HEREDITARY GROUP RINGS

WARREN DICKS

) ’ Summary

The purpose of this note is to describe those group rings that are right hereditary.

he characterization necessarily involves a number of concepts from ring theory and

from group theory, and we briefly review these for the benefit of the reader. From ring
eory we need the following definitions. A ring R is said to be:

(1973) ' right hereditary if every right ideal is projective (as right R-module);

il. Soc. completely reducible if Ris a finite direct product of full matrix rings over skew fields

Kvor r equivalently, R is nonzero and every right ideal of R is a direct summand of R);
. Kyoto

%; von Neumann regular if every right R-module is flat (or equivalently, for each
s .
ebra 56 ement r of R there exists an element x of R such that rxr = r);

tath. 26 right ¥,- Noetherian if every right ideal of R is countably generated.

m group theory we require the concept of the fundamental group of a connected
aph of groups, and the definition of this will be recalled in Section 1, below. Finally,
1 any ring R, let us call a group G an R ™ '-group if the order of every finite subgroup of

isinvertible in R. (The usual terminology {dr this property is * G has no R-torsion ™,
t* R~ '-group ™ has the advantage of brevity, and is descriptive in that one can think
the orders of the elements of G as being of the form r~!, 4 € R, where either r is the
verse in R of a natural number, or r = 0 and 07! is taken to be o)
Throughout, we fix a nonzero ring R and a group G, and denote the corresponding

(H1) Riscompletely reducible and G is the fundamental group of a connected graph
P
finite R™'-groups;

(H2) R is right Ny- Noetherian, von Neumann regular, and G is a countable locally
te R™'-group;

(H3) R is right hereditary and G is a finite R *-group.
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I am indebted to W. A. Hodges, P. Menal and W. Stephenson for helpful and
stimulating conversations on this subject.

Remark. Since right hereditary means that the right global dimension is at most 1,
a natural thing to ask for after Theorem 1 is a formula for the right global dimension of
a group ring. An immediate conjecture is the bound

r.gl.dim RG < rgidim R + cd,G, (n

where cd;G denotes the projective RG-dimension of R, viewed as right RG-module
with trivial G-action. In the case where Risa field, (1) follows from [2; XVI, 7(6)] (cf. [6],
[10; Theorem 10.3.6]) and the basic idea of this case can be uced to show that for an
arbitrary ring R

r.gldim RG < r.gldimR + cd,G, )

where K is the centre of R. (Briefly, the proof runs as follows. Let M be a right
RG-module, and take a projective RG-resolution ofit,say... > Q, ... > Qo> M~ 0.
If r = r.gl.dim RG then the kernel 0 of 0, > 0,18 R-projective. Now consider a
projective KG-resolution of K,say 2 - K— 0. Then Q has a projective RG-resolution,
P RO — O —0, where G acts on Z ® Q by the diagonal action, cf. [10; Lemma
10.3.5].) Now (1) would follow from (1') if we knew that cd G = cdgG, but this also is
not known in general. There is however a result of Swan [12](and recailed in Lemma 7,
below) that says that cd G = cdRxG if K has a subring k such that R/k is right k-
projective; for example, if Ris an algebra over a field k.

Let us record the form taken by (1) (and (1)) in each of the three cases of Theorem
L(HD1<0+ 1;(HY) 1< 1+ 1;(H3)1<1+0. (Here “1”is to be read as “1 or
less ".) Indeed, the sufficiency of (H1), (H3) could be proved via these inequalities. (But
we shall not be doing so, since in each of these cases, r.gl.dim R is not substantially
harder to compute than cdgG, and the direct ring-theoretic proofs seem more
illuminating.)

1. The fundamental group of a connected graph of groups

By a graph, X, we understand a system consisting of: a nonempty set, V(X), whose
elements are called the vertices of X, a set, E(X), whose elements are called the edges of
X, and an incidence map (1, 7): E(X) = V(X) x V(X). For any edge e of X, 1e, te are
called the initial and terminal vertices of e, respectively.

The reader should have no difficuity in translating to this setting the definitions of
the familiar graph-theoretic concepts that we shall be using.

Let us fix a connected graph X. We may view X as a small category, whose object set
is ob(X) = E(X) uV(X), and whose nonidentity morphisms are e =16,
t,:e — te(ee E(X)). Then by a connected graph of groups, ¥, we understand a functor
4. X = Grou fro. For vertices v of X, the %(v) will be called the vertex groups of 4, and
for edges ¢ of X, the () will be called the edge groups of 4. The homomorphisms
4(1,): %(e) — Gie) will be denoted g+ g*, and similarly for t.

Since X is connected we can find a spanning tree, that is, a subgraph with the same
vertex set and with a minimal edge set so that the subgraph is still connected. For any
spanning tree 7 of X, and any graph of groups % : X — Grow o, the fundamental group

(i) Gisthe,
2 g free sub,
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g with respect to T, n(¥,T), is the group universal with the following properties: for
f vertex v of X there is given a group homomorphism %(v) - n(% T); for each edge
£ X there is given an element g(e) of n(%4, T) such that qle)"'.g%. qle) = g-forall
#(e),and if eisanedge of T'theng(e) = 1. One can show that the isomorphism class
£1(%, T) isindependent of the choice of 7, ¢f. [11; Proposition 20]; for this reason one
usually speaks of the fundamental group of 4, without reference to a spanning tree.
Since the fundamental group of a certain type of connected graph of groups is used
in the characterization given in Theorem 1, it is illuminating to know the simplest
examples of groups that arise in this way, and we shall now describe these. This is a
pecial case of a result of Bass [1; (6.5)] for which we give a correspondingly simpler
rgument.

THEOREM 2. The following are equivalent for a group G:

(i) G is the fundamental group of a connected graph of finite groups and G does not
ave a free subgroup of rank 2;

(i) one of the following holds:

(@) G is countable and locally finite;

(b) G is finite-by-Z;

(c) G~ A||B where A and B are finite and (A:V) = (B: V) = 2.
Z

Proof. (i) = (ii). Let G be a group with no free subgroups of rank 2, and suppose
that Gis the fundamental group of a connected graph of finite groups, ¥: X — %o fro.
By replacing the vertex groups of ¢ with their images in G, we may assume that all the
“maps 9(v) - G are inclusions. On factoring out the normal subgroup of G generated
by the vertex groups, we see that the elements g(e), as e ranges over the edges of X'not in
he given spanning tree T, freely generate a free subgroup of G. Hence X has at most one
dge not in T.

Let us consider first the case where thereis one edge, esay, notin T. Let H denote the
ubgroup of G generated by the vertex groups. Then there are homomorphisms
9(1,),%(1,): 9(e) — H,and G is the associated HNN extension. Consider any ke H. By
hypothesis, 4.q(e).h.g(e)”" and h.q(e)™'.h.q(e) do not frecly generate a free
ubgroup of G, and by considering normal forms in HNN extensions we see that this
an only happen if # lies in the image of %(z,) or of %(z,). Since a group H cannot be the
union of two proper subgroups, it follows that %(z,) or 9(t,) is surjective. Without loss
_of generality, %(:,) and %(z,) are both injective and so have images of the same order.
Hence 4(:,) and %(z,) are both surjective. Now H, asimage of ¢(e), is finite, and further,
is'a normal subgroup of G such that G/H is the infinite cyclic group generated by the
_image of g(e). Thus we are in case (ii)(b).

We may now suppose that X = T, so X is a tree. Here G is the colimit of the vertex
groups amalgamating the edge groups. Consider any edge e of X. If e is deleted from X
we are left with two connected components X, X, say. Let G,, G, denote the
_subgroups of G generated by the vertex, groups as the vertices range over X, X
respectively. Thenitisclear that G ~ G, | [ G,.Onreplacing 4(e) by itsimage in G, we

4(e)

may view 9(e) as a subgroup of G, G,. Consider any xe G, and any y,z€ G,. By
assumption xy and xz do not freely generate a (ree subgroup of G, and by the normal
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form for coproducts with amalgamation, this forces one of x, y, z, v !z to lie in 4 (e).
This proves that either G, = %(e)or (G,:9(e)) < 2. By symmetry, there are then three
possibilities: (G,:%(e)) = (G,:%(e)) = 2 or G, = %(e) or G, = %(e). If the first
possibility holds for any edge e then we are in case (ii)(c), so we may assume that the
second or third possibilities hold for each edgee. If 4(1e) = 9(e) = %(1e) thene may be
replaced by a vertex in the representation of G as the fundamental group of a graph of
finite groups, so we may assume that there are no such edges for 4. Let v, v, denote the
vertices of e in X, X, respectively. Then either

Go=9%(vy) = 9(e) = 4(v,) € G,

or
Go 2 %(vg) > %(e) = %(v,) = G,.

We summarise this as follows.

(2) For any vertex v, of any edge e, if %(v,) = 9(e) then G(vo) 2 %(v) for all
vertices v of Tfor which the geodesic from v to vy does not traverse e (that is, for
all ve V(X,)).

(3) For any vertex v, of any edge e, if %(vy) > %(e) then G(vy) 2 9(v) for all
vertices v for which the geodesic from v to v traverses e (that is, for all
ve V(X))).

Now choose a sequence, possibly infinite, Vos €9, Uy, €1, Uy, ... such that the vertices of e,
are v; and v;, , and 9(v,) = %(e,) = %(v;4 1), for i = 0, 1,.... If this sequence is finite
and cannot be extended then it stops at some ¢, with 9(v,) > %(e) for every edge e
which has v, as a vertex. Then by (3), 9(v,) 2 9(v) for all vertices v, so G = G(v,) is
finite and we are in case (ii)(a). Thus we may assume that the sequence is infinite. For
each vertex v, the geodesic from v to vo must fail to traverse some ¢,, so thé geodesic
from v to v, does not traverse e,, 80 by (2), 9(v,) 2 4(v). Thus G = U %(v,) is

nz0

countably infinite and locally finite, and we are again in case (ii)(a).

(ii) = (). It is clear from the preceding part of the proof how each of the types
(ii)(a), (ii)(b), (ii)(c) occur as the fundamental group of a graph of finite groups, and it
remains to show they do not have free subgroups of rank 2. Thisisclear for (ii)(a). Since
factoring out a finite normal subgroup does not affect having a free subgroup of rank 2,
we see that (ii)(b) also cannot have a free subgroup of rank 2. In (ii)(c), V is a finite
normal subgroup of 4 and B, and hence of G, and moreover GlV~17,1{7, wherez,
is the cyclic group of order 2. Since Z,|] 7, hasacyclic subgroup of index 2, it follows
that (ii)(c) cannot have a free subgroup of rank 2. This completes the proof.

Conditions (ii)(b) and (c) are quite well understood. It is straightforward to show
that (ii)(c) is equivalent to G being finite-by-Z, | | Z,, from which it can be deduced that
(i1)(b) and (c) together are equivalent to G being finite-by-(Z-by-Z,), which in turn is
equivalent to G being (finite-by-Z)-by-Z,. It can be shown further that these latter
conditions are equivalent to G being Z-by-finite, ¢f. [10; pp. 178-9, p.615] or [3;
pp. 29-31]. 7
In [6], Goursaud and Valette characterized right hereditary group rings among the
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oup rings RG where G is nilpotent. Clearly a nilpotent group has no free subgroups of
rank 2,and does not have Z, [ [ Z, as a homomorphicimage, so to be the fundamental
_group of aconnected graph of finite groups, a nilpotent group must be either countable
and locally finite, or finite-by-Z; these are precisely the groups arrived at by Goursaud
and Valette.

2. Background

In this section we assemble various known results that will be used in the proof of
heorem 1.

LemMaA 3. If Gisafinite R™'-group and M a right RG-module then M is isomorphic
o an RG-summand of M & RG.

Proof. Themap M — M @z RG, m |G| 'Y mg™! ® gis right RG-linear and is
geG
left inverse of the multiplication map M ® s RG — M. This completes the proof.

We now need the notion of a connected graph of rings, defined as any functor
: X — Aings, where Xis a connected graph. For any spanning tree T of X we define
the fundamental ring S of & (with respect to T) to be the ring that is universal with the
ollowing properties: for each vertex v of X there is given a ring homomorphism
(v) = S; for each edge e of X there is given a unit g{e) of S such that
()" . 5. g(e) = s*forall se ¥ (e), and q(e) = lifeisan edge of T. It can be shown,
xactly as for groups, that the isomorphism class of Sis independent of the choice of 7.
The following is taken from [4; Section 5] but is givea here with more details.

THEOREM 4. If 1 X — Ainga is a connected graph of rings, and S is the
undamental ring of &, then for any right S-module M the followin g sequence of right S-
todules is exact:

0-dM®y,S — @ M®y,S ——— M0
EX) V(X) 4)

meE,s - me@ ,qle)s — mg(e) ® s, me s+ ms
Here M is made a right '(¢)-module via the map & (¢) — S (1e) — S, and Sis made
4 left #'(e)-module via the map ¥ (e) — ¥ (te) - S.

Proof. In the case where M is the S-bimodule S, (4) is a sequence of S-bimodules

0= ®S®yyS—> ® SRy, S—= S0, 5)

E(X) Vix)

and it is the exactness of this sequence that we shall verify first,
We can present S as the S-bimodule with

(i) generators ¢, ve V(X);

(ii) relations saying that for all ve V(X), commutes with all elements of F(v);

(1ii) relations saying that for all ee E(X), 1e.q(e) = q(e) . ze.
Notice that since g(e) = 1 for all e € E(T), (iii) implies that all the © are equal.




32 WARREN DICKS
Now (i) and (ii) by themselves present the S-bimodule

A= @ SiS= @ S®yS
V(X) ViXy

which maps onto S by sending 7 = 1 ®,1 to 1. We claim that the kernel of this map
equals the S-bimodule, B, presented with

(i) generators ¢, e E(X),

(ii") relations saying that for all e€ E(X), s*.é =¢é.5% for all se ¥(e).

It is readily verified that the (S, S)-linear map B — 4 sending e to ze. g(e) — g(e) . Te s
well-defined, and it clearly maps onto the kernel of the map 4 - S.
Now

B=®SeS= @ S®yp)S
E(X) E(X)

where S is made a right #(e)-module via ¥ (e) —» ¥ (1e) = S, and made a left ¥ (e)-
module via #(e) » ¥ (re) = S.

We have a presentation B - 4 — S — 0, and to obtain (5) we shall show that B —» 4
has a right inverse, and hence is injective.

For any vertices u, v of X there is a unique geodesic in T from u 10 v, say # = Uo, e,
Ugyern v, =vwherefori=1,...,n ¢€isan edge in T with vertices v;_, and v;, and ¢;
indicates the orientation of e; in the geodesic, and is defined as

+1 if 1e; =v;_, and 1¢; =1,
&, =
' -1 if 1e; = v;

)

and te; = v;_.

We write T(u,v) for the element g,e, + ... + &,¢, of B.
Recall that a derivation d:S— B is, an additive map satisfying
d(xy) = (dx)y + x(dy), for all x, yeS. These are precisely the maps for which

(o D=(6 )

is a ring homomorphism. By the universal property of S, giving such a ring
homomorphism is equivalent to specifying ring homomorphisms

1 d S B
(0 1>.S(v)-—>(0 S)’ ve V(X),

together with units

(q(e) d(q(e))) o (S B) ve B

0 qle) 0 S

satisfying the two conditions

s de(s)\(qle) d(q(e)) =(q(é’) 61((1(8)))(8" d'”(S'"))
0 s'e 0 q(e) 0 q(e) 0 s’

r all ecE(X) a

allee E(T).1
jvations d: ¢
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d u

all ec E(X) a
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_for all ee E(X) and all se #(e); and

ge) dg@)\_(1 0
0 gle) 01
for all ee E(T). It follows that giving a derivation d: S — Bis equivalent to specifying

derivations d": ¥ (v) » B,ve V(X), and elements d(q(e)) of B, ec E(X) satisfying the
two conditions :

de(s*) . qle) + s*.d(q(e)) = d(g(e)) .5 + gq(e) . d(s%) (6)

for all ec E(X) and all se.%(e); and

d(q(e)) =0 " Q]

forall ee E(T).
For beB, seS, [b,s] denotes bs — sheB. For be B, the map ad(b):S — B,
s [b, s]is a derivation, called the inner derivation induced by b. We shall usually write
b, —] for ad(b).
Let u be a vertex of X. Define a derivation d,: S — B as follows:

for each ve V(X) let d°: #(v) - B be [T(u,v), —1;
for each ee E(X) letd,(g(e)) = T(u,1€).q(e) + é + q(e). T(ze, u).

Notice that for any two vertices u,, u, of X, the derivation d, —d,:S— Bagrees

ith [T(u;,u,), —] on each ¥(v),ve V(X), and on each g(e),ee E(X); hence
oy — oy = [Ty, uy), — .
Fix a vertex v, of X. For each vertex u of X, d, vanishes on & (u) so d, is left &% (u)-
liear. Now the left % (u)-linear map S — B, s — d (s) + sT(u,v,), induces a left S-
near map from SuS = S ® ., S to B that sends $,Us, to s, d (s,) + 8,8, T(u, vy).
left S-linear map to Bis thus defined for each vertex u of X, and we can take the direct
um over allu to get a left S-linear map from @ SiS = A to B. We claim that thisis a left
verse to the map B — 4. To see this, observe that as left S-module, Bis generated by
e es, e€ E(X), se S, so it suffices to check the behaviour of the composite B— 4 — B
it the elements és. The map B — A carries és to 7e. g(e).s — g(e).te.s, and the map
= B carries this element back to

4.:(4(e)s) + q(e) 5. T(e, 0,)) — (q(e) . d,,(s) + qle) . 5. T(ze, Vo))
=d.(q(e)) . s + g(€) . d,.(s) + gle) .5. T(1e, v5) — gle). do(s) — qle) . 5. T(ze, Vo)
=d,(q(e)) .5 + q(e) . (d,. — d . )(s) + q(e) . 5. (T(re, v,) — T(re, v,))
= d.(q(e)) .s + qle) . [T(ee, te), 5] + qle) . 5. T(te, re)
=d . (q(e)) .5 + q(e). T(ie, 7e) .5
es, by definition of d,.(g(e)).
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Hence B — A — Bisthe identity map, so B — 4 is injective, and we have proved that ()
j isexact. Now applying M @ s— to (5) gives (4), and this is still exact since (5) is split exact
[‘ as a sequence of left S-modules. This completes the proof.
4

The obvious application of Theorem 4 is to the group ring of a fundamental graph
of groups, and here we have the following consequence.

COROLLARY 5. If G is the fundamental group of a connected graph of groups
G: X > Grow s, then for any right RG-module M,

0 @ M®pyy RG> @ M®pgpy RG> M0 ®)

E(X) Vi{X)

is an exact sequence of right RG-modules.
Proof. Let ¥ :X - Aings be the composite of the functors G: X — Growjio,

R:%1oufrs — Rings, where R sends each group H to the corresponding group ring
RH. The corollary is now immediate from Theorem 4.

It was the following special case of Corollary 5 that originally suggested Theorem 4.

CoroLLARY 6 (Chiswell). If G is the fundamental group of a connected graph of
groups 4: X > Grew fio, then

0> @ R®pyyRG— @ R®pyyRG>R-0 )

E(X) ViXx)
is an exact sequence of right RG-modules, where R is made an RG-module with trivial oW come
G-action.

If, in Corollary 6, for each xeob(X) = E(X) U V(X), 9(x) is a finite R™ '-group,
then R is an R%(x)-summand of R%(x), by Lemma 3, so is projective as right R¥(x)-
module, and hence (9) is a projective RG-resolution of R. In other words, cdzG < 1if G
is the fundamental group of a connected graph of finite R™'-groups. There is an
alternative way of expressing the former condition. Let us write ¢: RG — R for the
augmentation map, and o = w(RG) for the augmentation ideal, Kere, so

0—-w— RG— R~—0is an exact sequence of right RG-modules. Thus cdgG < 1 is an’s result, L
equivalent to o being projective as right RG-module. This verifies a fact proved by D. E. by t_}}f comi
Cohen, that if G is the fundamental group of a connected graph of finite R~ '-groups e k™’ -grou
then w is projective as right RG-module. It is the converse of this fact that we shall need, tloss of gei
and the following reduces the problem to the case where R is commutative. €S to prove

nt is as foll

up (g) of G
epresentatiy
ve. R{g>-r

(-9
jotent ¢ of R«

LemMaA 7 (Swan [12; Proposition 3.3]). Let K — R be a ring homomorphism.

() cdprG < cdiG.

(ii) If K — Risanembedding and if the right K-module R/ K is projective (e.g. if K is
a field) then cdxG = cd,G.

(il) For any field k such that k ® ; R is nonzero, cd,G < cdgG; further, there exists me re R. Fu
at least one such (prime) field k.
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Proof. (i) Let? — K - 0 be a projective KG-resolution of K. Since K is projective
as right K-module, this sequence is right K-split, so remains exact under

TOkR=-® KGO R= — @, RG.

hus we get a projective RG-resolution of R, 2®4s RG> R - 0, and it follows that
ndRG < CdKG.

(i) Suppose that R/X is right K-projective. Then R~ K® (R/K) as right X-

odule, so in particular R is right K-projective. Since RG = R ®xKG, RGisright KG-
jecti jecti olution of R is already a projective KG-resolution

proj.dim; R < proj.dimy R = cdpG.

summand of R it is therefore a KG-summand of R, so

proj.dim, R > proj.dim, K = cd,G.
hus ¢dxG < ¢diG and together with (i) this proves (i),

1ii) Thereisaring homomorphism R — f ® 7 Rso by (i), ¢digr G <cdyG. There
. a ring homomorphism % - & ®zR so by (i), cd;pr G = ¢d,G. Finally, if
(Z/p7) ® , R = 0 for all prime integers p then R is clearly a @-algebra, This completes

We now come to the following beautiful result,

THEOREM 8 (Dunwoody). If the augmentation ideal of RG is projective then G is
* fundamental group of some connected graph of finite R~ -groups.

ScedpG < 1.

al group of a connected graph

n be taken to be R™!-groups.

oups are all subgroups of G, so

known that this holds, and the

nelement g of G hag order n, and consider the

vgroup {g> of G generated by G. Since RG is free asright R{g>-module (on any set of
set representatives for {g>in @), any projective RG-resolution of R is already a
ective R{g>-resolution of R, so cdp(gd < ¢drG < 1. Hence the augmentation
(I - 9)R of Rg> is projective, so (I - 2)R¢g> = eR{g> for some

potent e of R{g). The element f= 1 — ¢ then satisfies /(1 — g) = 0 s0f=73 g'r
. 1

ome re R. Further, 1 = 1 — ee) = e(f) = nr,sonis invertible in R. This proves
Gisan R 1-group and completes the proof.
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3. Necessity of (H1), (H2) or (H3)

Throughout this section we have the fixed hypothesis that RG is right hereditary,

We begin by showing that R is right hereditary. For any right ideal 7 of R, the
induced right ideal JRG of RG is right RG-projective by hypothesis, and hence is right
R-projective. But as R-module, IRG = I @ Iw, and hence is right R-projective. Thig
proves that R is right hereditary.

Further, w is right RG-projective by hypothesis, so by Dunwoody’s theorem,
Theorem 8, G is the fundamental group of a connected graph of finite R~ !_groups, and
we know that G is itself an R~ '-group. There are now three cases:

(i) G finite;
(i) G not periodic;
(il)) G periodic and infinite.

These will be shown to entail (H3), (H1), (H2) respectively. The verification makes use
of the following.

LEMMA 9. If RG is right hereditary then for each right ideal I of R there exists apair
of RG-linear maps ¢,:w — lw, ¢,: IRG — Iw, satisfying

(i—¢,(0).(e—D=¢,(g—1).i (10)
Joralliiel, geG.

Proof. Consider the following sequence of right RG-modules

0-wnIRG—> 0w®IRG - v+ IRG— 0.

x =(x,x), (3,2) > y—z

Itis obviously exact, and the last term is projective by hypothesis, so the sequence splits.
Since w N IRG = lw, the splitting gives an RG-linear map w @ IRG — Iw, say
0,2) = ¢, () + d,(2), such that for all iel, geG, ¢, (i.(g—1)+
¢,(i.(g— 1) =i.(g—1). Since /i and g — 1 commute, this can be written
¢ilg — 1).i+ $5().(g — 1) =i.(g — 1), and the lemma is proved.

Case (i). We have already seen that R is ri

ght hereditary so if G is finite then (H3)
holds.

Case (ii). Suppose that G has an element g of infinite order. Let / be any right ideal
of R,and let ¢, ¢, be as in Lemma 9. Choose a transversal T for the subgroup {(g) in )-module. But
G; that is, every element of G can be expressed uniquely in the form 1g", 1€ T, neZ. iéx}-projective.
Define iy : RG — Rto be the right R-linear map thatsends 7g", te T, ne Z, to n. Then for that RG is 1
any xe RG, y(x. (g — 1)) = &(x). So applying y to (10) gives

€ remaining ¢
(i = $(0) = Y(bs(g = 1).1) ‘
Wficiency of (H.
hat G is a cour
bgroups H. F
regular, i

for all ie I. Now ¢,(i)e w, so this says i = iy.ifor all je I, where

o = ¥($:(g — 1)) ey (o) S Y(IRG) < I.
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']fhis proves that is aright R-linear summand of R, for every right ideal 7 of R. Hence R
s completely reducible and (H1) holds.

litary.
R, the
sright
:. This

Remark. This result is well-known, and given a certain amount of homological
machinery is actually rather trivial. However, we are trying to keep this account as
fementary as possible. For another proof that does not require sophisticated

.orem, homological methods ¢f. [7; Lemmes 1.2, 2.3].

s, and Case (iil). Suppose that G is periodic and infinite. As G is the fundamental group of

_a connected graph of finite groups, it follows from Theorem 2 that G is countable and
Tocally finite.

It remains to describe R in this case. This was accomplished by Goursaud and
Valette who showed in [7; Proposition 2.10] that R is right N,-Noetherian and von
yeymann regular,

_ For completeness, let us recall their elegant proof that R is right N,-Noetherian.

s use nsider any right ideal I of R. By a theorem of Kaplansky [8], the projective right RG-

odule, IRG + w,isadirect sum of countably generated right ideals. But we know that
is countably generated as right RG-module, so is contained in the sum of countably
any of these right ideals. The sum of the remaining right ideals then has zero
atersection with w, so in particular left annihilates w. But G is infinite so the left
annihilator of wis 0, and this proves that IRG + w is countably generated as right RG-
odule. By applying ¢ we see that [ is countably generated as right R-module, as
desired.
-~ Tosee that Risvon Neumann regular consider any i€ R. For I = iRlet ¢,, ¢, beas
in Lemma 9. Then for every ge G,

rapair

(10)

(i —¢,()).(g—1)=¢,(g —1).ic Iwi S iRGi.

ince G is infinite there exists a ge G such that the supports of i — ¢,(i) and
s splits, . i ¢,(0) . garedisjoint, so i — ¢, (7)€ iRGI. Applying ¢ gives i€ iRi, as desired. (For
w, say other proof that R is von Neumann regular ¢f. [7].)
1)) + This completes the proof of the necessity of (H1), (H2) or (H3).

written

4. Sufficiency of (H1), (H2) or (H3)

Sufficiency of (H1). Suppose that R is completely reducible and that G is the
fundamental group of a connected graph of finite R~ !-groups, 4: X — Grow fra. Let M
be a right RG-module and let xeob (X) = E(X) u V(X). Since R is completely
‘ ducible, M is projective as right R-module, so M ®  R%(x) is projective as right
1<g >In x)-module. But by Lemma 3, M is an R%(x)-summand of this module, so M itself
,nel. % (x)-projective. Hence (8) gives a projective RG-resolution of M of length 1. This
hen for proves that RG is right hereditary in this case.

:n (H3)

1t ideal

The remaining cases are essentially well known but are recalled for completeness.

ufficiency of (H2). Suppose that R is right ¥,-Noetherian, von Neumann regular

d that G is a countable, locally finite, R™!-group. Thus G is the union of its finite
f‘-subgroups H. For any such H, consider any right RH-module M. Since R is von
Neumann regular, M is flat as right R-module so M ® x RH is flat as right RH-module.
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But by Lemma 3, M is an RH-summand of this module so M itself is RH-flat. This
proves that RH is von Neumann regular for all H, and hence RG = {JRH is von
Neumann regular. To see that RG is right ¥,-Noetherian, consider any right ideal I of
RG. Since RG is countably generated as right R-module and R is ¥,-Noetherian, it
follows that [ is countably generated as R-module and hence as RG-module. Thus RG
is right X ,-Noetherian, von Neumann regular, and such a ring is right hereditary by a
simple argument, ¢f. [9].

Sufficiency of (H3). Suppose that R is right hereditary and that G is a finite R™'-
group. Let I be aright ideal of RG. Then Iis an R-submodule of the free R-module RG,
sois projective as R-module, since Ris right hereditary. By Lemma 3, /isisomorphic to
an RG-summand of the projective RG-module I ® z RG, so 1 is right RG-projective,
Hence RG is right hereditary in this case.

This completes the proof of Theorem 1.
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