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0. Introduction. Let K be a finite simplicial complex. Eckmann (see [3]) 

observed that any inner product in real cochain spaces of K gives rise to a 

combinatorial Hodge theory. We show that if K is a smooth triangulation of a 

compact oriented, Riemannian manifold X, then the combinatorial Hodge 

theory (for a suitable choice of inner product) is an approximation of the Hodge 

theory of forms on X. 

Before giving a more detailed description of our results we introduce some 

notation and formulas. Thus let X be a compact, oriented, C00 Riemannian 

manifold of dimension N, whose boundary consists of two disjoint closed 

submanifolds Ml and M2. We do not exclude the possibility that Mv M2 or both 

are empty. The Riemannian metric provides the space A = 2A9 of C00 differen- 
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80 JOZEF DODZIUK. 

tial forms on X with an inner product 

(/>g)=//A*g, /.geA. (0.1) 

The completion of Aq with respect to this inner product will be denoted by 
L2Aq. Let d: A*-*A*+* be the exterior derivative and 5 = (- l)N<* 

+ N+1 * 5 * the 

formal adjoint of d on Aq. By Stokes' theorem 

(df,g)~(f,Sg)-f /A*g (0.2) 

for/GA?, gGA? 
+ 1. 

At every boundary point of X a differential form / can be decomposed into 

its normal and tangential components: /=/tan + /n0rm- The operator * maps 

every covector corresponding to a subspace into a covector corresponding to its 

orthogonal complement and therefore (*/)tan= *(/noJ. Using this we can 

write the boundary terms in (0.2) as follows: 

f /A*g=f (/A*g)tan=f /tanA(*g)tan 
JMl u M2 JMl U M2 JMX u M2 

/tanA*(g?orJ- (0-3) -X 

We will denote by A^SAJ the space of C00 forms on X which satisfy the 

boundary eonditions /tan 
= 0 on Mx and/norm = 0 on M2. Then, by (0.2) and (0.3), 

(df,g)-(f,8g) /eA?, gGA?+1. (0.4) 

Finally, let K be a finite simplicial complex of a C?? triangulation of X 

which contains subcomplexes Lx and L2 triangulating Mx and M2 respectively. 
In Section 1 we describe an operation, due to Whitney [8], which assigns 

an L2 form on X to every simplicial cochain of K. More precisely, we define the 

linear mapping W: Cq(K)->L2Aq of real cochain spaces of K into the spaces of 

L2 forms on X, where q 
= 0,l,...,N. 

In Section 2, we describe standard subdivisions SnL of an arbitrary 

simplicial complex L, also introduced by Whitney in [8]. 
Section 3 is devoted to the proof of crucial approximation theorem. Let 

Wn:C^(SnK)-^L2A^ be the Whitney mapping for the complex SnK. Let 

Rn: Aq->Cq(SnK) be the de Rham mapping defined by integration of forms 

over chains of SnK. The approximation theorem asserts that, for large n, WnRj 
is a good approximation of /. 
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In Section 4 we define the inner product in cochain spaces Cq(SnK) and 

discuss resulting combinatorial Hodge theory. We then show that if f=dg + 

h + 8k is the Hodge decomposition of a C ?? form / E Ax and R?f= d^ + hn + 

8nkn is the combinatorial Hodge decomposition of the cochain RnfGCq(SnK), 
then W^^-^dg, Wnhn->h, and Wn8nkn->8k in L2A^. This is our main result. 

We also discuss in section 4 the differences between classical finite- 

difference techniques for solving partial differential equations and our methods. 

Finally, in Section 5, we prove that the eigenvalues of combinatorial 

Laplacians converge to eigenvalues of the continuous Laplacian, at least in 

dimension 0, i.e., for 0-cochains and functions. Our proof is an application of 

the classical Rayleigh-Ritz method (see Gould [4]). As a corollary we obtain 

that the zeta functions of combinatorial Laplacians converge to the zeta 

function of the continuous Laplacian. We conjecture that the results of this 

section are true in all dimensions q = 0,1,..., N; but we were unable to prove it. 

This eigenvalue problem is related to a question of equality of analytic 
torsion and Reidemeister-Franz torsion raised by Ray and Singer [7]. The proof 
that zeta functions converge in all dimensions would be a step toward proving 
that the two torsions are equal. 

1. Whitney Forms. The definition of Whitney forms and all results of 

this section, except for (1.5), (1.6), (1.8), are from Whitney [8]. 
We now define a linear mapping W of the real cochain groups Cq(K) into 

L2Aq. To do so we identify K with X and fix some ordering of the set of 

vertices of K. For a vertex p of K, we denote by fx the pth barycentric 
coordinate in K. Since K is a finite complex we can identify chains and 

cochains and write every cochain cE:Cq(K) as the sum c = ^cT-r with cTER 
and r running through all g-simplexes [po>Pi>--->PJ ?f ^ whose vertices form 

an increasing sequence with respect to the ordering of K. It follows, that it 

suffices to define WT for such simplexes r. 

Definition 1.1. Let T = 
[p0,p1,...,pq], where p0, pv...,p is an increasing 

sequence of vertices of K. Define Wr E L2Aq by the formula 

Wr = ql 2 (- l)V%0Ad/ApiA- 
* ' 

Ad^^Adfx^A" 
' 

A\. (1.2) 
i = 0 

We remark that the above definition makes sense even though the bary? 
centric coordinates are not C1 functions on X. However, since the triangulation 
is of class C??, the barycentric coordinates are C?? on the complement of 

(n 
? 

l)-dimensional skeleton of K. This allows us to apply the exterior derivative 

d in (1.2) and the resulting form is a well defined element of L2Aq. Also, (1.2) 
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holds for every simplex r = [ p0,...,p ] (the vertices need not form an increasing 

sequence) because both sides of (1.2) are alternating in the subscripts 0, 1, 

2,...,q. 
For a cochain cE:Cq(K), we call Wc the Whitney form associated with c. 

We now state and verify some properties of Whitney forms. 

Wt = 0 on X\St(r). (1.3) 

for every simplex r of K. St(r) denotes the open star of r. 

Proof. Suppose r = 
[p0,p1,...,pq]. Since St(r)= { p G X| fipi(p)?=0, i 

= 
0,...,q), (1.3) follows from the definition of Wr. 

Wdc = dWc for c<ECq(K). (1.4) 

Here dcECq + 
1(K) is the simplicial coboundary of c and dWc denotes the 

exterior derivative applied to Wc on the complement of (n? l)-dimensional 

skeleton of K. (See the remark following Definition 1.1.) 

Proof. It suffices to prove (1.4) for c = t = [ p0,...,pq]. Let /x0,...,pq be the 

barycentric coordinates corresponding to p0,...,pq. Observe first that 

dWr = d(q\ 2 (-l)ftAdMoA... ^ ... A*U 

q 
= q\ 2 d/AoAd/AiA... A*a = 

(9+1)!dMiA...A^ 
i = 0 

On the other hand, dr = 
,2[p,p0,...,pq] where summation is extended over all 

vertices p of K such that [ p,p0,... ,pk] is a simplex of K. In computing Wdr we 

shall use the following facts: 

p P 

lip 
= 0 on W\St(p), 

df A ^/= 0 for any function /. 
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Using these we have 

W Ti)iw*"(^i)rw(f[p'Pb--p']) 

= 
21 /yWV..Ad^+ 2 (-l)/+V/^Ad/x0A...Nv/...Adju 

1 

p \ /=o / 

q 
l \ 

p ,=o 
v p j 

= 
S>^oA...Ad/x9+2(_1)V 2 ^ Ad/x0A...Nv/...A^ 

q 
= 

'2'npdn0A-.-Adnq+ 2 v1diL0A...AdiLq 
= 

diL0A...AdiLq, 
p /=o 

as required. In the above calculations 2p' denotes the summation over all 

vertices p such that [p,p0,...,pq] is a (q + l)-simplex of K. 

To state the next property we observe that the barycentric coordinates are 

C00 on every closed simplex of K. Thus, for every closed N-dimensional simplex 
a and every cochain cE:Cq(K), Wc\o has the unique C00 extension to a 

denoted by Wc|a. If c = r is a simplex, Wc\o is given by (1.2). However, if p is a 

simplex on the boundary of more than one N-simplex, say pCan a', the values 

on o of the two extensions need not agree. Nevertheless the restrictions (as 

forms) of Wc\a and Wc\o' to p are equal. Let i:pCa, i':pCa' be the inclusion 

maps. We have 

i*(Wc\d) 
= 

i'*(Wc\d') (1.5) 

Proof. We can assume that c = r is a simplex. Then Wc is given by (1.2). 
Since the restriction commutes with exterior product it suffices to prove that, if 

fx is a barycentric coordinate corresponding to a vertex of K, then /x and d/x 

satisfy 

i*/x=i,*/x, i*d/x= i^d/x. 

But i*/x = /x|p= i^/x because /x is continuous and i*d/x = di*/x = d(/x|p) = di,*/x 
= i'*d[x, because exterior derivative commutes with restriction. 

Let j:M1cWbe the inclusion map. Let c E Cq(K,L^}, i.e., c evaluated on 
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every simplicial chain of L1 is zero. Then 

/*Wc = 0. (1.6) 

Proof. We can assume c=r = 
[p0,p1,...,pq] with p0&Mv The bary- 

centric coordinate /xpo vanishes on Mx and (1.6) follows from (1.2). 

Let Cq(K) be the group of real simplicial q-chains of K and let < , > 

denote the standard pairing of Cq(K) and Cq(K). 

fWc=(c,a) (1.7) 

for every ceCq(K), a<ECq(K). The integral above is well defined by (1.5). 

Proof. The proof proceeds by induction on q. For q = 0, c and a can be 

written as 

c=2vP' a=2vp- 

By definition 

Wc= 2<VM>, 

We now assume that (1.7) holds for qf-1. Let t1,...,ts be the basis of Cq(K) 

consisting of simplexes of K. We have to show that 

fWrrSir 

Ifi^i 

fWT7. 
= 0 

by (1.3) and (1.5). If i = /', choose a (q 
- 

l)-simplex p such that p is a face of rr 

Then 

and 

f Wrt = f Wdp = fdWp = f Wp= fWp-h V f Wp = l 
\ Jr{ JTl JdTi Jp t"PJt" 

by induction hypothesis, (1.4), and Stokes' theorem. 
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The following Lemma will be very useful. 

Lemma 1.8. Let f be a Cco(q + \)-form on X such that /norm = 0 on M2. 
Let cECq(K,Ll). Then 

(dWc,f) 
= 

(Wc,8f). 

Proof. 

(dWc,/)=2 [dWcA*f, 

where the summation is over all N-dimensional simplexes of K. Moreover 

fdWcA*f= [WcA*8f+ f WcA*f 

Therefore 

(dWc,f)-(Wc,8f)=y2 ( WcA*f 

The last sum can be written as the sum of the integrals over (N? l)-dimensional 

simplexes. The integrals over simplexes of LY vanish by (1.6). Similarly, the 

integrals over simplexes of L2 vanish because (*/)tan= * fnOrm = 0 on ^2- Finally, 
for every simplex r in the interior of X, we get two integrals which cancel by 

(1.5). 

2. Standard Subdivisions of a Complex. In this section we describe a 

method of subdividing a simplicial complex. This method was introduced by 

Whitney in [8]. It is very well suited to our purposes. The resulting subdivision 

of a given complex is called the standard subdivision. 

We first discuss the standard subdivision of a simplex. Thus let o 
= 

[p0,p1,...,pm] be a simplex in Rk, k>m. The vertices of So, the standard 

subdivision of o, are the points 

Pn-ii-Pi+p,) *<;? (2-1) 

We define partial ordering of the vertices of So by setting 

pi;. < pkl if i > k and / < / (sic). (2.2) 

The simplexes of So are the increasing sequences of vertices with respect to the 
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above ordering. There are 2m m-dimensional simplexes in So, which can be seen 

as follows. The last vertex is p0r. It is preceded by plr and p0 r_v In general, p{ 
is preceded by pi + 1>7 and p^{-V The interiors of these simplexes are disjoint and 

So is a simplicial complex. The diagram below shows standard subdivision of a 

tetrahedron. The simplexes of the subdivision correspond to paths going up- 
wards in the graph. 

03 

13' oe 

,/\ /\ 
23 \Z oi 

Let i"i = 
[p0,p1,...,pi_1,pi + 1,...,pm] be an (m- l)-dimensional face of o. 

The simplexes of So which are contained in ri form a subdivision of t{. This 

subdivision is precisely St{, the standard subdivision of t{. 
The last remark allows us to define the standard subdivision SL of any 

simplicial complex L. First we fix some ordering of the vertices of L. This gives 
an ordering of vertices of any simplex o of L. We subdivide each simplex o of L 

separately and get a subdivision SL of L. Each simplex of SL has ordered 

vertices and we can subdivide again. Inductively, we define 

S0L = L, Sn + lL = 
S(SnL) (2.3) 

Definition 2.4. Let o = 
[p0,pl,...,pm], o'= [p'0,...,p'm] be two simplexes 

in Rm. We say that o is strongly similar to o' if there exists \>0 such that 

\(o-p0) 
= 

o'-p'0, 

i.e., if of can be obtained from, o by translation, multiplication by positive 
constant, and translation. 
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Obviously, strong similarity is an equivalence relation. The following 
Lemma explains why standard subdivisions are better than barycentric subdivi- 

sions. 

Lemma 2.5. Let s2l be the set of all m-dimensional simplexes occurring in 

all complexes Sno, n = 0,1,2,..., where o is an m-dimensional simplex in Rm. 

Then, there are finitely many classes of strongly similar simplexes in 91. 

Proof. For r = [q0,..., qm] c Rm we define the sequence of edge vectors of 

t by setting 

w{ = qi + l- q{, 0<i<m. (2.6) 

If w'0,..., u^ is the sequence of edge vectors of another simplex a', then the two 

simplexes are strongly similar if and only if there exists A > 0 such that w{ = \w[ 
for i = 0,l,...,m? 1. 

Suppose o = [p0,...,pm]. Its edge vectors are vt. Let r be any m-simplex of 

So. The edge vectors of t belong to the set {?(1/2)1^, ?(l/2)u2,..., ?(1/2) 

vm-i) ^y (2-l)? (2.2), and (2.6). Inductively, we see that, if r is an m-simplex of 

Sno, the edge vectors of r are contained in { ?(\/2n)vx, ?(\/2n)v2,...,?(l/2n) 

vm_l}. This finishes the proof. 

Corollary 2.7 (of the proof): Fix an inner product in Rm. Let 

?n(a) 
= 

supdiamT, (2.8) 

where sup is taken over all simplexes r of Sno. Then 

lim ?n(a)=0. 

Proof. ^(a)<(l/2")2r=-01||fJll- 

3. Approximation Theorem. We return to the setting of Section 1. 

Observe that we can define the Whitney map Wn:Cq(SnK)-+L2Aq for the 

complex SnK. The only properties of K required in the construction of W were 

that it be a complex of C?? triangulation of X and that the vertices of every 

simplex be ordered. SnK has these properties for all n > 0. Observe further that 

the results of section 1 hold for every Wn. 
Let Rn: Aq-+Cq(SnK) be the de Rham map 

(RJ,")=ff, /eA< ?EC9(K). (3.1) J a 

We want to show that, for any / E Aq, WnRJ is a good approximation to / 

provided n is large. 
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Definition 3.2. We say that an m-dimensional simplex o in Rm is well 

placed if it is strongly similar to the simplex [0, ex,..., em], where el,...,em is the 

standard basis of Rm. 

Let (U,<p) be a coordinate chart of X, i.e., U c X is open and <p: U-^RN is a 

diffeomorphism onto its image. 

Definition 3.3. We say that an N-simplex o of a smooth triangulation of 
X is well placed in a coordinate chart (U,<p) if 

(a) ocU 

(b) (p|<7:a??RN is linear 

(c) <p(o) is well placed in RN. 

The following lemma is a consequence of Lemma 2.5. 

Lemma 3.4. There exists a finite set U of coordinate charts of X with the 

following property. For every integer n > 0 and every N-dimensional simplex r 

of SnK there exist a coordinate chart ((7,cp) E U and an N-simplex o of K such 

that 

(a) r is well placed in (U, <p) 

(b) TCdcU. 

Proof. By definition of C?? triangulation there exists a homeomorphism 

X:K?>X such that for every N-simplex of K there exists a coordinate chart 

(Ua,cpa) such that x(<*)^ Ua and <pCT ?x maps o into RN linearly. We identify K 

with X via x- Since K is a finite complex, it suffices to construct a finite set ll0 
of coordinate charts (Ua,q>) such that, for every IV-simplex r of Sno, r will be 

well placed in some (C7oJ<p)E U0. We then would set U = U0U0. The existence 

of U0 is just a restatement of Lemma 2.5. 

Definition 3.5. Let 

7}n= sup diamor 
a?S?K 

where diam o is measured in the metric induced by the euclidean distance in a 

coordinate neighborhood in which o is well placed. We call rjn the mesh of SnK. 

Lemma 3.6. limn_^0Oi]n=0. 

Proof. Since both K and U are finite, this is a consequence of 2.7. 

Let AqT*(X)p be the ^th exterior power of a cotangent space to X at p. 

The Riemannian structure induces inner product ( , )p and norm || ||p on 

A*T*(X)p. 



the hodge theory of harmonic forms. 89 

We are now ready to state the approximation theorem. 

Theorem 3.7. Let f be a C?? q-form on X. There exists a constant Cr 

independent of n such that 

\\f(p)-WnRJ(p)\\p<Cf-71n 

almost everywhere on X. 

Proof. We fix n. The (N? l)-dimensional skeleton of SnK has measure 

zero and, therefore, we can assume that p lies in the interior of a unique 

N-simplex a of SnK. Let (U,q>) be a coordinate chart in which a is well placed. 
In U 

TW"2fl.',.AA...A^. 

(3.8) 

(3.9) 

In view of finiteness of 17, it suffices to prove that there exist a constant Cf 

independent of n and p such that 

K..i,(p)~<...i,(p)l<cfT>"> (3.10) 

for all ii*..i . Furthermore, we can assume that f=aix mmtidx{ A---Adx{ for 

some ip.-V Renumbering, if necessary, we can assume that 

f=adxlA-"Adx (3.11) 

in U. We identify U with a subset of RN by means of q>. The simplex o is well 

placed in RN and, translating to the origin if necessary, we can assume that 

o = 
[0,he0,...,heN] for some h>0. (3.12) 

Xs*i .'"iXn A\ 
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Now we have to compute WnRJ explicitly in terms of local coordinates. By 

(1.3) the values of WnRJ on o depend only on the values of RJ on the faces of 

o. The only 9-dimensional faces r of o such that 

<?J.t>= /7*0 (3.13) 

are 

r0=[0,hel,...,heq] 

Ts=[hes,hei,...,heq) s=q + l,...,N (3.14) 

Set 

a0= j /= I a(xl,...,xq,0,...,0)dxldx2...dxc 

as= j /= I a\xl,...,xq,0,...,0,h'il-? 2 xA,0,...,0\dxldx2...dx( 

(3.15) 

Thus 

WnRJ=a0Wnr0+ ^ o,Wbt, on o. (3.16) 
5 = 9+1 

The barycentric coordinates corresponding to the vertices 0, hev..., hen of 

o are 

/W-ri* (3.17) 

ft=^ 
i = l,2,...,iV 

respectively. We now introduce some notation. Let 

dxq = dxx/\... f\dxq 

dxi>s = 
dxl/\...Adxi_lAdxi+lA...AdxqAdxs, 

Ki<q<s<N (3.18) 

A=J^ 
= 

(( dxldx2...dxqj 
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By (1.2) 

WnTo= <7!? (1 
~ 

fi 2 
*<)' wdxiA? 

? ? Adxq 

+ 
^(-1)i^[-]lii^~Tdx1A...</...Adxq 

l N 
= 

A-dx?-A-j' *2Xidxi 

+ 
A-2(-i),+1r-f(""1)'"l?fa9+ 2 (-ir1^) 

2V q N 

= A-dx?-A- 2 ^dx' 
+ A-2 2 (-l)'+,?<fr''* (3-19) 

*~qr + l 

Similarly 

Wnrs = 9!- ^dx'+2(-1)'^d*.Arfx,A...^...AA:, 
i = l 

(3.20) 
i = l 

Substituting (3.19) and (3.20) into (3.16) we get 

WJRnf=a0Adx* + 2 A-(as-a0)^dx? 
5=9+1 

n 

q N 
+ 2 2 (-ifAl",-",)-^* 

1 = 1 S=</+1 
(3.21) 

We now have to compare (3.21) with (3.11). We show that a0-A is a good 

approximation of a(p) and that the numbers A-(a0? a^'(xjh) are small. 

Lemma 3.4(a) implies that we can find bounds for derivatives of the function 

a(xx,...,xN) in the neighborhood of p and these bounds are independent of n. 
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Let p = (xl,..'.,%). By the mean value theorem and (3.18) 

j a(xl,...,xq,0,...,0)dxl...dx 

A-a0 = 'To 

f dxl...dxq 

= 
a(x[,...,x'q,0,...,0) (3.22) 

for some point (x[,..., xq, 0,..., 0) Et0. Therefore 

\a(xl,...,xN)-A'a0\ =\a(xl,...,xN)-a(x[,...,xq,0,...,0)\<cl"nn, (3.23) 

where the constant cY is independent of n. 

Similarly 

A'(?o"?J 

h 

j a(xl,...,xq,0,...,0)-aixl,...,xq,0,...,hil- 
- 

2xA...,0l 

a(x[,...,xq,0,.. 

j dxl...dxq 

.,o)-alxi,...,x;,o,...,o,h-li-^2?ilo,...,o 

<c2. 

On o<txi<h<rin and 

A-(?0-a,) 

/i <C2'Vn- 

(3.24) 

(3.25) 

This implies (3.10) which proves the theorem. 

We recall that L2Aq is a Hilbert space whose norm || || is given by 

ll/ll = 
(/x/A*/)1/2 

= 
(/xll/(p)||2pdv)1/2( 

feL*A<, (3.26) 

where dV is the volume element of X. 
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Corollary 3.27. Let /GA9. There exists a constant Cr independent of n 

such that. 

\\f-W?RJ\\<crnn. 

Proof. By (3.7) and (3.26) we have 

Wf-WnRJf= 
fx\\f(p)-WnRJ(p)fpdV 

<(fxdv}cfWn- 

Setting cf= cf-( I dV)l/2 and taking square root we get 
jx 

H/-iWII<<yv 

Remark. (1) The proof shows that approximation theorem holds if we 

assume that /, X, and the triangulation are of class C2, and the Riemannian 

metric is merely continuous. 

(2) The constant C* is a product of a universal constant (depending only on 

the manifold and initial triangulation K) and the maximum of absolute values of 

first derivatives of the components of / in coordinate systems of U . This is also 

a consequence of the proof. 

(3) Only Corollary 3.27 will be used in what follows. 

4. Inner Product in Cochain Spaces. Combinatorial and Continuous 

Hodge Theories. In this section we define an inner product in cochain spaces 

Cq(SnK,SnLl). This gives rise to a combinatorial Hodge theory in every 

complex C*(SnK,SnLl). This idea goes back to Eckmann [3]. Next we show that 

the Hodge theory of forms in AX = 2AJ is, in a sense, the limit of combinatorial 

Hodge theory. 

Definition 4.1. Let c, c' be elements of Cq(SnK,SnLl). We define their 

inner product (c,c') by 

(c,c') 
= f WcA *Wc' = 

( Wc, Wc'). 

We do not indicate dependence on n and q, and we use the same symbol to 

denote the inner products in C*(SnK, SnLl) and A because it will not cause any 

confusion. 
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Note that (4.1) indeed defines an inner product. Only nondegeneracy is not 

obvious but it is a consequence of (1.7). 
Consider the complex C*(SnK,SnLl) for a fixed n. 

0^ C?( SnK, SnL,) -A-'?> CN (SnK, S?L,) ->0, (4.2) 

where dn denotes the simplicial coboundary. Let 8n be the adjoint of dn, 

(dnc,c') 
= 

(c,8nC), cEC'iS/.SA) ctEC+1(S?K,SnL1). (4.3) 

Now set 

K = dA + Snd? (4.4) 

on Cq(SnK,SnLl), q = 0,l,...,N. Let //^, the space of harmonic cochains in 

Cq(SnK,SnLl), be the kernel of An\Cq(SnK,SnLl). 
The following statements are well known and very easy to verify. 

Ht?={CGC(SnK,SnL1)|dnc 
= 0,5nc = 

0} (4.5) 

For 0 < q < N 

C'(SnK,SnL1) 
= 

dn(C-1(SnX,SnL1))e^?6n(C+1(SnK,SnL1)), (4.6) 

and this direct sum is orthogonal. 

H^(X,Af1;R)aH^(C*(^K,SnL1))?Hiy for 0<q<N. (4.7) 

The above setup is formally analogous to the Hodge theory of forms on X 

which we now describe (for precise statements and proofs see [7], particularly 

Corollary 5.7, p. 178). 

First, we recall that Af is the space of C ?? 
g-forms / on X which satisfy 

boundary conditions /tan = 0 on Ml and /norm = 0 on M2. 
If / E Af then / has the following Hodge decomposition 

f=dg+h + 8k, (4.8) 

where geA?"1, fceA? 
+ 

1,dgeAf, 8kEA\, /iGA} and n is harmonic, i.e., 

8h = dh = 0. The summands in (4.8) are mutually orthogonal and the space Hq 

of harmonic g-forms is mapped one-to-one onto a linear space of cocycles 

representing Hq^(S^^^^ by the de Rham map Rn. 
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Theorem 4.9. Let f E A?, so that RJ is an element of Cq(SnK, SnLY). Let 

RJ=dr&n + hn + 8nkn 

be the Hodge decomposition of RJ. If (4.8) is the Hodge decomposition of f, 

then 

UmWA-fc, limaWndngn=dg, lim^WJX-Sk, 

where the limits are in the norm of L2Aq. 

In particular, if h^SH^ represents a fixed class aEHq(X,Ml;R) and 

haEHq also represents a, then 

lim Wh=ha. (4.10) n?>oo 

Proof. Observe first that RJ, is indeed, in Cq(SnK,SnLl) because /ton = 0 

on Mv We first prove (4.9) under the assumption that /= h is harmonic. The 

cochain Rji is a cocycle by Stokes' theorem. It represents the same cohomology 

class aasfc. Therefore 

with h^EHq representing a. By (1.8) and (1.4) 

(WBdLgo,h)-(dWnft,,ft)-(WBftl,8h)-0. (4.12) 

On the other hand 

||/l-Wnfln/l||?<VT,n 

by (3.27). Therefore 

cWn >\\h~ WnRnhf= \\h 
~ 

Wji^ 
- 

WA&JI2 

= 
ll^-Wn^||2+||Wndngn||2 (4.13) 

because (dngn,hat) 
= 

(Wndngn,WnhJ 
= 0 by (4.1) and (4.6). This proves the 

theorem for a harmonic form / and. also, proves (4.10). 

Now we consider the case of an arbitrary / E A?. Let Pn be the orthogonal 

projection of C(SnX,SnL1) onto the subspace of cocycles. We first estimate the 

norm of PnRn8k. Let cEC*(SBK,S?L1) be a cocycle. Then 

\(PnRn8k, c)\ 
= 

\(Rn8k, c)\ 
= 

|( WnRn8k, Wnc)\ 

= 
\(WnRn8k-8k,Wnc)\ (4.14) 
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because (8k, Wnc) = 0 by (1.4) and (1.8). By the Corollary 3.27 

|(Fnflw?fc,c)|<||WnJRw?*-?fc||.||c|| 

<cSk"nn-\\c\\. (4.15) 

This implies that 

\\PnRn8k\\<cSk-nn. (4.16) 

Now we can complete the proof. We have 

WnR J= WnRndg + WnRnh + WnRn8k (4.17) 

and 

||WnRndg-dg||<cdg-r,? 

\\WnRnh-h\\<n (4.8) 

\\WnRn8k-8k\\<csk-X. 

By the first part of the proof (case of harmonic form) we know that 

Rnh = K + el (4.19) 

where h'nE.H% and ||?Lj| < ch-r\n. Moreover 

Rn8k = PnRn8k + Rn8k-PnRn8k (4.20) 

where Rn8k- PnRn8k=8nK by (4.6) and ||F?R?^II < cSk-J]n. We write e2 
= PnRn8k. From (4.8), (4.19), (4.20) we get 

RJ= Kdg + K + KK + *i + ?2 (4-21) 

Subtracting (4.21) from the Hodge decomposition of Rn f we see that 

(?i + ?2) 
= 

(K 
- 

K) + (?A 
- 

SX) + (d?gn 
- 

Kdg) (4.22) 

which implies that 

\\K~K\\<ci% 

WkK-&X\\<W? (4.23) 

\\d&n-Rndg\\<c&n 

For some constants cv c2, c3>0. 
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Finally 

\\h-Wnhn\\ < \\h-WnRnh\\ + \\WnRnh-Wnhn\\ 
= \\h-WnRnh\\ + \\Rnh-hn\\ 

<\\h-WnRnh\\ + \\K-K\\ + hi\\<c'-i)n (4.24) 

by (4.19), (4.23), and (3.27). 

Similarly 

\\dg-Wndn&\\ <\\dg~ WnRndg\\ + \\WnRndg- WA&W 

= \\dg-WnRM\ + \\Kdg-dr&n\\<c"-T)n (4.25) 

by (4.23) and (3.27). 

\\8k- Wn8nK\\ < ll?*- WASfcll + II WnRn8k- Wn8nh\\ 

<\\8k-WnRn8k\\ + \\Rn8k-8nkn\\ 

<\\8k-WnRn8k\\ + \\8nk'n-W + W^W 

<c"'.r,n (4.26) 

by (4.20), (4.23), and (3.27). 
The inequalities (4.24), (4.25), (4.26) prove the theorem. 

Remark. Our methods differ from the classical finite-difference technique 
of solving partial differential equations in two aspects. In the first place, we use 

the inner product in cochain spaces to obtain finite-dimensional approximation 
to the operators 8 and A. In classical numerical analysis one substitutes 

difference quotients for the derivatives to obtain such approximations. This 

brings us to the second difference. Because of the way the approximations are 

obtained in numerical analysis, it is usually easy to estimate the difference 

between an operator and its approximation. The approximation is called con- 

sistent if this difference is 0(hn) as h?>0, where n is the order of the operator 
and h is the mesh. Then, one considers only consistent approximations. In 

contrast to this we have no consistency result. This is one of the reasons why 
our technique applies only to homogeneous Laplace equations. More precisely, 
we do not know if, for an arbitrary smooth form /, the solutions of Ancn = R^ in 

Cq(SnK) are such that Wncn^>uGAq, where Au=f. 

5. Eigenvalues of the Laplacian Acting on Functions. In this section we 

show that the eigenvalues of the Laplacian A acting on smooth functions 

satisfying certain boundary conditions are limits of the eigenvalues of combina? 

torial Laplacians An:C?(SnK,SflL1)->C0(SnK,SflL1). 
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It is known (see [1]) that there exists a complete orthonormal system 

{<ft}?i in the space L2(X) = L2A? such that, for all i, 

v,ec-(X), Av,-\9, 

cpjM^O, (^)norm 
= 0 on M2. 

( ? j 

Each eigenvalue has finite multiplicity and they can be numbered so that 

0< ax <A2< A3< 
? ? ? 

<Xn-^oo. 
The mini-max principle of Courant [2] says that 

(dfdf) 
\= sup inf , (5.2) 

/i,...,/,_! /j./l-/2./l-l U'J ] 

/i? ? ? ? '/i-i> / are smooth functions vanishing on Mx and f?=0. 
Let ^(X)^ {/ECco(X)|/|M1 = 0}. Since we want to compare the eigen? 

values of A with the eigenvalues of An, it would be convenient to have a space 
which contains both Cf(X) and W^^K^J^. 

Definition 5.3. The function fH>(fJ) + (df,df) is an inner product on 

C??(X). Let HY be the completion of C??(X) with respect to the norm given by 
this inner product. Let V be the closure of C100(X) in Hv 

Remark. Our definition of the Sobolev space Hl differs from the usual 

one. However, since X is compact and has smooth boundary, it is equivalent to 

the usual definition (see [1], Theorems 2.1, 2.2). 
Note that the exterior derivative d extends to the mapping d:Hl~*L2Al in 

the obvious way. 

Lemma 5.4. For all n>0 

WnC0(S?K,SnL,)cV. 

Moreover, for c E C?(SnK,SJ^, 

Wndnc = dWnc. 

We postpone the proof of this lemma since it is rather technical. 

Now we can write the mini-max principle in the following equivalent way. 

(dfjf) 
\= sup inf , , (5.5) 

(/.A)-0,*-l,2,....<-I 
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Let d(n) be the dimension of C?(SnK,SnL1). The eigenvalues A/1 of An are 

nonnegative and can be numbered so that 

0<X1n<X2n<--- <\?(n). (5.6) 

We are now ready to state the main result of this section. 

Theorem 5.7. Let i be a positive integer. There exists a constant Ct>0 
such that 

whenever i < d(n). 

Proof. The proof proceeds by the classical Rayleigh-Ritz method (see 
Gould [4]). The inequality \ < A/1 is a special case of general principle due to 

Poincare [6] which says roughly that the eigenvalues of a positive semidefinite 

quadratic form on a subspace are larger than the first eigenvalues of that form 

on the whole space. 
To prove this inequality consider the Rayleigh-Ritz quotient 

(Ac, c) (dnc, dnc) (Wndnc, WAc) 
VV= 7 ? 

- 
/w w ? on C?(SnK,SnL1)\{0}. (5.8) 

(c,c) (c,c) (Wnc,Wnc) 
x n n u l J v ' 

By (5.4) 

(Anc,c) (dWnc,dWnc) 

(c,c) (Wnc,Wnc) 
' 

The finite dimensional mini-max principle gives 

(V,c) 

(5.9) 

A" = sup inf 

Cl,...,?_ieco(!yc.v..) (c,c,)=<u??,2,...,,-i 
{C,C} 

(dfdf) = sup inf , . (5.10) 
/,./,.,? wnc?(s^s^) /ew^C^K.^i) (/'/) 

/^0,(/fA)-0,fc-l,2,...,*-l 

In (5.10) we can even allow fl9...9ft-i to range over V because we can 

replace them by their orthogonal projections on WnC?(SnK,SnLl). 

Comparing (5.5) with (5.10) we see that \<Xtn because W^^K^^^ 
C V and infinum over a smaller set is larger. 
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To prove the second inequality we consider the space Vt spanned by first i 

eigenfunctions, cpj,...,^, of A. It follows from Corollary 3.7 that Rntpl,...,Rnq)i 
are linearly independent for n large. Also, the same corollary and Remark 2 

following it, imply that there exists a constant c{ such that 

(dnRn<p,dnRn<p) (d<p,d<p) 

{Rn<P>Rn<P) (<P?9) 
<ciVn (5.11) 

forcpEV^O}. 
Observe that the largest eigenvalues X of the form (dc,dc) on RnV. is given 

by 

(dnRn<p,dnRn<p) 
X= sup ?-^- . 5.12 

If n is so large that dim Vt 
= i, the finite-dimensional analog of Poincare 

principle gives 

\tn<\ (5.13) 

On the other hand the supremum in (5.12) is attained for some (PqGV^ 
Thus 

, (dnRn<p& dnRn<p0) (dp0, dq>0) 

(fl?<Po.fl?<Po) (<Po><Po) 

We must have (d(p0,d(p0)/((p0,(p0) < \. since \ is the largest eigenvalue of 

(d<p,d<p) = (A<p,<p) on Vt. The inequality A/1 
? 

Qrjn <X. follows because 

Aj"<A<Ai + Cjr,?. (5.15) 

In order to complete the proof of Theorem 5.7 we have to prove Lemma 

5.4. 

Proof of Lemma 5.4. Let c E C?(SnK, SJ^; c can be written as 

c=tc(Pi Cj?R, ft6Sni(\S?L, (5.16) 
i = l 

Therefore 

W?c-2crfV (5.17) 
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where ^ is the barycentric coordinate corresponding to p.. The function Wnc is 

continuous on X, piecewise C?? and Wnc\Ml = 0. Let U^MlX[0,2) be the 

collar neighborhood of MY in X. We identify points of U with pairs (x,t), 

xGMY,tE.[0,2). In particular MY is identified with MY X {0}. Wnc is continuous 

and piecewise C??, therefore Lipschitz on MxX[0,1]. Therefore there exists a 

constant C such that 

\Wnc(x,t)\<C-t for all x<EMv *e[0,l]. (5.18) 

Let g be a C ?? function on R satisfying 

l>g>0, g = 0 on (~oo,0], g=l on [l,oo). (5.19) 

For every integer m >0 we define gm(t) by 

gm(t) 
= 

g(2mt-\). (5.20) 

Note that 

suPPgmC 

sup 

<G'2,n' 

1 1 

2m m 

--1 m m I 

gm(0l<2m- SUP lg'(OI- 
fe[o,i] 

m?>oo 

(5.21) 

(5.22) 

For every positive integer m we define a function gm on X by 

g?M-g?C) forxGM!, tG[0,2) 

gm(p) 
= l forpEX, M^O.l] 

Obviouslygm is C?? on X. 

Since V is closed in H1 it is enough to show that 

gm- Wnc e V for all m, 

g--W?cm"ZtW?c' (5-23) 

d(gmWnc)-?dWnc 

in L2(X) and L2Al respectively. 
The function gmWnc is continuous and piecewise C00. The reasoning of 

Lemma 1.8 can be applied to show that 

(d(gm-Wnc),f) 
= 

(gm-Wnc,Sf) (5.24) 
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for every C00 1-form whose support is contained in X\(M1u M2). Therefore the 

form d(gm-Wnc) is the weak exterior derivative of gm- Wnc in the sense of [1], 
Definition 1.6. By Theorem 2.2 of [1] gm-WncE//1 and d(gm-Wnc) = 

d(gm- 

Wnc). But the support of gm'Wnc is contained in X\MxX[0, l/2ra) which 

implies that gm'WncE. V. 

The convergence gm- Wnc-> Wnc is obvious since gm < 1 and gm-?l almost 

everywhere on X by (5.19), (5.20). By Leibnitz rule ([1], Theorem 1.13) we have 

d(gm'Wnc) 
= Wnc-dgm + gm.dWnc. (5.25) 

On X\M1X[0,l/m]gm=l anddgm = 0. On A^XfOJ/m] we have 

d{gm'Wnc) 
= 

gm-dWnc + gmdt'Wnc. (5.26) 

The proof will be concluded if we show that 

Wnc-gmdt = 
d( gm- Wnc) -gm-dWnc^0. (5.27) 

By (5.18) and (5.21) 

IWnc(x,tyg'm(t)\ < C- ~2m = 2C (5.28) 

for x^Mx, ^E[0,1]. This means that Wncg'm is bounded and, since we are 

integrating over sets whose measure tends to zero, it proves (5.27) and finishes 

the proof of the Lemma. 

As an application of Theorem 5.7 we show that the zeta-function of the 

continuous Laplacian is the limit of zeta-functions of combinatorial Laplacians. 

Definition 5.29. The zeta-function f (s) of the Laplacian A is the Dirich? 

let series 

By analogy we define zeta-function of combinatorial Laplacian An by 

f(n)(*)= 2 (VP- 

The function f (s) was investigated by Minakshisundaram and Pleijel in [5]. 

They proved that the abscissa of absolute convergence of the series defining 
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f (s) is finite, i.e., there exists a number a0ER, a0>0 such that S^^j"5 
converges absolutely for every s= o-\-it with o > o0. It is well known that in 

this situation convergence is uniform on every set {s = a + it\o > a0+ 8,8 >0}. 

Theorem 5.30. Let H= {s?C|Res> a0}. The sequence (f(n)($)} con? 

verges to f (s) uniformly on compact subsets of H. 

Proof. Let KcHbe compact. Fix ? >0. Let m be a positive integer such 

that 

2 IV'I- 2 VRe*<f i > m i > m ? (5.31) 

for all seK. 

For every n, since X/n) >\, we have 

i(V) i=(vrKes<vRes=i\ 
-Res=l\-*l 

Therefore 

(5.32) 

2 V 
i > m 

d(n) 

2 (V)"' <!?? (5.33) 

Also, since \n?*\ we can find n(e) such that for n > n(e), j?K 

2 Vs- 2 (K) 
i < m i < m 

(5.34) 

By (5.33) and (5.34) 

i?(*)-r"(*)i<? 

provided n > n(c), 5 GK. This proves the theorem. 

As remarked in the introduction, we conjecture that the results of this 

section hold for all dimensions q 
= 0,1,2,...,N. The proofs for q 

= 0 do not 

apply to higher dimensions since the eigenvalues are critical points of the form 

(df,df)-\-(8f,8f) and we do not know how well 8n approximates 8. 
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Added in proof. V. K. Patodi has recently proved the convergence of 

eigenvalues for all q 
= 0,1,2,..., N. 

G. Strang informed us that the techniques used in this paper are very 

closely related to finite element method of solving partial differential equations 

numerically. 
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