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Abstract
Recent interest in the possible non-trivial topology of the Universe, and the
resulting analysis of the Laplacian eigenproblem, has prompted a reprise
of calculations done by ourselves some time ago. The mode problem on
the fixed-point-free factored 3-sphere, S3/�, is re-addressed and applied to
some field theory calculations for massless fields of spin 0, 1/2 and 1. In
particular the degeneracies on the factors, including lens spaces, are rederived
more neatly in a geometric fashion. Likewise, the vacuum energies are re-
evaluated by an improved technique and expressed in terms of the polyhedrally
invariant polynomial degrees, being thus valid for all cases without angle
substitution. An alternative, but equivalent expression is given employing
the cyclic decomposition of �. The scalar functional determinants are also
determined. As a bonus, the spectral asymmetry function, η(s) is treated by
the same approach and explicit forms are given for η(−2n) on one-sided lens
spaces.

PACS numbers: 03.70.+k, 04.60.−m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The current interest in the topology of the Universe has led to calculations involving the modes
on discrete factors of the sphere, Sd/�, with � freely acting. These are required both for the
spectral analysis of the appearance of the Universe and for quantum field theory calculations.

Weyl raised the question of the topology (‘inter-connection’) of the Universe in his
classic book ‘Space–Time–Matter’ in 1922 and later cosmic speculations were made by
Ellis [1] in connection with the Friedman–Robertson–Walker metric. Milnor [2] has also
considered the observational consequences of a non-trivial topology. Some other references
can be found in [3, 4], for example. Starkman [5] includes a translation of the pre-GR work
of Schwarzschild [6].
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The enumeration of manifolds locally isometric to the sphere, in particular to the 3-sphere,
is a textbook matter and factored spheres occur frequently in various contexts seeing that they
provide examples of multiply connected spaces that are relatively easy to control. I might
mention the topic of analytic torsion. Spheres occur as hypersurfaces and boundaries and
these can be replaced by factored spheres as in the analysis of boundary terms in the index
theorem, e.g., Gibbons et al [7], and in the generalized cone [8, 9].

Our interest in such spaces was originally as examples in connection with quantum
mechanics on multiply connected spaces. It was suggested in [10], for example, that the
target space in the σ -model could just as well be S3/� as S3. Pion perturbation theory would
not distinguish between these. The quantum mechanical and field theoretic propagators on
S3/� or T × S3/� are given as pre-image sums of those for the full S3. The nice review
by Camporesi [11] contains extensive information on these sphere, and other homogeneous
space, quantities.

In [12], we presented some field theory calculations on multiply connected Clifford–
Klein spaces, including the flat (Hantsche and Wendt), T × R

3/�, ones and the curved
(Seifert and Threlfall) ones, T × S3/�. For simplicity, we chose those � that produce
homogeneous manifolds and the techniques used involved ζ -functions and images. In later
calculations, concerned with symmetry breaking by ‘Wilson lines’ [13, 14], similar ingredients
were employed.

In the course of the evaluations we naturally encountered mode properties and expressions
for degeneracies. These have occurred in some recent works, e.g., [15], dealing with cosmic
topology. In the present work, I wish to re-examine these technical questions while filling in
some gaps and extending the earlier discussions. In [12], the Casimir energies on lens spaces
S3/Zq were given generally in terms of polynomials in q and I wish here to extend these to
prism spaces, S3/D′

q . Some results along these lines have already been given in [13] taken
from [16]. One might also wish to consider the case of non-homogeneous manifolds, which
were only mentioned in [12]. Of course, any ‘realistic’ cosmology must be time dependent
but since my aim here is simply to exhibit some mathematical details, I consider only the static
Einstein Universe, T × M.

In addition to lens and prism spaces, in [12] we also computed the Casimir energies
for the other binary polyhedral groups. An objective is to rederive these, the point being
that they turned out to be rational quantities arising from combinations of terms containing
irrational quantities. The geometric reason is clear. Roughly, each group can be expressed in
terms of cyclic groups and we then only have to combine appropriately the above-mentioned
polynomials. An elaboration of this might be a good starting point, however some necessary
preliminaries have to be recounted. I refer to the mode problem.

The expressions for scalar modes on the full d-dimensional sphere go back as far as
Green in 1837 and were developed by Hill in 1883 [17]. Later discussions naturally abound
and have entered the standard reference works so it is unnecessary to give any sort of
comprehensive history here. In the following section I present some basic facts.

2. Modes and degeneracies on the 3-sphere and factored 3-sphere

The 3-sphere case is special because of the isomorphism SO(4) ∼ SU(2) × SU(2)/Z2,
essentially a consequence of the isomorphism S3 ∼ SU(2), the two factors corresponding
to left and right group actions. The fact that, for a free, discrete action, the factors must be
binary polyhedral groups was derived by Seifert and Threlfall [18], although known to Hopf
[19]. The classic discussions of these groups are due to Klein [20] and Cayley [21]. There
are, of course, many later treatments. Wolf [22] is one standard reference and he also treats
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the d-sphere, see also Milnor [23]. Handy information is available in Coxeter and Moser [24]
and in Coxeter [25].

The binary groups also occur in the quantum mechanics of electrons in crystals, the
original examination being by Bethe [26]. He calls them double groups and his technique has
passed into physics textbooks, e.g., Landau and Lifshitz [27]. A more rigorous analysis is
provided by Opechowski [28]. The standard mathematical reference [25] does not mention
Bethe’s work.

The spatial manifold I am concerned with here is, therefore, M = S3/(�L × �R) with,
to repeat, both �L and �R binary polyhedral groups. For a homogeneous space, one of the
factors will be trivial, equal to 1, but for a while I keep to the general situation.

One final scene-setting point has to be raised before the calculation is begun. The
quantum mechanics, and therefore scalar quantum field theory, on spaces with a non-trivial
first homotopy group, π1(M) (which is isomorphic to � for free actions) has a freedom
coded by the homomorphism, π1(M) → U(1). I do not wish to invoke this freedom in the
following. It can easily be incorporated but to do so would extend the algebra, and this paper,
unnecessarily.

In order to evaluate the Casimir energy, for example, one needs the equations of motion
on T × M. This amounts to a choice of scalar Laplacian on M. One choice is the bare
Laplacian, �, and another is the ‘conformal’ Laplacian � + R/6, on S3. (We define � with
the sign such that its spectrum is non-negative.) This choice will affect the eigenvalues but
not the degeneracies nor the eigenfunctions, and, since it is these I wish to spotlight, I work,
for preference, with the conformal Laplacian which makes the eigenvalues on the full sphere
squares of integers, say l2/a2, l = 1, 2, . . . , up to a scaling, a being the radius. The Laplacian
on S3 coincides with the Casimir operator on SU(2), up to a scale, and the eigenfunctions can
be taken as proportional to the complete set of representation matrices, Dj

mn(g), g ∈ SU(2)

with dimensions, l = 2j + 1. This is true for any Lie group. Square integrable completeness
is the content of the Peter–Weyl theorem. The classic book by Vilenkin [29] provides all the
details one could require. Talman [30] and Miller [31] are also very useful. In this paper, I
restrict attention to the 3-sphere where one has the full array of angular momentum techniques
to play with.

As is well known, going back at least to Rayleigh, the effect of the factoring, M → M/�,
amounts to a cull of the modes on M. In solid state physics this process is referred to as
symmetry adaptation and functions on M/� can be obtained by projection from those on M,
which amounts to averaging over �. This process can be traced back, in its general form,
to Cartan and Weyl. Making this projection does not always immediately yield quantities of
practical value.

Stiefel [32] makes some useful remarks on the application of group theory to the solution
of boundary value problems.

One must begin therefore, again, with the scalar modes on the full sphere, S3, for which
it is sufficient to take the hyperspherical harmonics, Dj

mn(g).
If one requires the explicit form of the eigenmodes, then the traditional method is to select

an appropriate coordinate system, separate variables and solve some ordinary differential
equations by various means. In this way, the modes were known to Green for arbitrary
dimensions, were developed by Hill and related to ambient harmonic polynomials. This is the
way the Dj

mn(g) are usually evaluated in standard angular momentum references using, for
example, Euler angles and involving Jacobi polynomials. Vilenkin [29] has the details, and
much else.

As a rule, it is more elegant to use as much group theory (here angular momentum theory)
as possible.
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Instead of the Dj
mn(g) an equivalent set of (scalar) harmonics may be defined by some

left–right recoupling,

Yn:LM(g) =
[
(2J + 1)(2L + 1)

|M|
]1/2 (

J L m

m′ M J

)
DJ

m

m′
(g),

where n = 2J + 1 and |M| is the volume of SU(2), 2π2a3.
For some purposes these functions are more convenient than the Ds. They are associated

with the polar coordinate system, (χ, ξ, η) on S3 ∼ SU(2). A group element, g ∈ SU(2), is
parametrized by an angle of rotation, 2χ , and the S2 angles, ξ, η, specify an axis of rotation,
using the language of rotation in the light of the isomorphism, SO(3) ∼ SU(2)/Z2.

Explicit formulae for the Yn:LM are derived in the literature (e.g., [30, 33]). There is
a neater method than the one used in these references but, since the eigenfunctions are not
needed in this paper, I leave it until a later time. Formally, I just use the Ds.

The projected eigenfunctions on S3/� are periodized sums on S3 in the standard way,

φj
mn(g) =

[
2j + 1

2π2a3|�L||�R|
]1/2 ∑

γ=(γL,γR)

Dj
mn(γLgγR). (1)

This is an example of the more formal, and general, statement that if φ̃λn
(q) are the

eigenfunctions on the covering manifold, M̃, then [12, 34]

φλn
(q) = 1√|�|

∑
γ

φ̃λn
(γ q), q ∈ M, (2)

are periodic eigenfunctions on M = M̃/�. For convenience, I make no notational distinction
between points, q, of M̃ and M.

The standard difficulty is that these projected eigenfunctions are not independent, as
constructed, and a certain amount of diagonalization is required. I summarize this well-known
state of affairs in the present notation.

From general self-adjointness arguments, both φλn
(q) and φ̃λn

(q) must be orthogonal,
on M and M̃, respectively, for distinct eigenvalues. They will also form complete sets.
Orthogonality means that one can work eigenspace by eigenspace.

Label, in the usual way, the covering eigenfunctions by the eigenvalue λ and an index i to
take care of any degeneracy. Instead of (2), then define

φλ,i(q) = 1√|�|
∑

γ

φ̃λ,i(γ q), q ∈ M, (3)

and construct the scalar product

Pij ≡
∫
M

dq φ∗
λ,i(q)φλ,j (q). (4)

Using completeness and eigenspace orthogonality, it is easy to show that P is a projection
operator, P 2 = P . For the proof start with

PijPjk =
∑

j

∫
M

dq

∫
M

dq ′ φ∗
λ,i(q)φλ,j (q)φ∗

λ,j (q
′)φλ,k(q

′), (5)

and consider the quantity∑
j

φλ,j (q)φ∗
λ,j (q

′). (6)
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One has completeness on M,∑
λ

∑
j

φλ,j (q)φ∗
λ,j (q

′) = δ(q, q ′) =
∑

γ

δ̃(γ q, q ′). (7)

Incidentally, this is consistent with the factors in (3) after a group translation. The
left-hand side of (7) is

1

|�|
∑
γ,γ ′

∑
λ,j

φ̃λ,j (γ q)φ̃∗
λ,j (γ

′q ′) = 1

|�|
∑
γ,γ ′

δ̃(γ q, γ ′q ′)

= 1

|�|
∑
γ,γ ′

δ̃(γ ′−1γ q, q ′)

=
∑

γ

δ̃(γ q, q ′). (8)

Using eigenvalue λ orthogonality on M, the quantity (6) occurring in (5) can be replaced
by the full quantity (7) and the double integral reduced to a single one recognized as Pik as
required.

Orthogonality on M implies the following identity on the covering space:

1

|�|
∑

γ

∫
M̃

φ̃∗
λ,i(γ q)̃φλ′,j (q) dq = δλλ′Pij , (9)

and completeness on M̃, used in (8), is∑
λ,i

φ̃λ,i(q)φ̃∗
λ,i(q

′) = δ̃(q, q ′). (10)

Now consider the combination∑
i

φ̃λ,i(q)Pij = 1

|�|
∑

γ

∫
M̃

dq ′ ∑
i

φ̃λ,i(q)φ̃∗
λ,i(γ q ′)φ̃λ,j (q

′) (11)

using either (4) + (3) or (9). Replace the sum over i in (11) by the complete sum (10) and use
(9) to show that the sum over λ is restricted to the single term λ = λ and so makes no change,
but the integral can now be performed and I regain the sum (projection) in (3), so that

φλ,j =
√

|�|
∑

i

φ̃λ,i(q)Pij

which is the algebraic expression of the projection M̃ → M.
The diagonalization referred to earlier is more precisely that of P, which has eigenvalues

1 and 0, the number of 1s, i.e., Tr P , being just the degeneracy of the λ level on M. There is
no need to perform the diagonalization to determine this.

Therefore, the degeneracy of the λ eigenvalue is, from (9),

dλ = 1

|�|
∑

γ

∫
M̃

∑
i

φ̃∗
λ,i(γ

−1q)φ̃λ,i(q) dq. (12)

Diagonalization would be required to determine the independent modes in this direct
approach which is not necessarily a practical one.

Equation (12) is a standard result in the theory of symmetry adaptation, familiar in
quantum mechanics, and applying it to (1) yields, after some mild group theory [12],

dl = 1

|�L||�R|
∑

γ=(γL,γR)

χl(γL)χl(γR), (13)



4252 J S Dowker

where χl(g) is the character of the spin j representation, with l = 2j + 1,

χl(g) = sin lθ

sin θ
.

aθ is the radial distance on S3 between the origin, corresponding to the unit element of SU(2),
and the point q, corresponding to the group element, g. The character is a class function. θ is
the colatitude in the polar coordinate system on SU(2). It was denoted by χ earlier and 2θ = ω

equals, as mentioned, the SO(3) rotation angle.
One thus encounters in (13) the quantities

dl(�) = 1

|�|
∑
γ∈�

χl(θγ ) = 1

|�|
∑
γ∈�

sin lθγ

sin θγ

, (14)

which can be evaluated for each binary polyhedral group, if desired, since the angles, θγ ,
are known and the conjugacy class decompositions can be used to ease the arithmetic. An
example for the ordinary cubic group, O, is given by Stiefel [32].

Of course, the degeneracy is often combined with other quantities in an eigenmode sum
over l and then it may be advantageous to leave (14) alone. For example the conformal
ζ -function on S3/� is

ζ�(s) = a2s

∞∑
l=1

dl(�L)dl(�R)

l2s
, (15)

and the sum over l produces two Epstein ζ -functions, in this case. An expression is given
later.

Another example is the generating function for χl ,
∞∑
l=1

χl(θ) e−2γ l = 1

2

1

cosh(2γ ) − cos θ
, (16)

obtained by trivial geometric summation. This can often be used for ad hoc evaluations. For
example, it directly yields the standard generating function for lens space degeneracies. For
� = Zq the angles θγ are θp = p(2π/q) for p = 0, 1, . . . , q − 1 and so one is led to the
(binary) cyclic generating function (heat-kernel) setting t = e−2γ ,

G(t, q) =
∞∑
l=1

dl(q)t l = 1

2q

q−1∑
p=0

1

cosh(2γ ) − cos(2pπ/q)

= t (1 + tq)

(1 − t2)(1 − tq)
. (17)

Expansion of the right-hand side is sufficient to yield expressions for the cyclic degeneracies.
If q is even, it follows that dl(q) is zero for l even, and for l odd we can use the SO(3) result

g(σ, q) =
∞∑
l=0

(2[l/q] + 1)σ l = 1

1 − σ

1 + σq

1 − σq
, (18)

to read off the degeneracy, d2l+1(q), having relabelled l → 2l + 1 and set σ = t2.
It is, nevertheless, still of interest to look at expression (14) directly. Similar finite

trigonometric sums have been considered for many years. Most involve sums related to cyclic
groups, Zq . The basic sum is classic and given in Bromwich [35] p 272, example 18,

q−1∑
p=1

sin(klπp/q)

sin(lπp/q)
= q − k, for (l, q) = 1,

and k odd, k < 2q − 1.
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Using this formula, one can show that

q−1∑
p=1

sin(2πtp/q)

sin(2πp/q)
=

{−t t even
q − t t odd,

for all integer t and q, 0 < t < q. This allows one to find the Zq group-averaged SU(2)

character,

dl(q) = 〈χl〉q = 1

q

q−1∑
p=0

χl(2πp/q)

=
{

r t even
r + 1 t odd

}
q odd

=
{

0 l even
2r + 1 l odd

}
q even (19)

where I have made the mod q residue class decomposition, l = rq + t , i.e., r = [l/q].
These results are of course in agreement with the preceding calculations. The last result

in (19), with q → 2q and l → 2l + 1, is equivalent to the SO(3) character sum,

1

q

q−1∑
p=0

sin((2l + 1)πp/q)

sin(πp/q)
= 2[l/q] + 1, l = 0, 1, . . . . (20)

These are all standard results and, in particular, (19) gives the Laplacian degeneracies on
simple lens spaces, when multiplied by the left degeneracy, dl(1) = l, according to (13).

The analysis can be extended to general lens spaces by using linked two-sided actions so
that γ is labelled by θL and θR as follows. Going over to the combinations,

α = θR + θL, β = θR − θL, (21)

the lens space, L(q; l1, l2), is defined by setting

α = 2πpν1

q
, β = 2πpν2

q
, (22)

where p = 0, 1, . . . , q − 1, labels γ . ν1 and ν2 are integers coprime to q, with l1 and l2
their mod q inverses. The simple, ‘one-sided’ lens space, L(q; 1, 1), corresponds to setting
ν2 = ν1 = ν = 1, say, so that θL = 0 and θR = 2πp/q.

The degeneracy is

dl(q; l1, l2) = 1

q

q−1∑
p=0

sin(l(α − β)/2)

sin((α − β)/2)

sin(l(α + β)/2)

sin((α + β)/2)

= 1

q

q−1∑
p=0

cos lα − cos lβ

cos α − cos β
.

It is convenient to leave off the group average and consider the (partial) generating function

∞∑
l=1

dl(α, β)t l ≡
∞∑
l=0

cos lα − cos lβ

cos α − cos β
tl

= t (1 − t2)

(
1

1 + t2 − 2t cos α

) (
1

1 + t2 − 2t cos β

)
, (23)
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using the elementary summation, cf (16),

2
∞∑
l=0

cos(lα)t l = 1 +
1 − t2

1 + t2 − 2t cos α
. (24)

Equation (23) is the same generating function derived by Ray [36]. (Actually he does
p-forms and d-spheres.)

The full degeneracy follows upon averaging over the group elements, i.e., the angles α

and β given, for a lens space, by (22). Except for the one-sided case, α = ±β, it does not
seem possible to complete the sum over p. In this particular case we obtained (17) for the
one-sided degeneracy and this can also be found, as a check, from (23) setting α = β, say,
and using the integrated form of (23),

∞∑
l=1

dl(α, α)

l
t l = t

1 + t2 − 2t cos α
. (25)

The division by l on the left corresponds to the removal of the left degeneracy.
Turning to the other binary groups, we need their structure, which is, of course well

documented.
The ordinary polyhedral groups, considered as subgroups of SO(3), have a natural action

on the 2-sphere. They are generated by rotations through 2π/λ, 2π/μ, 2π/ν about the vertices
of a spherical triangle of angles π/λ, π/μ, π/ν on S2. A fundamental domain is comprised
of such a triangle together with its reflection. For the dihedral group, Dq , the fundamental
domain can be taken to be the lune, or digon, of apex angle, π/q.

The binary groups are obtained by lifting the action of the ordinary ones using the
isomorphism, SO(3) = SU(2)/Z2. Opechowski [28], for example, spells this out.

Coxeter and Moser denote the ordinary group by (λ, μ, ν) and its double by 〈λ,μ, ν〉.
The double of an ordinary group G is variously denoted by G′ [27], G† [28], 2G [37] and
G∗ [22].

The lifting can be accommodated geometrically by replacing the 2-sphere by a two-sheeted
Riemann surface with branch points at the vertices of the above spherical triangulation [25],
which is, of course, the same triangulation that results from the application of the complete
symmetry group of a regular solid.

Algebraically, this doubling is mirrored by the formal introduction, following Bethe, into
the presentation of the group of an element, denoted by Q, that commutes with the other
generators and satisfies Q2 = E (E ≡ id). Q corresponds to a rotation through 2π . The
double group 〈λ,μ, ν〉 is generated by L,M and N with relations

Lλ = Mμ = Nν = LMN = Q

Q2 = E, [L,Q] = [M,Q] = [N,Q] = 0.

I first look at the group with an infinite number of members. This is the binary dihedral
group, D′

q . Because, for two-sided actions, one has to substitute in the angles, θγ , by hand
I consider only right actions. I choose to write the generator-relation structure as

Aq = B2 = (AB)2 = Q, Q2 = E,

and can thus formally write D′
q as the direct sum

D′
q = Z2q ⊕ Z2qB,

where Z2q is generated by A.
The angles θγ are

θγ = πp/q, π ∓ πp/q, p = 0, . . . , q − 1
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for Ap. The minus sign adjusts the range of θ to be between 0 and π , as is appropriate for
the colatitude in polar coordinates on S3. Equivalently, in order to be more in tune with the
action on the doubly covered 2-sphere, θ can be ‘unrolled’ to run from 0 to 2π , as on a circle,
a great circle in fact. Doing this corresponds to taking the plus sign. Remember, the angle θ is
half the rotation angle. (Actually θ can be completely unrolled to be a coordinate on the real
line, but this is not relevant here.)

For γ = ApB, i.e., those 2q elements containing a (binary) dihedral rotation, θγ = π/2
for all γ .

Hence, from (14), the right action degeneracy is

dl(D
′
q) = 1 − (−1)l

4q

q−1∑
p=0

sin(lπp/q)

sin(πp/q)
+

1

2
sin(lπ/2),

so that l is restricted to odd values, when, with l → 2l + 1,

d2l+1(D
′
q) = [l/q] + 1

2 (1 + (−1)l), l = 0, 1, . . . , (26)

using the SO(3) formula (20).
A generating function can also be found. Having obtained (26), a simple way is to use

(18) which yields
∞∑
l=0

d2l+1(D
′
q)σ

l = 1

2

(
1

1 − σ

1 + σq

1 − σq
+

1

1 + σ

)
= 1 + σq+1

(1 − σ 2)(1 − σq)
. (27)

Recall that the full degeneracy on S3 is obtained by multiplying by the left action degeneracy,
2l + 1, to give

(2l + 1)d2l+1(D
′
q).

Note that the S3 formula for the essential part (27) of the right generating function for
D′

q actually coincides with the S2 formula for Dq . Similar considerations hold for the other
double groups as I now discuss.

Referring to the formula for the right degeneracy on S3/�′ (14), the doubling means that
for every θγ between 0 and π there is another, θγ + π , in the range π to 2π . Hence, one can
write

dl(�
′) = 1

|�′|
∑
γ∈�′

0�θγ <π

sin lθγ − sin l(π + θγ )

sin θγ

= 1 − (−1)l

2|�|
∑
γ∈�′

0�θγ <π

sin lθγ

sin θγ

, (28)

whence l is odd = 2l + 1 so

d2l+1(�
′) = 1

|�|
∑
γ∈�

sin(2l + 1)θγ

sin θγ

= 1

|�|
∑
γ∈�

sin(2l + 1)ωγ /2

sin ωγ /2
(29)

which is the scalar Laplacian degeneracy on the rotational orbifold, S2/�, denoted by d(l;�).
This is best discussed as follows.

For the purely rotational polyhedral groups, let nq be the number of conjugate q-fold axes.
Then the S2/� scalar Laplacian degeneracy is (cf [32, 38]),
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d(l;�) =
(

1 −
∑

q

nq

)
2l + 1

|�| +
1

|�|
∑

q

qnqdq(l)

= 1

|�|
∑

q

qnqdq(l) − 2l + 1

2
, l = 0, 1, . . . , (30)

where dq(l) is the Zq cyclic degeneracy on S2 given above as dq(l) = 2[l/q] + 1. The final
equality does not hold for � itself a cyclic group.

Thus, on S2, all that is necessary is to combine the cyclic degeneracies [39, 40].
Expressing things rather in terms of generating functions, for the 2-sphere we have

g(σ ;�) ≡
∞∑
l=0

d(l;�)σ l

= 1

|�|
∑

q

qnqg(σ, q) − 1

2
g(σ, 1), (31)

where g(σ, q) = g(σ ;Zq) is given by (18) and g(σ, 1) = g(σ ; 1).
For example, for the dihedral group, Dq, nq = 1, n2 = q and simple arithmetic gives

g(σ ;Dq) = 1 + σ 1+q

(1 − σ 2)(1 − σq)
, (32)

agreeing with (27), and is the standard formula for the dihedral Poincaré series, e.g., [39, 41].
The powers of σ on the denominator are the degrees associated with the dihedrally invariant
polynomial basis, e.g., [42].

For the regular solids (not the dihedron), (30) and (31) simplify an application of the
orbit–stabilizer relation, |�| = 2qnq,∀q,

d(l;�) = 1

2

(∑
q

dq(l) − 2l − 1

)
, l = 0, 1, . . . , (33)

and

g(σ ;�) = 1

2

(∑
q

g(σ, q) − g(σ, 1)

)
, (34)

which is a rather neat result.
As an example take the octahedral group O, for which n2 = 6, n3 = 4 and n4 = 3.

Simple arithmetic yields

g(σ ; O) = 1 + σ 9

(1 − σ 4)(1 − σ 6)
, (35)

for the generating function, obtainable in other ways.
We can use the identity

d2l+1(�
′) = d(l;�), (36)

together with (33) to get the right degeneracies on S3/Γ′, most easily,

d2l+1(O′) = d(l; O)

= [l/2] + [l/3] + [l/4] + 1 + l

d2l+1(T′) = [l/2] + 2[l/3] + 1 + l

d2l+1(Y′) = [l/2] + [l/3] + [l/5] + 1 + l.

(37)

These results are therefore better appreciated as having an R
3 geometric origin.
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The derivation of these somewhat standard formulae given by Ikeda [43] is more involved
although he does treat higher spheres. His technique is algebraic and involves resolving the
groups into subgroups. His expressions for the lens space degeneracies differ in form from
mine.

As I have remarked, the corresponding evaluations in the case of double-sided actions are
much harder. Ikeda and Yamamoto [44] examine two-sided lens spaces.

3. Heat-kernels and partition functions

On the unit 3-sphere the eigenvalues of the conformal Laplacian equal l2, l = 1, . . . and so the
integrated heat-kernel associated with the square root of this Laplacian (the so-called cylinder
kernel) on S3/�′ equals

K1/2(τ ) =
∞∑
l=1

ldl(�
′) e−lτ , (38)

which on setting t = e−τ is recognized as a generating function. This can be related to the
polyhedral generating functions g(σ ;�) as follows. Define

Gtot(t;�′) = K1/2(τ ) =
∞∑
l=1

ldl(�
′)t l . (39)

The filtering process giving the eigenproblem on S3/�′ restricts l to odd values, as has
been shown, and so

Gtot(t;�′) =
∞∑
l=0

(2l + 1)d2l+1(�
′) e−(2l+1)τ

= − d

dτ

∞∑
l=0

d2l+1(�
′) e−(2l+1)τ

= − d

dτ
e−τ

∞∑
l=0

d(l;�) e−2lτ

= − d

dτ
e−τ g(σ ;�), (40)

with σ = t2 = e−2τ .
As an organizational point I note that these results do not apply, directly, to odd lens

spaces, in particular to Z1, i.e., to the full 3-sphere. This remark applies to later results too.
We can write the general rotation generating function

g(σ ;�) = 1 + σ δ0

(1 − σ δ2)(1 − σ δ1)
, (41)

in terms of the degrees δ0, δ1, δ2 and can take things further as in our developments in [38].
Simple algebra gives, from (40),

K1/2(τ ) = − d

dτ

cosh(δ0τ)

2 sinh(δ2τ) sinh(δ1τ)
. (42)

I just mention that a possible direct physical interpretation of this quantity occurs in thermal
field theory on the spacetime, T × S3/�′, because the free energy is given by

F(β) = E − 1

β

∞∑
m=1

1

m
K1/2(mβ), (43)
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where β = 1/kT . Kennedy [45] gives some discussion of thermal quantities on this factored
Einstein Universe.

In (43), E is the vacuum, zero temperature energy and can be called the Casimir energy
and I now turn to its evaluation. The numbers were derived in [12] essentially by direct
substitution of group properties. I now present a more systematic method.

4. Casimir energies on spherical factors

Since I am concerned, at least initially, with exposing general techniques, I restrict to a
conformally invariant scalar field theory. In this case, for a freely acting �′ on T × S3/�′,
there are no divergences to bother us. As a consequence, the only other basic result one
needs is that the Casimir energy is given by the value of the ζ -function on S3/�′, ζ(s), at
s = −1/2,

E = 1
2ζ

(− 1
2

)
. (44)

The essential calculational point is that the ζ -function, ζ(s), for the Laplacian on S3/�′

is related to the ζ -function for the square root of the Laplacian by simply

ζ(s) = ζ 1/2(2s), (45)

and the latter quantity is given by the standard Mellin transform

ζ 1/2(s) = 1

�(s)

∫ ∞

0
dτ τ s−1K1/2(τ ), (46)

with K1/2 as in (42). One then has the continuation

ζ(s) = i�(1 − 2s)

2π

∫
C

dτ(−τ)2s−1K1/2(τ ), (47)

where C is the Hankel contour.
Looking at (42) and integrating by parts gives

ζ(s) = i�(2 − 2s)

2π

∫
C

dτ(−τ)2s−2H(τ), (48)

where

H(τ) = cosh(δ0τ)

2 sinh(δ2τ) sinh(δ1τ)
. (49)

Note that H(τ/2) is a square-root heat-kernel on the unit orbifold S2/� [38], the
operator being the conformal one, L2 + 1/4, with eigenvalues (2l + 1)2/4, l = 0, 1, . . . ,

and degeneracy 2l + 1.
This means that it is possible to relate the ζ -functions on S3/�′ and S2/�. Each is given

by the general formulae (45) and (46) where, for S3/�′,K1/2 is given by (42) while, for the
unit S2/�, it equals H(τ/2) (49), so one has the relation

K
1/2
S3/�′(τ ) = − d

dτ
K

1/2
S2/�

(2τ).

Substitution of this into the previous equations easily yields the relation

ζS3/�′(s) = 21−2sζS2/�(s − 1/2), (50)

the simplest example of which is for � = 1, when the ζ -functions are Riemann, or better,
Hurwitz ones. The details are mildly instructive. For � = 1, the doubled group is �′ = Z2,
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giving the projective 3-sphere. It is well known (e.g., [46, 10]) that l is then restricted to odd
values so

ζS3/Z2(s) =
∑
odd

n2

n2s
, (51)

and we know that

ζS2(s) = 22s
∑
odd

n

n2s
,

which confirms (50). Only even lens spaces are accessible via (50). To avoid
misunderstandings, it should be emphasized that S2/� refers to an orbifold quotient. � has
fixed points on the 2-sphere.

Equation (50) just reflects the relation (36) between the degeneracies (2l + 1)d2l+1(�
′) =

(2l + 1)d(l;�), and can, of course, be deduced immediately from this.
Equation (50) at the point s = 0 relates the conformal anomaly in three dimensions to the

Casimir energy in two. Both are zero.
It is now a simple matter to set s = −1/2 and evaluate the integral (48) by residues. One

finds

E�′ = 15δ4
0 − 30δ0

(
δ2

1 + δ2
2

)
+ 7δ4

1 + 10δ2
1δ

2
2 + 7δ4

2

720δ1δ2
, (52)

the actual numbers being

ET′ = −3761

8640
, EO′ = −11 321

17 280
, EY′ = −43 553

43 200
, (53)

in agreement with our earlier evaluations [12], but without the rather ad hoc computations
employed there and outlined in section 6. It is obvious from the start that the values are
rational. Although δ0 = δ1 + δ2 − 1, the expressions are neater if δ0 is retained.

The expression for the dihedral D′
q case is easily obtained from (52) as

ED′
q
= −8q4 + 20q2 + 180q − 7

1440q
, (54)

and the cyclic Zq values are

EZq
= −q4 + 10q2 − 14

720q
. (55)

5. Cyclic decompositions

Instead of treating each group one by one, labelled by the corresponding degrees, it is
possible, perhaps more economically, to use the cyclic decompositions (31) or (34) [39], p 139,
which clearly translate into cyclic decompositions of the ζ -functions [38], and thence of the
Casimir energies. For example, from (34) and (50)

ζ�′(s) = 1

2

(∑
q

ζZ2q
(s) − ζZ2(s)

)
, (56)

and so, in particular,

E�′ = 1

2

(∑
q

EZ2q
− EZ2

)
, (57)

which works for T′, O′ and Y′ using (55).
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The ζ -function (48) is related to the Barnes ζ -function employed in earlier works. In
view of (50) we can equivalently repeat the formula for the 2-sphere case [38]

ζS2/�(s) = ζ2(2s, 1/2 | δ1, δ2) + ζ2(2s, δ1 + δ2 − 1/2 | δ1, δ2), (58)

where, generally,

ζd(s, a | ω) = i�(1 − s)

2π

∫
C

dτ
exp(−aτ)(−τ)s−1∏d
i=1(1 − exp(−ωiτ))

=
∞∑

m=0

1

(a + ω · m)s
. (59)

The residues and values of the Barnes function are given in terms of generalized Bernoulli
functions, of which (52) is an example and it is clear that this whole process can easily be
automated and extended to the higher spheres.

6. Cosecant sums

From the basic definition (15) the one-sided 3-sphere ζ -function emerges directly as a sum of
derivatives of Epstein ζ -functions [12]

ζ(s) = − 1

2|�′|
∑

γ

1

sin θγ

∂

∂θγ

Z

∣∣∣∣ 0
θγ /2π

∣∣∣∣ (2s), (60)

where Z is the simplest Epstein function (it has other names),

Z

∣∣∣∣ 0
θ/2π

∣∣∣∣ (2s) =
∞∑

−∞

′ einθ

n2s
. (61)

I will denote it by ZE(θ, s), for short.
From this expression an alternative form of the Casimir energy was derived in [12]. From

the standard formula

2
∞∑
l=1

sin lθ = cot(θ/2), (62)

one finds

E = 1

|�′|

⎡⎣ 1

240
− 1

16

∑
γ �=1

cosec4

(
θγ

2

)⎤⎦ . (63)

More generally, in the two-sided case

E = 1

|�′|

⎡⎣ 1

240
− 1

16

∑
γ �=1

cosec2
(α

2

)
cosec2

(
β

2

)⎤⎦ , (64)

in terms of the angles (21). For right actions only, α = β = θR = θγ .
For lens and prism spaces one can use standard, and often very old (some dating to Euler)

finite sums of powers of cosecants to give polynomials in q, in agreement with the results
stated earlier. For the other groups, direct substitution of the angles yielded the values in (53)
after cancellations. See also the computations in Gibbons et al [7].

Of course, some derivations of these cosecant sums boil down to residue evaluations and
so these sums in themselves are somewhat of a detour. A brief history was attempted in [47]
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and more references can be found in Berndt and Yeap [48]. Some explicit expressions are
given later in connection with the corresponding spinor calculation.

From the purely numerical aspect, an Epstein approach is made more attractive by the
existence of an exponentially convergent series involving the incomplete �-function, �(s, a),
for which there is a rapid, continued fraction algorithm. Against this must be set the fact that
the angles θγ have to be individually put in.

We have used this method before. Here, I consider its use for the evaluation of ζ ′(0). The
relevant expression is [13]

π−s�(s)
∂

∂θ
ZE(θ, s) = −2

∞∑
n=1

n sin(nθ)�(s, πn2) −
∞∑

n=−∞
(n + h)�((3 − 2s)/2, π(n + h)2)

(65)

with h = θ/2π . The transformations leading to this expression are already in Epstein [49].
An important analytical fact about this formula is that it has exactly the combination

needed to compute ζ ′(0). To see this we need only note that

lim
s→0

�(s)f (s) ∼ f ′(0) + f (0)

(
1

s
+ γ

)
and that ZE(θ, 0) = 0. (There is no conformal anomaly on S3/�′.) Therefore, one has quite
simply

∂

∂θ
Z′

E(θ, 0) = −2
∞∑

n=1

n sin(nθ)�(0, πn2) −
∞∑

n=−∞
(n + h)�(3/2, π(n + h)2), (66)

which can be substituted into

ζ ′(0) = − 1

2|�′|
∑

γ

1

sin θγ

∂

∂θγ

Z′
E(θγ , 0)

= 2

|�′|

⎛⎝ζ ′
R(−2) − 1

4

∑
γ �=1

1

sin θγ

∂

∂θγ

Z′
E(θγ , 0)

⎞⎠ , (67)

and the sum over γ �= 1 for T′, O′ and Y′ performed angle by angle, as mentioned before.
This expression is not pursued here because another route to this quantity is given in the

next section.

7. Functional determinants

Formula (67) allows one to compute the Laplacian determinant, exp(−ζ ′(0)). Alternatively,
equations (50) and (58) mean that it is possible to find expressions for the functional
determinants on the factored 3-sphere in terms of the Barnes function, and thence, if desired,
of the Hurwitz ζ -function, which is often how these answers are left. In [50, 51] we have
discussed such questions and again can make use of this work here. Of course, there are many
other relevant references, but this is not a historical work.

From relation (50) one gets

ζ ′
S3/�′(0) = 2ζ ′

S2/�(−1/2), (68)

where I have used the vanishing of ζS3/�′(0), at least for conformal scalars and spinors. From
(58) it is seen that one is required to evaluate

ζ ′
2(−1, a | δ1, δ2) (a = 1/2, δ1 + δ2 − 1/2)
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and the problem devolves upon computing the derivative of the Barnes function at negative
integers. This has been treated in [50, 51]. The analysis in [50] allows one to obtain ‘exact’
expressions in terms of derivatives of the ‘lower’ Hurwitz ζ -function. The procedure involves
breaking up the summation over m in the Barnes function (59) using residue classes.

Rather than treating general degrees, it is somewhat easier to calculate ζ ′(0) on lens spaces
and then use the cyclic decomposition (56). Relation (68) specializes to

ζ ′
S3/Z2q

(0) = 2ζ ′
S2/Zq

(−1/2). (69)

The degrees for the lens case are δ1 = q, δ2 = 1. Using residue classes mod q,
manipulation of the sum definition of the Barnes function yields the expression

ζS2/Zq
(s) = 2

q
ζR

(
2s − 1,

1

2

)
+ ζR

(
2s,

1

2

)
− 1

q2s+1

q−1∑
p=0

(2p + 1)ζR

(
2s,

2p + 1

2q

)
(70)

which was referred to as the orbifolded S2 rotational ζ -function in [38] and was used in
[10] to compute 2-sphere determinants. Here one requires the value of the derivative at
s = −1/2,

ζ ′
S2/Zq

(
−1

2

)
= 2ζ ′

R

(
−1,

1

2

)
+

4

q
ζ ′
R

(
−2,

1

2

)
+ 2 log q

q−1∑
p=0

(2p + 1)

× ζR

(
−1,

2p + 1

2q

)
− 2

q−1∑
p=0

(2p + 1)ζ ′
R

(
−1,

2p + 1

2q

)

= 1

12
log(q/2) − ζ ′

R(−1) − 3

q
ζ ′
R(−2) − 2

q−1∑
p=0

(2p + 1)ζ ′
R

(
−1,

2p + 1

2q

)
(71)

which could, possibly, be thought of as ‘exact’ but is, at least, in a form suitable for numerical
treatment, cf Nash and O’Connor [52]. In the derivation of this formula further use has been
made of the fact that ζS2/Zq

(−1/2) is zero.
It is possible to find an alternative expression for the ζ -function that displays this

vanishing and allows the derivatives to be avoided, in analogy to the result ζ ′
R(−2) =

−ζR(3)/4π2. The details are given in [38] that give rise to the alternative form

ζS2/Zq
(s) = 2

q
ζR

(
2s − 1,

1

2

)
+

22s�(1 − 2s) cos πs

qπ1−2s

×
q−1∑
p=1

1

sin(πp/q)

(
ζR

(
1 − 2s,

p

q

)
− 22sζR

(
1 − 2s,

p + q

2q

))
, (72)

showing the zeros at s = −(2k + 1)π/2 with k = 0, 1, . . . . Despite appearances, the only pole
is at s = 1, correctly.

The required derivative follows as the numerically easier formula

ζ ′
S2/Zq

(
−1

2

)
= 3

4π2q
ζR(3) +

1

2qπ

q−1∑
p=1

1

sin(πp/q)

(
ζR

(
2,

p

q

)
− 1

2
ζR

(
2,

p + q

2q

))
.

In order to cover T′, O′ and Y′ the values q = 1, 2, 3, 4 and 5 are needed, the simple
q = 1 case being already given in (51).
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Figure 1. W = − log det for conformal scalars on lens spaces of order 2q.

I present the numbers for the scalar (conformal) determinant, det = e−ζ ′(0), on S3/�′,

det(T′) = 0.202 0887, det(O′) = 0.128 7757, det(Y′) = 0.073 0560,

and display a graph of W = − log det for the even, one-sided lens spaces (see figure 1). The
determinant tends to zero as q → ∞.

8. Spinors

To analyse the astrophysical data one needs only the scalar harmonics. However, it is within
our scope to consider other fields and I now lay out some comments on the Dirac field without
going into too many details as most of these are available elsewhere.

The eigenproblem for spin-half on spheres, and therefore on the Einstein Universe, is
well known, going back at least to Schrödinger. Basic facts are that the eigenvalues of the
squared, massless Dirac operator are given by

λn = 1

a2
(n + 1/2)2, n = 1, 2, . . . (73)

with degeneracies 2n(n + 1) for a two-component field on the full sphere.
On S3/�′ the total degeneracies (left times right) are

Dn(�
′) = 1

|�′|
∑

γ

((n + 1)χn(θγ ) + nχn+1(θγ )). (74)

The two parts to Dn correspond to the fact that the positive and negative eigenvalues of the
Dirac operator have been combined into (73). Look at the two parts in turn using the previous
analysis of the right degeneracy (14) on S3/�′. The first part is zero unless n is odd and the
second is zero unless n is even, see (29). (I am again excluding odd lens spaces.) Thus in the
first part, set n = 2l + 1, and in the second n = 2l + 2 with l = 0, 1, . . . in both cases. Hence,
from (36)

D2l+1(�
′) = (2l + 2)d(l;�), D2l+2(�

′) = (2l + 2)d(l + 1;�), (75)
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in terms of the S2/� degeneracies. Our previous formulae, e.g., (37), can be used to make
(75) more explicit.

The heat-kernel for the (positive) square root of the squared massless Dirac operator on
S3/�′ is then, cf (38),

K
1/2
S (τ ) =

∞∑
n=1

Dn(�
′) e−(n+1/2)τ

=
∞∑
l=0

(2l + 2)d(l;�) e−(2l+3/2)τ +
∞∑
l=0

(2l + 2)d(l + 1;�) e−(2l+5/2)τ

= −eτ/2 d

dτ

∞∑
l=0

d(l;�) e−(2l+2)τ − e−τ/2 d

dτ

∞∑
l=0

d(l + 1;�) e−(2l+2)τ

= −eτ/2 d

dτ
e−2τ

∞∑
l=0

d(l;�) e−2lτ − e−τ/2 d

dτ

∞∑
l=0

d(l + 1;�) e−(2l+2)τ

= −eτ/2 d

dτ
e−2τ

∞∑
l=0

d(l;�) e−2lτ − e−τ/2 d

dτ

∞∑
l=0

d(l;�) e−2lτ , (76)

where a zero term has been added to the second sum. One can set σ = e−2τ in order to
make contact with the SO(3) generating functions (31) which one notes from [38] are related
to the S2/� Laplacian square-root heat-kernels, H(τ/2) (49) by

g(σ ;�) = eτH(τ) (77)

and so

K
1/2
S (τ ) = −eτ/2 d

dτ
e−τH − e−τ/2 d

dτ
eτH

= −2 sinh(τ/2)H − 2 cosh(τ/2)
d

dτ
H. (78)

The spinor ζ -function is given by the general formula (47) with (78) and the derivative
can again be removed by an integration by parts yielding two integrals

ζS(s) = i�(2 − 2s)

π

∫
C

dτ(−τ)2s−2 cosh(τ/2)H(τ)

− i�(1 − 2s)

2π

∫
C

dτ(−τ)2s−1 sinh(τ/2)H(τ). (79)

We can confirm from this that ζS(0) = 0.
For the two-component spinor Casimir energy

E�′ = − 1
2ζS

(− 1
2

)
, (80)

a standard residue evaluation gives

E�′ = 1

5760δ1δ2

(
128δ4

1 + 128δ4
2 − 640δ2

1δ
2
2 + 1920δ2

1δ2 + 1920δ1δ
2
2

− 4320δ1δ2 − 1440δ2
1 − 1440δ2

2 + 2400δ1 + 2400δ2 − 1005
)
. (81)
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In particular,

EZ2q
= 128q4 − 160q2 + 83

5760q

ED′
q
= 128q4 − 160q2 + 1440q + 83

11 520q

ET′ = 40 211

69 120
, EO′ = 135 251

138 240
, EY′ = 567 443

345 600
.

(82)

The last values can also be obtained from the cyclic decomposition (57), which is true generally.

9. The angle form

As a check, I derive the spinor equivalent of (63), which can be called the image form of the
vacuum energy. This follows on a direct evaluation of the original summation expression for
the ζ -function

ζ(s) =
∑

n

dn

λs
n

= 1

|�′|
∑

γ

∞∑
n=1

1

(n + 1/2)2s
((n + 1)χn(θγ ) + nχn+1(θγ )). (83)

The only divergent term is for the identity, γ = E = id , θγ = 0, which is easily treated by
continuing to a Hurwitz ζ -function:

ζE(s) = 2

|�′|
∞∑

n=1

n(n + 1)

(n + 1/2)2s

= 2

|�′|
(

ζR(2s − 2, 1/2) − 1

4
ζR(2s, 1/2)

)
, (84)

a very old expression as, apart from the volume factor, |�′|, this is just the full sphere result.
It could be rearranged in several inessential ways. For example, at the sum level, one can
introduce n = 2n + 1 and rewrite the sum over odds as all minus evens.

The other terms, γ �= E, do not diverge at s = −1/2, and I can proceed directly with the
sum as it stands. The Casimir energy (80) is

E�′ = − 1

|�′|
(

ζR(−3, 1/2) − 1

4
ζR(−1, 1/2)

)
− 1

|�′|
∑
γ �=E

∞∑
n=1

(
n2 +

1

2

)
χn(θγ )

= 1

8|�′|

⎛⎝ 17

120
−

∑
γ �=E

(cosec2 θγ /2 − cosec4 θγ /2)

⎞⎠ , (85)

using (62).
The cosec4 sum is that occurring in the scalar vacuum energy and the cosec2 part is a

novelty occasioned by the spectral asymmetry of the Dirac operator on a factored space.
Defining the cosecant sums

C(r;�′) = 1

|�′|
∑
γ �=E

cosec2r θγ /2, (86)
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brute force angle substitution gives

C(1; T′) = 167

72
, C(2; T′) = 1505

216

C(1; O′) = 383

144
, C(2; O′) = 4529

432

C(1; Y′) = 1079

360
, C(2; Y′) = 87 109

5400
,

(87)

and the old summations mentioned earlier are

C(1;Zq) = q2 − 1

3q
, C(2;Zq) = (q2 + 11)(q2 − 1)

45q

C(1;D′
q) = 4q2 + 12q − 1

12q
, C(2;D′

q) = 16q4 + 40q2 + 360q − 11

180q
,

(88)

the last sum by Jadhav, in this way. Combining these values yields the spinor Casimir energies
(82) previously obtained by the alternative method involving the degrees.

10. The Maxwell field

To complete the set of standard fields I now consider massless spin-one. Actually, it is possible
to treat all three spins, 0, 1/2 and 1, together [53], but, for transparency, it has been decided to
keep them apart.

The solution of Maxwell’s equations on the Einstein Universe is well known and again
goes back to Schrödinger. I deal with transverse fields. The eigenvalues of the square of the
first-order curl operator are

λn = n2, n = 2, 3, . . . (89)

with degeneracies dn = 2(n2 − 1) on the full sphere. On the factored sphere, the (total)
degeneracies are

dn(�
′) = 1

|�′|
∑

γ

((n + 1)χn−1(θγ ) + (n − 1)χn+1(θγ )) (90)

and again the existence of two parts can be ascribed to a spectral asymmetry.
For Maxwell theory, there is a gauge question. In addition to the transverse field (i.e.,

coexact 1-form), one must subtract a harmonic zero form. One way of doing this, formally,
on the full sphere is to extend and double up the summation range. For the ζ -function,

ζ(s) =
∞∑

−∞

′ n2 − 1

n2s
= 2(ζR(2s − 2) − ζR(2s)). (91)

Although it seems nothing has been done, the value ζ(0) = 1 can now be interpreted as
a consequence of the ghost zero mode and not as an indication of a constant term in the
expansion of the heat-kernel [54]. These considerations can be dispensed with if one is
concerned just with the vacuum, zero-point energy. They would come into play for functional
determinants but these are left for another time.

Returning to (90), the previous analysis shows that n must be even, n = 2l + 2, and so
for the Maxwell cylinder heat-kernel

K
1/2
M (τ) =

∞∑
l=0

((2l + 3)dl(�) + (2l + 1)dl+1(�)) e−(2l+2)τ

= eτ d

dτ
e−2τH(τ) + e−τ d

dτ
e2τ (H(τ) − e−τ ) (92)
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using (31) and (77). The corresponding ζ -function is

ζM(s) = i�(2 − 2s)

2π

∫
C

dτ(−τ)2s−2(2 cosh τH(τ) − 1)

− i�(1 − 2s)

2π

∫
C

dτ(−τ)2s−1(2 sinh τH(τ) − 1). (93)

A simple check is the value ζM(0) = 1 which arises from the ‘1’ term in the second integrand
and which has a zero mode connotation. One confirms that it does not contribute to the residue
when evaluating ζM(−1/2) and finds for the Casimir energy

E�′ = − 1

90δ1δ2

(
2δ4

1 + 2δ4
2 − 10δ2

1δ
2
2 + 30δ2

1δ2 + 30δ1δ
2
2

− 135δ1δ2 − 45δ2
1 − 45δ2

2 + 105δ1 + 105δ2 − 60
)
. (94)

Explicit values are

EZ2q
= −2q4 − 25q2 + 2

90q

ED′
q
= −2q4 − 25q2 − 45q + 2

180q

ET′ = 79

270
, EO′ = 23

1080
, EY′ = − 698

1350
.

(95)

The Maxwell vacuum energy is negative on dodecahedron space.
The angle form can again be produced as a check, and for interest. We have [13]

E�′ = 1

|�′| (ζR(−3, 1) − ζR(−1, 1)) +
1

|�′|
∑
γ �=E

∞∑
n=1

(n2 + 2)χ(θγ )

= 1

2|�′|

⎛⎝11

60
+

∑
γ �=E

(
cosec2 θγ /2 − 1

4
cosec4 θγ /2

)⎞⎠ , (96)

and, of course, calculation gives agreement with (95).

11. Spectral asymmetry

As another example of the use of the eigenvalue expressions I will derive expressions for the
spectral asymmetry quantity that occurs as a boundary correction to the index theorem, applied
to four dimensions. Textbook discussions concern the Dirac equation, the signature and the
de Rham complex, e.g., [55], and the corresponding literature is extensive. My treatment of
context and content will be brief.

The Atiyah–Patodi–Singer spectral asymmetry function η(s) is

η(s) =
′∑
λ

(sign λ)

|λ|s .

Restricting to one-sided quotients, the construction of η corresponds, effectively, to
changing the sign of the second, negative spectrum part of (74), (90) or of (76), (92) and also
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setting 2s → s. Following this through gives

ηS(s) = − i�(2 − s)

π

∫
C

dτ(−τ)s−2 sinh(τ/2)H(τ)

+
i�(1 − s)

2π

∫
C

dτ(−τ)s−1 cosh(τ/2)H(τ), (97)

for spin-half and

ηM(s) = − i�(2 − s)

2π

∫
C

dτ(−τ)s−2(2 sinh τH(τ) − 1)

+
i�(1 − s)

2π

∫
C

dτ(−τ)s−1(2 cosh τH(τ) − 1), (98)

in the Maxwell case. It can again be seen that η(−(2n + 1)) = 0 from the vanishing of any
residues. Furthermore, other values can be readily found. Consider η(−2n) and start with
η(0). Straightforward computation of residues yields

ηS(0) = 4δ2
1 + 4δ2

2 + 12δ1δ2 − 12δ2 − 12δ1 + 7

12δ1δ2

ηM(0) = 2δ2
1 + 2δ2

2 + 3δ1δ2 − 6δ2 − 6δ1 + 5

3δ1δ2

(99)

and one can, once more, avoid the angle substitution employed, in this context, by Gibbons
et al [7]. The results agree in detail with the values in this reference some of which we repeat

ηT′ = 167

144
, ηO′ = 383

288
, ηY′ = 1079

720
.

The cyclic decomposition could also have been employed, and I will now do so for the
other values of η by specializing to even lens spaces, L(2q; 1, 1). By putting in the particular
expression for H, (49), one has

ηS(s) = − i�(2 − s)

4π

∫
C

dτ(−τ)s−2 coth qτ

cosh(τ/2)
+

i�(1 − s)

8π

∫
C

dτ(−τ)s−1 coth qτ

sinh(τ/2)
, (100)

for spin-half and

ηM(s) = − i�(2 − s)

2π

∫
C

dτ(−τ)s−2(coth qτ − 1)

+
i�(1 − s)

2π

∫
C

dτ(−τ)s−1(coth qτ coth τ − 1), (101)

in the Maxwell case. Standard expansions allow one to write, n > 0,

ηS(−2n) = 2−2n−4

n + 1

n+1∑
m=0

(
2n + 2

2m

)
24mB2m

(
E2n−2m+2 +

D2n−2m+2

2n + 1

)
q2m−1

ηM(−2n) = 22n+2

2n + 1

(
B2n+2q

2n+1 +
1

2n + 2

n∑
m=0

(
2n + 2

2m

)
B2mB2n−2m+2q

2m−1

)
.

(102)

En are Euler numbers and the Dn are related to the Bernoulli numbers by Dn = 2(1−2n−1)Bn.
The expressions are related to the expansion coefficients of the relevant heat-kernel [38].
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These and earlier results are derived on the assumption that q is even. They can be
extended to odd lens spaces by setting 2q = q when they will apply to S3/Zq for all q.

Some particular values are

ηS(0) = 1

6q
(q2 − 1)

ηS(−2) = 1

360q
(q2 − 1)(4q2 + 29)

ηS(−4) = 1

10 080q
(q2 − 1)(48q4 + 272q2 + 1609)

and

ηM(0) = 1

3q
(q − 1)(q − 2)

ηM(−2) = 1

45q
(q2 − 1)(q2 − 4)

ηM(−4) = 1

45q
(q2 − 1)(q2 − 4)(3q2 + 8)

ηM(−6) = 1

315q
(q2 − 1)(q2 − 4)(3q4 + 10q2 + 24)

ηM(−8) = 1

1260q
(q2 − 1)(q2 − 4)(25q6 + 92q4 + 272q2 + 640).

These results exhibit the fact that ηM(s) vanishes on the full sphere (q = 1) and on the
projective sphere, L(2; 1, 1). The latter fact follows immediately from the angle sum form of
Atiyah, Patodi and Singer, since the only θγ = π . It also can be seen in the contour integral
forms, (101), (100). Note that only this lens space retains the full, global symmetry of S3.
The spin-one η is really the signature, which vanishes when there is an orientation preserving
isometry, as on the projective sphere, see e.g., [56].

The Maxwell ηM(−2n) (102) was derived by ourselves some time ago using the more
involved techniques in (13) and (16). It can be rearranged using an identity of Apostol [57] in
terms of a generalized Dedekind sum [38] and in other ways.

The lens space values given above can be combined to give those on the other quotients
by using the cyclic decomposition which reads here

η�′(s) = 1

2

(∑
q

ηZ2q
(s) − ηZ2(s)

)
. (103)

The numbers evaluated using this relation provide a useful check.
It should be mentioned that Seade [58] has looked at the Dirac η invariant on the factored

3-sphere and, more recently, Cisneros-Molina [59] has extended the discussion to the twisted
case. General calculations can be found in Goette [60].

12. Discussion and conclusion

A number of points arising can be mentioned. Concerning the cosecant sums (86), the fact
that they are rational numbers for the cyclic and dihedral cases follows from a residue
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evaluation. For the other groups it is not so evident directly, but follows from the cyclic
decomposition.

Our discussion of spinors was restricted to the natural, trivial spin structure on the
factored 3-sphere. The dependence of the spectrum on the spin structures is discussed in
general by Bär [61, 62] who also considers the squashed (Berger) sphere.

It is also possible to calculate the functional determinants for spinors on S3/�′ and this
will be given at another time. The full sphere results exist already. The evaluation for the
Maxwell field is complicated by the nonzero value of ζM(0).

On homogeneous quotients of the Einstein Universe, the vacuum energy density,
〈
T 0

0

〉
, is

obtained simply by dividing E by the volume. It is also possible to obtain the spatial densities〈
T

j

i

〉
[12]. Because the symmetry group is generally reduced, these contain geometric structure

over and above that arising from the metric.
The case of non-homogeneous quotients is much harder but in certain circumstances an

exact
〈
T 0

0

〉
can be found with some work [16].

As mentioned, it is possible to introduce an equivariant twisting according to
Hom(�,U(N)), say. The analysis is one in character theory. The scalar summations can
still be performed in the case of one-sided lens spaces and result in generalized Bernoulli
polynomials.

The construction of the eigenfunctions is left aside as a chapter in the theory of symmetry
adaptation most familiar, perhaps, in solid state physics.
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