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PARTITIONS OF UNITY IN THE THEORY OF FIBRATIONS
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The following properties of continuous maps play an important role in
‘most problems involving fibrations:

(A) The section extension property (SEP). A map p: E— B has the
SEP if every partial section over A C B which can be extended to a halo
around A has a global extension (2.2, 3.1).

(B) The covering homotopy property (CHP), which says that homotopies
in B can be lifted to E with given initial position (4.2, 4.1).

(C) The weak covering homotopy property (WCHP), which holds if homo-
topies can be lifted with an initial position which is vertically homotopie
to a given position (5.13, 5.1).

(D) The property of being a fibre homotopy equivalence. Given p: E
— B, p’: E' — B (“spaces over B”) a map f: E — E' is called “map over
B” if p’f = p. A homotopy equivalence in the category of maps over B
is called fibre homotopy equivalence (1.3).

Roughly speaking, we show that each of these properties P is a local
property with respect to B. More precisely, P holds provided it holds
over every set of a numerable covering {V,} e, of B. Numerable means
there exists a locally finite partition of unity z,: B— [0, 1], ¥ € T, such
that the covering {7;(0, 1]} refines {V,}.

Case (A), then, generalizes a result of Godement [7, Ch. II, 3.3, 3.4], and
implies (see 2.8) that a locally trivial map p: E— B into a paracompact
B admits a section provided

(i) p~%(b) is contractible for every be B; or

(ii) p~'(b) is (n — 1)-connected, and B is locally a cw-complex of di-
mension <n (compare Steenrod [15, 12.2 and App. 3 of its 2" ed.] for
more comments see 2.9). Case (B) recovers the results of Hurewicz [10]
and Huebsch [9]. Special cases of (C) were found by Fadell [5] and Fuchs
[6]. The proof for the simplest case, (A), is carried out in §2; the other
cases are reduced to (A) in the succeeding §§ 3-5.

Sections 6-9 contain applications to fibre homotopy equivalence and
bundle classification (in particular 6.1, 6.3, 6.4, 7.5, 8.1, 9.1). For a
summary of the results, we refer the reader to the introductions of these
sections.

* This work has been partially supported by the Office of Naval Research under con-
tract NONR. 266 (57).
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1. Spaces over B

Let B be a topological space. We consider categories whose objects are
continuous maps into B. This section gives only the basic definitions

pertaining to these categories and some elementary results (without
proofs).

1.1. A continuous map p: E— B is called a space over B (espace
découpé in Godement [7, II, 1.1]). If p: E— B, p’: E'— B are spaces over
B then a continuous map f: E— E’ is called a map over B if p'f = p.
Under ordinary composition the maps over B form a category C,;. The:
category C, has a privileged object, namely id;, the identity map of B.
Every space over B admits a unique map over B into id;, namely p.

1.2. For every topological space Y define a space over Bby E = Bx Y,

p(b, ¥y) = b. A space over B is called trivial if it is equivalent (in ;) to
a space of this form.

1.3. A homotopy ©: E x I — E'’ is called a homotopy over B or vertical.
homotopy if

©:E—E, 0/ =06, ¢t)

is a map over B for every te I = [0,1]. Two maps f,, fi: E— E’ are
vertically homotopic, fy =~ 5 fi, if there exists a vertical homotopy ® with.
®, = fo, ®, = fi. We write @: f, =~ f, (read: © is a vertical homotopy
from f, into f,). =~ is an equivalence relation between maps over B’
which is compatible with composition. By identifying equivalent maps,.
we get a new category C, whose objects are those of C, and whose mor-
phisms are vertical homotopy classes of maps over B.

We say p: E — B is dominated by p’: E' — B (or p’ dominates p) if
there exist maps f: E— E’, g: E' — FE over B such that gf ~;id, (i.e.,
p is a “retract” of p’ in the category C,).

A map f: E— E’ over B whose class in C, is an equivalence (i.e., has
left and right inverses) is called a fibre homotopy equivalence. Further-
more, p: E— B is called fibre-homotopically trivial if p is fibre homotopy
equivalent to a trivial space B x Y — B.

1.4. If p: E— Bisaspaceover Band h: X — E a continuous map then
ph: X — Bis a space over B, and h becomes a map over B. It makes
sense, therefore, to say that two maps h, h,: X — E with ph, = ph, are
vertically homotopie, h, ~; h,, ete.

1.5. The following properties of p: E — B are clearly equivalent:
(a) p is a fibre homotopy equivalence (viewed as map over B into id;),
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(b) p is dominated by idj,

(c) there exists a map s: B— E such that ps = id; (a section) and a
vertical homotopy ®: sp ~;id,.

If one of (a), (b), (c) holds, p is called shrinkable.

For example, if £ = B’ denotes the space of all paths w: I — B with
the compact-open topology, and p(w) = w(0), then p is shrinkable: Put
s(b)(t) =b, O(w, T)t)=w(tT), t, T I, be B, we B’. A fibre-homotopically
~ trivial space over B is shrinkable if and only if Y is contractible.

1.6. If p: E— B isa space over B, and «: A — B a continuous map,
‘we define the tnduced space p,: £, — B, = A by

E, = {(e,a)e E x A|ple) = a(a)}, Pafe, @) = a .

‘The space E, is determined up to homeomorphism by the following
(“pull-back”-) property: There exists a natural (with respect to X)
bijection between continuous maps B: X — K, and pairs 5;: X — A4, 5,: X
— F such that aB, = pB,. In our particular construction this is given
by B, = DB, B, = AB, where d(e, a) = e.

If a: A — B is the inclusion of a subset A C B, we write p,: E, — A
for the induced space; it can be identified with p | p~(4): p~(4) — A.

If f: E— E'is a map over B the induced map f,: E, — E. (resp. f,
if A C B)is defined by f.(¢, @) = (f(e), a). Induced spaces and maps then
form a covariant functor C,: C; — C,. It preserves vertical homotopies,
and therefore induces a functor C,: Cy — C,.

1.7. If Pis a property of continuous maps then we say that p: £ — B
resp. f: E— E' has the property P over A C B if p, (resp. f,) has the
property P. In this sense we use, for example, “p is trivial over A”, “f
is a fibre homotopy equivalence over A”, etc. We say f has the property

P locally if every b e B has a neighborhood V such that f has the prop-
erty P over V.

2. The section extension property (SEP)

We show that a space over B which satisfies a certain local extension
condition for sections, has the corresponding global extension property
(2.7). This contains the known fact that a locally trivial map with con-
tractible fibre (or n-connected fibre and locally triangulable base of di-
mension <7 + 1) admits a section (2.8).

2.1. DEFINITIONS. A halo around A C B is a subset V of B such that
there exists a continuous function 7: B—[0,1] with A < z7'(1), CVc77Y(0).
For example, every V C B is a halo around the empty set @ (take = = 0);
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if B is normal and A closed, then every neighborhood of A is a halo. If
7: B— [0, 1] is continuous then V = 77%(0, 1] is a halo around z7'[¢, 1}
for every ¢ > 0 (take the function Min(1, (1/¢)7)).

A (not necessarily open) covering {V,}.ex, of B is called numerable* if
it admits a refinement by a locally finite partition of unity, i.e., if there
exists a locally finite partition of unity {z,: B — [0, 1]},er (a numeration
of {V,}) such that every set 77%0, 1] is contained in some V,. For ex-
ample, paracompact (resp. normal) spaces are characterized by the fact.
that every open covering (resp. every locally finite open covering) is
numerable (Bourbaki, § 4, nos. 83-4). If {V,} is numerable and a: X — B
continuous, then {&¢~*(V,)} is numerable (by {7,a}).

2.2. DEFINITION. A space p: F — B over B has the SgP if the following-
holds. For every A — B and every section s over A which admits an
extension to a halo V around A, there exists an extension S over B, i.e.,.
a section S: B— E with S|4 = s.

In particular, p then always has a section: take A = @ = V.

2.3. PROPOSITION. If p: E — B is dominated by p': E' — B (1.3), and.
P’ has the SEP, then p has the SEP. In particular, every shrinkable
space has the SEP (since it is dominated by id;; see 1.5).

PRrOOF. (i) Since p’ dominates p, we have maps f: E— E', g: E' > E
over B and a vertical homotopy ©: gf ~;id, (®, = gf, ©, = id).

(ii) Take a section s over A which admits an extension to a halo V; let.
7: B— [0, 1] be a haloing function, and denote the extension of s by the
same letter, so s: V— E. We have to find a section S: B— E with S| A
= s| A. ’

Because p’ has the SEP, there exists a section S’: B— E' with
S"| 774, 1] = fs|77'[4, 1]. Then define S by
oS'(t) for (%) = 4
B(s(d), 27(b) — 1) for 7(b) = % .

2.4. PROPOSITION. Let p: E— B be a space over B, and r. B’ — B a
retraction (i.e. there exists ¢: B— B’ with r¢ = id, so B C B’). If the
wnduced space p,: E. — B' has the SEP then p has the SEP.

ProOF. Let A C V, s, 7asin 2.3 (ii). Define A’ = r=(4), V' =r~(V),
7/ = 7r. The map o = sr, together with the inclusion map V' — B’,

defines a section s’: V' — E, (see pull-back characterization in 1.6) with
s'| V=s. By assumption, there exists a section S’: B’ — E, with S’'|A’'=5¢'.

S(b) =

* or mormal as is customary in the literature. These coverings were used by Michael
and by Hurewicz for problems which are related to ours.
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Then S = 8’| B is the required extension of s.

2.5. EXAMPLE. If p: E— B is dominated by a trivial space B x Y with
7Y = 0 for i < n (m, = 0 means Y is arcwise connected), and if B is a
retract of a CW-complex of dimension <n then p has the SEP, n < .

PROOF. By 2.3 we can assume E = B x Y, and by 2.4 that B is itself a
Cw-complex of dimension <n. Let A C V,s,7 be asin 2.3 (ii). Composing
s with the projection B x Y — Y, we get a map o: V — Y with s(b) =
(b, 0(b)), and we have to find 3: B — Y with 5| A = 0| A. Let B’ denote
the i-skeleton of B, and 7%= B* U t'[(¢ + 1)/(s + 2),1], ¢ =0, 1, ---;
clearly A C v7(1) T for all ©. By induction on ¢ we construet 3¢ T —

Y such that

3BT =3B and S|A=o0|A.

The first equation then shows that 3 = lim (¢) for i — o is well-defined
and continuous, the second gives S| A = 0| 4.

To start the induction, define 3° to be ¢ on 77[3, 1] and let =° have
arbitrary values on the remaining vertices of B. Assume then S has
already been found, ¢ > 0. Pick an i-cell ¢i, and let ® = ®i: A — B be
its characteristic map (A? = standard i-simplex). For large N the N-fold
barycentric subdivision of A’ contains a subcomplex K with

(z‘(ID)‘l[ z jrf L 1] cCKc (r(b)‘l[ ; :L -, 1]

(make N so large that every simplex which meets (t®)~[(i + 1)/(i + 2), 1]
lies in (z®)7'(4/(% + 1), 1]). Now the map 5'® is defined on K because
®(K) C v'[4/(i + 1), 1], and it is defined on the boundary A’ of A’ because
®(AY) © B hence Si'® is defined on the subcomplex K U Af of A‘,
Since 7,(Y) = 0 for 12 < ¢ this map can be extended by the usual skeleton-
after-skeleton construction to Zi: A* — Y. Do this for all i-cells ¢ and
define

() for ¢ e Bt | r—l[ i I ; , 1] SBUA,

i(x) =
(D)) for x c e .
This is easily checked to be well-defined. It is continuous on closed i-cells,

hence on B®. It is also continuous on the closed set [(i + 1)/(i + 2), 1],
hence on the union T = B* U t7[(z + 1)/(3 + 2),1], q.e.d.

2.6. PROPOSITION. If p: E — B has the SEP, and if W B is an open
set such that W = p7(0, 1] for some continuous function p: B — [0, 1],
then py: Ey, — W (see 1.6) has the SEP.
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ProOF. Given a function 7: W—[0, 1] and a section s of p over 77%(0,1],
we have to find a section S over W which agrees with s on 77'(1). The
difference from the usual situation (2.3, (ii)) is, of course, that 7 is not
defined over all of B.

We first choose continuous functions g, \,: [0, 1] — [0, 1] such that

=1 forwél—l—
n n
pa(x) = {= —2 fore=1— 1
n-+ 2 - n+1
<1t forall ze[0, 1],
n

M(®) =1/(n + 1) for 2 <1 — 1/n, and & < ©\ (%) < g,(x) for all  and

somee >0;n=1,2, ---. This can clearly be done.
We then inductively construct sections S,: B— E, n = 2,3, -+- such
that

(@) Snii(b) = S,(b) for p(d) > 1/m,

(B) S.) =s() for {z(d) > 1 — 1/n and p(b) > 1/(n + 1)}.

The condition () then shows that S = lim (S,) (for n — o) is a well-
defined section over W = {be B|p(b) > 0}, and (8) implies that S(b) =
s(b) for 7(b) = 1.

Note that the function 7’ = 7-p is defined on all of B (7’ = 0 on CW),
and s(b) is defined for 7/(b) > 0. Because p has the SEP, we can therefore
find a section S,: B — E which agrees with s on 7/7'[%, 1], in particular
on {be B|7(b) > % and p(b) > %}. This starts the induction.

To get from m to n + 1, define a section s,., over V,,, = {be W|
©(b) > \,7(b)} by

S, (b) for p(b) > — jr 1
8n+1(b) -

s(b) for (b)) > 1 — =
n

(one of the two inequalities always holds in V,.,, by definition of X\,, and
if both hold, then S, = s by condition (3)).

V.+1 is a halo around A4,,, = {be W|p(b) > 1,7(b)} (a haloing function
is 1 for beA,,,, 0 for beCV,,, and [0(b) — \,7(b)]/[££.T(b) — \,7(b)]
otherwise). Therefore (by the SEP for p) there exists a section S,,, over
B with S,1,| Asty = S| Aui. We check (a), (8):

If p(b) >1/n, then p(b) > (£,7(b), sobe A, and S, +1(b) = 8,41(b) = S.(0).

If 7(d) >1—1/(n + 1) and o(b) > 1/(n + 2), then po(b) > ¢,7(b), so
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beA,,,and S, ,(b) = s,..(b) = s(b), q.e.d.

2.7. SECTION EXTENSION THEOREM. Let p: E — B be a space over B. If
there exists a numerable covering {V,}rer of B such that p has the SEP
over each V, (see 1.7), then p has the SEP.

2.8. COROLLARY. Let p: E — B be a space over B, A C B, and s a sec-
tion over A which admits an extension to a halo V around A. Assume
there exists a numerable covering {Vi}rer of B — A such that

(@) py, is shrinkable for each \ (i.e., fibre homotopy equivalent to a
trivial space V, x Y with contractible Y; see 1.5 and 3.1 for equivalent
conditions), or

(B) pv, is dominated by a trivial space V, x Y, with 7.(Y,) = 0 for
1 < n,, and V, is a retract of a CW-complex of dimension =n,, n, = .
Then there exists a section S: B— E with S| A = s.

If S, 8’ are two sections of p with S|V =S"|V, then S=;8'
rel A, provided that, in case (8), we have w,(Y,) = 0 for 1 < n, + 1.

2.9. REMARKS. An example of a p: E — B which is not locally trivial
but to which 2.8 applies is as follows: E = {(z, y) eR’||y| = |z}, B =
R, p(z,y) = z. Clearly p is shrinkable to the central section y = 0.

In Steenrod [15,12.2 (see also App. 1 of its 2**ed.], and Fadell [5, 3.9, 5.3])
which corresponds to the locally trivial case of 2.8«, the fibreY is assumed
to be solid which implies contractibility (provided Y x I is normal).
An example of a contractible space which is not solid is the cone over
a converging sequence of circles as indicated in the figure.

On the other hand Steenrod [15, 12.2] does not assume an extension s’
of s to a neighborhood of A. Under suitable local conditions on Bor Y, s’
will always exist; we shall not pursue this question because in most
applications the construction of s’ is obvious.

PRrROOF OF 2.8. (a) (resp. (B)) implies by 2.3 (resp. 2.5) that p has the

Fig. 1
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SEP over each V,; therefore, by Theorem 2.7, also over B’ = B — A =
U.V,. Hence we can find a section S’: B’ — E'with S’| A’ = s| A’ where
A’ = B' N 774, 1] and 7: B— [0, 1] is a function for the halo V around
A (s can be assumed to be defined over V). Then define S: B — E by
S(b) = s(b) for z(b) > %, S(b) = S’(b) for 7(b) < 1.

The second statement, S =, S’ rel A, reduces to the first by taking
the induced space p, = p X I: E x I - B x I (where a: B x I — Bis the
projection), and starting with the section § over

V=Bx[0,)UBx (311U Vx[0,1]

which is given by S x [0, ), S’ x (4, 1], S x [0,1]. Then § is defined
over 7710, 1] where

#: B x [0, 1] — [0, 1], #(b, t) = Min (c(b) + |2t — 1], 1) .

Therefore a section S: B x I — E x I exists with S|4 = 3|4, and 4 =
B x {0} U Bx {1} U A x [0,1]. The composite

BxI—ExI—E
is then the required vertical homotopy rel 4, q.e.d.

ProOF oF 2.7. By 2.6 we can assume that {V,} itself (not only a.
refinement) is given by a locally finite partition of unity {z,: B — [0, 1]},
i.e., Vy=m0,1]. Take AcC V,s: V— E,7: B—[0,1] as in 2.3 (ii);
we have to find a section S: B — E with S| A = s| A.

Letth = (1 — o)\, wo =7, A’ = A U {0}. Then {}},c. is a locally finite
partition of unity, and p has the SEP over every 7, '(0, 1] with A # 0.
From now on we write 7, instead of ), and A instead of A’.

For every I' C A put 7, = S,era: B— [0, 1]. Consider all pairs (I", Sr):
where 0eT'c A, and S::7:%(0,1] — E is a section with S;|77'(1) =
s|t7'(1); e.g., I' = {0}, S; = s. Define a partial ordering =< as follows:
T, Sy = (1, Sr) if and only if ' IV and Sr(b) = Sp.(b) for m(b) =
(b)) > 0,be B (i.e., Si(b) # Sp.(b) = m.(b) # 0 for some eIV —T).

If 3 = {(I', Sro)} is a strictly ordered system of such pairs, put I' =
U.e=I'?; we want to construct S; such that (T, S;) = (I'?, Sro) for allo € 2.
Let be %0, 1]. It has a neighborhood W which intersects only finitely
many of the sets 7;%(0, 1], v e I, say those with index v,, 7, -, 7,. Pick
ee3s such that v, ---,7,eI*. Then, if 0 = p, all functions =, with
pel” —I* vanish on W, hence Sio| W= S| W, and we define
Sr: 710,11 — E by Sy| W = Sie| W. Suppose now Sp(b) # Sre/(b) for
some ¢’ €3 and be m:%(0, 1], and pick o as above. Then Sy(b) = S»(b),
hence S;o(b) # Si#(b), hence p > ¢’ and 7.(b) # 0 for some pecI*—I C
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I"—T7. This proves (I, S;) = (I'",S;+) for all 0’ € =.
We now apply Zorn’s lemma and obtain a maximal (T, S;). We claim
I" = A; since 7;%(0, 1] = B, this will finish the proof. Suppose T' = A;
then pick £e A — T, and put IV = I" U {¢}. Define @: 7740, 1] — [0, 1] by
o(b) — 1 if 7,(b) < 7(b) (hence 7 (b) > 0)
)/ () if 7.(b) = me(b) (hence mu(b) > 0) .
Then @(b) > 0 = m(b) > 0, so that S; is defined on »7'(0, 1]. Since p
has the SEP over 7.(0, 1], there exists a section S,: 7;(0, 1] — E with
S, (1) N 7:%(0,1] = S¢|¢7'(1) N 720, 1]. Now define
Sr(b) if 7,(b) = 7r(b)
S,.(b) if 7,(b) = m.(b) .
This is compatible at 7, = 7., because there ¢ = 1.
If Se(b) # S:(b) for some be w:%(0, 1], then ®@(b) < 1, hence 7.(b) >

m(b) = 0. This shows (I, S;) > (', S;), and contradicts the maximality
of (I, Sp), q.e.d.

Sp/: ﬁFll(O, 1] — K y Sr/(b) =

3. Hereditary SEP and fibre homotopy equivalence

The sEP is not preserved under taking induced spaces; we show,
in fact, that such a hereditary SEP characterizes shrinkable spaces
(3. 1a, d). Together with Theorem 2.7 (and an auxiliary construction 3.4)
this implies that a map over B which is locally a fibre homotopy equiv-
alence is globally so (3.3).

3.1. PROPOSITION. The following properties of p: E— B are equivalent.

(a) Ewvery induced space p, has the SEP (in particular p = D).

(b) Given F: X — B, a halo V around AcC X, and f: V— E with
pf = F| V (a partial lift of F'), there exists F: X — E with F'|A = f| A,
and pF = F (a lift of F).

(e) Given F: X - B, Ac X, f: A— E with pf = F|A, there exists a
lift F: X — E of F with F|A =, f.

(d) p: E— B is shrinkable (i.e., p is a fibre homotopy equivalence).

(e) p is fibre homotopy equivalent to a trivial space B x Y — B with
contractible Y.

(f) p is dominated by a trivial space B x Y — B with contractible Y.

PROOF. (a) and (b) are equivalent because lifts of F correspond to
sections in the induced space p; (see 1.6); also (d) — (e) — (f) obvi-
ously (1.5).

(d) = (c): By assumption there exists a section S: B — Eand a vertical
homotopy ® between ®, = id, and ®, = Sp. Now defined F = SF, and
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use O(f(x), t) as vertical homotopy between f and F'| A.

(c) = (b): Given F, A V, f, as in (b), and assuming (c), there exists
a lift F': X — E of F and a vertical homotopy D: F’| V =, f. Choose
7: X—[0,1] witht|A =1, 7|CV = 0, and define

F'(2) for 7(x) < &
D(x, 2(z) — 1) for 7(z) = % .
(b) = (d): By assumption a lift always exists. In particular, id, lifts

to a section S: B— E (take A = @ = V). Define F: E x [0,1] — B,
F,t)=p), A=Ex{Q}UEx {1}, V=Ex[0,3) U Ex (4 1],

F(x) = {

x for t <
Sp(x) for ¢t >

Then Vis a halo around A, and a lift F of F with F|A = f| A (which
exists by assumption) will be a vertical homotopy id, ~; Sp. Hence p is
shrinkable.

3.2. COROLLARY. If p: E— B s shrinkable over each set V, of a
numerable covering {V,} of B, then p is shrinkable.

Proor. Let a: X — B; we have to show that the induced space
P.: E, — X has the sEP (3.1, (a) = (d)). Now, {&~'(V,)} is a numerable
covering of X, and p, is shrinkable over a~*(V,) (because p is over V,),
hence p, has the sEp over a~*(V),) (8.1, (d) == (a)), hence the result by
Theorem 2.7.

Roughly speaking, the corollary says that p is a fibre homotopy
equivalence provided this is locally the case. The following theorem
asserts the same for arbitrary maps over B.

3.3. THEOREM. Let f: E' — E be a map over B. If f is a fibre homo-
topy equivalence over each set V, of a mumerable covering {V,} of B,
then f is a fibre homotopy equivalence.

More generally, if (under the same assumptions on f) a partial homo-
topy tmverse fy:p (V) — p V) of f, and a wvertical homotopy
D,:id(p™(V)) =, fvfv are given over a halo V around AC B, then
S 1, D4 can be extended over all of B.

It is remarkable that one can not, in addition to f 3, D,, prescribe
D’;: id(p'"(A)) = . f if 4, as the following example shows. Let B = [0, 1],
E=Bx S'= E’' (S8 = circle), f =id, A = {0} U {1}. Prescribing f; =
id, D(0, z, t) = D'(0, 2, t) = (0, 2), D(1, 2, t) = (1, e***z), D'(1, 2, t) = (1, 2)
then leads to an unsolvable extension problem.

FV=E, fn-|

[S I T
.

Proor oF 3.3. Let E’ denote the space of all paths in E (with the com-



PARTITIONS OF UNITY 233

pact-open topology), and define
R ={(y,w)e E' x E"|p'(y) = pw(I) and w(l) = f(¥)},

i.e., a point (y, w) € R is a pair consisting of a point ¥ € E’ and a path w
completely contained in »~*(p'(y)) and ending in f(y). Make it a space
over E by

q:R—)Ey q(y,’w)=’w(0).
We show below

3.4. LEMMA. If f is a fibre homotopy equivalence, then q: R — K is
shrinkable.

Applying 3.4 to f),, the part of f over V,, we see that in our case g is
shrinkable over p~'(V,) for all ), so by 3.2, ¢ itself is shrinkable, hence
has the sep. Now, a section S: E— R is a pair, S = (f’, ), where
f': E— E’ is amap over B, and ©: E x I— E, 0(z,t)=0(z)(t), is a vertical
homotopy id,; =~ ff’'. Because of the SEP, we can choose S such that f’,
® agree over A with the given f7, D,. It remains to be shown that
S'f ~=5idg.

The homotopy ff’ ~;id, implies that, over V,, the map f’ is fibre
homotopy inverse to f; in particular, it is a fibre homotopy equivalence
there. We can then apply our argument to f’ instead of f, and find
f": E' — E with f'f"” ~;id,, hence

I = (FOSS) =GNV =" =5idp q.ed.

PRrROOF OF LEMMA 3.4. Let f': E— E’ be a fibre homotopy inverse of
f, and @:id, ~5 f'f, ¥:id; =, ff’ vertical homotopies. For fixed tel
(resp. ¥y € E’) the homotopy @ defines a map @,: E' — E’ (resp. a path
@,. I — E'); similarly +,: B — E (resp. 4,: I — E for ze E).

If w, w'" are paths with w(1) = w'(0), and 7 € I, we denote by

w-w’, the product path;

.w (resp. “w), the path .w(t) = w(t7) (resp. “w(t) = w(l — v + t7));

w~, the inverse path, w=(t) = w(l — t); and

¢, any constant path.

In particular, ,w = w ='w, ;w = ¢, 'w = ¢.

We now construct a vertical homotopy D:id; ~, 0q, where 0: E— R

is the section given by d(2) = (f'(z), v.). Consider first

wR— E', wY, w) = Py f W™ Aoy ff w-foy w7 .

Then u(y, w) is a vertical path from y to f'w(0), and we can define a
vertical deformation of id, first into the map (¥, w) — (¥, w-¢) (in an
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obvious way), and then by

iy, w), 7} = [uly, w)(2), w-f(-uly, w))], tel,
into
K:R— R, Ky, w) = [f'w(0), w-fu(y, w)] .
Now
w-fuly, w) = (W-fP,-ff W) -ff Voo S (ff W fp, - w7)
=V ff "V wo [V = 0 ff (Yo V")
with v = w-fp,-ff'w-. We define a vertical deformation of K first into
y, w) — [f'w(0), v-c-ff' (Yo -v7)-c]
(in an obvious way), and then by
d'{(y, w), 7} = [F'w0), v+ .(Vui0)* Vie: (Vv * V) Vronio)]
into
K':R— R, K'(y,w) = [f"w(0), v-v¥ui Vwo V" Vuol
= [f"w(0), (v-9¥ %) (V¥ uw) Vunl -

Finally, an obvious homotopy will deform K’ into
@, w) -— [f'w(0), ¥ ] = oq(y, w) , q.ed.
4. The covering homotopy property (CHP)

A space over B has the cHP if every continuous family of paths in B
whose initial points have been lifted can be lifted completely (4.2).
Hurewicz and Huebsch proved that (under mild restrictions) p: £ — B
has the CcHP if this is locally the case. We obtain the same results here
as a consequence of the section extension theorem 2.7; our procedure is
similar to Hurewicz’s.

4.1. DEFINITION. Let p: E— B be a space over Band H: X x I — B a
homotopy. We say p has the cHP for H if the following holds.

Given h: X — E with ph(x) = H(x, 0), given further 7: X — I and
H': 77(0,1] x I— E with pH'(, t) = H(z, t), H'(z, 0) = h(x), x € 770, 1],
te I, there exists H: X x I — E with

pH = H, H|z7'Q)=H'|t'(1), H(z, 0) = h(x), relX.

We also use an analogous terminology if I is replaced by an arbitrary
interval [a, b], a < b.

We say p has the cHP for X if it has the cHP for all homotopies H
with range X x I. If it has the cHP for all spaces, then we say it has
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the cHP.

The cHP for an individual H should be considered as an auxiliary notion,
more important is the CHP for spaces or classes of spaces. In this case
we have the following familiar characterization.

4.2. PROPOSITION. p: E — B has the CHP for X if and only if for
every G: X x I — B and g: X — E with pg(x) = G(z, 0), there exists G:
X x I— E with pG = G and G(x, 0) = g(x).

This means: It suffices to have covering homotopies in case 7 = 0.
Note that G is not fixed now.

PrOOF. Given H, h, 7, H' as in 4.1; we have to construct H. Replacing
7 by Max (0, 27(x) — 1), if necessary, we see that we can assume that
H'(z, t) is defined and continuous for all (z, t) with ¢ < (2) (not only for
7(x) > 0). Put

G:XxI—B, G, t)= H(z, Min (1, 7(z) + 1)),
0: X— K, g(x) = H'(z, 7(2)) .
By assumption there isa G: X x I — E with pG = G and G(z, 0) = 9(x).
‘Then
H'(z, t) for’t < ()
G(z, t — 7(z)) for’t = (x)

is a map as required, q.e.d.

H(x, t) =

4.3. PROPOSITION. If p: E — B has the CHP for X, then also every in-
duced space p,: E, — B, (where a: B, — B; see 1.6).

PRrROOF. Given G: X x I — B,, g: X — E, as in 4.2, we have to con-
struet G. Now aG is a homotopy which can be lifted to E with initial
position ag (see 1.6 for @). If G': X x I — E is such a lifting, then the
pair G = (G, G’) gives the required map.

4.4. EXAMPLE. FEvery trivial space B x Y — B has the CHP.
ProoOF. Given G, g as in 4.2, define G by G(z, t) = (G(z, t), g(x)), q.e.d.

We now proceed to localize the cHP. For every H: X x I — B, h:
X —E with ph(z) = H(z, 0), we define a space q: R— X over X as follows

R ={(», w)e X x E"| h(z) = w(0) and pw(t) = H(x, t)}, qz, w) =2z .

A covering homotopy H gives a section S for ¢ by S(z) = (x, H,) where
H,(t) = H(z, t). In fact, it is obvious from the definitions 2.2, 4.1 that:

4.5. LEMMA. p has the CHP for H if and only if q = q, has the SEP



236 ALBRECHT DOLD

for all h: X — E with ph(z) = H(zx, 0).

We can therefore apply 2.7; in order to get a more applicable result
(4.7) we show first

4.6. LEMMA. Leta < b < ¢ be real numbers and H: X x [a, ¢c] - B. If
p has the CHP for H| X x [a, b] and H| X x [b, c], then for H itself.

ProOF. Let H, h, 7, H' be as in 4.1 with I replaced by [a, c]; we have
to construct H. Starting with H, = H| X x [a, b], h, = h, 7, = Min (b, 7),
H} = H'|t(a, ¢] X [a, b] we first find H;: X x [a, b] — E with

H,|77[b, ] % [a, b] = Hi|t7'[b, c] X [a, ] .

Then from H,= H|X x [b, c], h(x) = H(z, b), 7, = Max (b, 7), H} =
H'|t7'(b,c] x [b,c], we get H,; X x|[b,¢c]— E, and finally H as
H|X % [a,b] =H, H X x [b, ¢c] = H,, q.e.d.

4.7. THEOREM. Let p: E — B be a space over B, and H: X x - Ba
homotopy. If there exists a numerable covering {Vihea of X, and for
every N € A real numbers 0 =t} < t} < --- <t} = 1 such that p has the
CHP for H| V, x [t}, t}..] (for all \, ?) then p has the cHP for H.

PROOF. Lemma 4.6 shows that p has the cup for H | V, x I and all .
Then ¢: R — X has the SEP over each V, (4.5), hence ¢ itself has the
SEP (2.7), and again, by 4.5, p has the cHP for H, q.e.d.

4.8. THEOREM. If p: E— B has the CHP over every set V, (e.g., if p
is trivial over V,; see 4.4) of (a) @ numberable covering resp. (b) an open
covering {V,}ies of B, then p has the CHP for (a) all spaces X resp. (b)
all paracompact spaces X.

Proor. Let H: X x I — B be a homotopy; we have to show that p has
the cHP for H.

(a) We can assume that {V,} is given by a locally finite partition of
unity, say {m,: B—[0, 1]}, so V, = 730, 1], e A. For every r-tuple
Ay Ngyc vty A € A, define

77)\1.-.)\,‘: X—_’ [0, 1] ,
Tyen, @) = JT;_, Min {ﬂxif_](x, )|t e[ v ; L _'b_]} .

r

This is easily verified to be continuous. Furthermore, Trpean(X) # 0
if and only if H(x x [( — 1)/r, i/r]) © Vy, for all <. If we can show
that {WM“'M = 73,0, 1]} is a numerable covering of X, then the
result follows from 4.7 (because p has the cuP for all H| Wy...,, X
[GG — D/r, ifr]).

Every (x, t) € X x I has a neighborhood which is contained in one of
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the sets H'(V,) and which meets only a finite number of these sets. By
compactness of I, it follows that for every z ¢ X there exists a neighbor-
hood U and a natural number 7 such that

(@) Ux (@~ 1)/r,ir]c HX(V,) for some v;e A (s =1, -+-, ), and

(8) U x I meets only finitely many H-Y(V,).

Property (a) shows that { W, ..., } is indeed a covering of X, and (8) im-
plies that for fixzed r the family {7treeen,} is locally finite. If we let r
vary, too, the system is no longer locally finite, but a suitable refinement
is, as we shall see.

Let q, denote the sum of all functions Tyy-eer, With © < 7, and define
Theeen(®) = Max (0, 7, ..., (¥) — rq.(x)). Let x e X, and pick the minimal
k such that =, ..., (x) # 0 for some (A, -+ ;). Then ¢.(x) = 0, hence
Ty eor®) = T peeen, (€) # 0, which shows that the sets z's...,.(0, 1] still
cover X. Further, if we choose N > k such that Ty,-eer,(®) > 1/N then
gx(x) > 1/N, hence Ngy(y) > 1 for all ¥ in a neighborhood of . In this
neighborhood all 7}, .., with m = N vanish, which shows that the system
Tt,.., 18 locally finite. It clearly refines {Wi,...r,}. Tomake it a partition
of unity, simply divide each #’ by the sum of all these functions.

(b) Asabove the compactness of I yields for every # € X a neighborhood
U = U, and a natural number » = r, such that every U x [(¢ — 1)/r, i/7],
t=1, -+, r, is contained in some H-'(V,). Because X is paracompact,
the covering {U,}.cx is numerable, and 4.7 applies, q.e.d.

We can modify Theorem 4.8 by restricting the assumption and con-
clusion to certain classes of spaces, e.g.,

4.9. THEOREM. If p: E — B has the local CHP for cw-complexes of
dimension =m, then p has the (global) CHP for all paracompact spaces
X which are locally cw-complexes of dimension =m (or retracts of
such; see 2.4).

The proof is as in case 4.8 (b). The theorem is strengthened by a result
of James-Whitehead [11, 5] according to which the cHP for simplices of
dimension <m implies the CHP for cw-complexes of dimension <m.

4.10. REMARK. A homotopy H: X x I — B is called stationary at  for
telt,t,] if Hx x [t, t,]) = H(z, t,). If we require all covering homo-
topies H of H to be stationary with H (compare Steenrod [15, 11.7]), we
get a variation of the CHP which we denote by cHPS. All results and
proofs above remain valid if we replace CHP by cHPS throughout, and
q: R— X by qs = q| Rs: Ry — X where

Ry = {(x, w) e X x E'| h(z) = w(0), pw(t) = H(x, t), and
H(x x [t, t]) = H(=, t,) = wlt,, t.] = w(t,)} .
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A similar remark applies to regular covering homotopies in the sense
of Hurewicz [10, 3].

5. The weak covering homotopy property (WCHP)

Given p: E — B, a homotopy H: X x I — B, and a lifting #: X — E of
the initial position of H, the wcHP for p requires that H can be covered
by a homotopy H: X x I — E whose initial position is vertically homo-
topic to 2 (5.13). This notion is particularly adequate in questions deal-
ing with fibre homotopy equivalence (see § 6); it is invariant under fibre
homotopy equivalence whereas the ordinary CHP is not (see 5.2 and the
counter-example after 5.3). The usual conclusions from the cHP (exact
homotopy sequence, spectral sequence) can already be drawn from the
WCHP. The main results of this section (5.11, 5.12) show that the WCcHP
is essentially a local property, quite as the cap. The ideas of the proof
are the same as in §4, but the details are more complicated.

The WCHP was already considered by Fuchs who proved the assertion
of Theorem 5.12 for compact X if p is locally dominated by trivial spaces.
The same result was found by Fadell [5, 5.1] for a somewhat weaker
wcHP. A further weakening of this property came up in Dold-Thom
(“Relévement des homotopies homotopes”).

5.1. DEFINITION. Let p: E — B be a space over B, and H: X x [0, 1] —
B a homotopy. We say p has the wcHP for H if it has the ordinary cHP
for the following:

H Xx[-1,11—B, H@x|—1,0))=H(,0), H|Xx][0,1]=H.
Every map H: X x |—1, 1] — E with pH = H will be called a weak cov-
ering homotopy of H.

As in §4 we use the same terminology if [0, 1], [—1, 1] are replaced
by other intervals [b, ¢], [a, ¢] (@ < b < ¢).
We say p has the wcHP (for X) if it has the wcHP for all H (with

range X x I). Equivalently, p has the wcHP if and only if it has the cHP
for all homotopies H: X x I — B which are stationary in [0, 1/2].

5.2. PROPOSITION. If p: E— B is dominated (1.8) by p’: E' — B, and p'
has the WCHP for H, then the same holds for p.

5.3. COROLLARY. If p: E— B is dominated by a trivial space Bx Y —
B then p has the WCHP.

This follows from 4.4 and 5.2. An example which satisfies the wcup
but not the cHP is as follows. Let E = {(z, y)e R*|2y = 0}, B = R,
»(x, y) = x. The interval [0, 1] C B can not be lifted with initial position
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(0, —1), but p: E— B is shrinkable (to ¥ = 0), hence has the WcCHP
by 5.8.

PROOF OF 5.2. We are given H as in 5.1, h: X — E with A(zx) =
I{I(x, -1, : X—|-1,1], H:t7'(—1,1] x |—1, 1] — E with pH'(z, t) =
H(x, t), H'(x, —1)=h(x), and we have to construct H: X x[—1,1] - £
withpH = H, H| ') x|—1,1]=H'|7'"Q)x[—1,1], H(z, —1) = h(x) .

We first replace H' by H": t7(—1,1] x [—1, 1] — E,

H'(z, t) ift=0,
H"(w, t) = {H'(=, Tzi(ﬁ) if —(1+ @) =<2t=<0,
h(z) if2t < — (14 7'(@),

where 7'(x) = Max (0, z(x)). This H"” satisfies the same conditions as H’,
agrees with H’' where 7(x) = 1, but in addition H"(x,t) = h(x) for
t= — 3 + (@)

Now choose maps f: E— E', g: E' — E over B and a vertical homotopy
®:id, ~, gf. Because p’ has the wcHP for H, we can find a map
H: X x[—1, 1] — E' such that

pH=H, H|t0,1] x [—1,1] = fFH" |z[0,1] x |—1,1],
and H(z, t) = fH"(z, t) for t < —4 (we apply the WcHP for the new
interval [—4#, 1] and the function z”(x) = Min (1, 37(x) + 1) ). Then the
following is a map H as required

gH(, t) if 7(x) < 0and 2t = —1,
H(z, t) = {6(H"(z, t),1 — t(x)) if t(x) = 0 and 2t = —(1 + 7(#)),
A(h(x), 2t + 2) if 2t < —1land 2t < —(1 + 7(x)),

ie., if 2t < —(1+ 7'()) .
All verifications are left to the reader; the figure indicates where the
three pieces of H are defined.

¢

0.1

-11

=0 720

2tz —1 [2t= —(1+7)

-1, —%
. 2t -1

< —-1+7)
121 2t < —( -

Fig. 2
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The proof of the analogue of 4.6 (see 5.10) requires some preliminaries.

5.4. Define ¢:[—1, 2] x [0, 1] — [—1, 2] by

t, fort, <0
<t <1-—t
Dt 1) = 0 for0 =t¢, =1—¢,
2_£Lﬂ£_l fort, =1—1#,
t,+ 1

(., maps identically for ¢, = 1, and shrinks [0, 1] to a point for ¢, = 0),
and

P:[—1,2] x[—-1,1]—[—1, 2], P(t,, t,) = p(t, Max (0, t,)) .
Further, let

vi[—1,2]—[—1,2] x [—1,1], w(t) = (¢, Min(1, 2¢ + 1)) .
Clearly ¢+ = id .

Given

H: X x[-1,2] — B, H: X x[—1,2] — K,

G:Xx[-1,,2]x[-1,1]— B, G:Xx|[-1,2]x[-1,1]— FE,
define

H:Xx[-1,2|x[-1,1]— B,  H’(,t,t) = Hx, §(t, t.)) ,

He=H*| X x[-1,2] x [0, 1] ,

G¥: X x[-1,2]— B, G¥(z, t) = Gz, v(t)) ,

and similarly for H¢, H ?”, GV,
The following properties are obvious:

(5.6) PG =G — pG¥ =GV,
(5.7) Hev = H .

If [b, d] is an arbitrary interval, H: X x [b, d] — B a homotopy, and
b < ¢ < d, we denote by H*: X x [b, d] x [0, 1] — B the map which cor-
responds to H¢ above under the homeomorphism [b, d] ~ [—1, 2] which
takes [b, c] linearly onto [—1, 0], and [¢, d] linearly onto [0, 2].

5.8. LEMMA. Let b<c¢<d be real mumbers, H: X x [b,d] — B,
H: X x [b,¢]— E with pH(z,t) = H(w, t), v: X—[b,d], H': (b, d] x [b,d]
— E with pH'(z, t) = H(x, t) for 7(x) > b, and H(z, t) = H'(z, t) fort <
¢, T(x) > b. Assume p: E— B has the WcHP for H| X x [¢, d] and for
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H° (see remark after 5.7). Then there exists H: X x [b, d] — E with
pH = H, H(x,b) = H(z, b), H|t7'(d) x [b, d] = H'|t7(d) x [b, d].

Roughly speaking this means: If we already have a covering homotopy
for H| X x [b, c], then we can find one for H itself with the same initial
condition.

Proor. We can assume (b, ¢, d) = (—1, 0, 2). Because p has the WcHP
for H|X x [0, 2], there is an H": X x [—1,2] — E with pH"(z,t) =
H(», Max (0, t)), H"(x, —1) = lEI(ao, 0), H"(x,t) = H'(x, Max (0, t)) for
7(x) = 1. Because p has the wcHP for H®= H“, we can then find
G: X x[—1,2] x [—1, 1] — E with pG = H?,

Hi(z, t,) fort, <0
(5.9) Gz, t, — 1) ={H"(z, t, — 1) for0=t <1
H"(x, 2t, — 2) forl1 <t <2,

and G(w, t,, t,) = H™(x, t,,t,) for t(x) = 2. (Note that H'™(z, t, t,) is
defined, and H b (z, t;, — 1) equals the right side of 5.9 whenever 7(x) = 1;
also pH" (x, t,, t,) = H(z, t,, t,) by 5.5.)

Now let H= G¥. By 5.6, 5.7 we have pH = pG¥ = (H)* = H. On
7742) x [—1,2], we have G = H", hence H = G¥ = H'*v = H' there.
Finally H(z, —1) = G¥(z, —1) = G(z, —1, —1) = H(x, —1), which fin-
ishes the proof.

5.10. LEMMA (compare 4.6). Let H: X x [a, d] — B be a homotopy, and
a<b<c<d. If p: E—B has the WCHP for H| Xx[a, ¢], H| Xx[¢, d],
and (H| X x [b, d])° (see remark after 5.7), then p has the wcHP for H.

Proor. We can first find a weak covering homotopy H,;: X x [a — 1, ¢]
— E of H|X x [a, c] with given initial conditions on X x {a — 1} and
77[b, d] x [@ — 1, ¢]. By Lemma 5.8, we can then find H,: X x [b, d] —
E which covers H| X x [b, d], and which agrees with H, on X x {b} (note
that H, is defined on X x [a, ¢]) and with an initially given H’ on
77Y(d) x [b, d]. Therefore H,| X x [a, b] and H, fit together to yield the
required homotopy H: X x [a — 1,d] — E, q.e.d.

5.11. THEOREM (compare 4.7). Let p: E— B be a space over B, and
H: X x I— B a homotopy. If there exists a numerable covering {Vihrer
of X and for every N e A real numbers 0 =t} < > < +++ < ¢, = 1 such
that p has the WCHP for H| V, x [t} t},] and (H| Vy x [t} ,, t*.])' (see
remark after 5.7), all \, i, then p has the WCHP for H.

Proor. Iterated application of 5.10 shows Athat p has the wcHP for
each H| V, x I, i.e., (5.1), the cHP for each H|V, x [—1, 1], therefore
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the cup for H (4.5, 2.7), i.e., the wonp for H,  q.e.d.

5.12. THEOREM (compare 4.8). If p: £ — B has the WCHP over every
set V, (e.g., if p is dominated by a trivial space over each V,; see 5.3)
of (a) a numerable covering resp. (b) an open covering {Vilies of B,
then p has the WCHP for (a) all spaces X resp. (b) all paracompact
spaces X.

This follows from 5.11 as 4.8 does from 4.7: We construct a numerable
covering {W,} of X, and for every p# a number » = 7, such that
H(W, x [( — 1)/r, (¢ + 1)/r]) is contained in some V. Then the numbers
t; = i/r satisfy the conditions of 5.11.

We leave it to the reader to formulate the analogue of 4.9 (it is not
literally the same as 4.9 because homotopies H° have to be considered).
The following is an easy-to-remember characterization of the WCHP,
and corresponds to 4.2.

5.13. PROPOSITION. p: E — B has the WcHP (for all spaces, for all
paracompact spaces, for all cw-complexes, - - ) if and only if for every
G: X x I — B and g: X — E with pg(x) = G(z, 0) (X paracompact, X a
cw-complex, - - +) there exists G: X x [ — E with pG = G, and such that
Gy X — E, Gy(x) = G(=, 0), is vertically homotopic to g, G, =5 g.

ProoF. If p has the wceP, and G": X x [—1, 1] — E is a weak cover-
ing homotopy of G, then we take G = G'| X x [0, 1]; a vertical homotopy

9 ~5 G, is provided by G’ | X x [—1, 0].

Conversely, assume G always exists, and let ﬁ, h, 7, H' be the given
data (as in the proof of 5.2) for which a covering homotopy H has to be
constructed. As in the proof of 4.2, we can assume that H' is defined
and continuous for all (x, t) such that ¢ < 7(x) or 7(x) > —1. Put p(x) =
Max (0, 27(x)), and define H"(x, t) for all (x,t)e X x [—1, 1] with ¢ =
o(x) by

H'(z, t) ift=tx)orc(x)=0,

H'(x, t) = { H'(x, 7(x)) ifr(x)=t=0.

Now let

G:X x[-1,1]1— B, Gz, t) = H (v, Min(1, p(@) + 1)) ,
G:Xx[-1,00— E, G'(z,t) = H"(z, Min(1, p(z) + t)) .

Clearly pG'(x, t) = G(x, t).

By assumption we can find G: X x [—1, 1] — E with pG = G and G_,
~,G",. But because G’ is defined over X x [—1,0] (not just on
X x {—1}), we can even achieve G_, = G';; this follows as in Lemma 5.8
because we can apply our assumption not only to G but also to
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G X x [—1, 1] x [0, 1] — B (see remark after 5.7); the function = which
occurs in the proof of 5.8 is now = —1.

Taking this for granted (i.e., G(z, —1) = G'(x, —1) = H'(x, p(x) — 1)),
we can then define

H'(z, t) fort < p(x) — 1
G(z, t — p(x)) fort = p(x) — 1.
The relations pH = H and H(x, —1) = H'(z, —1) = h(x) follow easily.
Further, if 7(x) = 1, then o(z) = 2, hence ¢t < p() — 1, hence H(z, t) =
H'(z, t), q.e.d.

5.14. PROPOSITION. If p: E — B has the WCHP, then also every induced
space p,: E, — B, (where a: B, — B; see 1.6).
Same proof as for 4.3.

H(x,t) =

6. Weak covering homotopy property (WCHP) and
fibre homotopy equivalence

Under a weak local contractibility condition for B, we show that a
space over B has the wcHP if and only if it is locally fibre-homotopically
trivial (or locally dominated by trivial spaces, 6.4, 5.12). Further, if
p: E— B, p': E' — B are spaces over this B which have the wcHP, then
a map over B, f: E— E’, is a fibre homotopy equivalence provided

(a) f is an ordinary homotopy equivalence, or

(b) f: p7'() — p’ '(b) is a (ordinary) homotopy equivalence for each
be B (6.1, 6.3).

Special cases of (b) had already been proved by Dold [3, Satz 1], Fadell
(Duke Math. J., 26 (1954), 699--706), and Fuchs [6].

6.1. THEOREM. Let p: E — B, p': E' — B be spaces over B which have
the WCHP (e.g., if they are “locally” dominated by trivial spaces in the
sense of 5.12). Then a map f: E — E' over B is a fibre homotopy equiva-
lence if and only if it is an ordinary homotopy equivalence.

6.2. COROLLARY. If p: E— B has the WCHP, then p is shrinkable
(1.5, 8.1) if and only if p is a homotopy equivalence.

6.3. THEOREM. Let B be a topological space which admits a numerable
covering {Vilrex such that the inclusion map Vy— B 18 nulhomotopic
for every A (e.g., a cw-complex (6.7) or, more generally, a locally con-
tractible paracompact space, or a classifying space B (see last sentence
in the proof of 9.1)). Let p: E— B, p': E' — B be spaces over B which
have the WCHP (compare 6.4). Then a map f: E— E’ over B is a fibre
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homotopy equivalence if and only if the restriction of f to every fibre,
Jo: p7Y(b) — p'7'(b), be B, 1s a (ordinary) homotopy equivalence.

Examples show (Dold [3, p. 123]) that the assumption about B cannot
be omitted in 6.3. It is easy to see that this assumption is invariant
under homotopy equivalence (compare Fadell [5, 2]). It is also easy to see
that the last condition in 6.3 is fulfilled if f, is a homotopy equivalence
for one b in every arc component of B; in fact, this is all we use in our
proof.

6.4. THEOREM. Let B be a topological space which admits a numerable
covering {Vi}lrer such that the inclusion map V), — B is nulhomotopic
Sfor every N. Then p: E— B has the WCHP if and only if p is fibre
homotopy equivalent over each V, to a trivial space.

For a partial result in this direction see Fadell [5, 3.4].

PrOOF OF 6.1. Only the “if-part” has to be proved. Assume then
S: E— E’is a (ordinary) homotopy equivalence; let f’: E'— E be a homo-
topy inverse, and d: E’ x [0, 1] — E’ a homotopy between d, = ff’ and
d, = id,.. Because p has the wcHP, there exists a weak covering homo-
topy G: E’ x [—1,1] — Eof G = p'd with G(¢/, —1) = f'(¢'), ¢’ € E' (note
that pf’ = p'ff’ = p'd,). Define

flI: El N E, fll(el) — G(el, 1) .
Then pf"'(e") = G(e¢', 1) = p'd(e’, 1) = p'(¢), so f" is a map over B. Fur-
ther, we have the following homotopy between ff"” and id, :

o [fGe,1-1), o0sts2,
W B0, 8l —— B, e = qn 2<t<3

h is not a vertical homotopy, but it satisfies p'h(e’, t) = p'h(e’, 3 — t), and
we shall use this to deform % into a vertical homotopy.
Define H: E’ x [0, 3] x [0, 1] — B by

p'h(e, t) for t, < %(1 — 1) .
’ r 3 _ — ’ _3_
ph(e , —2—(1 t2)> ph(e 'S 1+ tz))

H(e , by tz) = 3 3
for 7(1 —t) =t < —2—(1 +t,),

p'hie, t) for ¢, = —Z’—(l + t,),

and choose a weak covering homotopy H: E’ x [0, 8] x [—1,1] — E’ of
H with H(e, t,, — 1) = h(¢’, t,). Then the following D: E’ x [0, 7] — E"
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is a vertical homotopy ff"" ~id,. (verifications are left to the reder):

(H(e', 0, t — 1) ift <2
D@, t)y = 1H( t —2,1) if2<t<5
H(, 3,6 — t) ift=5.

We can now apply the same argument to f” (which is right-inverse to
7, hence a homotopy equivalence), and find f"’: E— E’ with f”f"" ~;id,
hence

Ff = s (O = S = f " =pids
which proves the theorem.

In the proofs of 6.3, 6.4 we use the following

6.5. LEMMA. If p: E— B x [0, 1] has the WCHP, then there exists a
map R: E x [0,1] — E such that

(i) pR(e,t) = (n(e), 1),

(i) 7 =purony idp,
where n: E— B, p: E— [0, 1], r: E— E are defined by

ple) = (w(e), oe)) ,  7(e) = Rle, p(e)) , ec k.

ProoF. Define H: E x [0,1] x [0,1]— B x [0,1] by H(e, t,, t,) =
(m(e), (1 — t,)p(e) + tit,), and choose a weak covering homotopy
H:Ex [0,1] x [—1, 11— E of H with H(e, t,, —1)=e (note that H(e, t,, t.)
— p(e) for t, =0, and = (xn(e), t,) for ¢, =1). Then R(e, t) = H(e, 1, 1)
clearly satisfies (i), and (ii) follows from

r(e) = R(e’ to(e)) = H(e’ to(e)’ 1) = Bx[0.1] H(e’ P(e), —1) =€,

where the vertical homotgpy =~ s 18 achieved by H(e, po(e), 7) as T goes
from 1 to —1; note that H(e, o(e), ) = (m(e), p(e)) = ple), q.e.d.

6.6. COROLLARY. In the notation of 6.5, let p': E* — B be the part of
p: E— B x Iover B x {t} ~ B. Then the maps

W E'—> E', k') = R, 1),
h: E' — E°, h'(y) = R(y, 0)

are reciprocal fibre homotopy equivalences.

PrOOF. A'A°(y) = R(R(y, 0), 1) =~z R(R(y, 1), 1) = r(r(y)) =~ ¥y where the
first ~, is achieved by R(R(y,7),1), 0 <7 =< 1, the second by 6.5 (ii).
Similarly A°%h' ~,id follows, q.e.d.

PROOF OF 6.4. The “if-part” of 6.4 is contained in 5.12. Assume then
p has the wcHp, let a: V x [0, 1] — B be a contraction of V = V, (i.e.,
a, = inclusion, @, = constant), and let p,: E, — V x [0, 1] be the induced
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space (1.6). The part of p, over V x {0} ~ V agrees with p,: K, =
(V) — V because @, = inclusion, and the part over V x {1} is a trivial
space because «, is constant. Therefore p, is fibre homotopy equivalent
to a trivial space by 6.6, q.e.d.

PRrROOF OF 6.3. If fis a fibre homotopy equivalence then f, is a homo-
topy equivalence for every b e B; we have to show the converse. By 3.3
it is enough to show that f,: E, — EJ is a fibre homotopy equivalence
for every V= V,. Let a: V x [0, 1] — B be a contraction («, = inclu-
sion, &,(V) = be B), and let f,: E, — E’, the induced map over V x [0, 1]
(1.6). For every te[0, 1] we denote by f': E* — E’* the part of f, over
V x {t} ~ V. Then f° = f, because «, is the inclusion V c B. Using the
notation of 6.5, 6.6 (primes refer to p: E,, — V x [0, 1]) we have

fr(®@) = f®) =, r'for(x) = R'(f°R(z, 0), 0)
~, R'(f'R(z, 1), 0) = h"f'h'(x) ,

where the first ~, comes from 6.5 (ii), and the second is given by
R'(f*R(x,7),0), 0 <7 < 1. By 6.6, the maps 2", h' are fibre homotopy
equivalences, so that it suffices to show that f' is a fibre homotopy
equivalence. But a,(V)=0b, therefore E'= V x p~'(b), E" =V x p'~'(b),
and /" = id x f,. Because f, is a homotopy equivalence by assumption,
the assertion follows, q.e.d.

cw-complexes are paracompact (Miyazaki [14]) and locally contractible,
and therefore satisfy the assumptions of 6.3, 6.4. The following is a direct
(and rather simple) proof of this fact; part of it is due to D. Puppe.

6.7. PROPOSITION. If B 1is a connected Cw-complex, then there exists
a numerable covering {V.},1 =0, 1, - - - of B such that the inclusion map
V; — B is nulhomotopic for every «.

If B is not connected, we can argue for each component separately,
and again get {V,}, which now, of course, need not be countable.

Proor. Let B® denote the i-skeleton of B. If we remove from Bi*
the center of every (¢ + 1)-cell we get a set B+ which is open in B+,
and of which B'is a strong deformation retract. Let d*': B+ x [O 1]
— B' be such a deformation retraction, i.e.,

d}‘ﬂ =1id (B'i—}—l), d3‘+1(Bi+1) c B¢ , d«ti+1 I Bt =id (Bi)
for all t € [0, 1]. Define open sets VI of B+’ by induction on j as follows:
Vi=B'— B, Vitt = (d§t)y=(V9) ,J=0,1,.--

Then put V; = U7, Vi. We claim this is a covering as required.
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Since B — Bi'c V,, we have B* < Ui,V so {V.} is a covering.
We now show that V; S . Bis nulhomotopic, then that { V} is numerable.

By induction on j, we define deformations di: Vi x [0, j] — Vi, j=
1, 2, - -+ with the following properties

(a) di(x,t) = di(x,t) forxe Vit =k=7,

(b) di(x,t) =« forxe Vi EZt <7,
in particular, di(z, j) = x for all xe Vi,

(c) di(z,0)e V! forallwe Vi.

Namely
d = d | Vix[o,1],
it t — § t=g
dit\(x, f) = {Zz(d“‘(“‘(tx, Oi)t) f:’?):‘ t = ; .
Put
di Vix [0, o) — Vi, di| Vix[0,4] =di,
and

(d,-(w, tan (t)) ift <
D:V.x|0, 2| —V, Dy, t) = -
X[ 2] ’ M if t =

Nl:l m\:l

D, is continuous because the restrictions D;| Vi x [0, 7/2] are continuous,
and B has the weak topology. Further, D, deforms V; into Vi=
Bi — B, and B' — B!, in turn, can be deformed into a discrete set
(the set of centers of all i-cells). Because B is arcwise connected every
diserete set can be deformed into a single point. This shows that
V; = . Bis nulhomotopic.

In order to show that {V;} is numerable, choose a function v;: B' —
[0,1],7=0,1, - -, such that v;'(0, 1] = B" — Bi*and v;(c) = 1if and only
if ¢ is a center of an i-cell (i.e., v;'(1) = B® — B"; for example, we can
let v, increase linearly from 0 to 1 on each radius in each i-cell). By
induction on j define 7i: Bi*i — [0, 1],

Tdit (@) (1 — Veesal@)  for we Bt
0 for x ¢ Bititt

One easily verifies that ! is continuous, and 74 | B*** = x} for k < 7,
(79)~(0, 1] = Vi. We can therefore define a continuous function 7;: B—
[0, 1] by ;| Bi*/ = 7i, and have 7;'(0, 1] = V..

The family {r;} is not locally finite, but if we put

77:2 = 7«; ’ T[ngl(w) =
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mi(x) = Max [0, w(w)— i35, mu(®)]

then it follows as in the last part of the proof of 4.8 (a) that {r}} is
locally finite, | 770, 1] = B, and 7,740, 1] © V,. To get a partition of
unity, divide each 7} by 2T

7. Classification of numerable bundles

7.1. DEFINITION. A fibre bundle ¢ [15] is called numerable if B¢, the
base of ¢, admits a numerable covering {V,},c, such that ¢| V,, the part
of  over V,, is trivial for every \.

For example, ¢ is always numerable if B; is paracompact.

We use the section extension theorem 2.7 to prove a classification
theorem for numerable bundles which makes no assumptions on the base
space (7.5).

The class of numerable bundles has other agreeable properties: The
covering homotopy theorem holds without assumptions on the base (4.8 a,
7.8), as does the section extension theorem for bundles with contractible
fibre (2.8 ). If ¢ is numerable, then all bundles which are induced from
or associated with { are also numerable (this is obvious). If H is a sub-
group of G = G¢ (structure group of ¢), then every H-bundle which is
obtained from ¢ by reduction of the structure group is numerable pro-
vided the coset bundle G —G/H [15, § 7] is numerable (we omit the proof).

Let k;X be the set of equivalence classes of numerable (principal) G-
bundles with base X. If f: X — Y is a continuous map one defines
kof: ks Y — kX by taking induced bundles; thus k, becomes a contra-
variant functor from topological spaces to sets. If f,, f,: X— Y are homo-
topic maps then k,(f,) = kq(f)) (see 7.10). Therefore k, can be viewed as
a functor on the category 4 whose morphisms are homotopy classes of
continuous maps.

7.2. DEFINITION. If X, B are topological spaces let [X, B] denote the
set of homotopy classes of maps X — B. Keeping B fixed, this is a functor
from the category H to the category of sets.

Let G be a topological group. A space B is called classifying for G if
there exists a natural equivalence

T:[X, B] ~ kX,

Le., if B represents the functor ke (Grothendieck [8, A. 1]). The bundle
7 € kB, which under T corresponds to id, € [ B, B, is called the universal
G-bundle.

General properties of representable functors give the following:
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(7.8) T|f| = (ksf)(®), where f: X — B, and | ] denotes the homotopy
class.

(7.4) If T:|X, Bl ~k;X and T: |X, B'| ~ k,X are natural equiva-
lences, then there exist unique (up to homotopy) reciprocal homotopy

h

equivalences B =B’ with (k.h)(7') =7, (keh/)(1) = 7' (uniqueness of
h/

the classifying space and the universal bundle).

7.5. CLASSIFICATION THEOREM (compare Steenrod [15, § 19]). A numer-
able principal G-bundle 1 is universal if and only if E,, its bundle
space, is contractible.

PROOF. Assume E, is contractible. Let ¢ be an arbitrary principal G-
bundle, and define a new bundle (¢, 7) over X = B as follows. The fibre
(&, 1), of (£, 1) over x € X consists of all admissible maps (bundle maps)
of ¢, into ; clearly (¢, 7)), ~ E, (these maps are determined by the image
of one point). The local product structure in ¢ gives a local product
structure in (¢, ). In fact, (¢, 1) is the associated bundle of ¢ with fibre
E, on which G operates by (g, ¢) — eg?, ec E,, g€ G. In particular, (£, 7)
is numerable if ¢ is numerable.

A section s in (&, 7) over V < X associates, in a continuous fashion,
with every ve V a map s,: &, — 7, i.e., a section s over V is the same as
a bundle map | V— 7.

If E, is contractible and ¢ numerable then p¢.,: E¢, — X has the
section extension property (2.7, 2.8. @). In particular, (¢, 7) admits a
section, i.e., ¢ admits a bundle map & — 7. This shows T}, is surjective.

If f,, fi: X — B induce equivalent bundles ¢; = fi'(7) = T[fil, © =0,
1, let s;: &; — 7 be the induced bundle maps, and A: {,— ¢, an equivalence.
Define ¢ = &, x [0, 1] (this is a bundle over X x [0, 1]; cf. Steenrod 11.1),
and a partial bundle map of ¢,

s:¢| X x([0,3U35,1) —7,
54(2) fort < %
$,h(2) fort > 4,z¢ E,,

View s as a section of (¢, %) over X x ([0, 1) U (4, 1]). Since this set is a
halo around X x ({0} U {1}) (cf. 2.1; take 7(x, t) = |2t — 1), there exists
a global section S in (£, 1) which agrees with s over X x ({0} U {1}), i.e.,
there exists a bundle map S: £ — 7 which over X x ({0} U {1}) agrees with
s. On the base, we then have By: X x [0,1] = B; — B,, a homotopy
between f, and f,. Therefore T, is injective.

We now assume T, is bijective. As we shall see in §8 there exists a
numerable G-bundle ¢ with contractible bundle space E;. We just proved

s(z, t) =
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that T; is also bijective. Surjectivity of T; and T, yields bundle maps
N £, & v, 7, and injectivity of T, implies ByB, ~ id (B,). The cover-
ing homotopy theorem for bundle maps 7.8 then shows that ¥ is homo-
topic to a bundle map k: 7 — 7 with B, = id (B,); in particular, % is an
automorphism. But also » ~ ¥® ~ 0 (because E; ~ 0), hence E, ~ 0,
q.e.d.

7.6. REMARK. The first half of the proof of 7.5 shows: If 7 and X are
such that every numerable bundle over X and X x [0, 1] with fibre E,
has the SEP, then T,:[X, B,] — keX 1is bijective for this particular X.
This applies if 7,(E,) = 0 for ¢ < n, X is paracompact, and every point
of X has a neighborhood which is a retract of a cw-complex of dimension
=n (2.8 B); it leads to the notion of n-universality [15, § 19].

7.7. More generally than G-bundles, one can consider G-spaces, i.e.,
topological spaces £ on which G operates on the right, and G-maps. Call
a G-space free if it comes from a numerable principal G-bundle. Then
one has in analogy to Cartan-Eilenberg [2, V, 1.1]: If E is a free G-space
and E’ a contractible G-space, then there exists a G-map E — E’', and
any two such maps are G-homotopic. This contains the if-part of 7.5,
and is proved in the same way.

The following was used above:

7.8. COVERING HOMOTOPY THEOREM FOR BUNDLE MAPS (compare Steenrod
[15, 11.3]). Let ¢, 1) be numerable (principal) G-bundles, @: & —7 a bundle
map, and D: B; x |0, 1] — B, a deformation of B, (i.e., D(b, 0) = B,(b)).
Then there exists a bundle map ®:¢ x [0,1] — 9 such that B, = D
and ®(z,0) = @(z), z€ E;.

Proor. We note first

7.9. LEMMA. If p: E— X x I has the CHP, then every section s of p
over X x {0} has an extension over all of X x I.

Indeed, H = id,,, is a deformation of ps, and a homotopy H which
covers H and starts at s is a section as required.

The proof of 7.8 now follows from the covering homotopy theorem 4.8a
by a “functional-bundle” argument similar to that in the proof of 7.5:
Let &, 1 be (principal) G-bundles and f: B. — B, a map. Define a new
bundle (&, 7, f) over B, whose fibre over x € B, consists of all admissible
maps &, — 7). The local product structures in £ and 7 provide a local
product structure in (£,7,f), and if £, 7 are numerable, then also (&, 7, f).
A section of (&, 7,f) over VC B is a bundle map £| V—» which, on the
base, induces f| V.
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With the data of 7.8, we then put & = ¢ x |0, 1] and consider the bundle
(¢, 7, D). The map @ can be viewed as a section in (&, 7, D) over X x {0}.
By Lemma 7.9 this section extends over all of X x I, i.e., # extends to a
bundle map ® as required, q.e.d.

7.10. COROLLARY. If 1 is a numerable bundle and f,, f;: X — B, are
homotopic maps, then the induced bundles £7(n), f7(n) are equivalent.

PrOOF. Let @: f;'(y) — 1 be the induced bundle map. Since B, =
fo = f1, there exists by 7.8 a (homotopic) bundle map @": /() — 7 with
B, = f, hence f7'(9) ~ (%) (cf. Steenrod 10.3).

8. Existence of universal bundles (after Milnor [13])
From Milnor’s construction we conclude

8.1. THEOREM. There exists a functor 7, from topological groups to
universal principal bundles.

It is indeed clear from the construction that every continuous homo-
morphism v: G — H induces a map E,: E,— E, (we write Ej instead of E,,
ete.) with E(e-g) = E[(e)-7(9), e € E4, g € G; in this sense 7, is a functor.

We have to show that 7, is numerable and E, contractible (Milnor only
proves 7, (E,) = 0 for all 7).

Recall first (cf. Milnor) that one has “coordinates”

t;: E,—10,1], g;:t:'(0,1] - G, i=12,---.

For every ec E,, almost all ¢;(¢) are zero, and } 7  t,(e) = 1; otherwise
the coordinates can have arbitrary values. Two points e, ¢’ € E, are equal
if and only if all of their coordinates are equal. The topology in E; is
the coarsest topology for which all ¢;, g; are continuous, i.e., a map into
E, is continuous if and only if the composite with every coordinate is
continuous (where defined). This, of course, completely describes the
space E,. The operation of G on Ej, is given by t;(eg) = t;(e), gi(eg) =
g,(e)g (where defined). The projection onto the orbit space, i.e., the
bundle projection, is denoted by p,: E; — Bg.

Since t; is unchanged under the operation of G, it passes to the quotient
and defines t;: B; — [0, 1]. According to Milnor, the bundle 7, is trivial
over V; =t;%(0,1]. We now show that {V;} is a numerable covering,
hence 7, is a numerable bundle. Define

7;: By—[0,1], 7,(b) = Max [0, t,(6) — X, t(b)] -

For fixed b, € B, let k be the smallest integer such that ¢,(b,) + 0, and
choose N such that >V t,b) = 1. Then m,(b) = t.(b) # 0, hence
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U. 70, 1] = B,. \Further, if j >N, then 7;()=0 for all b with
(i, t)(d) > 4, so {m,} is locally finite. The sequence Tl My j=0,1, -
is then a locally finite partition of unity which refines {V,}.

In order to describe a contraction of E,, we introduce some notation.
Put

o E,—[0,1], o, = ngk t;,

E, = o03'(1), A, = 0:'2/38,1], U, =o0,0,1],

A = {ec Ey|g,(e) = ¢ = neutral element of G, for all j with ti(e) > 0}.
Define a deformation d’: U, x |0, 1] — U, by

(T + (1 —17)ae) ,
e ) =1 a9

1 — 7)t(e) forj > k,7t€]0, 1]

(note that 3 t,(d'(e, 7))=((r+ (1 —7)ou(e))/oW(e))0,(e) + (1 — T)(1 — 0,(e))
= 1), and g,(d'(e, 7)) = g(e) if t,(d'(e, 7)) > 0. We clearly have

(8.2) d'(e,0) = e, d'(e,1)e E, , ecA—=d'(e,7)c A .

forj <k

Next deform E, as follows
d" E, x[0,1] — E,,,,

(1 —17)te) forj <k
ti(d"(e, 7)) = forj=k+1
0 forj >k+1,
% _ [94(e) forj <k
ga(d (e’T))_L forj:k—}—l,

We have
8.3) d’(e,0) =e, d’(e,1)e A, ecA==d"(e,7)eA.

Combining d’ and d” we obtain a deformation (in fact a nulhomotopy
. . C
of the inclusion U, — U,.,)

d*: U, x [0, 1] — U,

(8.4) with
di(e,0)=¢e, dke, 1)e A, ecA—=d*e,T)eA.
Using {d*} we shall construct deformations
o*: U, x [0,1] — U, , k=12, ...
with

(8.5) P A x [0,1] = | Ay x [0, 1],
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(8.6) Ple,0) = e, e, 1)eA.,

Assume this is done. Then we can define @: E; x [0, 1] — E,; by
pl|A, x[0,1] = 9*| A, x [0, 1]. By 8.5, @ is well-defined, and since {A,}
is an open covering of E,;, ¢ is continuous. Further, @(e, 0)=e, @(¢, 1) € A,
so @ is a deformation of E, into A. But A is contractible (it is a simplex!)
as the deformation

(1 —17)te) + 7, j=1,
(1 — 7)itse) , J>1,
shows. This proves contractibility of E,, provided we can construct the

deformations o*,
Put ¢' = d'. If ¢* is already constructed define o*** as follows

v Ax[0,1]— A, tiv(e, 7) =

Pile, T) if 2 < 30,(e)
- @ (@M, 1), 27[2 — Bo.(e)]) if § <380,(e) =2
BD PO D) = pesiptle, 20Boe) — D] 7)) 1= 30,e) =
d*+*(e, T) if 3o,(e) = 1.

If 30,(¢) = 2, the second expression becomes d**'(p*(e, 7), 0) = P*(e, 7).
For 30,(¢) = 3 the second and third expressions both equal d**(®*(e, 7), 7).
For 30,(e) = 1, the third expression is d**'(¢*(e, 0), 7) = d**'(e, 7). Thus
¥ ig well-defined.

Assume ec A,. Then 30%(e) = 2, hence @**'(e, 7) = P (e, 7), i.e., P
satisfies 8.5. The relation ¢*(e, 0) = ¢ is clear; from the inductive hy-
pothesis 8.6 and from 8.4, one gets @**'(e, 1) € A, q.e.d.

8.8. REMARK. In order to show that a bundle ¢ is numerable if its base
B; is a cw-complex, it is not necessary to invoke Miyazaki’s theorem on
the paracompactness of B;. One simply constructs a bundle map & — 7,
in the usual skeleton-after-skeleton fashion; ¢ is then induced from 7,
and therefore numerable.

9. Application to associated bundles

A continuous homomorphism v: G — H between topological groups in-
duces a natural transformation k.,: k;— k5 (see § 7 for the definition of k)
by taking associated bundles (weakly associated in Steenrod [15, 9.1]).
Under the equivalence k,~ [—, B,] (7.5), this transformation corre-
sponds to composition with [B,] € [By, Bz]. As an application of 7.5 and
8.1 we show

9.1. THEOREM. A continuous homomorphism v:G— H induces an equiv-
alence k.: k,~ky if and only if v is an (ordinary) homotopy equivalence.
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9.2. REMARK. One should be careful not to conclude from this that
homomorphisms 7,, 7,: G — H which are homotopic as maps induce the
same transformation k,, k,. For example, if G = Z,, H = S0(2), and
v: G — H maps the generator into the antipodal map, then v is nulhomo-
topic (because SO(2) is arcwise connected) but %, is not trivial: the twofold
covering of the projective plane P,R goes into a nontrivial SO(2)-bundle
under k..

If v,, v, are homotopic as homomorphisms, i.e., if they are connected
by a continuous family of homomorphisms v,:G— H,0 <t <1, then
B,, is a homotopy from B, to B,, hence k, = k,. This result can be
expressed more generally by saying that B, (or 7,) is a continuous
Sfumnctor (i.e., takes continuous families of homomorphisms into continuous
families of maps).

ProOOF OF 9.1. The homomorphism v: G — H induces E,: E, — E, such
that E.(eg) = E/e)¥(g9), and E, in turn induces B,: B, — B, by passage
to quotients. We have to show that v is a homotopy equivalence if and
only if B, is a homotopy equivalence.

Let 9}, = B;* (7)) be the induced H-bundle over B,, and py: E; — By =
B, its bundle projection. Then B, is a homotopy equivalence if and
only if 7% is a universal H-bundle (from the definition of universal
bundles, §7), i.e., if and only if E} is contractible (7.5). Now FE, induces
E):. E; — FE,; with Ej(eg) = E,(e)¥(g9), and we have to show that v is a
homotopy equivalence if and only if £ is a homotopy equivalence (since
E, is contractible). This follows from 6.1 and 3.3 or 6.3:

If E) is a homotopy equivalence, then it is a fibre homotopy equivalence
by 6.1, hence a homotopy equivalence on each fibre. But the fibre of 7,
(resp. 1;) over b € B, can be identified with G (resp. H) and E;|p;'(b)
with ~.

Conversely, let v be a homotopy equivalence. Choose a section s of 7,
over V; = t;1(0, 1] (see proof of 8.1); then s’ = Ejs is a section of 1} over
V;. Using s, s’ one can identify pz'(V;) (resp. p’7'(V;)) with V; x G (resp.
V; x H) because we have principal bundles; Steenrod [15, 8.3] and
E}| p;%(V;) with id x v, which is clearly a fibre homotopy equivalence.
Therefore E) is itself a fibre homotopy equivalence by 3.3, in particular a
homotopy equivalence. We could also apply 6.3 because V; is contractible
in B, (it lifts to Ej,, and Ej is contractible).

UNIVERSITAT ZURICH
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