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1. INTRODUCTION

The two most important constructions in combinatorial group theory are
the coproduct with amalgamation and the construction introduced by
Higman, Neumann, and Neumann in [17] and therefore subsequently called
the HNN construction; these two constructions generally occur closely
intertwined. By contrast, the efforts of combinatorial ring theory have been
concentrated on coproducts with amalgamation (e.g., [2]) while interest in
the HNN ring construction has been confined to algebraic K-theory (e.g.,
[16, 26]). The purpose of this article is to present a unified foundation for
the theory of the HNN ring construction based largely on analogy with what
is known for coproducts.

Let us fix our conventions and notation.

All rings will be associative with a 1, and the 1 is to be respected by ring
homomorphisms and module actions.

Let K, 4 be two rings, and a: K > 4, f: K~ 4 two ring homomorphisms.
The associated HNN construction is the ring R presented on the generators
and relations of A together with two new generators /, ¢! and new relations
saying that f,¢~' are mutually inverse and that t"ta(k) t=p(k) for all
k € K. With this presentation, R is an A-ring; that is, there is specified a ring
homomorphism #: 4 = R.

Throughout this article the above symbols will retain the same meaning.

One can specify R in terms of universal properties as the A-ring universal

434

0021-8693/83 $3.00

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.




sl

THE HNN CONSTRUCTION FOR RINGS 435

with a distinguished unit ¢ such that the inner automorphism i,: R - R,
r— t~'rt, makes the diagram ‘

" 4R

N

A—2 5 R

commute. There is another way of describing this. A right A-module M,
can be viewed as a right K-module by pullback along either @ or § and
the resulting K-module will be denoted M, or M, respectively, and a
similar convention applies on the left. Right multiplication by ¢ then
defines an isomorphism R, - xR of (R, K) bimodules, and R is the 4-
ring universal with a distinguished such isomorphism. In the notation of 131,
R=A(,t " :A,~4,), and in the modified notation introduced in (4],
R=A(t1t7": %4, =®4,).

Throughout we shall use a to make 4 into a K-ring and shall view f§ as a
homomorphism from K to the K-ring 4. With this convention in mind we
denote the HNN construction by A,(t, ¢~'; 8). This notation is intended to
be reminiscent of the familiar case where « is an isomorphism, so we can
identify K and 4, and the HNN construction reduces to the skew Laurent-
polynomial ring A[#, ¢~ '; B].

It is useful to know that R can be written as the skew Laurent polynomial
ring S[t,¢”"; 0], where S is the countable coproduct S =-:- A4, Lk oAs
[ I oAp - whose image in R is -~ £24¢™ | Jog,1tA1 ™" [ [x A4 --- and 0 is
the right-shift automorphism corresponding to conjugation by ¢ It is
straightforward to verify that A - St t~';0] has the universal HNN
property and hence S[t,17';0] = AL, t7';B). Since skew Laurent-
polynomial rings are reasonably well understood it might be hoped that
information about coproducts now easily translates to HNN constructions;
this is certainly true in some cases, but usually information gets lost in
passing to the skew Laurent-polynomial ring and we must resort to other
methods.

So far we have recounted the basic folklore on HNN ring constructions,
and we can now briefly sketch what is done in this article. In Section 2 we
recall some global dimension inequalities which have appeared elsewhere
{14,21]. Under quite mild hypotheses that cannot be altogether omitted,
r.gl.dim R is bounded above by

r.gl.dim 4 if r.gl.dim K < r.gl.dim 4
1 + r.gldim A4 if r.gl.dim K > r.gl.dim 4.

sy
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In Section 3, the procedure developed by Cohn [8] for analysing a
coproduct as a direct limit is tailored to fit the description of the HNN
construction used by Waldhausen [26] who attributes it to Cappell. In
Section 4, still following Cohn, we find the machinery of Section 3 works
best where A, A are faithfully flat; it is shown in Section 5 that this
hypothesis suffices for, among other things, R to be right coherent whenever
A is right coherent and K is right Noetherian, which generalizes |26,
Proposition 4.1(2)]. An example adapted from [14] shows that faithful
flatness cannot be weakened to, say, flatness. (It should be noted that Cohn’s
result permits a similar generalization of the corresponding theorem for
coproducts [7]; [16, Remark 1.10]; [26, Proposition 4.1(1)}).

The next section, 6, presents quite general conditions under which the
direct limit structure on R can be converted into a graded structure on left R-
modules induced from A, that is, of the form R ® ,M, for some left A-
module M,. (Here again, the corresponding remarks for coproducts have yet
to appear in the literature.) At this point we restrict a, f to be injective and K
to be completely reducible, that is, a finite direct product of matrix rings over
skew fields or, equivalently, r.gl.dim K = 0. Sections 7-9 are devoted to
reproducing the HNN analogue of Bergman’s thorough coproduct analysis
[2]. In Section7 an argument based on refining the graded structure of
R ® ,M, shows that each of the submodules of R ® M, is (isomorphic to)
an R-module induced from 4. Since every free R-module is induced from 4,
this says in particular that every projective R-module is induced from 4. A
similarly based argument in Section 8 gives a useful decomposition for
surjective homomorphisms between finitely generated R-modules induced
from A. One consequence is that the semigroup (under ®) of (isomorphism
classes of) finitely generated left R-modules induced from A can be described
as the coequalizer of the two semigroup homomorphisms from “finitely
generated K-modules” to “finitely generated A-modules.” The subsemigroup
of all finitely generated projective R-modules can similarly be described as
the coequalizer of the same two homomorphisms with their common
codomain restricted to the subsemigroup of all finitely generated projective
A-modules.

In Section 9, K is (further) restricted to be a skew field, and this forces R
to acquire many of the module theoretic properties of 4. From the preceding
result, A and R have isomorphic semigroups of finitely generated projectives.
If one of 4, R is a fir or semifir or n-fir then so is the other. If A is an n-fir
then the general linear group GL,(R) is generated by the subgroup GL,(4)
together with

(o 1,
0 In—l
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and the elementary matrices, that is, matrices which differ from the identity
matrix in one off-diagonal entry. For n= 1, this says that if 4 has no
zerodivisors then R has no zerodivisors, and the group of units of R is
generated by ¢ and the units of 4 (and is actually an HNN group extension,
as was pointed out to me by Alexander Lichtman). The fact that if A4 is a fir
then A.(t, t“;ﬁ) is a fir is a substantial generalization of the well-known
fact that the skew Laurent-polynomial ring K|r, 1", B] is a fir. (Recall that
K is a skew field here.) ’

In Section 10 we apply the theory to give a relatively short proof of the
Lewin—Lewin embedding theorem [21]: If G is a torsion-free one-relator
group and K is a skew field then the group ring KG can be embedded in a
skew field.

In Section 11 another application of the theory gives purely algebraic
proofs of some of Waldhausen’s results [26]; for example, if G is a torsion-
free one-relator group and K is a regular Noetherian ring then the natural
map Ky(K)— K,(KG) is an isomorphism.

2. HoMmoLoGICAL GENERALITIES

It is a law of nature that an 4-ring R with a universal property has much
of its homological character encoded in the “multiplication map”
R® ,R—- R, and in this respect HNN constructions are exemplary. All of
the arguments and some of the results have been noted previously {4, 14, 21|
but are recalled here for completeness.

As Cartan or Eilenberg observed [6, Proposition 1X.3.2], for any ring
homomorphism 7: 4 — R, the kernel of R ® ,R - R, X ®yt—xy, is the R-
bimodule £2,,, presented on generators

dr (mapping to 1® r—r® 1), reR
and relations
d(na) =0, ac A,
d(r{—s):dr+ds, r,sER,
d(rs)=dr-s+r-ds, r,s ER.

To see this, notice there is a well-defined additive map R® ,R - 0,
sending each r ® s to r - ds, and the composite 0ps~ RO R 2y, must
be the identity since it fixes the additive generators g - dr - s, g, 1, s ER; it
follows readily that

0-02,,R® ,R->R-0

is exact.
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Applying this to the A-ring R =A4,(t, t='; B) with generators £, ¢~ ' and
relations £~ =t~ t=1,t"" a(k) t = B(k) (k € K), we compute that 2, is
the R-bimodule with generators df, dt~" and relations saying that the second
generator dt~'=—t"'dtt™"' is superfluous and that a(k)dt=dtp(k)
(k € K). But the R-bimodule R ,® sR also is presented on one generator
1 ® 1 with relations a(k)(1® 1)=(1® 1) B(k) (k € K). It follows that

R, ® ;R = 2z, = Ker(R® 4R - R).
Hence the R-bimodule sequence
OﬁRa®KBR—>R®AR~>R—>0,
IR 1®t—t®1

is exact. In keeping with our preference for a over B, let us use the
isomorphism R = R to write ‘another exact R-bimodule sequence

0—>R®KR—>R®AR—>R~+0,

1
I®l—1l—t®t™, )

where R is a K-ring via 7a.
As is usual with this procedure, there are immediate consequences.

TueoreMm 1. Let R= At "' B) and My, Ny be right R-modules. If
R, and Ry are projective (or ,R and (R are flat) then there is an exacl
triangle

Ext (M, N) ——2— Ext,(M, N)

N @

Ext (M, N)

of graded groups, natural in M and N. Here & has degree +1, and a*, B*,
n* are the canonical homomorphisms coinduced by pullback along o, B, 1,
respectively. Further,

r.gl.dim 4 if r.gldimK < r.gldim4

gldim R < . . .
rghcim 1+ r.gldimA if r.gldimK > r.gldim4.

)

Analogous results are true for homology, and the statements can be
obtained by changing “N;” to “.N,” “projective” to “flat,” “Ext” to “Tor,”
“41” to “—1,” “coinduced” to “induced,” “r.gl.dim” to “w.gl.dim,” and
changing the direction of the arrows.




THE HNN CONSTRUCTION FOR RINGS 439

Proof.  Since the last term of (1) is projective as right R-module, the
sequence will remain exact under Hom,(—, N) giving an exact sequence

0— N - Hom,(R, N}~ Hom(R, N)- 0,
S (r=f) =fir) - 17

of right R-modules. Now applying Extp(M, —) to (4) gives an exact triangle

(4)

Extg(M, Hom (R, N)) — Ext (M, Hom (R, N))

N4 ®

Ext.(M, N)

of graded groups, where & has degree +1. -

Let us now proceed as far as possible on the supposition that R, is
projective. Here any injective A-resolution of N 4 lifts under Hom (R, —) to
an injective R-resolution of Hom,(R,N), so the canonical map
Ext,(M, Hom (R, N)) > Ext,(M,N) is an isomorphism.  Further,
Hom(R, N) = Hom (R, Hom, (4, N)) so that

Ext.(M, Hom(R, N)) = Ext,(M, Hom (R, Hom,(4, N)))
= Ext, (M, Hom (4, N)).

Now (5) can be rewritten as

Ext,(M, N) — Ext (M, Hom,(4, N))

N4

Ext,(M, N).
Writing pd for projective dimension and id for injective dimension we have

pAyM< L+ pd, M and idg N < max{id,N, 1 + id ,Hom,(4, N)}.

It follows from the latter that
r.gldim R < max{r.gl.dim 4, 1 + sup{id, Hom,(4, N)}},

where the supremum is taken over all right A-modules M. (Notice that an A4-
module of the form Hom(,4,, Ny), where N is a right 4-module, is, in the
terminology of [18], injective relative to K, and we are considering the
supremum of the injective 4-dimensions of the 4-modules that are already
injective relative to K.)

To go any farther we must now suppose further that R x 18 projective. As
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before, Exty(M, Hom(R, N))— Ext (M, N) is an isomorphism, so (5) can
be rewritten in the form (2). Thus

r.gl.dim R € max{r.gl.dim 4, 1 + r.gl.dim K}

and from the previous paragraph, rgldimR 1 +rgldim4 so we have
proved (3). X

The above argument was based on applying Extg(M, Homg(—, N)) to (1);
had we assumed LR, R flat, we would have applied Ext (M ®; — N). For
homology, the arguments are similar and begin by applying Tor® (M, —®x N)
and Torf(M ®, — N) to (1). 1

Let us now use a technique of [4] to show that if
0=r.gldim K < rgldimA4 <1 then r.gl.dim R < 1. In terms of (3) this says
that (3) holds whenever the right hand side is at most 1 (without any
restriction on the structure of R as 4 or K-module). (In connection with this,
it is of interest that neither side of (3) can equal O; since R can be expressed
as a skew Laurent-polynomial ring it has non-unit non-zerodivisors (such as
t + 1) or is trivial.)

We begin by analysing 2« in much the same way as was done for Qpsa-
Since R is generated as K-ring by £, 1~ and all a € A with certain relations,
s0 2y is generated as R-bimodule by dt and all da€ £, with
corresponding relations obtained by “differentiating” the given ring relations.
Thus we have the following.

THEOREM 2. Let R=A{t,t™"; B) and write 2, for the kernel of the
multiplication map A®yA—A. Then there is an exact sequence of R-
bimodules

O_'R®A~QA/K®AR—'-QR/K_’-QR/A—*O

A (6)
l@da® l—da  R®R’

Recall that 4 is right hereditary means r.gldimA4 < 1.

TueoreM 3. If K is completely reducible and A is right hereditary then
the HNN construction R = A(t, t~Y, B) is right hereditary.

An analogous result holds for weak global dimension.

Proof. Let My be any right R-module. Applying M ®,— to the split
exact sequence 0 - 2,/ A @gd - A — 0 of left A-modules gives an exact
sequence 0 > M ®, 82k~ M ®4A - M -0 of right A-modules. Now M is
K-projective so M @4 is A-projective, and thus so is the submodule
M ®, 2, because A is right hereditary. ,

Since R is left K-projective, (6) is a split exact sequence of left R-modules
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and so remains exact under M ®,— to give an exact sequence of right R-
modules

0~>M®A.QA/K®AR—>M®R.QR/K—>M®KR—>O_

But (M®,02,,), and M, are projective so the sequence is split and
(M ®g2,k)x is also projective. By the reasoning in the first paragraph of
the proof, but with R in place of 4, we have an exact sequence of right R-
modules 0+ M ®,02;x>M®,R—>M-0 which happens to be -a
projective resolution of M of length 1. This proves that R is right
hereditary. §

Later we will see that if @, are injective and K is completely reducible
then r.gl.dim R = max{l, r.gl.dim A}, and a corresponding result holds for
weak global dimension. The following three examples illustrate the sort of
aberration that can occur if ¢ or § is not injective. Let F be an arbitrary ring
with r.gl.dim F =n, say; we take K, A to be F-rings and a, 8 to be F-ring
homomorphisms. All statements about r.gl.dim hold also for w.gl.dim.

ExAMPLE 4. If K=Flele’=e|=F X F,A=F, a(e)=1, B(e) =0 then
R is trivial. 1l

ExampLE 5 [14; Sect. 5]. Let K=Fle|le’=e|, A=F(e,x,y,z|e’=e,
xey =z"), a(e)=e, B(e) = 0; then R = F(x,y,z,t,t '|z? = 0) and we know
that r.gldim K =n, r.gldim4 =n + 2 (see [14]) and r.gl.dimR = 0. §

ExampLe 6. If K = Flx|, A = F|y], a(x) = y>, B(x) = 0 then
R =F(y,t,t"|y> = 0). Clearly rgldim K = r.gldim 4 = n + 1,
r.gl.dim R = oco.

Taking n=0 in Examples 5 and 6, we see that (3) can fail if the right
hand side exceeds 1; and we are obliged to accept Theorems 1 and 3 as a
best possible description of an indescribable situation. By contrast, imposing
the natural hypotheses that a and § be injective may improve the behaviour
of R, and we can no longer discern where the hypotheses on the structure of
R as A- or K-module are relevant. It is ironic that here we do not know the
actual importance of the module structures and yet it is here that we will best
understand how they can be described in terms of the K-module structures
on A; cf. Sections 4, 6.

Our final topic of this section is the Euler characteristic. Recall that if a
right R-module M, has a finite R-resolution by finitely generated projectives,

0-P, P, = >P;->M=-0,

then we define y,(M) to be the element 7 ;(—1)'[P;] of K,(R) (the
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commutes. Thus 4 and t4¢~! contain an image of K as K-subbimodule, and
these are to be identified in R. We will write 4/K and tAt™'/K to denote the
corresponding quotient bimodules, isomorphic to _A_/a(K), As/BK),
respectively.

Let us construct inductively around our conditions

M,, is a left A-module and M,,, , is a left K-module given
with K-linear maps M,, > M,, . tM,, »M,, . ,. (7

For n <0 we set M, =0 and (7) is satisfied. For n =0 we are given M,, and
for n=1 we define M, = M, @ tM,, and again (7) is satisfied. Suppose that
n >0 and that (7) holds for n. Then we define M,, , , as the pushout of the
diagram

A ®KM2n+l®At;l kM4,

AN
N
N
N

A®KM2n®At_l®KtM2n M2n+2
Y

—
—
—
—
—
—

MZn (8)

of A-linear maps, where the upper arrow is defined componentwise using the
given maps M,,-»M,, ,, tM,,~»M,, ,, and the lower arrow is a
multiplication map defined using the 4-module structure on M,,. As a
pushout of A-linear maps, M,,,, is a left A-module. We turn now to the
definition of M,,,, which requires the K-linear map M, —tM,, .,
corresponding to m— t(¢t~'m) and formally defined as follows. From 8)
there is a map At '®¢M,,,,—»M,,,, and hence a map
tAt™' @M, > M, ,; composing with My, =K®M,,, , ~
1A1"' @xM,,,, gives the required map M,,,, —M,,,,. Now M,, . is
defined as the pushout of the diagram

M2n+1 M2n+3 (9)

tM2n+2

and this fulfills (7) for n + 1, so we have defined the procedure for induc-
tively constructing the system (M,,).
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The definition (8) of M,,, , yields a map 4 @x M, ~ M,, ., and thus a
map My, =K ®xMy, > A QxMypy 1™ M,,, . This makes (M,) into a
directed system of left K-modules, and we want its direct limit M, to be
isomorphic to R ®,M,. From (8) the composite homomorphism M,, =
M,, ., M,,,, is A-linear, so M, = lim M,, has a left A-module structure
extending the K-module structure. To show that M, is a left R-module we
present an isomorphism ;M > xM,, corresponding to left multiplication by
t. The isomorphism M, ~ ¢tM,,, m — tm, induces an isomorphism M, =
lim M, ~ lim (M, = xM,, 50 M, is a left R-module with this -action.
Notice that the action of 4,¢ and ¢~ ' are all as suggested by the notation
and the constructions (8), (9). It remains to show that the A-linear map
M,— M, has the universal property of My~ R ®, M,, namely, that every
A-linear map from M, to a left R-module N lifts uniquely to an R-linear map
R®,M;—N.

Suppose we are given an A-linear map M,— N, where N is a left R-
module. There is then a unique extension to a K-linear map M, =
M, ® tM,— N that respects 1. Suppose further that for some n >0 there is a
K-linear map M,,,,—~ N such that the composite M, M, ,»Nis A-
linear and the composite tM,, —» M,,,, — N respects L. Then the diagram

A®KM2n+1®A[ﬁl ®xkMipi

/ N\

AQ@M,, ® At ®4tM,, N
Mln

commutes, so there is a unique lifting to an A-linear map M,,,,— N.
Further the K-linear map tM,,,,— N gives rise to another commuting
diagram

M2n+2

SN

tMn+2

and hence there is a unique lifting to a K-linear map M,, ;=N such that
the composites M,,,,—> My, s> N, tMy, ;- M,, ,— N respect the
actions of A and ¢, respectively.
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We have thus proved by induction that for each n there is a unique X-
linear map M, — N which respects the 4, ¢ and ¢~ actions. Passing to the
direct limit gives a unique lifting to an R-linear map M — N, and therefore
M, ,=R®,M,. It remains to describe each quotient M,/im M, ,; for
convenience we abbreviate this to M,/M,_, although we are not assuming
that the map M, |- M, is injective.

THEOREM 8. Let R=A(t,t™";B) and M, be a left A-module. Then the
R-module M =R ®, M, is the direct limit of a directed system of left K-
modules M, , where

M,=0 for n<O,
M, is as given,
M =M,®tM,,
M2n+2/M2n+l ;A/K®KM2n+l/M2n @ At_l ®KM2n+l/tM2n
Jorns —1, (10)
M2n+3/M2n+2 = t4 ®KM2n+l/M2n @ tAt»’ll/K ®KM2n+ l/[M2n
forn+—1 (11)

and additional information is given by
My, s/ Moy ZIM o/ Myyy @ My /My, Joralln, (12)
M2n+3/M2n+2;tMZlHZ/MZnJrl foralln? (13)

My 3/tMyy =My, o/Myy, SJoralln.  (14)

Further (M,,) is a directed subsystem of A-modules such that

My o/ My = A ®M,, /M, @ At™' ®xM,, . \/IM,, Jorn# —1.
(15)

Proof. Since (9) is a pushout, (12), (13) and (14) can be checked by
elementary diagram chasing, the details of which are omitted; of course these
results are immediate if one knows the fact that pushouts commute with
cokernels, itself a consequence of the more general principle that colimits
commute with colimits; cf. [23, Chap. II, Corollary 12.2]. Similarly (8) gives
(15) for ns#—1. Here the image of M,,,,/M,, corresponds to
K®M2n+l/M2n @ O’ SO the quotient M2n+2/M2n+1 EM2"+2/M7_"/
M,,./M,, has the form (10). It remains to prove (11). Left multiplying
(15) by ¢ gives My, ,/tMy, 1A ®x My, /My, ® tAL ™' @My, 1/IM,,,,
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and the image of M,,, /tM,, corresponds to 0 @ K®M,,, /tM,,. Now
using (13) the quotient

M2n+3/M2n+2 = tM2n+2/M2n+1 = tM2n+2/M2n/M2n+l/M2n

which has the form (11). 1

Notice that any structure on M, commuting with the A-action is, by virtue
of the construction, automatically inherited by the M,. For example, starting
with the A-bimodule, R,= ,4, gives a directed system (R,) of (K,4)
bimodules, and lim R, = zR,. Now the M, of the preceding theorem could
have been defined as R, ®, M,; the only reason it was not so defined was to
emphasize the one-sided nature of the construction by eliminating
unnecessary structure.

Theorem 8 gives an inductive description of the M,/M, _, from which we
see that My, 3/Ms,.. =My 3/ Mani 2 © My of My is built up as a
direct sum of K-tensor products C,,, ®x C, ® -+ ®xC of “length” n + 1,
where C, =M, or tM, and for i=1,.,n+ 1, C, is one of the K-bimodules
AJK, At™', tA, tAt~'/K and the tensor products occurring are those where
no cancellation would occur in R. To put this more formally, let us assign
each of the four bimodules a left and right sign, and M, tM, a left sign, as
follows:

+ A4 + +tAt™ /K — + tM,
—A/K+ —A7 - —M,.

The permitted tensor products C,,;® -+ ® C, are those which are sign-
linked, that is for each i = n,..., O the right sign of C,,, equals the left sign of
C,. If the left sign of C,,, is + the tensor product is a summand of
M,,, /M3, and if the left sign of C,,, is — then it is a summand of
M2n+2/M2n+1'

4. LIFTING OF FAITHFUL FLATNESS

Our first application of Theorem 8 will verify sufficient conditions for ,R
to be flat. This will require the notion of a faithfully flat left A-module, that
is, an ,N such that a sequence N, —» N, N, of right A-modules is exact if
and only if the abelian group sequence N, ®,N>N,®,N->N;®,N is
exact. We will only be interested in the case where N is an A-ring so the
following characterization applies: ,R is faithfully flat if and only if n: 4 - R
is injective and ,(R/4) is flat; cf. [5,1.3.5, Proposition 9].

THEOREM 9. Let R=A{t,t™"; B). If xA, 4A are faithfully flat then ,R
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is faithfully flat. If further M, is a left A-module such that M,, M, are flat
then the following hold:

(i) Each of the maps M,—~ M, of Theorem 8 is an embedding and
«(M, /M) is flat.

(i) The map My— M = R ® , M, is an embedding and ,M/M, is flat.

(i) wdy M > wd ,M,.

Proof. To show that R is faithfully flat it suffices to show that 4 —» R is
an embedding and ,R/A is flat; this will follow from (ii) in the case M, = 4.

(i) Notice that each M, ,/im M, is, by Theorem 8, a direct sum of K-
tensor products of A/K, 14, At™', tAt™"/K, M, tM, which are all left K-flat.
Hence each M, ,/im M, is flat. Suppose that n > 0 and that M,,~» M,, , |,
tM,, —»M,, ., are embeddings, as happens for n=0. Since the quotients
My, /My, My, JtM,, = M,,/im M,, | are known to be left K-flat, the
given embeddings lift to embeddings under 4 ®,—, At ' ®,—, respectively.
From (8) it follows that M,,—»M,,,, is an embedding. To show
M,, .~ M,,,, injective it now suffices to compute mod M, :

M2n+ I/MZn"M2n+2/M2n—:~A ®KM2n+l/M2n @ At*l ®KM2n+l/tM2n'

But this map is injective since (M,, . ,/M,, is flat. We have now verified that
M,, .~ M,,, is an embedding, and the verification for tM,, , , - M,,,, is
similar. It then follows from (9) that M,,,,—>M,,,;, tM,,,,— M,, ., are
embeddings, and we have lifted our inductive hypothesis to n + 1, and (i) is
now proved.

(ii) It is clear from (i) that each M, — M, is an embedding and hence
My — M is. For each n > 0 we have, from (15), an exact 4-module sequence

O“’Mzn/Mo*’Mszrz/Mo“*A ®KM2n+l/M2n ® Ar! ®KM2n+1/tM2n_’ 0

and the last term is left A-flat since M,,, ,/M,,, M,,, /tM,, are left K-flat.
Thus if we inductively assume ,M,,/M, is flat, which certainly holds for
n=0, then M, .,/M, is flat. Hence, by induction, every ,M, /M, is flat,
and since flatness is preserved by direct limits, ,M/M, = lim ,M,,/M, is flat.

(iii) Since ,R is flat by (ii), every flat R-resolution of ;M is a flat 4-
resolution, so wd, M > wd, M. Now by (i), wd, M =wd,M,. N

In this theorem we have an example of a statement about
R =A,(t,t7";B) that can be deduced from known facts about coproducts
and skew Laurent-polynomial rings, namely, that ,R is faithfully flat if 4,
34 are; cf. |14, Sect. 5|. However, part (iii) of Theorem 9 is not readily
obtained this way.

An application of these results gives the following.
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CoroLLARY 10. If K is von Neumann regular and a, B are injective then
w.gl.dim R = max{1, w.gh.dim 4}.

Proof. Since 4A, zA are faithfully flat by our hypotheses, ,R is faithfully
flat by Theorem 9, and hence so is ,R. Thus by Theorem 1, w.gl.dim R <
max{l, w.gl.dim A}. By Theorem 9(iii), and the fact that M,, M, are
automatically flat for any ,M,, w.gl.dim R > w.gl.dim 4. Finally, since R is
a skew Laurent-polynomial ring containing the non-trivial ring K, R is not a
von Neumann regular ring and is non-trivial, so w.gl.dim R > 1. §

A phenomenon. exemplified by Theorem 9 is that module properties of
(A/K, ;A/BK) lift to ,R/A. By conirast, the failure of properties to lift from
x4, 4 to ,R is quite common.

ExaMpLE 11 [3,Sect. 10]. Let F be a field, K =F[x], 4 =FO,x ' y),
a(x)=x, f(x)=y. Now 4 has no zerodivisors and so is torsion-free, and
hence flat, as K-module via a or . But ,R is not flat since y becomes inver-
tible in R and this introduces right R-dependence relations on right A4-
independent elements, e.g.,

[(x+1)4 +y4|®,R~ 4 ®,R

/| /|
(x+1)R®@IR R is not injective. |

5. MAYER—VIETORIS PRESENTATIONS OF MODULES

Fix a right R-module M.
A Mayer—Vietoris presentation of M is defined as any exact sequence

0 M(K) ®xR 5> MA)®,R>M~-0 (16)

of right R-moduies, such that M(K), M(A) are right K-, A-modules, respec-
tively, and f is constructed from two K-linear maps

fi M(K)» M(A)g f3: M(K) ~ M(A),
by f(m® r)=film) @ r —f(m)® ~'r.
That M has a Mayer—Vietoris presentation can be seen by applying
M ®,— to (1), which gives
0-M@ROEIM,R-M-0

and here f; is the identity map, and f} is right multiplication by ¢. The disad-
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vantage of this Mayer—Vietoris presentation is that the A-module M bears
almost no relation to the R-module M; for example, M could have a finite R-
presentation and the underlying A-module would have no knowledge of this.
Fortunately, it is often possible to find a Mayer—Vietoris presentation that
takes account of such data. The basic example is M = ¥R, the direct sum of
copies of R indexed by a set X. Here we have

05 *K®yRH¥A4@®t4)®,R—*R -0, (17)

where the notation indicates how the middle term is to be mapped to *R, and
Jx(m)=a(m), fy(m)=1tB(m), or more suggestively f(m@r)=m®r—
mt @t~ 'r. (Of course we could have taken M(K)=0, M(4)=*4, but (17)
will be needed later, and is a better illustration of the general situation.)

Basically then, we want to start from an R-presentation of M and build up
a sequence (16), where M(K), M(A4) have K-, 4-presentations, respectively,
that are connected in some way to the original R-presentation; this should
then give useful information about conditions that are related to presen-
tations, for example, coherence. Our approach owes much to |7, 26].

For simplicity let us concentrate on finitely presented modules, say we
have a presentation

YRR M0,

where X, Y are finite sets. Viewing the elements of the free modules as
columns allows us to view the presentation as a matrix. Further, new presen-
tations of M can be obtained by choosing matrices stably associated to the
given one; recall that two matrices U, V' are said to be stably associated if
there exist invertible matrices P, Q and identity matrices I, I’ such that

(o 1)="(o r)e

By Higman’s linearization-by-enlargement trick (cf. [13,p. 152]) every
matrix over R is stably associated to a matrix with entries from
nA U {t, '}, Multiplying by ¢ and linearizing again we arrive at a matrix
with entries from 74 \U {t}. Let us assume that our original presentation is of
this form. Here the A-submodule N of *R generated by the image of Y lies in
*(nA + tmA) and we have a diagram
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0
l

0-+P-N®,R->NR-0

l l

*(nA + mA)®,R - "R -0

l l
0-0-MA)®R- M -0

! |

0 0

where M(4) = *(n4 + tmA)/N, P is the kernel of N®,R — NR, and Q is the
kernel of M(4)®,R —» M.

To get any more information we have to make some assumptions on R.
Our immediate requirements are injectivity of 4 ® tA - nd + tyd, and
flatness of ,R. Looking ahead, let us make the stronger assumption that A4,
A are faithfully flat (cf. Theorem 9). Now recalling (17) we have a diagram

0 0

L

0- - N®,R -+ NR -0
05 *K@R->*(ADtA)®,R~ *R -0
0- > MA®R - M0

|

0 0

Oe———(@e——@«»————'ﬁ(———o

of exact rows and columns, where the left column is induced. We want to
express Q in the form M(K) ®xR and this will be achieved if we express the
image of P in *K @R in the form Z ®R. In the following technical lemma
we find that P can be so expressed provided that NAXK =Nt"'N*K.
Notice that with a little (necessary) loss of generality we can ensure that
NA XK =Nt~ *K by replacing N with N+ (NRNYK)(4 + t4). This
does not change NR and now NN *K =NRMN XK =Nt 'N*K.

Lemma 12. Let R = A1, t~"; ), where (A, ;A are faithfully flat. Let X
be a set and N a right A-submodule of *(4 +1t4) in XR. If NO*K =
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Nt Y XK and this set is denoted Z then there is an exact R-module
sequence

0-+Z®R->N®,R->NR-O,

where zQri—z®@r—zt®t 'rforall z€ Z,r € R.

Proof. By Theorem 9, R, ,R are flat and AMt4=0. Hence
Z@®RS*K®xR="R and NQ RS ADt4)®,R="R®*R so the
map Z®,R->N®,R is the restriction of v+—-(v, —v) which is clearly
injective. Thus it remains to prove exactness at N ®, R, and since the kernel
P of N®,R-» NR clearly contains im(Z ®@,R), we need only show the
reverse inclusion. By Theorem 9(i) in the case M, =A (and writing R, for
M) R ={JR,,,,, and for n > 0 we have a commutative diagram

N®4Ryin » NRznnEXRan
N(@ARZrH Z/Rln l
2' X(R2n+3/R2n+2)
N@A(A (X)Ktbe/RZn -1
@Atﬂrl@KRZn/RZn—l)
) {l
N®K[R211/R2n—l X(A +tA/K) ®K[R2n/R2n—l
® @

Ntil ®KR2n/R2n«-l X(At‘l + [At—l/K) ®KR2n/R2n—l'

Now by flatness of (R,,/R,,_ 1> kR 24/ R2s—, the kernel of the bottom map is
(NN K) ®gtR,,/Ryp s @ (NtT'MNYK)®gR,,/R,, » which can  be
written Z ®(R,,/Rsy 1 ® Z ®xR,,/R,,_,. The inverse image of this in
N®,R,,,, can be written in a suggestive notation as Z®IR,, +
Zt®t 'R, + N®,R,, S N®,R,,,,. Thus we have described the kernel
of the lower route; since the kernel of the upper route contains
PN (N®4R,,,,) we have
PON®,Ry,2)

SPN[Z®IIR,, +ZtR®t 'Ry, + N®,R,,]

=PN[ZU®1—t®t VR, +Z(1®1—t®1t")R,, + N®,R,,]

C PO [im(Z @ R) + N ®,R,,]

=im(Z ®xR) + PN(N®,R,,)

Now for n=0, PN(N®,R)=PNN=0<im(Z®R), and it follows
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easily by induction that PN (N ®R,,) S im(Z @xR) for all n. Taking the
union over all n gives P < im(Z ®R) as desired. 1

We now have the following generalization of [26, Proposition 4.1(2)].

THEOREM 13. Let R=A,(t,t™"; B), where (A, 4A are faithfully flat. If
K is right Noetherian then every finitely presented right R-module M has a
Mayer—Vietoris presentation

0> MK)®R->MA)®,R—-M-0,

where M(K), and M(4), are finitely presented.

Proof. We have seen that if M, has a presentation YR-¥R->M=-0,
where X', Y’ are finite, then M, has a linearized presentation
YR »*R 5 M -0, where X, Y are finite. We constructed a Mayer-Vietoris
presentation by taking N to be the A-submodule of *R generated by the
image of Y and defining

M(K)=*K/Z, where Z = NRN*K,
M(A) =*(4 + tA)/(N + Z(4 + 14)),

which are clearly finitely generated. Also K is right Noetherian so Z is
finitely generated as it is a submodule of XK. Since N, is finitely generated it
is clear that M(K), and M(d4), are finitely presented. ]

Recall that K is said to be right coherent if every finitely presented right
K-module has a resolution by finitely generated free K-modules. We say that
K is right regular if every finitely presented right K-module has finite
projective dimension over K.

COROLLARY 14. Let R=A(t,t";B), where A, A are faithfully flat.
If K is right Noetherian and A is right coherent then R is right coherent. If in
addition K and A are right regular then R is right regular.

Proof. If K is right Noetherian and A4 is right coherent it is clear from
Theorem 13 and the flatness of 4R, ,R that R is right coherent, and similarly
if we further assume K, A to be right regular then so is R. |

The preceding arguments made frequent use of the faithful flatness of A,
;A and we now wish to show that these hypotheses are not entirely super-
fluous.

ExaMpLE 15 [4, Example 4.2]. Let F be a field, let K = Fx,], and let

A=Fw, W™ X0 Vs 21Xy = 2% 15 Ve =Vn 5 1=0,1,2,..)




THE HNN CONSTRUCTION FOR RINGS 453

be a K-ring in the manner suggested by the notation. Let § be the F-algebra
homomorphism that sends x, to w. Then the HNN extension is

R=F{(x,,y,,2 (X)) St |x,=zx,, s Yy =Vn121=0,1,2,..).

Now K is Noetherian, and we know from [4] that 4 is a semifir, and hence
coherent, but that R is not right coherent since the principal right ideal y,R
is not finitely related.
In this example, 4 is faithfully flat and ;4 is flat but not faithfully flat.
Notice that the R-module M = R/y,R has a Mayer—Vietoris presentation
with M(K)=0, M(A)=A/y,A, but that it fails to provide useful
information.

(Added December 1982: The recent paper by H. Aberg (Coherence of
amalgamations, J. Alg. 78 (1982), 372-385) gives a slick proof of a result
slightly more general than the first part of Corollary 14.

THEOREM (Aberg). Let R = A, {t,t""; B) and suppose R, ,R are flat. If
K is right Noetherian and A is right coherent, then R is right coherent.

Proof. Let M be a right R-module, I a set, and R’ the direct power
viewed as left R-module. It suffices to show Torf(M, R’) =0, for then R’ is
left R-flat, which is one of the characterizations of right coherence. From (1)
we get two exact sequences 0— R ®,(R)>R®,(R')-R -0 and
0-M®R->M®,R->M-0 by applying — ®@p(R") and M ®j —, respec-
tively. Now applying M ®,;— and (—)' to these two exact sequences, respec-
tively, we get a commuting diagram with exact rows

Tor®(M, R ®(R"))
S Tor®(M, R > M ®; (R) S M@, (R") > M ®4(R") -0

Lo

0> (M®.RY S M®,R)Y - M 0.

Since K is right coherent and R is flat, ((R") is flat so R @4(R') is left R-
flat and the leftmost term in the top row vanishes. It suffices then to show
that f is injective, and since h is injective it suffices to show that g is
injective. If M is finitely presented, then g is an isomorphism; as K is right
Noetherian, M is a directed union of finitely presented K-submodules so g is
a directed union of injective maps since R’, R are left K-flat. Hence g is
injective as desired. )
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6. INDUCED MODULES WITH AN INDUCED GRADING

Theorem 8 described an induced module M =R ®,M, as a direct limit;
we now wish to examine the case where this direct limit can be viewed as a
direct sum of the quotient modules.

Throughout this section we use the notation set up in Theorem 8.

Suppose we are given for each of the maps M,_,— M, a retraction
M,— M, _,; that is, the composite M,_,»M,—>M,_, is the identity; and
suppose further that each of the retractions M, — M,_, is K-linear and that
each “even” composite M,, - M,,_; > M,,_, 18 A-linear. Such a system of
data will be called an induced grading on M. It is appropriate to call this a
grading because the K-linear retractions make M isomorphic to the graded
K-module @ M,/M,_,, and what is more important, the A-linear retractions
M,, - M,,_, make M isomorphic to the graded A-module ®M,,/M,, _, and
we know

@M, /M, ,=M,®A4 ®K<®M2n+l/M2n>
" (18)
@At_l ®K (@ M2n+l/tM2n>

by Theorem 8. It is obvious that such a breakdown will provide rather
detailed information on M; what is not obvious is the set of circumstances
under which M has an induced grading. We begin with a rather general
criterion which will be ideal for our purposes.

TuEOREM 16. Let R =A,{t, 1~ ) and M, be a left A-module. If each
of the maps

M2n+1/M2n“’A®KM2n+1/Mzm (19)
M2n+1/tM2n—) BAB ®KM2n+l/tM2n (20)

has a K-linear retraction then R ® ,M, has an induced grading.

Proof. We begin the induction by supposing that n >0 and that each of
the maps M,, > M,,,\, tMy,— M,,,, has a K-linear retraction, which
certainly holds for n =0, by definition of M,. These then induce an A-linear
retraction of M,,— M,,,,, as can be seen by looking at the pushout
definition (8) of M,,,,. Now consider the diagram

M2n4M2n+l”’ M2n+1/M2n —0

I l l

Mzn"Man"’A ®KM2n+1/M2n @ At™! ®KM2n+1/tM2n‘*0~
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We have just seen that the bottom sequence is A-split and we assumed the
top sequence is K-split; further, by the hypotheses of the theorem, the right
hand vertical map has a K-linear retraction. Thus, starting from M,, , , there
are two paths leading to M,, , ,, one around each square, and their sum is a
K-linear retraction M,,,,— M,,,,. The latter when composed with the K-
linear retraction M,,, ,—M,, gives our previous (4-linear) retraction
M,,,,— M,,. Since this is precisely what we are trying to obtain for all n, it
suffices to lift our original inductive hypotheses to n + 1. Now we have a K-
linear retraction of M,,., — M,,., and hence, from the pushout definition
(9) of M,,,;, we have a K-linear retraction of tM,, ,— M,,,;. A similar
argument using the diagram

[MZn_'Mantl %,M2n+1/tM2n"’O

I l l

tMZn”‘)tMZn+2 -4 ®KM2n+1/M2n @ tAt_l ®KM2n+l/tM2n_‘O

gives a K-linear retraction of M,,,,— tM,, ., and thus by (9) we have a K-
linear retraction of M,, , — M,,,, which completes the inductive cycle. 1

The hypotheses of the theorem are most readily verified in the situation
where the ring homomorphisms a, f: K — 4 have K-bimodule retractions;
that is, a, f are injective and A4, =a(K)® A',, ;4;=HK)D 4", for
suitable subbimodules 4’, 4” of A. (This holds, for example, if K, 4 are
group rings and a, § arise from injective group homomorphisms.) Then for
any left K-module (N, 4 QyN=N@® A’ @xN, Az QyN=N® A" QN
and it is clear that (19),(20) have K-linear retractions for any left A-module
M,. The resulting description of R ®,M, as a direct sum of sign linked
tensor products (cf. (18) and Section 3) can be made natural by identifying
A/K, tAt™'/K with the images of A’, t4”t™" in R. Thus the presence of K-
bimodule retractions makes manipulations on R conceptually quite simple; it
is a very powerful hypothesis and we shall see some of its consequences in
Section 11. What we want to investigate now is the sort of induced grading
we can expect if K is completely reducible. We begin with the analogue of
Theorem 9.

THEOREM 17. Let R=A,{t,t"";8). If a,f are monomorphisms and
(A/a(K)), z(A4/B(K)) are projective then n is a monomorphism and ,(R/A),
4R are projective. If, further, M, is a left A-module such that M,, ;M are
projective then the following hold:

(i) There is an induced grading on M=R®,M,, so, as filtered
module, M is isomorphic to (18).

(ii) The map My— M is an embedding and M/M, is projective.

(iil) pdyM > pd,M,.
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Proof. The first part will follow from (ii) in the case M, = 4.

(i) From Section 3 we know that, for each n, (M,/M, _,) is a direct
sum of K-tensor products C,, ® C,_, ® - ® C,, where m = [n/2]. Here
our hypotheses imply each ,C; is projective so it follows that (M, /M,_,)is
projective. For any projective left K-module P the short exact sequence

0P A®P-A/K®P -0 1)

of projective left K-modules splits. In particular (19), and similarly (20),
have left K-linear retractions, so by Theorem 16, M has an induced grading,
and so is isomorphic to (18) as filtered 4A-module.

(ii) This is clear since M is isomorphic to (18) as A-module.
(iii) This follows as in the proof of Theorem 9(iii). #

CoOROLLARY 18. If K is completely reducible and a,f are injective
then l.gl.dim R = max{1, l.gl.dim 4} and r.gl.dim R = max{1, r.gl.dim4}.

Proof. Since K is completely reducible the modules ,4/a(K), ;4/B(K)
are projective, so ,R is projective by Theorem 17. Hence by the left-right
dual of Theorem 1, l.gl.dim R € max{1, l.gl.dim A}. Further, for any left 4-
module M,, the left K-modules ,M,, M, are projective, so by
Theorem 17(iii), pdx(R ®,M,)>pd,M,, and lgldim R >lgldim A.
Finally, since R is a nontrivial skew Laurent-polynomial ring, l.gl.dim R > 1,
which proves the first equality. The second equality follows by
symmetry. M

At this stage we know that under suitable hypotheses, such as a, § being
monomorphisms and K being completely reducible, we can decompose any
induced module M as a nice direct sum of certain strings of K-tensor
products C,,® C,,_, ® --- ® C,. Notice that if each ,C; is free with a
specified basis we get a very useful basis of M. This applies in particular if
K is a skew field; if K is an arbitrary completely reducible ring we need a
slight generalization of freeness defined as follows.

Let K be any ring and E a complete set of orthogonal idempotents for K;
that is, E = {€, .., €5}, €;6;=0y€;, Y €; =1, n0 e;= 0. A left K-module M is
said to be free-relative-to-E if it has a subset X such that M = @,y Kx, and
for each x € X, the left annihilator of x is of the form K(1 — e) for a (unique)
e € E called the left index of x; in this event X is said to be a K-basis-
relative-to-E of M. Where E consists of the identity element, these concepts
coincide with the usual notions of freeness and bases.

If M is a K-bimodule we have a left K-module decomposition
M =®,.; Me; if each (Me is free-relative-to-E, say X, is a basis relative-to-
E, then X = ,., X, is a basis-relative-to-E of M such that for each x € X,
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xe = x for a (unique) e € E called the right index of x. In this event we call
X a left bi-basis-relative-to-E of (M.

Now suppose X is a left bi-basis-relative-to-E of M, and Y a basis-
relative-to-E of N for some N. For each y € Y let e, € E be the left index of
y. Then M@QN=®,., M® Ky ~®,., Me,. Thus M® N has a basis-
relative-to-E given by the family of all x®y, x € X, y € Y, such that the
right index of x equals the left index of y.

THEOREM 19. Let R=A(t,t""; B), E some complete set of orthogonal
idempotents of K, and M, a left A-module. Assume a, § are monomorphisms.
Suppose A, sAz, sAo, Az have left bi-bases-relative-to-E XU a(E),
YU B(E), W, Z, respectively, and ,M,, ;M, have bases-relative-to-E C, D,
respectively. Then a left K-basis-relative-to-E of M = R ® , M, is given by the
Sfamily U of all linked expressions u =c,c,_, -+ C,; that is, the c; are chosen
Jfrom the sets

-X+ =Zt7'- —C
+W+  +tYt'— D

with ¢, chosen from the third column and for i = 1,..., n, ¢, is chosen from the
first two columns so that the right index and right sign of ¢, coincide with the
left index and left sign of c;_,, respectively.

Such a family U is called a Schreier-basis-relative-to-E of M, later we
shall make use of the fact that a Schreier basis is closed under taking
terminal segments, hence the terminology.

Proof of Theorem 19. By hypothesis, ,(4/aK), 3(4/BK), .My, ;M, have
K-bases-relative-to-E, X(mod aK), Y(mod SK), C, D, respectively, and so in
particular are projective. Thus by Theorem 17, M can be expressed as a
direct sum of sign-linked tensor products; by the remarks preceding the
theorem these tensor products have K-bases-relative-to-E given by the
elements of U.

Alternatively, one can prove Theorem 19 directly by constructing a left K-
module N having U as a K-basis-relative-to-E, and then defining on N an 4-
action and a f-action, and verifying N ~ R ® ,M,. The latter verification is
accomplished by checking the universal property—for any left R-module N’
and any A-linear map M, N’ there is a unique lifting to an R-linear map
N-N'. 1
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7. SUBMODULES OF INDUCED MODULES

Throughout this section we assume that K is completely reducible, and
that a, § are monomorphisms. We further fix a left A-module M.

This section, and the next two, are very closely patterned on (2]

Our objective now is to show that any R-submodule L of the induced left
R-module M =R ®,M, has an A-submodule L, such that the canonical
map R®,L,— L is an isomorphism. In other words, a submodule of an
induced module is induced. In spirit the proof will be a reduction argument
similar to the Euclidean algorithm for a polynomial ring over a field; the
essential difference is the quantity of apparatus required.

Let E be a fixed complete set of orthogonal idempotents in K such that
each e € E is primitive; that is, Ke is a simple left K-module. Any left K-
module then has a basis-relative-to-E and we shall call this a left K-basis,
without reference to E. Similarly any K-bimodule has a left bi-basis-relative-
to-E, and we shall call this a left bi-basis.

Let us fix left bi-bases XU a(E), YUBE), W, Z of A, sA5, sdas oAp>
respectively, and left K-bases C, D of M,, M,, respectively. By
Theorem 19, M has a Schreier K-basis, U, consisting of all linked
expressions from

- —_— *l_—- —_—
X+ Zt C (22)
W+ +tYtT'—  +tD.
Consider any linked expression u=c,c, ;- ¢ in U. We define the

length of u to be n, the left sign of u to be the left sign of c,, and the left
index of u to be the left index of c,, denoted e, (an element of E). There is
then a coefficient-of-u map ¢,:M- Ke, arising as the composite
M =@, ,Kv—- Ku~Ke,.

For each n let U,, be the set of u € U of length n and left sign —, and
U,,. the set of u € U of length n and left sign +. Let M,/M, _, denote the
K_-submodule of M spanned by U,, and M, =Y, ., M;/M;_,. Thus M, = 0
for n <0, M, =M, +tM, and for all n >0 M,,,,= (A+A4t""YM,,,, and
M,,, =My, o+ tMy, . This just elaborates on the grading constructed in
the previous section.

Well-order each of the sets W, X, Y, Z, C, D arbitrarily, and order U,
lexicographically reading from right to left. Then U= ) U, is well-ordered,
first by the subscripts # and then by the well-ordering within each U,. For
each x € M and basis element u € U, if ¢,(x) # 0, u is said to be a K-support
of x. For nonzero x € M, we define the leading K-support of x to be the K-
support of x that is greatest under the ordering of U.

Let x be a non-zero element of M and consider the least n such that
x € M,,, . Recalling that M,,, /M, , is isomorphic to the direct sum of
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all sign-linked tensor products C,,,® :-- ® C,, we are motivated to say
that x has length n + 1. Let us examine the image of x in

M2n+3/M2n+l
M2n+3/M2n+2 tA ®KM2n+1/M2n @ tAt—l/K®KMZn+l/tM2n
~ @ ~ ® (23)

M2n+2/M2n+l A/K®KM2n+l/M2n® AtAl ®KM2n+l/tM2n'

If the component of x in M,,, ;/M,, ., is zero we say x is A-pure and this
happens precisely if x € M,, ,,. If x is not A-pure we define the t-leading K-
support of x to be the greatest K-support of x lying in U,,, ; (that is, in fact,
the leading K-support). (Notice that the r-leading K-support of an A-pure
element is not defined.) If the component of x in M,, /M, is zero we
say x is t-pure and this happens precisely if x € tM,,,, ,. If x is not t-pure we
define the A-leading K-support of x to be the greatest K-support of x lying in
Usn.2- (Again, the A-leading K-support of a r-pure element is not defined.)
Let us call an element pure if it is A-pure or ¢-pure, and call the remaining
elements K-pure. Thus a K-pure element is one with an 4-leading and a ¢
leading K-support.

If u€ U,,,, for some n then the K-linear map ¢,: M,,, ,/M,, - K lifts to
an A-linear map @,: 4 @ M,, . ,/M,,— A. Similarly, if u € U,, then ¢, lifts
to an A-linear map @,:At ' ®xM,,/M,,_ —At~". Now the induced
grading allows an identification of ,M with '

My ® A @y (@ Mzm/Mz,,) ® At~ ®K(® MM/M“,I)

and so each u € U induces a left A-linear map @,: M — A @At~ An A-
support of an element x of M is a basis element u such that @,(x) # 0, and
the greatest such is called the leading A-support. Notice that the set of
elements of M which have no A-supports is precisely M.

Let L be an R-submodule of M. Let L(K) be the K-submodule of L
consisting of all elements of L which have no K-support that is the leading
K-support of a pure element of L. Let L(4) be the A-submodule of L
consisting of all elements of L which have no A-support that is the 4-leading
or t-leading K-support of an element of L. Let L,=AL(K)+ L(4), an A4-
submodule of L.

It is clear that RL,< L; to see that equality holds let us prove by
induction that L N M,,,, < RL, for all n. Since this is true for n=—1 we
may suppose it holds for some n > —1. Let x € L N\ M,, , ;. Since we have to
show that x € RL, there is no loss of generality in assuming x &M,,,, and
x&L,. If x€M,,,, then consider the fact that x & L(d): some A4-support u
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of x is the A-leading or t-leading K-support of an element y of L, and we
may assume ¢, (y)=e, and e,y =Y. Since x € M,,,,, it follows from the
definition of A-support and (15) that y € M,,,,, SO ¥ € RL, by the
induction hypothesis. Let x’ =x — @,(x) y- Since there is no “cancellation”
in @,(x)u the leading 4-support of @,(x)y is u; thus the (finite) set of A-
supports of x', arranged in descending order, is lexicographically less than
the set of A-supports of x. But the set of descending sequences in a well-
ordered set is itself well-ordered, so we may inductively assume that
x' € RL,; hence x €& RL,. This proves that LNOM,,,,<RL,. Now
consider the case where x is t-pure: here t"'x €M,,,, so by the preceding
step t'x € RL, and hence x € RL,. This proves that all pure elements of
LNM,,,, lic in RL,. Finally consider the case where x is K-pure. Since
x & L(K) some K-support u of x is the leading K-support of a pure element y
of L, and we may assume ¢,(y) =e, and e,y =y. Since y is a pure element
of LNM,,,, it belongs to RL, by the preceding step. Let x' =x — 0, (x) .
The set of K-supports of x’' is lexicographically less than the set of K-
supports of x so we may inductively assume that x’' € RL,; hence x € RL,.
This proves that L N\ M,, ;< RL,, and by induction this holds for all n.
Hence RLy=L.

It remains to show that the map R®,L,—~M is injective. It will be
important that the only data needed on L(4), L(K) is the following.

Every element of L(K) is K-pure. (24)
Every element of L(4) is A-pure. (25)
Every element of tL(4) is t-pure. (26)

No element of L(K) has a K-support u which is the leading K-
support of a pure element ry, where r € R, and either y € L(K) with
0,(y)=0or y€ L(4). (27)

No element of L(4) has an A-support u which is the 4-leading or (-
leading K-support of an element ry, where r€ R, and either
y € L(K) or y € L(4) with @, (y)=0. (28)

It is immediate from the definitions of L(K), L(4) that (24), (25), (27), (28)
hold. To see (26) let tx € tL(4), say, x € M, ,» —M,,. Then tx € M, ,
and if fx is not t-pure it must lie in My, =M, + IM,,. But then
x€ 1 'M,,+M,, and the leading A-support u of x lies in U,,. Now u is
easily seen to be the A-leading K-support of tx. This contradicts the fact that
x € L(A), so tx must be t-pure.

We are now ready to begin proving that /: R ®,L,— M is injective. To
avoid the ambiguity of the R-action that arises from viewing L, as a subset
of both R ®,L, and M, we use a copy N, of L, for the remainder of the
proof. The result that we want is (i) of the following.
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LEMMA 20. Let R=A,(t,t"";B), where K is completely reducible and
a,f3 are injective. Let Ny, M, be left A-modules and f: R ® N, R ®,M,
be any R-linear map. Suppose that N, can be written in the form
No=NA) ® A®NK) in such a way that the images
L{4)=f(N(A)), L(K)= f(N(K)) satisfy (24)-(28) with respect to a
Schreier basis U of M=R ®,M,.

(i) If the restrictions of f, N(A) - M, N(K) - M, are injective then f is
injective.

(i} If fis surjective then L{A)=M,, L(K) =0 and f is induced from
an A-linear map N, - M,.

Proof. (i) Given a K-submodule P of N=R ®,N,, for each u € U that
occurs as the leading K-support of an element of f(P), we can choose an
X, €P such that the leading K-support of f(x,) is u and further
0. (f(x,)=e,, e,x,=x,. We call e, the left index of x. Let us speak of a
subset {x,} so chosen as representing the leading K-supports for P. It will be
a K-basis of P if the restriction of f; P> M, is injective. Similarly we define
subsets representing the A-leading K-supports for P, and subsets representing
the t-leading K-supports of P. Still assuming that P —» M is injective, these
will be K-bases if no element of f(P) is t-pure, A-pure, respectively.

Assume the hypotheses for (i) hold and let *B, ~B represent all t-leading
(=leading by (24)) and A-leading K-supports for N(K), respectively.
Further, let ~C represent all A-leading (= leading) K-supports for N(4) and
*C represent all rleading (= leading) K-supports for IN(4). By the
preceding paragraph each of these is a K-basis since (24)-(26) hold.

Let V' denote the complement of *B in the family of all linked
expressions constructed from

X+ —Zt' — --C —°B
(29)
+ W+ ey ' — +*tC + * B

that is, ¥’ looks like the family of all linked expressions constructed from
—-X+ —Zt7' — —("CUX(*B)U  B)
+ W+ +1Yt ' — + (*CUtW('B))
with the obvious interpretation of tW(*B), X(*B). Here the third column
gives K-bases of N(4)+ AN(K)=N, and tN(4) + tAN(K) = tN,, respec-
tively. It follows that ¥’ is a K-basis of N=R ®,N,. Further *B and ~B

are K-bases for the same K-submodule, N(K), so the set

V=(V'-"B)U"'B
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is again a K-basis for N, and is the complement of ~B in the family of all
linked expressions constructed from (29).

To prove that f is injective we shall show that the f(v) (v € V) have
distinct leading K-supports.

Let d,, --- d, be a linked expression in ¥ with m > 1. We claim that the
leading K-support of f(d,, --- dg)=d,, --- d . fd, is d,, --- d,u, where

the A-leading K-support of fd, if the right sign of d, is —
the t-leading K-support of fd,, if the right sign of 4, is +.

Since d,,..d,d,#+0 it follows that d,..de,#0 (since e,d,=d,) so
d,..du+0 is therefore a K-support of d,,... d,fd,. Any other K-support
can, for some K-support v of fd,, be written d},... d]v, and this is either of
shorter length, or of the same length and smaller in the lexicographic
ordering since v must then be lexicographically less than u. This proves that
f(d,..d,) has leading K-support as claimed. It also proves that every
element of f(V — * B) is pure.

For each n and each u€ U,,, let b, € ~ B, ¢, € ~ C denote the element, if
any, whose image has A-leading K-support u. To emphasize the t-purity of
elements of U,,, ,, let us denote them by tu, where u need not be an element
of U. For each tu € U,,,,, let b,, € * B,c,, € * C denote the element, if any,
whose image has t-leading K-support ru. Then by the preceding paragraph,
the leading K-support of f(v), v=4d,,...d, € V,isd,, ..d,tuif dy=»b,, or c,,
and isd, ..duifdy,=b, (somz1)orec,.

With the aim of getting a contradiction suppose that two distinct elements
v=d,..d,, v'=d,,..d) have images with the same leading K-supports
dy.diQu=d.,.,..d|[t]u, where, say, m>m’, and (Hu, [t|u’ €U and
there are four possibilities as to the presence or absence of #'s. From the
construction of U, d,...d (t) u=[t]u’, where n=m —m’.

Ifn=0then (u=[t]u' sou=u'andv=d,,..d b, v =d,..dc,,
or the other way around. Then either b,, ¢, are both defined, or b,,,c,, are
both defined. In the former case f(b,) is an element of L(K) with a K-
support u that is the leading K-support of a pure element f{c,) € L(4), which
contradicts (27). Similarly, in the latter case, f{b,,) is an element of L(K)
with a K-support tu that is the leading K-support of a pure element
t-t7*f(c,), where t € R and t~'f(c,,) € L(4), which also contradicts (27).
Hence n > 0.

There are now essentially two cases: dy = by, dy= ¢, -

If dy=by,, then the element f(dy) of L(K) has a K-support
[t|u'=d,..d,(f)u that is the leading K-support of a pure element
fd,...d, d,), where either

(i) dy=by, so d,...d, €ER and fd, € L(K) with ¢, 4,,.(fd))=0
since n > 1, or

R

win
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(i) dy=Clyu 5O dyer dy() ER and (¢7") fdy € L(A),

and (27) is contradicted in any event.

If d=c,, then the element [t~']fdy€ L(4) has an A-support
d, ,..d;(t)u that is the A-leading or t-leading K-support of an element
f(d,_,...d,), where one of the following holds,

(i) do= by, 50 du_y i € R and fd, € L(K), or
(i) dy=c,s0d,_,..d;ER and fd, € L(A) with q)d,,ml...d,u(fdo) =0
since u is the A-leading K-support of the A-pure fd, and is therefore longer
than any A-support of fd,, or '
(i) dy=c, SO dy_i- d,teR and 1~'fd, € L(4)  with
‘pd",,...d,m(t “1fd,)=0 since tu is the leading K-support of the f-pure

fdy € tMy;,; — My o5 58Y, and is therefore longer than any A4-support of the
A-pure t " 'fd, €E My; 5,

which contradicts (28).

Hence the images of distinct elements of V have distinct leading K-
supports, which means that V has a faithful image which is a K-basis of the
image of f. Hence [ is injective.

(ii) Now suppose that f is surjective. Without loss of generality we
may retain the hypotheses of (i) by dividing out of N(A), N(K) their
respective intersections with the kernel of /. Let ¥ be as in the proof of (i);
by the surjectivity of f any element of M, can be written as a K-linear
combination of elements f(v), vEV, and by considering the leading term of
such an expression we see that all f(v) must lie in M, and so in particular
are A-pure. From the form of V, the only possibility is for the v to liein ~C.
Hence f(N(4)) 2 M. Let N'(A) be the inverse image in N(4) of M, so the
composite

R ®AN,(A)**R®AN0”’R ®.M,

is the identity. Since the right hand map is an isomorphism by (i), so is the
left hand map. But this map is induced from the inclusion N'(4) — Ny, and
R, is faithfully flat, so N'(A) = N,. Thus L(K) =0,LA)=M,. 1§

TuporeM 21. If R=A,(t, t7'; B), where K is completely reducible and
a, B are injective then any R-submodule of an induced R-module is
isomorphic to an induced R-module. 1

COROLLARY 22. Every projective left R-module P is of the form
R ® Py, where P, is a projective A-module.

Proof. As a submodule of a free, hence induced, R-module, P is of the
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form R®,P, for some left A-module P,. But by Theorem 17(iii),
hd Py < hdg P =0 so ,P, is projective. N

8. HOMOMORPHISMS BETWEEN INDUCED MODULES

In this section we again take K to be completely reducible (given with the
set E) and a, § to be monomorphisms.

Suppose that N,, M, are left A-modules and we wish to determine the R-
linear maps f: R ®,N,— R ® M, (or equivalently the A-linear maps N, —
R ®,M,). The immediate example is that of a homomorphism R ®, f;:
R®,N,~» R®, M, induced from an A-linear map f;: Ny~ M,. In very
trivial circumstances these are the only homomorphisms, but in general there
are others, and a description depends on a certain type of R-linear
automorphism of N =R ®,N, defined as follows. Let : N— R be an R-
functional and n any element of the kernel of ¢; then writing # for the R-
linear map R — N which sends 1 to n, we see @/i: R — R is zero and hence
ly,—Ap: N- N is an automorphism with inverse 1,+Ag. Such an
automorphism is called a transvection. We will say that a transvection
ly—Ap of N=R ®,N, is Ny-based (or less precisely 4-based) if ¢ is an
induced functional ¢ =R ®,0,:R®,N,—~ R ®,4, and n=rn,, where
r€R and n, is in the kernel of ¢,: Ny— A. In this case Ny—» R ®,N, by
X o x — @o(x) rng.

Since an N-based transvection depends on the choice of N in N, we are
interested in methods for finding new N,’s. One such method is applicable if
N, is written in the form N(4) @ 4 ®,Kx, x € Ny, for then we can replace
it with N(4)® At ' ®xKx; and vice-versa. This will be called a t-factor
change of basis; it is not an automorphism of N but a rewriting of the
presentation of N as an induced module. Combined with the notion of 4-
based transvections it provides a group of automorphisms of N that is
sufficiently large for our purposes.

In the next section we will reap the interesting consequences of the
following technical result.

THEOREM 23. Let R=A,t,t"";B), where K is completely reducible
and a,B are injective; let Ny, M, be left A-modules and
f:R®,N,— R ®,M, be an R-linear map. If f is surjective and N, is finitely
generated then f can be written as a composite of finitely many tfactor
changes of basis and A-based transvections of N=R ®,N,, followed by a
homomorphism induced from a surjective A-linear map f, to M.

In particular M, is finitely generated.

Notice that f; will be an isomorphism if and only if f'is an isomorphism.
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Proof. Obviously N, can be written as N(4) & 4 ®xN(K) for a finitely
generated A-submodule N(4), and a finitely generated K-submodule N(K), of
N,; for example, take N(4) = Ny, N(K) = 0. Given such a representation we
write L(4)=f(N(4)), L(K) =f(N(K)). We wish to alter N(4), N(K) and f
so as to transform L(A4) into M,, L(K) into 0.

Let U be a Schreier basis for M = R ®,M,. As N(K) is finitely generated,
only finitely many elements of U occur as K-supports of elements of L(K);
similarly, only finitely many elements of U occur as A-supports of elements
of L(A). To measure the effectiveness of our procedures we associate with
L(A), L(K) a totally ordered set as follows: For each n let L(4), denote the
(finite) set of elements of U, which occur as an A-support of an element of
L(A); and similarly let L(K), be the set of K-supports for L(K) in U,. Now
totally order the disjoint union of these totally ordered sets by putting

L(K)2n+2>L(A)2n+l>L(A)2n>L(K)2n+l>L(K)2n>L(A)2n41 e (30)

The resulting totally ordered (finite) set will be called the index of the pair
L(A), L(K). The set of indices is well-ordered by comparing two by the
largest elements in the greatest of the sets (30) in which they differ.

If L(A), L(K) fail to satisfy any one of conditions (24)—(28) then a
remedial operation can be performed that will reduce the index.

If (24) fails then some x € N(K) is such that fx is pure. If the leading K-
support is # we assume e,X=X and ¢, (fx)=e,. The map ¢,/:
N(K) » M - K has image Ke, and so splits and N(K) = N'(K) ® Kx, where
N'(K) is the K-submodule of N(K) consisting of all elements whose image in
M does not have u as a K-support. Now if fx is t-pure, with u € LK)y
say, then apply a t-factor change of basis and replace N(K) with N'(K) and
N(A) with N4) @ At~ ' ® Kx, so the A-supports of f(¢t~'x) add elements
to L(A),, 1> L(A)yy_2s but the element u has been removed from
L(K)y,,, which reduces the index. Otherwise fx is A-pure with
u€ L(K),,,,» say, and we replace N(K) with N'(K), N(4) with
N(A) ® A ®,Kx, which removes u from L(K),,,, and adds the 4-supports
of fx to L(A)3,4 1> L(A)355-» Which reduces the index.

If (25) fails then some x € N(4) is such that fx is not A.pure. Thus
fx € (M,, + tM,,) — M,, for some n, and hence the leading A-support, u,
say, of fx is the t-leading K-support of fx and @,,(fx)=¢,(fx). We may
assume e,,x = x and ¢,,(fx) = e,. Now the map o, fiNA)—- M- A has
image Ae,, and so splits and N(4)= N'(4) ® A ®Kx, where N'(4) is the
A-submodule of N(4) consisting of all elements whose image in M does not
have fu as an A-support. Replace N(4) with N'(4) and N(K) with
N(K) ® Kx. This removes fu from L(A),,,, and adds the K-supports of fx to
L(K)yns1> L(K)yps--s which reduces the index.
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If (26) fails then some x € N(4) is such that #x is not t-pure. Thus
SxE€ M,, +1t"'M,,)—M,, ., for some n, and hence the leading 4-support,
u, say, of fx, is the A-leading K-support of ¢fx, and @, (fx)=
7o, (tfx)E At"'. We may assume e, tx =tx and ¢, (t/x)=e,. Now the
map @,fN@A)->M-At~' has image At 'e, and so splits and
NA)=N'(4)® At~ ®Ktx, where N'(4) is the A-submodule of N(A4)
consisting of all elements whose image in M does not have u as an A4-
support. Apply a rfactor change of basis to replace N(4) with N'(4) and
N(K) with N(K)@® Ktx. Now f(tx)E€M,, +M,,=M,, , so we have
removed u from L(4),,, and added the K-supports of flirx) to L(K),,,,,
L(K),,s., which reduces the index.

If (27) fails then some element of L(K) has a K-support u that is the
leading K-support of a pure element rfy, where r € R and either y € N(K)
with ¢,(fy) =0 or y € N(4). We may assume e, ry =ry and ¢,(f(ry)) =e,.
Extend the composite ¢,f: N(K)»>M—-K to an A-linear functional
W, NA) DA ®N(K)—> A vanishing on N(4), so that y,(y)=0 in either
case. There is then an N, -based transvection sending each x € N, to
x — w,(x) ry. Replacing f by its composite with this automorphism of N does
not affect L(4) and it removes u from some L(K), and adds the lower K-
supports of flry) to L(K),,, L(K),_1,..., which reduces the index.

If (28) fails then some element of L(4) has an 4-support u (or tu) that is
the A-leading (or f-leading) K-support of an element rfy, where r € R and
either y € N(K) or y € N(4) with @, (/) = 0. We may assume e, ry =ry
and ¢, (f(rv))=e,,. Extend the composite 1D f:NA) > M- At - 4
(or @,/ N(A)-> M- A) to an A-functional ¥ ,,: N,— 4 vanishing on
N(K), so that ¥.,,(»)=0 in either case, There is then an N,based
transvection sending each x €N, to x— W, (x)t 'ry (or x— ¥, (x)ry).
Replacing f by its composite with this transvection does not affect L(K) and
it removes (¢) u from some L(4), and adds the lower A4-supports of f{ry) to
L(A),, L(A4),_ s which reduces the index.

Thus we can continue reducing the index of the pair L(4), L(K) by
composing f with 4-based transvections, by performing t-factor changes of
basis, and by performing summand transfers between N(4) and N(XK) (which
do not change N,) as long as conditions (24)—(28) are not satisfied. By the
well-ordering of indices, a finite number of these operations suffice to make
(24)-(28) satisfied. Then by Lemma 20(ii), L(A)=M,, L(K)=0 and [ is
induced from a surjective A-homomorphism to M,.

What this proves is that there is an automorphism g of N that is the
composite of finitely many ¢factor changes of basis and A-based
transvections such that fg: N+ N— M is induced from a surjective A-linear
map. Since g~ ' is made up of the same types of automorphisms as was g,
the result follows. Nl
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COROLLARY 24. If an induced R-module R ® M, is finitely generated
then the A-module M, is finitely generated.

Proof. If f:R" - R ®, M, is surjective, the preceding theorem applies
with N,=A4", so ,M, is finitely generated. [

9. PROJECTIVE MODULES, FREE IDEALS AND
THE GENERAL LINEAR GROUP

Let us consider Theorem 23 in the context of categories. We write K-mod
for the category of finitely generated left K-modules and let S, (K-mod)
denote the additive semigroup of isomorphism classes of objects of K-mod
under the operation induced by the direct sum, ®.

The homomorphisms K 3§ A »" R induce semigroup homomorphisms

S o (K-mod) :‘;; S (4-mod) - S5 (R-mod)

under tensor product, and the two composite homomorphisms are equal. Let
us write S @ (R ®,mod) for the image of #. Then the following can be
deduced.

THEOREM 25. Let R=A(t,t"";B), where K is completely reducible
and o, are injective. Then 1':Sg(A-mod)— Se(R®,mod) is the
coequalizer of the semigroup homomorphisms d, f. In particular, ifKisa
skew field then 7j’ is an isomorphism.

Proof. From the preceding remarks 7 factors through the coequalizer
and it remains to determine the conditions under which n([M,]) = n([N})
for [M,], [Ny] € Sg(4-mod). Thus we are considering an R-isomorphism

R®O,My=R®,N,
of two induced modules, which by Theorem 23 can be decomposed as
R®My=R@M" =R M =R M= - =RQ,M",

where M{" = N,, where the automorphisms are A4-based transvections or
induced automorphisms, and each M{*? is obtained from M{’ by a t-factor
change of basis. We wish to show that [M,], [M}"]...., [M{"”] are identified
in the coequalizer of &, ff, so we are reduced to considering the case where
N, is obtained from M, by a t-factor change of basis. Thus we may write

M,~L,®A®RKx, No=L,®At™' QxKx=L,®Az®,Kx
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and hence [M,] = [L,] + d[Kx], [Ny] =[L,] + B[Kx] in Sg(4-mod). From

this it is clear that [M,], [N,] have equal images in the coequalizer of 4, f,
so the coequalizer factors through 7’ and the result follows. [

Our interest in Theorem 25 lies in its applicability to projective modules.
Let us write A-pmod for the full subcategory of 4-mod whose objects are the
finitely generated projective A-modules. Since K-pmod = K-mod for K
completely reducible, we have the following.

THEOREM 26. Let R=A.{t, t"";B), where K is completely reducible
and a, § are injective. Then

Se(K-mod) 3 S (4-pmod) - S (R-pmod)

is a coequalizer diagram in the category of semigroups.

Proof. Since shrinking the common codomain of a, § has the effect of
shrinking the coequalizer, it suffices to show that #(S @ (4-pmod))=
S @ (R-pmod). But this equality is immediate from Corollaries 22 and
2. 1

CoroLLARY 27. If K is a skew field then S z(A-pmod)— S g (R-pmod) is
an isomorphism. |

The completely reducible rings K for which Corollary 27 holds are
precisely the finite direct products of skew fields of distinct characteristics.
For if K is such a ring then for any 4, &, f§ are obviously equal. Conversely,
if K is not such a ring, let F be the smallest completely reducible subring of
K, necessarily a finite direct product of prime fields of distinct charac-
teristics. Let 4 be the coproduct KII. K, and let a, f: K— A4 be the
canonical maps into the first and second factors, respectively, so
A=a(K)U.B(K)and R=A,{t,¢t "; )= KU, F|t,t']. In the diagram

S »(K-mod)
S o (F-mod) . Sy(A-pmod) — S g(R-pmod)
S (K-mod)

of semigroup homomorphisms, S (F-mod) is a proper subsemigroup of the
semigroup Sg(K-mod), and by [2, Corollary 2.11], S (4-pmod) is the
abelian-semigroup coproduct of two copies of S (K-mod) amalgamating
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Sg(F-mod). From the form the relations take it is not difficult to show
that S (K-mod)— Se(A-pmod) is not surjective. Now by Theorem 26,
S (R-pmod) is obtained from Sg(4-pmod) by identifying the two images
of Sg(K-mod). Thus Sq(R-pmod) collapses down to Sg(K-mod) and
S (A-pmod) S o(R-pmod) is not injective.

Henceforth we assume that K is a skew field. It is now unnecessary to
specify that a, § be injective, for if they are not then 4 = 0 and all our results
hold trivially.

We say a ring 4 is projective-free if every finitely generated projective A-
module is free of unique rank, or equivalently S,(Z-pmod) - S o(A-pmod) is
bijective.

THEOREM 28. IfR=A,{t,t"";B), where K is a skew field then each of
the following classes of rings contains R if and only if it contains A:

(i) projective-free rings;

(ii) left firs;
(iii) nfirs, where n is a natural number;
(iv) semifirs.

Proof. Part (i) is immediate from Theorem 26; (ii) now follows by
Corollary 18 and the fact that left firs can be characterized as projective-free
left hereditary rings; cf. {11, Theorem 0.2.9]. To see (iii), let 4 be an n-fir
and M an n-generator R-submodule of a free (hence induced) left R-module
F. By Theorem 21, M is induced, say, M =~ R ®,M,. By Theorem 23 any
surjection R" > M can be written as R"=R ®,L,~» R®,M,, where
L,— M, is a surjective A-linear map. By Theorem 25, R®,A"=R®,L,
implies L, = A" so M, is an n-generator submodule of the A-module ,F. But
,F is free by Theorem 17, so ,M, is free and hence M is free. The
uniqueness of rank is clear from Corollary 27. Conversely, let R be an n-fir
and M, an n-generator A-submodule of a free A-module F,. By the left-right
dual of Theorem9, R, is flat and R®, My~ R®,F, is injective. So
R ®, M, is an n-generator R-submodule of a free R-module and so is free of
unique rank. Now by Theorem 25, ,M, is free of unique rank which proves
(iii). Now (iv) follows by considering all natural numbers n. i

For our next applications we consider the general linear group GL (R) of
n X n invertible matrices over R. If x and z are a column and a row vector of
length n over A such that zx =0 then for any y € R, I — xyz is an element
of GL,(R), and we shall call such a matrix an A-based transvection matrix.

THEOREM 29. Let R=A.{t,t"';B), where K is a skew field. Suppose
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that n is an integer such that for all left A-modules P, if A @ P=A" then
P~A""'. Then GL,(R) is generated by GL,(4),

(o 1,
O InAI

and the A-based transvection matrices.

For n=1 this says that if one-sided inverses in 4 are two-sided inverses
then the group of units of R is generated by the units of A4, ¢ and
{1 —xyz|zx=0, z, x € A, y ER}.

Proof. Any element of GL,(R) acts as an R-automorphism of R" by
right multiplication. By Theorem 23 any automorphism of R”" =R ®,4" can
be written as a composite of isomorphisms of the following types:

induced isomorphism R ® ,M,~ R ®,N,,
A-based transvection R @ M,~x R ®,M,,
t-factor change of basis R®,M;=R ®,N,.

In the first and last factors of this decomposition R ®,M, and R ®,N,,
respectively, are given in the form R"=R ®,A4" which means that the
specified R-bases are induced from A-bases of M, N,, respectively. It is
clear that we are free to specify n-element 4-bases for all the other M, N,
that occur, and to let the R ®,M,, R ®,N, have the induced R-bases. This
then gives a matrix factorization of our element of GL,(R). Clearly, the
matrices corresponding to 4-based transvections in our factorization are A-
based transvection matrices, and the matrix corresponding to the induced
isomorphism is an element of GL,(4). Finally, for a t-factor change of basis,
we know from our hypotheses on n, 4 that some automorphism of M,
carries the given A-basis of M, to an A-basis v,..., v, such that t*'v,,.., v,
is an A-basis of N,, so the matrices representing t-factor changes of basis
belong to

0

oL, (g

) GL,(A).

n—

This completes the proof. 1

A description of A-based transvection matrices is possible in the case
where A is an n-fir. Here, for a row z and column x of length n over 4,
zx =0 implies the existence of a U € GL,(4) and a partitioning such that
U=(0 *), U 'x=(¥). Then U ', —xyz) U=1,—(§) (O *)=( /),
which is a product of elementary matrices (that is, matrices that differ from
the identity matrix in one off-diagonal entry).
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CorOLLARY 30. Let R=A,{t t™";B), where K is a skew field and A is
an n-fir. Then GL (R) is generated by GL,(A),

(o 1..)
0 In—l

and the elementary matrices. [

Alexander Lichtman has pointed out to me the interesting fact that in the
case n = 1 we get an HNN group extension; let us write Un(R) for the group
of units of R.

COROLLARY 31. Let R=A,{,t";B), where K is a skew field and A
has no zerodivisors. Then Un(R) is the HNN group extension determined by
the two maps from Un(K) to Un(A).

Proof. For each of the subgroups Un(aK), Un(K) of Un(4) choose a set
of left coset representatives {1}U X, {1}U Y, respectively. Then the left
action of Un(K) on Un(4), Un(tAt™"), Un(td), Un(4t™') has as a
transversal {1} U X, {1}UtYt™!, {r} Uy, {t"'}U Xt !, respectively. We
consider the following signed sets:

- X o+ —hyuxe ! —
+ {1} Uty + + oyt -

Notice that a sign-linked expression ¢,c,_,..c, cannot vanish in the
corresponding tensor product C,® C,_, ® --- ® C, (cf. the last paragraph
of Section 3). In particular, each nonempty sign-linked expression is different
from 1 in R. It follows that that HNN group extension embeds in Un(R),
and by Corollary 30 is all of Un(R). }

COROLLARY 32. Let R=A(t,t"";p), where K is a skew fleld, and
suppose that X is a column of length n with entries from an induced left R-
module. Then there is a U € GL ,(R) such that R ®,A"(UX)—~ R"(X) is an
isomorphism.

Proof. Essentially this was obtained in the first part of the proof of
Theorem 28(iii): there is an A-submodule M, of R"X such that we may
identify R"X with R ®,M,. The surjection R"— R"X can be factored as
R"xR®,A" +R®,M,=R"X, where the first factor, call it U™, can be
viewed as an element of GL ,(R), and M,=A"UX. 1

COROLLARY 33. Let R=A,(t,t™";B), where K is a skew field and
suppose that X, Z are matrices over R such that XZ = 0. Then there exist an
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invertible square matrix U over R, and (not necessarily square) matrices B,
C over A such that

X=X'BU, UCZ =2, BC=0.

In particular, if xz =0 in R there exist a unit u of R and elements b;, c; of A
such that

x=(x{b + - +x,b)u”t, ulc,zi+ - +cyz))=2z, bic;=0.

Proof. Say X is rXn, and Z is n X c. We view X as a row vector
{x, .., x,) with entries from "R, and Z as a column vector

)

n

with entries from RC. Corollary 32 implies that for some U € GL,(R),
R ®,A"UZ - R"Z is an isomorphism. Let us replace Z with UZ and X with
XU™'. Then under the isomorphism 'R ®,A"Z —"R"Z the expression

" Xy ®z, is mapped to XZ=0 so is already O in
'R®,A"Z ="R®(A"/Ker(Z: A" - R)) which means that X is in the
image of "/R®, Ker(Z: 4" - R°) in 'R®,A" = "R™;, that is, there is a
matrix B over 4 such that X =X’ B, BZ =0. Say B is p X n. By flatness of
LR, Ker(B: "R - PR¢) = Ker(B: "4 - P4) ®,R so Z is in the image of the
latter in "R¢; that is, there is a matrix C over 4 such that BC =0,
cz'=z. 1

The above proof incorporates the following correction to |2] supplied by
Bergman: In the proof of [2, Corollary 2.16(ii)] the set V appearing at
[2, p. 11, lines 6-8] should be replaced with a finite subset of itself such that
VR still contains y.

10. THE LEWIN-LEWIN EMBEDDING THEOREM

Fix a skew field K and a torsion-free one-relator group G.

Using combinatorial group theory and combinatorial ring theory
Lewin-Lewin [21] constructed a skew field having the group ring KG as a
subring. The difficulty inherent in obtaining this result was further
aggravated by the limited information then available on the HNN ring
construction. Now that more is known we can clarify the ring-theoretic part
of their proof by translating the coproduct-and-skew-Laurent-polynomial
arguments into HNN arguments. Our account is self-contained apart from
the group-theoretic result {21, Proposition 2] and some fundamental facts
about semifirs which we summarise in the next three results.
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THEOREM 34 (Cohn). Let A— B, A— C be injective ring homomor-
phisms.

(i) If (B, ,C are free on bases X'\J {1}, YU {1}, respectively, then the
coproduct B11, C amalgamating A is free as left B-module on the family of
all sequences of alternating strings y,x,y,X, ... in X, Y not beginning with an
element of X (and including the empty sequence).

(ii) If A is a skew field and B, C are semifirs then B, C is a semifir.
Proof. (i) See {8] or [2].
(i) See [10}or [2].

THEOREM 35. Let a: A — B, B: A— B be injective ring homomorphisms.

(i) If B, 4B are free on bases XU {1}, YU {1}, respectively, then the

HNN extension B, (t,t™';p) is free as left B-module on the SJamily of all
linked expressions constructed from

- X + — Xt 'u it -
+ YUt} + + oyt =

not beginning with an element of X or Xt~' (and including the empty
expression).

(i) If A is a skew field and B is a semifir then B (t,t”";p) is a
semifir.

Proof. (i) This follows from Theorem 19 and is not difficult to prove
directly.

(i) This is the “if” half of Theorem 28(iv). 1§

Notice that, by induction, Theorem 34(ii) and Theorem 35(ii) each imply
that for a free group F the group ring KF is a semifir. (It is in fact a fir.)

Recall that for any ring R and set X of matrices over R there is a ring
homomorphism R — R(Z~') that is universal with the property that each
element of  is carried to an invertible matrix. We call R(XZ ") the matrix
localization of R at X. An n X n matrix 4 over R is said to be Sfull over R if
it cannot be factored 4 = BC, where BisnXn—1and C isn—1xn

THEOREM 36 (Cohn). If R is a semifir and @ the set of full matrices
over R then R(®~ ") is a skew field, denoted U(R).

Proof. See [11,p.283] or [22]. &

We record two simple consequences, essentially due to Cohn.
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CorOLLARY 37. If R is a semifir and X a set of matrices over R such
that R(Z™") is again a semifir then UR{X ")) = U(R).

Proof. Let @ denote the set of all full matrices over R and write @ for
the image of @ over R(X~'). Since R(X~') is a semifir, every invertible
matrix over R(Z™') is full so X< @ and by universal properties
R(Z-'WP 'Y=R(®~ 'Y= U(R). Thus every element of & is full over
R{(Z~") and U(R{(X ")) is a matrix localization of U(R). But these are both
skew fields so UR)=URE ). 1

CoroLLARY 38. If A,B are K-rings that are semifirs then
UlUA) U B| = U(4 11, B).

Proof. U(A)Ug B is a matrix localization of 41l B and the result
follows by Coroltary 37. |

The basis of the Lewin-Lewin proof is a delicate induction based on
lifting up information through HNN extensions. To simplify the exposition
we introduce the following somewhat technical definition.

Let A —» B be a ring homomorphism, where 4 is a semifir and ,B is free
on a basis containing 1 (so 4 — B is injective). A ring homomorphism B — C
will be said to lock A — B if the composite 4 - B - C factors through.the
natural map 4 — U(4), and the multiplication map U(4)®,B - C, is
injective. The latter condition is equivalent to the left 4-basis of B being left
U(A4)-independent in C, and in particular B — C is injective. Where B is
viewed as a subring of C, we say C locks A — B; if, further, 4 is viewed as a
subring of B then C is said to lock A in B.

We begin with the transitivity property.

LEMMA 39 (Lewin—Lewin). Suppose A < B < C < D are rings with A, B
semifirs and B, ,C free on bases containing 1. If D locks A in B and B in C
then it locks A in C.

Proof. UA)®,C=UA)®,B®,C<cUB)®,C<D, where the first
inclusion holds since U(B) locks 4 in B, and ,C is flat. 1

LEmMMA 40 (Lewin-Lewin). Suppose A< B < C, and D are all K-rings
with A, C, D semifirs and ,B free on a basis containing 1. If C locks A in B
then U(C Uy D) locks AU, D in B, D.

Proof. By Corollary 38, U(C L, D) = U([U4) U, D| U, C) =
uuiu4) U, bl u,, C) = UU[4 U, D] 1,,, C), which contains
UlA U, D]. Let Y\ {1} be a left K-basis of U(4) containing a left K-basis
of 4, and let Z U {1} be a left K-basis of D. By Theorem 34(i) the sequences
of alternating strings in Y, Z not beginning with an element of Y form a left
U(A)-basis of U(4) 11, D containing a left A-basis of 4 LI, D. Thus there
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exists a left U(A)-basis WU {1} of U[4 LI, D] containing a left A-basis of
A 11 D. Also since C locks 4 in B there exists a left U(4)-basis XU {1} of C
containing a left A-basis of B. By Theorem 34(i) again, the sequences of
alternating strings in W, X not beginning with an element of W form a left
U4 1, D}-basis of U4 L, D], C< U(CU, D) containing a left
A 11, D-basis of {4 U, D], B =B D. Thus U(C LI, D) locks 4 Lx D in
Bl D. 1

COROLLARY 41 (Lewin-Lewin). Suppose B, D are K-rings which are
semifirs. Then U(B U, D) locks D in B 1l D.

Proof. This is the case 4 = K, C=B of Lemma 40. I

LEMMA 42. Let A35 B < C with A a semifir and B, ;B free on bases
containing 1. Suppose C locks o and . Then there are induced maps
a: U(4)— C, B:U) - C and a natural identification Contit™ 5B =
C 175 B).

Suppose further D € B with D a semifir and ,B free on a basis containing
1. If C locks D in B then C{t,t~";B) locks D in Bt B).

Proof. In R=C,{t,t';B) the skew subfields of C generated by a4 and
BA are conjugate under ¢, and are isomorphic to U(A) so we have a natural
map Cyq,) (¢t~ "5 8y~ R with an obvious inverse, and we treat this as an
identification.

Let XU {1}, YU {1} be left U(4)-bases of ,C, ;C containing left 4-bases
of ,B, ;B, respectively. By Theorem 35(i), a left C-basis of R is given by the
set of all linked expressions constructed from

- X + —Xttu ity -
+ YU el + + oyt —

not beginning with an element of X or Xt~ !. This contains the correspon-
dingly constructed left B-basis of B,(t,t™";§) so U(D) ®pB Lt B) =
U(D) ®pB @B, (t,t 5 B) S CRpB,(t,t s f) <R, where the first
inclusion follows from the fact that C locks D in B and B (t, 174 B) is free,
and hence flat, as left B-module. Hence R locks D in B (¢, t 8. |

TuE LEWIN-LEWIN EMBEDDING THEOREM. If K is a skew field and G a
torsion-free one-relator group then the group ring KG can be embedded in a
skew field. More precisely, if X is a set, w a cyclically reduced word in the
free group on X which is not a proper power, and G = (X|w) the group
presented on X with single defining relator w, then there exists a skew field
that locks KG, in KG for every x € supp(w). Here G, denotes the subgroup
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of G generated by the image of X — {x}, and supp(w) the subset of X
involved in w.

Proof. Define the complexity of w (with respect to X) to be ¢(w) = (length
of w) — |supp(w)|. Where the presentation of G is clearly indicated, we shall
refer to the complexity of G, denoted c(G).

We argue by induction on ¢(G). If ¢(G)=0 then G is obviously a free
group such that G, = G for all x € supp(w), so KG is a semifir and the skew
field U(KG@) satisfies the conclusion of the theorem.

Now assume ¢(G) > 0 and that the conclusion of the theorem holds for all
one-relator groups of smaller complexity. By Lemma 39 and Corollary 41
there is no harm in adjoining a new indeterminate to X so we may assume
without loss of generality that X + supp(w). We wish to express G as an
HNN extension of a one-relator group of smaller complexity. Suppose we
have a t € X and a map X — Z, x+ n,, with n, =1, such that the resulting
homomorphism to Z from the free group on X sends w to 0. The kernel of
this homomorphism is freely generated by the elements x,=1¢""xt" "
(x€X, x#t, n€Z) so w can be expressed (uniquely) as a (cyclically
reduced) word w’ in the x, (and w’ is not a proper power). For a suitable
choice of t € X and map X — Z one can arrange for ¢(w’) to be smaller than
c(w). There are essentially two cases. If w has exponent sum zero on some
t € supp(w) we take

no=1 if x=1

=0 if x#t

Here length(w’) < length(w) — 2, [supp(w')| > [supp(w)| — 1 s0 c(w') < c(w)
in this case. If no x € supp(w) has exponent sum zero in w then by [21,
Proposition 2| for any ¢t € X — supp(w) there exists a map X —» Z as above
such that the resulting w’ has length(w’)=length(w), [supp(w’)|>
[supp(w)| + 1, so ¢(w') < c(w) in this case. Thus in any event we may
assume c(w’) < c(w).

For each x ¢ in supp(w) let m(x), M(x) denote, respectively, the least
and greatest n such that x, € supp(w’). Let

Y= {x,lx € supp(w), x £ &, m(x) <n < M)},
Z = {x,|x & supp(w), x #t,n € 7}.

Let H= (YU Z|w') be the group presented on YU Z with single defining
relator w'. Then ¢(H) < ¢(G) so by the induction hypothesis there exists a
skew field V(KH) that locks KH . in KH for each x, € supp(w’). Let

Y,={x,€ Y|m(x)<n < M(x)},
Yy={x,€ Ym(x) < n < M(x)}
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and H, =(Y,,U Z|), H, = (Y,,J Z|) the free groups on Y,UZ,Y,JZ,
respectively. There is an isomorphism f§: H . — H,, that shifts the subscripts
down by one. Since ¢(w) > 0 we can choose an x # [ in supp(w) and then
Xmexy € Supp(w’) and H,, is a free factor of H, . Since V(KH) locks
KH, in KH it locks KH,, in KH by Corollary 41 and Lemma 39.
Similarly V(KH) locks KH,, in KH. By Lemma 42 we have a natural iden-
tification of HNN extensions

R= V(KH)KHM<Z’ t‘l;ﬁ> = V(KH)U(KIIM)<t’ th ﬂ>

and R is a semifir by Theorem 35(ii). Let the skew field U(R) be denoted

V(KG). By generators and relations there is a natural identification

KG = KHyy (1 t~';B) so there is a homomorphism KG - R - V(KG). To

complete the induction step it remains to show that V(KG) locks KG, in KG

for all x € supp(w). For this we shall need another description of V(KG).
Let us fix an x € supp(w) with x # t. Let F be the free group on

Y, = {ylyE€EX—{xt},n€ L}

Then H, N F is a free factor of F, say, F=F), I (H, N F). Define H* =
HUF, =(YUZUY,|w), Hjy=H,UF =(Y,UZU Y,|). By Theorem
34(ii) (or alternatively Theorem 35(ii) and induction) V(KH)L, KF, is a
semifir and we can define V(KH')=U(V(KH)LKF;). For any
y, € supp(w’), V(KH") locks KH = KH, U KF, in KHY = KH1 KF,
by Lemma 40. In particular, ¥(KH") locks KH; in KH*, and Hj, is a
free factor of H; _so by Corollary 41 and transitivity V(KH ") locks KH),
in KH*. As before we construct an HNN extension which is a semifir,

S=V(KH" )KH;,‘<t’ By = V(KH" )U(KH;,)<ta t= 5 B).

But S is then a matrix localization of (V(KH) U KF\)ku,ukr <t B
which by generators and relations can be identified with
V(KH)gy, (b t=; B), that is, R. So by Corollary 37, U(S) = U(R) = V(KG).
For any p, € supp(w’), S locks KH in KH (1, t~';B)=KG by Lemma
42, so V(KG)= U(S)2 S locks KH;" in KG. In particular, V(KG) locks
KH‘;m(x' in KG and F is a free factor of Hﬁm(x) so V(KG) locks KF in KG by
Corollary 41 and transitivity. Now notice that the semifir KG, can be
expressed as an Ore extension KF|[t, ¢~'; B]. Thus the principal ideal domain
U(KF)[t,t™"; B] is a matrix localization of KG,; its skew field of fractions,
U(KF)(t,t~'; B), must be U(KG,) by Corollary 37. In the diagram

U(KF) ®x-KG
|

UKF)|t, 15 B] ® g KG

V(KG)
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the upper arrow is injective since V(KG) locks KF in KG, and the vertical
arrow is easily seen to be surjective, so the lower arrow is injective. Thus a

left KG,-basis of KG remains left independent over U(KF){f,t™';8] in .

V(KG), so is automatically left independent over its Ore localization
U(KG,). This proves that V(KG) locks KG, in KG for any x # ¢t in supp(w).
It remains to show that if ¢ € supp(w) then V(KG) locks KG, in KG. Thus
suppose ¢ €& supp(w). Since w is cyclically reduced there exists some
x, € supp(w') with n# M(x). Here H} contains t G M as a free
factor. But V(KG) locks KH} in KG so by Corollary 41 and transitivity,
V(KG) locks t™™WKG, M in KG, so clearly locks KG, in KG. This
completes the proof by induction. fi

Remark. The Embedding Theorem also holds for twisted group rings.
The only adaptation needed in the proof is that when the maps § are being
defined their action on K must be specified, and this is determined by
conjugation by ¢ in KG. At the beginning of the proof when the new indeter-
minate is added it should be specified that it commute with K.

11. K-THEORY AND THE MAYER—VIETORIS EXACT SEQUENCE

In this section we look at one of the major results concerning HNN
extensions, namely, Waldhausen’s exact sequence. Here we operate with the
fixed hypotheses that there are given injective ring homomorphisms «,
f: K- A and K-bimodule splittings A, =a(K)® X, 4;=pK)DY. As
usual R = A,(t, t7"; B).

THEOREM (Waldhausen [26,p.221]). Iff K is right regular, right
coherent and X, Y are left K-free then there is an exact sequence of abelian
groups

K p(n)

K () K (R) 25 K, (K) =, (31)

K (@)~ K (B)
e}

o K(K)

Here the K,,n >0, are Quillen’s functors [24], and the K,,n <0, are
Bass’s functors [1].

It is beyond the scope of a purely algebraic survey to give a proof of this,
and we shall limit ourselves to outlining the least topological parts of the
argument. We concentrate on verifying directly the following important
consequence of the exact sequence.

COROLLARY (Waldhausen). If k is a right regular right Noetherian ring
and G is a torsion-free one-relator group then K (k)-» K (kG) is an
isomorphism.

SRR
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From Dunwoody [15] and Lewin [20], for example, we know that, even if
k is a field, finitely generated projective kG-modules need not be induced
from k; what the Corollary tells us is they are at least “stably” induced from
k.

Let us set up the notation. Consider the K X K-subbimodule of M,(R)

tA  tyr™!
M= 4)
X At

The tensor ring T'= K X K(M) maps in a natural way to M,(R); and since
2R is an (M,(R), R)-bimodule, it is a (T, R)-bimodule. Further, as
(K X K, R)-bimodule 2R ~ (K X K) ® R, so for any right K X K-module N
there is a natural isomorphism ‘

(N®K><KT) ®T(2R) ~ N ®kR.

We can now give Waldhausen’s analysis of isomorphisms of induced
modules.

THEOREM 43 (Waldhausen). Let M(K), M(A) be right K, A-modules,
respectively. For any R-linear isomorphism x: M(4) ® ;R - M(K) ®«R such
that kK(M(A)) € M(K) ®(A4 + tA) there exist right K-modules P,Q and a
commuting diagram

M(A)®,R — M(K) ®xR
ok
L opk
(PRxA D Q@A) D4R
J (P® Q) ®xR
(P® Q) @R )
)
(P® Q) @rxx 7)) ®7(R) — L5 ((P® Q) ®xxx ) ®r(R)

where K ,, Ky, Ky are isomorphisms of the indicated modules, and all other
isomorphisms are natural.

Proof. From Theorem 8 with M, = A, we see that T actually embeds in
M,(R). Let us identify T with its image in M,(R) and write

T_<K®+R+ +R— )
“\ R+ K®—R-/
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Here +R+ denotes the K-subbimodule of R spanned by all (nonempty)
linked expressions starting with + and ending with + constructed from

+14 + +tYt !~

—- X+ — A —,
and similarly for the other components. Notice that K@ +R+ and
K® —R— are actually graded subrings of R. We shall write +R =
+R+ @ +R~ and —R = —R+ @ —R— viewed as K-subbimodules of R, and
similarly for R4, R—.

Since T=(KXK)®M®,,xT we have a decomposition of K X K

bimodules

(K'@+R+ +R— )
R+ K®-R-

_<K 0) tA tYr! K® +R+ +R— 32)
T\0 K (X At“) “K< —R+ K@——R—-)'(

Thus we have K-bimodule decompositions
R=K®+R® —R
=K®+R® X(K® +R)® At""(K® —R))
=AK®+R)D At~ (K ® —R).

The latter is an (4, K)-bimodule decomposition, and the multiplication can
be viewed as ®y.
- Thus we have a decomposition of «,

MA)®,R M(K) ®xR

| M(KI)'(RH
M(A)K @ +R+) @ M(4) 1~ (—R+) / @
® \ M(K)
M(A)(+R)@M(A)t‘(K®R)< ®

M(K)(R-).

I L
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S

This means that M(K) has two K-submodules P, Q such that M(K) =P ® 0
and x is the sum of two K-linear isomorphisms

K,: M(A)K ® +R+) @ M(A) 17 (=R) —— M(K)R+) @ P,
K,: M(A)(+R—) @ M(A) ' (K® —R—) —<— M(K)(R—) @ Q-

From the left-right analogue of (32) we have decompositions of R as 4,4)
and (K, A)-bimodule, respectively:

R=A@®AK® +R+)1A ® A(+R—) 4 @At (—R+) 4
@At "(K®-—R-)A,
R=A®R-)ADIAD R+)A.

Thus we can express K in the form

K

M(A) ®,R —  M(K)®«R
I I\

K4

[(MAXK D +R+) D MA) t'(—RH)|t4 — (M(K)(R+) @ P) tA
@ / ®
M(A) LN QtA ® PA

® AN ®

K2A

(MA)FR-) ®MA) 17 (K ® —R-)|4 — (M(K)R-)D Q) 4.

Since k, 14, x,A are isomorphisms, k, must also be an isomorphism of 4-
modules and we have a commuting diagram

M(A)®,R = —  M(K)®«R
elru@AR

(P®KA@Q®KIA)®AR wx @k R
¢l

POOQ@R ——— (POAGK




482 WARREN DICKS

It remains to analyse x’. The restriction of k' to P4 @ QtA4 is given by
kok;', and so can be expressed as the sum of the identity map on
PA ® QtA and some A-linear map P4 @ Qtd — PtA @ QA, since we have
the hypothesis k(M(4)) S M(K)A @ t4)=PtA ® Qt4A ® PA @ QA.

Thus the restriction of k' to P is the sum of the identity map on P and
some K-linear map «j:P— PtA@® QA. Further x'(P)=xok,'(P)<S
K(M(A)) = Kk, (M(4)) which meets PtA @ QA = PtA ® Q @ QX in PtA ©® QX
so we can write k,: P - Pt4 @ QX. ‘

Similarly the restriction of x’ to Q is the sum of the identity map
on Q and some K-linear map k,: Q- (PtA@® QA):™'. But x'(Q)=
k(7 (O Y S k(M(A) 1Y) = k,(M(A) t ') which meets Ptdt ' @ Qd4r ™!
in PtYt~' @ QAt ™' so we can write kj: Q- PtYt ™' @ QA"

These maps determine a K X K-linear map

tA ty:!

(K;”KIQ):P@Q_’(P®Q)®KXK (X At-!

)0 s,

which in turn determines a T-linear endomorphism of (P ® Q) ®y i T- The
sum of this endomorphism with the identity endomorphism we denote k. It
is easy to see that x;®,(*R) =k’ so to complete the proof we need only
show that x, is an automorphism.

There is a decomposition of graded (K X K, K)-bimodules

2y (K®+R\ (R
R“(K@—R>@(+R)‘

Notice that the first summand is actually the left T-submodule of *R freely
generated by (}). Thus we have a split exact sequence of graded right K-
modules

0-(P® Q)R xT— (P Q)@Kxx(zR)a(P@Q)@’)xxk(;g) - 0.

The automorphism x’ of the middle term induces the endomorphism x, on
the first term. It is not difficult to check that the endomorphism induced on
the third term differs from the identity map by a degree reducing map, so it
is an automorphism. Thus, as k’ is an automorphism, we see that «, is also
an automorphism, which completes the proof. [

COROLLARY 44. Let P, Q be right K-modules. For any R-linear

automorphism k of (P @® Q) ®xR such that k(PO QNS (PO Q) ® (A D t4)
there exist right K-modules P', Q' and a commuting diagram
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(P D Q) ®cR 5 (POQBKR
¢l
(P @xA ® Q ki) ®,R
U wsoar (P’ ® Q') ®«R
(P' @A @ Q' ®xtAd) ®4R

2l
(P’ ® Q") Ok T) ;R —— o (P' ® Q) ®xxx T) OrR

31KK®KR

i

where K ,, Ky, Ky are isomorphisms of the indicated modules, and the other
isomorphisms are natural.

Proof. Take M(K) =P ® Q. MA)=P @4 @ Q ® 14 in
Theorem 43. W

Notice that in the case where P, Q are finitely generated free K-modules, k
determines an element of K,(R) while Q, Q' determine elements of K,(K)
whose difference lies in the kernel of K,(a) — K,(f). Since every element of
K,(R) is represented by such a « (by linearization by enlargement) we can
see what Waldhausen’s map 8,: K ,(R) - K,(K) must look like, but proving
the map exists is quite another matter. We shall look at a very special case.

Let k be the kernel of the abelian group map a—f: K- A4, s0 kis a
subring of K. Since a, B agree on k there is a ring homomorphism
k|t,t™'] - R. Hence we have maps K,(4)— K,(R), K (klt,t"']) - K,(R),
K,(T)— K (M,(R))=K,(R) and using Corollary 44 one can prove the
following.

THEOREM 45. If K, (k) - Ky(K) is onto then K@K K[t ')®
K,(T)- K, (R) is onto. 1

1t turns out that by imposing conditions one can eliminate the K,(T) term.
The basic abstract result is the following.

THEOREM 46. Let S be a right regular right coherent ring and M an S-
bimodule that is left S-flat. Then the natural map K (8)- K,(S(M)) is an
isomorphism.

Proof (sketch). We consider the category whose objects are pairs (P,f),
where P is a finitely presented right S-module and f is an S-linear map
f:P>P®gM such that the induced S(M)-linear endomorphism of
P ®S{M) is nilpotent; the morphisms in this category are to be the obvious
ones. Since M is left flat, and S is right coherent, it follows that this category
is abelian.
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Let (P,f) be an object in this category, so the composite of the sequence

foM®"!
—_—

prLpeomM 2, po MO ... P® M®" (33)

is zero for some n, say, n = d. Let P, denote the kernel of the composite (33)
so we have a sequence

0=P,CP - -CPy;=P with f(P)<SP,_, @M
for n>1 (34)

since the kernel of the composite of the last # — 1 maps in (33)is P, @M
because M is left flat. As P is finitely generated we can alter the sequence
(34) in such a way that each of the P, is finitely generated. But S is right
coherent and P is finitely presented so each of the P, is finitely presented and
we have a chain in the category

0=(Pp.f) S P,)S Py, /)= (P.S)

such that each of the quotients is of the form (P,/P,_,,0). Since § is right
regular  right coherent each (P,/P, ,,0) has a resolution
0 (Py > 0)—>++ = (Pyo,0)— (P,/P,_,0)— 0, where each of the P,; is
finitely generated projective.

Let us call an object (P, f) of the category elementary if P is projective
and there is a chain (34) with each P,/P,_, projective.

By standard arguments the foregoing shows that every object (P, f) of the
category has a resolution by elementary objects. In particular, P can be a
finitely generated free module.

By linearization by enlargement arguments, any element of K L(S{M)) can
be represented by an invertible matrix with entries in S ® M, and the
foregoing shows further that the element can then be represented by an inver-
tible matrix with entries in S; that is, K,(S) - K,(S(M)) is onto, so it is an
isomorphism since there is a retraction from S(M) onto S. |

COROLLARY 47. If S is a right regular right coherent ring then K (S) -
K (S|x)) is an isomorphism. |

COROLLARY 48. If K is right regular right coherent and X, Y are left K-
flat and K (k) - Ky(K) is onto then K (A)® K,(k[t,t"']) » K (R) is onto.

Proof. By Theorem 46, K (K X K) - K ,(T) is onto, so the result follows
by Theorem 45. |

We now recall the fact that allows one to convert results about K, to
results about K.
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THEOREM 49 (Bass—Heller-Swan). For any ring S there are maps
KO(S)aK‘(S[x,x“])—»KO(S) which compose to the identity, and are
natural in S.

Proof. See |25, Sect. 16] or |1, Sect. XIL7] (cf. |26, Corollary 18.2}). ]

COROLLARY 50 (Grothendieck). For any ring S, if S|x| is right regular
right coherent then so is S|x,x”'| and the maps K (S)—- Ky(S[x])—
Ko(S[x, x']) are isomorphisms.

Proof. Since each finitely presented S|[x, x']-module is induced from
some finitely presented S|{x|-module, and any S|x}-resolution of the latter
lifts to an S[x,x '] resolution of the former, we see S[x,x'] is right
regular right coherent. By starting with a finitely generated projective
S|x, x~']-module we see further that Ko(S[x]) - Ko(S[x, x~']) is onto.

Finally, by Corollary 47 with S[x,x'] in place of S we see from
Theorem 49 that K,(S) — K,(S[x]) is an isomorphism, and the result is now
clear. 1

CoROLLARY 51 (Waldhausen). If K|x} is right regular right coherent
and X, Y are left K-flat and K (k) — K,(K) is onto then K,(A)— Ky(R) is
onto.

Proof. By Corollary 50, K [x,x"] is right regular right coherent and
Ko(klx,x™']) > Ko(K[x,x"']) is onto and X|x,x7 '], Y|x,x"'| are left
K|x, x~']flat so, by Corollary 48 and Theorem 49, Ky(4) @K, k|t 17" ]) -
K (R) is onto. But Ky(k{s,z7']) has the same image as Ky(K), so
Ko(4)— Ko(R) is onto. 1

Waldhausen [26] calls a group G regular coherent if for every right
regular right Noetherian ring S, the group ring SG is right regular right
coherent; for example, free groups are regular coherent by Corollary 14 and
induction. In the same vein let us say G is K,-trivial if for every right regular
right Noetherian ring S the map K,(S) - K(SG) is an isomorphism.

THEOREM 52 (Waldhausen). Let a,f:L— H be two group monomor-
phisms and G the resulting HNN group extension. If L is regular coherent
K-trivial and H is Ktrivial then G is K-trivial.

Proof. Let S be any right regular right Noetherian ring. Then SL[x] =
S[x]L is right regular right coherent and K4(S)— K,(SL) is onto, so by
Corollary 51, Ko(SH) - K,(SG) is onto. In particular, if H is K -trivial then
sois G. 1

THEOREM 53 (Waldhausen). Every torsion-free one-relator group is K-
trivial.
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Progf. By induction it follows easily from Theorem 52 that free groups
are K-trivial, since we have already observed they are regular coherent.

Now we proceed by induction on the complexity of the relator, as defined
in the previous section. If the complexity is zero then the group is free and
we have taken care of this case. Thus we may assume we have a torsion-free
one relator group G of complexity greater than zero. By |21, Proposition 2]
the coproduct GII Z can be expressed as the HNN extension resulting from
two group monomorphisms a, f: L — H, where L is a free group and H is a
torsion-free one-relator group of smaller complexity than G. So by the
induction hypothesis G 1I Z is K-trivial, and hence so is the retract G. |
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