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HOMOLOGY GROUPS OF RELATIONS

By C. H. DowkEer
(Received June 25, 1951)

Any relation between the elements of a set X and the elements of a set Y is
associated with two simplicial complexes K and L. A simplex of K is a finite
set of elements of X related to a common element of Y'; a simplex of L is a finite
set of elements of Y related to a common element of X. In particular, the rela-
tion of being an element of a set of a covering is a relation between the points
of a space and the sets of the covering the space. One of the complexes asso-
ciated with this relation is the nerve of the covering; its homology and co-
homology groups are used in defining the Cech homology and cohomology groups
of the space. The other associated complex, which has points of the space as
its vertices, is used in defining the Vietoris homology groups and the Alexander
cohomology groups.

The two complexes associated with a relation will be shown (Theorem 1) to
have isomorphic homology and cohomology groups; if the complexes are geo-
metrically realized, they even have the same homotopy type. In particular, the
nerve and the Vietoris complex of any covering have isomorphic homology and
cohomology groups. It follows that, when the Cech [5] and Vietoris [12] ho-
mology groups are based on the same family of coverings, these groups are iso-
morphic for arbitrary spaces.' It also follows that, when the Alexander [2] and
Cech cohomology groups are based on the same family of coverings, they are
isomorphic for arbitrary spaces.’

The Alexander cohomology theory based on all open coverings is found to
satisfy the seven Eilenberg-Steenrod axioms.” The proof consists of showing
that this cohomology theory is isomorphic with the Cech cohomology theory
which is known [6] to satisfy the axioms.

1. Complexes associated with relations

Let X and Y be two sets and let R be a relation between X and Y, that is, R
is a subset of the product set X X Y. If (z,y) ¢ R we write z R y. Let the sim-
plicial complexes K and L be defined as follows. A finite subset s of X is a simplex
of K whenever the elements of s are all related to a common element of Y, that
is, whenever there is an element y, of ¥ such that, for each z € s, z R vy, . Simi-
larly a finite subset ¢ of Y is defined to be a simplex of L whenever some element

! The isomorphism of the Cech and Vietoris homology groups for compact metric spaces
is well known; see [10], page 273.

2 In the particular case when the family is the family of all open coverings, this iso-
morphism has been proved for paracompact spaces by Hurewicz, Dugundji and Dowker
[9, page 405], for compact spaces by Spanier [11] and for arbitrary spaces by Alexander
(unpublished).

3 This was proved for compact spaces by Spanier [11].
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HOMOLOGY GROUPS OF RELATIONS 85

of X is related to all the elements of ¢. It is easily verified that K and L are in-
deed simplicial complexes.

Let R; be a relation between X; and Y; and let R. be a relation between X,
and Y, . Then a map

f:(X2, Y2:R2)_)(X1: Y17R1)

of X, into X; and Y, into Y, , such that the subset R, of X, X Y, is mapped
into the subset R; of X; X Y, is called a map of the relation R, into the rela-
tion R; . Let K; and L; be the complexes associated with the relation R; and
let K, and L, be the complexes associated with R, . If s is a simplex of K: , let
Y. be an element of Y, such that z R, y, for each z e s. Then, for each z €s,
(z, y.) € R and hence (f(z), f(ys)) € Ry, that is, f(x) R: f(y,). Thus the images
of the elements of s form a simplex of K; . Thus f induces a simplicial map
fu:K, — K; . Similarly f induces a simplicial map foaiLs — Ly .
Clearly, if g: (X3, Y3, Rs) = (X, Y2, R,) is a map of the relation R; into
the relation R, , then
(f9)n = fugn:Ks — K,
and
(fg):u = legsz:Ls — L.
If X, is a subset of X ,if Y, is a subset of ¥; and if R, is a subset of (X, X Y3) n
R, , we say that the relation R, is a subrelation of the relation R, , and we write
(X,,Y:,Ry) C (X1, Y1, Ry). In this case the map

f:(X27 Y2>R2)_) (le YI;RI)

which maps each element of X, on itself and maps each element of Y, on itself
is called the inclusion map. The complex K, is now a subcomplex of K; and Le
is a subcomplex of L; . Thus with the pair (R: , R,) of relations are associated
the pairs (K; , K) and (L , L) of complexes.

If (Ra1, Ras) is a pair of relations and (Rs , Rg) is another pair, a map

f: (Xﬁl ’ XﬁZ ) Yﬁl ) Y52 ) Rﬁl ) RﬂZ) - (Xal ) Xaz ) Yal , Ya2 y R,ﬂ ) Rag)

of Xg into Xa and Y into Y. which maps Xg, Yg , Bs , R respectively
into Xa2, Yaz, Ra1, Ras is called a map of the pair (Rs , Rg) into the pair
(Ra1 , Raz). One sees that the submap fi:(Xp, Yp, Bat) =& Xa1, Y1, Ra)
induces a simplicial map fga1:Kgm — Kea and the submap fo: (Xg, Vg, Rg) —
(Xaz , Yeaz , Raz) induces a simplicial map fga2: Kgs — Koo such that, if 44: K,y —
K. and 45: Kgs — Kpg are inclusion maps, then zafges = fgarts: Kgs — Kar . That
is, f induces a simplicial map fga: (Kg1 , Kpg2) — (Ka1, Ka2) of a pair of complexes
into a pair of complexes. Similarly f induces a simplicial map fsa: (Lg1 , Lgz) —
(Lal ) La2)~

2. Barycentric subdivisions
The barycentric subdivision K’ of a simplicial complex K is defined as follows.

The vertices of K’ are the simplexes of K, and a finite set of vertices of K’ form
a simplex of K’ if they can be simply ordered by inclusion. If a complex K,
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is a subcomplex of a simplicial complex K; , then the barycentric subdivision
Kyisa subcomplex of K .

Assume that the vertices of K, are ordered so that the vertices of any simplex
of K, have a simple order. Then we define a simplicial map

¢: (K1, K3) — (Ky , Ks)

as follows. If &' = o, - - z, is a vertex of K, that is, a simplex of K, , let
¢z’ be the least vertex of the simplex «’ in the given fixed order, i.e., ¢z’ € 2’ and,
for each x; e 2/, g2’ < ;. It is easily verified that ¢ is a simplicial map and that
reordering the vertices of K, will replace ¢ by a contiguous* map. Clearly if
xy C x5 then $ry = ¢xy ; thus ¢ is order reversing.

The simplicial map ¢:(K;, Ki) — (K, , K3) induces a homomorphism
¢*:H"(Ky , K;) — H?(K1 , K3) of the cohomology groups, and, since contiguous
simplicial maps induce the same homomorphism, ¢* does not depend on the
order given to the vertices. It is known [10, pages 166-167] that ¢* is an iso-
morphism of H*(K, , K.) onto H”(K , K3). Similarly ¢ induces an isomorphism
¢+ H, (K1, K3) — H,(K, , K>) of the homology groups.

The complexes K;, K; have barycentric subdivisions K’ Ky, and the
ordering of the vertices of K; by inclusion determines a simplicial map
¢':(K\', Ki') — (K1, K3), and so on. The map ¢’ induces an isomorphism ¢'*
of H'(K1, K3) onto H*(K}' , K3') and an isomorphism ¢ of H,(K? , K1) onto
H,(K' , K).

Let (L, L) be a second pair of complexes and let y: (L, , L,) — (K1, K»)
be a simplicial map. Then ¢ induces a simplicial map ¢': (L7, L) — (K1, K3)
of the barycentric subdivisions. For, if 4’ = y, - - - Yp is a vertex of L; , [respec-
tively L], ie., a simplex of Ly[L,], then, since y is simplicial, the vertices
Yo, * -+, Yy, form a simplex of K,[K,] or a vertex of Ki[Kj5]. Let ¥'y’ be this
vertex. Clearly ¢’ is order preserving, i.e., if y; C y3 then ¢y, C Y'ys ; there-
fore a simplex yg - - - y, is mapped into a simplex. Thus ¢’ is a simplicial map.

Let ¢:(Ly, Ly) — (L1, Ls) be the simplicial map which maps each vertex of
L} on its first vertex in L, .

LemMaA 1. The maps ¢y’ and yé:(L; , Ly) — (K, , K,) are contiguous.

Proor. If y” = yo --- y,isa simplex of L , let ¢’ be its largest vertex. Then,
for each yi e y”, y; C ¢ and hence Yy C 9. Hence, since Y € Y'Y
'Y e Y. Also Yy € ¥y < § and hence Y@y e ¢'i’. Thus the images of the
vertices of the simplex y” both by ¢y’ and by y¢ are contained in the simplex
¥'y’. Moreover, if y” is a simplex of Ly, ¢/’ will be a simplex of K, . Thus
¢’ and Y¢ are contiguous.

3. The homomorphisms » and

Let (R: , R:) be a pair of relations and let (K, , K,) and (L, , L,) be the pairs
of complexes associated with (X, , X», ¥, , Y,, R, , R,). We introduce a map
Yi(Ly, Ly) — (K, , Ks) of the barycentric subdivision of (L, , L,) into (K , K,).

¢ Two simplicial maps ¢ and ¢, are called contiguous if for each simplex z’ of K| [respec-
tively K,] the images of the vertices of 2’ by ¢ and by ¢1 4all lie in a common simplex of K,
[respectively K.l.
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Each vertex y’ of L is a s1mplex of L, ; we choose ¢y’ € X; so that yy'Ryy for
each y € ¥’ and so that, if y’ is a vertex of Ly, ¢y’ € X, and yy'Rsy for each i e
y. By the deﬁmtlon of (L , Ls) the choice is possible.

Ify” = yo -~ - Yn 1s a simplex of L, , let i’ be its least vertex. Then, for each

yiey, oF e Cyi " and hence Yy ;Ri$if’. Thus the elements wyo e Yy, of
X, form a s1mplex of K, . If the simplex y” is contained in Ly, it lS seen that,
for each ¥ e y”, Yy ‘Rspij’, and hence the simplex with vertices Yo, -, Ve

is contained in K, . Thus ¢: (L, L3) — (K., Ko) is a simplicial map.

The definition of ¥ depended on a chome If § is the result of any other ch01ce
we, s1m11arly have JyiR@y or, if y” is in Ly, $yR:¢§’. Thus Yo, e
VYo, - , Y. are the vertices of a simplex of K, respectlvely K, . Hence
Y and § are contlguous Hence the homomorphisms ¢*: H*(K, , K») — H” (Ly, Ls)
and Y« H,o(L7, L3) — H,(K, , K;) are uniquely determined.

Since @* is an isomorphism onto it has an inverse ¢ :H*(Ly, L)) —
H?(L, , L;). We define

1 = * Y H"(K:, Ks) - H* (L1, Ln).
Let o = (@] L2 ¥ (Y| L3y)* be the corresponding homomorphism of H P(K,)
into H?(L,). Let 8:H”(K,) — H?*(K, , K») be the coboundary homomorphism
in (Kl, K,) and let & and § be the coboundary homomorphisms in (Ly, L,) and
(L, L5) respectively.
LemMA 2. The homomorphism n commutes with the coboundary homomorphism,
that s
6 = Sny:HP(Ky) — H" Ly, Ly).
Proor. By the third axiom of Eilenberg and Steenrod [8; also 6, page 278],
’ * - ’ *
gy W gy ST
| | 5 | 5
I 1 ) 1
+1 y* g’ gt o* +1
Hp (Kl,Kz) _—_— Hp (Ll,Lg) — Hp (Ll,Lz)’
Figure 1.

commutativity holds in each rectangle of Figure 1. Hence ¥ =
53 | Lo)* (¢ | Ly)*, that is, 76 = dn .

Let

w = Yadx ‘Hy(Ln , Lp) = Hy(Ky, Ko)

and let w, = (¢ | Ly)x(¢ | L2)%" be the corresponding homomorphism of H,(L,)
into H,(K,). Let 8 and 8 be the boundary homomorphisms in (K, K,) and
(L, , L,) respectively.

LeEmMA 2a. The homomorphism w commutes with the boundary homomorphism,
that 1s,

ow = wgé'H,,(IA , Lg) - Hp_l(l{z)

ProofF. By the third Eilenberg-Steenrod axiom for homology, d commutes

with ¥x and with ¢« . Hence 9 commutes with w = Vsbr .
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Lemma 3. If f is a map of a pair of relations (Bs1 , Rg;) into a pair (Ra; , Ras),
then faabs and Yafsa: (L , Liy) — (Kau , Ka2) are contiguous.

Proor. Let y” = yo - - - Y, be a simplex of Lg , and let 7' be its least vertex.
Let yo be any fixed element of 7. Then, for each ¥ ¢ y”, Yo € ' C yy and hence
YayiRayo . Therefore f(\//,gy'i)Ra,_f(yo), that is, faalsyiRaf(y0). Also, since yo € ¥,
f(y0) = Jsao € fsays and hence yfsay/iRu f(yo). Hence all the vertices fz.¥sy: and
VoTsal belong to a common simplex of K,; . Hence fea¥s is contiguous with
Yarfgar . Similarly Joazsz and Vs fzae are contiguous. Therefore Jaatbs and ¥, fs, are
contiguous.

LemMma 4. If f is a map of (Rg, Rss) into (Ru , Ras) then f* commutes with
n, that is

nafse = frana: H?(Kuy, Ka) — H(Lg1 , Lgs).

Proor. It follows from Lemma 3 that commutativity holds in the left rec-

* <%
B(K) Yo, B <P mrL)

| |75t 75
‘//* , d_)*
H"(Kg) L H(Lp) % H”(Lg)
Figure 2.

tangle of Figure 2, and from Lemma 1 that commutativity holds in the right
rectangle. Hence ¢; Y3 f5a = fasdr WY  that is, nafaa = faana -
LemMa 4a. If f is a map of (Rs , Rg) into (Ra1 , Ras) then fix commutes with
w, that s,
Soaxwg = wafﬁa*:Hp(Lﬁl s Lg2) — Hp(Ku y Kas).

Proor. It follows from Lemma 3 that fx commutes with ¥« and from Lemma
1 that fx commutes with é, . Hence fx commutes with » = Yadr

4. The isomorphisms 7 and o

It is to be shown that n:H"(K,, K,) — H*(Ly, L) and w:Hy(L, , L) —
H, (K, , K,) are isomorphisms onto. We first prove the following lemmas.

Lemma 5. Let (Ry, R,) be a pair of relations and (K1, Ks) and (L, , L) the
assoctated pairs of complexes. Then the maps ¥’ and o' (Ki , K3) — (Ki, K,)
are contiguous.

Proor. Let 2"/ = a5 - 2; be a simplex of K, and let #” be its least vertex.

K -*® g_% .k

N
N\ ¥
\\ //
L” L L.

Figure 3.
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Thus, for each z; , 7 C z7 , and, since ¢’ is order reversing, ¢'z; C ¢'z”. Let
y = y¢'i”; then xRy for each z e ¢’2”. Hence, since op'2r € pxi C ¢'F,
o'z Ryy.

For each vertex 2’ of z , ¥’ ¢ ¥z . Hence, since ¢'” € " C z; , ¥¢'3" ¢
¥/'z7 . Thus y e ¢z’ for each z7 . Hence, for each z , y¥/'z; Riy.

Thus all the vertices ¢¢’z; and Y9’z are vertices of a simplex of K, . Hence
é1¢, and Y@, are contiguous. Similarly ¢uxps and Y. are contiguous. Hence

¢¢’ and Y’ are contiguous, as was to be shown.

K" l—» K’ K
AN AN
¥ AN
\ N
- N
L r—2.,1L
Figure 4.

LemMA 6. The maps ¢¥' and ¥¢':(K{ , K3) — (L1, Ly) are contiguous.

Proor. This follows immediately from Lemma 1.

TaeoreM 1. If (R, , R,) is a pair of relations and (K, , K») and (L, , L,) are
the associated pairs of complexes, then

ﬂ:Hp(Kl , K2) o Hp(Ll , Lz)

s an tsomorphism onto.
Proor. From Lemma 5 (Figure 3) we see that

$* ¢ = 1HY (K, , Ky) — H'(Ky, Ko).

Also from Lemma 6 (Figure 4) we see that ¢’* '¢/* = ¢*3*~. Hence, substitut-
ing, we have

SOV = 1,

that is,

am = 1:H?(K,, K;) — H*(K, , K>).
Similarly

nn = 1:H?(Ly , Ly) — H* (L, Ly).
Hence

n:H?(K, , K;) — H?(L1 , L)

is an isomorphism onto.
TaEOREM la. If (R:, R,) is a pair of relations and if (K, Ko) and (L, L)
are the associated pairs of complexes, then

w:Hp(Ll , Lg) and Hp(Kl ’ K2)

s an 1somorphism onto.
The proof is similar to that of Theorem 1 and is omitted.
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6. Isomorphism of limit groups

Let X be a space’ and let A be a subset of X. A covering « of the pair (X, 4)
is a pair (a1 , as) consisting of a collection ay of subsets of X whose union is X
and a subcollection o, whose union contains A. The nerve K, of a is u ruir
(Ka1 , Kas) of simplicial complexes; a simplex of K, is a finite set of elements of
a; whose intersection is not empty, and a simplex of K, is a finite set of elements
of a; whose intersection meets A. The complex K., is a subcomplex of K .
The Vietoris pair Lo = (La, Lay) of simplicial complexes is defined thus: A
simplex of L., is a finite set of points of X contained in a common element of
oy and a simplex of L. is a finite set of points of A contained in a common ele-
ment of a; . The complex L,, is a subcomplex of Ly .

Clearly K and L are the pairs of complexes associated with the relation pair
(X, A4, a1, a2, ¢ €) where each ¢ means “element of”.

If 8 = (61, B) is also a covering of (X, A) we say that 8 is a refinement of a,
or that @ < B, if each element of 8; is contained in some element of «; and if
each element of g8, is contained in some element of a;. A relation map = of
(X, 4,B1,B2,¢ € into (X, 4, a1, az, ¢ ¢) is called a projection if = maps each
point of X on itself and maps each element U of 8; on an element V of «; such
that U C V and such that, whenever U ¢ 8;, V e az . If @ < 8 such a projection
= exists. Let the induced simplicial maps of the associated complexes be mga:
(Kpr, Kg2) = (Kar, Kag) and #ga : (L1, Lgz) — (L1 , Laz). Given the coverings
B and « with a < B, the relation map = is in general not uniquely determined,
but a second choice is associated with a simplicial map contiguous with g, .
Hence 75 and msas are uniquely determined. The map #4, is a uniquely deter-
mined inclusion map.

Let Q be a family of coverings of (X, A) such that, if « and 8 are in Q, there
exists in @ a common refinement v of « and 8; & < 7, 8 < v and v € Q. Then ©,
with <, forms a directed set. Let G be a discrete abelian group. The groups
H"(K.) = H (Ka , Ka: ; @), together with the homomorphisms 73, : H*(K,) —
H?(Kg), form a direct spectrum S”(X, 4; G, Q) whose limit group H*(X, 4; G, Q)
is the p-dimensional Cech cohomology group of (X, A) with coefficient group @
and fundamental family Q. The groups H”(L,) = H?(La , Lo ; G), together with
the homomorphisms #3,: H”(L.) — H?(Lg) form a direct spectrum S*(X, 4 ; G, Q)
whose limit group is the Alexander® cohomology group H?(X, 4; G, Q).

Similarly the homology groups H,(K.) = H,(Ka, Ka; G) and homo-
morphisms wgax:H,(Kg) — H,(K.) form an inverse spectrum S,(X, 4; G, Q)

5 Until Section 9 no topology will be assumed in the space X, thus X may be merely a set.

¢ Alexander [2] defined only the absolute cohomology groups. For the special case when
the family Q@ is the family of all open coverings, Spanier [11] gives two definitions of the rela-
tive cohomology groups (i. e., cohomology groups of a pair (X, A)) one, attributed to A. D.
Wallace, in terms of neighborhoods of the diagonal in a product space and the other in
terms of coverings. Because of an error in the second definition, the results in his Appendix
A are incorrect as may be seen from the following counter example. Let X be the subset
of the plane for which 22 4+ y? < 1, and let A be the non-closed subset defined by x? =
1, z < 1. Then, in Spanier’s notation, H®(X, A) = 0, H*(X, A) = G and so H = H.
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whose limit group is the Cech homology group H,(X, 4; G, @). The homology
groups Hp(La) = Hp(La , Laz ; G) and homomorphisms #gax : Hp(Lg) — Hp(La)
form an inverse spectrum S,(X, 4; G, ©) whose limit group is the Vietoris
homology group H ,,(X A; G, Q).

TuroreM 2. The Cech and Alexander cohomology groups are isomorphic;

H?(X, A; G, Q) = A*(X, 4; G, Q).

Proor. By Theorem 1, .:H"(K.) — H”(L,) is an isomorphism onto. By
Lemma 4, 7* commutes with 5, that is,

Namag = Tagns:H"(Ks) — H"(La).

Thus, if we identify each H”(K.) with H”(L.) by the isomorphism 7, the two
spectra are identified, and hence also their limit groups.
TuroreM 2a. The Cech and Vietoris homology groups are isomorphic;

H,(X, A;G, Q) = H,(X, 4;G, Q).
The proof is similar to that of Theorem 2 and is omitted.

6. The homomorphism f*

Let f be a map’ of (X, A) into a pair (Y, B), that is, f maps X into Y so that
f(4) C B. Let a be a covering of (X, A) and let ¢ be a covering of (Y, B). We
say that f maps « into o, or that ¢ < «, if the image f(U) of each element U
of oy is contained in some element of o; and the image of each element of a; is
contained in some element of o, . Corresponding to f there is at least one rela-
tion map of (X, 4, en, az, ¢ ¢) into (Y, B, o1, 02, €, ¢) which maps each v ¢ X
onto f(z) and each U € a; onto some V ¢ oy such that f(I/) C V and such that,
HUeay,Veo.

Let the associated simplicial maps be far:(Kai, Ka2) — (Ko, Ks) and
Fae:(Lar , Lias) = (L1, Los). The relation map may not be uniquely determined
by f but a second choice is associated with a simplicial map contiguous with
fa,, , while the simplicial map fa is unchanged. Thus the homomorphisms fae,
fre ) faox and faox are uniquely determined.

Let Q be the fundamental family of coverings of (X, 4), let @ be the funda-
mental family of coverings of (¥, B) and let f be a map of (X, 4) into (¥, B)
such that, for each o ¢ 91 , there is some « ¢ @ which is mapped into ¢ by f Then
the homomorphisms f&, , defined whenever ¢ < «, constitute a map® of the
direct spectrum S?(Y, B; G, @) into the spectrum S”(X, 4; G, Q) and this map
of the spectrum induces a homomorphism f*:H*(Y, B; G, Ql) — H"(X, A;QG, Q).
Similarly the homomorphisms f%, determine a homomorphism f*:H*(Y, B;
G, o) — H' (X, 4;G, Q).

LemMA 7. When the Cech and Alexander cohomology groups are identified
the homomorphism f* coincides with J*.

7 No continuity is assumed here, in fact X may not be a topological space.
8 See [6], page 279.
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Proor. It is sufficient to show that, under the identification, the homo-
morphisms f%, and f%, coincide, that is, that

Naf%e = Faome:H?(K,) — H"(L.).

But this follows from lemma 4.

7. The homomorphism 3

Let a be a covering of (X, A) and ¢ a covering of A. We say that ¢ < « if,
for each element U of oy, U n A is contained in some element of o. There is
then at least one relation map 8 of (4, az, €) into (A4, o, ¢) which maps each
x € A on itself and maps each element U of «, on an element V of ¢ such that
UnA C V. Let the associated simplicial maps be ,,: K a2 — K, and 8ue: L a2 — L.
The relation map 6 may not be uniquely determined, but a second choice is
associated with a simplicial map contiguous with 6,, . The map 8., is a uniquely
determined inclusion map. Thus the homomorphisms 6%, , 6%, Oarsx and Bees
are uniquely determined.

Let 64:H"(Ka) — H”™ (Ko, Ka) be the coboundary homomorphism for
the pair (Ko , Kaz) and let 8a: H?(Lag) — H?*' (L , Las) be that for (La; , Las).
If o < a we define

Sac = Sabag: HY(K,) — H (K o , K )
and
Sar = 8abag:H?(L,) — H” ™ (Lay, La).

Let @ be the fundamental family of coverings of (X, 4), let @, be the funda-
mental family of coverings of A and, for each o € Q; , let there exist some « € Q
with ¢ < a. Then the homomorphisms §,, , defined whenever ¢ < «, constitute
a map of the direct spectrum S*(4; G, @) into the spectrum S**(X, 4; G, Q),
and this map of the spectrum induces a homomorphism

8:H"(A; G, ) — H" (X, 4; G, Q).
Similarly the homomorphisms §., determine a homorphism
§:H”(A;G, ) — H(X, 4; G, Q).

LemMa 8. When the Cech and Alexander cohomology groups are identified the
homomorphism 6§ coincides with 8.
Proor. It is sufficient to show that, under the identification, the homo-
morphisms 8., and §,, coincide, that is, that
Nadas = Saoe HP(K,) — H? ™ (Lay , Las).
By Lemma 4,
77a20:a = atzaﬂa:Hp(Ku) - HP(La‘J),
and by Lemma 2,
ﬂaaa = SaﬂaZ:Hp(ch) g Hp+1(La1 y La‘_’)-
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Therefore 7xda0% = Sanarfhe = dabuono ; thus we have ns0as = Saone as Was to
be shown.

8. The homomorphisms f* and 9

As in Section 6, let*f be a map of (X, 4) into (Y, B), let @ and @, be funda-
mental families of coverings of (X, A) and (Y, B) respectively and, for each
o € O, let there exist some « ¢ @ which is mapped into ¢ by f. An element of
H, (X, A; G, Q) is a thread of the spectrum S,(X, 4; G, 2), that is, a set {a.}
of elements a, ¢ H,(K.), one for each a € @, such that, whenever a < g,
Taaxlg = O . It is easily verified that the set of all images faox@q, for a, in a
given thread, is a thread of the spectrum S,(Y, 4; G, Q). Thus there is defined
amap f«:H,(X, A; G, Q) — H,(Y, B; G, ) which is easily seen to be a homo-
morphism. Similarly the set of homomorphisms f..« induces a homomorphism
f*:HP(X7 A; G: Q) - HP(Y) B) G) Ql)~

LemMA 7a. When the Cech and Vieloris homology groups are identified the
homomorphism fy coincides with fy .

Proor. It is sufficient to show that

fmr*wn = wa ack e p(La) g Hp(KU)

This follows from Lemma 4a.

Again let @ and @ be fundamental families of coverings of (X, A4) and A
respectively such that for each o e @, there is some a € @ with ¢ < a. Whenever
¢ < o there are simplicial maps 0,,: K — K, and 84t Loz — L, whose induced
homomorphisms 8.,+ and 8.5 are uniquely determined. Let dae = 0arxd. and
Oas = Oa0x0. Where 9, and 3, are the boundary homomorphisms for the pairs
(Ko, Ka2) and (La , Las) respectively. Then the set of all images 940aa , for aq
in a given thread of S,(X, 4; G, Q), form a thread of S,1(4; G, %) and the
resulting map 9:H,(X, A4; G, Q) — H, 1(4; G, &) is a homomorphism. Similarly
the homomorphisms d,, determine a homomorphism §:H,(X, 4; G, ) —

H,1(4; G, ).

LemMa 8a. When the Cech and Vietoris homology groups are zdentzﬁed the
homomorphism @ coincides with 3.

The proof is similar to that of Lemma 8 and is omitted.

9. Cohomology theory of topological spaces

If X is a topological space, if A is a subset of X and if @ is the family of all
coverings of (X, A) by open sets of X then we write H” (X A;Gand H (X, A;G)
respectively, omitting explicit mention of Q, for the Cech and Alexander co-
homology groups of (X, A) with coefficient group G.

If f:(X, A) — (Y, B) is continuous and if ¢ is a covering of (¥, B) by open
sets then there is a covering o of (X, A) by open sets which is mapped into
o by f. For example, let a; be the set of all f(V) with V ¢ o, , and let a be the
set of all (V) with V € o» . Hence for each continuous map f:(X, 4) — (Y, B)
the homomorphisms f*:H*(Y, B; @) — H"(X, A; G) and f*:H*(Y, B; G) —
H?(X, A; @) exist.
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If o is any covering of A by open sets there is a covering « of (X, A) by open
sets such that ¢ < a. For example, let a; be the set of all open sets of X and let
az be the set of all open sets U of X such that U n A4 is an element of o. Hence,
if X is a topological space and if A C X, the homomorphisms &: H”(4; Q@) —
H*" X, A; &) and 5:H°(4; G) — H" (X, 4; @) exist.

The category of groups H(X, A; G) for fixed G, with p = 0, 1, --- and
arbitrary topological (X, A), together with the homomorphisms f* for arbitrary
continuous maps f:(X, 4) — (¥, B) and the coboundary homomorphisms
8:H"(4;G) — H" (X, 4;G), forms a cohomology theory, the Cech cohomology
theory. Similarly the groups H”(X, 4; @) and homomorphisms f* and § form
the Alexander cohomology theory.

TrEOREM 3. When the Cech and Alexander cohomology groups H"(X, A; @)
and H*(X, A; G) are identified for cach pair (X, A) then the cohomology theories
are identified.

Proor. It is sufficient to show that under the identification f* coincides with
J* and & with 8. But this was proved in Lemmas 7 and 8.

TueorEM 4. The Alexander cohomology theory satisfies the scven Etlenberg-
Steenrod axioms.

Proor. This is shown by identifying the Alexander cohomology theory
with the Cech cohomology theory which is known [6] to satisfy the axioms.
(A direct proof that the Alexander cohomology theory satisfies six of the seven
axioms is given by Spanier [11]; he also proves that the remaining axiom, the
homotopy axiom, is satisfied when the pairs (X, A) are required to be compact.)

10. Remarks

(1) Since (Section 5 above) the projection maps of the Vietoris complexes
are uniquely determined the induced homomorphisms of the cochains are also
uniquely determined. The cochain groups C"(L.) = ("(La, L. ; Q) with
these homomorphisms form a direct spectrum whose limit group C?(X, 4; G, Q)
is a group of Alexander cochains of the pair (X, 4). The coboundary operator
for C*(X, 4; G, Q) is induced by that for the groups C”(L,), and the cohomology
group found from these limit cochains is isomorphic [3, page 306] with the
limit cohomology group H”(X, 4; G, Q). There is a homomorphism

7a:C"(Lar, Loy ; G) — C*(X, A; G, Q)

which maps each cochain of C”(L,) on the bundle containing it; it is easily
seen that this homomorphism is onto. Let the kernel of #, be C{(L.); then
C” = C"(La)/C¢(La). A cochain of C*(Ly,) is in C¢(L.) if and only if it belongs
to the zero bundle: such cochains are called “locally zero” [1, page 511].

(ii) In the case of the Cech groups, the projection maps mg. of the nerves are
not in general uniquely determined and in general the cochain groups
C’(Ka , Ka ;@) do not form a spectrum. If X is a topological space let a coyer-
ing (en , a») of (X, A) by open sets be called fine if each open subset of an element
of a; is in a; and each open subset of an element of a, is in a, . If Q is the family



HOMOLOGY GROUPS OF RELATIONS 95

of all fine coverings of (X, 4), @ is cofinal in the directed set of all coverings of
(X, A) by open sets and hence H*(X, 4; G, @) = H*(X, A; G). If « and B are
fine coverings and if @ < 8 then Kg is a subcomplex of K. , Kg» is a subcomplex
of Kq and ms.:Ks — K. can be chosen to be the inclusion map. The cochain
groups C?(K,) = C*(Ka , Ko ; G) for fine « together with the cochain homo-
morphisms induced by the inclusion maps s, form a direct spectrum whose
limit group C*(X, 4; G) is the group of Cech cochains of (X, 4). As in (i), the
cohomology group H”(X, A; G) can be found from this cochain group
C’(X,A;@),and C*(X, 4; G) is isomorphic with C?(K.)/C¢(K.) where C¢(K.)
is the group of “locally zero” cochains of K,

(iii) The Cech and Vietoris homology groups, being inverse limit groups,
are topological groups; their topology is however usually not of interest. But,
if the coverings a of Q are all finite, the nerves K, are finite complexes and,
if G now is taken to be a division-closure topological group, the chain group
Co(Ka) = Cp(Ka, Koz ; G) becomes also a topological group, the cycle group
Z,(K.) is a topological group and the boundary group B,(B.) is a closed sub-
group of Z,(K,). Hence H,(K.) is a topological group and the inverse limit
group H,(X, 4; G, @) has in general a non-trivial topology. However, if the
number of points is infinite, the Vietoris complexes L, are not finite and the
groups C,(L,) must be taken as discrete groups. One can however in this case use
the isomorphism w: H,(L.) — H,(K.) to introduce a topology in H,(Ls). In this
way the limit group H,(X, 4; G, Q) will acquire a possibly non-trivial topology;
in fact the Vietoris and Cech homology groups will be topologically isomorphic,
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