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CLASSIFICATION OF ORIENTED SPHERE
BUNDLES OVER A 4-COMPLEX

By A. DoLp AND H. WHITNEY

(Received April 4, 1958)

1. Introduction

The classification of (rn — 1)-sphere bundles with structure group SO(%)
(special orthogonal group) over a complex K of dimension at most 4 has
been carried out in several special cases. If » = 2 or if the dimension of
K does not exceed 3 then the characteristic class W,is a complete invariant
(see [17]; note that W, is an integer class for n = 2, and is a class mod 2
if n = 3). 2-sphere bundles with vanishing class W, were classified by
the second author in an unpublished manusecript* (1938 ; announced in
[19], 4); these bundles are not determined by their characteristic classes
(see our example in Section 3). Pontrjagin in 1945 (see [9]) gave a solu-
tion for arbitrary n provided that H*(K; Z) has no 2-torsion; in this case
(n — 1)-sphere bundles are characterized by W,, W, (for » = 4) and P,
(see [9] or the Corollary in Section 3). In this paper we give the classifi-
cation for the general case. Throughout the paper we assume n > 3.

The (r — 1)-sphere bundles over a complex K are generated by map-
pings of K into some Grassmann manifold G, (see [17]); in fact, they are
in natural one-to-one correspondence with the homotopy classes (see [14],
[8], and [15], 19). The manifold G, has vanishing 1¢ and 3™ homotopy
groups (see (3)); since we assume dim (K) < 4, our problem reduces to
the standard problem of classifying mappings of a complex into a space
(G,) with only two non-vanishing homotopy groups. This problem has
been studied in many papers, beginning with special cases in [7], [11],
and in general in [13], [4]. In particular there are explicit solutions if the
homotopy groups of the image space are in dimensions m and m+2 (see
[13]), but unfortunately not for m = 2, the case in which we are interested.
A partial solution in this case was given in [2].

* This classification involves the cohomology operation v: HYK; Z,) - H4K; Z) which
is obtained by applying the Bockstein homomorphism first and then taking the cup square;
see (23). In the manuscript ¥ was defined by a cochain formula (in a simplicial complex
with ordered vertices) as follows. For any cochain y mod 2, let wy be the corresponding
integral cochain (compare [18, 11]) whose coefficients are 0 or 1. Then w(y —¥') = 0y —wy’,
and for 1l-cocycles c¢mod2, we see that #dwc = w'c~—c). Therefore the function
¢(c) = w(e ~ ¢~ ¢~ ¢) coincides with $dwc — 3dwc and induces the operation v. Unfortu-
nately the operation w was omitted in [19], giving a wrong statement, as noted by
Pontrjagin [9].
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668 A. DOLD AND H. WHITNEY

The general result in [4, Theorem 14.2], leaves one with the task of
expressing the k-invariant k(G,) of G, by familiar cohomology operations.
To be more precise, it is only the suspension of %(G,) and the deviation
of k(G,) from additivity which is needed in [4, Theorem 14.2]. In the
following Section 2, we make these computations and formulate the cor-
responding classification theorem. In Section 3 we relate the resulting
invariants to the characteristic classes of the bundles involved. As an
application we give a short proof of a recent theorem of Massey (see [6,
Theorem V]). The last Section contains a correction of Pontrjagin’s
Theorem 2 in [9].

2. The classification theorem (n = 3)

Let G, be the Grassmann manifold of oriented n-planes through the
origin in a euclidean space of dimension at least n-+-5. Then G, is the

base of a 5-universal SO(n)-bundle (see [15, 19.6-19.7]), and we have
natural isomorphisms (see [15, 19.9])

(1) 7(G,) = 7w -(SO(n)) , 1=4.
According to [15, 24.11],
’ m(SO(n)) = (SO(n)) =0 ,

@) 7(SO(n)) = Z, = cyclic of order 2,

Z = free cyclic for n # 4 ,
\”B(So(n)) = jlz + Zforn=4;
hence
m(G,) = m(G,) = 0,
3) (G, = Z, ,
m(G);y,{Zfornill’
" Z+ Zforn=4.

We choose generators for =,(SO(n)) as in [15, 22.3, 22.7 and 23.6] and
thereby identify this group with Z (for n = 4) or Z+ Z (for n = 4);
similarly for the groups = (G,), using the isomorphisms (1).

The k-invariant of G, is an element k(G,) € H¥(Z, 2; n(G.)) (see [4,
11]). We want to compute the suspension and the deviation Sfrom
additivity of k(G,).

The suspension of #(G,) is an element of HYZ, 1; n(G,)) =
H'(Z, 1; =(SO(n))). Up to sign it coincides with £(SO(n)), the k-invariant
of SO(n) (see [16]).

Consider the case n = 3 first. Now SO(3) is homeomorphic with real
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projective 3-space P;. A space K(Z,, 1) is given by real projective space
P of infinite dimension. The k-invariant of P, is the first obstruction
for retracting P. onto P,, i.e., the obstruction for retracting P, onto P;.
Since such a retraction is not possible the invariant &(SO(3)) = k(P;) is
not zero; hence it is the only non-vanishing element in H%Z,, 1; Z) =
HYP..; Z). If v is the non-trivial element of HYZ, 1; Z,), then since
By — Bv # 0, we have

(4) k(SO(3)) = Bv~— Bv ;
B is the Bockstein homomorphism associated with the coefficient sequence
(5) 0—Z 22—z —0.

Since v is the basic cohomology class of P.. = K(Z, 1), the formula (4)
also describes the cohomology operation defined by k£(SO(3)) (see [4, 7] or
[12, 4]): If X is any space and & € H'(X, Z,), then

(6) k(SOB)) + = Ba — B .

For » = 4 the situation is similar since SO(4) is homeomorphic with
SO(3) x S* = P, x S® (see [15, 22.6]). We have

kK(SO4)) € H(Z, 1; n(S0(4))) = H'(Z,, 1; Z + Z)
= H'Z,1;2) + H'(Z,1; Z) .

If we write k(SO(4)) = k(SO(4)) + k(SO(4)) according to this decom-
position, then

) k(SOM4)) + & = Bz~ Bz, k(SO@4)) +x=0.

For n» = 5 the invariant k(SO(n)) € HYZ,, 1; Z) is zero since there
exists a mapping r: P,_; > SO(n) with r,: 7(P,-,) = 7,(SO(n)) (see [15,
23.3-23.4));

8) kE(SO(r)) =0 forn=5.

We have now to compute the deviation of #(G,) from additivity. We
claim that

9 k(Gs) + (y,2) = By —=2),
(10) E(G)F(y,2)=By—2), k(G)F(y,2)=0,

Here y and z denote 2-dimensional cohomology classes mod 2 of an arbi-

trary space Y, and k(G,), k(G,) are the components of k(G,) with respect
to the decomposition

H%Z,, 2; n(Gy) = H %, 2; Z + Z) = H((%,, 2; Z) + HY(Z,, 2; Z) .
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The formulas (9)-(11) follow from our computation (6)-(8) of the sus-
pension of k(G,), together with the

LEMMA. Take a € HNZ,, 2; Z) and let ca € H¥Z,, 1; Z) be the sus-
pension of a. Then
at (y,2) =By—2zorafl(y,2)=0 (for all y, z as above)
according to whether
o tax=pBx—pProrcatlx=0 (for all x as in (6)).
We remark first that S(y — 2) is a non-trivial cohomology operation,

even when reduced mod 2: If we denote reduction mod 2 by a horizontal
bar, then

(12) Bly—=2) = Sq(y—2) =S¢y —2+y—Sq¢'z,
and this is different from zero for instance in S* x X, where S* is a
2-sphere and X is a space consisting of a 2-sphere with a 3-cell attached
by a mapping of its boundary of degree 2 (i.e., X is the suspension of
the real projective plane).

To prove the lemma we look at the universal example

Y = K(Z, 2) x K(Z, 2)
(see [4]). Let u be the basic class of H¥Z, 2; Z,). Then in Y we have,
by definition of a + (v, 2),
(13) eFu®1+1Qu)=a@®1+1QRQa+at@w®1L,1RQu).
If we compute H*Y; Z) by applying the Kiinneth formula, using
H%Z,2;, Z) =0, H(Z, 2; Z) = Z, (see [3, Ch. IV]), we find
(14) HXY; Z) = HYZ, 2, Z) ® HZ, 2; Z)

+ HZ, 2; 2) Q H'(Z,, 2; Z) + Z, ;
the cross term Z, has only one non-zero element. This element must
be
(15) Bu®l—1Qu)=puu),

since (15) is a cross term element of H%Y'; Z) which is different from
zero, as we have seen. (Cross term elements can be characterized as lying
in the intersection of the kernels of the two homomorphisms H*(Y) —
H*(Z,, 2) which are induced by the two natural inclusions K(Z,, 2) —> Y.)
Since a (v ® 1, 1 Q) ) is also a cross term element, we have

(16) at@®1,1Qu) =28u u) withx =0or1.
Reducing this equation modulo 2 gives

17 aF@®l,1Qu) =\Sg'(u@u).
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The element a lies in H%(Z, 2; Z,). This module (over Z,) has a base
consisting of S¢*S¢'w and u — Sq'u (see [12, 9]). Therefore
(18) a = pS¢*Sq*u + v(u — Sq'u)  with gz, v =0o0r1l.
If we apply Sq¢' to (18) the left side gives zero because @ comes from an
integer class. Sg' applied to either of S¢*Sq'u or u — Sq'u gives S¢*Sq'u =
Sq'u — Sq'u # 0. Therefore the coefficients £ and v must be equal:

19) a = p(Sq¢*Sq'n + u — Sq'u) .
If we compute @ F (v ® 1,1 ® u) from (19) we find ©S¢(u @ u), hence
(by (17)) £ = A, and
(20) a = MSe*Sq*u + u — Sq'u) .

Now apply the suspension homomorphism ¢ to (20). It commutes with
Steenrod squares and kills cup products; therefore
(21) od = AS¢*Sq'v = MSqlv — Sq) ,

where v is the basic class in H'(Z,, 1; Z,). Comparing (16) and (21) now
proves the lemma; we have only to remark that @ = ga and Bz — Bz =
S¢'x — Sq'z.

REMARK. With some more effort the invariant k(G,) itself can be
computed. It turns out that

k(Gs) = +Bp(u) ,
(22) k(G = b)), k(G)=0,
K(Ga) = 2p.p(w) forn=5,

where u € HZ, 2; Z,) is the basic class, v : H(Z,, 2; Z,) — H%Z, 2; Z,)

is the Pontrjagin square, and g, is the Bockstein homomorphism associated
. 4
with the coefficient sequence 0 Z Z Z, 0. The formula

for k(G) was given to the authors by F. Peterson.
Inserting our computations into [4, 14.2] gives the

THEOREM 1 (CLASSIFICATION THEOREM). Let B, B, be principal SO(n)-
bundles, n = 3 (or equivalently (n — 1)-sphere bundles with structure group
SO(n); see [15, 8.2]) over a complex K whose dimension is at most 4, and
let h,: K— G, be a classifying mapping for B, (see [15, 19]). Assume
WA(B,) = W(B,) = w,. This implies that the parts of the B, over the 3-
skeleton K® of K are equivalent (see [17]); we can therefore assume (see
[15, 19]) that h, and h, agree on K*. Then the difference cocycle of (hy, hy)
is defined ; its cohomology class d(hy, h,) is an element of HY(K; n(G.)).

The bundles B, and B, are equivalent if and only if :
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(a) for n = 3 there exists a cohomology class € € H (K ; Z,) such that
(23) d(hy, b,) = Bx — Bz + B(x — w,)

where B 18 the Bockstein homomorphism associated with the coefficient
sequence (5), and n(G;) has been identified with Z by (3);

(b) for n = 4 there is an x € H (K ; Z,) such that
(24) dy(hy, h,) = Bx~ Bx + Blx — w,) , dh, k) =0,

where d(hy, h,) = d,(hy, h,) + dy(h,, h,) is the decomposition corresponding
to n(G,) = 7(SO4)) = Z + Z, using the chosen generators;

(¢) for n = 5 we have
(25) d(hy, b)) =0 .

Since for given w, € H¥K; Z,) and d € H'K; n(G,)) one can always
find bundles B,, B, and classifying mappings k,, h, with W,(3B,) = w, and
d(h,, h,) = d, this theorem gives a complete classification.

REMARK. Since 7,(G,) = 7(SO(n)) = 0 for n = 6, 7(G,) =0 for n =7
(see [15, 24.11]), and 7(G,) = 0 for » = 6 (see [1, Proposition 19.3]), we
see that the classification theorem extends to 5-complexes K for » = 6,
and to 7-complexes for » =7 (for G, we have now to take oriented n-
planes in a euclidean space of dimension at least n--8).

3. Characteristic classes
The following theorem is essentially contained in Pontrjagin [9].

THEOREM 2. Let B,, B, be bundles with classifying mappings hy, k, as in
Theorem 1. Let P(B,) € HYK; Z) denote the Pontrjagin class of B;, and
(for m = 4) W(B,) € H(K; Z) respectively (for n > 4) Wy(B,) € H{(K; Z,),
its 4™ Stiefel-Whitney class.

(@) If n = 3 then

P(B)) — P(B,) = —4d(h,, h,).
(b) If n = 4 then
P(B,) — P(B,) = —4d,(h,, h,) — 2d(h,, h,),
W(B,) — W(B,) = dy(h,, hy).
(¢) If n =5 then
P(B)) — P(B,) = —2d(h,, k,),
W(B,) — W(9B,) = d(h,, h,) mod 2.
ProoF. Let p, € 7(G,) for n + 4 respectively o}, 0} € n(G,) for n = 4
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be the generators as in Section 2 (see (3)). We show that

(26) <P, pp = —4; (P,p) = —4,{P,pD>=—-2; (P,pp=—2
forn = 5;
27) W, =0, <W,D>=1;{W,p,>=1mod2 forn=5,

where P, W, are the characteristic classes of the universal SO(r)-bundle
over G,, and { ) denotes the evaluation of a cohomology class on a
homotopy class (considered as a homology class).

Consider W, first. The generators p!, p: correspond to the elements a;,
Bs € m(SO(4)) (see [15, 22.7]) under the isomorphisms (1); therefore the
equations (27) follow from the definition of W, as an obstruction (see [15,
38.2]).

The class P is invariant under the inclusion SO(n) c SO(n + 1), i.e.,
the class P(B) of an SO(n)-bundle B remains the same if we consider B
as an SO(n + 1)-bundle (see [5, §4]). Since the element a; — 28, goes
into zero under the inclusion SO(4) — SO(5) (see [15, 23.5 — 23.6]), this
shows that (P, p; — 20> = 0, or (P, p}> = 2(P, p?>. Next we show that
(P, iy = —2. Then the remaining equations (26) follow since p, goes
into p; and p; goes into p, (n = 5) under the appropriate inclusions
SO(m) — SO(m + k) (see [15, 22.7 and 23.6]).

To prove <P, 0i> = —2 we consider the inclusion U(2) — SO(4), where
U(2) is the unitary group in 2 variables. Thereby every U(2)-bundle
defines an SO(4)-bundle; if B is an SO(4)-bundle over the 4-sphere S*
which is obtained in this way then P(B) = —2W (D) (see [20, Theorem
9]). In particular this holds for the bundle which is defined by p? (see [15,
25.1]), hence (P, o> = —2KW,, p2> = —2.

Using (26) we now prove the case (a) of the theorem; (b) and (c) follow
similarly. Assume that &,, &, are cellular mappings (i.e., map the i-skeleton
of K into the i-skeleton of G, for some cellular decomposition of K and
Gs), which agree on the 3-skeleton of K. Let A(h,, 4,) be their difference
cocycle (its cohomology class is d(h,, A,)), and let p be a cellular cocycle in
the cohomology class P. We show that

(28) hi(p) — hi(p) = —4A(Ry, k) ,

where A is the homomorphism on cellular cochains which is induced by
k. This equation implies (a) since A¥(P) = P(B,).

It is sufficient to verify (28) on every 4-cell of K; we can therefore
assume that K consists of a single (closed) 4-cell ¢, and &,, k, are mappings
of ¢ into the 4-skeleton G% of G, which agree on the boundary de of e.
Then h,, h, determine an element a € 7,(GY), the “* difference ’’ of h, and
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h,, which under the injection G — G, goes into A(k,, h,)-e.

Let ¢ v S* be the wedge (= union with a single common point) of e¢
with a 4-sphere. Letf:e¢— e v S* be a mapping which is the identity
on de¢, and which covers both ¢ and S* with degree one. Finally let
h:evS*—> G? be a mapping whose restriction to ¢ is A, and whose
restriction to S* represents the class «. Then the composite mapping

h
e—f—> evSt— GP

is homotopic rel de to A, (i.e., there is a homotopy which does not move
the image of d¢); hence

(29) F*r*(p) = (Af)*(p) = hi(p) -

But A*(p) restricted to e is A)f(p), and the value of 2*(p) on S* is
—4A(hy, h,)-e, by (26). Since f covers both ¢ and S* with degree one this
shows that f*h*(p) = ki (p) — 4A(ky, k,), as asserted in (28).

COROLLARY (Pontrjagin [9]). If H'(K; Z) has no 2-torsion, then oriented
(n — 1)-sphere bundles B over o 4-complex K are determined by their
characteristic classes W (8), W(B) (¢f n = 4) and P(B).

Indeed, if ®B,, B, have the same characteristic classes then the left sides
of the equations in Theorem 2 are zero, and hence 4d(h,, h,) = 0, where
h,, h, are classifying mappings. If there is no 2-torsion in H*(K; Z) this
implies that d(k,, ,) = 0, and hence B, and B, are equivalent.

APPLICATION. We re-prove the following theorem ([6, Theorem V]) of
Massey.

THEOREM 3 (Massey). Let B be a 2-sphere bundle with structure group
SO(3) over a 4-complex K, and assume H'(K; Z) has no 2-torsion. Then
B admits a cross-section if and only if there exists an integer class
v € HY(K; Z) such that

(a) v= Wy(B)mod 2,
(b) v—v = P(®).

PrOOF. B admits a cross-section if and only if its structure group can
be reduced to SO(2) (see [15, 9.5]); For an SO(2)-bundle B the class W,(B)
is an integer class whose cup-square W,(8)— W,(B) is the Pontrjagin
class P(B) (see [20, Theorem 9] or [5, Satz 4.5.1 with ¢ = 1]). This proves
the ““only if ”’ part of the theorem. Assume now that a class v with the
properties (a) and (b) exists, and let B’ be a SO(2)-bundle over K with
WL(®8') = v. Then, as SO(3)-bundles, B and B’ have the same character-
istie classes, and hence are equivalent by the Corollary above.

EXAMPLE of a non-trivial SO(8)-bundle over a 4-complex with vanishing
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characteristic classes: Let K be a complex consisting of a 3-sphere S°
with a 4-cell ¢* attached by a mapping ¢ :8e* — S® of its boundary of
degree 2. Then HYK; Z) =0 for 1+ 0, 4, and HYK; Z) = Z,. Let
h : K — G; be a mapping which sends S® into a point and is such that
d(h, c), the difference cohomology class with a constant mapping
¢ : K — (G, is the non-zero element of HK; Z). The SO(3)-bundle B over
K which is induced by % is non-trivial, by Theorem 1, but its character-
istic classes are zero (see Theorem 2). A similar example can be constructed
with the product P, x P, of two real projective planes as base.

4. Remark on Pontrjagin’s Theorem 2 in [9]

This theorem can be formulated as follows. Let B = {E, p, B, I, I'}
be a principal bundle, with B a complex, I" a connected topological group.
Assume the part of B over the m-skeleton B™ of B is trivial, i.e., there
exists a cross-section f over B™ (see [15, 9]). The obstruction for extend-
ing f over the (m + 1)-skeleton B™*!is an (m + 1)-cocycle z(f) of B with
coefficients in 7,(I"). Let =, be the image of the Hurewicz homomorphism
d : 7,(I") > H,(I'); we can factor ® as follows :

@& : 7, (1) — 3, € Hy(T) .

Now @ o 2(f) is a cocycle with coefficients in =,,, and the theorem states
that the cohomology class w7+*' of @ o 2(f) is an invariant of B, i.e., does
not depend on f. We show by a counter-example that this is not correct.
However, following the indication for a proof as given by Pontrjagin one
finds that the cohomology class of ® o 2(f) s an invariant (see below).

For an example, let I" be the group SO(3), take m = 3, and let B be a
4-complex. Under the Hurewicz homomorphism the group 7;(SO(8)) maps
isomorphically onto the subgroup =; c Hy(T") of spherical homology classes.
Therefore we may consider w% as the cohomology class of z(f) which in
turn can be identified with the class d(%, c) of Theorem 1, where 2 : B— G,
is a classifying mapping for the given bundle B, and ¢: B— G; is a
constant mapping. But if B is real projective 4-space P,, and if d(h, ¢) is
the non-zero element of H*P,; Z), then B is trivial by Theorem 1 (a);
hence d(h, ¢) is not an invariant.

We now show that the cohomology class of @ o z(f) (in the notation
above) does not depend on the choice of the cross-section f. Letg:B™— E
be a second cross-section. Then for every b € B™ there is a unique
7(b) € 1" which (under right translation) transforms g(b) into f(b): g(b)v(d) =
J(b). This defines a continuous mapping v : B™ — I'; let 2(y) be its obstruc-
tion cocycle. We claim that
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(30) 2g) + 2v) = 2(f) .

It is sufficient to verify (30) on every (m + 1)-cell ¢ of B. But over o the
bundle B is trivial and (30) expresses the fact that the addition in z,(I")
is induced by the multiplication in I" (see [15, 16.7]).

Next we show that ® o z(7) is a coboundary ; then the invariance of the
class of ® o z( 1) follows if we apply ® to (30). The group C,.(B) of cellular
m-~chains of B can be written as a direct sum C,,(B) = Z,(B) + D,,, where
Z.(B) denotes the cycles and D,, is a complementary summand. Now de-
fine an m-cochain y of B with coefficients in H,(I") as follows: y maps
each cycle 3, € Z, into the homology class of ¥(3,), and ¥ maps D,, into
zero. Then for every (m + 1)-cell ¢, (8y)-0 = y-(d0) is the homology
class- of I" which is represented by v|0c, and this is nothing but
(P o 2(7))-0; hence dy = D o 2(7), q.e.d. (This is virtually the same proof
as in [10, proof of Satz 3, § 3]).

In our example (I" = SO(3), m = 3) the inclusion Z = 3; — Hy(SO(3)) =
Z is multiplication by 2; therefore 2d(k, ¢) (notation from above) is an
invariant of B. This can also be deduced from Theorem 1.
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