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BETTI NUMBERS OF HYPERSURFACES AND DEFECTS
OF LINEAR SYSTEMS

ALEXANDRU DIMCA

0. Introduction. Let w (Wo,..., wn) be a set of integer positive weights and
denote by S the polynomial ring C[Xo, xn] graded by the conditions deg(x) wt
for 0, n. For any graded object M, let Mk denote the homogeneous com-
ponent of degree k. Let f SN be a weighted homogeneous polynomial of degree N
with respect to w.

Let V be the hypersurface defined by f 0 in the weighted projective space
P(w) Proj S Cn+l\{0}/C* where the C*-action on C+1 is defined by t.x

(tWxo,..., W"xn) for C*, x C+. Assume that the singular locus E(f) of f is
1-dimensional, namely

Z(f)={xeC"+t; df(x)=O}={O}w (Q)t=x C’at)
for some points at e C"+, one in each irreducible component of Z(f).

Let Gt be the isotropy group of at with respect to the C*-action and let Ht be a
small Gt-invariant transversal to the orbit C’at at the point at. The isolated hyper-
surface singularity (Y, at) (Hi f-l(0), at)is called the transversal singularity off
along the branch C’at of the singular locus Z(f). Note that (Y, at) is in fact a
Gt-invariant singularity.
The hypersurface V is a V-manifold (i.e., has only quotient singularities [8]) at all

points, except at the points at where V has a hylerquotient singularity (Y/Gt, at) in
the sense of M. Reid [15].

In this paper we discuss an effective procedure to compute the Betti numbers
bj(V) dim HJ(V) (C coefficients are used throughout) for such a weighted projec-
tive hypersurface V. It is known that only b,_ (V) and b,(V) are difficult to compute
and that the Euler characteristic z(V) can be computed (conjecturally in all, but
surely in most of the interesting cases!) by a formula involving only the weights w,
the degree N and some local invariants of the Gt-singularities (Y, at) (see [6], Prop.
3.19). Hence it is enough to determinee b,(V).
On the other hand, it was known since the striking example of Zariski involving

sextic curves in p2 having six cusps situated (or not) on a conic [25], that b,(V) is
a very subtle invariant depending not only on the data listed above for z(V) but
also on the position of the singularities of V in P(w).

In the next three special cases the determination of b,(V) has led to beautiful and
mysterious (see H. Clemens remark in the middle of p. 141 in [2]) relations with the
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dimension of certain linear systems 6e of homogeneous polynomials vanishing at
the singular set E {al,..., as} of 1/’:

(i) Some cyclic coverings of p2 ramified over a curve B: b 0 (H. Esnault [12]).
In fact the object of study in [12] are the Betti numbers of the associated Milnor
fiber F: b 1 0 in C3, but it is easy to see that they are completely determined
by the Betti numbers of if, the closure of F in p3. And the closure ff is a cyclic
covering of p2 of degree deg B ramified over B. Beside several implicit results, one
finds in [12] an explicit treatment of the Zariski example mentioned above.

(ii) Double coverings of 3 ramified over a surface B: b 0 having only nodes as
singularities (H. Clemens [2]). By a node we mean an A1-singularity of arbitrary
dimension. Note that such a covering is defined by the equation b 2 0 in the
weighted projective space P(1, 1, e) with 2e deg B [7].

(iii) Odd dimensional hypersurfaces X c 2, having only nodes as singularities
(T. Schoen [ 17-1, J. Werner [24]).

In our paper we show that such relations exist without any restriction on the
transversal singularities (Y, ai). The general answer is however not an obvious
extension of the above special cases, i.e., the linear systems which occur are not
defined by some (higher order) vanishing conditions on E, but by some subtle
conditions depending on fine invariants of the singularities, i.e., the MHS (mixed
Hodge structure) on the local cohomology groups Ha,(Y) [20]. Unlike the authors
mentioned above, we do not use here the resolution of singularities (which is quite
difficult to control in dimension > 3), but we essentially work on the complement
U P(w)\V, which is an affine V-variety and compute everything in terms of
differential forms on U in the spirit of [13].

In this way we get in fact more than bn(V), namely we obtain a procedure to
compute all the mixed Hodge numbers hP’q(Hn(V)). See also Remark (2.7).

Let F: f- 1 0 be the Milnor fiber of f in C/1. Then F is a smooth affine
hypersurface and fflk(F) 0 except for k n 1, n.

Moreover, one has again a "simple" formula computing the Euler characteristic
;t(F) in terms of w, N and the singularities (Y, at), [6-1, Prop. 3.19. Hence it is enough
to compute b_ (F). And the results described in this paper combined with some
results in [6] allow one to compute not only b_(F), but also all the Hodge numbers
hP’q(H’-I(F)), as explained in Corollary (3.6) below in the special case when all
the transversal singularities are of type A. For related computations of Betti
numbers of Milnor fibers of nonisolated singularities see Siersma [18] and van
Straten [22].

It will turn out that in order to get very explicit results the assumption that the
transversal singularities (Y, at) are weighted homogeneous is quite helpful. In par-
ticular, we establish several explicit formulas as in the special cases (i)-(iii) above in
the last section of our paper.
During this paper we recall and use some of our results in [6]. But all the results

in this area should perhaps be regarded as attempts to understand and to generalize
Griffiths fundamental work in [13].
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1. A global and a local spectral sequence. Since U P(w)\V is an affine V-
variety, it follows by (a slightly more general version of) Grothendieck Theorem
1-14], [21] that the cohomology of U can be computed using the deRham complex
A’= H(U, tTv), where fb denotes the sheaves complex of algebraic differential
forms on U.
The complex A" has a polar filtration defined as follows:

(1.1) FSA {o AJ; 09 has a pole along V of order at most j s}

for j s > 0 and F’A 0 for j s < 0.
By the general theory of spectral sequences, the filtration F gives rise to an

El-spectral sequence (E,.(U), d,.) converging to H’(U). For more details see [6-1 and
also H. Terao [23].

Let FSH’(U) im{n’(FSA") .--, H’(A) H’(U)} be the filtration induced on H’(U)
by the polar filtration on A’. Note that on the cohomology algebra H’(U) one has
also the canonical (mixed) Hodge filtration Fr constructed by Deligne [3]. The next
basic fact is a special case of a result proved by P. Deligne and the author (see our
preprint "Hodge and order of the pole filtrations for singular hypersurfaces").

PROPOSITION 1.2. One has FSH’(U) F+IH’(U) for any s and FH’(U)=
FH’(U) H’(U).

For an example where the above inclusion is strict we refer to [6], (2.6).
Since we shall be concerned especially with H(U), we recall the explicit descrip-

tion of A, given by Grifliths in the homogeneous case [13] and by Dolgachev in
the weighted homogeneous case [8]. Let k denote the S-module of algebraic
differential k-forms on C+, graded by the condition deg(x)= deg(dx)= w for

0,..., n. Consider the differential n-form t) s t) with w Wo / + w given by

(1.3) t2 (-1)wx dxo ^"" ^ dx ^"" ^ dxn.
i=O,n

Then any element o e An may be written in the form

hf
(1.4) o -- for some h StN-,,

and, if h is not divisible by f, then t is precisely the order of the pole of o along V.
Next we consider a similar spectral sequence, but associated this time to a (local)

hypersurface singularity. Let #: (Cn, 0) ---, (C, 0) be an analytic function germ and let
(Y, 0)= (g-l(0), 0) be the associated hypersurface singularity. Let f denote the
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localization of the stalk at the origin of the analytic de Rham complex for C" with
respect to the multiplicative system (9s, s > 0}.
Choose e > 0 small enough such that Y has a conic structure in the closed ball

B, (y C"; lYl < e} [1-1. Since B,\Yis a Stein manifold, Theorem 2 in [14] implies
the next result.

PROPOSITION 1.5. H’(B,\ Y) H’(f’).
One may define a polar filtration F on f exactly as in (1.1) and get an El-spectral
sequence (Er(Y), dr) converging to H’(B,\ Y). Assume from now on that (Y, 0) is an
isolated singularity. Even then the spectral sequence (Er(Y), dr) is quite complicated,
e.g. one has the next result [6], Cor. (3.10).

PROPOSITION 1.6. The spectral sequence (Er(Y), dr) deoenerates at E2 if and only
if the singularity (Y, O) is weighted homogeneous (i.e., there exist suitable coordinates
Yl, Y, on C" around the origin and suitable weights v wt(yi) such that (Y, O) can
be defined by a weighted homooeneous polynomial 9, of degree M say, with respect
to the weights v (v1,..., v,)).

If this is the case, then the limit term Ego E2 can be described quite explicitly
as follows [6], Example (3.6). In fact we restrict our attention only to the terms Eo
for > 0, since this is all we need in the sequal.

Let M(g) (9,/Jo be the Milnor algebra of g, where J0 ((Og/Oxx),..., (Og/Xn))
is the Jacobian ideal of g [5]. Note that in our case M(g) has a grading induced by
the weights v. Then one has a C-linear identification

(1.7) E-t"(Y) M(g),M-v

with v v + + v,, by associating to the class of a monomial y" in M(9)tM-v the
class of the differential form y. 9-. o9., where o9. dy ^ ^ dy,,.

Since Y\{0} is a smooth divisor in B\{0}, the Poincar6 residue map

H"(B\Y) H"- (Y\{O})

in the associated Gysin sequence [21] is an isomorphism (assume n > 3 from now
on). Moreover, the exact sequence of the pair (Y, Y\{0}) gives an isomorphism

H"-I(Y\{O}) L H"(Y, Y\{O}) H)(Y)

where H’o(Y) denote the local cohomology groups of Y at the origin. Note that this
cohomology H’o(Y) carries a natural MHS according to Steenbrink [20] and Durfee
1-10]. Finally we get an isomorphism

(1.8) Hn(B,\ Y) Hg(Y)

and in this way the filtration F on t) induces a filtration F on Hg(Y). It is easy to
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check, using (1.7) and Steenbrink description of the MHS on Hg(Y) when (Y, 0) is
weighted homogeneous 1-19!, that in this case F coincide with the Hodge filtration
F] for all s and that Hg(Y) has a pure Hodge structure of weight n.

Consider next a semi weighted homogeneous singularity Y" 0 # + ’, where #
is as above and all the monomials in ’ have degrees > M with respect to the weights
v[5]. In spite of the fact that the corresponding spectral sequence (E,(Y), d,) is much
more complicated, we can obtain directly (by some obvious/z-constant arguments)
the next simple description of the cohomology group H(B\Y). Let {y’#-’a,;

A} be a basis for H(B\Y) obtained as above. Then the forms {y-%9,; A}
give a basis for H(B\Y). Here of course t (deg(y) + v). M-. Moreover, using
the fact that in a #-constant deformation the dimensions of the Hodge filtration
subspaces remain constant, it follows that on Hg(Y) the polar filtration coincides
with the Hodge filtration, exactly as in the weighted homogeneous case.

In general, one may compute the MHS on Hg(Y) if one knows the MHS on
the cohomology H-(Y(R)) of the Miliaor fiber Yoo of the singularity (Y, 0), since
Hn-I(y\{0}) is just the fixed part in H"-(Yoo under the monodromy action and di
is an isomorphism of MHS.
We say that the singularity (Y, 0) is nondegenerate if Hg(Y) O. The name comes

from the fact that this condition is equivalent to the Milnor lattice of (Y, 0) being
nondegenerate [4]. Otherwise the singularity (Y, 0) is called degenerate. We make
next a list of the simplest nondegenerate and degenerate singularities, using termi-
nology which is standard in Singularity Theory [5-1, [9].

Examples 1.9. (nondegenerate singularities)
(i) If n dim Y + 1 is odd, then the singularities Ak, Dk, E6, E7 and Ea are

nondegenerate
(ii) If n dim Y + 1 is even, then the singularities A2k, E6 and E8 are non-

degenerate.

For more examples we refer to Ebeling [1 1!.

Examples 1.10. (degenerate singularities)
(i) Assume that n 2t is even and that we consider an A2-x singularity, i.e.,

9=Y+y22+"’+Y2, vx=l, v=k forj>l v=l+(2t-1)k, M=2k. The
graded pieces M(0) of the Milnor algebra are nontrivial only for j {0, 1,
2k 2}. Hence the equality sM v j has a unique solution in this range, namely
s=t,j=k-1.

It follows by (1.7) that dim H(B,\Y)= 1 and that a generator of H(B,\Y) is
provided in this case by the form
Note moreover that the class of a form h. -o9, (with h (.9) in H(B\Y) is

precisely

1 Ok-lh
[)’]

(k 1)----

It follows from [19] that fl is a class of type (t, t) with respect to the MHS on Ho’(Y).
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(ii) Assume that n 2t + 1 is odd and let 9 0 be the usual weighted homo-
geneous equation for a unimodal singularity of type 6,/7 or/8. Then it is known
that the weights v and the degree M of g satisfy deg(hess(g)) =nM 2v M
deg(0), where hess(0) det(O29/cOyOyj) is the hessian of g and also M(9)j 0 for
j > M, see [5], [16]. Hence the equality sM v j has just two solutions with
j < M, namely j 0, s and j M, s + 1. The differential forms fll 0-tco,
and 2 hess(0)" 9-t-lco. form a basis of H"(B\ Y) in this case and it follows from
[19] that fix has type (t + 1, t) and f12 has type (t, + 1) with respect to the MHS
on H(Y).
Note that the class of a differential form y h" 9=*co. with h C0. is just []

h(O) Efl].

In what follows we are particularly interested by the local cohomology groups
H,(V) corresponding to the hyperquotient singularities of V.
The obvious isomorphisms

(1.11) U.",(V) H,(Y,/G,)= S.",(Y,)’
shows that H"a,(V) can be computed (together with its MHS) as the fixed part of the
natural action of G on Ha",(Y). This description is quite effective as soon as we have
explicit forms giving a basis for H",,,(Y). Note also that it may happen that H"a,(V) 0
even if H,,(Y) - 0.

Example 1.12. Let (Y, 0) be the a2k_ singularity considered in (1.10.i) and let
G= {_1} act on (Y, 0) by the rule (-1)’y (yl,--Y2, Y3,...,Yn). Then (--1)"
[fl] -[fl], and hence H)(Y)’7 O.

2. A basic MHS exact sequence. Let P* Z(w)\Z, V* V\Z and consider the
exact cohomology sequence of the pair (z., .\V*):

j*
Hk i*(2.1) --) H’(P*, P*\V*)--) (P*)--) H’(P*\V*) H’+I(P*, P*\V*)--).

Note that there is a Thorn isomorphism

T: H’-x(V*) --) Hk+I(P*, P* \V*)

obtained as follows. Let X C"+X\Z(f) and D f-(0)\Z(f). Then D is a
smooth divisor in X and hence there is a usual Thom isomorphism T: Hk- (D)
H’/I(X, X\D). Since the normal bundle of D in X may be chosen C*-invariant, it

C -actions which exist on both sides. Hencefollows that T is compatible with the *
T induces an isomorphism between the fixed parts

H,_X(D)C, H,_(V, T_) H,+(, *\V*) H’+(X, X\D)c*.
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In the same way, the PoincarO residue

induces a map

R: Hk(X\D) Hk-X(D)

R: Hk(*\V*) Hk-x(V*)

such that T" R .
It is easy to show that in the middle dimensions i* 0 and that if we define the

primitive cohomology of V* by Ho(V*) kcr(j* o T), then this has the expected
properties. For instance one may define in the same way the primitive cohomology
of V, denoted H’o(V) and the inclusion t: V* V induces a morphism t’" H’o(V
H’o(V*) and carries isomorphically the nonprimitivc part in H’(V) onto the non-
primitive part in H’(V*) (except of course the top dimension).
As a result of this definition and since *\V* U, wc get the next

LEMMA 2.2. The Poincar residue R: Hk(U) H-t(V*) is a type (- 1, 1) iso-
morphism of MHS.
Consider now the long exact sequence of MHS [20]:

--+ H(V)- Hk(V)--+ Hk(v*) Hk+’(V)-+

and note that excision gives us the next isomorphism of MHS.

i=l,s i=l,s

Hence Hkr,(V) is a computable object as soon as we know enough about the trans-
versal singularities (Y,
The final part of the above long exact sequence, Lemma (2.2) and our remark on

t’ give us the next exact sequence of MHS

(2.3) H"(U) L H.(V) + H)(V) -+ 0

with 0 6R a morphism of type (-1, -1). (There is no danger of confusing the
primitive cohomology H’o(V) with some local cohomology of V, since 0 P(w)). Let
be the maximal positive integer such that FuH.(V) H,(V). Then using the strict

compatibility of MHS morphisms with the Hodge filtrations Fn I-3] we get a finer
version of (2.3), namely

F+IHn(U 0_ H(V)-+ H)(V)--+ O.

Using now Proposition (1.2) it follows that the composition

UH"(U) H"(U) L H.(V)
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has exactly the same image as 0.
Let T be the linear map given by the obvious composition

So,_t)v_,, F’A" --+ UH"(U) --+ H(V).

We may summarize our result as follows:

THEOREM 2.4. The imaoe of the linear map T is a MH substructure in H:(V) and
Hg(V) with its canonical MHS is isomorphic to the quotient H(V)/im(Tt).

Note that the proof in [20], Theorem (1.13) adapts to our more general situation
and shows that Hg(V) has a pure Hodge structure of weight n. Consider now a
subset E’ c E defined as follows:

E’ {a, + E; H(V) # 0}.

We may call E’ the set of essential singularities of V. It is clear that we may replace
H(V) with H,,(V) everywhere. More important, note that Tt(h) 0 means that h
satisfies certain (linear) conditions c at the points a E’. Indeed, it is easy to check
that 0 corresponds to the composition of the morphism

H"(U) L @ H"(D,\V)
ai

induced by the restriction of n-forms (with D being an open neighbourhood of az
in P(w) ofthe form Di B/G, for B a small ball in H centered at as and G-invariant)
with the isomorphism induced essentially by local Poincar6 residue isomorphisms, H"(D,\V)L~ , H"-t(V D,\{a,})-+~ . H"a,(V) H..(V).

Let 5e ker T be the linear system in S(,,_ov_ defined by the conditions cal. We
define the defect of the linear system 5e by the formula

def(5) dim H:,(V) codim 5f

i.e., the difference between the number oflinear conditions in c and the codimension
of 5e in St,_oN_ It is clear that def() depends not only on 6 but also on the set
of conditions used to define it and that def(6e) 0 says that the conditions in c
are independent. With this definition, we may state the next

COROLLARY 2.5. dim H(V) def(Sf).

The next section contains several examples where it is possible to work out
explicitely the conditions and hence to state several special cases of Corollary
(2.5) in more down-to-earth terms. When on H,(V) the polar filtration F coincides
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with the Hodge filtration F] (this is the case for instance when all the singularities
(Y, at) are weighted homogeneous), one may increase the number (and hence
decrease the degree of the elements in St,_t)N_, by the following simple observation.
We present only the case when n 2m + 1 is odd, since we shall apply this in the
next section and leave the analogue statement in the case when n is even to the
reader. As remakred above, Hg(V) has a pure Hodge structure of weight n and it is
clear that

dim Hg(V) 2 h*’n-’(Hg(V)).
i>m

Let m+l be the composition

S(n_m_I)N_ -’ Fm+A _+ Fm+Hn(U)-+ Fm+IH(V)

and let if’ be the linear system ker m+l.
If we set as above def(6)= dim Fm+IH(V)- codim , then we get the next

result.

COP.OLLaRY 2.6. dim Hm+I(V) 2 def().
Remark 2.7. Unlike Hg(V) which has a pure Hodge structure of weight n, the

middle cohomology group Hn-t(V) has, in general, a nonpure Hodge structure,
whose associated MHS numbers can be computed as follows (at least in the
homogeneous case). In the MHS sequence

H)-’(V) + H)-(V*) -+ H.(V) L H)(V)-+ 0

used above, one has
(i) H(V) has weights > n, i.e., Wn_1H(V) 0 by Durfee [lOl.
(ii) Hg-(V) has weights < n 1, i.e. W,_IHg-X(V) Hg-(V) since V is proper

[3].
It follows that one can determine hV’q(H)-(V*)) for p / q m > n from short exact
sequences

0 --+ GrWH)-’(V*) --+ GrWH(V)L GrH)(V)-+ 0

(using of course computations with linear systems to determine the kernel of j).
Using duality results for the MHS on H’o(V) and on H’(U) explained in [6] and
Lemma (2.2) we get

hV,q(H2on-S-(V)) hn-v,n-q(Hs(U))= hn-v-,n-q-(H-(V.))

for any p, q and s.
Hence the above short exact sequences give all the numbers hP’q(H)-(V)) for

p+q<n-1.
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To determine the remaining MHS numbers, it is enough to recall that the
coefficient of (n p) in the spectrum Sp(f) off is precisely

h’(H(U))_ h"(H-(U)).

This formula contains exactly one unknown number, namely

h,,+x-(H,(U)) h.-,-(H)-(V)).

On the other hand, the spectrum Sp(f) is computed (at least in the case of a
homogeneous polynomial f) explicitly in terms of the spectra of the transversal
singularities (Y, at) by J. Steenbrink in his recent (unpublished) manuscript, The
spectrum of hypersurface sinoularities. As a result, in this way one is able to determine
all the MHS numbers for V, V* and U, provided one knows enough about the
transversal singularities (Y, at). In particular, one gets the next obvious consequences
of this discussion.

COROLLARY 2.8. (i) H"-x(V) has a pure Hodge structure of weight (n 1) if and
only if the morphismj above is an isomorphism. This can be rephrased by saying that
codim(Se) 0, i.e., the conditions cg in (2.5) are automatically satisfied by all the
polynomials in S(,-t)-,.

(ii) The subspace W,_H"-(V) depends on the transversal sinoularities (Y, a), but
not on their position.

By general properties ofHodge structures it follows that the subspace W,_zH"-(V)
is precisely the kernel ofthe cup-product pairing H"- (V) H"- (V) Hz"-z(V)
C. Moreover, when dim(V) is even, one can use in the usual way the numbers
h’(H’(V)) to compute the signature (#+, #o, #) of the cup-product pairing over
[19].

COrOLLarY 2.9. V is a C-homolooy manifold (i.e., there are no essential sinoulari-
ties for V) if and only if the cohomolooy aloebra H’(V) is a PoincarO algebra (i.e., for
any k the cup-product pairino H(V) H2n-2-k(V) "- H2n-2(V) C is non deoener-
ate).

Proof. IfH’(V) is a Poincar6 algebra, it follows that H)(V) 0. Then using (2.8i)
and the above description of the kernel of the cup-product on H"-x(V) it follows
that H(V) 0, i.e., there are no essential singularities for V. The other implication
is standard.

Similar consideration lead to the computation of the MHS numbers of H"(F),
but we leave the details for the reader (use the same method as in the proof of (3.6)
below).

3. Some examples. Let us discuss first the case when dim V is even. Then the
simplest singularities which are degenerate in this case are/6,/7 and/s.
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PROPOSITION 3.1. Let V c P(w) be a hypersurface with deg V N and dim V
2m. Assume that the set E’ of essential singularities for V consists only of singularities
at whose associated transversal singularities are of type 6, 7 or ,8. Then the only
(possibly) nonzero Hodte numbers of H’+I(V) are 9iven by

hm’m+l(H"+l(V)) h"+I"(H)"+I(V)) def(ff’)

where the linear system ff is defined by ff {h Sins-w; hiE’ 0}.

Proof. Use (1.10.ii) and (2.6).

COROLLARY 3.2. (including Zariski example [25], [12]) Let B p2m be a hyper-
surface of degree N havin9 only isolated singularities and let V p2,, be a cyclic
coverin9 of order 6 ramified over B. Assume that all the points ai Z’ correspond to

points B such that B has an A2 singularity at . Let E denote the set of all these
points .

Then, the only (possibly) nonzero Hodge numbers of H"+I(V) are 9iven by
h"+l(nm+l(V)) h"+l’m(no2"+l(V)) def(5a) where the linear system 5 is defined
by 6 {h H(PTM, (9(mN 2m 1 N/6)); h], 0}.

Proof. Let b 0 be an equation for B. Then V is a hypersurface defined by the
equation b 6 0 in the weighted projective space P(1,..., 1, N/6) and all the
singularities at E’ have associated transversal singularities (Y, at) of type i8.

Hence we can apply (3.1) and note that an element h S,,s-w with w 2m + 1 +
N/6 can be written as a sum h E ht where h is a homogeneous polynomial in Xo,
XI, X2m of degree deg(h) =mN w -jN/6.

Moreover the condition hiE’ 0 is clearly equivalent to hole 0.
Assume from now on that dim V 2m 1 is odd. Then the simplest degenerate

singularities are Azk_ for k > 1.

PROPOSITION 3.3. Let V be a hypersurface in P(w) with dim V 2m 1, deg V
N and such that any essential sinoularity at ,’ corresponds to a transversal singularity
of type A 1. Then the only (possibly) nonzero Hodoe number of Hg"(V) is 9iven by
hm’m(H2o(V)) def() where {h Ss_, hiE’ 0}.

Proof. Use (1.10i) with k 1 and (2.5) with m.

Note that (3.3) extends the computations of Betti numbers in Clemens [2], Schoen
[17] and Werner [24].
Now, a more complicated example involving several types of Azk_l-singularities:

PROPOSITION 3.4. Let V P(Wo,..., w2,,) be a hypersurface of deoree N such
that the set E’ of essential sinoularities satisfies"

(i) E’ is contained in the hyperplane Xo 0

(ii) any transversal singularity (Y, at) correspondino to a point at E’ is of type

Azk+l for some k and (Y c Ho, at) is an A 1-sinoularity in (Ho, at), where Ho denotes
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the affine hyperplane Xo O. Let 5".
k {at E’; (Y/, at) is of type A2k+l } and for any

k with ’k 5/:: consider the linear sytem

k {h Smv-,-k,o; hlgk 0}.

Then, the only possible nonzero Hodge number of Hg’(V) is given by

hm’m(H2om(V))m def(5)

Here S denotes the polynomial ring C[xx, X2m] graded by the conditions
deg(xi) wi for 1.

Proof. According to Theorem (2.4) we have to analyze the kernel of T on

Write an element h SmN- as a sum h E hx with h SmN--jo. If ai 6 Ek,
then the component of Tm(h) corresponding to H:(V) is zero ifand only if hk(ai) O,
i.e. if hk e , USe (1.10i) and the second part of the condition (ii) above.

It follows from (3.4) that the singularities situated in one k do not interact at all
with the singularities situated in a different Er (with f k) and this fact is not at all
obvious from purely topological considerations.

A special case of (3.4) is th next.

COROLLARY 3.5. Let B p2m- be a hypersurface of deree N havin only
isolated singularities. Let e be a divisor of N and let V p2m- be a cyclic coverin
of order e ramified over B. Assume that all the essential,sinularities of aie ’,
correspond to points i which are nodes on B. Let denote the set of all these nodes .

Then, either
(i) e is odd, E’ and Hm(v) O, or
(ii) e is even, N is even and the only possible nonzero Hode number of Hm(v) is

iven by hm’m(Hs(V)) def() where {h H(P2m-, (mN 2m N/2),
h[ =0}.

Proof. Apply (3.4) with G’ Ga for 2k + 2 e, Wo NIe, w Wzm 1.

Note that the answer in case (ii) does not depend on the degree e of the covering
V p2m-

COROLLARY 3.6. Let F: f- 1 0 be the Milnor fiber of the weighted homoge-
neous polynomial f. Assume that all the transversal singularities off are nodes. Then

(i) bn-x (F) 0 if n and N are both odd;
(ii) If n 2m is even, then the only possibly nonzero Hodge number of Hn-X(F) is

given by hm’m(H"-X(F)) def(ff’) where if’ {h SmN_w" hiE’ 0} with g’ the set of
essential singularities for V: f O. Moreover in this case H"-X(F) H"-I(F)o, i.e.,
all the elements in H"-x (F) are fixed under the monodromy operator h*.

(iii) Ifn 2m 1 is odd and N is even, then the only possible nonzero Hodge num-
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ber of Hn-I(F) is liven by hm-’m-(Hn-(F)) def(6a), where 6e’ {h StuN-w-N/2;
h] 0} with the set of essential singularities for : f 0 in P(w, 1). More-
over in this case Hn-(F) H-I(F)o, i.e., there is no nonzero element fixed under
the monodromy operator h*.

Proof. For a 7//N7/, let H’(F)a denote the eigenspace of h* corresponding to
the eigenvalue a. If we set H’(F)o oH’(F), then one clearly has the decom-
position H’(F) H’(F)o 9 H’(F)o. It follows from [6], (1.19) and (2.5) that one has
isomorphisms H"-(F)o ng(v) and n"-(F)o Hg/(9) which are (in some
precise way) compatible with the MHS. See the remarks after (2.5) in [6].
Assume first that n 2m is even. Then all the singularities of I7 are nondegenerate

and hence Hg+(17) 0. The result follows using (3.3). Assume next that n 2m 1
is odd. Then all the singularities of V are nondegenerate and hence Hg(V) 0. If
N is also odd, the same is true for 9 and we get the case (i) above. If N is even, then
the singularities in , are of type As_x and we can apply (3.4). Note that since , is
contained in the hyperplane 0, we regard as a subset in P(w). Recall that the
monodromy operator h*: H’(F) --. H’(F) is induced by the mapping

h: F F, h(x) (tWXo, W.x,) for exp(2rci/N).
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