
Annals of Mathematics

Homology of Symmetric Products and Other Functors of Complexes
Author(s): Albrecht Dold
Source: The Annals of Mathematics, Second Series, Vol. 68, No. 1 (Jul., 1958), pp. 54-80
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1970043 .
Accessed: 01/02/2011 15:12

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=annals. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of
Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/1970043?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=annals


ANNALS OF MATHErDMATrCS3 

Vol. 68, No. 1, July, 1958 
Printed in Japan 

HOMOLOGY OF SYMMETRIC PRODUCTS AND 
OTHER FUNCTORS OF COMPLEXES 

By ALBRECHT DOLD 

(Received May 22, 1957) 

Introduction 

A main objective of this paper is to prove that the homology groups of 
symmetric products (or more generally r-products; Definition 7.1) of a 
polyhedron (a CW-complex) Y are determined by the homology groups 
of Y (Theorem 7.2). This is done in the algebraic frame work of FD- 
modules as defined by Eilenberg-MacLane [4]. 

We begin with a comparison between FD-modules and chain-modules; 
we show that these notions are equivalent. More precisely, there is a 
functor V (Definition 1.2) from FD-modules to chain-modules and a 
functor M (Definition 1.8) the other way such that the composite functors 
JSi and SUW are naturally equivalent to the respective identity functors 
(Theorem 1.9). These functors preserve homotopy, i.e., the relations of 
FD-homotopy (Definition 2.1) and chain-homotopy are transformed into 
each other under the functors V resp. St (Theorem 2.6). As consequenc- 
es, we obtain for free FD-modules K, K' (over a principal ideal domain) 
that every homomorphism of homology modules can be realized by an 
FD-map K -+ K' (Proposition 3.5), and that K, K' are of the same homo- 
topy type if and only if they have isomorphic homology modules (Theo- 
rem 3.4). 

Then we ask for which functors T from FD-modules to FD-modules 
the homology of T(K) is determined by the homology of K. From ? 1-3 
we easily see (Proposition 4.2) that T has this property, if it preserves 
homotopy (Definition 4.1). A large class of homotopy preserving func- 
tors T is obtained by prolongation (Definition 5.1 and 5.1') of functors de- 
fined on modules (Theorem 5.6). For these T we show that Hq(T(K))= 
Hq(T(K')) if K, K' are free FD-modules (over a principal ideal domain) 
with H(K) - H(K') for i < q (Theorem 5.11). 

Examples are given in ? 6, including symmetric products (r-products) 
of FD-modules (6.2). Using the geometric realization of semi-simplicial 
complexes [9] we translate these examples into geometry (? 7; also 
?? 10 - 11), and obtain the result stated in the beginning of this intro- 
duction (Theorem 7.2; also 7.6). 

54 
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There is an appendix (?? 8-11) which is independent (except for the 
notation) of the preceding paragraphs. We describe a splitting property 
of symmetric products (r-products) of direct sums of FD-modules (8.7, 
8.8), and thereby obtain the splitting formula of Steenrod for symmetric 
products of FD-modules with base point (9.3, 10.3). Finally we discuss 
infinite symmetric products (? 10) resp. reduced products (? 11) of FD- 
modules with base point and their relation to symmetric algebras resp. 
tensor algebras of (FD-) modules. 

I wish to thank J. C. Moore and D. M. Kan for very helpful sugges- 
tions which led to generalizations of the results as well as simplifications 
of the proofs. Some of the methods of proof in ? 1 are implicitly con- 
tained in seminar notes of J. C. Moore [11]. The main results of ?? 1-2 
were obtained by D. M. Kan before the author found them. 

1. Equivalence between chain-modules and FD-modules 

Let A be a commutative ring with unit; by a module we always mean 
a unitary module over A. 

(1.1). DEFINITION [4]. An FD-module is a sequence of modules Kq, 
q = 0, 1, - - - together with face-operators &i: Kq Kqil and degeneracy- 
operators s,: K, -*Kq+I for i = 0, 1, - - - . The &i and si are module-homo- 
morphisms and satisfy the FD-identities 

9i = 0, si = 0 for i > q (the trivial operators) 
ajaj = aj-181 i < j 
SiSi = 5j+15i i < i 

&tsi = sj-18j < j 
aisi = 8+,si, = identity i < q (= 0 for i > q) 
i'tsj = siai-l i > j + 1. 

Let K, K' be FD-modules. An FD-map F: K -- K' is a sequence of 
module homomorphisms Fq: Kq - K' such that 

&iFq = Fq l1j, s:Fq = Fq+lSi for all i and q. 
FD-modules arise naturally in the theory of (complete) semi-simplicial 

complexes [3]. The module of q-chains K(X, A)q of such a complex X 
(with coefficients in A) is freely generated by the q-simplices of X. 
Therefore the face- and degeneracy-operators in X extend in a unique 
way to homomorphisms &i: K(X, A)q K(X, A)q-1, si: K(X, A)q 
K(X, A)q+l, thus turning the sequence K(X, A)q into an FD-module 
K(X, A), the FD-module of X. 

There are several chain-modules associated with an FD-module K. 
One is obtained by introducing the boundary homomorphism a = 
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0 - 8 + &@..* in K, another one is the normalized chain-module of K as 
defined by Eilenberg-MacLane in [4]. The following definition is due 
to J. C. Moore [11]; we shall see (1.12) that, up to an isomorphism, it 
leads to the normalized chain-module. 

(1.2). DEFINITION. Let K be an FD-module'. Define 

W(K)q= n J<qker (8i: Kq Kq 1), q = 0, 1, 

It follows from ijq = &q-18&i i < q, that 
q(8J(K)q) c VJ(K)q1 

and 
&q-1&q I VJ(K)q = 0; 

i. e., the modules VJ(K)q together with the homomorphisms a = iJq I VJ(K)q 
form a chain-module. We denote it by VJt(K) and call it the normal chain- 
module of K. 

Every FD-map F: K -+ K' defines by restriction a chain-map 
VZ(F) : <Z(K) <- V(K') . 

It is clear that V is an additive functor from FD-modules to chain- 
modules. (Additive means: 9T(F + F') = VJ(F) + JZ(F')). 

We want to prove that the FD-module K is entirely determined by its 
normal chain-module i<(K). More generally we shall exhibit a functor St 
from chain-modules to FD-modules which is " inverse " to the functor 91 
(Theorem 1.9). The following considerations are to prepare and motivate 
the definition of SM. 

Let K(q) be the FD-module of the standard q-simplex, i.e., K(q)r is 
freely generated by the (r + 1)-tuples (a, a, --,. a) of integers such that 
0 < ao < a, < *- - < a, < q (" the r-simplices "), and 

Qt(ao, a, --ar) =(ao, a, la,+,, *--ar) 
s(ao, a1, *-- ar) = (a0, -a- , a,, a, aj+1, *-- a) 

We denote by A,. the basic element (0, 1, *-- q) e K(q)q, and by N(q) the 
normal chain-module of K(q). 

If K is an FD-module and a e Kq there is a unique FD-map F: K(q) K 
such that F(jq) = a [4, 3]; i. e., if we associate with every F: K(q) K 
its value F(ZAq) e Kq we obtain an isomorphism 
(1.3) Kq FD-Hom(K(q), K). 
In order to describe what happens to faces and degeneracies under these 
isomorphisms define FD-maps 

: K(qn-e1) lK(q), m: K(q + .) K(q) 
1ker = kernel, im = image. 
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by 
(1.4) 6 Aq-1 = izaq 
(1.5) fiAq+1 = SjAq 

Then the isomorphisms (1.3) transform i, into composition with ei, 77i. 
Assume now there is an inverse functor to 91. This would imply 

(cf. 1.23) that for every two FD-modules K, K' we have 

(1.6) St: FD-Hom(K, K') Chain-Hom(WP(K),V)Z(K')) 

Combining (1.3) and (1.6) gives 

(1.7) Kq -Chain-Hom(N(q), q!Z(K)), 

and these isomorphisms transform 8s into composition with WJ4(&), SJ(2i) 

This suggests the following definition which is due to D. M. Kan. 

(1.8). DEFINITION. Let C be a chain-module. Define an FD-module 
M(C) by 

St(C)q = Chain-Hom(N(q), C) 

ii = P ? JZ(6&)2 Si( = oP 0(7/), p e S(C)qt i = 01 ,.--. 

(8i and r/ are defined by (1.4), (1.5)). 
The FD-identities for the homomorphisms &, and si follow from the 

dual identities which hold for & and f [4, (2.3')-(2.5')]. For instance 
ajaj = 8,-18 for i < j follows from &JEi =W-1. 

If f: C -+ C' is a chain-map then by composition with f we obtain an 
FD-map Mt(f): M(C) -. &q(C'), St(f)(p = f o p. 

It is clear that A is an additive functor from chain-modules to FD- 
modules. It is inverse to VZ in the following sense. 

(1.9). THEOREM. The composite functors spar and MsJi are naturally 
equivalent to the respective identity functors. 

A general argument on functors will give the following consequence 
of (1.9). 

(1.10). COROLLARY. (a) Let K, K' be FD-modules. Then 
VJ : FD-Hom(K, K') -Chain-Hom(W(K), VJ(K')), 

i. e., every chain-map f: VJ(K) - (K') has a unique FD-extension 
F: KO-K'. 

(b) Let C, C' be chain-modutles. Then 
St: Chain-Hom(C, C') FD-Hom(St(C), St(C')) . 

For the proof of 1.9 we need the following 

(1.11). LEMMA. Let K be an FD-module. Define 

2 The sign a denotes composition, but is used only if it is considered as helpful. 
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k = nf kker(siz)1) (in all dimensions) 
fS = { U i<k im(si)} = submodule generated by U isk im(si).1) 

Then 
K= SVk + Zk (direct sum). 

If we observe that in Kq we have 

ker(si1i) = ker 8 for i < q and ker(sia^) = Kq for i > q 
this implies (put k- co) 

(1.12). COROLLARY. For every FD-module K we have 

Kg = VZ(K)g + Z(K)g q =- O. 1,**- 

where ?D(K)q c Kq is the module which is generated by the degenerate ele- 
ments six, x e Kqg-, i = 0, 1, --- 

This shows that VJ(K) is naturally isomorphic with the normalized 
chain-module K/Z [4, 4]. 

PROOF OF (1.11). The following relations follow immediately from the 
FD-identities. 

(1.13) (Skjk)Sk = Sk, (s0k)(sk) = Sk9k 

(1.14) 8k (Wfk-l) C W~k-1 

(1.15) SA ~-1)C cZ Sk-1 

( 1.16) Sk(Z k-1)C Zk-1 

(for instance, (1.15) follows from Si9iSk SiSk-1(9 = SkSi(9, i < k) 
From (1.13) we get. 

(1.17) K = ker (skak) + im(Skak) = ker(skak) + im(sk) 

and since Ska (~k3-l) C Jk-1 (1.14) and (1.15). 

(1 18) Vk-1 = ker(Skak) nf <1 + im(Skak) n VJk-1 = V~k + im(Sk) n q~k-1 
Now proceed by induction on k. The case k = 0 of (1.11) is contained in 
(1.17). The inductive hypothesis is 

K = V~k-1 + Vk-1 

Using (1.15) and (1.16) it gives 
(1.19) im(sk) = im(sk) n V3k-1 + im(sk) nf k-l 

hence K = Vk- l + k1- 

= JVe + im(sk) nf Jk-1 + Zk-1 (by 1.18) 
= V~k + Zk (by 1.19) 

PROOF OF THEOREM (1.9). We first construct the natural equivalence 
( : VWM -- Id, i. e., for every chain-module C we construct an isomor- 
phism '1(C): JSW(C) _ C such that commutativity holds in 
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f 
C C/ 

@S(C) jD(C') 

vwt(c) > w(c') 

for every chain-map f: C -+ C' (this is the naturality condition for 4D). 
Consider the chain-module N(q). By (1.12) it is isomorphic with the 

normalized chain-module K(q)/Z(K(q)). The structure of the latter is 
well known. In particular we shall use the following properties without 
proof. 

The chain-submodule D(q) c N(q) which is generated by the images of 
VZ8(6i): N(q-1) -+ N(q) for i < q covers all of N(q) except in dimensions 
(q - 1) and q. More precisely, if Zq e N(q)q is the component of the basic 
element Zq e K(q)q with respect to the direct sum decomposition (1.12) then 

(N(q)/D(q))r = 0 for r t q - 1, q 
(N(q)/D(q))q N(q)q A, generated by Aq 

(N(q)/D(q))q-1 A, generated by 8Aq = class of V(&q)Aq-l. 

Now let C be a chain-module. Then R(C)q = Chain-Hom (N(q), C), and 
flR(C)q consists of all those chain-maps (: N(q) -* C which vanish on 
D(q), i. e., 

WYLR(C)q ~Chain-Hom (N(q)/D(q), C). 

It is clear that for every c e Cq there is exactly one chain-map 
(: N(q)/D(q) -. C such that 'p(Aq) = c, i. e., if we associate with each p 
its value on Aq we obtain an isomorphism 

(1.20) (F(C)q: TJt(C)q - Cq; (?(C)q(P = (P(Aq) 

We show that {jq} = {J?(C)q} is a chain-map: 
8o 0Dq(P) = ( o P(A) = o 0(zq) = _ oJS(6)zq1 = (Aq ')Aq- = 

The proof of the naturality of 1 is straightforward. 
Now we establish an equivalence P': Id - SM For every FD-module 

K let P'(K): K -- SM(K) be the FD-map which is given by composition 
1.3 9Z 

Kq _ FD-Hom (K(q), K) > Chain-Hom (N(q), Z(K)) = Alt(K)q. 
T' is clearly a natural transformation Id -- AR We have to show that 
each P'(K) is an isomorphism. 

It follows from the definition that T'(K) maps a e Kq into a chain-map 
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a: N(q) -- VJ(K) such that (Zq) = a, where a e VJt(K) denotes the compo- 
nent of a with respect to the decomposition (1.12); similarly for -Aq. If 
a e VJ(K) then p(Aq) = a, i. e., the restriction of V'(K) to VJ(K) is nothing 
but (cf. 1.20) 
(1.21) J(P'(K)) = 

and is therefore an isomorphism. The theorem now follows from 
(1.22). LEMMA. Let F: K -+ K' be an FD-map such that VZ(F) : W(K) 

Vf(K'). Then F: K - K'. 
PROOF. We prove by induction on q that Fq: Kq -EK is monomorphic 

(epimorphic) if VJ(F) is monomorphic (epimorphic) for i < q. This is clear 
for q = 0 since VJ(F), = F, 

Now let q > 0, let VJ(F)i be monomorphic for i < q, and let a e Kq such 
that Fq(a) = 0. Then 8Fq(a) = Fqi(8,a) = 0 for all i, hence S9a = 0 by 
induction, hence a e n ker O8 c VJ(K), hence a e ker (V(F)q) = 0. 

If VJ(F), is epimorphic for i < q then VJ(K')q C im(Fq), and by (1.12) it 
is sufficient to show that every degenerate element lies in the image of 
Fq. This is clear since Fq-1 is epimorphic (by induction) and F commutes 
with degeneracies (i. e., sFq-l = Fqsi). 

PROOF OF (1.10). We prove quite generally 
(1.23). Let S: A -e+ Q and T: 3 --+ W be (covariant) functors (A and 03 

are categories) such that both compositions are naturally equivalent to the 
respective identity functors: ST - Id, TS- Id. Then 
(1.24) S: H(A, A') H(S(A')), S(A')) A, A' e At 
and 
(1.25) T: H(B, B') H(T(B), T(B')) B, B'e 3. 
H( ) denotes the set of maps in the corresponding category, and the sign 
-simply means that we have a 1-1 correspondence. 

PROOF: Let 4): TS ,. Id be a natural equivalence. Then for every 
map f: A -* A' in A we have a commutative diagram 

f 
A >Al 

q) (A) ; t(A') 

TS(A) >TS(A') 
TS(f) 

i. e., TS(f) = b(A')-If 4(A). This shows 
(1.26) TS: H(A, A') H(TS(A), TS(A')) . 
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Similarly 
(1.27) ST: H(S(A), S(A')) H(STS(A), STS(A')). 
Combining (1.26) and (1.27) we obtain 

(1.28) T: H(S(A), S(A')) H(TS(A), TS(A')) 
Now, the composition 

TS T-1 
H(A, A') H(TS(A), TS(A')) H(S(A), S(A')) 

gives (1.24). The relation (1.25) follows similarly. 

(1.29). REMARK. Let 12: VSZ -- Id be the natural equivalence given 
by T(K) = P'(K)-1 (Proof of 1.9). Then (1.21) shows 

One may also show 

In general, if S and T are functors as in Proposition (1.23) we can always 
find natural equivalences 4): TS -- Id and 12: ST ,- Id such that 
(1.30) TT = )T, S4)= PS. 
To prove this let 4): TS --- Id be any natural equivalence and define T 
by 

T(T(B)) = D(T(B)) 
This is possible since (1.25) holds. 

One has to prove naturality of P, and the second equation (1.30) (the 
first holds by definition of '). This can be done without difficulty using 
the naturality of 4d, and the relation (1.25). We omit the proof because 
the result is not needed in the sequence. 

2. Chain-homotopy and FD-homotopy 

We show that chain-homotopy and FD-homotopy are corresponding 
notions under the " isomorphisms " V and & of ? 1. 

We begin with a definition of chain-homotopy which uses tensor 
products of chain-modules. Recall that the tensor product of chain- 
modules C1 and C2 is the chain-module C1 ? C2 defined by 

(C' 0 C2)q = Yi+j=qCl ? C2 
a(Cl ? C2) = (aCt) ? C1 + (-1)iCl ? (9C2) , Cv e Cr 

(2.1). DEFINITION. Let N(1) be the normal chain-module of the standard 
1-simplex (? 1). Denote by e0, e, the generators (vertices) of N(1)0 and by 
e the generator of N(1)1 with Se =e, - eo 

Let fi: C -+ C' be chain maps, i = 0, 1. A chain-homotopy between 
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f0 and f1 is a chain-map D: N(1) 0 C C' such that 

(2.2) D(ej (& c) = fi(c) , i = O. 1. 

If such a D exists f0 and f1 are called (chain-) homotopic, in symbols 
fc f1. We say C and C' are chain homotopy equivalent, C z C', if 
there are chain-maps f: C-+C', f : C'-- C such that f f - Id, f -f- Id. 

Then f, f are called reciprocal chain homotopy equivalences. 
Usually chain-homotopy is defined as follows [6, Ch. V, 4.1]: A chain- 

homotopy between f0 and fl is a sequence of homomorphisms 

D:Cq Cq'l q =- 0, 1, * - - q q~~~~~l ~ 
such that 

(2.3) SD' + D'a fl1-f. 

The two definitions are equivalent: Given D define D' by D'(c)= 
D(e 0 c), and vice versa. 

The notion of FD-homotopy is analogous to that of chain-homotopy, 
using cartesian products instead of tensor products. The cartesian product 
[4, 5] of FD-modules K1 and KS is the FD-module K1 x K2 which is de- 
fined by 

(K1 X K2)q = K' 0 K' 
i>i(a' x a') = Qial x aial, si(al x a') = sial x sial, a" e K" 

(We write a' x a' instead of a' 0 a2 in order to avoid confusion with the 
tensor product of chain-modules). 

(2.4). DEFINITION. Let K(1) be the FD-module of the standard 1-sim- 
plex (? 1) and let e., e1 e K(1), be the " vertices " as in (2.1). 

If Fi: K -+ K', i = 0, 1, are FD-maps then a FD-homotopy between 
FO and F1 is an FD-map 6 : K(1) x K -+ K' such that 

(2.5) 6(s"(ej) x aq) F(aq) , aq e Kq, = O. 1. 

If such a 6 exists F0 and F1 are called FD-homotopic, F1 - F1. Define 
also FD-homotopy equivalence etc., in analogy to chain homotopy equiva- 
lence- - - . 

We can now formulate the main result of this paragraph. 

(2.6). THEOREM. The functors SV and St of ? 1 preserve homotopy, i.e., 
(a) Two FD-maps Fi: K-* K', i = 0, 1, are FD-homotopic if and only 

if their normal chain-maps VJ(Fi): V(K) -+ VZ(K') are chain-homotopic. 
(b) Two chain-maps fi: C -+ C', i = 0, 1, are homotopic if and only 

if V(f0) a &(fl). 

(2.7). COROLLARY. Two FD-modules K and K' are FD-homotopy equiva- 
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lent if and only if VJ(K) and VJZ(K') are chain homotopy equivalent (simi- 
larly for the functor A) 

F 
The corollary follows from (1.10) and (2.6): If K _ K' are reciprc- 

9T(F) F- 
cal FD-homotopy equivalences then St(K) < StV(K') are reciprocal chain- 

T(F-) 
h,'motopy-equivalences, and vice versa. 

PROOF OF (2.6). Part (b) of (2.6) can be obtained from (a) as follows: 
Use the natural equivalence VSW'S Id (1.9) to get f02- f I V)I#(f ) 
VTZ(f '). Now apply (a) to (ff i) and obtain St(f0) - &(f l) V SZAS(f0) 
SJ2(f l) 

In order to prove (a) we consider chain-maps 

(2.8) N(1) ? VJ(K) - *fl(K(1) x K) ' * N(1) ? VJZ(K) 

as defined in the proof of the Eilenberg-Zilber theorem. (v is given by 
the " shuffle-formula " [4, 5.3], g by the map [5, 2.9].) They have the 
properties 

v(ei ? aq) = sq(ei) x aq 
(2.9) g(Sq(ei) x aq) = ej ( aql . aq e VJZ(K)q. 

Now for every FD-homotopy (^): K(1) x K K' define a chain-homo- 
topy D: N(1) ? VJ(K) -+ 9((K') by 
(2.10) D = PJZ(H)) o V 

Conversely for every chain-homotopy D: N(1) (0 VJ(K) -- SJ(K') let 
(2.11) () = D o g: VSZ(K(1) x K) -- VZ (K') 
and let (H): K(1) x K K' the unique FD-extension of () (1.lOa). 

The equations (2.9) show: If (H) is a FD-homotopy between F0 and 
FI: K-* K' then D is a chain-homotopy between VZf(FO) and VJ(F') : iJ,(K) 
'JZ(K'), and vice versa. This proves the theorem. 

3. Homotopy and homology 

We show that under certain restrictions the homotopy type of an FD- 
module is determined by its homology modules. 

(3.1). DEFINITION. Let K be an FD-module. We define its homology 
to be the homology of its normal chain-module, i. e., 

(a) H(K) = H(VJZ(K)) 
(we write H(K) for the sequence Hq(K)) 

(b) If F: K -+ K' is an FD-map then the induced homomorphism F* 
is given by F* : H(K) -+ H(K') = VSZ(F)_: H(VSJ(K)) -+H(V(K')). 

REMARK. Usually H(K) is defined by introducing the boundary oper- 
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ator a = 8,- 8? + 8,- + - in K. However, the normalization theo- 
rem of Eilenberg-MacLane [4, 4] shows that this homology is naturally 
isomorphic with the homology of the normalized chain module of K; this 
chain-module in turn is isomorphic with VZ(K) (1.12). 

We recall the fact that homotopy implies homology, more precisely. 

(3.2.) PROPOSITION. Let FO -- FI: K -+ K' be homotopic FD-maps. 
Then 

F* = F* : H(K) - H(K') 

PROOF. By (2.6) we have VZ(FO) -- JZ (F1), hence VZ(FO)* = V(F1)* [6, 
Ch. V, 4.4]. 

(3.3). COROLLARY. If K and K' are homotopy equivalent FD-modules 
then. 

H(K) _ H(K'). 
F 

PROOF. Let K C K' be reciprocal homotopy equivalences. Then 
F- 

F*F- = Id, F;F* = Id, i.e., F* and F* are reciprocal isomorphisms. 
The main result of this paragraph is a partial inverse of (3.3), namely. 

(3.4). THEOREM. Let A be a principal ideal domain and let K, K' be 
free FD-modules over A (i. e., each Kq, K, is free). Then K and K' are 
FD-homotopy equivalent if and only if H(K) = H(K'). 

The " if-part " of (3.4) will follow from Proposition (3.5) below and ear- 
lier results. 

(3.5). PROPOSITION. Let A be a principal ideal domain, K a free and K' 
an arbitrary FD-module over A. Then for every sequence of homomor- 
phisms hq: Hq(K) -+ Hq(K') there is an FD-map F: K -+ K' such that 
F* = h { hq}, i. e., F induces the homomorphisms hq. 

PROOF of (3.4) (using 3.5). The " only-if-part " is contained in (3.3.) 
If H(K) - H(K') then by (3.5) there is an FD-map F: K-OK' such that 

T(F)*: H(K) - H(K'). Since iZ(K) and V(K') are free (as submodules 
of free modules) this implies that VJ(F) is a homotopy equivalence [6, Ch. 
V, 13.3], hence JZ(K) -- VJ(K'). Therefore (2.7), K - K' (Fis a homotopy 
equivalence). 

PROOF of (3.5). By (1.10) it is sufficient to find a chain-map f : J(K) 
V(K') such that f* = h. This is proved in the standard way: Since 
VJ(K) is free we have VZ(K)q = Zq ? Cq where Zq is the submodule of 
cycles and Cq is a complementary module. Consider the diagram 
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Cq+i Zq Hq(K) 

(3.6) f4+1: fqi hq 

t(K')q~ ZZ>q Hq(K') 0 
a t/' 

where (, A denote the natural projections. The horizontal lines are 
exact. Therefore, since Zq and Cq+, are free it is possible to complete 
(3.6) by homomorphisms fq and fq+i (dotted in 3.6) to a commutative dia- 
gram (define fq and fq+i on generators first). Doing this for all q gives 
the required chain-map f. 

(3.7). REMARK. Assertion and proof of (3.4) and (3.5) remain valid if 
"free over a principal ideal domain" is replaced by the weaker condition 
"projective over a hereditary ring ". 

(3.8). REMARK. Let K, K' be free FD-modules over a principal ideal do- 
main. Theorem 3.4 asserts that H(K) H(K') => K - K'. However, a 
similar looking conclusion for FD-maps is false, namely there exists FD- 
maps F':K-* K', i = 0, 1, such that F*=F* and yet F%?-F1 (Com- 
pare Cartan-Eilenberg: Homological Algebra, Ch. VI, Th. 3. la). For 
an example take an essential simplicial map of the real projective plane 
onto the 2-sphere and let F be the corresponding FD-map. Then F*= 0, 
however F c- 0 because it induces non-trivial homomorphisms of the mod 
2 homology. 

4. Homotopy preserving functors 

In the introduction we asserted that for certain functors T on FD- 
modules K the homology of T(K) is determined by the homology of K. Not 
all functors T have this property. If we define T(K) to be the n-skeleton 
of K(i. e., T(K) c K is the sub-FD-module generated by K,, Kim ... Kn) 
then Hn (T(K)) is not determined by H(K) (the proof is left to the read- 
er). The problem arises to find general conditions on T which insure 
that the property holds. Such a condition is described in the following: 

(4.1). DEFINITION. A (covariant) functor T from FD-modules (over A1) 
to FD-modules (over A2) preserves homotopy if for every pair of homoto- 
pic FD-maps F0 -- F1: K-+K' (over A1) we have T(F0) z- T(F1): T(K) 
T(K'). 

(4.2). PROPOSITION. Let T be a homotopy preserving functor from FD- 
modules over a principal ideal domain A1 to FD-modules over an arbitrary 
ring A2. If K, K' are free FD-modules over A1 such that H(K) H(K') 
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then H(T(K)) - H(T(K')). More precisely, there is an FD-map F: K 
K' such that T(F), *: H(T(K)) _ H(T(K')). 

F 
PROOF. By (3.4) there are reciprocal homotopy equivalences K ` K'. 

F' 
Since T preserves homotopy we obtain reciprocal homotopy equiva- 

T(F) 
lences T(K'), k T(K). By (3.2) this implies that T(F)* isa n isomorphism. 

T(F') 
In order to prove that a functor preserves homotopy we shall use the 

following criterion. 

(4.3). LEMMA. A functor T from FD-modules over A, to FD-modules 
over A, preserves homotopy if and only if for every FD-module K over A. 
there exists an FD-map. 

r: K(1) x T(K) T('K(1) x K) 
such that 

(4.4) r(sq ej x bq) T(It)bq, bq e T(K)q, i 0, 1. 

VK(1) denotes the FD-module of the standard 1-simplex; the index V = 1, 2 
indicates whether it is taken over A. or Al; eo, el e K(1)0 are the vertices. 
The FD-maps 

Ii: K 'K(l) x K i=O,1 
are defined by 

It(al) = sq ei x aq , aq ( K,( . 

PROOF. The maps I' are homotopic (the identity of 'K(1) x K is a 
homotopy), therefore if T preserves homotopy T(1I) and T(11) are homo- 
topic, i, e., there exists a homotopy r: 2K(1) x T(K) -- T('K(l) x K) 
satisfying (4.4). 

On the other hand if such a r exist and if we have a homotopy 
(0: 'K(l) x K -+ K' between FD-maps F', F': K -O K' then we define 
a homotopy between T(F0) and T(Fl) by composition 

'r T((-)) 
2K(1) x T(K) > T('K(1) x K) - T(K') . 

This proves the lemma. 

(4.5). REMARK. If F', F': K -* K' are FD-maps (between FD-modules 
over a principal ideal domain) such that F* = F*: H(K) -* H(K') then 
we cannot conclude that T(F0)* = T(F')*: H(T(K)) -+ H(TK')). Con- 
sider the example in Remark (3.8). Reduction mod 2 (tensoring with Z2) 
is a homotopy preserving functor T. In the example we have F* = 0 
but T(F)* # 0 . 
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Therefore. if we wish to construct a functor T, which, when applied 
to the homology of K, gives the homology of T(K) (i. e., T*(H(K)) = 
H(T(K))), we cannot follow the obvious way. Without giving any detail 
we claim that T* can be constructed by using " special " FD-modules 
(direct sums K' of FD-modules K' with non-vanishing homology only in 
dimension i) and mappings of those. 

5. Prolongation of functors on modules 

For every functor from modules to modules, or more generally from 
modules to FD-modules, we define a prolongation from FD-modules to 
FD-modules (5.1), (5.1'). We show that these prolongations preserve ho- 
motopy (5.6). We then apply and sharpen the results of ? 4 (5.11). 

(5.1). DEFINITION. Let t be a (covariant) functor from modules over A1 
to FD-modules over A2. The prolongation of t is a functor T from FD- 
modules K over A1 to FD-modules over A2; it is defined as follows 

(5.2) T(K)q = t(Kq)q . 

The jth face Di or degeneracy Sijiq, are given by composition 

t(8j) 8i 
(5.3) Di: t(Kq)q ,> t(Kq-i)q "> t(Kq-i)q-l 

t(Si) Si 
(5.4) Si: t(Kq)q ,~ t(Kq+,)q - >t(Kq+,)q+l . 

We verify some of the FD-identities. Note first that t(8,) and t(si) are 
FD-maps, i. e., t(8i)8j = ajt(ai) and t(a8) Si = Si t(8); similarly for t(sj). 
Hence for i < j 

DiD = ait(ai)Qjt(aj) = a8ajt(ai)t(aj) - 8iajt(8J) 
= 8a-iat(a9j-ji) =jt(8jQj)8it(8i) = Dj lDt; 

or in T(K)_, for i <q, 
DiSi = ait(ai)sit(si) = &isit(a8si) = Id. 

The other FD-identities follow similarly. 
If F: K -+ K' is an FD-map over A1 put 

(5.5) T(F)q = t(Fq)q : T(K)q + T(K )q . 

Then in T(K)q we have 

DiT(F)q = it(ai)qt(Fq)q = ait(aiFq)q =ait(Fq-lia)q 
= t(Fq j(i)q.jiaj = t(Fq i)q jt(ai)q j~i = T(F)qDi. 

Similarly Si T(F) = T(F)Si, i.e., T(F) is an FD-map. 
The functor properties T(FF') = T(F)T(F') and T(Id) = Id are easy 

consequences of the corresponding properties of t. Therefore (5.2)-(5.5) 
define indeed a functor T from FD-modules to FD-modules. 
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(5.1'). DEFINITION. There is an embedding i of the category of modules 
into the category of FD-modules: For every module M we define i(M) 
by 

i(M)q = M; 
all non-trivial face- and degeneracy-operators are given by the identity 
map of M. 

Similarly 
AA) = P 

for every module homomorphism P. 
Now if u is a functor from modules to modules then the composition 

t = i o u is a functor from modules to FD-modules and its prolongation 
T is defined. We call it the prolongation of u; it is given by 

(5.2') T(K)q = U(Kq) 

53i face = u(): T(K)qT(K)q-1 
(5.4') ith degeneracy = u(si): T(K)q T(K)q+I, i < q, 
and 
(5.5') T(F)q = U(Fq) 

for FD-modules K, and FD-maps F. 

(5.6). THEOREM. Functors from FD-modules over A, to FD-modules over 
A2 which are obtained by prolongation (5.1) preserve homotopy (4.1). 

PROOF. By Lemma (4.3), it suffices to construct for every FD-module 
K over Al an FD-map r: 2K(1) x T(K) -+ T(K(1) x K) with the proper- 
ty (4.4). This FD-map will be defined in a more general situation: Let 
VK(X) be the FD-module (over A>, P = 1, 2) of a semi-simplicial complex 
X. (Recall that VK(X)q is freely generated by the q-simplices a- of X, 
and every face QOi- and degeneracy sir-, i < q, of a simplex is again a sim- 
plex; see ? 1. Then we shall define in a natural way an FD-map 

(5.7) r: 2K(X) x T(K) -+ T(K(X) x K) 

which has the property 4.4 if X is the standard 1-simplex. 
Let a- be a q-simplex of X. It defines a homomorphism 

(5.8) [a]: Kq- (K(X) x K)q = 1K(X)q ? Kq by [a]c =a c, c e Kq. 

Applying 8, or si gives 

(5.9) i o [a-] = [Pei] o i, Si o [] = [Sa-] o Si 
Now let t be the functor from modules to FD-modules whose prolon- 

gation is T. Define 

Zq : 2K(X)q ? T(K)q + T(K(X) x K)q = t((lK(X) x K)q)q 
by 
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(5.10) jq(o x a) = t([aI])a, a e T(K)q = t(Kq)q, o a q-simplex of X. 

Since the q-simplices form a basis of K(X)q this defines a unique homo- 
morphism zrq. We show that r = {Iq} is an FD-map, i. e., commutes with 
face- and degeneracy-operators (denoted by Di, S. in K(X) x T(K), 
T(K(X) x K), and by 8, s, also.) 

DiT(o x a) = Ot(O)r(o x a) = ift(i)t([a]) a = Oit(Oiff])a 
= 8t([Qafif)a = 8at([a-T])t(8i)a = t([a-])8it(a 
= t([9j])Dia = Tr(SO x Dia) = rDi(o x a). 

Similarly Sir = TSi . 
If X is the standard 1-simplex, i. e., K(X) = K(1), then 

[s0e] = If (4.3), 
hence 

se, x a) = t[soe]qa = T(I)qa , a e T(K)q, 

i. e., (4.4) holds. 
We can now apply Proposition (4.2) to prolongations T. Using a special 

property of these functors (5.12) we shall be able to sharpen this propo- 
sition, and obtain 

(5.11). THEOREM. Let T be a functor from FD-modules over A1 to FD- 
modules over A, which is obtained by prolongation (5.1), and assume A1 is 
a principal ideal domain (a hereditary ring). If K, K' are free (projec- 
tive) FD-modules over A1 and if Hi,(K) IH,(K') for i < q then H(T(K)) 
Hj(T(K')) for j < q. More precisely, there is an FD-map F: K -+ K' such 
that 

T(F)* : Hj(T(K)) =- Hj(T(K')) , i < q. 

PROOF. The case q = co follows from (4.2) and (5.6). The proof for 
q < oo uses the following property which a prolongation T obviously 
possesses: 

(5.12) If F: L-L is an FD-map such that Fi = Id for i <q then 
T(F) = Id for i < q . 

Let 0 < q < oo and let K be a free FD-module over A1. Its normal 
chain-module 9J(K) is also free and W(K)q = Zq + Cq where Zq denotes 
the q-cycles and Cq a complementary summand. Define a chain-submod- 
ule N(q) c 9(K) by 

Z(K),, for p < q 
(5.13) N1. = Cq for [1 = q 

?0 for / > q. 

Then N(q) is a direct summand of 9Z(K) (the complementary summand is 
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0 for p < q, Zq for p = q, and 9J(K),, for p > q). If N(M) 9(K) INO) 
are the corresponding injection and projection then rj = Id, and jr Id 
in dimensions less than q. Apply the functor A of ? 1 and obtain (using 
9(f) =- K) FD-maps 

J R? 
(5.14) K(') K KOO RJ = Id, JR = Id 
in dimensions less than q. Therefore K(q) is a free FD-module and 
J*: H%(K(q)) H,(K) for i < q. Further, H%(K(")) = H,(N(")) = 0 for 

> q. 
Applying the functor T to (5.14) and using (5.12) we obtain 

T(J) T(R 
T(K(1)) -> T(K) -> T(K(1)), T(R)T(J) = Id, T(J)T(R) = Id 

n dimensions less than q. Therefore T(J) or T(R) induce isomorphisms 
H,(T(K(,))) =- H(T(K)) for i < q. 

Now under the assumptions of (5.11) we have H(K(")) -H(K'(0)), hence 
H(T(K(q))) - H(T(K'(q))), and finally 

H,(T(K)) _- H,(T(K((0)) =- Hi(T(K'((0))-- H,(T(K')) 
i<q all i if < q 

all isomorphisms being induced by FD-maps of the form T(F). This 
proves the theorem. 

(5.15). FD-ALGEBRAS. If in an FD-module K all the Kq are algebras 
with unit and the non-trivial face- and degeneracy-operators are homo- 
morphisms of algebras with unit then K is called an FD-algebra. In this 
case the homology modules H(K) form an algebra H*(K) with unit, the 
Pontrjagin-algebra of K [4, 6]. If F: K -+ K' is a map of FD-algebras 
(i. e., an FD-map with each Fq a homomorphism of algebras with unit) 
then F*: H*(K) -+ H*(K') is a homomorphism of algebras with unit. 

We clearly have the following. 
(5.16). COROLLARY TO (5.11). If under the assumption of (5.11) the 

values of T lie in the category of FD-algebras then the algebras H*(T(K)) 
and H*(T(K')) are isomorphic up to dimension q. 

This applies to the prolongation T of a functor u (resp. t) from modules 
to algebras (resp. FD-algebras). 

(5.17). FUNCTORS OF SEVERAL VARIABLES. The definitions and results 
of ?? 4-5 may be generalized to functors of several variables. For in- 
stance if t is a functor from pairs of modules to FD-modules we may de- 
fine its prolongation T as in (5.1). T is a functor from pairs of FD-mod- 
ules to FD-modules, it preserves homotopy (? 4), and if K1, K2 are free 
FD-modules over principal ideal domains then Hq(T(K1, K2)) is determined 
by H%(K1), H%(K2), i < q (5.11). 
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Instead of two variables, we may admit arbitrarily many. 

6. Examples for ? 5 

(6.1). CARTESIAN PRODUCT WITH A FIXED FD-MODULE. Let K be a fixed 
FD-module over A. Define a functor t from modules to FD-modules by 

t(M) = M O K, i. e., t(M)q = MO Kq, 

ai(m O -) = m O Oid, si(m O -) =m- sSid 

t(P) -= p ? Id, 
for modules M and homomorphisms A. The prolongation T of t is given 
by 

T(K)q = t(Kq)q = Kq 0 Kq, 

it(aO a) = ia O Oa, s%(aO-) sia sid, a e Kq, a e Kq, 

i. e., T(K) is the Cartesian product K x K (? 2). Theorem (5.11) applied 

to this T gives a well known result; if also K is free, then the Ktinneth 

formula gives an explicit description of H(T(K)) in terms of H(K), H(K). 
(6.2). F-PRODUCTS (SYMMETRIC PRODUCTS) AND GENERALIZATIONS. If 

the group w operates in the module M (i. e., each g e 7r defines a module 
endomorphism - of M and g' = g o g', e = Id) we denote by M/7r the 
quotient of M by the submodule which is generated by the elements 
m-g(m), m e M, g e w. (The operation in question will always be clear 
and is, therefore, not indicated.) 

Now let S. be the symmetric group of degree n, i. e., the group of 
permutations of n elements, and let F c Sn be a subgroup. For every 
module M let O@n M = MO MO ... * M (n factors) be its nth tensor 
power. The group S. operates in Oin M by permuting the factors and so 
does the subgroup r. Define the r-product of M to be the quotient 

(6.3) MP =O nM/r 
with respect to this operation, and let r: 0 n M-+M denote the natural 
projection. 

If P: M -A N is a module homomorphism then its nth tensor power 
On P: On M-* On N is a module homomorphism which commutes with 
the operations of r. Therefore we have a unique homomorphism 
fPI: Ml -* NP, the r-product of A, such that the diagram 

On P 
din M > OnN 

MP NP 
Pr 
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is commutative. For composite homomorphisms M N o L we 
have ?a( ? a ) = &,,a o &.P hence (a o = ) T = a' T. Since also (Id)'=Id 
it follows that the r-product is a functor u from modules to modules. 
Its prolongation (5.1') to the FD-category defines the r-product T(K) =KT 
resp. T(F) FT of FD-modules resp. FD-maps. By (5.2')-(5.4') we 
have (KT)q= (Kq)T with face- and degeneracy-operators 8F, sr. 

If r = Sn is the full symmetric group then K"(FT) is called the sym- 
metric product of order n of K (of F); it is denoted by SPn(K) resp. 
SPn(F). If r = Zn is cyclic of order n then KT is the cycle product of 
order n of K. 

A generalization of F-products is obtained as follows. Let K be a 
fixed FD-module over A in which the group r operates. Then r operates 

in Kn x K 

(6.4) g(a x b) = g(a) x -(b), geFr, aeK,beKq 

(Kn is the n-fold Cartesian product of K in which r permutes the factors), 
and we may form the corresponding quotient 

(6.5) T(K) = (KS x K)/r. 

This functor is the prolongation of a functor from modules to FD-mo- 
dules but not, in general, of the special type (5.1'). The r-product is ob- 

tained if K i(A) (5.1') in which r operates trivially. 
(6.6.) TENSOR ALGEBRA, SYMMETRIC ALGEBRA, EXTERIOR ALGEBRA. For 

every module M we have the tensor algebra 0 M, the symmetric algebra 
S(M), and the exterior algebra A M [1, Ch. III for 0 M and A M]. These 
are functors from A-modules to A-algebras with unit. Their prolongations 
(5.1') are functors from FD-modules K to FD-algebras (5.15), denoted by 
? K, S(K), AK. In ? 11 we shall interpret ? K as a " reduced product " 
in the sense of James [7], and S(K) as an infinite symmetric product. I 
do not know a simple geometric interpretation for AK. 

7. Geometric interpretations 

Using geometric realizations of semi-simplicial complexes as defined by 
Milnor [9] we describe the connection between F-products of FD-modules 
(6.2) and the well known F-products of topological spaces (cf. for in- 
stance, Liao [8]). We recall the definition of the latter. 

(7.1). DEFINITION. Let Sn be the symmetric group of degree n 
and let r f Sn be a subgroup. If Y is a topological space form yn = 
Y x Y x ... x Y, the n-fold product of Y with itself. The group Sn oper- 
ates in yin by permuting the factors and so does the subgroup r. The 
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orbit space with respect to this operation is the r-product of Y; we de- 
note it by Yr. It is obtained from yn by identifying points which can 
be transformed, one into each other, by elements of r. 

From Theorem (5.11), applied to F-products of FD-modules, we shall 
obtain 

(7.2). THEOREM. Let Y and Y' be CW-complexes and let A be a principal 
ideal domain (a hereditary ring). If H,(Y, A) H,(Y', A) for i < q then 
Hj(Y", A) Hj(Y"`, A) for j < q. 

PROOF. The link between spaces and FD-modules are the semi-sim- 
plicial complexes. In this category there is also a r-product defined, in 
analogy to (6.2) and (7.1): If X is a semi-simplicial complex then its 
r-product X is the "orbit complex" with respect to the obvious operation 
of r in Xn = X xX x ... x X. 

Now, if K = K(X, A) is the FD-module of X (1.1) then K' is naturally 
isomorphic with the FD-module of X" 
(7.3) K(X", A) -K(X, A)" = K". 

On the other hand if I XI is the geometric realization of X, (cf. [9]), we 
may consider K as the complex of simplicial chains of I XI with coefficients 
in A; in particular 

(7.4) Ij(I XII A) Hi(K) 
Similarly K' may be considered as chain-module of the geometric realiza- 
tion I XI I which in turn is equivalent to I XV'. More precisely, there is 
a natural continuous 1-1-map I X" I XI" which is a homeomorphism if 
X is countable, and which is still a homeomorphism between compact sub- 
sets if X is not countable [12, ? 2.]. In particular 
(7.5) Hi(IXI", A) = H(IX"I, A) - H(K") 

The isomorphisms (7.4) and (7.5) show that Theorem (7.2) follows from 
(5.11) if Y and Y' are geometric realizations of semi-simplicial complexes. 
In any case Y is of the same homotopy type as some geometric realiza- 
tion I XI [9, Theorem 4], and Yr is then of the same homotopy type as 
I XI" [8, 1.2]; similarly for Y'. Therefore the theorem holds in general. 

(7.6). REMARK. There is a similar geometric interpretation for gen- 
eralized F-products. Without proof (it is analogous to the one for (7.2)) 
we state the result: 

Let Y be a topological space in which r operates. For every space Y let 

T(Y) = (yn x Y)/r denote the orbit space with respect to the operation 

g(',Y _) (g'Y, gy), 'y e ye, ne, ge F, 
of r in yn X Y. 
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If Y is a simplicial complex (the geometric realization of a semi-sim- 
plicial complex) in which 1' operates simplicially, and if Y, Y' are CW- 
complexes such that H,(Y, A) - H((Y', A) for i < q, then H,(T(Y), A) 
Hj(TY'), A) for j < q; A a principal ideal domain. 

Appendix 

This appendix is essentially independent of the preceding paragraphs. 
It contains some additional results on F'-products (1-products of direct 
sums (8.7), (8.8) ; splitting properties of 1'-products (9.2); a formula of 
Steenrod (9.3)), infinite symmetric products (? 10), and reduced products 
(?11). 

8. 1 -products of direct sums 

Let MI + M2 be a direct sum of modules. The nth tensor power of 
M1 + M2 splits into a direct sum 

(8.1) ?Jn(Ml + M2) . 
.=1.2 Mi ?m Ma ? * ? M~n, 

one summand for each n-tuple (v , 2 .. P.) with P, = 1, 2. Let (M', M2)q 
denote the partial sum (8.1) consisting of those terms MV1 ? ... ? Mvn 

with exactly q factors M' (and n-q factors M2). Then 

(8.2) (g&n(Ml + M2) = (/1 j(MlJM2)Y 

and each summand (MI, M2)'1 is invariant (as a whole) under the opera- 
tions of the symmetric group (6.2). Therefore for every subgroup FczSI, 
(cf. 6.3) 
(8.3) (MI + M2)I' = n(Ml + M2)/11 = Eq'= (Ml? Mj2)/1l 

In many cases the summands (Ml, M2)1Y/1' can be expressed as direct 
sums of tensor products of certain I"-products of MI and M2. For in- 
stance (MI, M2)0/1' = (M2)" and (Ml, M2)"/1 = (Ml)". If l' = S. is the 
full symmetric group then any two terms MVl ? ... ? Mvn with the same 
number q of factors MI are equivalent under 1'. Therefore (MI, M2)q/1' 
may be obtained as quotient of (?,, Ml) ? (?On-, M2) by the subgroup of 
Sn which permutes the letters 1, 2, ... q among themselves; i. e., the 
subgroup S. x Sn_ c Sn. This gives [1, Ch. IV, 1, ex. 4] 

(M1l' M2)q/Sn = (Oq MI/SJ) ? (?n-q M2/Sn q) = SPq (MI) SPn-q(M2) 
(convention: SP0(M) = A) and by (8.3) 
(8.4) SPn(Ml + 312) = Xq SPq(Ml) 0 SPn-q(M2) 

If ji: MI -- Ni, i = 1, 2, are module homomorphisms then 
j1 + 2: M + M2- N1 + N2 
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is a module homomorphism and (PI+P2)1 (6.2) splits corresponding to (8.3). 
We may write 

(8.5) (p1 ?+ P2)P = En ( p)q/ 
and 

(8.6) SPpn(p, + p2) = E SPq(PI) ? Spn(i(p2)i 

It follows easily that the correspondence (M1, M2) __ (M1, M2)q/r and 
(IS1, P2) _ (PI, P2)q/r defines a functor on the category of pairs (Ml, M2) 
resp. (fi, P2). Therefore we have the same splitting for FD-modules 
K1, K2 and FD-maps F1, F2, i. e. 

(8.7) (K1 ? K2)T = En (K1 K2)q/r 

with (K1, K2)0/r = (K2)T, (K1, K2)n/r = (K1)T 
(8.8) SPn(K' + K2) = Bn oSPq(Kl) x SPn-q(K2) 
(8.9) SPn(F1 + F2) E0 SPq(F1) x SPnq(Fj* 

We make the convention that SP0(K) = P is the FD-module of a point; 
i.e., P= K(O) in the notation of ? 1, or P = i(A) in the notation of (5.1'). 
We also put SPO(F) = Id. 

9. Steenrod's formula for symmetric products 

As above, let P denote the FD-module of a point. An augmentation 
of the FD-module K is an FD-map E: K -* P. A base point in K is an 
FD-map I: P -+ K. We shall always require that & = Id. This implies 
that e maps P isomorphically onto a direct summand of K: 
(9.1) K= kerE + im =-KO + P, 
where KO = E-1(0) c K is the sub-FD-module of augmentation zero. 

If K is an FD-algebra then an augmentation &: K -+ P has to be a 
homomorphism of FD-algebras. Hence E(lq)=1q, and we define the base 
point e by $(1q) = lq (lq denotes the unit in Kq as well as in Pq). 

Assume now K is an FD-module with augmentation and base point. 
Applying (8.7) to the decomposition (9.1) gives 

(9.2) KT = 'q 0 (K, P)qlr . 
and (8.8) becomes (using SPT(P) = P and P x K = K 

(9.3) SPnh(K) = P + SP1(K0)+SP2(K0) + ? SP'(K0) = q SP'(KO) 

(formula of Steenrod, [13, 22.3]). 
For a geometric interpretation let X be a semi-simplicial complex with 

base point b, and let K = K(X, A) be its FD-module (? 1). The projec- 
tion X -+ b and injection b -+ X define an augmentation &: K -+ K(b) = P 
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and a base point I: P - K in K. 
(K', P)Q is generated (in each dimension) by the elements a1 x a, x*** x an 

such that n-q of the a. are " at the base point Pi", and q of them are 
in K0. Therefore Krn = Er q=(K', P)Q is generated by the simplices 

o-1 x * x on, WAS e X, such that at most r of the a-. are not at the base 
point b. These simplices form a subcomplex Xrn of Xn which is invariant 
under the operations of r. The formula (9.2) asserts that Kr n/r is a direct 
summand of Kr+l n/r; i. e., each of the inclusions 

b e X = Xl'n/r c X2'n/r c . . . c Xn-l'n/r c Xn n/r = Xr 
maps the FD-module (the homology module) of the subcomplex isomorphi- 
cally onto a direct summand of the FD-module (the homology module) of 
the total complex (arbitrary coefficients). 

Passing to geometric realizations (? 7) we obtain: Let Y be a CW-com- 
plex with base point p e Y. Let Yrn c fyn be the subspace of points 
(Y1, Y2, y - - ) with at most r components ya different from p. Then each 
of the inclusions. 

p e Y = Y1, F/r C Y2n/r C .Y. . c Yn1l'n/r C ynnfl/= yr 

maps the homology of the subspace isomorphically onto a direct summand 
of the homology of the total space (arbitrary coefficients). 

In the case of symmetric products (r = Sn) we may identify Yqfl/S, 
with Spq(Y) by the inclusion map SpQ(Y) -? SPn(Y) which is defined by 
[y1, y2, yq] -+ [y1, y2, *- yq, p, p, P. --p] . The formula of Steenrod (9.3) 
implies that this inclusion maps H(Spq(Y)) isomorphically onto a direct 
summand of H(SPn(Y)). 

10. Infinite symmetric product and symmetric algebra 

Let K be an augmented FD-module with base point $: P -? K (? 9). 
Define an inclusion in: Kn -+ K"+' by composition 

e x Id 
(10.1) in:Kn-~P x En_ > K xKn= Kn+' 
This inclusion is compatible with the formation of symmetric product; 
i. e., there is a unique inclusion jn: SP"(K) -+ SPn+'(K) (corresponding 
to the geometric inclusion at the end of ? 9), such that the diagram 

Ku - > K+ 

(10.2) s5l s 
Spn(K) > SPn+'(K) 

an 
is commutative; s denotes the natural projection. The direct limit of 
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the sequence K = SP'(K) 3ii SP2(K) 32*-- is denoted by SP(K) and is 
called the infinite symmetric product of the (augmented) FD-module K 
with base point (. (No augmentation was needed for the definition but 
it is essential for the sequence.) 

It is easy to see that the inclusion j,, maps the direct summand 
SPQ(K0) of SPn(K) = n SPQ(K0) (9.3) identically onto the same sum- 

mand in the decomposition of SPn+'(K). Therefore 

(10.3) SP(K) = P + SP'(K0) + SP2(K0) + * = 0 SP'(KO) 

(Steenrod). 
This suggests the following 

DEFINITION. For every module M over A put 

(10.4) S(M) = A + SP1(M) + SP2(M) + * * * = E7=0 SP"(M). 

For every module homomorphism : M -* M' define 

(10.5) S(P): S(M) -+ S(M') by S(G) = Id + SP'(P) + SP2(0) + 

Then S is a functor from modules to modules. Its prolongation to the 
FD-category (5.1') is also denoted by S. We have 

(10.6) S(K) = P + SP1(K) + SP2(K) + * * * = ,0 SP'(K) 
(10.7) S(F) = Id + SP'(F) + SP2(F) + - - - = =0 SPq(F) 

for FD-modules K, and FD-maps F. Formulas (8.4), (8.6), (8.8), and (8.9) 
give 

(10.8) S(M1 + M2) = S(Ml) ? S(M2), S(d1 + d2) = S(d1) ? S(:2), 

(10.9) S(K1 + K2) = S(Kl) x S(K2), S(F1 +F2) = S(F1) x S(F). 
Comparing (10.3) and (10.6) shows 

(10.10) SP(K) = S(K?) 

for an augmented FD-module K with base point. If K is generated by 
sub-FD-modules K1 and K2 such that K1 f K2 = $(P); i. e., K? = 
(K1)' + (K2)0 then (10.9) and (10.10) give 

(10.11) SP(K) = SP(K') x SP(K). 
This is the algebraic analogue to (3.14) in [2]. 

There is a natural multiplication in S(M): Let a: M + M -+ M be the 
homomorphism which is the identity on each summand. Then 

S(M) ? S(M) SW + M) S(M) 

defines a multiplication in S(M) which is abelian and associative and has 
a unit, namely the unit of A c S(M). (a does not change if we inter- 
change summands in M + M, therefore S(a) does not change if we inter- 
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change factors in S(M) (? S(M). Similarly the associativity of a implies 
associativity of S(a).) 

We call S(M) (resp. S(K)) the symmetric algebra over M (over K). It 
may be characterized by a universal property (Chevalley, Fundamental 
concepts of algebra, New York, 1956, Ch. V, 18), namely as " free com- 
mutative algebra with unit over M ". For instance S(A) = Atx] = poly- 
nomial ring over A in one variable x. 

Let :: M -? M' be a module homomorphism. If we apply the func- 
tor S to the commutative diagram 

Mv +M >-M 

M'?M' -AM' 

where a denotes the addition we obtain a commutative diagram 
S(a) 

S(M) (O S(M) >S(M) 

S(M') (0 S(M') -> S(M') 
S(a) 

in which S(a) is the multiplication. This shows that S(s) is a homomor- 
phism of algebras (with unit since obviously S(P) (1) = 1). It follows 
that S(K) is a commutative FD-algebra for every FD-module K. 

There is a natural augmentation and base point in S(K): Let 0 be the 
zero-FD-module, then S(0) = P = FD-algebra of a point. Applying the 
functor S to the zero maps K -- 0 and 0 -+ K gives augmentation S(K)-+ 
P and base point P -+ S(K) in S(K). The augmentation is nothing but 
the projection onto the first summand of (10.6). 

The connection between infinite symmetric products of FD-modules 
and infinite symmetric products of semi-simplicial complexes or topologi- 
cal spaces is the same as in the case of F-products (? 7). In particular 
it follows from (5.11) and [2] that for a free FD-module L (over the in- 
tegers) with Ho(L) = 0 the Pontrjagin algebra H*(S(L)) is the same as in 
a (weak) product of Eilenberg-MacLane complexes HqK(Hq(L), q). 

11. Reduced product space and tensor algebra 
The semi-simplicial equivalent of the reduced product space of James 

[7] is a s.s. monoid complex F+X which has been defined by Milnor [10] 
as follows: Let X be a s.s. complex with base point b e X0. Let (F+X)X 



HOMOLOGY OF SYMMETRIC PRODUCTS 79 

be the free (associative) monoid generated by Xn with the single re- 
lation b. = sn b = 1, and let If: (Fi+X)n - (F+X)n l be the homomorphic 
extensions of the face operators given on the generators Xn; similarly 
for si. 

This definition generalizes to augmented FD-modules K with base point 

a: P -- K. Let (F+K), be the free associative algebra over K& (i. e., 
the tensor algebra ? Kj) with the single relation bn = 1 = 1,, (bn the unit 
in $(P)n c K). Let ai: (F+K), -+ (F+K),-,, i < n, be the unique homo- 
morphisms of algebras with unit which extend the given face-operators 
on Kn, and define s, similarly. 

The single relation bn = 1 shows that (F+K)n is simply the free alge- 
bra over K , i.e., ? K , and F+K is nothing but the tensor algebra? (KO) 
(6.6) over the FD-module KO c K of augmentation zero. 

(11.1) F K= ?0 (KO) = P+ KO +KO x KO +KO xKO x KO+*--. 
The connection between this and Milnor's construction is formulated 

in 

(11.2). PROPOSITION. Let X be a semi-simpliciact complex with base point 
b, and let K be its FD-module (? 1) with augmentation and base point in- 
duced by X -* b, b -+ X (? 9). Then the FD-module of F+X is 

K(F+X) -F+K O K0 = P+ KO + KO x KO + KO x KO x KO+*-- 

PROOF. For every set I let F'l be the free monoid with unit over I, 
and let A F'l be the algebra (over A) of the monoid F'I. On the other 
hand form Al, the free module (over A) with generators I, and take its 
tensor algebra 0D Al. According to [1, Ch. III, 7, Ex. 7], these algebras 
are isomorphic, AF'I ? X Al. The Proposition (11.2) is a slight generali- 
zation of this: the set is replaced by a s. s. complex (a graded set with 
operators 8j, si), and instead of modules we take FD-modules (graded 
modules with operators 8j, si). The details of the proof are left to the 
reader. 

By Theorem (5.11), the homology of F+K is determined by the 
homology of KO (assuming K free over a principal ideal domain), which 
is essentially the same as for K (Hi(K) = H%(KO) for i > 0; Ho(K) = 
A + HO(KO)). This result of course follows much easier and in a more 
explicit form from (11.1) (cf., also [10, Theorem 5]), since one knows very 
well how to compute the homology of direct sums and cartesian products 
(the latter being equivalent to tensor products [5, 2]). The ring structure 
of H,(F+K) is also clear from (11.1). 

Using (11.2) this applies to the free monoid F+X over a s. s. complex 
and by geometric realization to the reduced product space of James 
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[10, Lemma 4], hence to the loop space f2EY of the suspension EY of a 
CW-complex Y. For instance, if Y is a wedge of spheres we easily re- 
cover the result of Bott and Samelson on H*(i2Y) (Commentarii Mathem. 
Helv. 27, (1953), III, 1. B). 
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