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The Signature mod 8

by DAvID FrRANKY)

Let I'; be the group of exotic i-dimensional spheres, and let bP; ., be the subgroup
of those exotic spheres which bound n-manifolds. There is an exact sequence

0 — bPy = Ty g = May—1 — 0,

where 7; is the cokernel of the J-homomorphism J:7;(SO) - n;=m;,,(S"), t large. In
studying the group bP,,, it was important for Milnor to know

PROPOSITION A. Let M** be a smooth, compact, oriented manifold with bound-
ary an exotic sphere. If M is a n-manifold, then the signature of M is divisible by 8.

In showing that the above exact sequence was split, it was important for Brumfiel
[2] and the author [3] to know the stronger

PROPOSITION B. Let M** be a smooth, compact, oriented manifold with bound-
ary an exotic sphere. If M is a spin manifold, and if all decomposable Pontrjagin numbers
of M are zero, then the signature of M is divisible by 8.

In this paper we will prove a very general theorem which includes Propositions
A and B. Let BSG be the classifying space for stable oriented spherical fibrations. If
we kill the second homotopy group of BSG, we obtain a space BSpinG, the classi-
fying space for stable spherical fibrations with a spin structure. Let v, denote the
universal Wu class in either BSG or BSpinG. We first show.

LEMMA 1. There is a class x,, in H** (BSpinG; Z,) whose mod2 reduction is
v, in H**(BSpinG; Z,).

The corresponding statement is of course false in BSG.

We now use the Pontrjagin square cohomology operations. There is a family of
such operations; we are interested only in the operations

P:HZ,‘(—; Z4)—>H4k(—“‘; ZB)'

In particular, consider the universal characteristic class P(x,,) in H**(BSpinG; Zj).
If M is a spin Poincaré complex of dimension 4k with fundamental homology class[M],
we may consider the characteristic number P (x,;) [M], which is an integer modulo 8.
Let o (M) denote the signature of M.

1) Supported by NSF grant No. P 029431000.
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THEOREM 2. P(x;,)[M]=0(M) modulo 8 for any spin Poincaré complex M**.
For oriented Poincaré complexes, we can show

THEOREM 3. There is a characteristic class y,, in H**(BSG; Zg) such that
Yax [M1=0 (M) modulo 8 for any oriented Poincaré complex.

Theorem 3 is the best possible ‘Hirzebruch Signature Theorem’ for Poincaré
complexes; the integer 8 cannot be replaced by a larger integer.

The classes y,, are related to the k-invariants of the fibration F/Top - BSTop —
— BSG.

1. The Spin Case

We begin by considering the Wu class v,, in H**(BSpinG; Z,). We wish to show
v, 18 the mod2 reduction of a Z, cohomology class. Equivalently, we can show
Sq* (vy;) =0, where Sq' is the i-th Steenrod Square. (In fact, v,, =0 for k odd, but this
is irrelevant to what follows.)

We recall one definition of the Wu classes v;. Let y be the universal spherical fibra-
tion on BSG (m), m large, let MSG (m) be the Thom space of y, and let U be the Thom
class. Then define

v, =T '(x(Sq'V)),

where T is the Thom isomorphism (7:H*(BSG (m))— H*(MSG (m)) and y is the
anti-automorphism of the Steenrod Algebra. If M" is a Poincaré complex, let i: M —
—BSG (m) be the classifying map of the stable Spivak normal fibration of M. Define
v; (M) as h* (v;). It follows from [6, Ch. III] that

(v:(M) L x) [M] = S (x) [M]

for all xin H"~!(M; Z,). Thus this is an acceptable definition of the Wu classes.
Now note that Sg*(vy U)=Sq"(vy) U, since Sq'(U)=0. Thus Sq'(v,)=0
if Sq' (v- U)=0. But
Sq* (vy-U) = Sq* (xSq*) U
= (18¢") (xS U
=1(Sq*Sq") U.
Now

Sq**Sq' = Sq*Sq* ' + aSq'Sq**, aeZ,,
by an Adem relation, so

2(S4*Sq") = x(Sq* ') 1 (Sq?) + ax (Sq**) x(Sq*).
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Since the last expression is zero on the Thom class U of BSpinG (m), we have shown
that Sq'(v,,)=0 in BSpinG. Thus, as claimed in Lemma 1, there is a class x,, in
H?**(BSpinG; Z,) whose mod2 reduction is v,,. If M*¥ is a spin Poincaré complex,
we wish to relate the class x,;, (M) to the signature of M. In fact, we will prove
Theorem 2 by showing

PROPOSITION 4. Let M** be an oriented Poincaré complex and let x be any class
in H**(M; Z,) whose mod 2 reduction is v, (M ). Then P(x) [M]=0 (M ) mod8.
To prove Proposition 4, we first show

LEMMA 5. Let M** be an oriented Poincaré complex and let a and b be classes in
H**(M; Z,) whose mod 2 reduction is v, (M ). Then P(a)=P(b).

Proof. If ¢ is a cohomology class with Z,. coefficients, we denote by ¢’ the corre-
sponding class with Z,.., coefficients (determined by the inclusion homomorphism
from Z,. to Z,n+1). Now if a mod2=5b mod2=v,,(M), then a=b+d’, d in
H?**(M: Z,). Then

P(a)=P(b+d)
=P(b)+P(d)+(budy.

Thus we must show
Pd)+(bud)=0.
But

(bud) =((dmod2)ud)
= (01 (M) L d)’
=(d ud)”, by definition of the Wu class
=P(d).

(The last equality follows immediately from the cochain definition of the Pontrjagin
Square.) This verifies Lemma 5.

Thus P(x) [M] is independent of the choice of x (provided x mod2=1v,,(M)). A
convenient choice for x is given by

LEMMA 6. If M** is an oriented Poincaré complex, then v,, (M) is the reduction
of an integral cohomology class.

Proof. (E. Thomas) Let K be the subgroup of H**(M; Z,) consisting of all classes
which are the mod2 reduction of an integral class. Let L be the subgroup of H**(M;
Z,) consisting of all classes whose cup product with the mod2 reduction of every
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torsion class in H**(M; Z) is zero. Clearly K< L. But an easy counting argument,
using Poincaré duality, shows that dim K=dim L, so K=L. Since v,,(M ) is in L, it is
in K, and Lemma 6 is proved.

We now prove Theorem 2. Let z in H**(M; Z) be a class whose mod 2 reduction is
vy (M). By a well-known property of bilinear forms (see [4]), (zuz)[M]=0(M)
mod8. Let x in H**(M; Z,) be the mod4 reduction of z. Then P(x)[M]=(zuz)

[M] mod8= ¢ (M) mod8, which proves Proposition 4 and Theorem 2.

2. The Oriented Case

Let Q%2 be the cobordism group of oriented 4k-dimensional Poincaré complexes.
There is an exact sequence ([5], [8], [9])

0—Z5H QP I, 7, MSG — 0.

The infinite cyclic group is generated by the closed Milnor manifold of signature 8.
Let o: QEP — Z;3 be the signature homomorphism reduced mod8. Since ¢i=0, there
is a homomorphism 6: 7, MSG — Z such that gj=o0.

Now the spectrum MSG is a product of Eilenberg-MacLane spectra. (We need
this only at the prime 2: see [1].) Therefore there is a cohomology class
in H**(MSG; Zg) such that for any g in 74, MSG,

7(g) = g* (ta) [S*].

Let y,, be the class in H**(BSG; Zg) corresponding to t,, under the Thom iso-
morphism. Then if M ** is an oriented Poincaré complex and h: M — BSG the classi-
fying map for the normal spherical fibration, let ¢, denote the cobordism class of M
in Q5. Then j(cy)enyMSG, and j(cy )« [S*¥], the Hurewicz image of j(cy), corre-
sponds to [4,M ] under the Thom isomorphism. Hence

ya[M] = r* (P4x) [M] = {yax hs [M]>
= (g j (cr)x [S™T)
= (i (ea)* (tax), [S*D
=G(j(ca) =0 (cum)
=o¢(M)mod8,

which proves Theorem 3.
3. Proposition B

We show how the techniques of this paper imply Proposition B. Let M° be a
smooth, compact, spin manifold of dimension 4k with boundary an exotic sphere.
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Let M be the closed topological manifold formed by attaching a 4k-disk along the
boundary of M°. Also, let BSpin be the classifying space for stable vector bundles
with a spin structure and 4: M° — BSpin be the classifying map for the stable normal
bundle.

According to E. Thomas [7], all 2-torsion in H*(BSpin; Z) is of order 2. Let
v, be the Wu class in H**(BSpin; Z,). Then Sq' (v,,)=0 means that v,, is the mod 2
reduction of an integer class z,, in H>*(BSpin; Z). Define z,,(M) as h*(z,,). Then
(z2x(M))?*[M]=0 (M) mod8. Let gq,, in H**(BSpin; Q) be the class corresponding
to z,;, under the inclusion of Z in Q. Then (g5 (M))* [M]=0(M) mod8 and g, is a
polynomial (with rational coefficients) in the Pontrjagin classes. Since (¢,,)* is decom-
posable, this proves Proposition B.
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