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Then
(K Gewen €510, 2]} 5 27,

n=20,1,..., and thus

[.L(G) > Z 2—(N+n)(2nl.) = +400.
n=0

Since 1.([0, 1]) = 0, p is not regular.
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ALBRECHT DOLD AND DIETER PUPPE

ABSTRACT. The notions of “stron ity”, « " i
‘ g duality”, “trace” and “transfer” i
categories are discussed. 2 monoidal
Bibliography: 22 titles.

. » Introduction

Motivated by topological applications we discuss the notion of “strong duality’
(8§81 and 2), of “trace” (84) and of “transfer” (§5) in monoidal categories. Primaril
we have in mind the following examples of monoidal categories: . ’

1. Mod ,— Modules over some commutative ring R (1.4),

2. 3-Mod ;—Chain complexes (1.5, 1.8),

3. Stab—Stable homotopy (§3),

4. Stabg— Parametrized stable homotopy over some parameter space B (§6)

5. StabG—~G—equivariant stable homotopy for some group G (§7), and ’

6. Stable shape theory (§8). o

' Strong duality in Stab is S-duality in the sense of Spanier and Whitehead [19]. We

give a .du'ect geometric proof for the S-duality between a compact neighborl;ood
retragt in R” and its complement (3.1), which can easily be generalized to Stab, (6.1)
Stabf (IZ%) and to stable shape theory (8.1). Alexander duality is not used fBor 'the:
21;;3 :oin?fgézlrt ril(:lbg;t 1s a corollary (3.3). Another corollary is the Lefschetz-Hopf

What one. gets in Staby (§6) is closely related to Dold [2], [3), [4], and to
Bec.ker—Gotthed [1]. Studying the latter paper we realized that some simp]e, abstract
notions are very powerful in this context. This not only enabled us to replace some
ad hoc computations by conceptual proofs (cf. e.g. 4.4, 4.5), but also to prove

stronger results: Extending Staby to a category of spectra one can do without

Becker-Gottlied’s hypothesis that the base space B has finite dimension. In particu-

lar we get a stronger theorem (6.2) than Theorem 1.1 in Becker-Gottlieb 1.

Some proofs are omitted in this paper. A complete and detailed exposition will be

published elsewhere.

CI. also the remarks added in proof at the end of the paper.
§1. Duality in monoidal categories
Let % be a (symmetric) monoidal category with multiplication ® and neutral

object I. That means that ® is a bifunctor (4, B) —» 4 ® B of ¥into itself and we



86 ALBRECHT DOLD AND DIETER PUPPE DUALITY, TRACE AND TRANSFER 87

have given coherent natural equivalences
A®(B®C)=(4®B)®C,
I®A=A=A4AQ1I,
y=v,; A®B>B®A.

That A is strongly dualizable will also be expressed by saying that 4 and DA are
stong duals or that DA is a strong dual of A (which obviously are symmetric
relations).

If A is strongly dualizable the coevaluation m = v,: I - A ® DA is defined to be
the composition

One knows by experience that it will do no harm to replace the three equivalences in
the first two lines by equalities. In the third line one has to be a little more carefu]
because v, ,: 4 ® A » A ® A is not the identity in general.

An object B of % is called a (weak) dual of A if it represents the functor
X ~ #(X ® 4, I),ie. if there is a bijection

(1.1) % (X®A4,I)= (X, B)

which is natural with respect to X. Letting X = B, there is a definite morphism,
called evaluation,

De ut id@s™! vy
I=DI—- D(DA ®A) > DA®DDA— DA ® A A® DA.

1.3. THEOREM. Let A and B be objects of a {symmetric) monoidal category € and let
e: B ® A — 1. Then the following are equivalent:

(a) B is a strong dual of A with evaluation .

(b) There exists n: I — A ® B such that the following compositions are the identity
morphisms of A and B respectively:

) 7®id, id;®e
d;:A=I1®A——AQ®B®A—A®I=A,
e=¢ B®A—1T

. idy@n e®idy
which corresponds to id ; € ¥(B, B). Let ¥* be the full subcategory of & whose idg: B=B®I—B®A4®B——I®B=B8.

objects have duals. By picking a particular dual(*) DA for each object A4 of ¥* we
get a contravariant functor D: * — . For f € €*(4, A') the dual (or transposed)
morphism Df € €(DA’, DA) is characterized by the commutativity of the diagram

(c) The map
Pxv: C(X,Y®B) > #(X®A4,Y)

idef which sends f: X — Y ® B into the composition
DA ® A ———> DA ® 4

f®id, idy®e
Dfeidl Ve X A—3Y®BR®A—YQI=Y

DA® A 3 I is a bijection for all objecis X, Y of €.
Furthermore, if one and hence all of these conditions are satisfied then the morphism

n in (b) is necessarily the coevaluation, and the bijection @, of (c) sends it into

The object I is obviously a dual of itself. Hence we may assume DI=1 .

By (1.1) a morphism X — DA may be defined by giving the corresponding ‘ y

X ® A — I.1f DA and DDA exist we define in this way 8§ = 8,: 4 — DDA by red=a%4
Y 4

A4 ® D4 - DA® A1 PrROOF. (b) and (c) are equivalent because they are two well-known ways of

If &, is an isomorphism, 4 is called reflexive. Now assume that duals of 4, B and expressing that the functors X — X ® 4 and Y — Y ® B are adjoint with counit

B ® A exist. Then we define
p=p,p DA ® DB — D(B ® 4)

idy®e
Y®B®A—Y®I=Y

{and unit
by

id@e;®id & dyon
DAQDB®B®A—>DARI®A=DA®A—1 X=X0@I—X®A4AQ®B|.

1.2. DEFINITION. A is called strongly dualizable if it is reflexive and g, p4 OF
equivalently the composition

(Mac Lane [11], §IV, 1). Since (b) is obviously symmetric in .4 and B, the same.
follow for (c). Knowing that, the implication (c) = (a) is almost trivial. It is not hard
to show (a) = (b) by writing down the appropriate diagrams, but we omit the details
here.

We owe the idea of this theorem to Lindner [10], where we have seen formulation
(b) for the first time. Strongly dualizable objects in monoidal categories have also
been studied by Pareigis [13] and Ligon [9], where they are called “finite objects”.

But the aims of these nanere are miite Aiffarant fram Ao

DA ® AR DA ® DDA S D(D4 ® 4)

is an isomorphism. The latter means that D4 ® A4 is (canonically) self-dual.

AN P e a NImta that 8 dA11al ahiect e defined uniauelv un to isomorphism.



1.4. ExaMPLE. Modules. Let R be a commutative ring (with unit) and consider the
category = Mody of (unitary) modules over R. The ordinary tensor product
defines a monoidal structure for which I = R, considered as a module over itself, is
a unit object. Every module 4 has a (weak) dual D4 = Hom z(4, R), and e, is the
usual evaluation map. It is clear that every finitely generated projective module is
strongly dualizable. The converse is also true.(?) :

PrOOF. Let

7(1)= 2 a,®b;
i=1

where n: R — A ® Homz(4, R)is the coevaluation. Then the map
A— R", R"— A,
n
ar (e(b;®a)li=1,...,n), x*= Y x;a;
i=1

show that A4 is isomorphic to a direct summand of R".

If R is a field then 4 is strongly dualizable if and only if it is reflexive. In general
this is not true: If R = Z then the countable infinite product and the countable
infinite coproduct (= direct sum) of copies of Z are duals of each other. Hence both
are reflexive. But they are not strongly dualizable.

If A has a finite base ay,. . ., a, then

7(1) = Y a;®a,
i=1

where a,,. . .,a,, is the dual base of Hom z(4, R). .

1.5. EXaMPLE. Chain complexes and chain maps. With R as above consider the
category € = 9-Mod p of chain complexes

A=(d4,3:4,~4,,l9€ Z)

consisting of modules over R and “poundary operators” 9. Morphisms are th.e chain
mapsf=(f 4, Blg € Z) consisting of linear maps ]",l which commute with 9. ‘

The tensor product of chain complexes giving a monoidal structure on 9-Mody is
defined by )

(49B),= @ 4,®B,
ptl=n

da®b)=0a®b +(;1)l"la ® b
wherelal =pifa€ 4, A neutral object I = (I,jq € Z) is given by
R, =0,
I ={ 7
q 0, qg+0.

The equivalences showing that ® is associative and that I is neutral are the obvious
ones, whereas the commutativity of ® is given by the equivalence

v:A®B—>B®A
a® b~ (-1)"b&a.

(%) Russian translator’s note. Le. a finitely generated strongly dualizable module is projective.

Every chain complex 4 has a (weak) dual D4 defined by

(DA4), = Homg(A4_,, R),

(DA), > (DA) 4-1,

A—q A—q+1
Lo (1) Mea |
R R

and the evaluation map is the obvious one.

A chain complex A will be called finitely generated if A, is a finitely generated
module for all g and 4, # 0 only for finitely many g. It will be called projective if 4,
is a projective module for all g, although this does not imply that 4 is a projective
object of 3-Mod .

1.6. PROPOSITION. A chain complex A is strongly dualizable in 8-Mod p if and only if
it is finitely generated and projective.

We postpone the (easy) proof until after 2.4, where it will serve at the same time as
an illustration for the interplay between duality and monoidal functors.

Fven in the case that R is a field, a reflexive chain complex 4 need not be strongly
dualizable, because A4 is reflexive in that case if and only if 4 v is a finite-dimensional
vector space for every ¢. There may be infinitely many g such that 4, # 0.

If the chain complex 4 has a finite base a,,...,a, (by which we mean the union

over g € Z of bases of 4,) then just as in the case of modules the coevaluation 7:
I - A ® DA is given by

(1.7) 7(1) = ; a;® a;

where a},...,a’, is the dual base of DA which is characterized by
lajl = Hajl, aj(a) =1, ai(a;)=0

for all i and for all thosej # i for which |a;| = {a,|.

The formula (1.7) can either be proved by calculating the dual of the evaluation
map & or, more simply, by verifying that condition (b) of 1.3 is satisfied if one
defined 5 by (1.7).

1.8. EXAMPLE. Chain complexes and homotopy classes of chain maps. This is the
same monoidal category as in the preceding example except that the morphisms are

not the chain maps themselves but homotopy classes of chain maps. We denote it by
Ho(0-Mod ).

1.9. PROPOSITION. A chain complex A is strongly dualizable in Ho(3-Mod ) if and

only if it has the homotopy type of a chain complex which is strongly dualizable in
9-Mod p.

PROOF. Sufficiency is obvious. We omit the proof of necessity, which will not be
used in this paper.
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2.3. DEFINITION. Let T: ¥ — ¥’ be a monoidal functor. An object 4 of %is called
T-flat if it is strongly dualizable and satisfies one of the equivalent conditions (a)—(c)
of 2.2.

If T preserves tensor products then the notions “7-flat” and “strongly dualizable”
. coincide.

§2. Monoidal functors . e

Let % and %’ be two monoidal categories W:lth neutral oszcts I a;ld I e

tively. The multiplication will be denoted by ® m bo?h cases. A monoidal funct
@ — %' is a functor together with natural transformations ,

¢=¢AB:TA®TB—>T(A®B), I —>TI,'

al transformations involved in the associa

“peutrality” of I and I". Here, in additic

alence, because this is the case in a

. 2.4. COROLLARY. If A is T-flat then TA and TDA are strongly dual with evaluation
which are compatible with the natur

and commutativity of ® and in t.he 1
shall always assume that I” — T11s an ?mvTI
ications. Hence we may even write I = [1. .
apglicaé}(z.AMPLE oF MonoIDAL FuUNCTORS. (a) Let fé-be any monou.lal ca
Whi-Cl.l every object 4 has a weak dual DA. Then D is a (contravariant). m
functor of ¥into itself (cf. §1).
u(b) The canonical functor 3-Mod z — Ho(d-Mod ¢) (1.5,.1.8). [
(c) Let Gr-Mod ¢ be the category of graded R-modules, i.e. the fu subcat
3-Mod , consisting of all chain complexes with zero boundary operator
- R .

idal functors
have monoi Gr-Mod , € 3-Mod z = Gr-Mod

T Te
TDA®TA—>T(DA®A)>TI=1TI

and coevaluation
T 1
I'=TI—-T(A4 ® DA) - TA ® TDA.

PROOF. Apply ¢ to condition (b) in 1.3 and use 2.2(a).
PROOF OF PROPOSITION 1.6. Let

T:9-Mod, = Gr-Mod, —» Mod,, A4+— @ZAq

ge
be the composition of the functors in Examples 2.1(c) and (e). This T preserves
tensor products. If 4 is strongly dualizable, so is T4 by Corollary 2.4. Hence T4 is
finitely generated and projective (1.4). But this is obviously equivalent to saying
that A is finitely generated and projective in the sense of .1.5. Conversely, if 4 is
assumed to be finitely generated then the canonical maps 4 — DDA and DA ® A
— D(DA ® A) are transformed by T into the corresponding maps for 74 instead of
A.If, in addition, 4 is projective then these transformed maps are isomorphisms. But
T reflects isomorphisms. Hence A is strongly dualizable by 1.3(a).
* We conclude this section by investigating what 7-flat means in Examples 2.1(a)
d (d). First let € be any monoidal category and consider ®: ¥X ¥ — €. With
the obvious monoidal structure on % X ¥ this functor is monoidal and preserves
tensor products. Hence we obtain from Corollary 2.4 that the tensor product of
strongly dualizable objects is strongly dualizable (which means that the full subcate-
gory % of % consisting of all strongly dualizable objects is a monoidal subcategory of
%) and that D: ¢ — % preserves tensor products. Hence the notions “D-flat” and
“strongly dualizable” coincide. With respect to Example 2.1(d) we have

where the latter one just replaces d by éer;z/.I .
: 3-Mod z) — Gr-Mod g-
(d) Homology H: Ho( R . .
(e) The functor Gr-Mod ; — Mod g defined by A = 63 o 4, -
In §3 we shall consider monoidal functors mvol@g ?he catego ’
homotopy which will be of particular interest for the apphcaﬁc?ns we ha‘,lef it
OWe slk)la]l say that a monoidal functor T is compatible wzthT;); P-res:‘h
i i ivalence. 5 is
i al transformation 7 15 an equiv A
o ey and i al) in examples (2) and (d). Itit 15
les (b), (c) and () but not (in gener ) . (
Z);i:l tl;en Em)e has to ask sometimes whether for some particular objects A ang
the morphism 7, is an isomorphism. . :
92, TuEOREM. Let T: €— €' bea monoidal functor and A an objegt of 4
stro'nély dualizable. Then the following conditions are equivalent:
@rnT4e TX= T(A4 ® X) for all objects X of €.
(by7: TA ® TDA = T(A ® DA). .
(c) There exists a morphism f such that the diagram
Ty

T 5 T(A® DA) ' .~ 2.5. PROPOSITION. Let H: 9-Mod  —» Gr-Mod ; be the homology funcior and let A
be a chain complex such that A ¢ is a flat R-module for each q € Z. Consider the

il T conditions:

ro- _/___) TA ® TDA (a) H A is a flat R-module for each q € Z.

 (b)m: HA ® HX = H(A ® X) for all chain complexes X.

. Then (b) = (a). The converse (a) = (b) is true if one of the following additional
ypotheses is satisfied:

- (1) 4 has the homotopy type of a chain complex B which is bounded below (i.e.
= 0 for all g < g, and some q, € 7).

(2) The global homological dimension of the ring R is finite.

conumutes.

] : - a 9
PrOOF. The'implications (a) = (b) = (c) are trivial. To prove (c) =-(a)

(c) and form the composition
2 T(A ® X)
T(A@X)=I’®T(A®X) > TA®TDA®

) id® T(e®id) T(I® x)=T . . .
i@: TA® T(DA® A® X) —— T4® Cas “ PROOF. (b) = (a) is obvious. The converse (a) = (b) may first be reduced to the

i ) uslng the exact Sequen(:e 01 Chaln
s
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complexes 0 = ZX — X 5 BX — 0. Then one uses a projective resolution P of M
and compares A ® M to the double complex4 ® P. .

In general (a) = (b) is not true without (1) or (2). Example: R = Z/4Z, A, =7/42
for all ¢ € Z, 9 = multiplication by2, X=X, =M=1/2L

§3. Stable homotopy

We define the stable homotopy category Stab as follows: Objects are the pairs
(X, n), where X is a well-pointed compactly generated space (pot necessarily
Hausdorfl) and n € Z. The set of morphisms from (X, n) to (Y, m)is

Stab(( X, n), (¥, m)) = io]im[S"*" A X, S"TEA Y],
- 00
where A is the smash product in the category of (pointed) compactly generated
spaces, the brackets [ , ] denote the set of homotopy classes and the bonding maps

are given by smashing with $1. Composition of morphisms is the obvious one.
A monoidal structure on Stab is given by

(x,n)®(Y,m)=(XAY,n+ m).

In order to turn this into a functor we have to be a little careful and introduce a sign.
If two morphisms (X, n) = (X', n') and (Y, m) = (Y, m') are represented by

fiSTEAX > STTEAX, g SmH A Y - STTLA Y,
respectively, then their ® -product is formed by forming
FAgSTRAXASTIAY - STHEA X ASTHAY,
transforming it into

Sn+m+k+l/\ XAY— Sn’+m'+k+! AX A Vi

by interchanging the middle factors and multiplying (the homotopy class) by

(=1)¢"*™. Then the construction will be compatible with the bonding maps. .
A neutral object is T = (S°,0). The equivalences which give the associativity of ®
and the neutrality of I are the obvious ones. Commutativity of ® is given by
v: (X, n) ®(Y,m) = (Y, m) ® (X, n)
represented by (-1)"™ times the stable homotopy class of the ordinary interchange
map X A Y — Y A X (the sign is necessary because otherwise we would not obtaii}
a natural transformation). : .
Forming the ®-product with (SY, p) as a left factor defines a functor 27 of Stab
into itself which sends (X, n) into S°AX,n+p)=(Xn+ p). These functors Z?
are defined for all p € Z and satisfy

sp.5e=3r+ 2= identity functor.

We sometimes abbreviate (X, 0) by X. Then we may write 27X instead of (X, n).

If p > O then there is an obvious isomorphism (S°, p) = (57,0), represented b}{
the identity of SP. This shows that 57 is equivalent to smashing with §7, ie. to
ordinary p-fold suspension.

1t is sometimes convenient to represent pointed spaces by pairs of spaces. We
make the convention that if iz X’ — X is any map between (unpointed) compactly
generated spaces then (X, X") denotes the object C, = (C;,0) of Stab, where C; 18 the

mapping cone of i with the vertex of the cone as base point. Which map i we mean,

will always be clear from the context. Usually i will be an inclusion X’ € X. Note
that (X, @) = X*, i.e. X with an additional isolated point as base point.

3.1. THEOREM. Let K be a compact subset of R” and a neighborhood retract. Then
(K, @) and Z~"(R",R"\ K) are strongly dual in Stab.

Strong duality in Stab is nothing else but S-duality in the sense of Spanier and
Whitehead (Spanier-Whitehead [19], Spanier [18], Switzer [20], 14.200%)).

If K is a subcomplex of a simplicial decomposition of R” then the above theorem
reduces to Lemma 5.1 of Spanier [18]. Apart from proving a somewhat more general
theorem our point is that our proof is independent and quite different from former
proofs. It consists of defining explicitly the evaluation and coevaluation morphisms
in Stab and verifying condition (b) of 1.3 in a © ge‘ometricél” way. In particular we
do not use Alexander duality. On the contrary, Alexander duality is a corollary of
Theorem 3.1, as we are going to show now.

1If M is a module over R let (M, n) be the chain complex such that

(M,n)q={84’ qg=n,

For a pointed space X with base point x, let $X denote the singular complex of the
pair (X, x,) with coefficients in R. We “extend” this to a functor

§: Stab — Ho(3-Mod)

as follows: An object (X, n) of Stab goes to (R, n} ® SX. A morphism f: (X, n) -
(¥, m) of Stab is represented by a pointed map '

FSTHRAX > STTEAY

q+n.

for some k € Z. Consider

(R,n+k)®SX - (R,m+k)®SY

! l
Ssrtk @ SX - Ssmke SY
i l
Sfe

S(smcax) 5 S(S™EAY).

The vertical arrows are chain homotopy equivalences, the upper ones induced by
§S! = (R, I), while the lower ones are Eilenberg-Zilber maps. The upper horizontal
arrow is the morphism in Ho(9-Mod z) which makes the diagram commutative.
Shifting the grading by k, we obtain from it
5f: (R, n) ® §X > (R, m) ® §Y.
By the Eilenberg-Zilber theorem there is a natural equivalence
§(X,n) ® S(¥,m)=(R,n) ® SX®(R, m) ® §Y
=(R,n+m)®SxeSY— (R,n+m)@S(XAY)
=S(XA Y, n+m)=S[(X,n)e(Y, m)].

(3)Switzer defines an S-duality by asking that two maps which he calls D, and , D are bijective. Note
that by our Theorem 1.3 one of these two maps is bijective if and only if the other is.



Thus we have

3.2. ProposiTION. §: Stab — Ho(3-Modg) is @ monoidal functor which preserves
tensor products.

By applying Corollary 9.4 to this functor § we get from Theorem 31

3.3. CorOLLARY. If K is a compact subset of R" and a neighborhood retract then the
chain complexes SK and )
. (R,—n)@S(R",R"\K)=(R,1—n)@S(R"\K)
are strong duals in Ho(3-Mod r)-

This obviously implies Alexander duality for K and R"\ K. (SK denotes the
singular complex of K and S®",R"\ K) = SR"/SR'\ K).) .

The rest of this section is devoted to the proof of Theorem 3.1 1.71Ist we have to
say a little more about the representation of pointed space_s by pairs of spaces. A
map of pairs (f, f): (X, X" - (¥,Y"), e, a commutative diagram

f

X - Y
i1 TJ
x Lo

induces a pointed map of the mapping cones C; = Cj, hence a morphism in § tat:,
which will also be denoted by (f, f') or sometimes just by f. If f1 X = ¥ and f":
X’ — Y' are both homotopy equivalences then so is the induced map C; - C;, hence
i isomorphism in Stab. '
fls"I;I; 11::;1 1;—5111121 says that excision gives an isomorphism in Stab. In order to avoid
a discussion about the notion of subspace in the category of compactly generated
spaces we assume that everything happens in a metrizable space, although the lemma
holds much more generally if one formulates it properly.

3.4. LEMMA. Let X be metrizable and let X' and U be subspaces of X whose int'eriar.'s
cover X. Let U' = UN X'. Then the inclusion (U, U") € (X, X) is an isomorphism in
Stab.

PROOE. Let v: X — [0,1] be a continuous function such that

Cl{xjp(x) <1} c X', Ci{xlo(x) >0} c U
(where Cl means closure). For the mapping cone of the inclusion X’ C X we may
write X U CX". Consider the commutative diagram

A\ U) U {(x, D)l € Ut < 0(x)) Svucr
L lg
(X\X) U ((x 1)lx € X, < 0(x)) Sxucx,

where g is induced by (U, U) © (X, X"). (g is not always a topological embed@g.)
The horizontal inclusions are homotopy equivalenices because there are obv10.uS
deformation retractions to the subspaces. i is a homeomorphism, as one can easily
check. Therefore g is a homotopy equivalence. '

(X, X)X(Y,¥)= (XX Y, X X YUXXY),

although this is not the product in the sense of category theory. Again, for simplicity,
we assume that X and Y are metric.

3.5. LemMA. There is a canonical morphism
(X, x)e(¥,Y) - (X, X) X(Y,Y)
in Stab. It is an isomorphism if X" and Y’ are open in X and Y respectively.

ProOOF. Let
Z=XXYX0UX XY XIUXXY X1
be the double mapping cylinder of
] <
XXY<XXY—->XXY.
There is an obvious map

zh X xyuxx¥YCcxxy,
It is not hard to check that
(X, X)e(Y,Y)=(XUCX)A(YUCY)
is canonically homeomorphic to the mapping cone of Z — X X Y. p induces a map
from this into the mapping cone of

[
XXYUXXY—->XXY,

i.e., into (X, X") X (¥, ¥"). This map is a homotopy equivalence if p is. But if X" and
Y’ are open, then X’ X Y and X X Y” are open in X X Y, and then it is well known
that p is a homotopy equivalence.

Note also that in Stab we have

ST =R/ {x||lx|| = 1} = (R, {x]|[x]| = 1}) = (R",R"\ 0).

Now we are able to construct the morphisms ¢ and 5 in Stab which will turn

out to be the evaluation and coevaluation for the strongly dual pair (K, &) and
=-"(R", R"\ X). In the case of

e 2"(R,R"\K)®(K, ) S°
K may be an arbitrary subset of R”. It suffices to define Z". This is done by
Ell
(R, R\ K) ®(K, §) -=-=--=-> 2'S°

¥ [

(R*"X K,(R"\K) X K) = (R",R"\ 0),

(x,k)—»x—k.




7:8° > (K,2)® =-"(R",R"\ K)

we do need the hypotheses that K is compact and that there is a neighborhood V'of;

K in R and a retraction r: ¥ — K. We also choose a closed ball B in R” (with center
0) such that K < B. Now we define 2" by

g0 2T L (K, 2) 8 (RLRI\K)
IR Lp
(R",R"\ 0) (K, 2) xR, R\ K)
iTu Il
(3.7) (R",R"\B)C (R",R"\K) (KXR",KX(R"\K))
jtu Trxid

(V,V\K) W xR,V X®R\K)),
v~ (v,0);

i is an isomorphism in Stab because it is represneted by a pair of homotopy
equivalences. j and p are isomorphisms in Stab by Lemmas 3.4 and 3.5 respectively.

Tn order to finish the proof it suffices now to verify the two identities in Theorem
1.3(b). For the first one we have to form (id, ® e)(n ® id,), where we abbreviate
(K, @) by K. Suspending n times gives the composition

g xid
(R", R"\ 0) X K—— SEXR,R\K) XK

X3 (R, RT\ 0) > (R, RPN\ 0) X K,
where we have already replaced ® by X using Lemma 3.5. (The interchange mapy
is due to the tramsition from Sn(id, ® &) to idg ® 2ne) Inssartmg 2"?1 and 2"
according to their definitions (3.7) and (3.6) leads to the composite morphism

(R",R"\ 0) X K (R",R"\ 0) X K
ixidt . Ty
(R",R"\ B) X K C (R",R"\K) X K K x(R7,R"\ 0)

indT[R Trxid
(V,V\K)x K - ¥ % (R",R"\ 0),

(v, k) - (v,0— k). ,,
As in the proof of Lemma (6.12) in Dold [4}, one shows that replacing (v, k) =
(v, v — k) by (v, k) = (k, v~ k) does not change the morphjsm in Stab. But after
the replacement the composite morphism equals
f .d n n
(R",R"\ 0) X K—'f—r(R",R"\B) x K — (R",R"\ 0) X K,
(x, k)= (x— Kk, k),

which is homotopic to the identity by (x, k, t) = (x — tk, k). The proof of the
second identity in Theorem 1.3(b) is similar.

4.1. DEFINITION. Let @be a monoidal category, and 4 a strongly dualizable object
of € with evalution ¢ and coevaluation n. Let f be an endomorphism of 4. Then the
trace of of fis defined to be the composition

idxf e
(4.2) of: 15 A®DA>DA®A—DA® AL

4.3. EXAMPLES. (3) ¥ = Mod z. Wehave I = R; hence of: R = R, and we identify
of with (af)(1). of is the usual trace. If 4 has a finite base, of is the sum of the
diagonal in the matrix corresponding to f.

(b) €= 9-Mod  or Ho(3-Modg). We identify I = (R,0) with R and again of
with (of )(1) € R. of is called the Lefschetz number of f. If the chain complex 4 is
finitely generated and projective (not only up to homotopy equivalence), then

of = ¥, (-1)7f,,

qeZ

wheref: A, = A, The sign comes from the interchange map v in 4.2).
(c) %= Stab. We have of € Stab(S°, §°) = Z, where the identification is such
that the identity map of §° corresponds to 1 € Z.

4.4, PROPOSITION. Let T: € — €' be a monoidal functor and A an object of € which
is T-flat (2.3). Then oTf = Taf for any endormorphism fofA.

PROOF. Apply T to the line (4.2) and use Corollary 2.4.

4.5. COROLLARY. Let f be an endormorphism of A.

(a) If H: Ho(8-Mod z) — Gr-Mod  is homology and A has the homotopy type of a
finitely generated projective chain complex such that H, A is a flat R-module for each
g € Z, then the Lefschetz numbers of f and Hf are equal. _

(b) If S: Stab — Ho(d-Mod ) is the singular chain complex functor defined after
3.1 and A is strongly dualizable in Stab, then the Lefschetz number oSf € R is the
canonical image of of € Z.

(c) If H: Stab — Gr-Mod, is reduced homology (i.e. H=HoS with § as in (b)
and H as in (a)), A is strongly dualizable in Stab and pig A is a flat R-module for each
g € Z, then the Lefschetz number oHf € R is the canonical image of of € Z.

PROOF. (a) follows from 4.4 and 2.5. Note that HA is a fortiori finitely generated
and projective (by 2.4 and 1.6).

(b) follows from 4.4 and 3.2.

(c) follows from (a) and (b). (Compare this proof to the proof of Lemma (2.1) in
Becker-Gottlieb [1].)

One can now derive the Lefschetz-Hopf fixed point theorem as a corollary of
Theorem 3.1 and Proposition 4.4. Let K be a compact subset of R”, V a neighbor-
hood of K in R” and r: ¥ — K a retraction. Let f: K — K be a continuous map with
fixed point set F. Let F* be the corresponding map of K™= (K, ).
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E"SO Enﬂﬁ E"SO
I ' i
(R“, R” \ 0) . » (R", R \ 0)

IR I v
v—frv

(RLR'\B) C (R,R"\K) 1

U,
o] v 0
(V,V\K) c (V,V\F)
Going around the lower part of this diagram and applying H,,(QZ),AOIK-: gets 2
homomorphism which is multiplication by the fixed point index of f. This is the
definition of the index in Dold [1a], p. 202. Hence
index f = H (Z"of*,Z) = Hy(of*; Z) = A(of*; Q) = oHf "= oHf.

4.6. CoroLLARY (LEFSCHETZ-HOPF). If f is a map of a compact ENR into itself
then the index of f equals the Lefscheiz number of Hf: HK — HK.

We conclude this section by listirig some formal properties of the trace.

4.7. PROPOSITION. Let € be any monoidal category.

@af=fforalf:I- 1

(b) oDf = of if f: A = A and A is strongly dualizable. .

(c) o(f, ® f,) = ofy ® ofy = (afy)e(ofy), if fi: A; = A, and A, is strongly dualiz-
able,i =1, 2.

(d o(fg)=o0(gf)=0(y(f®g) if f: A—>B, g B—>A and A and B are
strongly dualizable.

PROOF. (a) is trivial. (b) and (c) follow from Proposition 4.4 and the fact that the
monoidal functors D: #— % and ®: ¥® ¥ — ¥ preserve tensor products (cf. the
discussion preceding Proposition 2.5). The proof of (d) is left to the reader; using (b)
it becomes simple diagram chasing.

85. Transfer

Let #be a monoidal category. An object 4 together with a “diagonal” morl?hism
d: A —> A ® A is called a coalgebra: ¢: A — I is called a counit of (4, d) if the
diagram

I®Ad < A 5> 41

CVN ld %c

A®A

commutes. There is an obvious duality to algebras and units, for which a theory
analogous to the following can also be formulated. We are giving preference to the
coalgebra case, because we want to apply it in the next section to %= Staby. Fpr the
rest of this section let (4, d) always be a coalgebra, 4 a strongly dualizable object of
% and f an endomorphism of 4.

7 Y jed c®id
(52) 7f1I>A4A®DA—>DA®A——DA®A®A—SI®A=A.

5.3. PROPOSITION. Without changing the composite morphism =f one may replace
DF ® din(52) by

ided idef®id
() DA®A——DA®A®A ——DARA® A,
idef ided
(b) DA ® A——DA ® A— DA ® A ® A,or
ided idefef
(c)DA®A——DA®A®A—DA®A®A,

provided that f is a morphism of coalgebras in case (c).

The easy proof is omitted. That f is a morphism of coalgebras means of course
that the diagram

d
A - A®A4
o Lref
d
A - A®A
commutes.

5.4. PROPOSITION. If f: A — A is a morphism of coalgebras then the diagram

I
N
S
A - A

commutes.

Loosely speaking this means that the image of 7/ lies in the “fixed point set” of f.
The proof follows easily from Proposition 5.3(c).

A morphism x: 4 — I may be called a coelement of A. Right translation by x is
defined to be the morphism .

d idex
rA—->A®A—AQI=A.

5.5. PROPOSITION. x o (7f ) = o(fr,) = a(r.f).
The proof is strightforward.

5.6. COROLLARY. If (4, d) has a counit c then c °(vf) = of.
§6. Parametrized stable homotopy

As in §3 we consider compactly generated (not necessarily Hausdorff) spaces. For
a fixed space B we consider “spaces over B>, i.e., continuous maps p: E — B. One
should think of them mainly as families (E,|b € B) of the “fibers” E, = p7ip,
parametrized by B. The topology of E has just the purpose to make it meaningful to
say that something happening in the family (E,) depends continuously on b. Guided
by this principle one can translate the whole content of §3 to the parametrized case.



whose objects are (up to a formal suspension and desuspensions 7, n € Z)

“well-sectioned” spaces over B, i.e., commutative diagrams
5

B - E
dN ¢p
B .
such that s is a cofibration in the category of spaces over B. If E' — E is a mapping
of spaces over B, it makes sense to consider (E, E’) as an object of Stab 5 by forming
the fiberwise mapping cone. By a literal translation of Theorem 3.1 and its proof we
get

6.1. THEOREM. Let B be metric and K a subset of B X R" such that the projection
map p: K — B is proper. Let K be an ENR , i.e. there exist a neighborhood V of K in
B X R" and a retraction r: V — K which is fiber-wise, i.e. 7(V N (b X R")) C b X R"
for each b € B. Then (K, @) and 2""(B X R, (B X R")\ K) are strongly dual in
Stab. .

Applying our general theory of trace (§4) and transfer (§5) to this dual pair, one
recovers a large part of the results of Dold [4].

Similar results can be obtained for all strongly dualizable objects of Stab,. In
Becker-Gottlieb [1] it was proved that a well-sectioned p: E — B is strongly
dualizable in Stabg if

(a) p is a Hurewicz fibration,

(b) E,, has the stable homotopy type of a finite complex for each b € B, and

() B has the homotopy type of a finite-dimensional CW-complex. .

One can avoid the hypothesis *{inite-dimensional” in (c). For this one has first to
extend the category Stabj to a larger category, namely to a category of spectra over
B. This can be done by translating the construction of the category Sch in Puppe [14]
to the parametrized case obtaining Sch . Using a representation theorem <?f Schon
{15], VIIL. 23 and [16](*), Monica Preto has proved(®) that a well-sectioned p:
E — B is strongly dualizable in Sch  if (a), (b) and

(c") B has the homotopy type of a CW-complex.

This allows us to strengthen Theorem 1.1 of Becker-Gottlieb [1] as follows

6.2. THEOREM. Let p: E — Bbea space over B (without section) which satisfies (a),
(b) and (c'). Let the diagram

/
E - E

PN Lp
B
be commutative. Choose a based point by € B and assume that F = p~'b, is connected.
Then the map QB — F. in the fiber sequence of p, considered as an element of
Stab(QUB, F) and multiplied by the Lefschetz number of f\ F: F — F, gives the zero
element of Stab (B, F).

(*) Russian translator’s note. See also [28].
(*)CE. the remarks added in proof at the end of the paper.

about the existence of duals in Sch , can be replaced by

(2") There is a numerable covering (U,) of B such that p is fiber-homotopy trivial over
each U,.

§7. Equivariant stable homotopy

Let G be a compact topological group. In analogy to Stab (§3) one can construct a
monoidal category Stab® whose objects are pairs (X, a), where X is a G-well-pointed
compactly generated G-space and « is an element of the real representation ring of
G. The set of morphisms from (X, «) to (¥, 8) is

Stab®(( X, @), (¥, B)) = colim[S2®¥ A X, SB°¥ A ¥]C,
W

where W runs through a cofinal set of orthogonal representations of W, directed by
inclusion. If W is large enough, & ® W can be considered as a representation and
§*UY denotes its one-point-compactification. (Compare G. Segal [17], Kosniowski
[8], Hauschild [6] and Waner [21].)

As in §3 a pair of G-spaces defines an object of Stab®, and we have a system of
suspension functors Z* which are automorphisms of Stab®.

7.1. THEOREM. Let W = R" be an orthogonal representation of the compact group G,
and let K be a compact G-invariant subset of W which is also an equivariant

neighborhood retract (G-ENR). Then (K, @) and 3~"(W, W\ K) are strongly dual in
StabC.

‘The proof is completely analogous to the proof of Theorem 3.1.

Strong duality in Stab% coincides with equivariant S-duality in the sense of
Wirthmuller [22]. If G is a compact Lie group, Jaworowski [7] gives a characteriza-
tion of G-ENR-spaces which implies in particular that a finite G-equivariant
CW-complex is a G-ENR.

It is clear that our methods of §3 also apply to the case of parametrized
equivariant stable homotopy, i.e. G-spaces over B. Thus we get a common generali-
zation of Theorems 6.1 and 7.1 to G-ENR ,-space. In particular we obtain a transfer
in this case, which includes the case of equivariant bundles studied by Nishida [12].

Along the lines of Becker-Gottlieb [1], duals and transfer maps for G-fibrations
have been constructed by Waner [12]. This also fits into our general framework. It is
very likely that one can show the existence of strong duals for G-fibrations in the
same way as indicated in the second part of §6 for trivial G.

§8. Stable shape theory

Let Shape be the category of pointed shapes of compact spaces (Dydak-Segal [5]).
The ordinary smash product induces a bifunctor of Shape into itself. (This is not at
all clear if we do not restrict to compact spaces.) Just as Stab has been constructed in
§3 from the homotopy category of well-pointed spaces, one constructs from Shape a
stable shape category Stab-Shape. The smash product induces a monoidal structure.

8.1. THEOREM. Let K be a compact subset of R" such that the Cech cohomology
groups of K (with integer coefficients) are finitely generated. Then (K, @) and
27"(R*, R*\ K) are strongly dual in Stab-Shape.
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cone C of the inclusion R"\ K € R” is not compact. But C has the homotopy type of
a CW-complex, and by Alexander duality its integral homology groups are finitely
generated. This implies that it has the stable homotopy type of a finite CW-complex.

Hence it defines an object of Stab-Shape up to equivalence.

The proof of 8.1 is again analogous to the proof of 3.1. The only difference is that -

we do not have the retraction 7 ¥ — K in (3.7). But we do get a compatible system
of homotopy classes
=150 (¥, 2) ® (R",R"\ K)
where ¥ runs through all neighborhoods of K in R" and this is enough to define the
shape morphism
Sy 2780 - (K, 2) ® (R, R"\ K ).

Theorem 8.1 can be applied to the theory of fixed points, but we shall .not dd it
here.
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