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Abstract The goal of this paper is to give a new proof of a theorem
of Meng and Taubes [9] that identifies the Seiberg–Witten invariants of
3–manifolds with Milnor torsion. The point of view here will be that of
topological quantum field theory. In particular, we relate the Seiberg-
Witten equations on a 3–manifold with the Abelian vortex equations
on a Riemann surface. These techniques also give a new proof of the
surgery formula for the Casson invariant, interpreted as an invariant of a
homology S2 × S1 .

AMS Classification 57R57; 57M25, 57N10, 58D29

Keywords Seiberg–Witten invariant, Casson invariant, Alexander poly-
nomial, Milnor torision, topological quantum field theory, moduli space,
vortex equation

1 Introduction

In 1985, Casson introduced his renowned invariant of homology 3–spheres, to-
gether with a surgery formula for the change in the invariant when the mani-
fold is changed by a surgery [1]. The latter can also be seen as a formula for
a Casson-type invariant of a homology S1 × S2 . For a manifold Y 3 of this
kind we “count”, in the sense of Fredholm differential topology—as in the work
of Taubes [11]—the flat connections on a non-trivial SO(3) bundle over Y to
obtain a number C(Y ). Casson’s formula is then

C(Y ) =
∑
i>0

i2ai, (1)

where the integers ai are the coefficients of the normalised Alexander polyno-
mial ∆Y (t) = a0 +

∑
i>0 ai(t

i + t−i). (The interpretation of Casson’s surgery
formula in this way is implicit in the Floer’s exact sequence [4] relating the
Floer homologies of manifolds differing by surgeries.)

In 1995, Meng and Taubes [9] considered the dimensionally-reduced Seiberg–
Witten equations over homology S1×S2 ’s. Here one has an integer parameter
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d > 0 and invariants SWd(Y ) which count the solutions of the equations on a
complex line bundle of Chern class d over Y . The Meng–Taubes formula can
be written

SWd(Y ) = ad+1 + 2ad+2 + 3ad+3 + . . . . (2)

The purpose of this article is to describe how the ideas of Topological Field
Theory can be applied to derive these formulae in ways that are, at least super-
ficially, different from the original proofs. The author has developed this point
of view intermittently over the last 10 years. The Casson case was worked out
in discussions with M Furuta around 1989, partly inspired by lectures of Segal
on Quantum Field Theory (and some of the constructions described in Section
5 are due to Furuta). The Seiberg–Witten case was worked out in 1995, partly
motivated by the programme of Pidstragatch and Tyurin and work of Thaddeus,
which we mention again at the end of the article. Over the years a number of
authors have developed ideas which come very close to the point of view we take
here: we mention particularly the work of Frohman and Nicas [5] on the one
hand and Hutchings and Lee [7] on the other. But we hope that the approach
here may add something which does not quite appear in the literature and
which may be worth recording; without staking any particular claims to origi-
nality. To keep the exposition short and simple we take the liberty of treating
the differential-geometric and analytical foundations of our arguments—which
we believe can all be pieced together from the literature—very sketchily, and
concentrate on the formal aspects. (As a particular instance of this sketchiness,
we will not go into the question of orientations, so our formulae will really be
derived up to overall sign ±1.)

2 Topological field theories

We will consider theories which satisfy the Topological Field Theory axioms [2]
in a restricted range of cases. In essence we want to associate to each closed,
connected, oriented surface Σ a vector space V (Σ) and to a cobordism W
between two such—Σ0,Σ1—a linear map

ρW : V (Σ0)→ V (Σ1),

satisfying the familiar composition rule when one glues together two cobor-
disms. In our examples the spaces will come with natural gradings, although
we will need only keep track of the Z/2–grading. In the case when Σ0,Σ1 are
diffeomorphic, and we choose a definite diffeomorphism between them, we may
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form a closed 3–manifold W . We consider theories where we have numerical in-
variants for such closed manifolds n(W ) and the other gluing axiom we require
is that

n(W ) = Trs(ρW ),

where ρW is regarded as an endomorphism of V (Σ0), using the fixed identi-
fication of Σ0,Σ1 and Trs denotes a “supertrace”, with signs induced by the
grading.

We will now recall how formal structures of this kind arise in gauge theory.
We begin with the set-up which will correspond to the Casson formula. For
each surface Σ we construct the moduli space M(Σ) of flat connections on a
non-trivial SO(3) bundle over Σ. This is an orbifold of dimension 6g(Σ) − 6.
Our vector space V C(Σ) will then be the homology of this moduli space. A
technical variant of this construction is to consider the moduli space of pro-
jectively flat connections on a U(2) bundle of odd-degree over Σ, with fixed
central curvature. The moduli space of these connections is a smooth mani-
fold M̃(Σ) covering (in the orbifold sense) M(Σ). More precisely, M(Σ) is
the quotient of M̃ (Σ) by a natural action of H1(Σ; Z/2). It is somewhat eas-
ier to work in this U(2) framework, since one does not run into the notorious
difficulties with reducible connections, but the language becomes more tortu-
ous. In the end it does not really matter how one proceeds since we will only
be concerned with the real homology and it is known that the real homology
groups of M(Σ), M̃ (Σ) are isomorphic. Equivalently the action of H1(Σ; Z/2)
on the real homology is trivial [3]. Likewise, we know that Poincaré duality and
intersection theory goes over for the real homology of an orbifold. To simplify
our exposition we will work with the SO(3) moduli spaces and ignore the fact
that they are not quite manifolds.

Turning to 3–manifolds, for a closed, oriented, 3–manifold Y with the homol-
ogy of S1 × S2 we consider of course the invariant C(Y ) obtained by counting
the flat SO(3) connections on a non-trivial bundle. Note that the topological
hypotheses mean that there is a unique non-trivial SO(3) bundle over Y , and
there are no reducible flat connections on this bundle. We could extend the
theory to certain other 3–manifolds, but we would need to specify the relevant
bundle and avoid reducibles, so for simplicity we will stick to the class of ho-
mology S1×S2 ’s. Now let W be a cobordism from Σ0 to Σ1 . We will restrict
attention to the cobordisms W such that H1(Σ0)⊕H1(Σ1) maps onto H1(W )
under the homorphisms induced by inclusion, or equivalently that

H1(W,∂W ) = Z. (3)

All the manifolds we encounter—occurring the decomposition of a homology
S1 × S2 —will satisfy this condition. The main idea is this: we consider a

Topological Field Theories

Geometry and Topology Monographs, Volume 2 (1999)

89



moduli space M(W ) of flat connections over W , with a restriction map

r: M(W )→M(Σ0)×M(Σ1).

If M(W ) is a compact, oriented manifold it carries a fundamental homology
class which can be pushed forward to r∗[M(W )] ∈ H∗(M(Σ0 ×M(Σ1). Then
Poincare duality and the Kunneth theorem give an identification

H∗(M(Σ0)×M(Σ1)) ∼= Hom (H∗(M(Σ0),H∗(M(Σ1))

= Hom (V C(Σ0), V C(Σ1)),

and we define ρW to be map obtained in this way from r∗[M(W )]. Of course
all of this needs to be interpreted with the usual caveats of the subject: we
need to have a framework in which the equations defining the moduli space
fit into a “Fredholm package”, with a well-defined index or formal dimension,
and we may need to perturb the equations to obtain transversality. There are
two ways in which this can be done. In one approach, as in [11], one sets
up an elliptic boundary-value problem on the manifold-with-boundary W . In
the other one adds semi-infinite cylinders to the ends to construct a complete
manifold Ŵ . Then the set-up can be seen as a dimension-reduced version
of the (3 + 1)–dimensional Floer theory, regarding flat connections over Ŵ
as instantons over Ŵ × S1 . In either case one finds that the relevant index
or formal dimension is 3χ(∂W ). The functorial property for compositions of
cobordisms, and the relation with the numerical invariant C(W ) follow from
the usual “gluing theory” arguments. Notice that any homology–S1 × S2 can
be realised as a manifold W , where W satisfies (3).

The Seiberg–Witten case follows a similar pattern. Here it seems that one has
to work in the tubular-end framework. We choose a Riemannian metric and
spin structure on the manifold Ŵ and a line bundle L→ Ŵ with

〈c1(L), [Σ0]〉 = 〈c1(L),Σ1〉 = d.

Then we have Seiberg–Witten equations for a pair consisting of a connection
and an L–valued spinor field over Ŵ . If d > 0 we do not run into difficulties
with reducible solutions. To find the appropriate moduli spaces associated
with the boundary components we look at the translation-invariant solutions of
these equations, which are the potential limits of finite-energy solutions over the
cylindrical ends. These translation-invariant solutions over a tube Σ ×R are
the solutions of a vortex equation over Σ, [8]. That is we fix a spin structure and
metric on Σ and look for pairs (a, ψ) consisting of a connection a on L → Σ
and a section ψ of L∗ ⊗ S+(Σ) such that

Daψ = 0
∗F (a) = |ψ|2.
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Recall that over the surface Σ the spinor bundle S+ can be identified with the
square root K1/2

Σ and the Dirac operator Da can be identified with the Cauchy–
Riemann operator, so that ψ becomes a holomorphic section of a holomorphic
line bundle L∗ ⊗ K1/2 of degree k = g − 1 − d. Thus the zero set of ψ is a
positive divisor of degree k , or equivalently an element of the symmetric product
Sym k(Σ). The basic result we need is that this sets up a 1–1 correspondence
between the moduli space of solutions of the vortex equation and the symmetric
product, provided d > 0. (This is interpreted as saying that the moduli space
is empty if d > g − 1.) We see then that the vector space Vd(Σ) we should
associate to Σ in this theory, for a given parameter d, is the real homology
H∗(Sym k(Σ)), where k = g − 1 − d. With this said, the general construction
goes through much as before, appealing to the literature on the Seiberg–Witten–
Floer theory for the relevant gluing and transversality results.

3 Homology of the moduli spaces

An important part of the general topological field theory package is the fact
that the vector space V (Σ) carries a natural representation of the mapping
class group of the surface Σ. (More precisely, in the Seiberg–Witten case we
should consider finite-index subgroups of diffeomorphisms which preserve a spin
structure.) The essence of our approach to the 3–dimensional invariants is to
obtain a good understanding of these representations. We do the Seiberg–
Witten case first.

(i) Homology of symmetric products

For any space X the real (or rational) homology of the symmetric products
Sym k(X) is easy to describe. We begin with the homology of the k–fold
product X × · · · ×X , which is just the tensor product of k copies of H∗(X),
and then take the invariant part under the action of the permutation group. In
the case of a surface this gives

H∗(Sym k(Σ)) = (Λk ⊗ s0)⊕ (Λk−1 ⊗ s1)⊕ · · · ⊕ sk, (4)

where Λj = Λj(H1(Σ)) and sj is the jth. symmetric power of H0(Σ)⊕H2(Σ).
So if we write u for the fundamental class of Σ,

sj = 〈1, u, . . . , uj〉,
and dim(sj) = j + 1.

It will be convenient to reorganise the grading of our exterior powers by writing

Λ(i) = Λg−i,
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so we have isomorphisms Λ(i)
∼= Λ(−i) induced by the intersection form on

H1(Σ). Thus, remembering that k = g − 1− d, our formula (4) becomes

Vd(Σ) = Λ(d+1) ⊕ 〈1, u〉 ⊗ Λ(d+2) ⊕ 〈1, u, u2〉 ⊗ Λ(d+3) . . . ,

or, in shorthand,

Vd(Σ) = Λ(d+1) + 2Λ(d+2) + 3Λ(d+3) . . . . (5)

Here the reader will immediately see the shape of the Meng–Taubes formula
(2) appearing. Tracing through the constructions one verifies easily enough
that these formulae describe the vector spaces Vd(Σ) as representations of the
mapping class group. Notice that (although we will not need this) we can also
bring in the grading of the homology groups of the symmetric products. Again
it is best to reorganise the standard grading by writing:

V
(i)
d (Σ) = Hk−i(Sym k(Σ)), (6)

so V
(0)
d is the middle-dimensional homology. A convenient notation is then to

write∑
V

(i)
d (Σ)ti = Λ(d+1) + (t+ t−1)Λ(d+2) + (t2 + 1 + t−2)Λ(d+3) + . . . , (7)

where we mean that the vector space appearing as the coefficients of ti on the
left hand side is isomorphic to the corresponding direct sum on the right hand
side.

(ii) Homology of moduli spaces of flat connections

We begin with the formulae, obtained by Atiyah and Bott and other authors
using a variety of methods, for the Betti numbers of the moduli space M(Σ).
The Poincaré polynomial is

Pt(M(Σ)) =
∑

dim (Hj(M(Σ)))tj

=
1

(1− t2)(1 − t4)
(
(1 + t3)2g − t2g(1 + t)2g

)
.

Notice that the coefficients of tj in the expansion of (1+t)2g are the dimensions
of the exterior powers Λj . Thus we have∑

j

dim(Hj(M(Σ)))tj =
1

(1− t2)(1 − t4)

∑
dim(Λi)(t3i − t2g+i).

This formula strongly suggests that there should be a natural (ie mapping class
group equivariant) identification of the homology groups themselves, which we
can write in the notation introduced above as∑

i

Hi(M(Σ))ti =
1

(1− t2)(1 − t4)

∑
j

Λj(t3j − t2g+j),
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Analysis of the argument of Atiyah and Bott shows that this is indeed the case:
the starting point is the fact that the homology of the moduli space injects
into the homology of the space of all irreducible connections where the action
of the mapping class group is clear. The formulae are again simpler if we use
the reorganised grading Λ(j) . Similarly, we write V (C,i)(Σ) for the homology
group H(3g−3−i)(M(Σ)). Then we have∑

i

V (C,i)(Σ)ti

= t−(3g−3) 1
(1− t2)(1 − t4)

∑
j≥0

Λ(j)(t3g+3j + t3g−3j − t3g+j − t3g−j),

=
∑
j>0

(t2j − t−2j)(tj − t−j)
(t2 − t−2)(t− t−1)

Λ(j)(Σ). (8)

Writing

(t2j − t−2j)(tj − t−j)
(t2 − t−2)(t− t−1)

= (t2j−2 + t2j−4 + · · ·+ t4−2j + t2−2j)(tj−1 + · · ·+ t1−j),

we can evaluate at t = 1 to get a formula for the total homology

V C(Σ) = H∗(M(Σ)) =
∑

j2Λ(j). (9)

4 Scheme of proof

We begin by bringing the Alexander polynomial into the picture, and for this
we recall some multilinear algebra, which one can find in [10]. Suppose U0, U1

are finite-dimensional vector spaces and Γ is a linear subspace of U0 ⊕ U1 .
Then, up to a scalar factor, Γ defines a Plucker point |Γ| in the exterior algebra
Λ∗(U0⊕U1). In turn, up to a scalar ambiguity, elements of this exterior algebra
can be viewed as linear maps from Λ∗(U0) to Λ∗(U1), so we have

|Γ|: Λ∗(U0)→ Λ∗(U1),

defined up to a scalar. More precisely, |Γ| is defined once one chooses a trivi-
alisation of the line Λmax(Γ)⊗ Λmax(U0)∗ . In the case when Γ is the graph of
a linear map f : U0 → U1 there is a natural trivialisation of this line and the
map |Γ| is the usual map Λ∗(f) induced on the exterior powers. In general the
construction satisfies a composition rule, for the case when one has another sub-
space Γ′ ⊂ U1 ⊕ U2 , provided the subspaces satisfy a transversality condition.
One wants the sum of the projection maps from Γ⊕ Γ′ to U1 to be surjective.
Then if one defines Γ′′ ⊂ U0 ⊕ U2 to be set of pairs (u0, u2) for which there
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exists a u1 ∈ U1 with (u0, u1) ∈ Γ, (u1, u2) ∈ Γ′ , one has |Γ′′| = |Γ′| ◦ |Γ|, if one
uses an appropriate rule for normalising the scalar ambiguities. We apply these
ideas in the case of a cobordism W between surfaces Σ0,Σ1 , of the kind con-
sidered above, so H1(Σ0)⊕H1(Σ1) generates H1(W ). We let Ui = H1(Σi) and
let Γ ⊂ U0 ⊕ U1 be the kernel of the inclusion map. Equivalently, by Poincaré
duality, we can take Ui = H1(Σi) and let Γ be the image of the restriction
map, so under our hypotheses Γ ∼= H1(W ). We use the integer lattices in all
these spaces to fix the scalar ambiguities, at least up to a sign, which we are
not going to keep track of. The conclusion is that we get a linear map

αW : Λ∗(H1(Σ0))→ Λ∗(H1(Σ1)). (10)

This can be regarded as a prototype of the general construction recalled in
Section 2. Indeed we can obtain the map in a gauge theory framework by con-
sidering moduli spaces of flat S1 connections: the exterior algebra then appears
as the homology of the Jacobian torus H1(Σ; R)/H1(Σ; Z) parametrising flat
connections over Σ. Now consider how the gradings work. In general if Ui has
dimension ni and Γ has dimension r the map |Γ| increases degree by n0 − r .
In our case, Poincaré duality implies that

dim(Γ) = dim(H1(W )) =
1
2

(dimH1(Σ0) + dimH1(Σ1)),

and this means that αW preserves the modified grading of the exterior powers,
so we have

αi,W : Λ(i)(Σ0)→ Λ(i)(Σ1). (11)

As it stands, this notation is a little ambiguous because Λ(i)(Σ) is used to de-
note the two (isomorphic) exterior powers Λg±i , and we have maps induced on
each one. Let ωi be the intersection form on H1(Σi), and consider the sym-
plectic form (ω0,−ω1) on the product. Then the subspace ΓW is a Lagrangian
subspace of the product with this symplectic form—this is just the standard
consequence of Poincaré–Lefschetz duality for (W,∂W ). Then one can readily
show that the two maps associated to such a Lagrangian subspace are equal.

This construction behaves well with respect to the composition of cobordisms.
If W ′ is a cobordism from Σ1 to Σ2 and we form the composite cobordism
W ′′ by gluing W to W ′ along Σ1 and if W ′′ satisfies our homological condi-
tion H1(W ′′, ∂W ′′) = Z then the transversality condition holds at Σ1 and the
composite subspace Γ′′ corresponds to H1(W ′′).

Now suppose that Σ0 and Σ1 are identified and we glue the ends of W to
obtain a closed manifold W as before. We also have a preferred element θ of
H1(W ), the Poincaré dual of the image of the boundary components, so we
have an Alexander polynomial of the pair (W,θ).

S K Donaldson

Geometry and Topology Monographs, Volume 2 (1999)

94



Proposition 12 The Alexander polyomial of (W,θ) is a0 +
∑
j aj(t

j + t−j)
where

aj = (−1)jTrace(αj,W : Λ(j)(Σ0)→ Λ(j)(Σ0)).

Let W̃ be the infinite cyclic cover of W corresponding to θ . The Alexander
polynomial is defined from the homology H1(W̃ ), regarded as a module over
the ring Λ = Z[t, t−1] of Laurent series. Write VZ for the homology group
H1(Σ0) with integral coefficients. We have a subgroup ΓZ ⊂ VZ × VZ , the
integer lattice in Γ, such that

H1(W ; Z) = (VZ ⊕ VZ)/ΓZ .

Thinking of W̃ as constructed from a chain of copies of W , glued along the
boundaries, we see that, as an abelian group

H1(W̃ ) = (. . . VZ ⊕ VZ ⊕ VZ . . . ) / ∼,

where ∼ is the equivalence relation generated by

(. . . , 0, 0, σ, 0, 0, . . . ) ∼ (. . . , 0, 0, 0, τ, 0, . . . )

if (σ, τ) ∈ ΓZ . In other words

H1(W̃ ) = Λ⊗Z VZ/ ∼,

where λ⊗σ ∼ tλ⊗τ for (σ, τ) ∈ ΓZ . Explicitly, this says that we can construct
a square presentation matrix for H1(W̃ ) as a Λ–module in the following way.
Let (ej) be a standard basis for H1(Σ0) and let (γi) be a basis for ΓZ . We can
write γi = (σi, τi) ∈ VZ × VZ , and express these in terms of the basis:

σi =
∑
j

σijej , τi =
∑
j

τijej .

Then the 2g elements ei can be thought of as generators of H1(W̃ ) over Λ
with 2g relations ∑

j

(σijej − t τijej) = 0.

So the presentation matrix is just (σij − tτij). By definition the Alexander
polynomial (up to a unit in Λ) is the determinant δ(t) = det(σij − tτij). It
is now a straightforward exercise in exterior algebra to complete the proof of
the proposition, up to a multiplication by a unit ±tµ , just working through the
definitions in the Plucker construction. Notice the particular case when Γ is
the graph of a linear map f : V → V . In this case we can choose bases so that
(σij) is the identity matrix, and τij is the matrix of f in the usual sense. The
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assertion that we want comes down to the familiar fact that the coefficients of
the characteristic polynomial are ±Tr(Λkf).

With regard to the ambiguity in the definition of the Alexander polynomial,
recall that this is reduced to ±1 by specifying that ∆(t) = ±tµδ(t) should have
∆(t) = ∆(t−1). So to complete the proof of Propostion 12, up to our overall
±1 ambiguity, we need only use the fact noted above that the traces of the
αi,W satisfy this symmetry property.

We see now that the two formulae, for closed 3–manifolds, can be deduced if
one proves the obvious relative versions for cobordisms. Suppose we have a
theory in which we have fixed isomorphisms, for all surfaces Σ,

V (Σ) =
⊕
j≥0

Rj ⊗ Λ(j)(Σ), (13)

where the Ri are universal vector spaces, independent of Σ. Suppose we can
prove that for all cobordisms W from Σ0 to Σ1 the map ρW : V (Σ0)→ V (Σ1)
is equal (under these fixed isomorphisms) to a direct sum

ρW =
⊕
i

1Rj ⊗ αj,W . (14)

Then in the case when Σ0 = Σ1 the gluing axioms and Proposition 12 imply
that the numerical invariant of the closed manifold W is∑

j

dim(Rj) aj . (15)

In particular it is then clear that the calculations of Section 3 will imply the
Casson and Meng–Taubes formulae. Now this relative version is both more gen-
eral and easier to prove. The gluing axioms in our topological field theory and
the functorial property of the Plucker construction mean that if the statement
is true for two composeable cobordisms it is also true for the composite. We can
decompose any cobordism W into a composite of elementary cobordisms and
it suffices to prove the result for these. The homological condition (3) means
that we can choose these elementary cobordisms to have index 1 or 2; that is,
we reduce to considering the standard elementary cobordisms Z from Σg to
Σg+1 and Z ′ from Σg+1 to Σg , where Σg is a standard surface of genus g . To
sum up then we have to establish, in the Seiberg–Witten and Casson theories,
the existence of isomorphisms (13) and the property (14) for these elementary
cobordisms.
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5 Naturality arguments

We will now see that the proof can be completed without any further geometric
input, using algebra and topology. In a nutshell, we shall show that the invari-
ants are determined by their formal properties. We recall some representation
theory of the (real) symplectic group. The representations Λi of Sp(2g,R) are
not in general irreducible. Let L: Λi → Λi+2 be the wedge product with the
symplectic form ω ∈ Λ2 . The primitive subspace P i is the kernel of

Ln−i+1: Λi → Λ2n−i+2.

The decomposition of the exterior powers into irreducible representations is, for
i ≤ n,

Λi = P i ⊕ P i−2 ⊕ . . . , (16)

[6], where we use the maps Lj to map P i−2j into Λi . Thus

P i = Λi − Λi−2,

as virtual representations. We shall also need to use the fact that the P i are
irreducible representations of the discrete subgroup Sp(2n,Z) ⊂ Sp(2n,R), and
of the finite-index subgroups of Sp(2n,Z) associated to spin structures. This
refinement follows because these subgroups are Zariski-dense in Sp(2n,R).

We now modify the grading of the primitive spaces, writing P(i) = Pn−i , so

Λ(i) = P(i) + P(i+2) + . . . , . (17)

We associate to a surface Σ vector spaces

P(i)(Σ) = P(i)(H1(Σ)),

which give irreducible representations of the mapping class group. Now suppose
we have a theory in which we know that

V (Σ) =
∑

µjΛ(j),

as representations of the mapping class group, for certain multiplicities µi .
Suppose the theory is Z/2–graded, with the even/odd part made of the Λ(even) ,
Λ(odd) respectively. Suppose the multiplicities µj are universal, independent of
the genus. All of these conditions hold in our two geometric examples. Then
we can write

V (Σ) =
∑
j

νjP(j),

where
ν0 = µ0, ν1 = µ1, ν2 = µ0 + µ2, . . .
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Define vector spaces Qj for 0 ≤ j ≤ g(Σ) by

Qj(Σ) = HomMC(Σ)(P(j)(Σ), V (Σ))

where HomMC(Σ) denotes the equivariant homomorphisms under the action of
the mapping class group. So the Qj are vector spaces canonically associated to
a surface and by construction the mapping class group acts trivially on them.
On the other hand we have canonical isomorphisms

V (Σ) =
⊕
j

Qj(Σ)⊗ P(j)(Σ), (18)

since the P(j) are distinct irreducible representations of Sp(2n,R) and hence
of the mapping class group. (Here we use the fact that the mapping class group
maps onto Sp(2nZ).) Notice that the dimensions of the Qj(Σ) are the integers
νj determined by the µj . and hence are universal, independent of the genus.

At this stage we bring in the following lemma, whose proof we leave as an
exercise for the reader. (For our main proof we only need a special case of
this—for the maps induced by elementary cobordisms—where the exercise is
more straightforward.)

Lemma 19 Suppose (U0, ω0), (U1, ω1) are symplectic vector spaces and Γ ⊂
U0×U1 is a Lagrangian subspace with respect to the symplectic form (ω0,−ω1)
on U0 × U1 . Then the Plucker map |Γ| maps P(j)(U0) to P(j)(U1).

It follows that a cobordism W defines maps

βj,W : P(j)(Σ0)→ P(j)(Σ1), (20)

since the corresponding subspace ΓW ⊂ H1(Σ0) × H1(Σ1) = H1(∂W ) is La-
grangian. Consider the standard cobordism Z from Σg to Σg+1 . This defines

ρZ :
⊕
j

Qj(Σg)⊗ P(j)(Σg)→
⊕
j

Qj(Σg+1)⊗ P(j)(Σg+1), (21)

where we have used the identifications (18) on the two ends of the cobordism.

Lemma 22 There are linear maps ρj : Qj(Σg)→ Qj(Σg+1) such that

ρZ =
⊕
j

ρj ⊗ βj,Z .

We may construct the elementary cobordism Z in a canonical way starting
with the surface Σg+1 and a non-separating embedded circle δ ⊂ Σg+1 . The
homology group H1(Σg) can be identified with the quotient [δ]⊥/[δ] of the
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annihilator [δ]⊥ ⊂ H1(Σg+1) of [δ] ∈ H1(Σg+1) with respect to the intersection
form. Any diffeomorphism of Σg+1 that fixes δ induces a diffeomorphism of
Z . Let G be the group of automorphisms of H1(Σg+1; Z) that preserve the
intersection form and fix [δ]. We get a natural action of G on H1(Σg) = [δ]⊥/δ .
Any element of G can be lifted to a diffeomorphism of Σg+1 , fixing δ , and
hence to a diffeomorphism of Z . It follows from the naturality properties of
our theory that ρZ intertwines the G–actions on the spaces

⊕
Qj⊗P(j) at the

two ends, and these actions are induced from the actions on the P(j) since the
mapping class groups act trivially on the Qj . Now Lemma 22 follows from the
Z/2–grading in the theory and the next, purely algebraic, Lemma.

Lemma 23 If j + j′ is even the only non-zero G–equivariant maps from
P(j)(Σg) to P(j′)(Σg+1) are multiples of βj,Z , in the case when j = j′ .

To see this we first choose another class [ε] ∈ H1(Σg+1) with [ε].[δ] = 1. This
choice defines an isomorphism

H1(Σg+1) = H1(Σg)⊕ 〈[ε], [δ]〉,
and hence a copy of Sp(2g,Z) in G. It is easy to verify that we have then have
natural (ie Sp(2g,Z)–invariant) isomorphisms

P(j)(Σg+1) = P(j+1)(Σg)⊕ P(j)(Σg)⊗ 〈[ε, δ] ⊕ P(j−1)(Σg).

Using the fact that the P(j) are distinct irreducible representations we see that
the only Sp(2g,Z)–equivariant maps are the maps in this decomposition from
P(j)(Σg) to P(j)(Σg) ⊗ 〈[ε], [δ]〉 of the form 1 ⊗ λ, for λ ∈ 〈[δ], [ε]〉. But the
only classes in 〈[δ], [ε]〉 which are fixed by the larger group G are the multiples
of δ , so the only G–equivariant maps are multiples of 1⊗ δ which are just the
multiples of βj,Z .

Note that it follows from the definitions, and the trivial action on the Qj , that
the maps ρj are universal in the following sense. If we start with surfaces
Σg,Σg+1 and choose any standard cobordism between them we get the same
maps ρj .

Lemma 24 The maps ρj are isomorphisms, for 0 ≤ j ≤ g .

We may carry through the entire discussion above for the other elementary
cobordism Z ′ from Σg+1 to Σg . We get

ρZ′ =
⊕

ρ′j ⊗ βj,Z′ ,

for universal maps ρ′j . Consider the trivial cobordism Σg× [0, 1] and write this
as a composite of elementary cobordisms Z,Z ′ . That is, we introduce a pair
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of cancelling handles in the product. The map in our theory induced by the
trivial cobordism is the identity map, and it follows that ρ′j ◦ ρj is the identity
for each j . So the ρj are injective. But we know, by our original hypothesis,
that for 0 ≤ j ≤ g

dim Qj(Σg) = dim Qj(Σg+1),

so the ρj are isomorphisms, with inverses ρ′j .

Now we use the universal maps ρj to identify the spaces Qj(Σ) for all surfaces Σ
(of genus g ≥ j ), and hence define universal vector spaces Qj . The point is that
this is unambigous since the mapping class groups acts trivially on the Qj(Σ)
so it does not matter which cobordisms we use to induce the identifications.
Then we have fixed isomorphisms

V (Σ) =
⊕
j

Qj ⊗ P(j)(Σ),

which, by construction, commute with the maps induced by elementary cobor-
disms, and hence by all cobordisms. Finally we can get back to the exterior
powers, although this is not really necessary, since we can go straight from the
primitive spaces to the Alexander polynomial. We know that the dimension of
Qj is µj + µj−2 + . . . , so we may choose arbitrary embeddings

Q0 ↪→ Q2 ↪→ Q4 . . .

Q1 ↪→ Q3 ↪→ Q5 . . .

and a sequence of complementary subspaces

Qi = Qi−2 ⊕Ri,

so that
Qi = Ri ⊕Ri−2 ⊕Ri−4 . . . ,

and dimRi = µi . Then we have fixed isomorphisms V (Σ) =
⊕
Rj ⊗ Λ(j)(Σ),

which commute with the maps in the theory, as required.

6 Connections with work of Thaddeus

The main point of this article has been the fact that the homology of the flat con-
nection moduli spaces, and of the symmetric products, can be described in terms
of the exterior powers. It is natural to look for relations between these different
geometric problems. In his paper [12], Thaddeus used an algebro–geometric
construction to relate these objects—regarding the moduli space M(Σ) as a
moduli space of rank 2 holomorphic vector bundles. His idea is to study a
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moduli space of “stable pairs” (E,φ), where E is a bundle and φ is a holo-
morphic section of E . The notion of stability depends on a real parameter
τ ∈ (0,∞), so there is a family of moduli spaces Mτ . When τ is small this
fibres over the moduli space of vector bundles with fibre a complex projective
space, and when τ is large Mτ is simply a projective space. In between there
are a finite number of exceptional values of τ where Mτ changes by a “flip”
(or “complex surgery”) which can be described in terms of the symmetric prod-
ucts. So far in this paper we have avoided the case d = 0 in the Seiberg–Witten
theory. In this case there are reducible solutions of the equations over a surface,
which causes some complications. However one can make a perturbation of the
equation which removes the reducible solutions, and the relevant moduli space
is then the symmetric product Sym g−1(Σ). Thus we can extend our theory
with vector spaces

V0 = Λ(1) ⊕ 2Λ(2) ⊕ . . . .
Similarly, if we use perturbations, we obtain a theory for negative values of d
which brings in the higher symmetric products. (This is not the same as the
unperturbed theory, in which there is a symmetry between d and −d.) Thus

V−d = Λ−(d−1) ⊕ 2Λ−(d−2) ⊕ . . . ,
but using the symmetry Λ(k) = Λ(−k) we get:

V−d = Vd ⊕ dT, (25)

where
T = Λ0 ⊕ 2Λ1 ⊕ Λ2 . . . .

(This corresponds to the homology of the Jacobian torus.) Now Thaddeus’
relation between the homology of the different spaces can be written

(2g + 1)H∗(M(Σ)) =
2g−1∑
j=0

(5g − 2− 3j)H∗(Sym j(Σ)) =
k=d−1∑
k=−d

(2g + 1 + 3d)Vd.

Using (25), the last sum yields the relation

V C = V0 + 2V1 + 2V2 + 2V3 + . . . ,

which we can of course obtain equally well directly from (5), (9). This can be
seen as a universal formula, relating the (2+1)–dimensional Casson theory and
the (2 + 1)–dimensional Seiberg–Witten theory. These are both reductions of
(3 + 1) dimensional theories—the instanton theory in the Casson case—so the
ideas should have some bearing on the problem of understanding the relation
between these latter theories. Of course there are obvious similarities between
Thaddeus’ technique and those used in the programme of Pidstragatch and
Tyurin in 4–dimensions. It would be interesting to obtain the relation between
the theories directly using the Pidstragatch and Tyurin method.
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