.

We emphasize that the abelian group A is in general larger than the commutative
ring A%, the latter being the quotient of A by the two-sided ideal generated by
{ab —ba | a,b € A}. Nevertheless, if M and N are n X n matrices with entries
in A then Trace(MN) = Trace(NM) € A and it follows that y is well-defined on
Endy(A).
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Endy(4) — = K,(4[[x])

\ lT
Al

FIGURE 2.

REMARK 2.9. yisin general a weaker invariant then ch,. There is a commutative
triangle as shown in Figure 2, where

T[M] = —Trace <<de> M1>
dx
for M € GL(A[[x]]). Differentiation is defined formally by

0 0
d n n—1
—_ E apX = E na,x .
dx
n=0 n=1

Proof of Lemma 2.6. We define a family of rings
Sm=2Z(f,s,g | g fsg.....fs"g).

There is an obvious surjection p,, : S, —> S;+1 for each m € IN and S is the direct
limit of the system § = lim S, - -

By Lemma A.2 of Appendix A we have Endy(S) = h_rn) Endy(S,,) so it suffices to
prove that for each m € N

[Sw» 5] # [Su> (1 — gf)s] € Endo(Sy).

We shall see that y is sensitive enough to distinguish these two endomorphism
classes. Indeed, %[Sy, (1 —gf)s] = > 12;((1 — gf)s)'x' and in particular the coefficient
of x"*1 is

(1 — gf)s)y™ 1 = s — (gf "' + sgfs" + ...+ s"gfs) + other terms,

where in each of the ‘other terms’ two or more occurrences of gf intersperse
m + 1 copies of s. Since ab = ba € §,, for all a,b € §,,, one may perform a cyclic
permutation of the letters in each term to obtain

((1 _ gf)S)erl — Sm+1 _ (I’}’l + 1)fsm+1g’

the ‘other terms’ disappearing by the defining relations fg = ... = fs"g = 0 of
Sn. Now the coefficient of x™*! in y[S,s] is s"*! so it remains to prove that
(m+1)fs"*'g £ 0 in S,,. We shall argue by contradiction.
Let X denote the alphabet {f,s,g}. If (m+ 1)fs"t'g = 0 € S, then there is an
equation in Z({X)
(m+1)fs" g = (wi—wi)+rofgro + rifsgri + ...+ rufs"gr, (7

I
i—1

where rj,r} € Z(X) for 1 < j<mandw;,w, € X" are such that w; ~ w} for 1 <i <
as in Example 2.8.

Let V denote the Z-module generated by the cyclic permutations of fs"*!g and
let W be the Z-module generated by all other words in X*

ZX)=VeoW=ZweX |w~fs""gd @Z{we X" |wtfs" g}
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Each basic commutator w — w' is either in ¥ or in W and
rOfgr6 +r1ngV/1 +-'-+rmfsmgr;,n ew,

so by equation (7)
(m+Dfs"™ g = "wi—w,

i€l

where I = {i | w; ~ fs"*'g} < {1,...,1}. We have reached a contradiction (for
example, put f = g = s = 1) and the proof of Proposition 1.1 is complete. O

3. Cohn localization

In this section, we briefly review Cohn localization before proving Proposition 1.2.

3.1. Definitions

If A is a ring and X is any set of matrices with entries in A then a ring
homomorphism 4 — B is said to be Z-inverting if every matrix in X is mapped
to an invertible matrix over B. The Cohn localization is : 4 — X~'A4 is the
(unique) ring homomorphism with the universal property that every Z-inverting
homomorphism 4 — B factors uniquely through iy. Note that iy is not in general
an injection; it may even be the case that ~'4 = 0.

If A is commutative, then X~ 4 coincides with the commutative ring of quotients
S7IR with S = {det(M) | M € Z}.

For non-commutative 4, Cohn constructed X~'4 by generators and relations
as follows [5, p. 390]. For each m x n matrix M € X take a set of mn symbols
arranged as an n x m matrix M’. 274 is generated by the elements of A together
with all the symbols in the matrices M’, subject to the relations holding in A and
the equations MM’ = I and M'M = I. Schofield [14, Chapter 4] gave a slightly
more general construction, inverting a set £ of homomorphisms between finitely
generated projective A-modules.

Given any ring homomorphism A — B, we may define ¥ to be the set of
matrices in A which are invertible in B, obtaining

A5 s 14, B

Every matrix with entries in ¥~'4 can be expressed (non-uniquely) in the form
fo~'g where f, ¢ and g are matrices with entries in 4 and ¢ € X (see for example
[14, p. 52]).

We shall also need the following lemma in Section 4.

LeMMA 3.1. A matrix o with entries in X' A is invertible if and only if its image
y(a) is invertible. In particular, Im(y)®* = B* N Im (y).

Proof. The ‘only if” part is easy. Conversely, suppose that y(«) is invertible and
o = fo~'g as above. The equation

)G (L D)=(% 1) »
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implies that o is invertible if and only if

(%7

is invertible, but applying y to equation (8) we learn that
0 f
' ( g o >
( 0 1 ) es.
—g 0o
0 f
g ¢

and o are invertible over X! 4. O

3.2.  Proof of Proposition 1.2
We recall that S denotes the ring

Z{f,s.g | fg.fsg.fs°g,...);

let £ be the set of matrices 0 = o9 + 61 x + ... + 0,Xx" with entries in S[x] such that
oy 1s invertible (so o is invertible in S[[x]]).

We will prove the following two statements:

(a) The element f(1 — sx)~'g is non-zero in X' S[x].

(b) f(1 —sx)~'g lies in the kernel of the natural map y : Z~!S[x] — S[[x]].

is invertible and hence that

Thus

Statement (b) follows directly from the definition of S
p(f(1—sx)""g) = fg + (fsg)x + (f’g)x* +... = 0 € S[[x]].
To prove (a) we express S once again as the direct limit lim S, with
Sm="2Z(f.s.g | fg.fsg:-...fs"g)

and the augmentations € : S,,[x] — S,,;x — 0 fit into a commutative diagram,
Figure 3.
Let %, denote the set of matrices in S,,[x] which become invertible under ¢, so
that p,(Xy) = Z,41 and £ =lim ¥,,. By Lemma A.1 of Appendix A,
7S] = lim £.1S,, [x],

so it suffices to show that f(1 —sx)~'g # 0 € X..1S,,[x] for each m € N. However
(f(l—sx)"'g) = o o(fs"g)x" which is non-zero in S,,[[x]] because there does not

P m

”'_)Sm[x]_}Serl[x] _
le le
>Sm = > Sm+1 >

FIGURE 3.
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exist an equation

fs"g =rofgro+rifsgry + ... +rafs"gr,, € Z(f,s,g)

with n > m and ri, 1} € Z(f,s,g) for 1 <i < m. Thus f(1 —sx)"'g #0 € Z,!S,[x]
and the proof of Proposition 1.2 is complete. O

4. Many indeterminates

Let A be any ring, let X = {xy,...,x,} be a finite set, and let X" be the free
monoid of words in the alphabet X. The free 4-algebra

A(X) = A ®z Z(X)

is graded by word length in X* and is therefore a subring of its completion 4{{X))
the elements of which are formal power series p = Y p,w with p,, € A4 for each
we X"

Let ¥ denote the set of matrices in A(X) which are sent to an invertible matrix
by the augmentation € : A(X) — A;; x; —> 0 for all i. X is precisely the set of
matrices which are invertible over 4((X)), so the inclusion of A(X) in A({(X)) factors
uniquely through Z~14(X):

AX) 371400 s AU,

4.1. Rational power series
In this section we describe the image of y.

DEFINITION 4.1. Let #4 denote the rational closure of A(X). In other words
#4 is the intersection of all the rings R such that 4(X) < R < A((X)) and
R* = RN A{(X))*. A power series p € %" is said to be rational.

PROPOSITION 4.2. y(Z7'A(X)) = #4.

Proof. To prove that #4 = Im(y), we note that Im(y)* = Im(y) N A((X))* by
Lemma 3.1 above.

Conversely, to prove that Im (y) = 24 it suffices to show that every matrix ¢ € X
has an inverse with entries in 24 so that there is a commutative diagram, Figure 4.

Recall that € : A(X) —> A is the augmentation given by e(x;) = 0 for all i.
Multiplying ¢ by e(c)~! if necessary we can assume that e(c) = I. Each diagonal
entry of ¢ has an inverse in %24 so, after elementary row operations (which are of
course invertible), ¢ becomes a diagonal matrix where each diagonal entry o; has
e(oi;) = 1 (cf. the proof of Lemma 2.5(i)). By the definition of %4, each o;; has an
inverse in 2. O

ALX)

w] N

SIAX) — R — AUX))

FIGURE 4.
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4.2. Schiitzenberger’s theorem

PROPOSITION 4.3.  Every matrix o with entries in X' A(X) can be expressed (non-
uniquely) in the form

O(=f(1—S1X1—...—S'ux'u)7lg, 9)

where f,s1,...,5, and g are matrices with entries in A.

Proof. 1t suffices to show that o has the form fo~'g where f and g have entries
in 4 and ¢ = 0o + >_IL, 0;x; is linear with oy invertible, for then o = (foo)(a; 'o)g.
Note first that if oy = f1o7!g; and o« = fr05 g, then

—1
a1 —a = (fi —fz)("o1 602) (g;) (10)

~1
ma = 0 G ) () (1)

whenever the left-hand sides make sense (cf. [14, p. 52]. Hence we need only treat
the cases where (i) « has entries in A(X) and (ii) « = ¢~! with ¢ € Z.
If o has entries in A(X), then, by repeated application of the equation

a+bc O 1 —b a b 1 0
( 0 1)2(0 1>(—c 1)(0 1>’ (12)

in which a, b, ¢ and 1 denote matrices, some stabilization

(5 7)

can be expressed as a product of linear matrices. Each linear matrix ag + a;x; +
...+ ayux, can be written

u
colo ) (1)+20 ofe 1)(1):
i=1

1

and

and equations (10) and (11) imply that

(3 2)(3)

is of the required form fo~'g.

The case o = ¢! is similar (but slightly easier); we repeatedly apply equation
(12) to express (a stabilization of) ¢~! as a product of inverses of linear matrices in
% and then apply equation (11). O

A power series p € A((X)) is said to be recognizable if it is of the form

u u
p=1Jg +Zfsigx,~ + ZijSngix]' +...,
i=1 ij=1
where f € A" is a row vector, g € A" is a column vector and each s; is an n X n
matrix in A. Propositions 4.3 and 4.2 imply the following.

COROLLARY 4.4 (Schiitzenberger’s theorem). A power series p € A{((X)) is
rational if and only if it is recognizable.
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5. Localization of the free group ring

We identify the localization of the group ring of the free group studied in [6]
with the localization Z~'4(X) of the present paper.

Let F,, denote the free group on generators zi,...,z,, and as usual let 4 be a (not
necessarily commutative) ring. AF, will denote the group ring, in which the elements
of the group F, are assumed to commute with elements of 4. Let € : AF, — 4;
zi— 1 for all i and let ¥ denote the set of square matrices M in AF, such that
€(M) is invertible. ¥ is denoted X in [6].

All the matrices in ¥ become invertible under the Magnus embedding of the
group ring

AF, — A((X)),
zi— 14 x;,
—1

s =X+ xP—x) ...,

so the embedding factors through W~'AF,:
AF, 5w AF, s A((X)).

Farber and Vogel proved that if 4 is a (commutative) principle ideal domain then
7 is an injection and the image of y is the ring #“ of rational power series.

Now, for general 4, let m : A(X) — AF, be the ring homomorphism defined by
x;+—> z;— 1 for all i. There is a commutative diagram, Figure 5, so m(X) < ® and m
induces a homomorphism m : £~'4(X) — W~'4F, which fits into a commutative
diagram, Figure 6.

PROPOSITION 5.1. m : Z7'A(X) — W~1AF, is an isomorphism.

Proof. The map | : AF, — X7 'A(X); z;— x; + 1, indicated by the broken
arrow, fits into the commutative diagram of Figure 6. [ is W-inverting and therefore
induces a map W~!'4F, — Z714(X) which, by the universal properties of iy and
iy, 1S inverse to m. O

AXY —5 4

%

AF,

FIGURE 5.

AX) i—2>2*‘A<X> —y A4¢xy)

P
|
,/i\y 7

AIZ—)‘IHAI';

FIGURE 6.
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Appendix A. Direct limits

In this appendix we prove that Cohn localization and the functor ]/3?1?1(_)
commute with direct limits.

A.1. Cohn localization

First we make the former claim more precise. Suppose that I is a directed
set and ({Ay}mer> {f1: Am —> Aj}m<) is a direct system of rings. Suppose further
that for each m € I we have a set of matrices X,, with entries in 4,, such that
f,’”(Zm) < X, whenever m < L. If ip: A,y —> X' A,, is the universal ,,-inverting ring
homomorphism for each m, then when m < [ the composite

| .
A1 4 w14,

is X,-inverting and therefore factors through a map =~!f! : 14, — X714, It is
easy to see that T fF o =711 = ¥-1fk when m <1 <k.

For any ring A4 let .#(A) denote the set of matrices (of any size and shape) with
entries in A. The inclusions X,, = .#(A,,) induce an injection

h_m) Xy — li_m)%(Am) = %(h_m> Ap).

LEMMA A.1. There is a natural isomorphism

(lim %,,)~"(lim, 4,,) = lim (2" 4,,).

Proof. One can check that the canonical map lim i, : lim 4, — lim 314,
is universal among (lim, ¥,)"!-inverting homomorphisms. The details are left to the
reader. O

A2, The endomorphism class group
We consider next the functor Endg(_).

LeMMA A.2.  There is a natural isomorphism

h_m) EH&O(Am) = E?l?iO(h_m, Am)'

__Proof.  The canonical maps f,, : 4, — li_m>Am induce maps f,, : EEIO(AW,) —
Endo(li_m) Ap) satisfying fif!, = fu for m < I. We aim to prove that any other system
of maps g, : Endo(4,,) — T with g fl, = gn for m < [ factors uniquely through
Endy(lim A4,,); see Figure 7.

Suppose that [M] is a generator of E;Eio(h_m> A,) where M € M,,(li_m) Ap). M is

{Endy(4,)} — 2 T

l{fm} &

Endoy(lim 4,,)

FIGURE 7.
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the image f,,(M,,) of some matrix M,, € M,(A,,), so we can define g[M] = g,,[M,,].
To show that g is well-defined there are two things to check:

(1) If M; € M,(A)) is an alternative choice with f;(M;) = M then we require
gm[My] = g[M;]. Indeed, there exists k such that [ < k, m < k and f;‘(Mk) =
f/l;(Mm) € Mn(Ak)~ Hence gm[Mm] = gkf;]fn[Mm] = gkf;C [Ml] =g []fw\ll

(i) We must check that g respects the defining relations of Endo(li_m) Ap).

(1) A matrix
M N
0o M

Mm Nm
0 M, )’

8 [ A(f A]}] ] = gn [ Ag’” Aj\;’" } # gn([Mu] + [M,,]) = g[M] + g[M'].

is the image of some matrix

SO

(2) Suppose that M’ = PMP~! for some invertible matrix P. For large
enough m we can choose P,,Q,, € M,(A4,) to represent P and P~ respectively.
Since I = f,(Pn)fm(Qm) there exists k > m such that P,Q, = I € M,(A;) where
Py = fkP, and Qx = fXQ,,. Thus M’ = f(PyMP; ") and g[M'] = gk [PcM P '] =
gk [Mi] = g[M].

(3) If M is the zero matrix, g[M] = 0.

Uniqueness of g follows from the fact that every class [M] in E;(/io(li_m) Ap) 1s
an image of a class [M,,] € Endy(4,,). O
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