NON-COMMUTATIVE CHARACTERISTIC POLYNOMIALS AND COHN LOCALIZATION

DESMOND SHEIHAM

Abstract

Almkvist proved that for a commutative ring A the characteristic polynomial of an endomorphism $\alpha : P \longrightarrow P$ of a finitely generated projective A-module determines (P, α) up to extensions. For a non-commutative ring A the generalized characteristic polynomial of an endomorphism $\alpha : P \longrightarrow P$ of a finitely generated projective A-module is defined to be the Whitehead torsion $[1 - x\alpha] \in K_1(A[[x]])$, which is an equivalence class of formal power series with constant coefficient 1.

The paper gives an example of a non-commutative ring A and an endomorphism $\alpha : P \longrightarrow P$ for which the generalized characteristic polynomial does not determine (P, α) up to extensions. The phenomenon is traced back to the non-injectivity of the natural map $\Sigma^{-1}A[x] \longrightarrow A[[x]]$, where $\Sigma^{-1}A[x]$ is the Cohn localization of A[x] inverting the set Σ of matrices in A[x] sent to an invertible matrix by $A[x] \longrightarrow A; x \longmapsto 0$.

1. Introduction

We begin by recalling the definition of the characteristic polynomial $ch_x(\mathbb{C}^n, \alpha)$ of an endomorphism $\alpha : \mathbb{C}^n \longrightarrow \mathbb{C}^n$:

$$\operatorname{ch}_{x}(\mathbb{C}^{n}, \alpha) = \operatorname{det}(I - Mx) \in 1 + x\mathbb{C}[x],$$

where M is an $n \times n$ matrix representing α with respect to any choice of basis. (The polynomial defined here can be called the 'reverse characteristic polynomial' to distinguish between det(I - xM) and det(M - xI).)

Of course, ch_x is not a complete invariant of the endomorphism; for example the matrices

$$\left(\begin{array}{cc}\lambda & 0\\ 0 & \lambda\end{array}\right) \quad \text{and} \quad \left(\begin{array}{cc}\lambda & 1\\ 0 & \lambda\end{array}\right)$$

have the same characteristic polynomial although they are not conjugate. On the other hand, if one is given the dimension n and the characteristic polynomial $ch_x(\mathbb{C}^n, \alpha)$, one can compute all the eigenvalues of α . The Jordan normal form implies that (\mathbb{C}^n, α) is determined uniquely up to choices of extension (cf. [8]).

The notion 'unique up to choices of extension' can be made precise without relying on a structure theorem for endomorphisms by introducing the reduced endomorphism class group $\operatorname{End}_0(A)$ where A denotes any ring [1, 2, 7]. $\operatorname{End}_0(A)$ is the abelian group with

(1) one generator $[A^n, \alpha]$ for each isomorphism class of pairs (A^n, α) where $\alpha : A^n \longrightarrow A^n$;

(2) a relation $[A^n, \alpha] + [A^{n''}, \alpha''] = [A^{n'}, \alpha']$ for each exact sequence

$$0 \longrightarrow A^{n} \xrightarrow{\theta} A^{n'} \xrightarrow{\theta'} A^{n''} \longrightarrow 0$$
(1)

such that $\theta \alpha = \alpha' \theta$ and $\theta' \alpha' = \alpha'' \theta'$; (3) a relation $[A^n, 0] = 0$ for each *n*.

Received 12 June 2000.

²⁰⁰⁰ Mathematics Subject Classification 16S34, 18F25.

J. London Math. Soc. 64 (2001) 13-28. C London Mathematical Society 2001.

(Although free modules A^n simplify the presentation, the group $\operatorname{End}_0(A)$ is unchanged if one substitutes finitely generated projective modules throughout (see section 2.1).) $\operatorname{End}_0(\mathbb{C})$, for example, is a free abelian group with one generator $[\mathbb{C}, \lambda]$ for each non-zero eigenvalue $\lambda \in \mathbb{C} \setminus 0$.

If A is a commutative ring, Almkvist proved [2] that the characteristic polynomial

$$ch_x(A^n, \alpha) = det(1 - \alpha x : A[x]^n \longrightarrow A[x]^n)$$
(2)

induces an isomorphism

$$\operatorname{ch}_{x}: \widetilde{\operatorname{End}}_{0}(A) \longrightarrow \widetilde{A}_{0} = \left\{ \left. \frac{1 + a_{1}x + \ldots + a_{n}x^{n}}{1 + b_{1}x + \ldots + b_{m}x^{m}} \right| a_{i}, b_{i} \in A \right\},$$

so no further invariants are needed to classify endomorphisms up to extensions.

If we do not assume that A is commutative then the definition (2) above does not apply. However, $1 - \alpha x : A[[x]] \longrightarrow A[[x]]$ is a well-defined automorphism (with inverse $1 + \alpha x + \alpha^2 x^2 + ...$) where A[[x]] denotes the ring of formal power series in a central indeterminate x. One can therefore define the generalized characteristic polynomial $\widehat{ch}_x(A^n, \alpha)$ to be the element $[1 - \alpha x]$ of the Whitehead group $K_1(A[[x]])$, inducing a group homomorphism $\widehat{ch}_x : \operatorname{End}_0(A) \longrightarrow K_1(A[[x]])$. As Pajitnov observed [10, 11], a Gaussian elimination argument (see section 2.2) yields

$$K_1(A[[x]]) = K_1(A) \oplus W_1(A),$$

where $W_1(A)$ is the image in $K_1(A[[x]])$ of the group 1 + xA[[x]] of Witt vectors.

If A is commutative then \tilde{A}_0 injects naturally into the group of units $A[[x]]^{\bullet}$ and the commutative square shown in Figure 1 implies that \hat{ch}_x is an injection.

The question arises whether ch_x is still injective when A is non-commutative. The main result of the present paper is that the answer can be negative.

PROPOSITION 1.1. The non-commutative ring

$$S = \mathbb{Z}\langle f, s, g \mid fg, fsg, fs^2g, \ldots \rangle$$

is such that $\widehat{ch}_x : \widetilde{End}_0(S) \longrightarrow K_1(S[[x]])$ is not injective.

Specifically the two endomorphisms $S \longrightarrow S$ given by $a \longmapsto as$ and $a \longmapsto a(1-gf)s$ will be shown to have the same image under \widehat{ch}_x although they represent distinct classes in $\widehat{End}_0(S)$. The proof depends on the fact that the functor $A \longmapsto \widehat{End}_0(A)$ commutes with direct limits whereas $A \longmapsto A[[x]]$ does not.

To put Proposition 1.1 into context and explain the origins of the ring S, we require a certain universal localization $\Sigma^{-1}A[x]$ [5, Chapter 7; 14, Chapter 4] which P. M. Cohn constructed by adjoining formal inverses to a set Σ of matrices. Here, Σ contains precisely the matrices which become invertible under the augmentation $\epsilon : A[x] \longrightarrow A; x \longmapsto 0$ (or equivalently are invertible in A[[x]]).

By the universal property of Cohn localization, the inclusion of A[x] in A[[x]] factors in a unique way through $\Sigma^{-1}A[x]$:

$$A[x] \xrightarrow{i_{\Sigma}} \Sigma^{-1} A[x] \xrightarrow{\gamma} A[[x]].$$
(3)

In particular $i_{\Sigma} : A[x] \longrightarrow \Sigma^{-1}A[x]$ is injective for all rings A (which is not true of some Cohn localizations).

If A is commutative then $\Sigma^{-1}A[x]$ is the usual commutative localization, inverting

 $\{\det(\sigma) \mid \sigma \in \Sigma\} = \{p \in A[x] \mid \epsilon(p) \text{ is invertible}\},\$

so $\gamma : \Sigma^{-1}A[x] \longrightarrow A[[x]]$ is also injective. On the other hand in Section 3 we prove the following.

PROPOSITION 1.2. The non-commutative ring S is such that

$$\gamma: \Sigma^{-1}S[x] \longrightarrow S[[x]]$$

is not injective.

In fact, Proposition 1.1 is an algebraic K-theory version of Proposition 1.2; for a theorem due to Ranicki [12, Proposition 10.16] states that for any ring A

$$K_1(\Sigma^{-1}A[x]) \cong K_1(A) \oplus \operatorname{End}_0(A), \tag{4}$$

where the split injection $\operatorname{End}_0(A) \longrightarrow K_1(\Sigma^{-1}A[x])$ is $[A^n, \alpha] \longmapsto [1 - \alpha x]$. One can reinterpret Proposition 1.1 as the statement that the natural homomorphism of groups $K_1(\Sigma^{-1}S[x]) \longrightarrow K_1(S[[x]])$ is not injective; by Proposition 1.2 the phenomenon is not peculiar to algebraic K-theory.

Propositions 1.1 and 1.2 are proved in Sections 2 and 3, respectively. The proofs are independent of each other, and do not assume identity (4).

Section 4 is expository. Firstly we show that, for any ring A, the image of γ is the ring \mathscr{R}^A of rational power series; by definition \mathscr{R}^A is the smallest subring of A[[x]] which contains A[x] and is such that elements of \mathscr{R}^A which are invertible in A[[x]] are invertible in \mathscr{R}^A , that is, $\mathscr{R}^A \cap A[[x]]^{\bullet} = (\mathscr{R}^A)^{\bullet}$. We work in greater generality replacing the single indeterminate x in (3) by a set $X = \{x_1, \ldots, x_\mu\}$ of non-commuting indeterminates

$$A\langle X\rangle \xrightarrow{\iota_{\Sigma}} \Sigma^{-1}A\langle X\rangle \xrightarrow{\gamma} A\langle\langle X\rangle\rangle.$$

Secondly we prove that each $\alpha \in \Sigma^{-1}A\langle X \rangle$ can be expressed (non-uniquely) in the form $\alpha = f(1 - s_1x_1 - \ldots - s_\mu x_\mu)^{-1}g$ where $f \in A^n$ is a row vector, $g \in A^n$ is a column vector and s_1, \ldots, s_μ are $n \times n$ matrices with entries in A. This is a version of Schützenberger's theorem ([15, 16], see also [3, Chapter 1; 4 §6]). One can think of the elements of $\Sigma^{-1}A\langle X \rangle$ as equivalence classes of finite dimensional linear machines $(f, s_1, \ldots, s_\mu, g)$ which generate the power series

$$\gamma(\alpha) = fg + \sum_{i=1}^{\mu} fs_i gx_i + \sum_{i,j=1}^{\mu} fs_i s_j gx_i x_j + \dots$$

Cohn wrote [5, p. 487] that 'the basic idea ... to invert matrices rather than elements was inspired by the rationality criteria of Schützenberger and Nivat ...'.

Motivated by the theory of multi-dimensional boundary links, Farber and Vogel proved [6] that if A is a (commutative) principal ideal domain then the Cohn

localization of the free group ring AF_{μ} (inverting those matrices which are invertible after augmentation $AF_{\mu} \longrightarrow A$) is isomorphic to the ring \mathscr{R}^{A} of rational power series. In Section 5 we show that this localization of the free group ring is isomorphic to $\Sigma^{-1}A\langle X \rangle$ so $\gamma : \Sigma^{-1}A\langle X \rangle \longrightarrow \mathscr{R}^{A}$ is an isomorphism. By contrast, Proposition 1.2 above says that $\Sigma^{-1}S\langle X \rangle$ is larger than \mathscr{R}^{S} even when |X| = 1; distinct classes of linear machines can generate the same rational power series.

2. Algebraic K-theory

2.1. Definitions

Let A be a ring, assumed to be associative and to contain a 1. We recall first the definitions of the Grothendieck group $K_0(A)$, the Whitehead group $K_1(A)$ and the less widely known endomorphism class group

 $\operatorname{End}_0(A) = K_0$ (endomorphism category over *A*).

DEFINITION 2.1. $K_0(A)$ is the abelian group with one generator [P] for each isomorphism class of finitely generated projective A-modules and one relation [P'] = [P] + [P''] for each identity $P' \cong P \oplus P''$.

Let End(A) denote the category of pairs (P, α) where P is a projective (left) Amodule and $\alpha : P \longrightarrow P$ is an A-module endomorphism. A morphism $\theta : (P, \alpha) \longrightarrow$ (P', α') in End(A) is an A-module map $\theta : P \longrightarrow P'$ such that $\theta \alpha = \alpha' \theta$. A sequence of objects and morphisms

$$0 \longrightarrow (P, \alpha) \xrightarrow{\theta} (P', \alpha') \xrightarrow{\theta'} (P'', \alpha'') \longrightarrow 0$$
(5)

is exact if $0 \longrightarrow P \xrightarrow{\theta} P' \xrightarrow{\theta'} P'' \longrightarrow 0$ is an exact sequence.

Let Aut(A) \subset End(A) denote the full subcategory of pairs (P, α) such that $\alpha : P \longrightarrow P$ is an automorphism.

DEFINITION 2.2. The Whitehead group $K_1(A)$ is the abelian group generated by the isomorphism classes $[P, \alpha]$ of Aut(A) subject to the following relations.

(1) If $0 \longrightarrow (P, \alpha) \longrightarrow (P', \alpha') \longrightarrow (P'', \alpha'') \longrightarrow 0$ is an exact sequence then $[P', \alpha'] = [P'', \alpha''] + [P, \alpha].$

(2)
$$[P, \alpha] + [P, \alpha'] = [P, \alpha \alpha'].$$

Alternatively, in terms of matrices,

$$K_1(A) = \operatorname{GL}(A)^{\operatorname{ab}} = \frac{\operatorname{GL}(A)}{E(A)} = \frac{\varinjlim \operatorname{GL}_n(A)}{\lim E_n(A)},$$

where $E_n(A)$ is the subgroup of $GL_n(A)$ generated by elementary matrices $e_{ij}(a)$ which have 1s on the diagonal, *a* in the *ij*th position and 0s elsewhere $(a \in A, 1 \leq i, j \leq n \text{ and } i \neq j)$. See for example [13] for further details. If $M, M' \in GL(A)$ and $[M] = [M'] \in K_1(A)$ then we write $M \sim M'$.

DEFINITION 2.3. The endomorphism class group $\operatorname{End}_0(A) = K_0(\operatorname{End}(A))$ is the abelian group with one generator $[P, \alpha]$ for each isomorphism class in $\operatorname{End}(A)$ and a relation

$$[P', \alpha'] = [P'', \alpha''] + [P, \alpha]$$
(6)

corresponding to each exact sequence (5) above.

Since every exact sequence of projective modules splits, we recover $K_0(A)$ by omitting the endomorphisms in Definition 2.3. The forgetful map

$$\operatorname{End}_0(A) \longrightarrow K_0(A); \quad [P, \alpha] \longmapsto [P]$$

is surjective and split by $[P] \mapsto [P,0]$ so that $\operatorname{End}_0(A) \cong K_0(A) \oplus \operatorname{End}_0(A)$ with

$$\operatorname{End}_0(A) = \operatorname{Ker}(\operatorname{End}_0(A) \longrightarrow K_0(A)) \cong \operatorname{Coker}(K_0(A) \longrightarrow \operatorname{End}_0(A)).$$

Note that $\operatorname{End}_0(_)$ and $\operatorname{End}_0(_)$ are functors; a ring homomorphism $p : A \longrightarrow A'$ induces a group homomorphism

$$\operatorname{End}_0(A) \longrightarrow \operatorname{End}_0(A')$$
$$[P, \alpha] \longmapsto [A' \otimes_A P, 1 \otimes \alpha].$$

The same group $\operatorname{End}_0(A)$ is obtained if, as in the introduction, one starts with free modules in place of projective modules: let $K_0^h(A)$ denote the Grothendieck group generated by free modules $[A^n]$ subject to relations $[A^{m+n}] = [A^m] + [A^n]$. Nearly all of the rings usually encountered (including the ring S of the present paper) have 'invariant basis number', $A^n \cong A^m \Longrightarrow n = m$, which implies that $K_0^h(A) = \mathbb{Z}$.

Let $\operatorname{End}^h(A) \subset \operatorname{End}(A)$ denote the full subcategory of pairs (A^n, α) . Then $\operatorname{End}^h_0(A) = K_0(\operatorname{End}^h(A))$ satisfies $\operatorname{End}^h_0(A) \cong K_0^h(A) \oplus \operatorname{End}^h_0(A)$, where

$$\operatorname{End}_0^h(A) = \operatorname{Ker}(\operatorname{End}_0^h(A) \longrightarrow K_0^h(A)) \cong \operatorname{Coker}(K_0^h \longrightarrow \operatorname{End}_0^h(A))$$

LEMMA 2.4. There is a natural isomorphism $\operatorname{End}_0^h(A) \cong \operatorname{End}_0(A)$.

Proof. The homomorphism

$$\widetilde{\mathrm{End}}_0^h(A) \cong \frac{\mathrm{End}_0^h(A)}{\mathbb{Z}} \longrightarrow \frac{\mathrm{End}_0(A)}{K_0(A)} \cong \widetilde{\mathrm{End}}_0(A)$$
$$[A^n, \alpha] \longrightarrow [A^n, \alpha]$$

has inverse $[P, \alpha] \mapsto [P \oplus Q, \alpha \oplus 0]$, where Q is a finitely generated A-module such that $P \oplus Q$ is free. The definition of the inverse does not depend on the choice of Q and plainly $[P, 0] \mapsto 0$ so we need only check that the 'exact sequence relations' (6) are respected. Suppose we are given an exact sequence (5). Choose finitely generated A-modules Q and Q'' such that $P \oplus Q$ and $P'' \oplus Q''$ are free. Then $P' \oplus Q \oplus Q'' \cong P \oplus P'' \oplus Q \oplus Q''$ is free and there is an exact sequence of endomorphisms

$$0 \longrightarrow (P \oplus Q, \alpha \oplus 0) \longrightarrow (P' \oplus Q \oplus Q'', \alpha' \oplus 0 \oplus 0) \longrightarrow (P'' \oplus Q'', \alpha \oplus 0) \longrightarrow 0.$$

It follows from Lemma 2.4 that $\operatorname{End}_0(A)$ has an equivalent definition in terms of matrices: let $M_n(A)$ denote the ring of $n \times n$ matrices with entries in A. Regarding A^n as a module of row vectors, a matrix $M \in M_n(A)$ represents the endomorphism of A^n which multiplies by M on the right. $\operatorname{End}_0(A)$ is isomorphic to the group generated by $\{[M] \mid M \in \bigcup_{n=1}^{\infty} M_n(A)\}$ subject to the following relations.

(1) If $M \in M_n(A)$ and $M' \in M_{n'}(A)$ then

$$[M] + [M'] = \left[\begin{array}{cc} M & N \\ 0 & M' \end{array} \right]$$

for all $n \times n'$ matrices N.

- (2) If $M, P \in M_n(A)$ and P is invertible then $[M] = [PMP^{-1}]$.
- (3) If all the entries in M are zero then [M] = 0.

2.2. Rings of formal power series

Let A[[x]] be the ring of formal power series in the central indeterminate x.

To define the generalized characteristic polynomial of (P, α) we observe that $1 - \alpha x$ has inverse $1 + \alpha x + \alpha^2 x^2 + \dots$ when regarded as an endomorphism of $P[[x]] = A[[x]] \otimes_A P$. Thus $1 - \alpha x$ represents an element of $K_1(A[[x]])$. Now

$$\operatorname{ch}_{x} : \operatorname{End}_{0}(A) \longrightarrow K_{1}(A[[x]])$$

 $[P, \alpha] \longmapsto [1 - \alpha x : P[[x]] \longrightarrow P[[x]]]$

is well defined because $\widehat{ch}_x(P,0) = 0 \in K_1(A[[x]])$ and an exact sequence (5) gives rise to an exact sequence

$$0 \longrightarrow (P[[x]], 1 - \alpha x) \longrightarrow (P'[[x]], 1 - \alpha' x) \longrightarrow (P''[[x]], 1 - \alpha'' x) \longrightarrow 0$$

LEMMA 2.5. (i) $K_1(A[[x]]) = K_1(A) \oplus W_1(A)$, where $W_1(A)$ is the image in $K_1(A[[x]])$ of the group W(A) = 1 + xA[[x]].

(ii) If A is commutative then $W_1(A) = W(A) = 1 + xA[[x]]$.

This result and an argument showing that the abelianized group $(1 + xA[[x]])^{ab}$ is in general larger than $W_1(A)$ can be found in [11].

Proof of Lemma 2.5. (i) Let ϵ denote the augmentation map $A[[x]] \longrightarrow A$; $x \longmapsto 0$. We shall prove that the sequence

$$0 \longrightarrow W_1(A) \longrightarrow K_1(A[[x]]) \stackrel{e}{\longrightarrow} K_1(A) \longrightarrow 0$$

is split exact.

The composite

$$A \longrightarrow A[[x]] \xrightarrow{\epsilon} A$$

is the identity map so $\epsilon : K_1(A[[x]]) \longrightarrow K_1(A)$ is surjective and split.

We have only to show that an element δ of $K_1(A[[x]])$ which becomes zero in $K_1(A)$ can be written $\delta = [1 + x\xi]$ for some $\xi \in A[[x]]$. We may certainly write $\delta = [\delta_0 + x\delta_1 + x^2\delta_2 + ...]$ with $\delta_i \in M_n(A)$ for each *i* and with δ_0 invertible. Now $[\delta_0] = 0 \in K_1(A)$ so $\delta = [1 + \eta]$ where $\eta = \sum_{i=1}^{\infty} \delta_0^{-1} \delta_i x^i$. Since the diagonal entries of $1 + \eta$ are invertible and all other entries are in xA[[x]], we can reduce $1 + \eta$ by elementary row operations to a diagonal matrix with entries in 1 + xA[[x]]. Thus $\delta = [1 + x\xi]$ where $1 + x\xi$ is the product of the diagonal entries.

(ii) Taking determinants gives a homomorphism to the group of units

$$\det: K_1(A[[x]]) \longrightarrow A[[x]]^{\bullet}.$$

Every element of $W_1(A)$ can be written in the form $[1 + x\xi]$ so the restriction of det to $W_1(A)$ is inverse to the canonical map $1 + xA[[x]] \longrightarrow W_1(A)$.

2.3. Proof of Proposition 1.1

Recall that S denotes the quotient of the free ring $\mathbb{Z}\langle f, s, g \rangle$ by the two-sided

18

ideal generated by the set $\{fs^ig \mid i = 0, 1, 2, ...\}$. There are two statements to prove as follows.

LEMMA 2.6. [S, s] and [S, (1 - gf)s] are distinct classes in End₀(S).

LEMMA 2.7. $\widehat{ch}_x[S,s] = \widehat{ch}_x[S,(1-gf)s]$ in $K_1(S[[x]])$.

Proof. We aim to show that $[1 - sx] = [1 - (1 - gf)sx] \in K_1(S[[x]])$. In S[[x]] we have

$$f(1-sx)^{-1}g = fg + (fsg)x + (fs^2g)x^2 + (fs^3g)x^3 + \dots = 0,$$

so

$$1 - sx \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 - sx \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 + f(1 - sx)^{-1}g & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -(1 - sx)^{-1}g & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & f \\ -g & 1 - sx \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ g & 1 \end{pmatrix} \begin{pmatrix} 1 & -f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & f \\ -g & 1 - sx \end{pmatrix} \begin{pmatrix} 1 & -f \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 - (1 - gf)sx \end{pmatrix} \text{ since } fg = 0$$
$$\sim 1 - (1 - gf)sx.$$

Before we prove Lemma 2.6, it is convenient to define a second invariant χ . In terms of matrices,

$$\chi : \operatorname{End}_0(A) \longrightarrow \overline{A}[[x]]$$
$$[M] \longmapsto \sum_{i=1}^{\infty} \operatorname{Trace}(M^i) x^i,$$

where \overline{A} denotes the quotient of A by the abelian group generated by commutators (cf. [9])

$$\overline{A} = \frac{A}{\mathbb{Z}\{ab - ba \mid a, b \in A\}}$$

EXAMPLE 2.8. Let X be a set and suppose that A is the free ring $\mathbb{Z}\langle X \rangle$ generated by X. The free monoid X^* of words in the alphabet X is a basis for $\mathbb{Z}\langle X \rangle$ as a \mathbb{Z} -module. Each commutator ab - ba with $a, b \in \mathbb{Z}\langle X \rangle$ is a linear combination of 'basic' commutators $\sum_i \lambda_i (u_i v_i - v_i u_i)$ where $\lambda_i \in \mathbb{Z}$ and $u_i, v_i \in X^*$ so the commutator submodule $\mathbb{Z}\{ab - ba \mid a, b \in \mathbb{Z}\langle X \rangle\} \subset \mathbb{Z}\langle X \rangle$ is spanned by elements w - w' with $w, w' \in X^*$ and w' a cyclic permutation of w (written $w \sim w'$). It follows that $\mathbb{Z}\langle X \rangle = \mathbb{Z}\{X^* / \sim\}$.

We emphasize that the abelian group \overline{A} is in general larger than the commutative ring A^{ab} , the latter being the quotient of A by the two-sided ideal generated by $\{ab - ba \mid a, b \in A\}$. Nevertheless, if M and N are $n \times n$ matrices with entries in A then $\operatorname{Trace}(MN) = \operatorname{Trace}(NM) \in \overline{A}$ and it follows that χ is well-defined on $\widetilde{\operatorname{End}}_0(A)$.

FIGURE 2.

REMARK 2.9. χ is in general a weaker invariant then \widehat{ch}_x . There is a commutative triangle as shown in Figure 2, where

$$T[M] = -\operatorname{Trace}\left(\left(x\frac{d}{dx}M\right)M^{-1}\right)$$

for $M \in GL(A[[x]])$. Differentiation is defined formally by

$$\frac{d}{dx}\sum_{n=0}^{\infty}a_nx^n=\sum_{n=1}^{\infty}na_nx^{n-1}.$$

Proof of Lemma 2.6. We define a family of rings

$$S_m := \mathbb{Z}\langle f, s, g \mid fg, fsg, \dots, fs^m g \rangle.$$

There is an obvious surjection $p_m: S_m \mapsto S_{m+1}$ for each $m \in \mathbb{N}$ and S is the direct limit of the system $S = \underline{\lim} S_m$.

By Lemma A.2 of Appendix A we have $\operatorname{End}_0(S) = \lim_{m \to \infty} \operatorname{End}_0(S_m)$ so it suffices to prove that for each $m \in \mathbb{N}$

$$[S_m, s] \neq [S_m, (1 - gf)s] \in \operatorname{End}_0(S_m)$$

We shall see that χ is sensitive enough to distinguish these two endomorphism classes. Indeed, $\chi[S_m, (1-gf)s] = \sum_{i=1}^{\infty} ((1-gf)s)^i x^i$ and in particular the coefficient of x^{m+1} is

$$((1 - gf)s)^{m+1} = s^{m+1} - (gfs^{m+1} + sgfs^m + \dots + s^mgfs) + \text{other terms}$$

where in each of the 'other terms' two or more occurrences of gf intersperse m+1 copies of s. Since $ab = ba \in \overline{S_m}$ for all $a, b \in S_m$, one may perform a cyclic permutation of the letters in each term to obtain

$$((1 - gf)s)^{m+1} = s^{m+1} - (m+1)fs^{m+1}g,$$

the 'other terms' disappearing by the defining relations $fg = \ldots = fs^m g = 0$ of S_m . Now the coefficient of x^{m+1} in $\chi[S,s]$ is s^{m+1} so it remains to prove that $(m+1)fs^{m+1}g \neq 0$ in $\overline{S_m}$. We shall argue by contradiction. Let X denote the alphabet $\{f, s, g\}$. If $(m+1)fs^{m+1}g = 0 \in \overline{S_m}$ then there is an

equation in $\mathbb{Z}\langle X \rangle$

$$(m+1)fs^{m+1}g = \sum_{i=1}^{l} (w_i - w'_i) + r_0 fgr'_0 + r_1 fsgr'_1 + \ldots + r_m fs^m gr'_m,$$
(7)

where $r_j, r'_j \in \mathbb{Z}\langle X \rangle$ for $1 \leq j \leq m$ and $w_i, w'_i \in X^*$ are such that $w_i \sim w'_i$ for $1 \leq i \leq l$ as in Example 2.8.

Let V denote the **Z**-module generated by the cyclic permutations of $fs^{m+1}g$ and let W be the Z-module generated by all other words in X^*

$$\mathbb{Z}\langle X \rangle = V \oplus W = \mathbb{Z}\{w \in X^* \mid w \sim fs^{m+1}g\} \oplus \mathbb{Z}\{w \in X^* \mid w \not\sim fs^{m+1}g\}.$$

Each basic commutator w - w' is either in V or in W and

$$r_0fgr'_0 + r_1fsgr'_1 + \ldots + r_mfs^mgr'_m \in W,$$

so by equation (7)

$$(m+1)fs^{m+1}g = \sum_{i \in I} w_i - w'_i,$$

where $I = \{i \mid w_i \sim fs^{m+1}g\} \subset \{1, ..., l\}$. We have reached a contradiction (for example, put f = g = s = 1) and the proof of Proposition 1.1 is complete.

3. Cohn localization

In this section, we briefly review Cohn localization before proving Proposition 1.2. 3.1. *Definitions*

If A is a ring and Σ is any set of matrices with entries in A then a ring homomorphism $A \longrightarrow B$ is said to be Σ -inverting if every matrix in Σ is mapped to an invertible matrix over B. The Cohn localization $i_{\Sigma} : A \longrightarrow \Sigma^{-1}A$ is the (unique) ring homomorphism with the universal property that every Σ -inverting homomorphism $A \longrightarrow B$ factors uniquely through i_{Σ} . Note that i_{Σ} is not in general an injection; it may even be the case that $\Sigma^{-1}A = 0$.

If A is commutative, then $\Sigma^{-1}A$ coincides with the commutative ring of quotients $S^{-1}R$ with $S = \{\det(M) \mid M \in \Sigma\}$.

For non-commutative A, Cohn constructed $\Sigma^{-1}A$ by generators and relations as follows [5, p. 390]. For each $m \times n$ matrix $M \in \Sigma$ take a set of mn symbols arranged as an $n \times m$ matrix M'. $\Sigma^{-1}A$ is generated by the elements of A together with all the symbols in the matrices M', subject to the relations holding in A and the equations MM' = I and M'M = I. Schofield [14, Chapter 4] gave a slightly more general construction, inverting a set Σ of homomorphisms between finitely generated projective A-modules.

Given any ring homomorphism $A \longrightarrow B$, we may define Σ to be the set of matrices in A which are invertible in B, obtaining

$$A \xrightarrow{i_{\Sigma}} \Sigma^{-1} A \xrightarrow{\gamma} B$$

Every matrix with entries in $\Sigma^{-1}A$ can be expressed (non-uniquely) in the form $f\sigma^{-1}g$ where f, σ and g are matrices with entries in A and $\sigma \in \Sigma$ (see for example [14, p. 52]).

We shall also need the following lemma in Section 4.

LEMMA 3.1. A matrix α with entries in $\Sigma^{-1}A$ is invertible if and only if its image $\gamma(\alpha)$ is invertible. In particular, $\operatorname{Im}(\gamma)^{\bullet} = B^{\bullet} \cap \operatorname{Im}(\gamma)$.

Proof. The 'only if' part is easy. Conversely, suppose that $\gamma(\alpha)$ is invertible and $\alpha = f \sigma^{-1} g$ as above. The equation

$$\begin{pmatrix} 1 & 0 \\ 0 & \sigma \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f\sigma^{-1}g & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\sigma^{-1}g & 1 \end{pmatrix} = \begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix}$$
(8)

implies that α is invertible if and only if

$$\left(\begin{array}{cc} 0 & f \\ -g & \sigma \end{array}\right)$$

is invertible, but applying γ to equation (8) we learn that

$$\gamma \left(\begin{array}{cc} 0 & f \\ -g & \sigma \end{array}\right)$$

is invertible and hence that

$$\begin{pmatrix} 0 & f \\ -g & \sigma \end{pmatrix} \in \Sigma.$$

$$\left(\begin{array}{cc} 0 & f \\ -g & \sigma \end{array}\right)$$

and α are invertible over $\Sigma^{-1}A$.

3.2. Proof of Proposition 1.2 We recall that S denotes the ring

$$\mathbb{Z}\langle f, s, g \mid fg, fsg, fs^2g, \ldots \rangle;$$

let Σ be the set of matrices $\sigma = \sigma_0 + \sigma_1 x + \ldots + \sigma_n x^n$ with entries in S[x] such that σ_0 is invertible (so σ is invertible in S[[x]]).

We will prove the following two statements:

(a) The element $f(1 - sx)^{-1}g$ is non-zero in $\Sigma^{-1}S[x]$. (b) $f(1 - sx)^{-1}g$ lies in the kernel of the natural map $\gamma : \Sigma^{-1}S[x] \longrightarrow S[[x]]$.

Statement (b) follows directly from the definition of S

$$\gamma(f(1-sx)^{-1}g) = fg + (fsg)x + (fs^2g)x^2 + \dots = 0 \in S[[x]].$$

To prove (a) we express S once again as the direct limit $\lim_{m \to \infty} S_m$ with

 $S_m := \mathbb{Z}\langle f, s, g \mid fg, fsg, \dots, fs^m g \rangle$

and the augmentations $\epsilon : S_m[x] \longrightarrow S_m; x \longrightarrow 0$ fit into a commutative diagram, Figure 3.

Let Σ_m denote the set of matrices in $S_m[x]$ which become invertible under ϵ , so that $p_m(\Sigma_m) \subset \Sigma_{m+1}$ and $\Sigma = \varinjlim \Sigma_m$. By Lemma A.1 of Appendix A,

$$\Sigma^{-1}S[x] = \varinjlim \Sigma_m^{-1}S_m[x],$$

so it suffices to show that $f(1-sx)^{-1}g \neq 0 \in \Sigma_m^{-1}S_m[x]$ for each $m \in \mathbb{N}$. However $\gamma(f(1-sx)^{-1}g) = \sum_{n=0}^{\infty} (fs^ng)x^n$ which is non-zero in $S_m[[x]]$ because there does not

FIGURE 3.

22

exist an equation

$$fs^{n}g = r_{0}fgr_{0}' + r_{1}fsgr_{1}' + \ldots + r_{m}fs^{m}gr_{m}' \in \mathbb{Z}\langle f, s, g \rangle$$

with n > m and $r_i, r'_i \in \mathbb{Z}\langle f, s, g \rangle$ for $1 \leq i \leq m$. Thus $f(1 - sx)^{-1}g \neq 0 \in \Sigma_m^{-1}S_m[x]$ and the proof of Proposition 1.2 is complete.

4. Many indeterminates

Let A be any ring, let $X = \{x_1, ..., x_\mu\}$ be a finite set, and let X^* be the free monoid of words in the alphabet X. The free A-algebra

$$A\langle X\rangle = A \otimes_{\mathbb{Z}} \mathbb{Z}\langle X\rangle$$

is graded by word length in X^* and is therefore a subring of its completion $A\langle\langle X\rangle\rangle$ the elements of which are formal power series $p = \sum_w p_w w$ with $p_w \in A$ for each $w \in X^*$.

Let Σ denote the set of matrices in $A\langle X \rangle$ which are sent to an invertible matrix by the augmentation $\epsilon : A\langle X \rangle \longrightarrow A_i$; $x_i \longmapsto 0$ for all *i*. Σ is precisely the set of matrices which are invertible over $A\langle \langle X \rangle \rangle$, so the inclusion of $A\langle X \rangle$ in $A\langle \langle X \rangle \rangle$ factors uniquely through $\Sigma^{-1}A\langle X \rangle$:

$$A\langle X\rangle \xrightarrow{\iota_{\Sigma}} \Sigma^{-1}A\langle X\rangle \xrightarrow{\gamma} A\langle\langle X\rangle\rangle.$$

4.1. Rational power series

In this section we describe the image of γ .

DEFINITION 4.1. Let \mathscr{R}^A denote the rational closure of $A\langle X \rangle$. In other words \mathscr{R}^A is the intersection of all the rings R such that $A\langle X \rangle \subset R \subset A\langle \langle X \rangle \rangle$ and $R^{\bullet} = R \cap A\langle \langle X \rangle \rangle^{\bullet}$. A power series $p \in \mathscr{R}^A$ is said to be *rational*.

PROPOSITION 4.2. $\gamma(\Sigma^{-1}A\langle X\rangle) = \mathscr{R}^A$.

Proof. To prove that $\mathscr{R}^A \subset \operatorname{Im}(\gamma)$, we note that $\operatorname{Im}(\gamma)^{\bullet} = \operatorname{Im}(\gamma) \cap A\langle\langle X \rangle\rangle^{\bullet}$ by Lemma 3.1 above.

Conversely, to prove that $\text{Im}(\gamma) \subset \mathscr{R}^A$ it suffices to show that every matrix $\sigma \in \Sigma$ has an inverse with entries in \mathscr{R}^A so that there is a commutative diagram, Figure 4.

Recall that $\epsilon : A\langle X \rangle \longrightarrow A$ is the augmentation given by $\epsilon(x_i) = 0$ for all *i*. Multiplying σ by $\epsilon(\sigma)^{-1}$ if necessary we can assume that $\epsilon(\sigma) = I$. Each diagonal entry of σ has an inverse in \mathscr{R}^A so, after elementary row operations (which are of course invertible), σ becomes a diagonal matrix where each diagonal entry σ_{ii} has $\epsilon(\sigma_{ii}) = 1$ (cf. the proof of Lemma 2.5(i)). By the definition of \mathscr{R}^A , each σ_{ii} has an inverse in \mathscr{R}^A .

FIGURE 4.

4.2. Schützenberger's theorem

PROPOSITION 4.3. Every matrix α with entries in $\Sigma^{-1}A\langle X \rangle$ can be expressed (nonuniquely) in the form

$$\alpha = f(1 - s_1 x_1 - \dots - s_\mu x_\mu)^{-1} g, \tag{9}$$

where f, s_1, \ldots, s_{μ} and g are matrices with entries in A.

Proof. It suffices to show that α has the form $f\sigma^{-1}g$ where f and g have entries in A and $\sigma = \sigma_0 + \sum_{i=1}^{\mu} \sigma_i x_i$ is linear with σ_0 invertible, for then $\alpha = (f\sigma_0)(\sigma_0^{-1}\sigma)g$. Note first that if $\alpha_1 = f_1 \sigma_1^{-1} g_1$ and $\alpha_2 = f_2 \sigma_2^{-1} g_2$ then

$$\alpha_1 - \alpha_2 = (f_1 \quad -f_2) \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}^{-1} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}$$
(10)

and

$$\alpha_1 \alpha_2 = (f_1 \quad 0) \begin{pmatrix} \sigma_1 & -g_1 f_2 \\ 0 & \sigma_2 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ g_2 \end{pmatrix}$$
(11)

whenever the left-hand sides make sense (cf. [14, p. 52]. Hence we need only treat the cases where (i) α has entries in $A\langle X \rangle$ and (ii) $\alpha = \sigma^{-1}$ with $\sigma \in \Sigma$.

If α has entries in $A\langle X \rangle$, then, by repeated application of the equation

$$\begin{pmatrix} a+bc & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -b\\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b\\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ c & 1 \end{pmatrix},$$
 (12)

in which a, b, c and 1 denote matrices, some stabilization

$$\left(\begin{array}{cc} \alpha & 0 \\ 0 & 1 \end{array}\right)$$

can be expressed as a product of linear matrices. Each linear matrix $a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_4x_3 + a_4x_3 + a_4x_3 + a_4x_3 + a_5x_3 + a_5x_3$ $\ldots + a_{\mu}x_{\mu}$ can be written

$$(1 \quad 0) \begin{pmatrix} 1 & -a_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \sum_{i=1}^{\mu} (1 \quad 0) \begin{pmatrix} 1 & -a_i x_i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

and equations (10) and (11) imply that

$$\alpha = (1 \quad 0) \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

is of the required form $f\sigma^{-1}g$. The case $\alpha = \sigma^{-1}$ is similar (but slightly easier); we repeatedly apply equation (12) to express (a stabilization of) σ^{-1} as a product of inverses of linear matrices in Σ and then apply equation (11).

A power series $p \in A(\langle X \rangle)$ is said to be *recognizable* if it is of the form

$$p = fg + \sum_{i=1}^{\mu} fs_i gx_i + \sum_{i,j=1}^{\mu} fs_i s_j gx_i x_j + \dots$$

where $f \in A^n$ is a row vector, $g \in A^n$ is a column vector and each s_i is an $n \times n$ matrix in A. Propositions 4.3 and 4.2 imply the following.

COROLLARY 4.4 (Schützenberger's theorem). A power series $p \in A\langle\langle X \rangle\rangle$ is rational if and only if it is recognizable.

24

5. Localization of the free group ring

We identify the localization of the group ring of the free group studied in [6] with the localization $\Sigma^{-1}A\langle X\rangle$ of the present paper.

Let F_{μ} denote the free group on generators z_1, \ldots, z_{μ} , and as usual let A be a (not necessarily commutative) ring. AF_{μ} will denote the group ring, in which the elements of the group F_{μ} are assumed to commute with elements of A. Let $\epsilon : AF_{\mu} \longrightarrow A$; $z_i \longmapsto 1$ for all i and let Ψ denote the set of square matrices M in AF_{μ} such that $\epsilon(M)$ is invertible. Ψ is denoted Σ in [6].

All the matrices in Ψ become invertible under the Magnus embedding of the group ring

$$\begin{split} AF_{\mu} &\longrightarrow A\langle\langle X\rangle\rangle, \\ z_{i} &\longmapsto 1+x_{i}, \\ z_{i}^{-1} &\longmapsto 1-x_{i}+x_{i}^{2}-x_{i}^{3}+\dots, \end{split}$$

so the embedding factors through $\Psi^{-1}AF_{\mu}$:

$$AF_{\mu} \xrightarrow{i_{\Psi}} \Psi^{-1}AF_{\mu} \xrightarrow{\gamma} A\langle\langle X \rangle\rangle.$$

Farber and Vogel proved that if A is a (commutative) principle ideal domain then γ is an injection and the image of γ is the ring \mathscr{R}^A of rational power series.

Now, for general A, let $m : A\langle X \rangle \longrightarrow AF_{\mu}$ be the ring homomorphism defined by $x_i \longmapsto z_i - 1$ for all *i*. There is a commutative diagram, Figure 5, so $m(\Sigma) \subset \Phi$ and *m* induces a homomorphism $m : \Sigma^{-1}A\langle X \rangle \longrightarrow \Psi^{-1}AF_{\mu}$ which fits into a commutative diagram, Figure 6.

PROPOSITION 5.1. $m: \Sigma^{-1}A\langle X \rangle \longrightarrow \Psi^{-1}AF_{\mu}$ is an isomorphism.

Proof. The map $l: AF_{\mu} \longrightarrow \Sigma^{-1}A\langle X \rangle$; $z_i \longmapsto x_i + 1$, indicated by the broken arrow, fits into the commutative diagram of Figure 6. l is Ψ -inverting and therefore induces a map $\Psi^{-1}AF_{\mu} \longrightarrow \Sigma^{-1}A\langle X \rangle$ which, by the universal properties of i_{Σ} and i_{Ψ} , is inverse to m.

Appendix A. Direct limits

In this appendix we prove that Cohn localization and the functor $End(_)$ commute with direct limits.

A.1. Cohn localization

First we make the former claim more precise. Suppose that I is a directed set and $(\{A_m\}_{m\in I}, \{f_m^l: A_m \longrightarrow A_l\}_{m\leq l})$ is a direct system of rings. Suppose further that for each $m \in I$ we have a set of matrices Σ_m with entries in A_m such that $f_m^l(\Sigma_m) \subset \Sigma_l$ whenever $m \leq l$. If $i_m: A_m \longrightarrow \Sigma_m^{-1}A_m$ is the universal Σ_m -inverting ring homomorphism for each m, then when $m \leq l$ the composite

$$A_m \xrightarrow{f_m^l} A_l \xrightarrow{i_l} \Sigma_l^{-1} A_l$$

is Σ_m -inverting and therefore factors through a map $\Sigma^{-1} f_m^l : \Sigma_m^{-1} A_m \longrightarrow \Sigma_l^{-1} A_l$. It is easy to see that $\Sigma^{-1} f_l^k \circ \Sigma^{-1} f_m^l = \Sigma^{-1} f_m^k$ when $m \leq l \leq k$.

For any ring A let $\mathcal{M}(A)$ denote the set of matrices (of any size and shape) with entries in A. The inclusions $\Sigma_m \subset \mathcal{M}(A_m)$ induce an injection

$$\varinjlim \Sigma_m \longrightarrow \varinjlim \mathscr{M}(A_m) = \mathscr{M}(\varinjlim A_m).$$

LEMMA A.1. There is a natural isomorphism

$$(\varinjlim \Sigma_m)^{-1}(\varinjlim A_m) \cong \varinjlim (\Sigma_m^{-1}A_m).$$

Proof. One can check that the canonical map $\varinjlim i_m : \varinjlim A_m \longrightarrow \varinjlim \Sigma_m^{-1} A_m$ is universal among $(\varinjlim \Sigma_m)^{-1}$ -inverting homomorphisms. The details are left to the reader.

A.2. The endomorphism class group We consider next the functor $\operatorname{End}_0(_)$.

LEMMA A.2. There is a natural isomorphism

$$\varinjlim \operatorname{End}_0(A_m) \cong \operatorname{End}_0(\varinjlim A_m).$$

Proof. The canonical maps $f_m : A_m \longrightarrow \varinjlim A_m$ induce maps $f_m : \operatorname{End}_0(A_m) \longrightarrow \operatorname{End}_0(\varinjlim A_m)$ satisfying $f_l f_m^l = f_m$ for $m \leq l$. We aim to prove that any other system of maps $g_m : \operatorname{End}_0(A_m) \longrightarrow T$ with $g_l f_m^l = g_m$ for $m \leq l$ factors uniquely through $\operatorname{End}_0(\varinjlim A_m)$; see Figure 7.

Suppose that [M] is a generator of $\operatorname{End}_0(\varinjlim A_m)$ where $M \in M_n(\varinjlim A_m)$. M is

FIGURE 7.

the image $f_m(M_m)$ of some matrix $M_m \in M_n(A_m)$, so we can define $g[M] = g_m[M_m]$. To show that g is well-defined there are two things to check:

(i) If $M_l \in M_n(A_l)$ is an alternative choice with $f_l(M_l) = M$ then we require $g_m[M_m] = g_l[M_l]$. Indeed, there exists k such that $l \leq k$, $m \leq k$ and $f_l^k(M_k) = f_m^k(M_m) \in M_n(A_k)$. Hence $g_m[M_m] = g_k f_m^k[M_m] = g_k f_l^k[M_l] = g_l[M_l]$.

(ii) We must check that g respects the defining relations of $\widetilde{\text{End}}_0(\varinjlim A_m)$.

(1) A matrix

$$\left(\begin{array}{cc}M&N\\0&M'\end{array}\right)$$

is the image of some matrix

$$\left(egin{array}{cc} M_m & N_m \ 0 & M'_m \end{array}
ight),$$

so

$$g\begin{bmatrix} M & N\\ 0 & M' \end{bmatrix} = g_m \begin{bmatrix} M_m & N_m\\ 0 & M'_m \end{bmatrix} \neq g_m([M_m] + [M'_m]) = g[M] + g[M'].$$

(2) Suppose that $M' = PMP^{-1}$ for some invertible matrix P. For large enough m we can choose $P_m, Q_m \in M_n(A_m)$ to represent P and P^{-1} respectively. Since $I = f_m(P_m)f_m(Q_m)$ there exists $k \ge m$ such that $P_kQ_k = I \in M_n(A_k)$ where $P_k = f_m^k P_m$ and $Q_k = f_m^k Q_m$. Thus $M' = f_k(P_kM_kP_k^{-1})$ and $g[M'] = g_k[P_kM_kP_k^{-1}] = g_k[M_k] = g[M]$.

(3) If M is the zero matrix, g[M] = 0.

Uniqueness of g follows from the fact that every class [M] in $\operatorname{End}_0(\varinjlim A_m)$ is an image of a class $[M_m] \in \widetilde{\operatorname{End}}_0(A_m)$.

Acknowledgements. I would like to thank my PhD supervisor Professor Andrew Ranicki for all his help and encouragement.

References

- G. ALMKVIST, 'Endomorphisms of finitely generated projective modules over a commutative ring', Ark. Mat. 11 (1973) 263–301.
- 2. G. ALMKVIST, 'The Grothendieck ring of the category of endomorphisms', J. Algebra 28 (1974) 375–388.
- 3. J. BERSTEL and C. REUTENAUER, Rational series and their languages (Springer, Berlin, 1988).
- 4. P. M. COHN, 'Algebra and language theory', Bull. London Math. Soc. 7 (1975) 1-29.
- 5. P. M. COHN, Free rings and their relations, 2nd edn (Academic Press, London, 1985).
- 6. M. FARBER and P. VOGEL, 'The Cohn localization of the free group ring,' Proc. Cambridge Philos. Soc. 111 (1992) 433-443.
- 7. D. R. GRAYSON, 'The K-theory of endomorphisms', J. Algebra 48 (1977) 439-446.
- 8. J. L. KELLEY and E. H. SPANIER, 'Euler characteristics', Pacific J. Math. 26 (1968) 317-339.
- **9.** A. PAJITNOV, 'Closed orbits of gradient flows and logarithms of non-abelian Witt vectors', *K-Theory*, to appear (e-print server, http://xxx.soton.ac.uk/math/9908010).
- **10.** A. PAJITNOV, 'On the Novikov complex for rational Morse forms', *Ann. Fac. Sci. Toulouse* IV (1995) 297–338.
- A. PAJITNOV and A. A. RANICKI, 'The Whitehead group of the Novikov ring', K-Theory, to appear (math.AT/0012031).
- 12. A. A. RANICKI, High-dimensional knot theory (Springer, Berlin, 1998).
- 13. J. ROSENBERG, Algebraic K-theory and its applications (Springer, New York, 1994).
- 14. A. H. SCHOFIELD, *Representations of rings over skew fields*, London Mathematical Society Lecture Note Series 92 (Cambridge University Press, Cambridge, 1985).

NON-COMMUTATIVE CHARACTERISTIC POLYNOMIALS

15. M. P. SCHÜTZENBERGER, 'On the definition of a family of automata', *Inform. and Control* 4 (1961) 245–270.

16. M. P. SCHÜTZENBERGER, 'On a theorem of R. Jungen', Proc. Amer. Math. Soc. 13 (1962) 885-890.

Department of Mathematics and Statistics University of Edinburgh King's Buildings Edinburgh EH9 3JZ

des@sheiham.com