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Several exact sequences have been established recently which relate
cobordism groups of various types [1], [3], [8]. These have all been es-
tablished in the differential case. The main object of this paper is to
establish the same results in the combinatorial case. We first define a
combinatorial analogue to Thom’s notion of ¢-regularity, and prove some
basic lemmas on submanifolds representing double coverings (Part I).

After this, we find that the same proofs are valid as in the differential
case, so we treat the two cases together. This gives us an opportunity to
collect together all the geometrical arguments used in the proofs of these
theorems, which have hitherto been somewhat scattered in the literature.
We establish the three exact sequences in Theorem 1; the proofs are so
simple that one could axiomatise a category of manifolds in which they
work. The proof would be valid for topological manifolds if only some
corresponding version of Lemma 7 could be established in that case.

We then give a proof, in the same order of ideas, that one of our maps
is a derivation. The behaviour of the others with respect to multiplica-
tion is rather more complicated, and we hope to return to it in a subse-
quent paper.

We shall assume known the definitions of combinatorial and of differ-
ential manifolds (which may have boundary). All manifolds occurring in
this paper will be compact. A compact manifold without boundary is called
closed. To avoid logical difficulties concerning sets, we may regard all
manifolds as imbedded in a finite dimensional subspace of a given Hilbert
space; however, it will be more convenient to state our constructions for
abstract manifolds. We shall usually denote manifolds by the symbols:
V, W, M, N.

PART I. SUBMANIFOLDS AND DOUBLE COVERINGS

Elementary lemmas

We recall that‘there is a (1-1) correspondence between elements of
HY(V,Z,), (which may be regarded as homomorphisms of 7,(M) to Z,),
and double coverings of V. Now a submanifold W of V of unit codimen-

sion determines a dual cohomology class in HY(V, Z,). W thus determines
1



2 C.T.C. WALL

a double covering of V, which may be described as follows. The covering
is trivial on V— W, so has two sheets there, and these are cross-joined
along W. We shall call this the double covering of V defined by W. In
this part we prove that conversely, to each double covering of V corres-
ponds a submanifold W, to some extent unique; this is the sole property
of differential and combinatorial manifolds needed for the proofs in the
second part of this paper. We first deal with some easy lemmas.

For a submanifold W of codimension 1 in a manifold V of any sort, one
can define, using the fact that W locally separates V into two sides, a
double covering of W describing this separation, and generalising the

normal bundle in the differential case. We call this the normal covering
of Win V.

LEMMA 1. The restriction to W of the double covering of V defined by
W is isomorphic to the normal covering of Win V.

PROOF. Designate the sheets over V— W as upper and lower. Then a
point of the covering lying over W, if moved slightly to one side of W, ap-
pears on the upper sheet; if moved to the other, on the lower. We regard
it as determining that side of W (defined locally) above which it appears
on the upper sheet. Thus it determines one point of the normal covering.
This correspondence defines an isomorphism of the two coverings.

Any manifold V admits a double covering corresponding to its two pos-
sible local orientations; this we call the orientation covering of V. Let
W be a submanifold of V of unit codimension; over it we have the orien-
tation covering, the normal covering in V, and a covering induced from
the orientation covering of V. Now there exists a composition for double
coverings which is well-known and may be described in various ways
(e.g., by adding the corresponding cohomology classes).

LEMMA 2. The composition of the orientation covering of W and the
normal covering of Win V is the covering induced on W by the orien-
tation covering of V.

ProoF. This simply follows from the well-known fact that locally,
designating an orientation of W and one side of W in V gives rise to an
orientation of V, which is changed if either of these two is.

We now make a precise definition of the word ‘submanifold’, as it will
be used for the rest of this paper. We shall call a map between two
manifolds smooth if, in the differential case, it is infinitely differentiable,
or in the combinatorial case, it is piecewise linear. Let V be an n-
dimensional manifold.

DEFINITION. A closed subset Wof Vis a submanifold of codimension
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o if for each point £ of W there is a neighbourhood U of x in V, and a
smooth homeomorphism # of U on E" taking UN Won E* .

Here, E™ is euclidean space of dimension %, with coordinates (x;); E""
is the subspace defined by setting the last 7 coordinates equal to zero. If
V has a boundary, we permit also neighbourhoods mapped to (E*, E%),
where the subscript + denotes the subset defined by x, = 0. Thus
VN W =0W, where 0V denotes the boundary of the manifold V.

In the case r =1, it follows that V cut along W is a manifold, with
boundary determined by W — in fact, isomorphic to the normal covering
of W. It is well-known that the boundary has a product neighbourhood;
in the differential case this follows, using a riemannian structure on V,
from standard properties of geodesics; in the combinatorial case, it is a
theorem of Whitehead [10]. Sewing V back together, we see that W
has a tubular neighbourhood in V in the following sense.

DEFINITION. A tubular neighbourhood of W in V is a smooth homeo-
morphism as a neighbourhood of Win V of the bundle over W asscciated
to the normal covering of Win V, with fibre [—1, 1], and group operat-
ing by change of sign. W is identified with the zero cross-section. For
definition of associated bundles see Steenrod [6]; in this case it is simply
the mapping cylinder of the projection map of the covering. Observe
that the bundle has natural differential resp. piecewise linear structure,
derived from the local product structure, and the word smooth makes
reference to this.

The existence of a tubular neighbourhood may be similarly seen if W
has a boundary — we shall not give the proof, since we have omitted the
details in the other case, and we do not need this result.

Regularising maps

We are now ready to introduce the methods of regularising maps on
submanifolds of unit codimension. In the differential case, let N be a
submanifold of M, V a manifold, f: V— M a smooth map. Denote the
tangent space to Vat x by V..

DEFINITION. fis t-regular on N if for every « in V such that f(x) = ¥
is in N, we have df(V,) + N, = M,.

In the combinatorial case let L be a subset of the simplicial complex K.

DEFINITION. L is in general position for r in K if for every closed
simplex o of K meeting L, 0N L is the intersection of ¢ with a hyper-

Pplane of codimension 7.
We now make the important observation that if N is a submanifold of
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unit codimension in M, then M has a triangulation with N in general
position for 1. For it is clearly sufficient to show this for a tubular
neighbourhood of N (and then extend the triangulation arbitrarily to the
rest of M). We first triangulate N, and remark that over each simplex
we have a product with the interval [—1, 1], and give each of these a
product triangulation (see [4 Ch. 2]), making sure that these fit together.
This is easily accomplished, e.g., as follows. To give a product triangu-
lation we must order the vertices of each simplex. It is a little simpler
to consider the orderings of the simplices of the double covering of N.
The orderings of the two simplices over a simplex of N are the reverse
of each other (since the product is ‘turned the other way up’). Subject
to this, and the condition that the ordering of a face of a simplex is in-
duced by that of the simplex, any ordering is possible. We find one, e.g.,
by choosing one vertex of the covering over each vertex of N, ordering
these arbitrarily; ordering the other vertices in the order corresponding
to the reverse of this, and placing them after the vertices first chosen.
This total ordering of the vertices of the covering of N induces the de-
sired ordering of the vertices of each simplex. We triangulate the bundle
accordingly, and N, or the zero cross-section, is then in general position.

We now give the technical lemmas which allow us to prove our results
on induced submanifolds.

LEMMA 3.. If L s in general position for r in K, g: V— K a sim-
plicial map, then g~(L) is 1n general position for r in V.

LEMMA 3,. If N is a submanifold of M, f: V— M a map, we can
approximate f by a smooth map g, t-regular on N.

LEMMA 4.. W is a submanifold of unit codimension in V if and only
if V has an allowed triangulation with W in general position for 1.

LEMMA 4,. If N is a submanifold of M, g. V— M a smooth map, t-
regular on N, then g7'(N) = W is a submanifold of V.

The differential Lemmas 3, and 4, are results of Thom [7, Th. 1.5]. The
second part of Lemma 4, follows from the remark above. The proofs of
the first part (for arbitrary codimension) and of Lemma 3, we defer for

the moment. (The second part of Lemma 4, is false for arbitrary
codimension.)

We can now prove

LEMMA 5. Any double covering p of V can be defined by a submantfold
W (of unit codimension in V).
Proor. Since real projective space of sufficiently high dimension is a
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universal space for the group Z, (Steenrod [6]), we may first represent
the covering p by a map f: V— P,(R) for sufficiently large A. We fix A4,
and write M = P,(R), N = P,_,(R). Then N is a submanifold of M of
unit codimension. Now in the differential case, by Lemma 3, we ap-
proximate f by a map g, t-regular on N, and deduce by Lemma 4, that
g7'(N)= W is a submanifold of V. In the combinatorial case, by Lemma
4, we triangulate M with N in general position for 1; we may suppose V'
triangulated, and approximate f by a simplicial map g. Then by Lemma
3., 97(N) = W is in general position for 1 in V, so by Lemma 4. again,
it is a submanifold.

The covering p is induced by g from the standard double covering of
M. This consists of two sheets over M — N, cross-joined along N. Since
by our choice of g, g(W) meets N transversely (i.e., the two sides of W
in ¥V map into locally different sides of N in M), p consists of two sheets
over V — W, cross-joined along W. Thus W does indeed define p.

To obtain a uniqueness clause to Lemma 5, we first prove a converse.
Let us say that g: V— M induces W in the sense of Lemma 5, if W =
07'(N), and g is smooth and either t-regular on N, or simplicial for some
triangulation of M with N in general position.

LEMMA 6. Let the submanifold W of V define the double covering p.
Then there is a map g: V— M which induces W in the sense of Lemma 5.
Proor. First represent the restriction p| W of » to W by a smooth
map f: W— N. The standard covering of N (which is the normal cover-
ing of N in M) then induces the covering p| W of W. By Lemma 1, this
is the normal covering of W in V. Now take tubular neighbourhoods
W, N of W, N in V, M. Since f carries the normal covering of Win V
to that of N in M, f extends in a natural way to a smooth map f of W
N, (as these bundles are associated with the coverings). But M — N is
contractible (it is, in fact, a cell), so we may now extend f to a smooth
map g of Vin M, with g(V — W)< (M — N). Then g is the required
map. In the differential case, it is clear from our construction that ¢ is
t-regular on N. In the combinatorial case, we may triangulate W, N with
f simplicial. Then give N the twisted product triangulation mentioned
above, and W a twisted product triangulation compatible with it (i.e., the
ordering of vertices of a simplex of W is subject to: x < ¥ if f(x) < f(¥)).
Then N is in general position in N, and f is a simplicial map. The ex-
tension to V now presents no difficulty.
LEMMA 7. Let p be a double covering of V, X a submanifold of 8V

defining p|8V. Then there is a submanifold W of V, defining p, with
oW = X.
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Proor. By Lemma 6, there is a map ¢g: 8V — M which induces X in
the sense of Lemma 5. Extend g to a product neighbourhood 8V x I of
8V in V by g(v, t) = g(v). Here, I denotes the unit interval [0, 1]. Ex-
tend g to a map f of Vin M, representing p. This is possible since ¢
represents p|8V. Now apply the proof of Lemma 5: we remark that in
each case modifying f to an f’ which induces a submanifold W of V,
defining p, can be done leaving f fixed on a neighbourhood of 8V. For
the t-regularity deformation (Lemma 3,) is done in local steps; and the
simplicial approximation theorem can be refined [11] to leave f fixed on a
subcomplex where it is already simplicial. It follows that WNnoV = X,
and since W is a submanifold, this is o W.

Lemma 7 provides the sought ‘uniqueness’ of the W of Lemma 5. For
if W, W’ both define the covering p, we consider the covering g of V' x I
corresponding to p. Then W x 0 U W’ x I defines ¢ |8(V x I), and by
Lemma 7 we can find a submanifold Y of V x I with these as boundary.
Hence W, W' are L-equivalent in the sense of Thom (loc. ¢it.), and W is
unique up to L-equivalence. However, the form stated for Lemma 7 is
that best adapted for our applications. We shall need one further slight
extension of these results.

LEMMA 8. If the normal covering of W in V s trivial, and W defines
P, then p can be induced by a map of V to a circle S*. Conversely, if p
can be tnduced by a map of V in S?, we may define p by a submantifold
W with trivial normal covering in V.

Proor. We note that S! is simply the projective space of dimension 1,
and the result follows by applying the proofs of Lemmas 5 and 6, taking
M as a circle, and N as a point in it. For the normal covering of Win V
is trivial if and only if it can be induced by a map in a point.

Proof of the combinatorial lemmas

It now remains only to prove the auxiliary Lemmas 3. and 4,. We define
an element-pair to be a polyhedral pair, piecewise linearly equivalent to
(0,_x00,,0,_,), where o; denotes a simplex of dimension ¢, and * denotes
the join. Then in Lemma 4., instead of giving an open neighbourhood
of each point of W as a euclidean pair, it is clearly sufficient to give a
closed neighbourhood U, which is an element-pair (and this holds also for
bounded manifolds). Suppose then V a triangulated combinatorial mani-
fold of dimension #, and W in general position for » in V.

PRrROOF oF LEMMA 4.. It is clear that W is a piecewise linear subset of
V. Let x be any point of W; we suppose it interior to a k-simplex «, of
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V, which meets Win a cell 5,_,. Then a neighbourhood of x is provided
by the union of the n-simplices 65 of V with «, as a face. We shall choose
U somewhat smaller. Specifically, for each simplex vi,, with «, as face,
pick a point p* in (v}, — @,) N W. Then for each 7 there are just n — k
(k + 1)-faces of it which contain «,, and we denote the simplex which is
the join of the corresponding p* by ¢i_,_,, and its join to a, by . Then
&} is a neighbourhood of z in 67, and we take U to be the union of all
the &J.

Let D be the union of all the ¢7_,_,. Then U is the join a,*xD. More-
over, Dis contained in W (since the p’ are), and so UN W is just B,_,xD.
So it remains only to prove (a,*D, 8;_,+D) an element-pair. But («, 8;_,)
is merely a simplex with a plane section, and we can easily find a piece-
wise linear homeomorphism on the standard element-pair (which we may
suppose to be concentric and lie in the same hyperplanes) by projecting
the vertices of a suitable triangulation from x and extending to a sim-
plicial map. D is (isomorphic to) the link of a simplex «, in the combi-
natorial manifold V, hence is equivalent to a simplex boundary (or to a
simplex, if x is on the boundary of V). Finally, the join of an element-
pair with a simplex boundary (or simplex) is clearly another element-pair,
so the result follows.

For Lemma 3., recall that L is in general position for » in the complex
K, and that g: V — L is a simplicial map.

PRrOOF OF LEMMA 3.. If g is an imbedding, the lemma is easy, for we
may identify V with g(V'), and then g=*(L) = L NV is clearly in general
position for ». But we can reduce the general case to this. For replace
Kby V x K, and g by f, where f(x) = (x, g(x)), so that f is an imbedding.
Triangulate V x K as follows: first order the vertices of K; then order
those of V' compatibly (so that if g(x) < g(y) then x < y). Then use the
product triangulation [4, Ch. 2]. This makes f a simplicial map. Clearly
V x L is in general position in V' x K, and g~%(L) = f~(V x L), so the
general result follows.

PART II. THE EXACT SEQUENCES

Definitions of the cobordism groups and maps

Consider the set of closed manifolds of dimension k: (manifolds are to be
understood in the same sense — differential or combinatorial — through-
out) on it we introduce the relation: V' ~, V" if there is a (compact) (k + 1)-
manifold M with boundary V' U V'. If this condition is satisfied, V and V"’
are call cobordant, and M is said to provide a cobordism between them.
The relation ~, is clearly symmetric, it is reflexive since 8(V x I) is the
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union of two copies of V, and it is transitive since if oM = VU V', oM’ =
V'U V", we may glue M to M’ along V' giving a manifold M" which is
easily seen to be combinatorial (resp. differential) if M, M’ are, and with
oM'" =V UV". Thus ~, is an equivalence relation. We shall denote
the equivalence class of V by {V}.

Disjoint union gives an addition clearly compatible with this relation,
and the classes form a group. For the empty manifold acts as zero, and,
since VU V bounds V x I, each class is its own inverse. Hence we have
a group N,. Topological product is also compatible with the equivalence
relation, for if V~,V’, say oM =V U V', and if W is closed, then
(Mx Wy=Vx WUV'x W, s0 Vx W~,V"x W. Thus we may
introduce products N, x N, — N;1,;, and these are clearly commutative,
associative, and distributive over addition. We obtain a graded commuta-
tive ring N, which is called the cobordism ring. In the differential case
it was defined, and its structure completely elucidated, by Thom [7].

Essentially the same remarks go also for the oriented case: we let
V ~ V'’ if there is an oriented manifold M with oriented boundary 6 =
V U(— V'), where — denotes reversal of orientation. The relation ~ is
an equivalence relation; we denote the class of V by [V]. Disjoint union
again gives an addition turning the set of classes into a group, and here —
yields the inverse. Finally, the topological product turns the sequence of
these groups into a graded skew-commutative ring Q.

We also consider a third ring. 28 is the subset of 3 consisting of classes
containing a manifold M satisfying

(A) The orientation covering of M can be induced by a map of M in
the circle S*.

It is clear that if M, M’ satisfy (A), then so do MU M’ and M x M’
(the two maps in S* can be multiplied since S* is a group), hence W is a
subalgebra of .

These are the objects which will appear in our exact sequences; we
must now define the maps. Four of these are easy to find. We denote the
inclusion map by 7: W—N. An element of Q determines an element of N
by simply ignoring orientation (this is clearly compatible with the equiva-
lence relations); this element is moreover in 28, since an orientable mani-
fold satisfies (A) a fortiori. Hence there are maps r: Q — N, s: Q — W
with 7s = r. All these three are clearly ring homomorphisms. We also
have an additive homomorphism 2: Q — Q, defined by doubling each
element.

We need two more maps, whose definition is less simple, involving the
results of Part I. We shall define below 8: t — Q, of degree —1, by
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letting 8{M} be the class of a manifold V defining the orientation cover-
ing of M, and d: Nt — N, of degree —2, by letting d{M} be the class of a
submanifold B of V defining the restriction of that covering to V. We
first need a lemma.

LEMMA 9. Let p: M — M be a double covering of the closed oriented
manifold M. Take M with the orientation induced by p. Then [M] =
2[M].

ProoF. Let V be a submanifold of M defining p (by Lemma 5), and T
(the image of) a tubular neighbourhood for V in M. Then T = p~(T)
is a tubular neighbourhood of V = p~%(V), and is a fibre bundle over V
associated to p|V (by Lemma 1), with fibre two segments, as in Fig. 1
{(where the group acts by reflection in the dotted line).

Q 1l

|
|
!
!
|
|
|
!
|
|
!
|
|
|
|
|

[
|
!
1
|
I
|
|
I
!
|
I
-+

)
2}

Fig. 1 Fig. 2

The covering p is trivial over M — V; we choose the notation in Fig. 1
so that P, Q, are in one sheet of this; P,, @, in the other. Then if from
I we remove T and replace by 27, which may be considered a bundle
over V again with fibre two segments, as in Fig. 2, where again the
group acts by reflection in the dotted line, we simply obtain two copies
of M.

We have described a modification of M which gives 2 M; we now say
that there exists a corresponding cobounding manifold N. N is obtained
by gluing to the closure of (M — T') x I the bundle over V, again associated
to p| V, with fibre an octagon, described by Fig. 8, which also indicates how
the gluing is to take place. It is immediate that N is a combinatorial mani-
fold; that, in the differential case it is a differential manifold, follows by
rounding off corners — indeed, we could take a curvilinear octagon with
all angles right and eliminate the need for this.

Finally, we must check that N is orientable. The bundle described by
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:1::::

Fig. 3

Fig. 8 is orientable, since it is homeomorphic to:T x'I. To this must be
attached (M — T') x I, which consists of orientable components. The fact
that orientations match up follows (taking the product with I) from the
fact that T glued to M — T leads to the orientable M.

REMARK. This proof (with the discussion of orientation deleted) es-
tablishes also the same result in the non-oriented case, viz., If p: M— M
is a double covering of the closed manifold M, then {M} = 0. However,
this result is obvious a priori, since the mapping cylinder of p is a mani-
fold with boundary M. This argument establishes also the result: I f M
is mon-orientable, and p: M— M its orientation covering, then [M] = 0.
For in this case, the mapping cylinder of p is also orientable (it is a bundle
over M, with fibre a segment, whose orientation changes with that of M).

LEMMA 10. There is a map 9: N — Q, of degree —1, such that o{M}
1s the class of a submanifold V of M defining the orientation covering
of M.

ProoF. By Lemma 5, there is a submanifold V defining the covering.
If M is cobordant to M’, and N provides the cobordism, then if V, V'
define the orientation coverings of M, M’, by Lemma 7, there is a sub-
manifold W of N, with boundary V U V’, which defines the orientation
covering of N.

We now check that all these manifolds are orientable; from this it will
follow that {M} defines [ V], at least up to sign — we have not yet chosen
an orientation for V. Now by Lemma 1, the orientation covering of N
induces on W the normal covering of W in N. It follows by Lemma 2
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(since double coverings under composition form a group H(W, Z,)) that
the orientation covering of W is trivial; i.e., that W is orientable, as
required.

Finally, let T be a tubular neighbourhood of V in M. Then the closure
of M — T is an orientable manifold, and its boundary is that of T, a
double cover of V. Hence by Lemma 9, 2[ V] =0. Hence {M} determines
[ V1], the sign of the latter being irrelevant.

Now for V also have a double covering, the restriction of that of M.
By Lemma 5, this may be defined by a submanifold B of V.

LEMMA 11. There is a map d: N—N, of degree —2, such that d{M} =
{B}.

Proor. We have just noted that B exists. If {M} = {M'}, and M, M’
give rise to B, B’, let aN = M U M’. By Lemma 7, we can first extend
VUV’ to a submanifold W of N, defining the orientation covering and
then again extend B U B’ to a submanifold C defining the restriction of
that covering to W. Thus 8C = B U B’, and so {B} = {B’} as required.

It is clear that both the above constructions are compatible with dis-
joint unions, so @ and d are homomorphisms.

The exact sequences

We are now ready to state and prove our main result.

THEOREM 1. The following sequences are exact:

(1) oot w o Z.a
(2) 0—w—n-% w ——o
(3) o+n%%0 . 0%%0 1 0%%0.

Proor. We note that (38) is obtained by splicing (1) and (2), and its
exactness follows from theirs by trivial arguments which we leave to
the reader. We split the proof into a number of stages.

Sequence (1) is of order 2. s(2x) = 2s(x) = 0 since sis a homomorphism;
201(x) = 0i(2x) = 0 since @, © are homomorphisms (and & has exponent 2);
and 8is(x) = or(x) = 0, since if M is orientable, its orientation covering
is trivial, and we may choose V empty.

(2, s) ts exact. If [V]is in the kernel of s, V bounds a manifold M (in
general non-orientable). By Lemma 7, we may extend the empty sub-
manifold of @M to a submanifold A of M defining the orientation cover-
ing of M. Let T be a tubular neighbourhood of A, W the closure of M—T,
and C their common boundary. Since W is orientable, with boundary
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VUC, [V]= +[C]. A is orientable, and C a double covering, so by
Lemma 9, [C] = 2[A]. Thus [ V] is in the image of 2.

(@1, 2) is exact. If [V] is in the kernel of 2, let M’ be an orientable
manifold with M’ =2V. Let M be obtained from M’ by gluing together
the copies of V. Then the orientation double covering of M consists of
two sheets over M — V, cross-joined along V, so is defined by V. The
normal covering of V is trivial, so by Lemma 8, the orientation covering
of M can be induced by a map in a circle; i.e., M satisfies (A). Hence
{M} is in LB, and at{M} = [V].

(s, 87) is exact. Let {M} be in the kernel of 8i.. We may suppose that
M satisfies (A); then by Lemma 8, the orientation covering of M can be
defined by a submanifold V with trival normal covering in M. We cut
M along V to obtain an orientable manifold M’ with boundary 2V. Our
hypothesis gives[V] =0, solet V =8N, N orientable. Define N’ by gluing
a copy of N on to each boundary component V of M’'. Then N’ is clearly
orientable. Hence the result will follow if we prove {M} = {N'}.

Consider N’ x I: in the boundary component N’ x 1 are two copies
of N. If these are glued together, we may round off the corners along
V x 1 (in the differential case), and still have a manifold, W say. aW
has two components: N’ x 0, and one obtained from N’ x 1 by deleting
the two copies of N, and gluing together along the boundary. But this
gives just a copy of M, as desired.

Sequence (2) is of order 2. If M satisfies (A), by Lemma 8, we may sup-
pose that V (defining its orientation covering) has trivial normal covering
in M, hence that B (which defines this covering) is empty.

11s (1-1) by definition of T8.

(4, d) 1s exact. Let {M} be in the kernel of d, form V and B from M in
the usual way. Then B bounds some manifold, say C. Let T be a tubular
neighbourhood for B in V; this bundle is associated with the orientation
covering of B, since V is orientable, by Lemma 2. Let U be the bundle
over C with fibre [—1, 1], associated with the orientation bundle of C.
We may identify T with the part of U lying over B. We then glue U to
V x Ialong T (in V x 1), and round the corners, thus obtaining a mani-
fold W. Let C' = CU(V x I). (See Fig. 4.)

We now repeat this process, extending the cobordism C of B, via the
cobordism W of V, to a cobordism N of M (for this process, cf. [9]). The
normal covering of V in M consists of two sheets over V — B, cross-
joined along B. This extends to the covering of W defined by C’. We then
form the associated bundle with fibre [—1, 1], and glue to M x I along a
tubular neighbourhood of V in M. Rounding off the corners, this gives a
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manifold N. Weset W = WU(V x I), C"”" = C'"U(B x I). Then itis
clear from our construction that W’ defines the orientation covering of
N, and that C” defines the restriction of that covering to W’. 8N con-
gists of two components, M and M’ say; correspondingly oW = VU V",
and 9C = B. The normal covering of V' in M’ is defined by the empty
submanifold, so is trivial, so by Lemma 8, M’ satisfies (A). But 0N =
MUM', so {M} ={M'}is in T8,

d s onto. Let B be any manifold, M the bundle over it, associated
with the orientation covering, with fibre P,(R) (the real projective plane),
on which the group acts by (x, ¥, 2) —(—w, ¥, 2). Let V be the subbundle
with fibre a circle given by z = 0, and identify B with the subbundle of
this with point fibre given by ¥ = z = 0.

The orientation cover of M is the associated bundle with fibre S* and
action as described (this is orientable since the orientation of the fibre
changes with that of B). This is trivial over M — V, and the sheets are
cross-joined along V, so V is derived from M in the usual way. Similarly,
the restriction of this to V is trivial on V — B, with two sheets cross-
joined along B, so is defined by B. Hence indeed d{M} = {B}, and B was
arbitrary, so d is onto.

This concludes the proof of Theorem 1. It seems appropriate at this
point to acknowledge where the above proofs (in the differential case)
first appeared. The first use of V and B was made by Rohlin [5], who also
proved that (2, s) wase xact (not by the above method). Lemmas 9 and 10
and the above proof of the exactness of (2, s) are due to Dold [2], who
was also the first to note the exactness of sequence (3) in [3]. Sequence
(2), with essentially the above proof that d is onto is due to Atiyah [1].
Sequence (1) and the remaining proofs are due to the author [8].
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Multiplicative structure
We shall now write so¢ = 0'.

THEOREM 2. 9’ is a derivation of L.

Proor. Let M, M’ satisfy (A). By Lemma 8, we may define the orien-
tation coverings of M, M' by submanifolds V, V' with trivial normal
coverings, induced by maps in a circle. We seek to prove

M x MY={VxM}+{Mx V'}.

We now take a tubular neighbourhood of V in M; this may be identified
with V x [—1,1]. Let S! be the circle obtained by identifying the end
points of the interval [—1, 1], and let ¢: M — S* be the map induced by
projecting the tubular neighbourhood on its second factor, and mapping
the rest of M to —1. Similiarly we obtain a map @': M’ — S*. But S'is
a group, with the group operation addition (reduced mod 2), which is a
map 7: S* x S* — S*. Then

M x M’@(—»(/”S1 x ST St
gives a map ¥ = mo(® X @’) representing the orientation covering of
M x M' (since this is the composition of the coverings induced from M
and M').

Thus 8'{M x M} is represented by 4 *(0) = W, say, the inverse image
under @ x @' of the dotted lines in Fig. 5. W is a manifold, since it
agrees with the union of V x M’ and M x V' except at points corre-
sponding to the interior of the square , where @ x @' is trivial, and the
corresponding points form two copies of V x ¥V’ x(0,1). Inthe differential
case, to ensure differentiability we take instead the dotted lines in Fig. 6;
this makes no real difference to the argument.

Then W can be derived from the union of V x M’ and M x V', the
inverse image of the unbroken lines in Fig. 5, by deleting two copies of
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V x V' x (0, 1), and replacing them by two others. This situation is the
same as we had in Lemma 9 (except that here the fiberings are trivial),
and as there we can use Fig. 3 to yield a cobordism of W to the disjoint
union of V x M’ and M x V', as desired.

It is easy to see that r9: 3t — N is not a derivation. For, in the dif-
ferential case, it annihilates orientable manifolds, and hence Dold’s odd
dimensional generators for 9, and sends a typical even dimensional gen-
erator {P,,(R)} to {P,._.(R)}, which is zero. (This is well known: all the
Stiefel numbers vanish. A simple geometric proof is: S**~*, hence also
P,._(R), is a principal S*-bundle over P,_(C). We fill up the fibre S* to
a disc D? this gives a manifold with P,, ,(R) as boundary.) Hence it
annihilates a complete set of generators for N, so, were it a derivation,
it would be zero. But this it certainly is not. A particular example is
(x; denoting any choice of an i-dimensional generator for N) ro(x,) =
ro(x,) = 0, ro(xx,) = ;. Noris d: ! —N a derivation, for here d(x,) =1,
d(z,) = x,, but d(zx,) = x,. Since the differential groups are contained
in the combinatorial ones (see below), it follows that neither 70 nor d is
a derivation in that case either.

It is possible, on lines similar to, but more complicated than those of
Theorem 2, to consider rd and d, and attempt to prove them derivations.
It is possible to carry through the argument up to the point at which we
use Fig. 3, where essentially we have a bundle with fibre S?, and fill this
up to a disec D®. In these two cases, however, the fibre is a real or com-
plex projective plane, so does not bound, and this introduces a new term
into the equation. We hope to return to this point in a later paper.

INSTITUTE FOR ADVANCED STUDY AND TRINITY COLLEGE, CAMBRIDGE.
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