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Abstract

Let & be a field, X a set, F — k{X) the free associative it-algebra, and b an element
of F that is homogeneous with respect to the grading of F induced by some map
X-> H+. We show that the idealizer of b in F, S = {feF\fbebF}, is a free algebra.

Part of the interest of this result lies in its usefulness in the study of one-relator
graded algebras; it will be applied in [5] to show that much of the homological informa-
tion about F/FbF is already contained in the finite-dimensional commutative
subalgebra S/bF.

The first half of the proof of the freeness of S, Section 1, is concerned with ' tri vializ-
able' equations Ytaibici = 0, cf. Definition 1-2. In Proposition 1-14 and Theorem 1-18
we give two different methods for reducing a homogeneous equation Haibici = 0 to
a family of other such equations; in Theorem 1-11 and Proposition 116 we show that
two very simple types of equations, called 'chains of atoms' and 'staircases' respect-
ively, are trivializable. What this implies is that an equation is trivializable provided
that it can be transformed, by repeated applications of the two reducing methods, to a
family of equations, each of which is a chain of atoms or a staircase. The second half
of the proof, Section 2, is then a purely formal argument, divorced from the free
algebra, showing that any homogeneous equation 'Zaibici = 0 can be reduced in this
way, and is therefore trivializable. The desired result then follows immediately,
cf. Theorems 1-19 and 1-22.

This proof takes many of its ideas from the extremely original paper of Gerasimov
[6]. The author is grateful to J.Backelin for a helpful outline of [6], and to V. N.
Gerasimov for a kind letter correcting a misunderstanding of one of the arguments
in [6].

1. Trivializing relations

1-1. Notation. Throughout this section we fix an integer n ^ 2, and a graded ring
F = © Fa such that Fo is a field in the centre of F. For convenience, let us call such

aeOM

an F a graded algebra.
Let Fx denote the set of non-zero elements of F. For aeN, let F£ be the set of

non-zero elements of Fa; if aeF£ then we say a is homogeneous of degree a, and write
\a\ = a. We understand that 0 is homogeneous, but that it does not have any degree.
For beF let b denote the homogeneous component of b of maximum degree; here
0 = 0. The meanings of F and Fx are clear.

For a, fiel, let [a J] = {iel\a^ i sj /?}.
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1-2. Definitions. A relation

m _
2 a^Cj- = 0, a^b^CfeF, me[l,n] (1)

is s&idtohe homogeneous if \ttil + \bt\ + \ct\ is the same for all the i for which it is defined,
that is, the ie[l,m] such that at, bt, ct are non-zero. A homogeneous relation (1) is
said to be trivializable in F if there is a partition of [1, TO] into two sets H, K, and a set
of homogeneous relations ak = 2 H au&hk (& e K) a n ( i cft = ~ 2 K ^U cfc (^ e ^0 such that
dhkbk ~ bhd'hlc for all (A, k)eH x K. In particular, if /7 is empty then all the ai are zero,
and if K is empty then all the ct- are zero.

1-3. Definitions. A format B in F is a triple (a, b, y) where a,yeN and b e Fx. The
degree of Z? is |2?| = a + |6| + y. In this situation we call B a b-format.

1-4. Definitions. A tableau T in # is a finite set of formats all of which have the same
degree; this value is called the degree of T, denoted \T\. If for some beFx all the
elements of T are 6-formats then T is said to be a b-tableau.

A relation (1) is a T-relation if (ja^l,^, Ic l̂Je^T for each ie[l,m] for which ait ct

are non-zero. If every T-relation (1) is trivializable in F then T satisfies n-term weak
algorithm; if this holds for all n then T satisfies weak algorithm.

If every 1-tableau in F satisfies (%-term) weak algorithm then F itself is said to
satisfy {n-term) weak algorithm. (Since Fo is already a field, this agrees with the usage
in [1].)

Our aim is to show that for any beFx, every 6-tableau in F satisfies w-term weak
algorithm if F itself does. It will then follow easily that if F is a free algebra then so is
the idealizer of b in F.

1-5. PROPOSITION. If T is a tableau in the graded algebra F then the following are
equivalent.

{a) T satisfies n-term weak algorithm.
(6) For every T-relation (1) and eachj e [1, TO] either

there is a homogeneous relation 2^=iatef = 0 such that e^ = 1 and for each

or there is a homogeneous relation 2?Li etci = 0 such that e;- = 1 and for each
ie[l,m],bjeieFbi. (3)

(c) For every T-relation (1) with all aitct non-zero, there exists je[l,m] such that
(2) or (3) holds.

{d) For every T-relation (1) with some ci non-zero, there exists je[l,m] such that (2)
holds.

(e) For every T-relation (1) with some at non-zero, there exists je[l,m] such that (3)
holds.

Proof, {a) => (b), (c), {d), (e) are clear.
{d) =>• (a). Let (1) be a T-relation. We proceed by induction on m. For TO = 0 there is

nothing to prove, so we may assume TO > 1 and the implication holds for all smaller
values of TO. If all the ct are zero we take H = [l,m], K — 0 and the conditions of 1-2
are satisfied vacuously. Thus we may assume some ct is non-zero; by (d), and
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renumbering if necessary, ax = —a2e2— ... — a ^ ^ n d e ^ = 6ie^foralHe[2,m]. Thus
YiT=2ax°ic'i = 0, where ĉ  = ĉ  —e.^ for all ie[2,m]. By the induction hypothesis,
[2, m] can be partitioned into two sets H, K as in 1-2. It is then not difficult to check
that [l,m] can be partitioned into two sets H, {1} u K and there exist relations as in
1-2. Thus (a) holds.

The proofs that (6), (c) and (e) each imply (a) are similar. |
For convenience we now recall four results from [1].

1-6. LEMMA. / / F satisfies n-term weak algorithm, and av ...,ameFx are right F-
dependent with m ^ n and [a^ ^ ... ^ |am| then some a^ is a right F-linear combination
ofa1,...,aj_v

Proof. We have a relation 2 X i a i c i — 0 with some ĉ  non-zero. By taking the leading
homogeneous part we may assume this is a homogeneous relation. It is clearly a
relation in a 1-tableau, so by rc-term weak algorithm in the form (d) of Proposition 1-5
there is a je[l,m] such that (2) holds. Consider the largest k such that ek 4= 0; here
k ^ j since e,- = 1. Thus \ek\ = \a^ - \ak\ ^ 0, so ekeF$ and ak = £fcilftie«( - e^1). |

1-7. COROLLARY. If F satisfies 2-term weak algorithm, and a, b, c, deFx are such that
ab — cd and \a\ ^ \c\ then there is a unique eeFx

t_[al such thatae = c,b = ed. It follows
that every element of Fx can be written as a product of homogeneous atoms in a unique
way, up to associates (and here all units are central). |

1-8. COROLLARY. If F satisfies n-term weak algorithm, and ax, ...,ameF, me[ l ,»] ,
then some subfamily (a^iel) is a basis of the right ideal a = SiLi^i^-1

The cardinality of / is called the rank of a, denoted rk a. Here the rank of a free
-F-module is well defined since there is a ring homomorphism to a field, F->F0.

One can show that each w-generator right ideal of F is free (but not necessarily on
a subset of the generating set), if F satisfies fi-term weak algorithm, cf. [1].

1-9. THEOREM. The graded algebra F satisfies weak algorithm if and only if F is a
free F0-algebra with a homogeneous free generating set.

Proof. Suppose F satisfies weak algorithm, and let H = F \F0. By the well-ordering
principle, we can index H with an ordinal in such a way that the elements of H are
listed.^, a;2, ...,xa,... w i t h a l ^ \x2\ ^ ... ^ \xa\ ^ By Lemma 1-6, ifwe delete each
xa which is a right .F-linear combination of earlier elements, then we get a right F-
independent homogeneous set X which is easily seen to freely generate F as i^0-algebra.

Conversely, suppose F — F0(X) is a free .F0-algebra on a homogeneous set X. Each
feF can be written uniquely in the form / = YIXExfxx+fo> /oe^o> fxe^ almost all
zero. We wish to show that we can trivialize any relation 'Laici = 0 in a 1-tableau T
in F. We may assume |cj| ^ |c2| < If c-^eF^ then it is easy to see that (3) holds.
Thus we may assume c^F^. Here (c^)x 4= 0 for some xeX, so

Since X is homogeneous, this is a relation in a 1-tableau T' of smaller degree than that
of T. By induction on \T\, there is a je[l,m] such that ajB^lj^a^, so (2) holds,
and F satisfies weak algorithm in the form (c) of Proposition 1-5. |

1-10. Definitions. A format B = (a, b,y) has left margin A(5) = a and right margin
p(B) = a + \b\. If b is an atom in Fx we say that B is an atomic format.
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If Bx = (a1; blt yx), B2 = (a2, b2, y2) are two formats of the same degree we say B1 is
left ofB2, denoted Bx < < B2, if \(Bj) < A(52) and p(Bx) < p(B2). If A ^ ) < A(52) and
p(B{) < p(£2) we write B± ^ < JB2. By B1 < < ,B2 we mean Bx < < B2 or A(5X) = A(52)
and p(Bj) ^ /t>(-B2); similarly, by Bx < < 5 2 we mean B1 < < B2 or A ^ ) < A(i?2) and

A tableau is said to be a chain if its elements can be listed Bx, ...,Bt so that either
Bx < < B2 <<...<< Bt_x < < BtorBx < < B2 < < ... < < Bt_x < ^ Bt.

We can now prove one of the results fundamental to the development of the theory.

1-11. THEOREM. / / the graded algebra F satisfies n-term weak algorithm then any
tableau T in F which is a chain of atomic formats also satisfies n-term weak algorithm.

Proof. By symmetry we may assume the elements of T are Cu ...,Ct and

Ct < < C2 < < . . . < < Ct.

We shall show by induction on \T\ that (c) of Proposition 1-5 is satisfied. Let (1) be a
^-relation with all a{, ci non-zero. By renumbering if necessary, we may assume
lai^i | < ••• < \a

m^m\> a n d hence \ax\ ^ ... < \am\, by the ordering of the elements
of T.

If [^l = 0 the result is clear. Thus we may assume that \T\ > 0 and that the result
holds for all tableaux of smaller degree.

Consider first the case where 1̂ 1 > 0. View (1) as a relation 'Lai{bici) = 0 in a
1-tableau; by M-term weak algorithm in F, in the form of Proposition 1-5 (e), there is a
homogeneous relation T,o'i(bici) = 0 with a'j = 1 for somej. Let

Here \T'\ = |63-| + |c3-| < |a,| + |&3-| + |c,| since 0 < 1̂ 1 < [a^, so \T'\ < \T\. But T' is
still a chain of atomic formats, so satisfies w-term weak algorithm by the induction
hypothesis. By Proposition 1-5 (e), for some ke [1, m] there is a homogeneous relation
2 e i c t = 0 with ek = 1 and bkeieFbi for all i. Thus (3) holds.

This leaves the case \at\ = 0.
We next dispose of the case where |«3| = 0. For each ie[l,m] let Bt = (l^l,^-, \ct\),

an element of T. If \a3\ = 0 then Blt B2, B3 all have left margin 0, but at most two
elements of T have the same left margin so two of Bx, B2, Bs are equal, say Bx = B2.
Here b1 = b2 and alta2e F£. Taking e = a2

lax we have ax = a2e, ebx = b-^e — b2eeb2F,
and (2) holds. Similarly if Bt = B3 or B2 = B3 then (2) holds.

Thus we may assume \ax\ < \a3\. Hence for any i, je[l,m], if j > 3 and either
\at\ = \aj\ or \ct\ = \c}\ then Bt = Bi and bt = br

Define a descending chain of right ideals a2 2 a3 =? • • • 2 cim by

a7- = a1b1F+ ... +ajbjF + aJ-+1F+ ... +amF for je[2,m].

FixjG[3,w]. Then a ^ = % + «,-?. Set

a n d c = if »
if i e [ j + l,m] l ^ ^ if i

m
Thus S «iCj = 0 (4)

i l
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and ct3 = £?Li a\F. By Corollary 1-8, we can choose a subset H = H} of [1, m] such that
(a'i \heH) is a right .F-basis of a,-. Let K = K^ be the complement of H in [l,m]. Then
for each k e K there is a homogeneous relation

< = S <dhk. (5)

It follows that for all heH,
c'k = 0. (6)

If it happens that jeH then we write ek for rfjfc and (6) takes the form

Cj+ E e*cfc+ S efc6fccft = 0. (7)
keK keK
k<j k>j

For k <j, if ê . 4= 0 then \ek\ = |c3| — \ck\ ^ 0; here ekeF£, \ct\ = \ck\ so bt = 6fc and
bjek = ekbj = ekbkeFbk. Thus (7) shows that (3) holds.

This leaves the c&sejeKj for every je [3, m]. Here we write ehfor dhi, and (5) takes
the form

« A = S a>hheh+ S oA«A. (8)
Jeff keH

If some eA lies in F£ then we can alter the set H by exchanging j for h, and then we are
in the previous case ofjeH. Thus we may assume no eh lies in F£. Now notice that
{a'h\heH} U {a}} is a generating set for Oy_x satisfying a relation (8). By Corollary 1-8,
rk a3_! < card (H) + 1 = rk a,- + 1; thus rk a3_! < rk Oy, and we have

1 ^ rko2 < r k a 3 < ... ̂  rkam. (9)

But am is generated by m elements which are right dependent, by (1), so rkaOT < m.
Thus one of the steps in (9) must be equality.

Consider the case where rk a2 = 1. This means that one of the elements

«!&!, a2b2, a3, a4, ..., am (10)

is a left factor of all the others. But % bx is an atom because ax e F$ and Bt is an atomic
format; moreover, 0 < \a3\ ^ |a4| ^ ..., so none of the elements in (10) is a unit. It
follows that a . ^ is a left factor of a2b2, say a2b2 = a ^ c . Since n ^ 2, Corollary 1-7
shows there is a unique e such that a2 = axe, eb2 = b1ceb1F, and (2) holds.

The remaining case is where rkay_x = rka3- for some^s[3,m], and we consider (8)
for this j . Here one of the elements of {a'h\heH} u {a}} can be expressed as a right
-F-linear combination of the others. Consider first the case where there is a (homo-
geneous) relation

a,= S ahbjh+ 2 ajh. (11)
heH hen
h<j h>j

For h > j , iffh 4= 0 then |/A| = |ay| — \ah\ < 0, which means fheFg and |« .̂| = \ah\, so
bj = bh and/A6y = bjh = bhfhebhF. This shows that (2) is satisfied. We are now left
with the case where, for some hoeH, a'ha can be written as a right .F-linear combination
of a;. and the a'h, heH\{h0}. Here {a'h\heH, h 4= h0} u {a^} is a generating set for a;_x,
and hence is a basis, since rkay_x = rka;- = card(#). We thus have a homogeneous
expression

< = <**/,+ 2 «AA- (12)
heH\{h.)
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Right multiplying (12) by eho gives an expression for a^ eAo in terms of our basis of o^_x;
but (8) also gives an expression for a'^e^ in terms of our basis. Comparing the co-
efficients of a3- we see/;eAo = 6;-. Since bj is an atom and ehtj^F$ we see/3-eF$. Right
multiplying (12) by/j"1 gives an expression of the form (11) and we are in the previous
case. This completes the proof. |

1-12. Example. One cannot weaken the hypotheses of Theorem 1-11 to allow
Bx ^ < B2 < < ... < < Bt_x < ^ Bt. Let Fo be any field and F be the free jP0-algebra
on seven generators, t, u, v, w, x, y, z with grading such that \vx\ = \wz\, \uw\ = \ty\.
T a k e B x = ( O , t , \ y z \ ) , B 2 = (0,uw + ty, \ z \ ) , B 3 = (\u\,vx + w z , 0 ) , JB4 = (|»t; | ,*,<>)•
Then Bx < < B2 < < B3 < ^ B4 and this is a tableau, T, of atomic formats which does
not satisfy weak algorithm because the T-relation

(l)(t)(yz) + (-l)(uw + ty)(z) + (u)(vx + wz)(l) +{uv)(x)(-l) = 0
cannot be trivialized in F.

1-13. Definitions. Two formats (a],&1,'y1), {oc2,bi,'y2) of the same degree are said to
overlap if [ax + 1 , ax + |6i|] n [cc2+ 1, <x2+ \b2\] =j= 0 .

The components of a tableau T are the classes of the equivalence relation on T that
is generated by the (reflexive symmetric) overlap relation. These components are
again tableaux in their own right.

1-14. PROPOSITION. Let T be a tableau in the graded algebra F. If F and each com-
ponent of T satisfy n-term weak algorithm then T satisfies n-term weak algorithm.

Proof. Let (1) be a T-relation with all the at, c{ non-zero, and for each i e [1, TO] let
Bi = (|ai|,6i, 1̂ 1), an element of T. Renumbering if necessary, we may assume
\a-j\ < \a2\ ^ ... ^ | am\, and that for some pe[l, tn\, Bx, ...,Bp all lie in one component
T' of T, while Bp+1, ...,Bm do not lie in T'. Hence 1^6^ < \ap+1\ for all ie[l,p]. If
a1b1,..., apbp are right .^-independent, then, by Lemma 1-6, they can be extended to a
right J^-basis of £?=i a^F + YA=P+I a^; it follows that cp € 5T=p+i Fbt % and (3) holds.
If a ^ , ...,apbp are right independent then, by Lemma 1-6, Sf=iai^te< = 0 with
some ej = 1, and then Ylf=1aibieici = 0 is a T'-relation. By w-term weak algorithm in
T', in the form of (d) of Proposition 1-5, some ak = 2f=i«i^i» ^b^^F, dk = 0 and
thus (2) holds. This proves (c) of Proposition 1-5, so T satisfies w-term weak algorithm. |

1-15. Definitions. A format (a1,61,y1) is said to left merge with another format
(a2, b2, y2) of the same degree if they overlap and there exist d eFa2_ai, d'eFyi_Yi such
that db2 = bxd' 4= 0. If F satisfies 2-term weak algorithm then, by Corollary 1-7, this
is equivalent to the existence of factorizations bx — dx, b2 = xd".

Two formats of the same degree are said to merge if they overlap and one left merges
with the other.

A tableau T is said to be a staircase if each pair of overlapping elements of T merges.
In this event < ^ is a total order on T.

1-16. PROPOSITION. Let The a staircase tableau in the graded algebra F. If F satisfies
n-term weak algorithm then so does T.

Proof. Let (1) be a iT-relation with all the ai,ci non-zero, and for each ie[l,m] let
Bi = (1^1,6f, [ ĉ  |), an element of T. Renumbering if necessary we may assume
Bt < < . . . < < Bm. For each ie[l,m-l] we choose a factorization b = xiyi as
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follows: if Bi overlaps Bm (for example, if Bt = Bm) then by the staircase property
there exist factorizations bt = xtyt, bm = yizi with \am\ = [a^l; if Bi and Bm do not
overlap then [a^] ^ \am\ and we set xi = bi,yi= 1. We then have

m-l m~\

= - 2

with |aTO| ^ |af^| for all i e [ l ,m — 1]. By Corollary 1-8 and Lemma 1-6, there is a
homogeneous relation am = S t i V ^ e ^ . For each i e [ l , m - l ] , (xidi)6mebiJ

1 since
either xi = bi, or c^e-P}, and

Thus Proposition 1-5 (c) holds. |

1-7. Definitions. A format 5 1 = (a1,61, yx) is said to be a multiple of another format
B2 = (<z2,62> 72) °f the s a m e degree, if there is a factorization bx = ab2c with a eFa _ai,
ceFy^_yi. We also say B2 divides Bv Since it is possible that a2 = a1} the properties of
'merging' and 'dividing' are not mutually exclusive. Indeed, if F satisfies 2-term
weak algorithm, and b2 is an atom, then the only way for B2 to merge with Bx is for it
to divide Bv

1-18. THEOREM. Let T be a tableau in the graded algebra F, and B a format in F with
\B\ = \T\. Write

TB = {-B} U {B' e T\B' is not a multiple of B],

TB = [B' e T\B' is a multiple of B, or B' merges with B, or B' does not overlap B}.

If T\ and T^ satisfy n-term weak algorithm then so does T.

Proof. Let (1) be a T-relation with all the ait ct non-zero. Let / = [1, m] and for each
iel, \etBi = (1^1,^, 1̂ 1), an element of T. Set

/+ = {ieI\Bt overlaps B, but B does not merge with, nor divide, B^,

I~ = {ieI\Bt is a multiple of B},

Thus {Bi\iel+ u /°) S T%, {Bt\iel- u 7°} £ Tj3.
Say B — (a,b,y), so for each iel~ there is a factorization bt = b^bbl. Then

is a TJ-relation, so is trivializable. Thus / is partitioned into two sets H, K and there
are homogeneous relations

, „ , , , fak for all keK+ U K°\
S ahdhk+j:ahb'hdhk = \ k \, (13)

7/ + U7/0 H~ \.ak°k lor all fcG-ft. J

f o r a 1 1 heH+[}
for all heH-

u + u 4. idhkl>k for keK+uK0} (bhd'hk for heH+[)H°\
SUCh that \ 7 \ r , „ >=ih, r T. TT 1 5 )

\dhkb for keK~ J [bdhk for heH~ j v '

where H+ — H (]I+, etc. From (15) we see that

dhkb = bhd'hk = 0 for all (h, k)eH+x K~ (16)
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since B, Bh overlap but do not merge. Similarly,
dhkbk = bd'hk = 0 for all (h,k)eH~xK+. (17)

We claim ^aibici + I,ahbh(ch+ S 4 « * ) + 2 (ak- Zahdhk)bkck = 0. (18)
/ - H° K + K° 11 +

In fact, 2 ~Lahbhd'hkck = 2 2 M A * 6 * 6 * by (15)

= 2 ( O * - 2 M A * ) & * C * by (13) and (17).

Similarly,
-22a»d**6*cfc = - 2«A(M*c*) by (15)

K°H + 11 + K°

h h ( h ^ k c k ) by (14) and (16).
11+ K +

Substituting these into the left-hand side of (18) transforms the sum into £ at bi oi where
i ranges over / - u H° U K+ uZ°U H+ which is just a partition of / = [l,ra]; thus (18)
reduces to (1).

If / - is empty then (13)-(15) show (1) is trivializable; we may therefore assume I~
is non-empty and, by renumbering if necessary, 1 el~. Now (18) is a T^-relation, so
by hypothesis, (18) can be trivialized. Taking^' = 1 in (b) of Proposition 1-5, we see
that either there is a homogeneous relation

2 atet + 2 aheh + 2 K - 2 ahdhk) ek = 0 (19)
/ - H« K« H*

withex = 1 and ei bt e bi F for alii el~ U H° U K°, or there is a dual expression. We wish
to verify (c) of Proposition 1-5, so by symmetry it suffices to consider (19). Here

with ex = 1, e^ebiF for a l H e / - U i?0 U K°, and so for heH+

^ ^ = 6* J*( h k k ) x h k k * ^ *
K" K" K"

Thus (c) of Proposition 1-5 is satisfied, as desired. |
We are now ready to begin proving the main result.

1-19. THEOREM. Let b be a non-zero homogeneous element of the graded algebra F,
and let T be a b-tableau in F. If F satisfies n-term weak algorithm then so does T.

Beginning of the proof. If |6| = 0 the result is clear, so we may assume |6| > 1. By
Corollary 1-7, b can be written as a product of homogeneous atoms in a unique way,
up to associates. Let X = {alt ...,az} be a set of representatives of the associativity
classes of atoms occurring in such a factorization of b. In J^x, X-freely generates a free
semigroup (without 1), X*, and b is an associate of an element of X*. There is no loss
of generality in assuming b e X*.

Henceforth we consider only those formats (a', b', y') of degree \T\, where6'eX u {b};
given the integer \T\ one can recover such a format from the pair (a',b')elxX*.
Using the four results, Theorems 1-11, 118, Propositions 1-14, 1-16, we shall show that
T satisfies »-term weak algorithm if F does. To highlight the combinatorial nature of
this part of the proof, we abstract these four results to conditions on finite subsets of
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Z x X*, and show how the desired conclusion follows; this programme is carried out
in the next section, and the present theorem will follow from Theorem 2-8. |

1-20. Notation. For any element 6 of a ring E we define the idealizer of b in B as
1(6) = {reR\rbebR}.

1-21. COROLLARY. Let b be a homogeneous element of the graded algebra F. If F
satisfies n-term weak algorithm then so dos the graded algebra 0(6).

Proof. I t is clear that 0(6) is a graded subalgebra of F. If 6 = 0 then 0(6) = F, so we
may assume beFx. Suppose me[l,n] and

m

S «<c< = 0 (20)
i = l

is a relation in a 1-tableau in 1(6) with some ct non-zero. In particular, for each i e [1, m]
there is a c\ eF such that ctb = bc[ and some c\ is non-zero. Right multiplying (20) by
6 we get 2£Li a^c^ = 0, and this is a T-relation for some 6-tableau T in F. By Theorem
1-19, T satisfies 7i-term weak algorithm, so by (d) of Proposition 1-5, there is a homo-
geneous relation SfLiO^ = 0 with some d^ = 1, and djbebF for all ie[l,m]. Thus
the dt lie in 1(6), and we have shown that every 1-tableau in D(6) satisfies (d) of
Proposition 1-5. Hence 0(6) satisfies w-term weak algorithm. |

Combining this with Theorem 1-19, we get the result stated in the title.

1-22. THEOREM. Let k be afield, X a graded set (that is, given with a map X->
and F = k(X) the free algebra with the naturally induced grading. If b is a homogeneous
element of F then 0(6) is a free subalgebra of F with a homogeneous free generating set. |

We can deduce from this that certain non-homogeneous elements also have free
idealizers.

1-23. THEOREM. Let k be afield, X a graded set, F = k(X) the free algebra with the
naturally induced grading, and b an element of Fx. Suppose b has the property that, for
each expression for b in the form (ac)ma with m ^ 1, there exists s e 0(6) such that s = ac.
Then D(6) = 0(6), and D(6) is a free subalgebra of F with a free generating set Y, such that
Y is a free generating set of 0(6).

Proof. It is clear that 0(6) c J(6), with no hypotheses on 6. Now suppose that
re 0(6), say rb = bt. There is anmeN such that 6 = rm a for some a that does not have r
as a left factor. Here rm+1a = rb = bt = rmat, so ra = at. Since a does not have r as a
left factor, Corollary 1-7 shows that r = ac for some c. If m = 0 then

r = ac = be = (6c) e 1(6).

If TO ̂  1 then 6 = rma — (ac)ma, and by the hypothesis, there is an se 0(6) such that

s = ac = r. This proves 1(6) = 0(6).
By Theorem 1-22, 0(6) has a homogeneous free generating set Z, and we can choose

a subset Y of 0(6) such that Y = Z.It is then straightforward to show that Y freely
generates 0(6). |

1-24. Examples. Let X = {x, y), F = k(X) where k is a field, and let X? be the free
monoid on X.

(i) If 6 = xyx then 0(6) = k + kxy + bF. By Theorem 1-22, this has a homogeneous
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free generating set; in practice, finding one amounts to choosing a homogeneous
A-basis of the augmentation ideal modulo its square. Here the augmentation ideal,
kxy + bF, has square kxyxy + byxF + bFxy + bFbF. I t follows that a free generating
set of 0(6) is given by

{xy} u b(X* \({y} u yxX* u X*xy U X*xyxX*)). (21)

(ii) If b — xyx — x then 0(6) = Jc + kxy + bF. By Theorem 1-23, this has a free
generating set, given by (21).

(iii) If b = xyx — y then D(6) = k + bF, and this does not satisfy the hypotheses of
Theorem 1-23 for any grading of X. However, this idealizer is free since it is a graded
algebra with respect to the y-degree, and it is not difficult to show that it satisfies weak
algorithm, cf. [3]. Using the equations

bwxyxz = bwyz + bw.bz, bwxy2z = bwyzxz + bwxy.bz — bw.bxyz (w,zeX*)

one finds that a free generating set for 0(6) is given by

bX* \b{X?xyxXf u Xt xy2Xf).

(iv) If 6 = xyx— 1 then 0(6) = k + bF, and this is not free; but it is left and right
hereditary, cf. [4].

1-25. Conjecture. For every element 6 of a free algebra F, the idealizer of 6 in F is
left and right hereditary.

We conclude this section with the following result.

1-26. THEOREM (Gerasimov). / / F and b are as in the hypotheses of Theorem 1-23
then FbF = FbF. Here the word problem for the one-relator algebra F/(b) is solvable
and, if, for some xeX, the image of X\{x) freely generates a free subalgebra ofF/(b) then
the same holds for F/(b).

Proof. Clearly FbF s FbF. Now suppose deFbF, say d = H ^ a ^ C ; . We wish to
show that d e FbF, and we may assume that the at, ci are non-zero and chosen so as to
minimize the integer

a = max{|af| + |cf |: ie[l,m]}.

Let / = {ie[l,mj: \at\ + |cf | = a}. Then Ya^i^^i is either d or 0. The former gives
the desired conclusion; the latter will yield a contradiction, as follows. By Theorem 119,
there is a partition H, K of I, and we have homogeneous relations as in 1-2, involving
elements of 1(6) = 8(6). Thus for each (h,k)eH x K there is an element shke D(6) such
that shkb = bs'hk, and ak = ~£Hahshk(keK), ch = —J^K^'hk^k (heH). For each keK
we replace ak with ak — ̂ Hahshk; for each heH we replace ch with ch + ̂ Ks'hkck. This
gives a new expression for d, and contradicts the minimality of a. Hence FbF = FbF.

The remaining results are easily verified by considering homogeneous components
of highest degrees, cf. [6] or [2]. |

1-27. Notes. Corollary 1-21 answers, in the affirmative, Problem 2 of [3]. Easy
examples of tensor rings show that for n = 3 the centrality of Fo cannot be omitted.

Certain cases of Theorem 1-22 were known previously. In [3] the easy case where 6
is a monomial in X was noted, while [7] handled the case where 6 is a strong prime in
F, that is, F/{b) has no non-zero zerodivisors. (Notice that homogeneous strong primes
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are necessarily atoms, and the atomic case of Theorem 1-22 follows directly from
Theorem 1 • 11. In fact, M. C. Hedges has shown that the proof of Theorem 111 can be
adapted to prove that, in free algebras, homogeneous atoms are strong primes.)

If k has characteristic zero then the final part of Theorem 1-26 is a very special case
of the Freiheitssatz of Makar-Limanov[8].

Although none of the results so far, other than Theorem 1-26, appears explicitly in
[6], the spirit of Gerasimov's paper pervades the entire section. The statements of
Propositions 1-14, 1-16 and Theorem 1-18 were suggested by Lemmas 4-3, 5-2-2 and
2-3, respectively, of [6]; even the idea behind Theorem 1-11 was inspired, somehow,
by the proof of Lemma 5-2 of [6].

2. Positioned words

2-1. Notation. Throughout this section we fix a finite graded set X; that is, there is
given a map X-+ N+, O H \a\. We write X*, X%, for the free semigroup on X, and the
free monoid on X, respectively. The resulting monoid homomorphism X* -> N is
denoted 6i-> |6|, and |fo| is called the degree of b.

2-2. Definitions. An element 2? of Z x X* is called a, positioned word; for brevity, and
to emphasize the link with the previous section, we shall call positioned words formats
in X. If B = (a, 6), say, then we call B a,b-format; iibeX, then B is an atomic format.
We say that B has left margin A(B) = a, right margin p(B) = a + |6|, support

and weight w(B) = \b\. For 8e1, we set S + B = (8+a,b).

2-3. Definitions. Let Bx = (a^b^), B2 = (a2,62) be two formats (in X). If

< A(B2) and p{Bx) < p(B2)

we say that Bx is left of B2, and B2 is right of Bx; we write Bx < < B2. If A(BX) ^ A(JB2)

and p(Bx) < p(B2) we write Bx < ^ B2. By Bx ^ < B2 we mean that either Bx < < B2,
or A(BX) = A(J52) and p(Bx) ^ p(B2); similarly, by B1 < < B2 we mean that either
B1 < < B2, or p(Bx) = p(B2) and A(£x) < A(58).

If p(JB1) < A(B2) we write Bx < < < B2. If p(Bx) = A(i?2) then we say that Bt and B2

are adjacent.
If o ^ ) n o-(B2) 4= 0 then £x and £ 2 are said to overlap. If A(B2), A(52) + 1 e o -̂Bj)

then Z?! overlaps the left margin of B2; similarly, if p(B2), p(B2) + leo-(B1) then JBX

overlaps the right margin of 52 .
If there exist a, ceX*, beX*, such that |a| = a2 —^ and fex = a6, 62 = 6c then £x

left merges with B2. We say Bx and B2 "merge if one of them left merges with the other.
If there exists a,ce X% such that |a| = a.2 — ct.x and bx = ab2c then B2 is said to divide

Bv B2 is a b2-factor of 5 1 ; and JBX is a multiple of i?2.
Let d e l . If there is an a-factor A of Bx that overlaps B2 but does not divide B2,

then Bx is said to a-discord with 2?2; otherwise, J5X a-concords with 52 . If 5X and B2

a-concord with each other then Bx and 5 2 are a-concordant; otherwise they are a-
discordant. In the case where Bx is itself an atomic format overlapping B2 but not
dividing B2 then we say Bx discords with B2; the element a will be clear from the
context.
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2-4. Definitions. A tableau T (in X) is a finite subset of Z x X*. We say T has
left margin X(T) = min{X(B)\BeT}, right margin p{T) = ma,x{p(B)\BeT}, support
<r(T) = UjjejpoXB). and weight w{T) = *ZBETW(B).

For beX*, the set of 6-formats in T is denoted Tb. If 61;..., ba e X* and

then r is said to be a 6X,..., ba-tobleau.
We say that T is a chain if its elements can be listed Blt ...,Btso tha t

B± < < 2?2 < < . . . < < 2?t_x < <Bt or 5 X < < i?2 < < . . . < < fit_x < s% Bt;

it is a strong chain if B1 < < B2 < < ... < < -B(_i < < Bt.
We say that T is a staircase if every pair of overlapping elements of T merges.
The components ofT are the classes of the equivalence relation on T that is generated

by the overlap relation.
For a format A we say T overlaps A if a(A) n o~(T) =)= 0, we write T < < < A if

p(y) ^ A(̂ 4) and so on.
For an atomic format A we define

T^ = {A}u{BeT\A does not divide B),
Tj = {BeT|either A divides B, or 4̂ does not overlap B}.

For aeX,we say that T is a-breakable if there is an a-format A dividing some element
of T \{A} and discordmg with some (other) element of T; such an A is said to break T.
If T is not a-breakable then it is a-unbreakable.

We now introduce the notion of a satisfactory tableau. This is defined as the most
restrictive property satisfying the following four conditions.

2-4-1. All staircase tableaux are satisfactory.
2-4-2. Every tableau that is a chain of atomic formats is satisfactory.
2-4-3. A tableau is satisfactory whenever all its components are.
2-4-4. If an atomic format A breaks a tableau T and T\, T^ are satisfactory then T

is satisfactory.
Thus, by definition-, the set of satisfactory tableaux is the smallest set having these

four properties. We shall show that for beX*, every 6-tableau is satisfactory, which
will complete the proof of Theorem 119.

2-5. Definition. Let a e l , be X*. Set

A = A(a,6) = {8eI\(S, b) a-concords with (0,6)}.

Thus for Se 1, if the absolute value of 8 is at least |6| then SeA, since (8, b) does not
overlap (0, b); if a does not occur in b then A = 1. Set

A} = {8e N+\(S,b) a-concords with (0,6)},

Ai = {£e N\ -8e A} = {£e N+|(0,&) a-concords with (8,b)},

A° = A°_nA°_,

A+ = A°+\Ao,

A_ = k°_ \A°.
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Write 8°^ = minAjj", and similarly for S'L, 8°, 8+, 8_ with the convention that the
minimum of the empty set is +00.

In situations where the particular choice of a, b is to be emphasized, we write
8+(a, b) for 8+, etc.

Notice that A+, A?_ are closed under addition, and hence so is A0.

2-6. THEOREM. Let aeX, beX* with S_(a,b) ^ S+(a,b). Suppose that T is an
a, b-tableau satisfying the following conditions:

(a 1) No element of Ta discords with two a-concordant elements of Tb.
(a 2) / / Ta overlaps the right margin of some BeTb then B is the rightmost b-format in

some component of T.
(a 3) T is a-breakable.
(a 4) Each a-format A which breaks T either overlaps the right margin of an element of

Tb or discords with two a-concordant elements of Tb.
Then there is an a-format A which breaks T such that (a 1) and (a 2) hold with T

replaced with T\.

2-6-1. Remark. Notice that if (a 4) fails for some A then the conclusion holds for this
A; thus (a 4) is superfluous - but makes the proof smoother.

2-6-2. Remark. A dual result holds for S_(a, b) ^ 8+(a, b) with the three occurrences
of 'right' replaced with 'left'. This can be proved by adapting the argument, or by
introducing the notion of the dual B° of a format B, where (a,b)° = (~<x—\b\,b°)
and bh-*b° is the anti-automorphism of X* fixing X. The details are left to the reader.

The proof of Theorem 2-6 is broken up into a sequence of lemmas.

2-6-3. LEMMA (Gerasimov). Suppose Bo < < B1 < < B2 are elements of Tb such that
Blt B2 are a-concordant, and thus 82 = A(52) —A(BX) lies in A0. / / A is an a-format
dividing Bo and discording with Bx and B2, then the a-format A' = — 82 + A discords with
Bx and divides Bo.

Proof. Let(5x = A ^ ) —A(50). Since A discords with B2, A' = — S2 + A discords with
Bt = —S2 + B2. Also, A divides Bo = —S1 + B1, so the a-format A" = St + A divides
Bx so concords with B2. Furthermore,

A(B2) <p(A)< p(A") < p(5x) < p(B2)

so A" overlaps Bz; thus A" divides B2. Hence —8l — 82 + A" divides — 8r —
that is, A' divides Bo. \

2-6-4. Notation. Throughout the remainder of the proof of Theorem 2-6, let
Bt < < B2 < < ... be the elements of Tb, and let t be the largest integer such that
Blt ...,Bt are pairwise a-concordant. For each BieTb, let S{ = A(jBt) — A(Bt).

2-6-5. LEMMA. If A is any a-format breaking T then A divides some BteTb, and each
such i exceeds t. In particular, 8t+1 exists.

Proof. By the definition of breaking, it is clear that A divides some BteTb. Suppose
i < t and assume (without loss of generality) that A is the leftmost a-format that
divides Bt and breaks T. If Br < < A for some i' then pi.B^) < p(A) ^ p{Bt) so
i' < i ^ t; but A divides Bi so, by definition of t, A concords with Bv. Hence A does
not overlap the right margin of any Br e Tb. By (a 4), 4 discords with two a-concordant
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elements Bti < < Bt of Tb. In particular Bi a-discords with Bti, which means ix^ [l,t],
and thus i ^ t < ix and i < i1 < i2. By Lemma 2-6-3, there is an a-format A' discording
with Bt, dividing Bit and left of A. Thus A' breaks T and this contradicts the choice
of A. Hence i > t.

Since A exists by (a 3), Tb has an element Bt with i > t, and thus Bt+1 and 8t+1 exist. |

2-6-6. LEMMA. For each Bi e Tb, if i > t then St e A1_; moreover 8t+1 e A_.

Proof. By Lemma 2-6-5 there is no a-format which breaks T and divides Bt, so
Bt = —Si + Bi a-concords with Bit so - ^ e A , which means SteA?_.

In particular, 8t+1eA°_; if #t+1eA° then Blt ...,Bt,Bt+1 are pairwise os-concordant
(since A0 is closed under addition) and this contradicts the definition of t. Thus

2-6-7. COROLLARY. A_ =j= 0 and oo > ^t+1 > S_ > 8+.

Proof. By Lemma 2-6-6, <Jt+1eA_ so ^t+1 ^ S_, and by hypothesis &_ ^ S+. Since
A+, A_ are disjoint by construction, S_ =i= S+. \

2-6-8. Notation. Let a = |a|, /? = |6|, B = (0,6) and let A1 < < < A2 <<<... be
the a-factors of B. Since <J+eA°+, all the S+ + Aj concord with B. As there are only
finitely many of these Aj there is some integer s such that S+ + Alt..., 8+ + As_x divide
B, while B < < < d+ + As. Since As divides B, there is a factorization b = b'ab" with
b', b"eXf, A(AS) = |6'|. Now y? = p{B) ^ A(8+ + As) = d++\b'\ which means that the
integer e = \b'\ + S+ — /? is non-negative.

All of this notation will be fixed throughout the remainder of the proof of Theorem
2-6.

2-6-9. LEMMA. fi-8+

Proof. Suppose not, so 8*L < fi-8+ + e + tx = \b'\ +a = A(As) + cc = p(As). Consider
any Ay If j > s, then A(B) = 0 < -8°_ + p(As) ^ p(-S°_+Aj) < p(Ad) < p(B); thus
— S2. + Aj overlaps B, and since it concords with B by definition of A_, it must divide B.
Hence for j ^ s, 8+ — 8°_ + Ai concords with B. On the other hand, for j < s, 8+ + Aj
divides B, by definition of s, so — #° + 8+ + A^ concords with B. In summary, 8+ — <J° + B
a-concords with B, which means that the integer 8 = 8+ - 8°_ lies in A.

If 8 > 0 then 8e A°+ but is smaller than 8+ so 8$ A+) which forces 8e A0 £ A°_. Thus
SI +8eA°_, which means that S+eki, a contradiction.

If 5 = 0 then #+ = 8*L e A?., a contradiction.
If 8 < 0 then £2. - <S+ = -^eA°_, but ^ - S+ < 8°_, the final contradiction. |

2-6-10. COROLLARY (Gerasimov). a + fi ^ 8°_ + 8+ and a+fi ^ 8% + S_.

Proof. The first inequality is clear from Lemma 2-6-9, since e ^ 0. The second
inequality follows by symmetry, since the proof of Lemma 2-6-9 used only the fact
that 8+ < oo. |

2-6-11. LEMMA. / / A is any a-format breaking T, and BieTb with i <t, then
B{ < < < A, so A concords with Bv ..., Bt_x.

Proof. By definition of t, - ^ G A 0 S A .̂ SO -8t > 8}. Thus
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by Corollaries 2-6-7 and 2-6-10. Hence A(Bt+1) - A ^ ) ^ oc + ft, so

A(Bt+1) > A{Bt) + fi = p{Bt) and Bt < < < Bt+1.

By Lemma 2-6-5, A divides some Bi with j > t + 1; thus

p(Bt) ^ A{Bt+1) ^ \{Bj) «c A(A) and Bt < < < A. \

2-6-12. LEMMA. If A is any a-format breaking T and p(A) ^ p{Bt+1), then either A
overlaps the right margin of Bt or A discords with two a-concordant elements of Tb.

Proof. By (a 4) we may assume A overlaps the right margin of some Bt. By Lemma
2-6-11, i > t — 1, and by hypothesis p(A) ^ p(Bt+1), which forces i < t+1 and thus
i = 1.1

2-6-13. Notation. Throughout the remainder of the proof of Theorem 2-6 let
A* = A(Bt+1) +AS, an a-factor of Bt+1. Notice

and p(Am) = A(A^) + ix = A{BM)+p-8+

2-6-14. LEMMA. / / A is any a-format breaking T and A concords with Bt then
A* < < A.

Proof. Suppose not, so p(A) ^ p(A%) = A(Bt+1)+fi—8+ + e + a. By Lemma 2-6-12,
A discords with two a-concordant elements Bi < < B{ of Tb. By Lemma 2-6-11,
ix > t— 1 and thus ix ^ t + 1, since ix + t. The positive integer 8 = A(Bt ) — A(Bti) lies
in A° c A» so 8 > 8°_. Thus

A(Bi2)-A(Bt+1) > AiB^-AiB^) = 8 2 t°-> fi-8+ + e + a> p(A)-A(Bt+1),

where the second last inequality holds by Lemma 2-6-9. Hence A(Bt) ^ p(A) which
contradicts A discording with Bt. |

2-6-15. COROLLARY. Bt < < < A*, and A* concords with every element of T.

Proof.
\{A+)-p(Bt) = (A{Bt+1) + P-8+ + e)-{A{Bt) + P)

= 8t+1-8+ + e > 8_-8+ > 0,

by Corollary 2-6-7. Thus Bt < < < A*.
Suppose A* discords with some element of T. Since A* divides Bt+1 we see A*

breaks T. By Lemma 2-6-14, A* discords with Bt, contradicting Bt < < < A*. \

2-6-16. Notation. Let A' = A(a, b') where b' is as defined in 2-6-8, and A( , ) as in 2-5.
Let A'.?, 8'2, etc., be defined similarly. Write ft' = \b'\ = fi-8+ + e. For each JS^eT,,
let B\ = (A (Bl), V), a factor of Bt. This notation will be fixed throughout the remainder
of the proof of Theorem 2-6.

2-6-17. LEMMA (Gerasimov). 8_-8+e&L, so 8_-8+^ #'_.

Proof. By definition of b', thea-factors of B' = (0,6') are Av ...,AS_X\ for each such
a-factor A of B', 8+ + A is an a-factor of B, by definition of s. Thus — 8_ + 8+ + A
concords with B, and, in particular, with B'. This proves — <J_ + £+eA' and thus
£_-£+eA'.?.

If 8_ — 8+e A'0 we shall deduce 8_eA°i_, a contradiction. Consider any a-factor A^
of B. If A{Aj) > ft-8_ then B < < < 8_ + Af and 8_ + Aj concords with B. If
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fi — 8_ then A(Aj) < /? — 8+ which means j<s and Aj divides B'. Assuming
8_ — <J+eA'° this means that 8_-8+ + Aj concords with B'. But

which means that 8_ — 8+ + Aj must actually divide B', and hence B. Thus

concords with B. In summary, for all the Ap 8_ + Aj concords with B, that is, 8_ e A+,
the desired contradiction. |

2-6-18. LEMMA. For each BteTb, if i > t and 8t < a+fi then 8teA_.

Proof. By Lemma 2-6-6, 8t+1eA_, and this leaves the case i ^ t + 2. By Corollary
2-6-10 with V in place of b,

Thus
#? + 8t+1 > *+ + *- b y Corollary 2-6-7

Ss 8+ + 8'_ + 8+ by Lemma 2-6-17

> a + P+ e by the above
> 8t by hypothesis.

Hence 8'£ > ^ - * t + i = A(£<) - A(£t+1) > 0. This means that A ^ J - A ^ + ^ ^ A ^ , so
A(5f) — A(5t+1) + £ ' a-discords with B', so -B̂  a-discords with B'l+1. Thus there is an
a-format A that divides i^ (and hence Bt) and discords with B'l+1 (and hence with
Bt+1), so A(̂ 4) < /9(5J+1). Hence p(A) = X(A) + a < p(B't+1) + a = p(A*) so A < < A*.
By Lemma 2-6-14, A discords with Bt. This shows that Bt a-discords with Bt so

°. By Lemma 2-6-6, <^e A° and thus ^ e A_, as desired. |

2-6-19. LEMMA. For any a-format A, if A breaks T then Bt < < A.

Proof. Suppose to the contrary that there is an a-format A breaking T with
p(A) ^ p(Bt). By Lemma 2-6-12, A discords with two a-concordant elements
j?ti < < Bi2 of Tb. By Lemma 2-6-11, t < i\ < i2. Since A discords with Bijt

A(Bh) < p(A) < p(Bt) = A(Bt) + /3,

which means that Sit < /?. Thus 0 ^ 8ix < 8^ < p. By Lemma 2-618, ^2eA_. Now

*<f - Stl = MBh) - KBtl) e A° £ A°+ so ^ - ^., 2> «».

If ix = t then £fj = 0 and 8{ eA°, contradicting ^. eA_. Thus ^ > t, and by the
same argument as for 8i} we have 8it e A_, and thus 8^ ^ 8_. Hence

8h = (8ia - Stl) + 8ii>8°+ + 8_

by Corollary 2-6-10. This contradicts ^2 < /?. |

2-6-20. LEMMA. There is a unique a-format A which discords with Bt and breaks T.
Moreover A concords with all Bt + Bt in Tb, and divides Bt+1.

Proof. By Lemma 2-6-6, 8t+1eA_ which means that 8t+1$ A+, so there is an a-factor
A of Bt+1 discording with Bt. Thus A discords with Bt, breaks T and divides Bt+1.
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Suppose that A' is any a-format breaking T and discording with Bt. By Lemma
2-6-5, A' divides some Bt with i ^ t+ 1. By Lemma 2-6-19, A and A' overlap the right
margin of Bt, and if A #= A' then A, A' must discord and i + t + 1. Notice
and thus

8++p(Bt) < S_ + p(Bt) < 8t+1 + p(Bt) = p(Bt+1).

Hence S+ + A overlaps Bt+1; but we know S+ + A concords with Bt+1, so actually
divides Bt+1. Similarly, A(8+ + A') < 8t+1+p(Bt) < 8t+p{Bt) = p{Bt) and hence
8++A' divides Bt. Now S+ + A discords with S+ + A' so discords with B^, thus S+ + A
breaks T. Among all #eA_u{0}, choose the largest one such that the a-format
As = — 8+8+ + A breaks T. Then As concords with Bt+1 by definition of A_. By
Lemma2-6-19,Bt < < Ad.Thusp(As) > p(Bt) 2 A(5t+1),butA(A,) < A(A0) ^ p(Bt+1),
so As must divide Bt+1. Now 8 ^ 8+so As ^ A; also, As, A both divide Bt+1 so they do
not overlap, and by Lemma 2-6-19, A < < < As and Bt < < < As. By Lemma 2-6-12,
At discords with two a-concordant elements Bit < < Bt of Tb. Moreover, ix > t,
ix 4= t+ 1, so t+ 1 <it < i2, and by Lemma 2-6-3, there exists 8' = A(5i]()-A(Bfi)eA0

such that - ^ ' + ^4, = ^4a+4- divides Bt+1 and discords with Bti. Thus ^4+4- breaks J7;
this contradicts the maximality of 8 and proves the uniqueness of A.

Now suppose A discords with some Bt 4= Bt in Tb, so i 4= t, t+ 1. By Lemma 2-6-11,
i > f —1 and thus i ^ t + 2. Since 4̂ discords with Bt A(A) < p(Bt), and since A
discords with Bt, A(^) < p(A). Thus

<Jt. = \(Bt)-\(Bt) = MBJ-plBJ + fi < p(A)-A(A)+0 = oc + /3.

By Lemma 2-6-18 8t e A_, which means that some a-factor A' of Bt discords with Bt.
By the uniqueness A' = A so A divides Bt, a contradiction. |

2-6-21. LEMMA. For each B^T^ ift+1 < i then A* < < < Bt.

Proof. Suppose to the contrary that A(Bt) < plA*) = A(Bt+1)+fl-8+ + e + ct. Then

by Lemma 2-6-9, so A(Bt) — A(Bt+1)$ A^., which means that

Bt+1=

a-discords with Bt. Let A' be the leftmost a-factor of Bt+1 discording with some Br,
i' > t+1. By Lemma 2-6-20, A' concords with Bt and then by Lemma 2-6-12, A'
discords with two a-concordant elements of Tb. By Lemma 2-6-3 this gives a contra-
diction to the choice of A'. |

Proof of Theorem 2-6. Take A as in Lemma 2-6-20 and consider T+ = T\. By
Corollary 2-6-15 A < < AH, so by Lemma 2-6-21 the only multiple of A in Tb is Bt+1.
Thus T+ = {A} u (T \{Bt+1}). By Lemma 2-6-19, A overlaps the right margin of Bt.
By Lemmas 2-6-15 and 2-6-21, Bt is the rightmost 6-format in a component of T+,
since no element of T+ has both A^*), A(̂ 4*) + 1 in its support. By Lemma 2-6-20, it is
now easy to see that (a 1), (a 2) hold with T replaced with T+. \

2-7. LEMMA. LetbeX*\X, and let alt ...,az be the elements of X occurring in b, listed
so that la^ < ... ^ \az\. Let T beab,av ...,az-tableau and write T}for T ,je[l,z]. Then
T is satisfactory if there is a b-tableau U and anie[l,z] such that the following hold:

(0) Forallje[l,i-1], T}= 0 .
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(a) No component of Ti+1 U ... U Tz overlaps two elements of U.
(a 1) No element of Tt discords with two at-concordant elements of Tb.
(a 2) / / S_(at,b) ^ S+(at,b) (repectively, S_(aitb) < S+(aitb)) then any element of Tb

whose right (respectively, left) margin is overlapped by T% is the rightmost (respectively,
leftmost) b-format in a component of Tb U Tt.

(b) No element of Ti+1 u ... U Te divides an element of U.
(b 1) No element of Tt divides an element of Tb.
(c) For all je[i+l,z], U [) Ti+1 U ... U Tt is arunbreakable.
(c 1) Tb £ U, and each element of Tt breaks U.
(d) Ti+1 U ... U Tzis a strong chain of atomic formats.

Proof. We proceed by induction on w(T). If w(T) = 0 then T is empty, so satis-
factory. Thus we may assume w(T) > 0 and that the result is true for all tableaux of
smaller width. Since the hypotheses of the lemma are satisfied by subsets of T (with
the same U and i), we see that all proper subsets of T are satisfactory.

By symmetry we may assume 8_(aitb) ^ S+(at,b), as in Remark 2-6-2.
Consider first the case where Tb U Tt is e^-breakable. By Theorem 2-6, there is an

ai-format A which breaks Tb u Tt and such that (a 1) and (a 2) are satisfied with T+ in
place of T, where T+ = T\. Here T~A is a proper subset of T, so is satisfactory by the
induction hypothesis; by 2-4-4 it suffices to show that T+ is satisfactory. As it is clear
that w(T+) < w(T), it suffices to show that the conditions of the lemma hold for T+,
with the same U and i. Now (a), (b), (c), (d) hold for T+ since Tf+1 U ... U Tf is a subset
of Ti+X u ... U Tz. Clearly (0) holds for T+. By (b 1) and (c 1) for T, each element of
Tb U Tt divides an element of U; since A breaks Tb u Tt we see that A divides some
element of Tb u Tt (and hence some element of U) and discords with some other
element of Tb u Tt (and hence discords with some element of U). Thus A breaks U.
Since Tf £ Tt u {A} and T£ = {BeTb\A does not divide E), it follows that (b 1) and
(c 1) hold for T+. Thus T is satisfactory in this case.

I t remains to consider the case where Tb u T% is a^-unbreakable. Here the elements
of Tb are pairwise arconcordant. We shall show that no component of Tx overlaps two
elements of Tb. Thus, suppose to the contrary that a component T' of Tt overlaps two
elements Bx < < B2 of Tb. Let A be the rightmost element of T' which overlaps Bv

By (a 2), i does not overlap the right margin of Bv since Bx and B2 lie in the same
component of Tb U Tt. Thus p(A) ^ p(Bx) and p(Bt) + l$o-(T'). Hence

p(A) = p(T) > A(B2),

and A overlaps the o^-concordant elements B1 and B2, contradicting (a 1) or (b 1).
Thus no component of Tt overlaps two elements of Tb. We claim that the statements
(a'), (b'), (c'), (d'), obtained from (a), (b), (c), (d) by replacing i+ 1 with i, and U with
Tb, are all true. To see (a'), notice that by (a) and (c 1), no component of Ti+1 U ... U Tz

overlaps two elements of Tt U Tb, and we have just seen that no component of T{

overlaps two elements of Tb, so no component of Tx u Ti+1 u ... U Tz overlaps two
elements of Tb; that is, (a') holds. By (b), (c 1), and (b 1), we see that (b') holds. It is
clear from (c) and (c 1) that Tb U T{ u Ti+1 U ... U 2} is a^-unbreakable if je[i+ l,z];
for̂ " = i, we know Tb u Ti is ̂ -unbreakable, so (c') holds. To see (d'), suppose that some
A G Tt overlaps some A' e Ti+1 u ... U Tz, so A' is an a3-format for some j > i, and thus
w(A) ^ iv(A'). By (c 1), A divides an element B of U and discords with another
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element B' of U. Thus A' overlaps A, which divides B, so A' overlaps B; but by (a),
A' does not overlap B', while A does, so cr(A) £ cr(A'). Hence, either A(A) < A(A') (in
which case p(A) = A(A) + w(A) < A(A') + w(A') = p(A')) or p(A') < p{A) (in which
case A(A') = p(A')-w(A') <p(A)-w(A) = A(A)); that is, either A < < A' or
A' < < A. I t follows that < < is a total order on Tt U Ti+1 u ... U Tz, so (d') holds.

If i > 1, then the hypotheses of the lemma still hold if i is replaced by i — 1 and U
is replaced by Tb, since the analogues of (0), (a 1), (a 2), (b 1), (c 1) are trivially true,
with Tf_j = 0 . Without loss of generality, we may assume that i was chosen to be as
small as possible; thus i = 1. Write T' = Tx U ... U Tz. Here we have the following
statements holding.

(a') No component of T' overlaps two elements of Tb.
(b') No element of T' divides an element of Tb.
(c') For each je[i,z], Tb u 2\ U ... U 2} is arunbreakable.
(d') T' is a strong chain of atomic formats.
By (c'), Tb is a3-concordant for all je[l,z], so Tb is a staircase. If Tb and T' do not

overlap, then by (d'), each component of T is either a staircase or a (strong) chain of
atomic formats, so T is satisfactory by 2-4-1, 2-4-2 and 2-4-3. Thus we may assume
that T' overlaps some element B of Tb. From (b'), and the j = z case of (c'), we see that
the a2-factors of B (which exist since az occurs in b) do not overlap T'. Thus there exist
atomic factors of B overlapping T', and other atomic factors of B not overlapping T'.
Hence there must exist adjacent atomic factors A, Ao of B, such that A overlaps an
element A' of T', while Ao does not overlap T'\ here, either

or

and by symmetry, we may assume p(A) = A(.4O). Since Tb is a staircase, A does not
discord with any element of Tb. Thus, if A overlaps any element B' of Tb then B' is
divisible by A, which overlaps A'; by (a'), B' = B. Thus B is the unique element of
Tb overlapping A, so T\ = {A} u {T \{B}). Let V be the union of all components of T
that overlap A; by (a'), {A} u V is a component of T\. We know that Ao does not
overlap V or A, and A < < < Ao so V < < < Ao andp(F) ^ A(A0) = p(A). If A is an
a^-format, say, then Tb U F is not a3-concordant, so by (c'), if A" is any element of F
then^"isana3,,-formatforsomej" > j.ThusM>(4) < ^(^"J.Now/o
so that either p(A") < p(A) (in which case

A(A") =p(A")-iv(A") <p(A)-w(A) = A(A))

or /o(4") = p{A) (in which case

A(A") = p(A")-w(A")

Thus A" < ^ A, and F U {.4} is a chain of atomic formats. All the other components
of T\ are proper subsets of T, and these are satisfactory by the induction hypothesis.
Thus T\ is satisfactory by 2-4-3. By the induction hypothesis, T~A is satisfactory, so T
is satisfactory by 2-4-4. |

2-8. THEOREM. IfbeX* then every b-tableau is satisfactory.

Proof. Let T be a 6-tableau. If b e X, then T is a (strong) chain of atomic formats, so
is satisfactory by 2-4-2. If beX*\X, then T is satisfactory by Lemma 2-7, with
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U = Tb and i = z; the conditions are vacuously true since the sets Tt and [i+ l,z]
are all empty. |

This completes the proof of Theorem 119.

2-9. Notes. Theorem 2-6 is closely modelled on lemma B" of [6], the new steps
being 2-6-9, 11-15, 20, 21; the proof of Lemma 2-7 is essentially contained in the
proofs of lemma 5-2 and lemma A of [6].
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