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Abstract. We construct a real valued dimension for arbitrary modules
over the algebra of operators affiliated to a finite von Neumann algebra.
Moreover we determine the algebraic K0- and K1-group and the L-
groups of such an algebra.

1. Introduction

The aim of this paper is twofold. First we would like to promote the algebra
of operators affiliated to a finite von Neumann algebra as a convenient tool
in understanding L2-invariants. In particular we extend the notion of a
real valued dimension from finitely generated projective modules over such
an algebra to arbitrary modules (Theorem 3.11). This is motivated by the
analogous result for von Neumann algebras in [14]. Second we would like to
collect and complete the known results about K- and L-theory of finite von
Neumann algebras and their algebras of affiliated operators (Theorem 6.1,
Theorem 6.3 and Theorem 7.1).
Let us define our objects of study. A von Neumann algebra A is a weakly
closed ∗-invariant subalgebra of the algebra B(H) of bounded linear opera-
tors on some Hilbert space H. It is called finite if it admits a normal faithful
trace tr : A → C. Our favourite example is the group von Neumann algebra
of a discrete group NΓ obtained by completing the left regular represen-
tation of the complex group ring CΓ on l2Γ. A not necessarily bounded
operator a is affiliated to A if ba ⊂ ab for all operators b ∈ A′. Here A′

denotes the commutant of A in B(H), and ba ⊂ ab means that restricted to
the possibly smaller domain of ba the two operators coincide.

Notation 1.1. Given a finite von Neumann algebra A let U denote the set
of all closed densely defined operators affiliated to A. If A happens to be a
group von Neumann algebra NΓ we write UΓ.

It was shown by Murray and von Neumann [19] that these operators indeed
form an algebra, when addition and multiplication is defined as the closure
of the naive addition and composition. Note that there is no reasonable
topology on the algebra of affiliated operators. It turns out that U is a
localization of A (in the sense of ring theory). The simple-minded analogy
with the passage from abelian groups to Q-vectorspaces is often very helpful.
We now describe the main results of this paper.
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Theorem 1.2. There is a well behaved notion of dimension for arbitrary
U-modules.

For a more precise statement see Theorem 3.11.
In the context of L2-invariants the notion of dimension for NΓ-modules is
used to define the so called L2-Betti numbers. In Section 5 below we ex-
plain how UΓ can be used to define L2-Betti numbers. Computing L2-Betti
numbers via UΓ-modules is analogous to computing ordinary Betti num-
bers via homology with rational coefficients instead of working with integral
homology. The passage from A-modules to U -modules is the algebraic ana-
logue of the passage from unreduced to reduced L2-homology in the Hilbert
space set-up. In Section 4 we investigate in more detail the effect of the
passage from A to U for the corresponding module categories and compare
two competing defintions of torsion modules.
Building on the results about K1(A) from [17] and the comparison of the L-
theory of A with topological K-theory in [27] we completely determine the
algebraic K0- and K1-groups and the L-theory groups of A and U . Among
other results we prove in Sections 6 and 7:

Theorem 1.3. Let K0 and K1 denote the algebraic K-theory groups. Let
Lp and Lh denote the L-groups based on projective respectively free modules.

(i) The passage from A to U does not affect K0, Lh or Lp. In particular
the corresponding relative L-groups vanish.

(ii) The odd Lp-groups of A and U vanish.

Moreover if Γ is a finitely generated group which is not virtually abelian,
then we have:

(iii) K1(UΓ) = 0 and all odd L-groups of NΓ and UΓ vanish.
(iv) The relative K-group K0(NΓ → UΓ) which can be identified with

K0 of the category of finitely presented torsion A-modules vanishes.

Note that any Γ-CW-complex with compact quotient space, whose isotropy
groups are all finite, gives rise to a finite dimensional complex of finitely
generated projective NΓ-modules. The space is L2-acyclic, i.e. all its L2-
Betti numbers vanish, if and only if the corresponding UΓ-complex is acyclic.
Therefore an L2-acyclic space naturally gives rise to an element in the rel-
ative K-group K0(NΓ → UΓ). Similarly an L2-acyclic manifold naturally
defines an element in a relative L-group. Unfortunately the results above
show that these groups vanish if Γ is a finitely generated group which is not
virtually abelian.
The algebra UΓ of operators affiliated to a group von Neumann algebra
plays a central role in Linnell’s work [12] on the Atiyah Conjecture about
rationality of L2-Betti numbers and the related Zero-Divisor Conjecture.
Recently Cochran, Orr and Teichner used the algebra UΓ to construct via
L2-signatures new invariants detecting knots that are non-slice [4].
In both cases it is important that the algebra UΓ is large enough to contain
a semisimple ring or even a skew field DΓ which contains the integral group
ring ZΓ, but DΓ does not fit into the group von Neumann algebra NΓ, i.e.
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we have inclusions

ZΓ� _

��

� � // NΓ� _

��
DΓ

� � // UΓ.

The general philosophy is that invariants are defined over DΓ but they be-
come accessible only after passage to UΓ. In the simple case where Γ = Z

is the infinite cyclic group the above diagram can be identified with

Z
[

x±1
]

� _

��

� � // L∞(S1)
� _

��
Q (x) � � // L(S1),

where the rings are the Laurent-polynomials, the field of rational functions
in one variable, the essentially bounded functions on S1 and the measurable
functions on S1. Note that Laurent polynomials with zeros on S1 are not
invertible as essentially bounded functions but become invertible as measur-
able functions.
Most of the results below are contained in the author’s thesis [26]. We would
like to thank Wolfgang Lück for discussions and encouragement. The K-
and L-theory computations will also be included in his book [15].

2. Review of some fundamental properties of U
In this section we briefly review a few known properties of the algebra of
operators affiliated to a finite von Neumann algebra. As above let A be
a finite von Neumann algebra and denote by U the closed densely defined
operators affiliated to A. It was observed in [13] that A has astonishingly
good ring-theoretical properties. Namely it is a semihereditary ring, i.e.
every finitely generated submodule of a projective A-module is projective.
As a consequence the category of finitely presented A-modules is an abelian
category. The ring U has even better properties:

Proposition 2.1. We have the following facts about U .

(i) The algebra U is a von Neumann regular ring, i.e. for every U-
module the functor −⊗U M is exact.

(ii) Every finitely presented U-module is finitely generated projective and
the category of finitely generated projective U-modules is abelian.

(iii) Every operator b ∈ U can be written in the form b = at−1 with a,
t ∈ A and t invertible in U . Every non-zero-divisor in A becomes
invertible in U . The ring A fulfills both Ore-conditions with respect
to the set of all non-zerodivisors and U is isomorphic to the Ore
localization of A.

(iv) The functor −⊗A U is exact.
(v) The ring U is unit-regular, i.e. for every element a ∈ U there exists

an invertible element b ∈ U× with aba = a.
(vi) The ring U is ∗-regular, i.e. it is a von Neumann regular ring in

which a∗a = 0 implies a = 0.
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Proof. (i) The original definition of von Neumann regularity was in terms of
elements: for every element x of the ring there exists an element y such that
xyx = x. That this definition is equivalent to the definition given above
and that (ii) holds for von Neumann regular rings can be found for example
in [28, Lemma 4.15, Theorem 4.16, Theorem 9.15] and [32, Theorem 4.2.9].
We therefore show (v). Let a = us be the polar decomposition with partial
isometry u. Then p = uu∗ and q = u∗u are Murray von Neumann equivalent
projections. Since A is a finite von Neumann algebra there exists a partial
isometry v with 1 − p = vv∗ and 1 − q = v∗v. Now u∗ + v∗ is an isometry
and in particular invertible. Moreover we have (u∗ + v∗)u = u∗u and with
b = t(u∗ + v∗) we get

aba = ust(u∗ + v∗)us = usts.

It remains to be found an invertible t ∈ U with sts = s. This can easily
be achieved using the functional calculus. (iii) Let b = us the polar de-
composition. Replace s by the invertible selfadjoint operator p + s with
p = 1−u∗u and use the functional calculus to write p+ s as a fraction. The
right Ore condition follows and its left handed version follows by using the
antiautomorphism ∗ : U → U . (vi) Compare [21, Theorem 5.1.9]. �

Lemma 2.2. Let a ∈ U be an operator. The following statements are equiv-
alent.

(i) a is invertible in U .
(ii) a is injective as an operator, i.e. ker(a : dom(a) → H) = 0.

(iii) a has dense image, i.e. im(a) = a(dom(a)) = H.
(iv) la : U → U given by b 7→ ab is an isomorphism of right U-modules.

If moreover a ∈ A ⊂ U the above statements are also equivalent to:

(v) a is a non-zerodivisor in A.
(vi) la : A → A, b 7→ ab is injective.

Proof. (i) ⇔ (ii) ⇔ (iii): We only show (ii) ⇒ (i) and (iii) ⇒ (i). Let a = us
be the polar decomposition of a. Here u is a partial isometry and hence
p = u∗u and q = uu∗ are projections. We have

im(a) = im(u) = im(uu∗) = im(q), and

ker(a) = ker(u) = ker(u∗u) = ker(p).

Now if im(a) = H, then q = id and 0 = trA(id)−trA(q) = trA(id)−trA(p) =
trA(id − p). Since the trace is faithful this implies p = id and therefore u
is a unitary operator and in particular invertible. In the case ker(a) = 0 we
argue similarly. Now since ker(s) = ker(u) = 0 we can use the functional
calculus to define an inverse f(s)u∗ with f(λ) = 1

λ for λ 6= 0. (i) ⇔ (iv)
is clear. (i) ⇒ (v) and (v) ⇒ (vi) are easy. It remains to show (vi) ⇒
(ii). Suppose the bounded operator a ∈ A has a nontrivial kernel. If pker(a)

denotes the projection onto the kernel we have apker(a) = 0 and we see that
la is not injective. �

Note that similar statements hold for matrices since Mn(A) is again a finite
von Neumann algebra and Mn(U) is isomorphic to its algebra of affiliated
operators.
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3. Dimensions

The main aim of this section is to prove that there is a well-behaved notion
of dimension for arbitrary U -modules (Theorem 3.11), and that − ⊗A U
induces an isomorphism in K0 (Theorem 3.7). Essentially certain properties
of the lattice of projections of a finite von Neumann algebra are responsible
for these facts. Recall that a lattice is a partially ordered set Latt, where
for any two elements x, y ∈ Latt the greatest lower bound inf({x, y}) and
the least upper bound sup({x, y}) exist. If the corresponding property holds
also for arbitrary subsets instead of two-element subsets the lattice is said
to be complete. For more on lattices we refer to [30, Chapter III].
We will consider the lattice LattProj(A) of projections in A with the order
given by p ≤ q iff qp = p. This is a complete lattice ([31, Chapter V,
Proposition 1.1]). Given a right R-module MR one can consider the set
Lattds(MR) of those submodules of M which are direct summands. Note
that for R von Neumann regular and MR finitely generated projective a
submodule is a direct summand if and only if it is finitely generated.

Proposition 3.1. Given a finite von Neumann algebra A and its algebra
of affiliated operators U , all partially ordered sets in the following commuta-
tive square are complete lattices, and all maps are order isomorphisms and
therefore lattice isomorphisms.

LattProj(A) //

��

Lattds(AA)

��
LattProj(U) // Lattds(UU )

The maps are given as follows:

LattProj(A) → LattProj(U) p 7→ p
LattProj(A) → Lattds(AA) p 7→ pA
LattProj(A) → Lattds(UU ) p 7→ pU
Lattds(AA) → Lattds(UU ) I 7→ IU .

Here IU is the right U-module generated by I in U .

Proof. Commutativity of the diagram is obvious. Once we have proven that
all lattices are isomorphic completeness follows from the completeness of
LattProj(A). In order to prove that a map is a lattice isomorphism it is
sufficient to show that it is an order isomorphism. By commutativity of the
square it is sufficient to deal only with three maps. Since projections in
U are bounded operators they already lie in A, so the lattices LattProj(A)
and LattProj(U) coincide. Given a finitely generated right ideal IU in the
∗-regular ring U there is a unique projection p ∈ U such that pU = IU ,
compare [20, Part II, Chapter IV, Theorem 4.5]. This leads to the bijec-
tion LattProj(U) → Lattds(UU ). If p ≤ q, then multiplying pU ⊂ U from
the left by q leads to pU ⊂ qU . Note that in general an order preserving
bijection need not be an order isomorphism. But of course if pU ⊂ qU ,
then multiplying from the left by 1 − q yields p ≤ q. It remains to prove
that LattProj(A) → Lattds(AA) is surjective; then injectivity follows from
the commutativity of the diagram. So given a right ideal I in A which is
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a direct summand, there is an idempotent e such that eA = I. We have
to replace the idempotent by a projection. The following lemma finishes
the proof. That the lemma applies can be found in [9, Theorem 2.7.8, page
158]. �

The following lemma is [3, Prop. 4.6.2].

Lemma 3.2. In a ∗-ring R where every element of the form 1 + a∗a is
invertible the following holds: given an idempotent e there always exists a
projection p, such that pR = eR.

Proof. Set z = 1 − (e∗ − e)2 = 1 + (e∗ − e)∗(e∗ − e). Then z = z∗ and
ze = ez = ee∗e and also z−1e = ez−1. If we now set p = ee∗z−1 then p is a
projection and pe = e and ep = p. This leads to pR = eR. �

We are not primarily interested in these lattices of submodules, but rather
in the set of isomorphism classes of such modules. This is the first step in
passing from embedded submodules to abstract finitely generated projective
modules and then later to arbitrary modules. The point is that over a unit-
regular ring isomorphism of submodules can be expressed in lattice theoretic
terms.

Lemma 3.3. Let R be a unit-regular ring and let RR be the ring consid-
ered as a right R-module. Two finitely generated submodules L and M are
isomorphic if and only if they have a common complement in RR, i.e. a
submodule N exists with RR = M ⊕ N and RR = L ⊕ N .

Proof. Compare Corollary 4.4 and Theorem 4.5 in [5]. �

We obtain the following refined information on the diagram in Proposi-
tion 3.1.

Proposition 3.4. The lattice isomorphisms in Proposition 3.1 induce bi-
jections of isomorphism classes, where isomorphism of projections p ∼= q
means there exist elements x and y in A respectively U such that p = xy
and q = yx.

Proof. Again we only have to deal with three of the four maps. The state-
ment for the map Lattds(AA) → Lattds(UU ) will follow from the commuta-
tivity of the square. We begin with the maps LattProj(A) → Lattds(AA)
and LattProj(U) → Lattds(UU ). Let R be an arbitrary ring. If p = xy
and q = yx, then left multiplication by x respectively y yield mutually in-
verse homomorphisms between pR and qR. On the other hand given such
mutually inverse homomorphisms the image of p respectively q under these
homomorphisms are possible choices for x and y. Next we handle the map
LattProj(A) → LattProj(U). The only difficulty is to show that if p and
q are isomorphic (alias algebraically equivalent) inside U , then they are al-
ready isomorphic in A. The converse is obviously true. From Lemma 3.3
above we know that isomorphic finitely generated ideals in U have a com-
mon complement. We have thus expressed isomorphism in lattice theoretic
terms. Since we already know from Proposition 3.1 that the map is a lat-
tice isomorphism, p and q have a common complement in LattProj(A). The
following lemma, which is due to Kaplansky, finishes the proof for the map
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LattProj(A) → LattProj(U) since partial isometries are bounded and there-
fore in A. The lemma also tells us that projections p and q in A are isomor-
phic or algebraically equivalent if and only if they are Murray von Neumann
equivalent. �

Lemma 3.5. If two projections p and q in a von Neumann algebra A have
a common complement in the lattice of projections LattProj(A), then they
are already Murray von Neumann equivalent, i.e. there is a partial isometry
u ∈ A such that p = u∗u and q = uu∗.

Proof. See [11, Theorem 6.6(b)]. There it is proven more generally for AW ∗-
algebras. �

Since Mn(A) is again a finite von Neumann algebra and its algebra of affil-
iated operators is isomorphic to Mn(U) one can apply the above results to
matrix algebras.

Corollary 3.6. There is a commutative diagram of complete lattices and
lattice isomorphisms, where all the maps are compatible with the different
notions of isomorphism for the elements of the lattices.

LattProj(Mn(A)) //

��

Lattds(Mn(A)Mn(A)) //

��

Lattds(An
A)

��
LattProj(Mn(U)) // Lattds(Mn(U)Mn(U)) // Lattds(Un

U )

There are stabilization maps

LattProj(Mn(A)) → LattProj(Mn+1(A))

. . .

Lattds(Un
U ) → Lattds(Un+1

U
)

and these maps are compatible with the above lattice isomorphisms and the
different notions of isomorphism for the elements of the lattices.

Proof. The map Lattds(Mn(A)Mn(A)) → Lattds(An
A) is given by − ⊗Mn(A)

An
A followed by the map induced from the natural isomorphism of right A-

modules Mn(A) ⊗Mn(A) An
A

∼= An
A. Morita equivalence tells us that − ⊗A

An
Mn(A) followed by a natural isomorphism is an inverse of this map. The

same argument applies to U . The vertical map on the right is given by
mapping a submodule M ⊂ An to the U -module it generates inside Un.
Since the diagram commutes, this map is also a lattice isomorphism. �

An immediate consequence of the above is the following.

Theorem 3.7. The functor −⊗AU induces an isomorphism of the monoids
of isomorphism classes of finitely generated projective modules. In particular
the natural map

K0(A) → K0(U)

is an isomorphism.

Proof. The maps Lattds(An
A) → Lattds(Un

U ) are compatible with isomor-
phism, stabilization and direct sums. �
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We now apply the standard procedure to obtain a dimension function. Fix
a faithful normal trace trA : A → C. Extending the trace to matrices by
summing over the diagonal yields maps dim : LattProj(Mn(A)) → R p 7→
trA(p) which are compatible with the stabilization maps. Of course we nor-
malize the traces such that trMn(A)(1n) = n. Because of the trace property
dim is well-defined on isomorphism classes of projections. Given a finitely
generated projective module over A or U there is always an isomorphic mod-
ule M which is a direct summand in An respectively Un for some n ∈ N.
Sending these modules through the diagram of 3.6 to their corresponding
projections in Mn(A) and taking the trace gives a real number: the dimen-
sion dimU(M) of M . For reference purposes we summarize its properties in
the following proposition.

Proposition 3.8. Let M be a finitely generated projective U-module.

(i) dimU (M) depends only on the isomorphism class of M .
(ii) dimU (M ⊕ N) = dimU (M) + dimU (N).
(iii) dimU (M ⊗A U) = dimA(M) if M is a finitely generated projective

A-module.
(iv) M = 0 if and only if dimU (M) = 0.

Proof. (i) and (iii) follow immediately from 3.6. Up to isomorphism and
stabilization a direct sum of modules corresponds to the block diagonal sum
of projections, this yields (ii). Faithfulness of the trace implies (iv). �

So far we have not used the fact that the lattices are complete. We will see
that this will enable us to extend the notion of dimension to arbitrary U -
modules. The following definition is completely analoguous to the definition
of the dimension for A-modules given in [14].

Definition 3.9. Let M be an arbitrary U -module. Define dim′
U (M) ∈ [0,∞]

as

dim′
U (M) = sup{dimU (P ) |P ⊂ M,P fin gen. projective submodule}.

The next lemma is the main technical point in proving that this dimension
is well-behaved. It uses the completeness of the lattices. If K is a submodule
of the finitely generated projective module M we define

K =
⋂

K⊂Q⊂M

Q ⊂ M,

where the intersection is over all finitely generated submodules Q of M ,
which contain K.

Lemma 3.10. Let K be a submodule of Un. Since the lattice Lattds(Un
U ) is

complete the supremum of the set {P |P ⊂ K, P finitely generated} exists.

(i) We have K = sup{P |P ⊂ K, P finitely generated} and this module
is finitely generated and therefore projective.

(ii) We have dim′
U (K) = dimU (K).

Proof. (i) Let {Pi | i ∈ I} be the system of finitely generated submodules of
K and {Qj | j ∈ J} be the system of finitely generated modules containing
K. Since every element of K generates a finitely generated submodule of K
we know that K ⊂ sup{Pi | i ∈ I}. Since the lattice is complete sup{Pi | i ∈
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I} is one of the finitely generated modules containing K in the definition of
K. We get K ⊂ sup{Pi | i ∈ I}. Since Pi ⊂ Qj for i, j arbitrary it follows

that sup{Pi | i ∈ I} ⊂ Qj for all j ∈ J and therefore sup{Pi | i ∈ I} ⊂ K.

(ii) From (i) we know that K is finitely generated projective. Let p be the
projection corresponding to K and pi be those corresponding to the Pi, then
p is the limit of the increasing net pi and normality of the trace implies the
result. �

Let dimA be the dimension for A-modules considered in [14].

Theorem 3.11. The dimension dim′
U defined above has the following prop-

erties.

(i) Invariance under isomorphisms: dim′
U (M) depends only on the iso-

morphism class of M .
(ii) Extension: If Q is a finitely generated projective module, then

dim′
U (Q) = dimU (Q).

(iii) Additivity: Given an exact sequence of modules

0 → M0 → M1 → M2 → 0

we have

dim′
U (M1) = dim′

U (M0) + dim′
U (M2).

(iv) Cofinality: Let M =
⋃

i∈I Mi be a directed union of submodules (i.e.
given i, j ∈ I there always exists a k ∈ I, such that Mi,Mj ⊂ Mk)
then

dim′
U (M) = sup{dim′

U(Mi) | i ∈ I}.
These four properties determine dim′

U uniquely. Moreover the following
holds.

(v) If M is an A-module, then dim′
U (M ⊗A U) = dimA(M).

(vi) If M is finitely generated projective, then dim′
U (M) = 0 if and only

if M = 0.
(vii) Monotony: M ⊂ N implies dim′

U (M) ≤ dim′
U(N).

Notation 3.12. After having established the proof we will write dimU in-
stead of dim′

U . This is justified by (ii).

Proof. (i) Invariance under isomorphisms: This follows from the definition
and the corresponding property 3.8 (i) for finitely generated projective mod-
ules. (ii) Extension property: Let P be a finitely generated projective sub-
module of the finitely generated projective module Q, then since U is von
Neumann regular P is a direct summand of Q. The additivity for finitely
generated projective modules 3.8 (ii) implies that dimU (P ) ≤ dimU (Q).
The claim follows. (iv) Cofinality: Let M =

⋃

i∈I Mi be a directed union.
It is obvious from the definition that dim′

U (Mi) ≤ dim′
U (M) and there-

fore sup{dim′
U (Mi) | i ∈ I} ≤ dim′

U (M). Let now P ⊂ M be finitely
generated projective. Since the system is directed there is an i ∈ I such
that Mi contains all generators of P and therefore P itself. It follows that
dimU (P ) ≤ dim′

U (Mi) ≤ sup{dim′
U(Mi) | i ∈ I} and finally

sup{dimU (P ) |P ⊂ M,P fin. gen. projective} ≤ sup{dim′
U (Mi) | i ∈ I}.
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(vii) Monotony: M ⊂ N implies dim′
U (M) ≤ dim′

U (N), since on the left
one has to take the supremum over a smaller set of numbers. (iii) Additiv-
ity: The proof is completely analoguous to the proof of additivity for the
dimension in [14]. (vi) Was already proven in 3.8.
Let us now prove uniqueness. This is done in several steps. Step1: The ex-
tension property determines dim′

U uniquely on finitely generated projective
modules. Step2: Let now K ⊂ Q be a submodule of a finitely generated pro-
jective module. The module K is the directed union of its finitely generated
submodules K =

⋃

i∈I Ki. Since U is von Neumann regular the Ki are pro-
jective (semihereditary would be sufficient here). Now dim′

U(K) is uniquely
determined by cofinality and Step1. Step3: If M is finitely generated there
is an exact sequence 0 → K → Un → M → 0. Additivity together with
Step2 implies the result for finitely generated modules. Step4: An arbitrary
module is the directed union of its finitely generated submodules and again
one applies cofinality. (v) The proof follows the same pattern as the proof
of uniqueness. Note that it is shown in [14] that the dimension dimA for
A-modules also has the properties (i) to (iv). Step1: For finitely generated
projective A-modules this is the content of 3.8(iii). Step2: A submodule
K of a finitely generated projective A-module is the directed union of its
finitely generated submodules Ki which are projective since A is semihered-
itary. Since − ⊗A U is exact and commutes with colimits K ⊗A U is the
directed union of the Ki ⊗A U . Now apply cofinality of dimA and dim′

U and
use Step1. Step3: For a finitely generated module M applying −⊗AU to the
exact sequence 0 → K → An → M → 0 yields an exact sequence. Now use
Step2 and the additivity of dimA respectively dim′

U . Step4: An arbitrary
module is the directed union of its finitely generated submodules. Proceed
as in Step2 and use Step3. �

4. Torsion modules

Thinking of U as a localization of A it is no surprise that on the one hand we
lose information by passing to U -modules, but on the other hand U -modules
have better properties. For example, every finitely presented U -module is
finitely generated projective and the category of finitely generated projective
U -modules is abelian. We will now investigate this passage systematically.

Definition 4.1. For an A-module M we define its torsion submodule tM
as

tM = ker(M → M ⊗A U).

A module M is called a torsion module if M ⊗A U = 0 or equivalently
tM = M . A module is called torsionfree if tM = 0.

This is consistent with the terminology for example in [30, Chapter II, page
57] because U is isomorphic to the classical ring of fractions of A. An
element m ∈ M lies in tM if and only if it is a torsion element in the
following sense: there exists a non-zerodivisor s ∈ A, such that ms = 0.
Compare [30, Chapter II, Corollary 3.3]. The module M/tM is torsionfree
since ms = ms = 0 ∈ M/tM implies the existence of s′ with mss′ = 0 and
therefore m ∈ tM .
On the other hand, following [14, page 146] we make the following definition.
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Definition 4.2. Let M be an A-module, then

TM =
⋃

N,

where the union is over all N ⊂ M with dimA(N) = dimU (N ⊗A U) = 0.
We denote by PM the cokernel of the inclusion TM ⊂ M .

This is indeed a submodule because for two submodules N , N ′ ⊂ M with
dimA(N) = dimA(N ′) = 0 the additivity of the dimension together with

N + N ′/N ∼= N ′/N ′ ∩ N

implies dimA(N + N ′) = 0. Note that dimA(TM) = 0 by cofinality and
TM is the largest submodule with vanishing dimension.
Finitely generated projective modules. We have seen in 3.7 that iso-
morphism classes of finitely generated projective A- and U -modules are in
bijective correspondence via −⊗A U , and by adding a suitable complement
one verifies that the natural map M → M ⊗A U is injective. A finitely gen-
erated projective module over A or U is trivial if and only if its dimension
vanishes by 3.8. Therefore tM = TM = 0 for finitely generated projective
A-modules.
Finitely presented modules. The category of finitely presented A-modules
was investigated in [13]. Since the ring A is semihereditary it is an abelian
category.

Proposition 4.3. Let M be a finitely presented A-module. Then

(i) M ⊗A U is finitely generated projective.
(ii) TM = tM .
(iii) M is a torsion module if and only if dimA(M) = 0.
(iv) PM = M/TM is projective and M ∼= PM ⊕ TM .
(v) Under the isomorphism K0(A) → K0(U) the class [PM ] corre-

sponds to [M ⊗A U ].

Proof. (i) By right exactness of the tensor product M ⊗A U is finitely pre-
sented. Over the von Neumann regular ring U this implies being finitely
generated projective. (iv) is proven in [13]. Now M ⊗A U ∼= PM ⊗A U ⊕
TM ⊗A U ∼= PM because TM ∼= coker(f) for some weak isomorphism
f : An → An and by 2.2 and right exactness of the tensor product we get
TM ⊗A U ∼= coker(f) ⊗A U ∼= coker(f ⊗A idU ) ∼= 0. The rest follows. �

Arbitrary modules. In general tM and TM differ. Counterexamples
can already be realized by finitely generated modules. More precisely the
following holds.

Proposition 4.4. Let M be an A-module.

(i) tM ⊂ TM and torsion modules have vanishing dimensions.
(ii) There exists a finitely generated A-module with tM = 0 and TM =

M . For this module M ⊗AU 6= 0 but dimA(M) = dimU (M ⊗AU) =
0.

(iii) M is a torsion module if and only if it is the directed union of
quotients of finitely presented torsion modules.

(iv) If M is finitely generated then PM = M/TM is projective and
therefore M ∼= PM ⊕ TM .
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Proof. (i) It suffices to show that dimA(tM) = dimU (tM ⊗A U) = 0. Now
tM consists of torsion elements and therefore tM⊗AU = 0. (ii) We will give
an example of such a module below. (iv) was proven in [14]. Let us prove
(iii): A quotient of a torsion module is a torsion module, and a directed
union of torsion modules is again a torsion module. On the other hand
suppose M is a torsion module. M =

⋃

i∈I Mi is the directed union of its
finitely generated submodules. Since any submodule of a torsion module is
a torsion module it remains to be shown that a finitely generated torsion
module N is always a quotient of a finitely presented torsion module. Choose
a surjection p : An → N and let K = ker(p) be the kernel. Since N ∼= An/K
is a torsion module, for every a ∈ An there exists a non-zerodivisor s ∈ A
such that as ∈ K. Let ei = (0, . . . , 1, . . . , 0)tr be the standard basis for An

and choose si with eisi ∈ K. Note that diag(0, . . . , si, . . . , 0)ei = eisi, where
diag(b1, . . . , bn) denotes the diagonal matrix with the corresponding entries.
Since K is a right A-module we have for an arbitrary vector (a1, . . . , an)tr ∈
An that

diag(s1, . . . , sn)(a1, . . . , an)tr =
∑

eisiai ∈ K.

Let S denote the right linear map An → An corresponding to the diagonal
matrix diag(s1, . . . , sn), then im(S) ⊂ K and N ∼= An/K is a quotient of
the finitely presented module An/im(S). Moreover An/im(S) ∼=

⊕A/siA
is a torsion module by Proposition 4.3(iii) and 2.2. �

Note 4.5. In [16, Definition 2.1] we defined a module to be cofinal-measurable
if all its finitely generated submodules are quotients of finitely presented
zero-dimensional modules. By Proposition 4.3(iii) and 4.4(iii) we see that a
module is cofinal-measurable if and only if it is a torsion module.

Example 4.6. We will now give a counterexample to finish the proof of the
above proposition. Let Iλ, λ ∈ Λ be a directed family of right ideals in A such
that each Iλ is a direct summand, dimA(Iλ) < 1 and supλ∈Λ(dimA(Iλ)) = 1.
Note that I =

⋃

λ∈Λ Iλ 6= A, because 1 ∈ Iλ for some λ would contradict
dimA(Iλ) < 1. Since Iλ is a direct summand A/Iλ → (A/Iλ) ⊗A U is
injective. Using that − ⊗A U is exact and commutes with colimits one
verifies that

A/I → (A/I) ⊗A U ∼= A⊗A U/I ⊗A U ∼= A⊗A U/ ∪λ (Iλ ⊗A U)

is injective as well. Therefore t(A/I) = 0. On the other hand additivity and
cofinality of the dimension imply dimA(A/I) = dimU ((A/I)⊗AU) = 0. Here
is a concrete example where such a situation arises: Take A = L∞(S1, µ),
the essentially bounded functions on the unit circle with respect to the
normalized Haar measure µ on S1. Let Xi, i ∈ N be an increasing sequence
of measurable subsets of S1 such that µ(Xi) < 1 and supi∈N(µ(Xi)) = 1.
The corresponding characteristic functions χXi

generate ideals in A with
the desired properties, since dimA(χXi

A) = µ(Xi).

5. L2-Invariants

We will now briefly summarize how the notions developed above apply in
order to provide alternative descriptions of L2-invariants. Recall the follow-
ing definitions from [14, Section 4]. Let Γ be a group. Given an arbitrary
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Γ-space X one defines the singular homology of X with twisted coefficients
in the ZΓ-module NΓ as

HΓ
p (X;NΓ) = Hp(C

sing
∗ (X) ⊗ZΓ NΓ),

where Csing
∗ (X) is the singular chain complex of X considered as a com-

plex of right ZΓ-modules. Here HΓ
p (X;NΓ) is still a right NΓ-module and

therefore

b(2)
p (X) = dimA(HΓ

p (X;NΓ))

makes sense. This definition extends the definition of L2-Betti numbers via
Hilbert NΓ-modules for regular coverings of CW-complexes of finite type to
arbitrary Γ-spaces. Completely analogous we define

HΓ
p (X;UΓ) = Hp(C

sing
∗ (X) ⊗ZΓ UΓ).

Proposition 5.1. Let X be an arbitrary Γ-space.

(i) HΓ
p (X;NΓ) ⊗NΓ UΓ ∼= HΓ

p (X;UΓ) as UΓ-modules.

(ii) b
(2)
p (X) = dimUΓ(HΓ

p (X;UΓ)).

(iii) tHΓ
p (X;NΓ) = ker(HΓ

p (X;NΓ) → HΓ
p (X;UΓ)).

If X is a regular covering of a CW-complex of finite type, then

(iv) The module HΓ
p (X;NΓ) is finitely presented, the module HΓ

p (X;UΓ)
is finitely generated projective and under the isomorphism K0(NΓ) →
K0(UΓ) the class

[

PHΓ
p (X;NΓ)

]

corresponds to
[

HΓ
p (X;UΓ)

]

.

(v) tHΓ
p (X;NΓ) = THΓ

p (X;NΓ) = ker(HΓ
p (X;NΓ) → HΓ

p (X;UΓ)).

Proof. Since −⊗NΓUΓ is exact it commutes with homology. If X is a regular
covering of finite type the singular chain complex is quasi-isomorphic to the
cellular chain complex which consists of finitely generated free ZΓ-modules.
Since finitely presented NΓ-modules form an abelian category the homology
modules HΓ

p (X;NΓ) are again finitely presented. The rest follows from the
preceding results about t, T and the dimension. �

As far as dimension is concerned one can therefore work with U -modules.
Tensoring with U is the algebraic analogue of the passage from unreduced
to reduced L2-homology in the Hilbert space set-up. If one is interested in
finer invariants like the Novikov-Shubin invariants the passage to U -modules
is too harsh. The torsion submodule tHΓ

p (X;NΓ) carries the information
of the Novikov-Shubin invariants in case X is a regular covering of a CW-
complex of finite type and seems to be the right candidate to carry similar
information in general. Compare [16] and Note 4.5.

6. K-Theory

In this section we will determine the algebraic K0 and K1 groups of finite
von Neumann algebras and their algebras of affiliated operators. Every von
Neumann algebra can be decomposed into a direct sum of algebras of type
Ifin, I∞, II1, II∞ and III, compare [31, Chapter V, Theorem 1.19]. Since we
are considering finite von Neumann algebras only the types Ifin and II1 can
occur. A von Neumann algebra of type In is isomorphic to Mn(L∞(X;µ)),
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where L∞(X;µ) is the algebra of essentially bounded complex valued func-
tions on some compact measure space (X,µ) with finite measure. The alge-
bra of affiliated operators in this case is Mn(L(X;µ)). Here L(X;µ) denotes
the algebra of all measurable functions on X. A general algebra of type Ifin

is of the form
˜∏∞

n=1
Mn(L∞(Xn;µn)).

Here the tilde denotes the restricted product consisting of all sequences of
operators which have a uniform bound on their norm. Using the character-
ization as an Ore localization one shows that the corresponding algebra of
affiliated operators is given by the (unrestricted) product algebra

∞
∏

n=1

Mn(L(Xn;µn)).

The group von Neumann algebra of a finitely generated group is of type Ifin

if the group is virtually abelian and of type II1 otherwise. If the group is
not finitely generated mixed types can occur. These facts are discussed in
[8].
Let us start with K0. As usual we fix a normalized trace trA on A. We
denote the center of A by Z(A). The center valued trace for A is a linear
map

trZ(A) : A → Z(A),

which is uniquely determined by trZ(A)(ab) = trZ(A)(ba) for all a, b ∈ A
and trZ(A)(c) = c for all c ∈ Z(A), see [10, Proposition 8.2.8, p.517]. Our
fixed trace trA : A → R factorizes over the center valued trace, i.e. we
have trA(a) = trA(trZ(A)(a)) for all a ∈ A, compare [10, Proposition 8.3.10,
p.525].

Proposition 6.1. Let A be a finite von Neumann algebra with center Z(A)
and let U be the associated algebra of affiliated operators. Let Z(A)sa denote
the vector space of selfadjoint elements in Z(A) and let Z(A)pos denote the
cone of nonnegative elements. Let Proj(A) denote the monoid of isomor-
phism classes of finitely generated projective A-modules.

(i) The natural map A → U induces an isomorphism K0(A) ∼= K0(U).
(ii) There is a commutative diagram

Proj(A)

��

// K0(A)

dimZ(A)

��

dimA

""F

F

F

F

F

F

F

F

F

Z(A)pos
// Z(A)sa // R.

The map dimZ(A) is induced by the center valued trace. All maps
in the square are injective.

(iii) If A is of type II1, then dimZ(A) is an isomorphism.

(iv) If A = ˜∏∞

n=1Mn(L∞(Xn;µn)) is of type Ifin, then the image of
dimZ(A) is given by

˜∏∞

n=1
L∞(Xn;

1

n
Z;µn),
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where L∞(Xn; 1
nZ;µn) denotes the essentially bounded functions

with values in 1
nZ.

Proof. (i) This has already been proven in Theorem 3.7. (ii) In Section 3
we normalized the traces trMn(A) such that trMn(A)(1n) = n. We extend the
center valued trace to matrices by summing over the diagonal. This gives
maps trn : Mn(A) → Z(A) which are compatible with the stabilization maps
Mn(A) → Mn+1(A). Since 1

ntrn has the characteristic properties of a center
valued trace if we identify Z(A) with Z(Mn(A)) we have trn = n · trZ(Mn(A)).
Two projections p and q are Murray von Neumann equivalent and therefore
isomorphic (compare Proposition 3.4) if and only if trZ(A)(p) = trZ(A)(q).
The center valued trace of a projection is nonnegative and selfadjoint, see
[10, Theorem 8.4.3, p.532]. Therefore we get injective maps

LattProj(Mn(A))/∼= → Z(A)pos

which are compatible with the stabilization maps. This gives an injective
map Proj(A) → Z(A)pos. Since the block sum of projections corresponds
to an ordinary sum of traces we see that it is a map of monoids and that
Proj(A) satisfies cancellation. Therefore the map Proj(A) → K0(A) is
injective. This implies that also the induced map dimZ(A) : K0(A) → Z(A)sa
is injective. (iii) By [10, Theorem 8.4.4 (i), p.533] we know that the image
of the center valued trace in the case of a type II1 algebra is the set

{a ∈ Z(A) | a selfadjoint, nonnegative, |a| ≤ 1}.
Because of the factor n in trn we get the result. (iv) Note that the product
of the individual center valued traces restricted to the restricted product
satisfies the characteristic properties of a center valued trace. The result
follows from [10, Theorem 8.4.4 (ii), p.533]. �

In [17] the algebraic K1-groups of von Neumann algebras are determined.
Of course they depend on the type of the von Neumann algebra. Moreover,
the authors compute a modified K1-group Kw

1 (A) which is defined in terms
of injective endomorphisms between finitely generated free modules ([17,
Def. 1.1]). Here w stands for weak isomorphism, compare Lemma 2.2. It
turns out that the group Kw

1 (A) admits a very natural interpretation.

Proposition 6.2. There is a natural isomorphism Kw
1 (A) ∼= K1(U).

Proof. If we apply Lemma 2.2 to matrix algebras we see that an endomor-
phism f between finitely generated free A-modules is injective if and only
if f ⊗ idU is an isomorphism. Therefore f 7→ [f ⊗ idU ] gives a well-defined
map since the relations analogous to [17, Def. 1.1 (i)–(iii)] hold in K1(U).
To define an inverse we change the point of view and consider K1(U) as
GL(U)ab. Let C be an invertible matrix over U . Let T ⊂ A be the set of
non-zerodivisors in A. From Proposition 2.1 we know that U = AT−1. It
follows that Mn(U) = Mn(A)(T ·1n)−1 is also an Ore localization. Therefore
we can find a matrix A over A and s ∈ A such that C = As−11n. Note that
A and s1n have to be injective endomorphisms because they become invert-
ible over U . One uses the Ore condition and the relation [17, Def. 1.1 (ii)] to
show that C 7→ [A] − [s1n] is well-defined. Since Kw

1 (A) is abelian the map
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factorizes over K1(U). That the maps are mutually inverse follows from the
relations (i)–(iii) in [17, Def 1.1]. �

An invertible operator a ∈ GLn(A) has a gap in the spectrum near zero,
therefore we can define the Fuglede-Kadison determinant via the functional
calculus as

detFK(a) = exp

(

1

2
trZ(A) (log(a∗a))

)

.

Let A be of type In. Define a bijection ηn : Z(A) → Z(A) by a = us 7→ us
1
n ,

where a = us is the polar decomposition with u the partial isometry. Define
the normalized determinant

detnorm : Mk(Mn(Z(A))) = Mkn(Z(A)) → Z(A)

as the composition ηn ◦ det, where det is the ordinary determinant. For
a general type Ifin algebra let detnorm be the product of the normalized
determinants. The normalization is necessary to assure that the determinant
respects the restricted product.
The results from [17] can now be rephrased as follows.

Proposition 6.3. Let A be a finite von Neumann algebra and let U be the
associated algebra of affiliated operators.

(i) If A is of type II1, then K1(U) = 0 and the Fuglede Kadison deter-
minant gives an isomorphism

detFK : K1(A)
∼= // Z(A)×pos,

where Z(A)×pos denotes the group of positive invertible elements in
the center of A.

(ii) If A is of type Ifin, then we have the following commutative diagram

K1(A) //

detnorm

��

K1(U)

detnorm

��
Z(A)× // Z(U)×,

where the vertical maps are isomorphisms.

Note that

Z(
˜∏∞

n=1
Mn(L∞(Xn;µn))) =

˜∏∞

n=1
L∞(Xn;µn)

and

Z(

∞
∏

n=1

Mn(L(Xn;µn))) =

∞
∏

n=1

L(Xn;µn).

Proof. Almost everything follows from [17]. It remains only to remark that
the normalized determinant extends to the algebra of affiliated operators and
that K1 as well as the normalized determinant is compatible with products.

�
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We should also mention that for R = A or U the natural map (R×)ab →
K1(R) induced by the map which sends an invertible element to the corre-
sponding 1 × 1-matrix is an isomorphism. For A this is a special case of
[7, Theorem 7], since a finite von Neumann algebra is a finite AW ∗-algebra.
Since U is a unit-regular ring the statement for U follows from [18] and [6].
Localizations yield exact sequences in K-theory. See for example [1], [2] or
[29]. We will use such a sequence to compute K0 of the category of finitely
presented torsion A-modules.

Definition 6.4. Let T denote the category of finitely presented torsion A-
modules equipped with the standard exact structure where exact sequences
are not required to be split.

Note that since A is semihereditary such modules admit a one-dimensional
resolution by finitely generated projective modules. There is an exact se-
quence of algebraic K-groups

K1(A) → K1(U) → K0(T ) → K0(A) → K0(U).

If we apply this to a finite von Neumann algebra A we can compute K0 of
the category of finitely presented A-torsion modules.

Proposition 6.5. Let A be a finite von Neumann algebra and let U be the
associated algebra of affiliated operators.

(i) If A is of type II1, then K0(T ) = 0.

(ii) If A = ˜∏Mn(L∞(Xn;µn)) is of type Ifin, then

K0(T ) = Z(U)×/Z(A)× =
∏

L(Xn;µn)×/(
˜∏

L∞(Xn;µn))×.

Proof. Since K0(A) → K0(U) is an isomorphism by 3.7 this follows imme-
diately from the above results about K1 in 6.3. �

There is an alternative description of the group K0(T ) where elements are
represented by finite complexes of finitely generated projective A-modules
that become acyclic after localization (compare [33]). Note that any Γ-CW-
complex X with compact quotient space, whose isotropy groups are all finite,
gives rise to a finite dimensional complex of finitely generated projective NΓ-
modules. If all its L2-Betti numbers vanish it gives rise to an element in
the corresponding K0(T ). Short: every L2-acyclic space naturally defines
an element in K0(T ).

7. L-Theory

We now determine the L-theory of a finite von Neumann algebra A and
its algebra of affiliated operators U . Recall from [24] that an element in
the n-th symmetric L-theory group is represented by a symmetric algebraic
Poincaré complex (SAPC). Two such are identified if they are homotopic
or their difference is homotopic to the boundary of an n + 1 dimensional
symmetric algebraic complex (which need not be a Poincaré complex). Sim-
ilar for quadratic L-theory. Since in our case 1

2 is contained in the ring an
n-dimensional SAPC is a complex C∗ together with a self-dual chain map
φ0 : Cn−∗ → C∗. Working with complexes of finitely generated projective
modules leads to projective L-theory L∗

p(R). Working with free modules
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we get L∗
h(R). If additionally the modules are based and we require φ0 to

have trivial torsion in K̃1(R) = K1(R)/ 〈±1〉 we denote the corresponding
L-group by L∗

s(R).
Let φ : P → P ∗ be a symmetric form representing an element in L0

p(A).
Choose a projection p ∈ Mn(A) with P = im(p : An → An) let p : An → P
be the corresponding projection and define Φ = ip∗φp, where i : (An)∗ → An

is the standard isomorphism. Sending φ to
[

χ(−∞,0)(Φ)
]

−
[

χ(0,∞)(Φ)
]

using

the functional calculus gives a map sign : L0
p(A) → K0(A). It is proven

in [27] that this map is an isomorphism. This is the starting point for the
following results. To state the results it is convenient to decompose a type
Ifin algebra further into A = Aeven × Aodd, where Aeven is the restricted
product of all the In constituents with n even. Note that in general Lh

and Ls are not compatible with products, whereas Lp is compatible with
products.

Theorem 7.1. Let A be a finite von Neumann algebra and U its algebra of
affiliated operators.
General results.

(i) For A and U the symmetrization map from quadratic to symmetric
L-theory is an isomorphism.

(ii) For both algebras L-theory is 2-periodic.
(iii) For decorations ε = p or h the natural map L∗

ε (A) → L∗
ε (U) is an

isomorphism. In particular all relative L-groups vanish.

Results about Lp.

(iv) All maps in the following commutative square are isomorphisms.

L0
p(A)

sign //

��

K0(A)

��
L0

p(U)
sign // K0(U)

(v) We have L1
p(A) = L1

p(U) = 0.

Results about Lh.

(vi) If A is of type II1 then L1
h(A) = L1

h(U) = 0 and there is a short
exact sequence

0 → Z/2 → L0
h(A) → L0

p(A) → 0

and an analogous sequence for U .
(vii) If A is of type Ifin then L1

h(A) = L1
h(U) = 0. If the Aodd part of A

is nontrivial there is an exact sequence

0 // L0
h(A) // L0

p(A)
sign // K0(A)/ 〈[A] , 2K0(A)〉 // 0.

otherwise there is an exact sequence

0 // Z/2 // L0
h(A) // L0

p(A)
sign // K0(A)/2K0(A) // 0.

There are analogous sequences for U . Remember that K0(A) =
K0(U).
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Results about Ls.

(ix) If A is of type II1 then L1
s(A) = L1

s(U) = 0 and all the maps in the
commutative square

L0
s(A)

��

// L0
h(A)

��
L0

s(U) // L0
h(U)

are isomorphisms.
(x) If A is of type Ieven then L1

s(A) = L1
s(U) = 0 and there is an exact

sequence

0 // L0
s(A) // L0

h(A)
detnorm ◦τ// Z(A)×sa/Z(A)×pos

// 0.

There is an analogous sequence for U . Moreover

Z(A)×sa/Z(A)×pos = Z(U)×sa/Z(U)×pos = {f ∈ Z(A)|f2 = 1}

(xi) If A is of type Ifin and the Aodd part of A is nontrivial, then
L1

s(A) = L1
s(U) = Z/2 and there is an exact sequence

0 // L0
s(A) // L0

h(A)
detnorm ◦τ//

Z(A)×sa/
〈

Z(A)×pos,detnorm(−1)
〉

// 0.

There is an analogous sequence for U .

Proof. General results: Since both algebras contain 1
2 and

√
−1 (i) and (ii)

follow from [23, Prop.3.3] resp. [23, 4.4]. (iii) will follow from the computa-
tions below.
About Lp: Since A is a C∗-algebra it is proven in [27, Theorem 1.6] that
sign is an isomorphism. The map sending [P ]− [Q] to the form represented
by idP ⊕−idQ is an explicit inverse. Since there is a functional calculus for
selfadjoint unbounded operators the signature map makes sense for U and
the same argument can be applied. From the K-theory isomorphism 6.1(i)
we get the square of isomorphisms.
The comparison result [27, Theorem 1.8] asserts that Lp

1(A) = Ktop
1 (A) be-

cause A is a C∗-algebra. It is well known that the topological K1-group of a
von Neumann algebra vanishes, see e.g. [3, Example 8.1.2]. Odd quadratic
L-groups of semisimple rings vanish as is shown in [22]. Investigating the
proof one realizes that it is actually sufficient that a finitely generated sub-
module of a projective module always splits as a direct summand. This is
one possible characterization of a von Neumann regular ring and therefore
Lodd

p (U) = 0. Alternatively observe that over a von Neumann regular ring a
chain complex is homotopic to its homology and an odd dimensional SAPC
all whose differentials are trivial is the boundary of the SAC which is given
by the lower half of the complex. Alltogether this implies the comparison
result (iii) for ε = p.
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About Lh: For any ring R with involution there is a Rothenberg sequence

. . . // L1
h(R) // L1

p(R) // Ĥ1(K̃0(R))

// L0
h(R) // L0

p(R)
l0 // Ĥ0(K̃0(R)) // . . . .

Compare Example 3.11 in [25]. Here Ĥ∗(M) is the Z/2-Tate cohomology
of the Z [Z/2]-module M . The sequence is natural in R. Therefore the
comparison result for K0 and Lp together with the five-lemma imply (iii) in
the ε = h case.
(vi) The results about K0 in 6.1 imply that the involution on K0(A) is trivial

and 1
2 ∈ K0(A). Therefore Ĥ∗(K0(A)) = 0. The long exact sequence in Tate

cohomology associated to 0 → K0(Z) → K0(A) → K̃0(A) → 0 computes

Ĥ0(K̃0(A)) = 0 and Ĥ1(K̃0(A)) = Z/2 and the Rothenberg sequence above
implies the result.
(vii) By 6.1 the involution on K0(A) is trivial and multiplication by 2 injec-
tive. Therefore the long exact sequence in Tate cohomology gives us

0 // Ĥ1(K̃0(A)) // Z/2
η //

K0(A)/2K0(A)
q // Ĥ0(K̃0(A)) // 0.

Here η maps the generator to [A] and is injective if and only if A contains
a nontrivial Aodd part.
The map l0 in the Rothenberg sequence sends an SAPC (C,φ) to [C] consid-

ered as an element in Ĥ0(K̃0(A)). Since [P ]−[Q] = [P ]+[Q] in K0(A)/2K0(A)
we have a commutative square

. . . // L0
p(A)

sign∼=

��

l0 // Ĥ0(K̃0(A)) // . . .

K0(A)
p // Ĥ0(K0(A)) = K0(A)/2K0(A).

q

OO

We see that l0 is surjective, hence L1
h(A) = 0, and η = 0 or η 6= 0 decides

what type of exact sequence we get.
About Ls: There is a similar Rothenberg sequence relating Lh and Ls.

. . . // L1
s(R) // L1

h(R) // Ĥ1(K̃1(R))

// L0
s(R) // L0

h(R)
l0 // Ĥ0(K̃1(R)) // . . . .

Here K̃1(R) is K1(R) modulo the natural image of K1(Z) = 〈±1〉.
(ix) From 6.3 we know that K1(U) = 0. The formula for the Fuglede-Kadison
determinant tells us that the involution on K1(A) = Z(A)×pos is trivial and

K1(A) = K̃1(A). Since elements in Z(A)×pos admit a unique square root

we see that Ĥ∗(K̃1(A)) = Ĥ∗(K̃1(U)) = 0. The result follows from the
Rothenberg sequence.
(x) We know that K1(A) = Z(A)× via the normalized determinant. The

involution is the standard involution and therefore Ĥ1(K1(A)) = 0 and
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Ĥ0(K1(A)) = Z(A)×sa/Z(A)×pos. If A is of type Ieven then detnorm(−1) = 1

and therefore K1(A) = K̃1(A). The map l0 is surjective because every

element in Z(A)×sa admits a preimage in GL1(A)Z/2 under the normalized
determinant. Such an element can be interpreted as an element in L0

h(A).
The result follows from the Rothenberg sequence.
(xi) If the Aodd part is nontrivial then the long exact sequence in Tate

cohomology tells us Ĥ1(K̃1(A)) = 0 and gives us an exact sequence

0 // Z/2 // Ĥ0(K1(A))
r // Ĥ0(K̃1(A)) // Z/2 // 0.

It follows from Example 3.11 in [25] that the map l0 sends an SAPC (C,φ)

to the torsion −τ(φ0) considered as an element in Ĥ0(K̃1(A)). Since we
can assume that φ0 is symmetric it follows that im(l0) ⊂ im(r). Since
every selfadjoint element in Z(A)× admits a symmetric preimage in GL1(A)
under the normalized determinant we see that im(r) = im(l0) is surjective.
The result now follows from the Rothenberg sequence. The proof for U is
completely analogous. �

Remark 7.2. For integral group rings one usually defines Ls
∗(ZΓ) requiring

the torsion to vanish in the Whiteheadgroup Wh(Γ) = K1(ZΓ)/〈±γ〉. If
therefore one defines LS

n(NΓ) by requiring the torsion to lie in the subgroup
of K1(NΓ) generated by the image of −1 and the group elements we get a
map Ls

n(ZΓ) → LS
n(NΓ). In the II1-case, i.e. if Γ is finitely generated and

not virtually abelian there is no difference between LS
n(NΓ) and Ls

n(NΓ)
because the Fuglede-Kadison determinant of a group-element vanishes, com-
pare 6.3(i).

Version: March 13, 2001
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