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DECOMPOSITION THEOREMS FOR S(n)-COMPLEXES

BY ALBRECHT DoLD*
(Received December 7, 1960)

I. The purpose of this note is to give unified proofs for several known
(or partially known) decomposition theorems for chain-complexes on which
the symmetric group S(n) operates. The method is elementary (although
abelian categories occur), with transfer homomorphism playing an essen-
tial role.

S(n) denotes the group of permutations of the integers 1,2,--+, n. For
k < n, we identify S(k) with the subgroup of S(n) whose elements leave
n—k+1,n—k+2,---,nfixed. The first theorem concerns the homol-
ogy groups of S(n):

THEOREM 1. (Nakaoka [4]). If G is an abelian group on which S(n)
operates trivially then the homology homomorphism

Cnkoxcs H*(S(k)r G) - H*(S(n)r G) ’

induced by the inclusion ¢, ,: S(k) C S(n), is a monomorphism and its
image s a direct summand. In other words, ¢, ., has a left inverse.
Dually the cohomology homomorphism

t*, it H*(S(n), G) — H*(S(k), G)

has a right inverse.
Nakaoka’s proof is geometric (and rather complicated); it uses proper-
ties of — - and ~ - products in symmetric products of spheres.

THEOREM 2 (Steenrod [6, 22]). Let Y be a semi-simplicial complezx,
and SP*Y its n-fold symmetric product (= orbit complex of Y under
the action of S(n)). Then the chain map

i,4t C(SP*Y)— C(SP"Y) , E=n

induced by the inclusion SP*YCSP"Y (using a base point) has a left
wnverse (CY denotes the chain complex of Y).

Our argument here is essentially a conceptual version of Nakaoka’s
proof for Proposition 2.6 in [3]. There is, of course, no simpler proof than
Steenrod’s own in [6, 22].

Dually to Theorem 2 we have

THEOREM 3. Let ', Y C C(Y™) be the chains of the n'™ cartesian power
which are invariant under permutations of factors in Y". Then the
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DECOMPOSITION THEOREMS 9

following composite chain map has a right inverse
T, Y- C(Y")$™ -1,Y, k=Z=n;

the middle term consists of chains in Y™ which are invariant under
permutation of the first k factors; the first map is the inclusion, the sec-
ond is induced by the projection Y" — Y* (first k factors).

The following theorem is still of the same nature though slightly more
difficult to prove.

THEOREM 4. Let Y be a semi-simplicial complex, we H*™(Y, Z) an
even-dimensional integral cohomology class such that {u, z) =1 for
some homology class z € H,,(Y, Z). Then the following composite homo-
morphism has a right inverse

H/(SP"Y, G) - H((SP*'Y) x Y, G) > H,_,(SP*Y, G) ,

where t 1s the transfer homomorphism (see (4) and the proof of Theorem
2), and [u is the slant product (see [5]) with u.
Dually, the composite

H(SP*Y, G) == H*m((SP*'Y)x Y, G) —*> H*+™(SP"Y, G)

has a left inverse (xu = cross-product with u).

In the case where Y = S’ = 2m-sphere, and % is a generator of
H*(S*™,Z) this result is contained in [4] (in a different formulation; see [4],
5.5); in fact, Nakaoka uses it to prove Theorem 1.

The proof of Theorem 4 will only be sketched in this note.

Theorem 4 can be generalized to coefficient rings A other than Z (and
G a A-module). In case A has characteristic 2 we do not have to require
that u be even-dimensional (only of dimension > 1).

II. Two lemmas precede the proofs. In order to avoid repetition in
dualizing, we formulate and prove them in an arbitrary abelian category
A (see A. Grothendieck, T6hoku Math. J., 9 (1957), 119-221).

Let A be an object in 2, and 7 a group. We say « operates on A on the
left (resp. on the right) if a map ¢: # — Hom (A4, A) is given which satis-
fies

(1) #Q1) = id,, P(xy) = P(x)-P(y) resp. P(xy)= P(y)- P(x), for x, y e 7.
We put

(2) A" =N, ker(id, — @(x)), A, = AU, im (id, — ¢(x)), if these ob-
jects exist. Recall that N, ker(y,: A— B,)is equivalent toker(yr: A—]] B,
if the direct product I:[VBy exists (Y being the morphism with com-
ponents ). In particular, A" always exists if 7 is finite. A, is just the
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dual of A~ (i.e., apply the definition of A" to the dual category 2A*); so it
exists for finite 7, too.
If p c 7 is a subgroup, we have natural morphisms

(3) " A" — AP resp. i, A,— A

obtained from id(A) by passing to sub-objects resp. quotients (see [1, XII,
8]).

If the index m = [x: o] is finite, we also have transfer morphisms
(4) t™f: A° — A" resp. t, . A, — A, ,

defined as follows: Let x,, «,,+- -, «,, € = be representative elements of the
right resp. left cosets of p in 7 (which we assume to operate on the right).
Then ¢ resp. i, . is obtained from 3 " @(x;): A— A by passing to sub-
objects resp. quotients. Clearly

(5) tPiP" = meid(A7), Tpotp. = Mmid(A,) .
Finally, if 7 is a finite group we have the norm morphism

(6) N(n): A, — A7 (see [1, XII. 1)),
induced by }__..2(x): A— A, and commutative diagrams

4,55 4, as & g
(M N®| N N@] [N

AT —— Ar A, —A,,

P tr,p

dual to each other.

LEMMA 1. Let A be an object in U on which S(n) operates on the right,
and let 0 < k < m. Then, in the diagram

AS(k) X8 (n—k—1) X1

i/ AN
VA AN
(8) AH(k)xS(n—k) —— Aginy — Astn-nx1

ilII lt/l

AS(k—l) X1X8(n—k) Aﬂ(k—l)xﬂ(n—lc)xl

&

the middle row is the sum of the top row and the bottom row, i.e., ti =
,':Itl + ,I:Ilg*tll.

The dual lemma is obtained by reversing the arrows, lifting the in-
dices, and replacing “‘right’ by “‘left’”’.
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The notation in (8) is as follows: S(k — 1) x 1 x S(n — k) is the sub-
group of S(»n) which leaves(1,2, -+, k — 1), (k), (k+1, -+, n) fixed (as a
whole, not pointwise); similarly for the other groups which appear as in-
dices. The symbol S(0) should be deleted where it occurs (e.g., S(0) x S(r)=
S(r)). Fort,4,4" and ¢, t',t"” see (3) and (4); we dropped the indices. The
morphism &, (actually an isomorphism) is induced by ®(£) where & € S(n)
is the permutation (£(1),---, &én))=@1,2, «-+, k—1,n, k, k+1,---, n—1).

PRrRoOF. For every (unordered) subset K (1,2,-+-,n — 1) of k ele-
ments pick a permutation v € S(n) such that (v<(1), Y=(2), «« -, vx(k))=K
and vg(n)=n. Then {vx} is a system of representatives of the left cosets
of S(k) x S(n — k — 1) x 1in S(n—1). Similarly, representatives of left
cosets of S(k — 1)xS(» — k)x1 in S(n — 1) are obtained by picking a
v; € S(n) such that (v;(1), 742), «+ -, vi(k — 1)) = L, vi(n) = n, for every
(unordered) subset Lc (1,2, +++,n — 1) of (k — 1) elements. As is easily
seen, the elements {vg} U {v;+&} then form a system of representatives of
left cosets of S(k) x S(n — k) in S(n)(recall that £(7) = ¢ for ¢ < k, &(k)=
n). The lemma follows, because the middle, top, and bottom rows of (8)
are induced (passage to quotients) by the following endomorphisms of A
respectively: 3 P(Vx) + 2, P(ViE), 2. P(Yx), and (P(€)e X, P(7y)) =
2. P(508).

The following lemma is implicitly contained in [4] (see proof of 5.5).
LeMMA 2. Let ‘

oo o1 a2
0 > B,

o7
>eee — B,

B,

be morphisms in . Assume there exists a system of morphisms

Tt By — By, E=sn=m
such that
(9) TemOn = Tponm1 mod im(s,) fork<n
and
(10) Tep = 1d .

Then the morphism
Tn: Bn g $2=0Bk/im (Gk)
with components

projection

B, —*" . B, B,/im(a,) = coker (a,)

18 an isomorphism, and o, has a left inverse, n = 0,1, «++, m.
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The dual lemma is obtained by reversing arrows and compositions,
lifting indices, and replacing coker (¢,) by ker (o) (e.g., (9) becomes
(o7t™* — T1*) | ker (¢*) = 0) .

PrOOF by induction on n. The case # = 0 is trivial.

Condition (9) implies commutativity in

Bn
O‘n/ \T;t
a AN
B, 57— @i=iBi[im(0,)

where T’ has the same components (for k < n) as 7,. Since T, is an
isomorphism by induction, we have (T,_,)'T"g, = id, i.e., g, has a left
inverse, and

B, = B,_,@coker(c,) = @;_,B./im(s,) .

Condition (10) guarantees that this isomorphism has the desired %™ com-
ponent, q.e.d.

III. PROOF oF THEOREM 1. If Wis a right S(n)-free acyclic complex over
the integers Z, then H,(S(n), G) = H(W QswG)(see [1]); more generally
H, (7, G)=H(W @.G) for every subgroup =  S(n) since W is also n-free.

Now let A = WG, and let S(n) operate on A by

W@z =wr@xg, weW,9eG,xeS(n).

Then WQ.G = A, for every subgroups = — S(n). Further, the homomor-
phism H, (0, G) > H,(x, G) induced by the inclusion of a subgroup, p C r,
corresponds to H(i,,): H(A,)—H(A,) (see (8)). Now consider the diagram

H(S()) &2 H(S(k) x S(n — & — 1) x 1)
| I o
1 Dk, n—k*
(12)  H(S(k))———H,(S(k) x S(n—k)) 2=t H,(S(n)) 2 H, (S(n—1))
. g7 /
I““ I“ VGA

H,(S(k — 1) ————H,(S(k — 1) x 1 x S(n — k))

Its right part (bold face arrows) is obtained from diagram (8) by passing
to homology. The maps in the left part are induced by natural homomor-
phisms between the corresponding permutation groups (injections and
projections). The left part is obviously commutative; therefore Lemma 1
shows

ni
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(13) Tinlay = Ty mod  im(3y,)
where
(14) Tk,n = pk.n—k*tn—k,n* .

Lemma 2 now applies and asserts that ¢,,, and hence ¢, ,x =%, Tu 15" * *Trs1x
has a left inverse. Moreover, it describes explicitly the resulting splitting

(15) H,(S(n)) = @i,H,(S(k))/im {H(S(k — 1)) — H(S(k))}

in terms of the 7, ,, i.e., transfers and projections S(k) x S(n — k)—S(k).
The cohomology part of Theorem 1 is strictly dual: We define A =
Hom,(W, G) and let S(n) operate by

(@f)(w) = flwz) , feA we W,xeSn).

Then H*(z, G) = H(A") for every subgroup = S(n); the cohomology ho-
momorphism induced by an inclusion, pC 7, corresponds to H(i*"): H(A")—
H(A?). We look at the dual diagram (12) (arrows and compositions reversed,
indices lifted), and deduce from the dual Lemma 1 that

(16) @~*tvF — V)| ker (¢F*) = 0

where 7% is the composition

HX(S(k) 2 H*(S(k) x S(n — k)) s H*(S(m)) .
Then the dual Lemma 2 applies and shows that i H *(S(n))—H*(S(n—1))
has a right inverse, q.e.d.

COROLLARY. If G is an abelian group on which S(n) operates trivial-
ly then the homomorphisms H, (S(n — 1), G) j_L’*_ H,.(S(n), G) (t,=trans-
fer, i,, induced by S(n — 1) < S(n)) have the z:'operty
(18) Tpslnye = Meid, €,,%,, = n-id .

In particular, i,, and t,, are isomorphisms if the order of every geG
1s finite and prime to n.

A dual result holds for cohomology.
Indeed, the first relation (18) follows from (5), the second from

in*(tn*in*) = ('Ln*tn*)@n* = n'in* = @n*(”ﬂ'ld) ,

because t,, is monomorphic.

PrROOF OF THEOREMS 2 AND 3. Let X = C'Y be the FD-complex (=chain
complex with face- and degeneracy-operators) of Y, and put A=C(Y*)=
X" = n™ cartesian power of X on which S(n) operates by permutation of
factors. Then
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C(SP"Y) = SP"X = Ay,
C(SP*Y x SP**Y) = SP*XXx SP"*X = Aguyxsn—p) , €tC.
(compare [2, 6.2]). Consider the diagram

SP*X «—— SP*XxSP**'Xx X «—— SP*XxSP"*'X
/ ¢ t
AR |
SP*X «— SP*X x SP**X ¢ SP*X « SP*'Xx X «— SP*'X
AN lt /

N . v

(19) NSP¥ X x Xx SP**X —— SP*'Xx SP**Xx X /'t
AN

I /
N\ /
SPX SP*X x SP**X

where all arrows without letters denote natural inclusions or projections
(using a base point in Y if necessary), and ¢ denotes the appropriate
transfer. The center part (bold face arrows) is again diagram (8), the
pasted-on pieces are commutative. It follows from Lemma 1 that

(20) Tiln = Tpp— mod im(3,) ,

where %,: SP*'X — SP"X is the inclusion, and 7, , the composite

21) SPx -t SPrXx SP™*X — SP*X .
Lemma 2 now produces a left inverse of ¢,, the corresponding splitting
(22) . SP*X = @:.,SP*X/SP*'X

being induced by the maps (21).

The proof of Theorem 3 is strictly dual: We use the same 4; then I', Y=
A", We take the dual diagram (19) (reverse arrows, replace SP*X=Ag,,
by A" etc.), get the dual of (20), and apply the dual Lemma 2.

ProOF oF THEOREM 4 (sketch). This proof requires a modified Lemma 1
as follows (notations as in Lemma 1).

LEMMA 1'. Let A be an object in U on which S(n) operates on the left.
Then in the diagram '

As(k) X8(n—k—1)X1

¢ /' \i’
/ AN
(23) Asiyxsm—iy — Asgm) — Agi-nx1

1t” Ii"
4

-
Astk—l)XIXS(n—k) — As(k—l)xS(n—k)xl
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the middle row is the sum of the top row and the bottom row. i.e., ti =
,iltl + il’g*t”.

One can verify Lemma 1’ similarly to Lemma 1. Another argument
which shows the connection to Lemma 1 runs as follows: The norm mor-
phisms (6) give a map of (23) into the dual diagram (8) (because the dia-
grams (7) are commutative). In the special case where A = Z[S(n)] =
group ring of S(n) over the integers, the norm morphisms are isomor-
phisms, hence Lemma 1 and Lemma 1’ are equivalent. Now, an arbitrary
object A e on which S(n) operates can be interpreted as an additive
functor ®: Z[S(n)] — U; (Z[S(n)] is a subcategory of the category of abe-
lian groups; it has a single object, and its morphisms are the left multi-
plications of the group ring). This functor extends to objects of the form
Z[S(n)], where =  S(n). In particular, (23) is obtained from the corre-
sponding diagram for Z[S(n)] by applying ®; therefore Lemma 1’ is true
in general.

The proof of Theorem 4 is similar to the one for Theorem 2. We look
at the diagram (H = homology with coefficients in G)

(24) :

HSP*X — %, H(SP*X x SP**1X x X) > H(SP*X x SP**-X)
¢ AN

“ I N |

X

HSP*X % H(SP*X x SP**X)—HSP*X - H(SP*'X x X) I HSP*X
N ¢ /
N . /
G\ H(SP*X x X x SP* = HSP*'X x SP**Xx X)

AN : /

\ & %
HSP*'X a H(SP*'X x SP**X)

where arrows without letters are natural projections, ¢t denotes transfers, -
/u is the slant product with % and x is the cross product with a divided
power Y.(z) € H,,(SP"X, Z) or with 7,(2) x 2 € Hypisn(SP™X x X, Z).
These operations 7, have been defined by J.C. Moore (unpublished) in the
generality needed here; they will be explained and used elsewhere. A
characterization of them is formulated below without proof.

The central part of (24) (bold face arrows) is (23) after applying H. The
pasted-on pieces are commutative: For the upper left piece this is (25);
for the other pieces, one uses standard properties of ¢ and the slant- and
cross-product. Since

(@ X Vi—ns(2) X 2)[th = (@ X Voo a(2)) <y 2> = A X Vpota(?)
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for a € HSP*X, the first line in (24) equals x 7,_;_,(2). Therefore Lemma 1’
shows

(o"t™* — t=1¥) | ker(a*) = 0
where
o = (Ju)t: HSP"X — HSP*X
and 7"* is the composite
HSP*X =, H(SP*X x SP**X)—— HSP"X .

The dual Lemma 2 then proves the homology part of Theorem 4.

A characterization of v,. For every n>0 there exists a unique se-
quence of natural transformations

Vet H:M(Xy Z) - H?n'r(SPrX? Z) y r = 19 27' .
in the category of all FD-complexes X, such that
(25) 7o=1id, YYn() = 7.()x2

for ze H,,(X, Z) and t = transfer: H(SP™'Y,Z) — H(SP"X x X, Z).
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