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CELL-LIKE MAPS AND TOPOLOGICAL STRUCTURE GROUPS ON
MANIFOLDS

ALEXANDER N. DRANISHNIKOV AND STEVEN C. FERRY

ABSTRACT. We show that there are homotopy equivalences h : N — M between closed
manifolds which are induced by cell-like maps p : N — X and ¢ : M — X but which are not
homotopic to homeomorphisms. The phenomenon is based on construction of cell-like maps
that kill certain L-classes. In dimension > 5 we identify all such homotopy equivalences
to M with a torsion subgroup S“F (M) of the topological structure group S(M). In the
case of simply connected M with finite mo(M), the subgroup S¥ (M) coincides with the
odd torsion in S(M). For general M, the group S“F (M) admits a description in terms of
the second stage of the Postnikov tower of M. As an application, we show that there exist
a contractibility function p and a precompact subset C of Gromov-Hausdorff space such
that for every ¢ > 0 there are nonhomeomorphic Riemannian manifolds with contractibility
function p which lie within € of each other in C.

1. INTRODUCTION

In [T6] Grove and Petersen proved that for every n the class of n-dimensional closed
Riemannian manifolds with sectional curvature bounded below by x, volume bounded below
by v, and the diameter bounded above by D contains only finitely many homotopy types.
The main technical lemma in their paper shows that there is a uniform ”contractibility
function” which applies to all manifolds in such a class.

Definition 1.1. A continuous function p : R, — Ry with p(0) = 0 and p(t) > ¢ for all ¢ is a
contractibility function for a metric space X if there is R > 0 such that for each € X and
t < R, the t-ball B;(z) centered at = can be contracted to a point in the p(t)-ball B,y ().

In a second paper, [I7], Grove, Petersen, and Wu showed that there are only finitely
many homeomorphism types in such class for n # 3. G. Perelman has removed the n # 3
restriction [22]. Perelman’s work shows (as does the earlier work of Grove-Petersen-Wu for
n # 3) that there is € > 0 so that if M and M’ satisfy the stated restrictions on curvature,
diameter, and volume with the Gromov-Hausdorff distance dgy (M, M') < €, then M and
M’ must be homeomorphic. In this paper we show that this is not the case when we relax the
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hypotheses to simply require that the manifolds in question have a common contractibility
function.

Our example goes as follows (Theorem [.2). We construct nonhomeomorphic manifolds M
and M’ and cell-like maps ¢ : M — X and ¢ : M" — X (see Corollary ZZT4l). Using a map-
ping cylinder construction, we construct two sequences of Riemannian manifolds converging
to X (supplied with some metrics and a fixed contractibility function) in Gromov-Hausdorff
space. One sequence consists of manifolds homeomorphic to M, the other to M’. Such
manifolds M and M" must be simple homotopy equivalent by [I0] and must have the same
rational Pontrjagin classes by Corollary 2.9. One such example can be constructed in which
M is the boundary of a regular neighborhood of a Moore space in R®. We note that by
Quinn’s uniqueness of resolution theorem it follows that X must be infinite dimensional.
Thus, this example ultimately contains a construction of the first author of a cell-like map
that raises dimension to infinity [3].

Our main theorem classifies all such examples. We give a complete description saying
when a given n-manifold M, n > 5, admits a cell-like map ¢ : M — X together with a
twin cell-like map ¢ : M’ — X such that the induced homotopy equivalence M’ — M
is not homotopic to a homotopy equivalence. If M is simply connected with finite m,, our
classification depends only on odd torsion characteristic class information. The general
classification involves surgery theory and the second stage of the Postnikov tower of M.
(Theorem Z4 and Theorem [ZT]). The second stage of the Postinikov tower turns out to be
relevant because of acyclicity results in the K-theory of Eilenberg-MacLane spaces [, 2].

2. SURGERY AND CELL-LIKE MAPS

Definition 2.1.

(i) A compact subset X of the Hilbert cube @ is said to be cell-like if for every open neigh-
borhood U of X in @, the inclusion X — U is nullhomotopic. This is a topological
property of X and is the Cech analog of “contractible”. The space sin(1/z)-with-a-
bar is an example of a cell-like set which is not contractible.

(ii) Amap f:Y — Z between compact metric spaces is cell-like or CE if for each z € Z,
f7Y(2) is cell-like. The empty set is not considered to be cell-like, so cell-like maps
must be surjective.

Cell-like maps with domain a compact manifold or finite polyhedron are weak homotopy
equivalences over every open subset of the range. That is, if ¢ : M — X is cell-like, then
for every open U C X, ¢| : ¢ }(U) — U is a weak homotopy equivalence. The range space
of such a cell-like map always has finite cohomological dimension. If the range has finite
covering dimension, then c¢ is a homotopy equivalence over every open set.

LIFTING PROPERTY: Let f: M — X be a cell-like map with M an ANR space. Given
a space W with dimW < oo, a closed subset A C W, a map g : W — X, and a map
h:A— M with fh = g|a, there is a map h : W — M extending h such that g is homotopic
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to fh rel A:
A b M
|
w— X

See [20] for details.

Definition 2.2. A homotopy equivalence f : N — M is realized by cell-like maps if there
exist a space X and cell-like maps ¢; : N — X, ¢o : M — X so that the diagram

! M
X

homotopy commutes. We will also say that such a homotopy equivalence factors through
cell-like maps and we will call such manifolds N and M CFE-related.

N

In view of the lifting property, every pair of cell-like maps ¢; : N — X, ¢co : M — X
induces a unique homotopy equivalence f : N — M. If dim X < oo, Quinn’s uniqueness of
resolutions theorem implies that this homotopy equivalence is homotopic to a homeomor-
phism ([24]).

Two homotopy equivalences of manifolds f; : Ny — M and fs : Ny — M are called
equivalent if there is a homeomorphism h : N; — N, that produces a homotopy commutative
diagram. We recall that the set S(M) of classes of homotopy equivalences f : N — M is
called the set of topological structures on M. The structure set S(M) is functorial and has
an abelian group structure defined either by Siebenmann periodicity [I9] or by algebraic
surgery theory [26]. Ranicki’s theory gives the following useful formula.

Proposition 2.3. Let M"™ be a closed topological n-manifold, n > 5 and let h : M — N
be a homotopy self equivalence, [h] € S(N). Then the isomorphism h, : S(M) — S(N) is
defined by the formula

he([f1) = [ho f1=[h].

By SYE(M) c S(M) we denote the subset of structures realized by cell-like maps.

Theorem 2.4. Let M™ be a closed simply connected topological n-manifold with finite wo(M),
n > 5. Then SCE(M) is the odd torsion subgroup of S(M).

We recall the Sullivan-Wall surgery exact sequence [28] for topological manifolds:
L1 (Zay (M) — S(M) 5 [M, G/ Top] ER L, (Zm (M)).

The homomorphism 7 is called the normal invariant and the homomorphism 6 is called the
surgery obstruction. The Sullivan-Wall surgery exact sequence was extended by Quinn and
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Ranicki to the following functorial exact sequence:

o Ly (Zm (M) — Su(M) L H (ML) % Lo(Zr (M) . ..

where H,(M;L) = H°(M;L) = [M,G/Top|] x Z and 7/|s() = 0. The homomorphism ' is
called the assembly map for M. This sequence is defined and functorial when M is a finite
polyhedron and this was extended to more general spaces in [30]. We write L,, = L,,(Z) and
recall that L, = Z if n =4k, L, = Zo if n = 4k + 2, and L,, = 0 for odd n.

In general, Ranicki’s algebraic surgery functor gives us a long exact sequence

.= 8P, Q) — H,(P, Q;L) — L,(Zm P, ZmQ) — ...

for any CW pair (P, Q). If P happens to be a compact n-dimensional manifold, then S, (P)
is the usual rel boundary structure set when P has nonempty boundary and differs from the
usual geometrically defined structure set by at most a Z in the closed case. We also have a
long exact sequence

= Spi(P Q) = Su(Q) = Su(P) = Su(P, Q) — ...

where for an n-dimensional manifold with boundary (P, 0P), S,(P, OP) is the not rel
boundary structure set. There is also a long exact sequence of L-groups.

All of these sequences are 4-periodic. If ) — P induces an isomorphism on 7, then
Sk(P, Q) = Hi(P, Q;L) because the Wall groups L.(Zm P, ZmQ) are zero. Composing this
isomorphism with the boundary map in Ranicki’s exact sequence, we have a homomorphism
0 : Hp (P, Q;L) — Sip(Q). For a closed n-manifold there is a split epimorphism p :
S,.(M) — S(M) — 0 with the kernel Z or 0 depending on M. The following statement is
classical. Apply the m — 7 theorem to the pair (M, pt).

Proposition 2.5. For a simply connected closed n-manifold M the (reduced) normal invari-
ant 7: S, (M) — H,(M,L) is an isomorphism.

To state the main theorem for non-simply connected manifolds we need the following.

Definition 2.6. If K is a CW complex, let Fy(K) be the CW complex obtained from K by
attaching cells in dimensions 4 and higher to kill the homotopy groups of K in dimensions 3
and above. Thus, K C Ey(K), m;(Ey(K)) =0 for i > 3, and Ey(K) — K consists of cells of
dimension > 4. Note that Ey(K) will not, in general, be a finite complex. The space Fy(K)
is called the second stage of the Postnikov tower of K.

Let M be a closed n-manifold. We denote by
0 Hyp1(Ex(M), M;L) — S(M)
the composition:

Hoi1(Eo(M), M; L) 22 8,1 (Bo(M), M; L) 5 S, (M) > S(M).
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Let ¢ : A — B be a homomorphism of abelian groups. By ¢ : Tor A — Tor B we denote
the restriction ¢|tor 4 of ¢ to the torsion subgroups and by ¢y, : Ay — By, denote the
localization of ¢ away from p.

Theorem 2.7. Let M™ be a closed topological n-manifold, n > 5. Then SE(M) = im(éé]).
In particular, SYE(M) is a subgroup of the odd torsion of S(M).

We note that Theorem EZ4lis a consequence of Theorem 271

Corollary 2.8. Let f, : S(M) — S(N) be the induced homomorphism for a continuous map
f: M — N between two closed n-manifolds, n > 5. Then f.(SY¥(M)) c S°F(N).

Corollary 2.9. Let f : N — M be a homotopy equivalence between closed n-manifolds with
n > 6 that is realized by cell-like maps. Then f preserves rational Pontryagin classes.

Corollary 2.10. ‘To be CE-related’ is an equivalence relation on closed n-manifolds, n > 5.

Proof. We prove transitivity. Let M; be CE-related to My and My CE-related to Ms.
Let hy : M7 — M,y and hsy : My — Mj3 be corresponding homotopy equivalences. It suffices
to show that the composition hoh; is realized by cell-like maps. In view of Corollary
we have (hy).([h1]) € SF(M3) and hence by the formula for the induced homomorphism
(Proposition 3 ) we obtain that [hohy] = [ha] + (h2)«([h1]) € SE(Ms3) . O

In special cases, it is not hard to understand the map H, 1 (E2(M), M;L) — S(M) well
enough to get concrete “rigidity” and “flexibility” results. We begin with two typical rigidity
statements.

Corollary 2.11. If M™ is a closed manifold with n > 6 and either
(i) M is aspherical or
(ii) M is homotopy equivalent to a complex projective space

then any homotopy equivalence f : N — M that factors through cell-like maps is homotopic
to a homeomorphism.

Proof. If M is aspherical, then M = Ey(M) and H,,1(Ey(M), M;L) = 0, so structures in
the image of H,,41(Ey(M), M;L) = 0 are trivial.

If M is homotopy equivalent to C'P*, then Ey(M) = CP*. But H, ,(CP>® CPkL) =
limy_oo Hpy1(CPY, CP¥; L), which has no odd torsion, so no nontrivial element of S(M) can
be the image of an odd torsion element. See Lemma below. O

Corollary 2.12. If f : M' — M is a homotopy equivalence with odd order normal invariant
in H,(M;LL), n > 7, then f xid : M’ x S*+3 — M x S*+3 factors through cell-like maps.

Proof. Let W be a manifold with x(W) = 0 such that W = S*+3 If f : M' — M
is a homotopy equivalence, then the product formula for Whitehead torsion implies that
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fxid: M xW — M’ x W is a simple homotopy equivalence, so we have a diagram:

iyt (W 5 M, S48 5 ML) —= 8,3 (W x M, S8 5 M) —2= 8, (S5 x M)

e

Hy i1 (By(M), S35 ML) —— 8,1 (Ey(M), S%+3 x M)

This shows that f xid is in the image of H,, 1 (Ea(M), S*+3x M;1L). Since f has odd torsion
normal invariant, f x id has odd torsion normal invariant, as well, so f x id : M’ x S¥*+3 —
M x S*+3 is the image of an odd torsion element, as desired. O

Lemma 2.13. If (K, L) is a finite CW pair and H.(K, L; Z) has no torsion, then H,(K, L; L)
has mo odd torsion.

Proof. For finite CW pairs, H,(K, L;L) ® Q = @&, H, 4 (K, L; Q). Comparing this to the
Atiyah-Hirzebruch spectral sequence gives the result, since there can be no nonzero differ-
entials between terms of the form H,(K, L; Ly) at the Ey-level. O

Corollary 2.14. There are closed nonhomeomorphic 7-dimensional manifolds M and N
which are CE-related.

Proof. Let p > 5 be a prime number. The Moore complex P = S3U, B* can be PL-embedded
in R (see for example [§]). Let M = OW be the boundary of a regular neighborhood W of P.
Then M is 2-connected since every homotopy in W of a sphere of dimension < 2 to a constant
map can be pushed off the core P by general position and retracted to M. By Lefchsetz
duality, H3(W, M) = H>(W) = H*(P) = 0 and Hy(W,M) = HYW) = H*P) = Z,. The
exact sequence of the pair (W, M) turns into the following:

0—Z,— Hs(M)—Z,— 0.

By the Atiyah-Hirzebruch spectral sequence Hs(M;ILL) consists of nontrivial p-torsion. Take
a nontrivial p-torsion element o € H;(M;L) = Hs(M;L). Let 8 = p(n')~'(a) where 7’ :
S;(M) — H;(M;L) is an isomorphism by Proposition and p : S,(M) — S(M) is the
projection. Since the kernel of p is torsion free, 3 # 0. Thus, by Theorem 4, 3 defines a
homotopy equivalence f: N — M that belongs to S (M).

It remains to show that N is not homeomorphic to M. Rationally the normal invariant
measures the difference in L-polynomials. Since, Ly = %pl where p; is an integral Pontryagin
class, for 7-dimensional manifolds L-classes live in cohomology with coefficients in Z([3]. Then
in our case the normal invariant with coefficients in Z[$, §] is the difference of Li-classes.
By the construction M is stably parallizable and hence it has zero Pontryagin classes. Since
p > 5, the normal invariant n(f) with coefficients in Z[3, 5] is nonzero. Hence the first class
Li(N) # 0. Novikov’s theorem on the topological invariance of rational Pontryagin classes
in fact proves the topological invariance of L-classes. Moreover, the proof implies that for
fixed n there are primes pq, ..., pr such that for n-dimensional manifolds the L-classes are
topologically invariant with coefficients in Z[pil, ce pik] For n = 7 these primes are 2 and 3.

Then by Novikov’s theorem these manifolds cannot be homeomorphic. 0J
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Proposition 2.15. If L and L' are homotopy equivalent odd order lens spaces, then L x S*+3
and L' x S*+3 qre CE-related. It follows that L x S*+3 and L' x S**3 can be deformed to
be arbitrarily close to each other in Gromov-Hausdorff space and that this deformation can
be performed through Riemannian metrics which preserve a contractibility function. There
exist homotopy equivalent odd order lens spaces L and L' so that L x S and L' x S are not
CF related.

3. CELL-LIKE MAPS THAT KILL LL-CLASSES

We need the following facts [1], [2], [31].

Theorem 3.1. I/(\é*(K(w,n);Zp) =0, n >3, for any group 7 and KO (K(w,n)) = 0,
n > 2, for finite .

Let M(p) denote the Z, Moore spectrum. The chain of homotopy equivalences of spectra
for odd p,

— — 1 1
KO, NM(p) ~ KO*[i] A M(p) ~ L[i] A M(p) ~L A M(p)
implies the following:

Corollary 3.2. Let p be odd, then H,(K(Z,,2); 1L A M(p)) = 0 where L A M(p) is L-theory
with coefficients in Z,,.

We recall that for an extraordinary homology theory given by a spectrum E of CW com-
plexes there are the following Universal Coefficient Formulas for coefficients Z, and Q:

0— H,(KGE)®Z, — H,(K;EAM(p)) = Hyr(KGE) x Zy — 0

and
Here H xZ, = {c € H | pc = 0} and E(g) denotes the localization at 0. Let X = lim{X;} be

a compact metric space presented as the inverse limit of finite polyhedra. By H.(X;E) =
lim{H,(K;,E)} we denote the Cech E-homology. The Steenrod homology H,(X;E) of X
fits into the following exact sequence

0 — lim'{H,,,(K;E)} — H,(X;E) - H,(X;E) — 0.

If Hy(pt;E) is finitely generated for each k, the Mittag-Lefler condition holds with rational
or finite coefficients, so we have

Hoy(X;EAM(p)) = Ho(X;EAM(p)) and - Hy, (X5 Eq) = Ho(X;E(g))-

In the case of Z,-coefficients we obtain an exact sequence which is natural in X:

/

(=) 0 — lim(H,(K;E) ©Z,) — Hy(X;EAM(p) S H, oy (X3 E) * Z,,
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Lemma 3.3. Let M be a simply connected finite complex with finite wo(M). Then for
every element v € Hi(M;L) of odd order p there exists an odd torsion element o €
Hyp1(Eo(M), M; L) such that O(a)) = v where O is the connecting homomorphism in the
exact sequence of the pair (Eo(M), M).

Proof. Note that Ey(M) = K(my(M),2).

If mo(M) = 0, the space Ey(M) is contractible and the lemma is trivial.

If 7y (M) is torsion, then in view of Theorem Bl H,(Ey(M); L A M(p)) = 0. Then by the
Universal Coefficient diagram

Hyyo(Eo(M), M; LA M(p)) > Hyp1(Eo(M), M; L) % Z," Hy, 1 (Es(M), M;1L)

o0 | |o

Hir (ML A M(p)) —= Hy,(M; L) % 7, — 2 H,(M;L)

we obtain the required result. O

Let ¢ : M — X be a cell-like map. According to Proposition for every map h : M —
E5(M) there is a map g : X — Es(M) such that g o g is homotopic to h. In particular, there
is an induced map g : M, — M, between their mapping cylinders, gy = idy, glx = ¢.
We apply this when h is the inclusion j : M C E3(M) and denote the induced map by
t: My, — M;. Denote by

iw : Ho(My, M; L) — H.(Eo(M), M;L)
the induced homomorphism for the Steenrod L-homology groups [9], [1§].

Theorem 3.4. Let M"™ be a closed connected topological n-manifold, n > 6, let p be odd,
and let 3 € H,(Ey(M), M;1L N M(p)), then there ezist a cell-like map q : M — X and an
element € H,(M,, M;IL A M(p)) such that i.(3) = 5.

The proof of Theorem B4 will follow Lemma BTIl The following proposition is proven in
[29] Appendix B.

Proposition 3.5. Let E be a CW complex with trivial homotopy groups m;(E) =0, i > k for
some k, and let ¢ : X — Y be a cell-like map between compacta. Then q induces a bijection
of the homotopy classes ¢* : [Y, E] — [X, E].

Lemma 3.6. Let M™ be a closed connected topological n-manifold, n > 6. If o € H.(Ey(M), M;L)
18 an odd torsion element, then there exist a cell-like map q : M — X and an odd order ele-
ment & € H,(M,, M;L) such that i.(Q) = a.

Proof. Let o € Hy,(E2(M), M;LL) be an element of order p where p is an odd number. Then
by the universal coefficient formula, there is an epimorphism

¢ 2 Hyp1(Ea(M), M; LA M(p)) — Hy(E2(M), M; L) * Zy,.
Note that H+Z, = {c € H | pc = 0} so that there is an inclusion H*Z, C H which is natural
in H. Thus, a € Hy(Ey(M), M;L)*Z,. Hence, there is an element 5 € Hy1(E2(M), M; LA



CELL-LIKE MAPS AND TOPOLOGICAL STRUCTURE GROUPS ON MANIFOLDS 9

M (p)) such that ¢(3) = a. By Theorem B4l there exist a cell-like map ¢ : M — X and an
element [ such that i.(8) = 5. The commuting diagram of universal coefficient formulas
gives (see **)

¢ C

Hyr (M, ML A M(p)) Hy(M,, M;L) % Z, Hy(M,, M; L)

Hr(Eo(M), M; L A M(p)) 2 Hy(Ex(M), M;1L) % Z,, <~ Hy(Es(M), M;L)

-~

which implies that i,(&) = « where @ = ¢'(f3) is an element of order p. O

REMARK. By Proposition a cell-like map induces a rational isomorphism on L-
homology. Therefore, the group H,(M,, M;L) consists of torsions.

Theorem 3.7. Let M™ be a closed simply connected topological n-manifold, n > 6, with
mo(M) finite. Then for every odd torsion element v € H,(M;L) there is a cell-like map
q: M — X such that q.(y) = 0.

Proof. By Lemma there is an odd torsion element o € H,.(Ey(M),M;L) such that
J(a) = v. By Theorem B there exists a cell-like map ¢ : M — X and an element
a € H(M,, M;L) such that i,(@) = o. Then the commutative diagram

H, 41 (M, M; L) H,(M;L) —"— H,(X;L)
Ho i (Eo(M), M; L) — H.(M; L) — H.(Ey(M); L)
implies that ¢.(v) = 0. O

REMARK. Without the finiteness assumption on my (M) one can show that ¢ kills an
element v ® 1z, with Z, coefficients.

We recall that the cohomological dimension of a topological space X with respect to the
coefficient group G is the following number

¢ —dimg X = max{n | H"(X,A;G) #0 for some closed A C X}.

A map of pairs f: (X, L) — (Y, L) is called strictif f(X —L)=Y — L and f|, = id.
The following theorem is taken from [5] (Theorem 7.2). For G = Z it can be found in [6].

Theorem 3.8. Let h, be a reduced generalized homology theory. Suppose that h.(K(G,n)) =
0 for some countable abelian group G. Then for any finite polyhedral pair (K, L) and any
element a € h,(K, L) there is a compactum Y D L and a strict map f : (Y,L) — (K, L)
such that

(i) ¢ —dimg(Y — L) < n;

(i) o €im(f.).
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The following is a relative version of Theorem 3 from [.

Lemma 3.9. Let (Y, L) be a pair of compacta such that
c—dimg, (Y — L) <2 and c¢—dimyp (Y — L) <2.

Then there is a strict cell-like map g : (Z,L) — (Y, L) such that dim(Z — L) < 3 and
dim(Z — L)* <5.

Lemma 3.10. Let (Z, M) be a compact pair such that dim(Z — M)? < 2n —1 and let M be
a manifold of dimension 2n. Suppose there is a retraction p : Z — M. Then p is homotopic
rel M to a retraction r . Z — M with r|(Z_M) one-to-one.

Proof. The condition dim X? < 2n — 1 for a compact metric space X implies that ev-
ery continuous map ¢ : X — M to a 2n-dimensional manifold can be approximated
by embedding [7],[27]. Moreover, the space of embeddings Emb(X, M) is a dense G; in
the space of mappings Map(X, M). The same argument shows that under the condition
dim(Z — M)? < 2n—1 the space of retraction-embeddings rEmb(Z, M) is dense in the space
of retractions Ret(Z, M). O

The following lemma is proven in [6] Lemma 3.7.

Lemma 3.11. Let Z be a compact and v : Z — M be a retraction with r|z_ur) one-to-
one. Let g : (Z,M) — (Y, M) be a continuous map which is identity over M. Then the
decomposition of M whose nondegenerate elements are (g~ (y)) is upper semicontinuous.

Proof of Theorem [3.
We consider the generalized homology theory h, = LAM (p), i.e., L-theory with coefficients

in Z,.

Let 5 € hgy1(Eo(M), M). There is a finite complex K, M C K C Ey(M), and an element
v € h.(K, M) such that v is taken to 8 by the inclusion homomorphism.

Note that h.(K (Z[%], 2)) = 0 since the L-theory of this space is p-divisible. Taking into

account Corollary B2 and Theorem Bl we can state that h, (K(G,2)) = 0 for G = ZpeBZ[%].
Then we apply Theorem to (K, M) and v with this G to obtain f : (Y, M) — (K, M)
satisfying the conditions (i)-(ii) of Theorem B8 Condition (i) allows us to apply Lemma B9
to obtain a cell-like map g : (Z, M) — (Y, M) with dim(Z — M) < 3 and dim(Z — M)? < 5.

Because Fy(M) — M has no cells of dimension < 3, there is a homotopy of f o g rel M
that sweeps Z — M to M. Thus, f o g is homotopic to a retraction p: Z — M. By Lemma
B0, f og is homotopic rel M to a retraction r : Z — M which is one-to one on Z — M. By
Lemma BT the decomposition of M into r(g~'(y)) and singletons defines a cell-like map

q: M — X such that there is a commutative diagram

Z M
| |
y —" o x
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By Proposition there is a map ¢’ : X — FE3(M) such that ¢’ o ¢ is homotopic to the
inclusion M C E5(M). Hence fog~r ~g'ogor =g or'og. Since g is cell-like, the map f
is homotopic to ¢’ o ' by Proposition Then there is a homotopy commutative diagram
of the mapping cylinders

!

My —" = M,

lf/

M;

where j : M — FEy(M) and j': M — Y are the embeddings. For Steenrod h,-homology this
gives us the following diagram:

~ r,

h (Y, M) hy (M, M) —— h,(M,, M)

| |

il*(E2(M)a M) - ﬁ*(Mj’ M)

By condition (i) of Theorem B there is 7' € h,(Y, M) such that f,(v') =v. Then i,(3) = 3
where 5 = 1.(v). O

4. CONTINUOUSLY CONTROLLED TOPOLOGY AND CELL-LIKE MAPS OF SIMPLY
CONNECTED MANIFOLDS

Let g : Z — X be a proper map and let Y = X — X be the corona of a compactification
X of X. Then there is a natural compactification Z of Z with corona Y such that the map
g extends to a strict map §: (Z,Y) — (X,Y). We recall that a map of pairs f : (Z,Y) —
(Z',Y) is strict if (Z —Y) C Z'—Y and f|y =idy. A proper homotopy f; : Z — X which
is strict at each level is called strict if the homotopy f; : (Z,Y) — (X,Y) is continuous.

Let X be a locally compact space compactified by a compact corona Y = X — X. A
proper map f : Z — X is a strict homotopy equivalence if there is a proper map g : X — 7
such that go f and f o g are strict homotopic to idz and id 5 respectively where Z is given
a compactification as above.

Definition 4.1.

(i) Let X be an open manifold and let Y be a compact corona of a compactification X
of X. Two strict homotopy equivalences f: W — X and f': W’ — X are equivalent
if there is a homeomorphism A : W — W' such that f = f’ o h.

(ii) The set of the equivalence classes of strict homotopy equivalences of manifolds is

called the set of continuously controlled structures on X at Y and it is denoted as
Se(X,Y).
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We note that if X is another compactification of X with a compact corona Y" which is
dominated by X, i.e., there is a continuous map ¢ : X — X which is the identity on X, then
there is a map ¢, : S“(X,Y) — S“(X,Y").

Definition 4.2. A pair (X,Y) is said to be locally 1-connected at Y if for each y € Y
and neighborhood U of y in X there is a smaller neighborhood V' of y in X so that the
inclusion-induced map (V' —Y) — m (U —Y) is zero.

Proposition 4.3. Let X be an open manifold of dimensionn > 5 compactified by a compact
corona Y in such a way that the pair (X,Y) is locally 1-connected. Then there is a surgery
exact sequence

= Hy(YV;L) > 8*(X,Y) — [X,G/Top] — H,_(Y;L)

which is natural with respect to compactification dominations. Here H,(—;ILL) is reduced
Steenrod L-homology.

Proof. This sequence can be obtained by adjusting the bounded surgery theory of [I3] to
a continuously controlled case. It is presented in [21] in a form where the side terms are
Ranincki-Wall L-groups of the continuously controlled additive category B(X,Y;Z). Theo-
rem 2.4 of [21] states that these terms are in fact the reduced Steenrod L-homology groups
of the corona.

The naturality follows from the definition of the continuously controlled category . 0J

A UV'-map is a proper surjection with Cech simply connected point-inverses. See [20] for
details. Let M be a closed simply connected n-manifold and let ¢ : M — Y be a UV !-map.
Then the mapping cone Cj is a compactification of M x R by Y, =Y U pt which is locally
l-connected at Y. Since (C,—Y,) is homotopy equivalent to M and H,(Y,;L) = H.(Y;L),
the controlled surgery exact sequence turns into the following

= H, (Y L) — 8°(C,, Yy) — [M,G/Top|] — H,(Y;L).

Let L be the connected cover of the spectrum L. Note that it is a loop spectrum and
Ly = G/Top. By Poincare duality, [M, G/Top] = H°(M,LL) = H,(M,L). The n-th homo-
topy group S5°(Cy, Yy ) of the fiber of the controlled assembly map of spectra H, (M;L) —
H.(Y; L) differs from S°(C,, Y, ) by at most a copy of Z.

The next proposition follows from Browder’s M xR theorem and the h-cobordism theorem.

Proposition 4.4. Let M be simply connected and let XM denote the unreduced suspension
over M with the suspension points S°. Then S“(XM,S%) =2 S(M).

We note that the suspension XM can be treated as the mapping cone of the constant map.
Therefore for every surjective map ¢ : M — Y there is an induced map

8(C,, Y.) — 8*(XM, S°)

which we call the forget control map.
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Proposition 4.5. Let ¢ : M — X be a UV map of a simply connected n-manifold and let
M, be the mapping cylinder, then there is a commutative diagram:

split—mono

5°(Cyu Xy ) <1 (Con X)) —> Hy1 (M, M; L)
l forget l forget la
S(M) — e 8, (M) ——— [, (ML)
where n and 7 are isomorphisms.
Proof. Consider the diagram of spectra
Hi1 (Mg, M; L) — H.(M; L) H, (X; L)

| | Jeonst

H.(M;L) H, (pt; L)

HL..(M;L)

and compare it in dimension n with the diagram defined by the quotient map p : C, — XM
that collapses X to a point

8¢(C,y, X4) —— [M, G /Top] — H,(X;L)

o

SCC(Cconstapt—i-) - [M> G/Top] — Hn(pt7 L)

to obtain the required commutative diagram. By Proposition 7 is an isomorphism. The
exact sequence of pair (M,, M) implies that 7 is an isomorphism.
O

Proposition 4.6. Let ¢ : M — X be a cell-like map of a simply connected closed manifold
M. Then
(1) 8(C,, X 1) is generated by strict maps f: (Cp, X) — (Cy, X) wherep: N — X is a
cell-like map.
(2) The forget control map takes f to the homotopy equivalence h : N — M which factors
through the cell-like maps q and p.
(3) ' : 8“(Cy, X1) = Hpy1(My, M; L) is an isomorphism.

Proof. (1) Follows from Quinn’s end theorem [24] and the h-cobordism theorem.
(2) Obvious.
(3) We omit the proof of this fact since we do not use it in the paper.
O

Proof of Theorem[Z4) (Tor*(S(M)) c SF(M).)
We are given an odd torsion element o« € S(M). We denote by the same letter a the
corresponding element of S, (M). Let v = fj(a) € H,(M;L). By Theorem B there is a
cell-like map ¢ : M — X such that ¢.(7) = 0. Consider the diagram of Proposition EE5.
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There is an element ¥ € H,,1(M,, M;L) such that (J) = 7. Let o/ = 771(3) and let
a € §¢(Cy, X+ ) be the projection of o/. Since « is the image of @ under the forgetful map,
by Proposition (2) we obtain that o € SYE(M).

(Tor*(S(M)) D SCF(M).)
Suppose that ¢ : N — X and ¢ : M — X are cell-like maps and that f : N — M is a
homotopy equivalence such that qo f ~ c.

CE CE
c q
X
We consider the diagram of Proposition

SCC(Otb X-i—) - Srcﬁi-l(ctp X+) — n+1(Mq> M; L)

lforget lforget la

S(M) Sa(M) — H,(M;L)

By Vietoris-Begle theorem a cell-like map induces an isomorphism of ordinary cohomology
or Steenrod homology with any coefficients (see Proposition BH). Therefore H, (M;L) —
H,(X;L) is an isomorphism rationally, and hence, the image of H,+1(M,, M;L) in H,(M;L)
is a torsion group. Since L is an Eilenberg-MacLane spectrum at 2, H,(M;L) — H,(X;L)
is an isomorphism at 2 and hence the image of H,,1(M,, M;L) in H,(M;L) is odd torsion.
By Proposition [f] is the image of [¢] € §°(C,, X;) under the forgetful map. Then
[f] = (7)7'0(y) is an odd torsion element where v = 7i([c]) € H,1(M,, M;L). O

5. CONTINUOUS CONTROL NEAR THE CORONA

The proof of following proposition is based on diagram chasing. Since the proposition can
be considered as a definition of the homomorphism @', we leave the proof to the reader.

Proposition 5.1. Let (P, Q) be a CW pair with the inclusion isomorphism m (Q) — m (P) =
m. Then the homomorphism 0" : H,.1(P,Q;L) — S,(Q) defined in §2 coincides with the n-
homotopy group homomorphism generated by the map of the homotopy fibers of the following
fibrations of spectra

H..(Q; L) H.(P; L)
S
H,(Q;L) L.(Zm)

where Ap 1s the assembly map for P.
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We consider (P, Q) = (Ey(M), M) where M is a closed manifold M and FEy(M) is its
second Postnikov stage. We recall the notation § = p o @ where p : S,,(M) — S(M) is the
projection.

To prove Theorem 27 we need a germ version of continuously controlled surgery theory.

Definition 5.2.

(i) Let N be an open manifold and let Y be a compact corona of a compactification N
of (one end of) N. A strict homotopy equivalence near Y is a proper map f: W — N
onto a neighborhood of Y such that there are neighborhoods U D V of Y in N and
U' DV of Yin W with f(V') C V and a strict map g : V — V' such that go fl|y is
strict proper homotopic to the inclusion V/ C U’ and f o g is strict proper homotopic
to the inclusion V' C U.

(ii) Two strict homotopy equivalences near Y, f : W — N and f' : W' — N are
equivalent if there is a neighborhood V of Y in W = W U Y and a strict map
h:(V,Y) — (W' )Y) which is an open imbedding and f'oh:V —Y — N is strict
homotopic to f|y.

(iii) The set of the equivalence classes of strict homotopy equivalences of manifolds near
Y is called the set of germs of continuously controlled structures on N at Y and it is
denoted as S°(N,Y ) w.

One can define germs of homotopy classes [V, G/Top|, of maps at ¥ and the correspond-
ing L-groups and form a surgery exact sequence. This was done in §15 of [I3] in the case of
the bounded control. These results can be translated to the continuous control setting as in
[21]. We state the result here in the case when N = M x (0,1) and N is an open mapping

cylinder ]\04 q of a cell-like map ¢ : M — Y of a closed orientable manifold.

Proposition 5.3. Let ¢ : M — Y be a cell-like map of a closed orientable n-manifold, then
there is an exact sequence

o Hyt (VL) — 8°(My, Y )oo — [M, G/Top] — H,(Y;L).

In view of Proposition B0l forget control defines a map ¢ : S( M Y )oo — S(M). More-
over, there is a commutative diagram:

5%(My, Y )oo — [M. G/ Top] H, (Y L)

) | 2

S(M) (M, G/Top] —— L, (Zm(M)).

Here A is the assembly map for Y.

Proposition 5.4. Let q: M — Y be a cell-like map of a closed n-manifold, then the forget
control map ¢ : S(My,Y )oo — S(M) factors as

S( Mg, Y )oo = Hpsr(My, ML) 2 H,, o (Ey(M), M; L) 5 S(M)
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where j is a monomorphism with the cokernel Z or 0.

Proof. Proposition defines a map g : X — FE3(M) such that g o ¢ is homotopic to the
inclusion M — E5(M). We consider the diagram of fibrations of spectra

HL, (M; L) H, (X; 1)

; -

H..(M;L) HL (E(M); L)

- E

H,(M;L) L, (Zn).

In the dimension n we have the homomorphism of homotopy groups of the fibers
i o
Hn—i—l(Man;L)oo - n—l—l(EQ(M)anL) _>Sn(M)

where H,,1(M,, M;L) differs from Scc(j\(;[q,X)oo by a potential summand Z. In fact, one
can argue that in this case they agree. Then the result follows in view of Proposition 5.1l [

Proof of Theorem 23 (S¥(M) D im(d[TQ}).)
We are given an odd torsion element o € H,;1(E2(M), M; L) with 6(a) = [f] € Sp.(M)
where 0 is the composition

Hpp1(Ex(M), ML) = 8,11 (B2 (M), M) — S, (M) — S(M).

By Corollary Bfl, there exist a cell-like map ¢ : M — X and an odd torsion element
a € Hp1 (Mg, M;L) = 855 1(My, X) so that a is the image of @ under the inclusion-
induced map i, : Hyp1(My, M;L) — H,41(Ey(M), M;L). Since @ has finite order and
J: SCC(]\(;[[],X)OO — Sﬁil(]\}q,X)oo is an isomorphism on torsion subgroups, a = j(&/),
where o/ € SCC(]\}q,X)OO. By Propostion B4 ¢(a’) = [f]. Let g : W — M x (0,1) be
a representative for o/. By Quinn’s end of maps theorem [24] we may assume that W =
N x (0,1) and W = M, where p : N — X is cell-like. Thus, [f] = ¢(c/) is realized by
cell-like maps p and q.

(SCE(M) C im(é[fg}).
Suppose that ¢ : N — X and ¢ : M — X are cell-like maps and that f : N — M is a
homotopy equivalence such that go f ~ c.

!

CE CE
c q

X

N M
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As above, there is an inclusion-induced map p : X — FE5(M) and the forgetful map
Hy1(My, M;L) = SE(M,, X) — S(M) factors through H,1(Ey(M),M;L). It there-
fore suffices to show that the image of H,1(M,, M;L) in H,1(Ey(M), M;L) is an odd
torsion group. By Vietoris-Begle theorem a cell-like map induces an isomorphism of ordi-
nary cohomology or Steenrod homology with any coefficients (see Proposition BH). Therefore
H.(M;L) — H.(X;L)is an isomorphism rationally, and hence, the image of H,(M,, M;L) in
H.(Ey(M), M;L) is a torsion. Since at 2 L is an Eilenberg-MacLane spectrum, H,(M;L) —
H.(X;L) is an isomorphism at 2 and hence H,.(Ey(M), M;L) is an odd torsion.
This half of the theorem is true for all n.

6. PUSHING MANIFOLDS TOGETHER IN GROMOV-HAUSDORFF SPACE
Definition 6.1.

(i) If X and Y are compact subsets of a metric space Z, the Hausdorff distance between
X and Y is

dy(X,Y) =inf{e > 0| X C N(Y),Y C N(X)}.

(ii) If X and Y are compact metric spaces the Gromov-Hausdorff distance from X to Y
is

dan(X,Y) = f{du(X,Y) | X,Y C Z}.

(iii) Let CM be the set of isometry classes of compact metric spaces with the Gromov-
Hausdorft metric.

(iv) Let M™% (n, p) be the set of all (X, d) € CM such that X is a topological n-manifold
with (topological) metric d with contractibility function p.

It is well-known that CM is a complete metric space (see [I5] or [23] for an exposition).

Theorem 6.2. (i) If n # 3 and X € CM is in the closure of M™"(n,p), then there
is an € > 0 so that there are only finitely many homeomorphism types of manifolds
M € M™™(n,p) with deH(M,X) < €. If dgg(M,X), degu(M',X) < €, then
there exists a simple homotopy equivalence h : M' — M which preserves rational
Pontryagin classes.
(ii) There exist a contractibility function p, nonhomeomorphic manifolds M and N, and
a compact metric space X such that every e-neighborhood of X in CM contains
manifolds lying in M™*™(n, p) and homeomorphic to both M and N .

Proof. Part (i) is Theorem 2.10 of [9].

Let M and N be from CorollaryETdland let ¢ : M — X and p : N — X be cell-like maps.
By the main result of [T2] there are a contractibility function p, sequences of Riemannian
metrics {dM} and {d¥} on M and N respectively lying in M™(n, p) and converging in
CM to (X, d) for some metric d. O
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Let M™an(n, p) be the closure of M™**(n, p) in the Gromov-Hausdorff space and dM™*" (n, p)
be the boundary. Note that M™®(n, p) and OM™*™(n, p) are compact and M™*(n, p) is
open in M™(n, p). For a compact metric space X we will denote its isometry class by the
same letter X.

Theorem 6.3. Suppose that the isometry type of a metric space X belongs to OM™*™ (n, p).
Then there is € > 0 such every two manifolds M, N € B.(X)NM™*(n, p) from e-neighborhood
of X in CM are CE-related.

Definition 6.4. A map f: M — X has a ¢-lifting property in dimensions < k. If for every
PL pair (P,Q), dim P < k for every commutative diagram

|

there is a map g : P — M extending ¢’ such that dist(fg,g) < 9.

Proposition 6.5. Let X be a locally k-connected space for k > n, then there exists 6 > 0
such that every map f : M — X from a compact n-dimensional ANR with the 0-lifting
property in dimensions < n + 1 is a weak homotopy equivalence in dimension n (i.e., is
n + l-connected). Furthermore, it induces isomorphisms of the Steenrod homology groups
fe: Hi(M) — Hy(X) fori<n.

Proof. The weak homotopy equivalence in dimension n easy follows from the liting property.
Then the fact follows for the singular homology. We note that the Steenrod homologies
coincide with the singular homologies in this case. 0

Proposition 6.6. Let X € oM™ (n, p), then for every § > 0 there exists € > 0 such that
every M € M™™(n, p) with dgg(M,X) < € there is a map f : M — X with the d-lifting
property in dimensions < n + 1.

Proof. The space X is locally k-connected for all finite k& (see [I1]). Then for small € a map
f: M — X can be constructed by induction by means of a small triangulation on M (If
M does not admit a triangulation, one can use a CW complex structure). Given dy > 0, we
may assume that d(z, f(x)) < dp. Clearly, for a proper choice of §y the map f will have the
0-lifting property. O

Proposition 6.7. Let X € OM™"(n,p) then there exists ¢ > 0 such that every M €
M™% (n, p) with dgp (M, X) < € there is a map f: M — X such that f, : H(M;Lg)) —
H,(X ;L) is an isomorphism.

Proof. We note that L) is an Eilenberg-MacLane spectrum. We take e from Proposition
Then Proposition 60 and the fact that H;(M) = H;(X) = 0 for i > n imply the required
result. OJ
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Proof of Theorem [G3.

We take e from Proposition Let ¢c: N — X and ¢ : M — X be corresponding
maps. We may assume that there is a homotopy lift f : N — M of ¢ which is a homotopy
equivalence.

As it was shown in [I1] that X can be presented as the limit space of an inverse sequence
of polyhedra {K;, p;} such that each map p; : X — K; is n + 3-connected. Moreover, we
may assume that every bonding map pi*' : K;;; — K; is (dim K; + 3)-connected (see P4,
page 98 of [I1]). Since p; o g is 2-connected, the space FEy(M) can be constructed out of
K; by killing higher dimensional homotopy groups. Thus the inclusion M C FEy(M) can be
factored through X and P; (for large 7). Hence there is a commutative diagram

(*) Hyer(Prpr, M; L) —— Sus1 (P, M) Sa(M)

| N l -

Hy1(E2(M), M; L) ~ Sni1(E2(M), M) Sn(M).

By Proposition we obtain that H,(X, M;L)) = 0 for the Steenrod homology. Hence
lim H,(P;, M; L) =0 and lim'H,(P;, M;L)) = 0.

By Theorem 2.6 of [I] the structure [f] defined by f : N — M belongs to the kernel G;
of the induced map (p;q)« : Sp(M) — S,,(P;) for all sufficiently large i. There is a morphism
of inverse sequences

Pit1

Hy 1 (P, ML) Gin 0
ot e
H,1 (P, M;L) v G; 0.

such that £ are inclusions and [f] € G; for all i. We tensor it with Z) and take the
inverse limit. Since im> H,(P;, M; L)) = 0 and H.(P;, M; L)) = H.(P;, M; L) ® Z), we
obtain an epimorphism

Therefore lim_ G; ® Z) = 0 and hence [f] is an odd torsion. In view of the above diagram

(*) it suffices to show that show that &; *([f]) N Tor(H,1(P;, M;1L) # () for some large 1.
Since ¢ induces isomorphism of rational homology we obtain

lim H,(P,, M;Q) =0 and lim"H,(F;, M;Q) = 0.

The later implies that rationally the system is Mittag-Lefler. Thus, we may assume that the
bonding maps (p:*!), take all elements of H,,,1(Pi;1, M; L) to the torsions of H, 1(P;, M;L).
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Thus,
0% (i)« (dira([f]) € 7 ([f]) N Tor(Hpya (P, M;1L)).

We obtain that our odd torsion element [f] is the image of torsion element from H,,1(E5(M), M; L).
Then it is an image of an odd torsion element. O
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