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Introduction

Let H be topological space with continuous multiplication (an -space)
which is associative and has a two-sided unit e. In analogy to the case of a
topological group we construct a universal principal quasifibration (= q.f.)

(E, p, B, H) with fibre H. As an application we get a classifica-
tion of fibre bundles with respect to fibre homotopy equivalence (see 7.6),
The universal q.f. is obtained by iteration of a construction which is

described in 2. This construction applies to any q.f. p:E---. B (see 1)
in which a (not necessarily associative) -space H operates (see Definition
2.2). In a functorial way it embeds such a q.f. into a bigger q.f.

f

p

such that the inclusion f is nullhomotopic (see 2.3). In particular there exists
always a q.f. whose fibre is homeomorphic with H and is contractible to a point
in the total space; we have only to begin with the fibration H--* P which
sends all of H into a point P, and in which H operates by right translations.
We speak of a principal q.f. (E, p, B, H) (see 3.1) if H is associative

and p :E -- B is a q.f. in which H operates such that (yh)h’ y(hh’) (y . E,
h, h’ e H). Applying the construction of 2 to a principal q.f. gives a
principal q.f. . Iteration gives a sequence +1 of principal q.f.s
together with inclusion maps. By taking the limit (in a proper way; see 3.4)
of this sequence one obtains a principal q.f. (E, p, B, H) which
is universal in the sense that all homotopy groups of E vanish (see 3.5).
In particular there exists always a universal principal q.f. with fibre H; as
above, one has only to start with a fibration H --. P (= a point).

If H G is a topological group and we begin our construction with a
principal bundle in the sense of Steenrod [6], then and are principal
bundles (see 4.1), and our construction coincides (see 4.2) essentially with
Milnor’s construction in [4].

In 4-5 universal principal q.f.s are used for a partial homotopy classifi-
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cation of principal H-bundles (= locally trivial principal q.f.s; see 5.1).
Two such bundles i {Ei, pi, B, H}, i 1, 2, are homotopy equivalent
(see 6.1) if there exist principal maps (see a.1) f’E , f-’E --, E such
that the composites ff-, f-f are homotopie to the respective identity maps,
by principal homotopies (see 3.1) which leave the fibres fixed (as a whole).
If B is a polyhedron, then 1 and are already homotopy equivalent if
there exists a principal map in one direction, say E --, E2, which lies over
the identity of the base (see 5.3). The classification theorem reads (see
6.2)" Let (E, p, B, H) be a universal principal q.f., and let
B be a polyhedron. (1) There exist principal maps gi’E -- E; (2) if
:Eg -* E. are principal maps, then and 2 are homotopy equivalent if
and only if the maps ’B --, B., induced by g, are homotopic.
The usual notion of fibre homotopy equivalence (see [8], IV or 7.1) cn be

reduced to homotopy equivalence of H-bundles" Let {E, p, B, F} be
a fibre bundle with locally compact fibre F, and let H be the space of all
homotopy equivalences F --, F. Define the associated principal H-bundle

{/, 10, B, H} as follows (see 7.2)" The fibre i0-(x) is the space of all
homotopy equivalences ’F -- p-(x); the operation of H in J is defined by
composition h oh(e/, xeB, hell). Then two bundles , i
1, 2, are fibre homotopy equivalent if and only if and are homotopy
equivalent (as H-bundles; see 7.4).

For bundles {E, p, B, F, G} with topological structure group (see
[6]) the classification with respect to fibre homotopy equivalence "factors"
through the usual classification with respect to ordinary equivalence as
follows" Let o {Eo, po, Bo, G, G} resp. , (E,, p,, B,, H) be
the universal principal G-bundle resp. q.f. as in 3-4 (H the space of homo-
topy equivalences F -, F). There is a natural homomorphism G - H
which induces a homomorphism (see 3.7-3.10)

Eo E,

Bo -- B..

Now, the equivalence classes of bundles over B are in one-to-one corre-
spondence with homotopy classes of maps B Bo (see [6], 19).
Two bundles 1, which correspond to the homotoly classes of, :B --, B o are fibre homotopy equivalent if and only if ,1, , are ho-
motopie (see 7.5).

This shows that the image under *:H*(B.) --* H*(Bo) consists of char-
acteristic classes which are invariant under fibre homotopy equivalence.
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1. Preliminaries on quasifibrations
We recall the definition and some properties of quasifibrations (see [3]).

1.1 DEFINITION. Let E, B be topological spaces. A continuous map
p’E --> B onto B is a quasifibration (= q.f.) if

(1) p.’ri(E, p-i(x), y) ._ 7ri(B, x) for all x B, y p-l(x), and i >= 0.

For i 0, 1 this means that we have an isomorphism between sets with
distinguished elements (see [3], 1.2). We define a group structure on
7rl(E, p-i(x)) by the requirement that (1) (for i 1) should be an isomor-
phism of groups. E, p, B, p-l(x) in this order are the total space, the pro-
jection, the base, the fibre over x of the q.f.

As in the case of fibre bundles the isomorphisms (1) lead to the exact
homotopy sequence of a q.f. (see [3], 1.4)

(2) r+(B) -- i(p-(x)) ----> v(E) ---* ’(B) ----) ....
If in a q.f. the base is arcwise connected, then any two fibres are of the

same weak homotopy type (see [3], 1.10).

1.2 DEFINITION. Let p’E B, p’:E’ -- B’ be q.f.s. A map f:E E’
is called fibrewise if there exists a (continuous) application ]’B ---, B’ such
that commutativity holds in

E f >E’

B B’.

We say ] is induced by f or f lies over

A fibrewise map induces a homomorphism of the exact honotopy sequence
of p into that of p’ (see [3], 1.8). If p’E ---> B is a continuous map, we call
a subset A c B distinguished with respect to p if p’p-(A) -- A, the re-
striction of p to p-(A), is a q.f. Then we have the following criteria.

1.3 LEMMA (see [3], 2.10). Let p :E ---) B be a continuous map onto B, let
B’ B be a distinguished set, and put E’ p-(B’). Assume there is a "fibre-
preserving" deformation of E into E’, i.e., there are deformations

with
Dt’E ---> E, dt’B B (t [0, 1])

Do id, Dt(E’) E’, DI(E) E’ (id identity map),

do id, dt(B’) B’, d(B) B’, and pD dp.
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Assume further
D1. -1 (p-l(d(x)))(p (x)) allxeBandi > O.

Then B itself is distinguished, i.e., p is a q.f.

1.4 LEptA ([3], 2.2). Let p’E ---. B be a continuous map, and let U, V c B
be open sets. If U, V, and U n V are distinguished with respect to p, then
U u V is distinguished.

1.5 LEMMA ([3], 2.15). Let p’E -- B be a continuous map. Assume that
B is the inductive limit of a sequence of subspaces B c B. B, satisfy-
ing the first separation axiom (points are closed), and each B, is distinguished
with respect to p. Then p is a q.f.

2. The basic construction
Every q.f. E -. B in which an -space H operates (see Definition 2.2) is

embedded in a q.f./ --/ such that E is contractible to a point in/. This
is done by suitably attaching CE X H to E where CE is the cone over E.

2.1 DEFINITION (see [5], IV, 1). An -space is a topological space H
together with a continuous multiplication

H X H -- H, (h, h) --, hh

with two-sided unit e. We ulso require thut the left translations

L, "H -, H, L,(h) hh

induce isomorphisms of all homotopy groups. (If H is arcwise connected,
this follows from the existence of a unit.)

2.2 DEFINITION. Let p’E -- B be a q.f., and H an -space.
of H in this q.f. is a continuous map

E X H --, E, (y, h) yh
such that

(1)

(2)

Define

(3)

ye=y

(y X H) F p-(p(y)) fibre through y.

An operation

y eE, heH

"H --, F (h) yh

,,’,(U) = (F) for all y and all i >__ 0.

This is obviously a generalization of the notion of a principal bundle.
The word "principal" is reserved, however, for the case of an associative
-spce. Note that we do not require y(hh) (yh)h.
Given u q.f. p’E -- B in which H operates we shall embed it in a q.f.

ib"/ -*/ such that the inclusion map E / is nullhomotopic. Roughly
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speaking our construction (patterned after Milnor [4]) runs as follows.
sider the diagram

E( ...EX H c CEX H

B E CE
P

Con-

where CE is the cone over E and E is considered as a subspace (base) of CE.
The map q is the natural projection, and is the operation of H in E. At-
tach CE X H to E and CE to B by the maps resp. p, i.e., form the topo-
logical sum E - CE X H, and identify (y, h)eE X H c CE H with
(y, h) yh E; similarly form B - CE, and identify y E CE with
p(y) B. Except for a slightly different (stronger) topology these quotients
are/ resp. /, and i5 is induced by p resp. q.
More precisely we proceed as follows. A point of/ is described by

(1) a real number with 0 -< _<_ 1,

(2) a point y e E whenever 0,

(3) a point h e H whenever 1.

We denote this point by Y lh where y resp. h is omitted if 0 resp. 1.
We use the following conventions:

(4) ylOIh=Oih, ylllh=yhll.

The topology in / is the strongest topology such that the "coordinate
functions"

(5)

t:/ --. [0, 1], yltlh---t,

yh:t-l(O, i E, y ltlh yh,

h:t-l[0, 1) H, y ltlh ’-* h,

y:t-(0, 1) E, y ltlh y

are continuous. I.e., taking counterimages with respect to these mappings
of open sets in [0, 1], E, H gives a subbasis for the open sets in/. There-
fore an application of a topological space into / will be continuous if and
only if its compositions with the coordinate maps are continuous (where
defined).

Define the inclusion

(6) f:E ---. , f(Y) Y 1 Y 1 e (y e E).

The composition of f with the coordinate maps is clearly continuous; there-
fore f is continuous. The composition with the coordinate map yh is the
identity map of E; therefore f is an inclusion map.
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A nullhomotopy of f is given by

(7) E
clearly (y, 1) -- f(y) and E X 0 -- 0 e, a point.
We may also consider H as a subspace (fibre) of/, using the inclusion

(8) i’H

or more generally

(8’) i,’H --> , i.(h) y ltlh (t # 1).
(This time the composition with the coordinate map h gives the identity map
of H.)
We now define/ and the projection ib"/ --/. A point in/ is denoted

by a symbol y_l_ where yeE, tel0, 1]. The symbols y_kt and y’+/- t’
give the same point of B if
either (a) t’ 0; this point is denoted by 0;
or (b) t= t’= 1 andp(y) p(y’).
The topology in/ is the strongest topology such that the coordinate maps

t’/--- [0, 11, y _1_ t---, t,
(9) y’t-l(O, 1) -- E, y _k -. y,

p(y)’t-l(O, iI ---* B, y .L ---> p(y)
are continuous.
The projection

(o) i9", , p(y h) y .L
is continuous because its composition with the coordinate functions is con-

tinuous; the composite map y ltlh y .k -- p(y), for instance, is the

same as the composition y[tlh --o yh P-- p(yh) p(y), and hence is con-
tinuous. Let
(11) ]: B /, ]() y .l_ 1 where e B and y e p-1().
As for f it follows that ] is an inclusion map. From the definition it is clear
that

(12) E f(E) -I(](B)).
The main properties of ib"/ -o/ are stated in the following

The map ’, -- is a q.f. There is a commutative2.3 PROPOSITION.
diagram

E

(i.e., f is fibrewise)
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where f, ] are inclusion maps, f is nullhomotopic, and f(E)

2.4 COROLLARY. Every -space H is fibre of a q.f. such that H is contractible
to a point in the total space.

Indeed, the projection p’H -- P of H onto a point is a q.f. in which H
operates (by right translations). Therefore Ib:/ -- / is a q.f. in which the
fibre H is contractible.

If we remark that/ is essentially the join of H with itself, then 2.4 is es-
sentially [7], Theorem 4.

Proof of 2.3. What remains to be proved is that ib is a q.f. This follows
from Lemma 1.4 if we show that the following open sets in / are distin-
guished"

(a) U t-(O, 1] {y _1_ tit > O}
(b) V t-[O, 1) {y _1_ tit < 1}
(c) W t-(O, 1) {y _1_ tlO < < 1} Un V.
Cases (b) and (c). We show that over V we have the product with H.

Define

(y _1_ t, h) ---* y h,

y h---* (y _1_ t, h), yeE, tel, hell.

These are reciprocal homeomorphisms which transform lb into the natural
proiection V X H -, V. Therefore V is distinguished, as well as every
subset of V.

Case (a). Deform -I(u) into E )-I(](B)) by

D" -I(u).__.) -I(u),
0 - 7. - ].(13)

D(y h) y lt +. 7.(1 t)l h,

Clearly Do id, DI(-I(U)) E, D E id.
A similar deformation in the base

(14) d" U "--* U, d(y .L t) y . t+ 7.(1 t)

shrinks U into B (do id, d(U) B, d, B id), and

(15) 15D d .
The mapping of the fibre Ib-l(y A_ t) into o-l(y _]_ 1) p-l(p(y)) under
D is given by y[ h --. Y 1 h yh, and hence is a weak homotopy equiv-
alence by assumption (3) in 2.2. Therefore Lemma 1.3 shows that U is
distinguished.

2.3 Remark. Results corresponding to Lemmas 2.1-2.3 in [4] can be
proved for/, in particular (see [4], 2.3): If E is m-connected and H is n-
connected, then/ is (m -b n -b 2)-connected. Since this is not needed for
the applications, no proof is given.
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3. Principal q.f. and universal q.f.
We define principal q.f.s over an associative -space. If we apply the

construction of 2 to such a q.f., we obtain again a principal q.f. Iteration
of the construction leads to a universal principal q.f.; we thus obtain
a functor from principal q.f.s to universal principal q.f.s.

3.1 DEFINITION. Let H be an associative -space (i.e., h(h’h’p) (hh’)hr’

holds). A q.f. p:E ---, B together with an operation of H in p:E -- B (see
2.2) is called principal q.f. over H if

(1) y(hh’) (yh)h’ for every y e E, h, h’ e H

(i.e., H operates on the right in E). A principal q.f. is denoted by
(E, p,B,H).

If (E, p, B, H) and ’ (E’, p’, B’, H) are principal q.f.s then a
principal map from to ’ is a fibrewise map f:E -- E which satisfies

f(yh) =f(y)h for y eE, hell.

A principal homotopy is a continuous map F:E X I ---, E’ (I [0, 1]) such
that

F:E ---. E’, F(y) F(y, t)

is a principal map for all e I.

3.2 PROPOSITION. If (E, p, B, H) is a principal q.f. over H, then the
construction :1 ---, [ of 2 can be given a structure as principal qJ.

such that

(2) (y h)h’ y ltlhh’, y itlh
The operation of H on extends the given operation on E c .

Proof. We define an application :/ X H -/ by (2), i.e.,

(y h, h’) ---, y ltihh’.
Since different symbols y ltlh may denote the same point, we have to show
that (2) is nonambiguous. The only case where this is not obvious is for
t-- 1. But ifyllllh y2111h.,thenyh-- y.h;hence

yl llh h’ y(hl h’)l 1 (y hl)h’l 1 (y h)hrl 1 y llh. h’.

Continuity of the operation ’/ X H follows as usual by composi-
tion with coordinate maps. We have to verify condition (3) of 2.2. But in
E the operation is the original one, and on every fibre in E it can
be identified (by 2, (8’)) with right translations of H. Finally we have

((y h)h’)h" y (hh’)h" y h(h’h") (y h)(h’h"),
i.e., we have a principal q.f.
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3.3 DEFINITION (see [6], 19). A principal q.f. (E, p, B, H) is called
universal if E is aspherical, i.e., vi(E) 0 for all i >- 0.

3.4 Construction of a universal principal q.f. Let (E, p, B, H) be a
principal q.f. over H. Define 0 , 1 0, ,+1 n, i.e.,
,+1 (E,+I, p+l, Bn+, H) is the principal q.f. which is obtained from
n by applying the construction of 2 and Proposition 3.2. We have a se-
quence of principal maps

(3)

and all horizontal maps are inclusions.
We define a limit + (E+, p+, B+, H) as follows. The sets of E+ resp.

B+ are the direct limits of the sets En resp. B, with respect to the maps (3),
i.e., the set E+ is the union of the increasing sequence E c E c E
and similarly for B+.
The topology in B+ is also the limit topology (inductive limit)

(4) B+ lim, B:,
i.e., a set A B+ is closed if and only if A n By is closed in By for all . An
application f:B+ -- X is continuous if and only if f lBv is continuous for

The topology in E will be stronger hn the limig topology (beouse w
want H to operate continuously in E). Define the proection

(5) p+:E.. -- B+ by p. E, p,.

Then we shall take the strongest topology for which p+ and some applications
Rn, still to be defined, are continuous.

Define open sets
B c Bk, E; p-l(B) Ek

and continuous maps
R’E---,E.r’B B,

as follows (induction on ] n)"
(1) k __< n. B B, E E, r and R are the inclusion map-

pings Bk B, E E.
(2) ] n-t- 1. LetB+ B+lconsist ofallpointsy_l_ t(y eE.,

e I) with > 0, and define r+l(y . t) p(y). Similarly E+I
consists of all points y ltlh with’t > 0 and R+(yltlh yh.

(3) ] > nW 1. We put
k--1 --1-1-1 E (R) (Wk_),B (r) (B_I),- R= R_R-rk rk_trk
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We cleurly hve

(6) Pn R r p

(7) R(yh) R(y)h, y e E he H,

i.e., R commutes with the operation of H. Also, if we consider B E as
subspces of B+I, E+I

B+I B B E+ E E,
(8)

+ B r R+E R
We cun therefore define sets B B E pT(B) E and appli-

cutions r’B B R’E E by

E E;,B B
(9) r B R=r, E =R,
and B is open, r is continuous (by definition of the topology of B).
Now define the topology in E to be the strongest topology for which p

and all R are continuous.

3.5 THEOREM. Let (E, p, B, H) be a principal qJ., and let E, B, H be
T-spaces (points are closed). Then p:E B together with the operation

(10) :E X H E E X H (= operation of H in E)

is a universal principal q.f. (E p B H).

Proof. We show first that the set-theoretical inclusion i:E E is a
topological inclusion. It follows then that B B (see [3], 2.11) is a dis-
tinguished set with respect to p, and by Lemma 1.5 that p is a q.f. (It
is esily proved that the B are T-spaces if E, B, and H are.) Then we
show that is continuous, and finally that E is aspherical.
() i:E E is an inclusion map. In order to prove continuity we

have to show that p i and Rni ure continuous (where defined). But
p i p and Ri R: (see (9) und (8)). Since R: id, this proves
also thut i is topological.

(b) :E X H E is continuous. Again we have to show that p
and Rn are continuous. But p is the sne as the nutural projection
E X H E followed by p, and R (where defined) is the same (see
(9) and (7)) s the composition

REH Xid E X H- E.
(c) (E) 0. If f:K E is any continuous map and K is compact,

then pf:K B mps K into some B (see [3], 2.12); hence f(K) E.
Since E is contractible to u point in E+ E, the map f is nullhomotopic.
Applying this to maps of spheres gives the asphericity of E.
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3.6 Remark. There is a stronger and simpler topology in E for which
3.5 is also true (but not the results of 4): One takes as subbase for closed
sets (i) the sets p-l(A) where A c B is closed; (ii) the closed subsets of E,
(considered as subsets of E).

With every "homomorphism" f:E ---. E’ between principal q.f.s we asso-
ciate a homomorphism f:E -- E’ of the corresponding universal principal
q.f.s, thus turning this construction into a functor.

3.7 DEFINITION. Let (E, p, B, H) and ’ (E’, p’, B’, H’) be prin-
cipal qf..s. A homomorphism -- ’ is a pair (f, 7) where 7:H -- H’ is a
homomorphism of -spaces (in particular 7(e) e’), and f:E E’ is a
fibrewise map satisfying

f(yh) f(y)7(h), y e E, he H.

3.8 Construction of f. Let (f, 7) be a homomorphism as in 3.7. Define
a map

(11) ]:/’, ](y h) f(y)l T(h), y eE, eI, hell.

It is easily verified that together with 7 is a homomorphism of principal
q.f.s. It lies over

(12) ’ --> ’, ](y _L t) f(y) _L t, y e E, e I.

Repeating the construction we obtain homomorphisms

f.’E, ---> E: f. ]._
which fit together (i.e., f, E,_I fn-); we can therefore define an applica-
tion

f iE, f,.

3.9 PROPOSITION. Let (f, 7):(E, p, B, H) ----> (E’, p’, B’, H’) be a homo-
morphism between principal qJ.s (see 3.7). Then (f, 7) is a homomorphism
(E, p, B., H) ---> (E’, p’, B’, H’). If

(f’, 7’) (E’, p’, B’, H’) (E", p", B", g")

is a second homomorphism, then ((ftf), 7’7) (f:f, 7’7). If
(f, 7) (id, id),

then f id.

Proof. f clearly maps fibres into fibres and therefore induces an appli-
cation ]:B B’. Since ]IB, ] (induced by f,), it follows that
] is continuous (by definition of the limit topology in B). Now it is clear
that (f, 7) is a homomorphism if we show that f is continuous, i.e., that
pf and R"f are continuous (where defined). But pf ] p and
R’nf f, R (follows from (11)), and these are continuous maps. The
two last statements of 3.9 are also easy to verify.
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3.10 For every associative -space H there exists a principal q.f., namely
(H, v, P, H) where P is a point and the operation of H in H is given

by right translations. The corresponding universal principal q.f. will be
denoted by (E, p, B, H). A homomorphism :H --* H’ between
3-spaces induces by 3.8-3.9 a homomorphism f f,:E---. E,. This
defines a functor from associative -spaces to universal principal q.f.s.

4. The case of a topological group: Milnor’s construction
4.1 THEOREM. Let G be a topological group and (E, p, B, G) a prin-

cipal q.f. If is a principal bundle (in the sense of Steenrod [6]), then (see
3) is a universal principal bundle.

Proof. We show first (by induction) that (En+l, pn+l, B+, G) is a prin-
cipal bundle. Since En+ E (Bn+ B) X G (see proof of 2.3, case
(b)), it is sufficient to show that each coordinate neighborhood U c B can
be extended to an open set U+ c B+I over which E+ is trivial. Let
:pl(U) --. G be a principal map (i.e., r(yg) r(y)g), let

U+I (r+)-l(U’*)

(i.e., U+ consists of points y _k with > 0, p,(y) e U’), and define

+"V+ X G -- p-:.(V+), (y _1_ t, g) (ylt (y)-lg),
--1 U,+, P,+I( ,+,) U,+I X G, (yltlg) (y .k t, r(y)g)

Then and are continuous, and OI, id, id, i.e., U+
can be chosen as coordinate neighborhood, and + is a principal bundle.

Iterating this extension of coordinate neighborhoods gives open sets
U B, k > n, and product representations

:u G- p(u), :p(u;) u G,

I, id, I, id.

The map can be defined by (z) (p(z), #R;(z)). Now define

U U U;,

"U X G-- pl(U), 4:IU; X G ;,
::p2(U:) -+ u: x G, : p2(U) ,

and we have I,(z) (p(z), rR(z)). The latter shows continuity of .
Since @ id, I,@ id, it remains to show continuity of @. But

(x, g) O(x, e)g,

Added in proof. A similar result has been obtained by M. Sv(wxa, A condition
that a space is group-like, Muth. J. Okayama Univ., vol. 7 (1957), pp. 123-149.
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the operation of G in E is continuous, and (x, e) is a continuous function
of x e B (definition of limit topology in B). This completes the proof of
4.1.

4.2 Remark. It may be shown that in the case of a topological group G
the bundle (Eo, p, B, G) is essentially (namely on finite levels) the con-
struction of Milnor [4]. We content ourselves with a brief indication how
the finite levels of the two constructions coincide, i.e., that for a given prin-
cipal bundle (E, p, B, G) the construction/ coincides with the loin E o G.
The points in / are described by symbols y g, the ones in E o G by

t0y hgwhereyeE; t, t0,tleI; geG, andt0W t 1. We define map-
pings

1 -- E o G, y tlg --, t(yg) (1 t)g,

E oG ---) , toy

The two composites are the respective identity maps which proves the de-
sired equivalence.

5. Principal H-bundles and their maps
The problem of classifying fibre bundles with respect to fibre homotopy

equivalence leads (see 7) to the following

5.1 DEFINITION. Let H be an associative 9-space.
is a locally trivial principal q.f. p :E--, B over H; i.e.,

A principal H-bundle

(LT) for every e B there is a neighborhood U(2) c B and a local
cross section s’U --, E (ps id) such that the map

(1) v U X H ----) p-l(U), Cv(x, h) s(x)h, x U, h e H,
is a homeomorphism. Principal H-bundles are denoted by {E, p, B, H}.

A principal H-bundle is a fibre bundle in the sense of [6] but possibly with-
out topological structure group.
A principal map between principal H-bundles is defined by 3.1. We do not

require that these maps preserve the additional structure (LT); the fibres
are therefore, in general, not mapped homeomorphically.

5.2 PROPOSITION. Let {E, p, B, H}, i O, 1, be principal H-bundles with a
polyhedron B as a common base, let (E, p, B’, H) be a principal q.f., and
fi:E--- E, i O, 1, principal maps such that the induced maps ]:B B’
are homotopic, ]o

___
]. Then there exists a principal map f:E -o E which

lies over the identity map of the base B.
If is also a principal H-bundle, and if ] :B ---, B’ is a homotopy between

]o and ]1, then f can be chosen such that fo
___

ff by a principal homotopy
(see 3.1) g:E---. E which lies over it (i.e., gO fo, g ff, pg ]pO).
Remark. In the second part of 5.2 the condition that should be a bundle

can be weakened. It is sufficient that homotopies dr: P B of polyhe-
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drons can be lifted into E such that the lifting is "stationary" where d is
stationary.

5.3 COUOLLARV (cf. [2], 2, Satz 1). Let i [E, p, B, HI, i 0, 1,
be principal H-bundles with a polyhedron B as common base, and let g E ----> E
be a principal map which lies over the identity map of B. Then there exists a
principal map f:E ---. E such that fg

__
id, gf _. id ( means that there exists

a principal homotopy D between the two maps such that each D lies over the ;den-

tity of the base).

Proof of 5.3. Take 0, f0 id, fl g, and apply 5.2. This gives a
principal map f:E----> E with gf id. Apply the same argument to f
nd obtain principal map f’:E1-o E with ff’ __. id. This gives
f’

__
(gf)f’ g(ff’) g; hence fg id.

Proof of 5.2. Let pS :ES_.._> B’ be the Serre-fibration (i.e., satisfying the
coyering homotopy property) which is ssociated with the map p:E -- B’.
The points of Es re the pairs (y, w) where y e E and w: I -- B’ is a path in
B’ starting at p(y), i.e., w(O) p(y). The projection pS maps (y, w) into the
end point w(1) of w. The inclusion

(2) j’E ---> Es, j(y) (y, p(y)), p(y) the constant path I -- p(y),

s homotopy equivalence. It is fibrewise and induces isomorphisms
r(p-l(b)) " r((pS)-l(b)) on the homotopy groups of the fibres (see [3], 1.10).
Therefore with respect to the operation (y, w)h (yh, w) of H in Es the q.f.
pS’ES B’ is principal over H, and the iniection j is a principal map which
induces the identity map of the base.
We can therefore replace the principal mapsf by jf and thereby reduce the

problem to the case where p’E ---> B’ is a Serre-fibration. (If is n H-
bundle, it already has the covering homotopy property, and we do not replace
it.) This has the advantage that we can take induced fibrations and again
hve the covering homotopy property, whereas induced "fibrations" of q.f.s
my not be q.f.s (see [2], 2.3). Let F’B X I --> B’ be the given homotopy
between ]0 and ]1 .jr;i.e.,/(x, t) (x) Then we can replace E - B’ by the
principal q.f. (Serre-fibration) with base B X I which is induced from
by the map /. (If is a principal H-bundle, then the induced bundle will
again be a principal H-bundle.) Hence we can assume

(a) p’E B’ B X I, (b) ]’B B X I isthemap](x) (x, t).

The maps f"E - E are again principal maps.
Now take a cellular subdivision of B so fine that each cell V is contained

in some neighborhood U over which both bundles {E, p, B, H} are trivial.
We shall then construct f:E--- E together with a principal homotopy
D :E X I --, E between f0 and flf such that:

(1) D((p)-I(V) X I) p-l(V X I) for every cell V of B,
(2) pD(y, t) ](pO(y)) (pO(y), t), y e E, if is an H-bundle.
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This is done step by step over the skeletons B of B:
For every vertex xe B, choose a homeomorphism of (p)-l(x) with H,

and identify the fibre with H by this map. Now, by the covering homotopy
theorem, we can choose a path d(t) in p-l(x I) c E starting at f(e), e
the unit of H, and ending at some point in p-(x, 1). Sincef’0((p)-l(x0)) --0(p-l(x 1)) is an isomorphism, we can assume that this endpoint is
f(y) for some y in E1. If is an H-bundle, we can further assume that
pd(t) (x, t) by applying the covering homotopy theorem in E to the
deformation of pd(t) into (x, t), the endpoints of the covering path remaining
stationary during the deformation (see W. HUEBSCH, On the covering homotopy
theorem, Ann. of Math. (2), vol. 61 (1955), pp. 555-563). Then define

f(h) yh and D(h,t) d(t)h.

This takes care of the 0-skeleton B.
Now assume that f and the homotopy D are already defined over Bn,

and let V be an (n 1)-cell in Bn+l. Let S OV be its boundary n-sphere.
Choose a homeomorphism (p)-(V) V X H. Using the covering homo-
topy theorem for we find a map d: V X I ----> p-(V I) such that

(a) d(x, O) f(x, e), x e V,
() d(z, t) D(z, e, t), z e S OV,
(’) d(V X 1) c p-I(V X 1).

Now consider the map

q: S -- (p)-l(v), ,(z) ](z, e).

It is nullhomotopic because fe:S---, p-(V X 1) is nullhomotopic (d pro-
vides a nullhomotopy) and f:r((p)-(V))-- r,,(p-(V X 1)) is a mono-
morphism (actually an isomorphism). Therefore e has an extension

V ---> (pl)-(V), IS .
The two maps

(3) x--fl(x) and x--d(x, 1) ofVinto p-(V X 1)

agree on the boundary S and therefore define an element of ’,+l(p-(V X 1)).
If runs through all possible extensions, then this element runs through all
of +l(p-(V X 1)) because f:+((p)-(V)) -n+(p-(V X 1)) is epi-
morphic. In particular this element is zero for a proper choice of , i.e.,
the two maps (3) are homotopic rel S. After a deformation of d we can
assume they are equal

(4) fl(x) d(x, 1).

We can also assume that p (x) .... x (by a covering homotopy in E). Fin-
ally, if is a bundle, we can assume that pd(x, t) (x, t) (using again a
covering homotopy, now in E). Then we define

f(x, h) (x)h, D(x, h, t) d(x, t)h, x V, h H, I.
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Doing this for all (n -t- 1)-cells extends f and D over B’+1, and proves the
proposition.

6. Homotopy classification of H-bundles
In classical theory principal bundles are classified by homotopy classes

of maps into the base of a universal principal bundle (see [6], 19). We
give a weak analogue of this result for the homotopy classification of prin-
cipal H-bundles.

6.1 DEFINITION. Two principal H-bundles i {Ei, pi, B, H}, i 0, 1,

(see 5.1) with the same base B are homotopy equivalent if there exist principa
maps f:E -- E and f-:E --* E such that ff- id, f-f id (see 5.3 for
the meaning of --).

6.2 THEOREM. Let H be an associative -space (satisfying T1, i.e., points
are closed), e (Ee pe Be, H) a universal principal q.f. (see 3.10), and
let B be a polyhedron.

(1) Every principal H-bundle {E, p, B, H} admits a principal map
g:E --(2) If {E, p, B, H}, i 0, 1, are principal H-bundles and
g:E ----> Ee are principal maps, then o and 1 are homotopy equivalent if and
only if the maps :B ---. Be, induced by g, are homotopic, o (11.

6.3 RemarE. There may exist mappings ,’B --. Be such that for every
principal H-bundle {E, p, B, H} and principal map g:E ---. Ee we have
/ , i.e., not every homotopy class of maps B--. Be corresponds to a
principal H-bundle. This is due to the fact that in general , does not induce
a bundle over B (possibly not even a q.f.; see [3], 2.3); for an example of such
a , see 7.7.
The proof of 6.2 is analogous to [6], 19. It uses the

6.4 LEMMA. Let {E, p, B, H} be a principal H-bundle over a poly-
hedron B, let A c B be a subcomplex and f" p-(A) ---. Ee a principal map of
the part of over A. Then there exists a (principal) extension F:E ---. Ee of
f to the whole of E.

Proof of 6.4. The extension is constructed step by step over the cells of
B- A. If x is a 0-cell in B-- A, we choose a homeomorphism
p-l(x) H and a point y e Ee. Then we define F’p-(x) ---. Ee by
F(h) yh, he H p-l(x).
Assume now F is already defined over all n-cells of B, and let V be an

(n 1)-cell in B- A, S OV its boundary sphere. Choose a homeo-
morphism p-l(V) V X H. Then F is already defined on S X H, in par-
ticular on S X e (e the unit in H). Since Ee is aspherical, there is a map
: V -* Ee such that q(z) F(z, e) for z e S. Then the extension F over
p-(V) is given by F(x, h) (x)h, x e V, h e H. This proves the lemma.

Proof of 6.2. Part (1) of 6.2 is Lemma 6.4 with A .
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Part (2). If 0 1, then by 5.2 there is a principal map f:E-- E
which lies over the identity map of the base. By 5.3 this implies that 0
and 1 are homotopy equivalent.

Conversely, let g:E--. E be a principal map. Define a principal H-
bundle {E’, p’, B’, H} by E’ E X I, B’ B X I, p’ p0 X id. Let
A c B’ be the set B X 0 u B X 1, and define a principal map

f:p-l(A) --. E,, f(y, O) gO(y), f(y, 1) gig(y), y Eo.
By 6.4 there is an extension

FIE X0uE X 1 =f.
The map 10 :B X I -o B, which is induced by F is then a homotopy between
0 and 01, Q.E.D.

7. Fibre homotopy equivalence
We apply the results of 6 to classify fibre bundles with respect to fibre

homotopy equivalence (see Thom [8], IV, I).

7.1 DEFINITION. Let {E, p, B, F}, ’= {E’, p’, Bp, F} be fibre
bundles (in the sense of [6] but not necessarily with topological structure
group). A fibrewise map

E

B-- B

is admissible if for every x e B the restriction

fx :P-I(x) -* P’-l(](x)), fx(Y) f(Y), y

is a homotopy equivalence.

A homotopy d’E X I --) E’ is admissible if for every e I the map

d E E’, d(y) d(y, t)
is admissible.

Let now B B’. A fibre homotopy equivalence (see [8], IV, I) between
and ’ is a pair of admissible maps

E f )E’ E’ f-

B B

such that ff--- id, ]-f
__

id by admissible homotopies which leave the base
fixed.
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We associate now with every fibre bundle whose fibre is locally compact
a principal H-bundle (see 5.1) over the same base such that , ’ are fibre
homotopy equivalent if and only if , ’ are homotopy equivalent (as H-
bundles; see 6.1).

7.2 DEFINITION. Let /E, p, B, F} be a fibre bundle with locally
compact fibre F. Let H be the space of all homotopy equivalences F -+ F
(with the compact-open topology; see [1], 2, 5). Composition of maps de-
fines a continuous associative multiplication with unit e in H. Define a prin-
cipM H-bundle l/, P, B, H} as follows. / is a subspace of the space of
all continuous mappings :F -+ E (with the compact open topology). A
map is in/ if

(1) +(F) is contained in some fibre p-l(x),
(2) :F --+ p-(x) is a homotopy equivalence.

The projection p is given by p() p(F), and H operates in/ by com-
position h-- h, e/, h e H. Continuity of this operation and of /7
follows from 2, 6 and 2, 5 in [1].

It is clear that for trivial , i.e., E B X F, is also trivial, B X H;
therefore local triviality of implies local triviality of , i.e., is a principal
H-bundle, called the associated principal H-bundle.

7.3 PROPOSITION. Let {E, p, B, F}, ’ {E’, p’, B’, F} be fibre
bundles with the same locally compact fibre F. With every admissible map
f’E E associate the map

Then ] is a principal map which induces the same map on the base as f. The
functorial properties (ff’) ’ and (id) id hold. Moreover the assignment
f ---> establishes a one-to-one correspondence between admissible maps E -+ E’
and principal maps , :-+ .

7.4 COOLL,RY. Two bundles {E, p, B, F} and ’ {E’, p’, B, F}
with the same base and same locally compact fibre are fibre homotopy equivalent
if and only if their associated principal H-bundles , ’ are homotopy equivalent
(as H-bundles; see 6.1).

The corollary follows from 7.3 since fibre homotopy equivalence is defined
in terms of admissible maps.

Proof of 7.3. Let f:E --+ E be an admissible map. Consider the diagram

(1)

/XF ]Xid)/,XF

E E’
f
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where P(, y) (y), e F, y e F, and similarly for P’. P, P’ are continu-
ous by [1], 2, 5, and (1) is commutative by definition of ]. Since P is clearly
onto, it follows from the commutativity of (1) that f is uniquely determined
byf.
Assume now a principal map "/ --/’ is given; we wang to eonsrue an

admissible map ’ :E --, E’ such gha O’ g. Since there is at mos one
’, the existence of ’ is a local (with respect to B) problem; we can therefore
assume that E is trivial, i.e., E B X F. Then/ B X H, and we define

g’ :B X F-- E’, g’ (b, y) g(b, e)(y),

b+B, yeF, e the unit of H.

In order to prove 0’ g it is sufficient to verify commutativity for (1),
i.e., g’(b, h(y)) g(b, h)(y) for h H; this follows from g(b, h) g((b, e)h)
(g(b, e))h and the definition of g’.

Proposition 7.4 together with 6.2 gives a classification theorem for fibre
bundles with respect to fibre homotopy equivalence. If we consider bundles
with structure group, this classification "factors" through the usual classifi-
cation with respect to ordinary equivalence as follows.

7.5 THEOREM. Consider fibre bundles {E, p, B, F, G} (see [6]) with a

fixed polyhedron B as base, locally compact fibre F, and topological structure
group G. Let H be the space of homotopy equivalences F ---+ F (with the compact
open topology), and let y:G----> H be the natural homomorphism (each homeo-
morphism g e G is a homotopy equivalence). By 3.9-3.10, induces a homo-
morphism

Eo ., E

Bo B

where {E o, p o, Bo, G, G} is a universal principal G-bundle (see 4) and
(EI pn Bn H) is a universal principal q.f. over H.

If we associate with every a classifying map .():B Bo (see [6], 19),
then

(1) two bundles , ’ are equivalent if and only if .()___ "r(’) (see [6],
19),

(2) two bundles , ’ are fibre homotopy equivalent if and only if ’()
___

(’).

Proof. Only the assertion (2) has to be proved. It will follow from 6.2
and 7.4 if we show that for every classifying map ,(): B --* B o there is a
principal map f()" F - E which lies over () (where is the associated
principal H-bundle). By definition of a classifying map there is a principal
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map g()" / --* Eo lying over ,(i), where {/, i, B, G, G} is the prin-
cipal G-bundle associated with (cf. [6], 8.9). Now is obtained from /
by "extending" the fibre. More precisely there is a homomorphism a"/ --.
of principal bundles, associated with ’G -o H (see 3.7), and the image of
/ generates J with respect to the operations of H. From this it is easy to
see that there is a unique application "J - E. which commutes with the
operations of H, and such that

is commutative.
proof of 7.3.

Let
Ba.

1
Ea / E

Continuity of " follows from local consideration as in the

[B, B a] be the set of homotopy classes of continuous maps of B into
’Ba -- B. induces ," [B, B a] -o IS, B.] by ,[] [], [] e [B, B a].

7.6 COROLLARY. The fibre homotopy classes of fibre bundles (as in 7.5) with
fixed base B,fibre F, and group G are in one-to-one correspondence with ,[B, B],
the image of [B, B] in [B, B].

For example, if B S", the n-sphere, it follows from 7.6 that the fibre
homotopy equivalence classes of bundles {E, p, S", F, G are in one-to-
one correspondence with the image , vn-l(G) in n_l(H), where v._l(H) is
the set of coniugacy classes of v._l(H) under the operations of 0(H) (cf. [2]).

7.7 Remark. In general not every map :B --, B can be factored, up to
homotopy, through a Ba, i.e., there may exist maps , whose homotopy class
does not correspond to any bundle {E, p, B, F, G}. It may not even corre-
spond to any bundle (base B, fibre F) at all, with or without topological struc-
ture group.

For an example let F consist of an isolated point plus a segment (topo-
logical sum). It is easy to see that every bundle with fibre F over the circle
S is fibre homotopy equivalent to the product S X F. The space H of
homotopy equivalences F --, F has two components, i.e., 0(H) Z group
with two elements; hence v(B.)= Z.. But an essential map S-- B.
cannot correspond to a bundle over S with fibre F.

This example suggests that in order to obtain a better classification theorem
one should consider more objects than bundles with a fixed fibre, e.g., admit
different but homotopy equivalent fibres or/and use some notion between
bundles and q.f.s.

7.8 Remark. Theorem 7.5 can be used to study the behavior of character-
istic classes under fibre homotopy equivalences. Characteristic classes of
bundles {E, p, B, F, G} are defined by cohomology classes in H*(Ba). It
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follows from 7.5 that the subring "*H*(Bs) c H*(Ba) consists of charac-
teristic classes which are invariant under fibre homotopy equivalence.

In the case of orthogonal sphere-bundles it turns out that the (integral
or rational) Pontrjagin classes pi H*(Ba) are not in "*H*(Bn), and actually
are not invariant under fibre homotopy equivalence, whereas the Stiefel-
Whitney classes are, as is known from the work of Thorn [8].
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