

A Duality Theorem for Reidemeister Torsion

John Milnor

The Annals of Mathematics, 2nd Ser., Vol. 76, No. 1 (Jul., 1962), 137-147.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28196207%292%3A76%3A1%3C137%3AADTFRT%3E2.0.CO%3B2-8

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://uk.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://uk.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.

A DUALITY THEOREM FOR REIDEMEISTER TORSION

By John Milnor

(Received November 8, 1961)

This paper will show that the torsion invariant of Reidemeister, Franz, and de Rham for a manifold satisfies a duality relation, analogous to Poincaré duality. As an application one obtains a new proof that the Alexander polynomial of a knot is symmetric (a result first proved by Seifert [11]).

1. The duality theorem

First some algebraic preliminaries. Let P be a ring with an anti-automorphism $\rho \to \bar{\rho}$ of period two. Given any left P-module A define the dual module A^* to be $\operatorname{Hom}_P(A,P)$, considered as a left P-module in the following way. For each $\rho \in P$ and $f \colon A \to P$ define $\rho f \colon A \to P$ by the formula

$$[a, \rho f] = [a, f] \overline{\rho}$$
,

where [a, f] denotes the value of the function f at a. If A is free and finitely generated, then clearly A^* is free and finitely generated, and A^{**} can be identified with A. Note that any homomorphism $h: A_1 \to A_2$ gives rise to a dual homomorphism $h^*: A_2^* \to A_1^*$.

As an example consider the following geometrical situation. Let M be a simplical complex whose underlying space is an oriented n-manifold without boundary. Let Π be a group of fixed point free simplicial automorphisms of M. Then the chain group $C_q(M; Z)$ can be considered as a free left module over the integral group ring $Z[\Pi]$.

Now suppose that M has a dual cell subdivision M'. Then the chain group $C_{n-q}(M'; Z)$ is also a free left $Z[\Pi]$ -module. We will assume that the quotient space M/Π is compact, so that these modules are finitely generated.

There is a canonical anti-automorphism $\rho \to \bar{\rho}$ of $Z[\Pi]$ which takes each group element π into π^{-1} .

LEMMA 1 (Reidemeister). If the elements of Π are orientation preserving automorphisms of M, then the $Z[\Pi]$ -module $C_{n-q}(M'; Z)$ is canonically isomorphic to the dual of $C_q(M; Z)$. Furthermore the boundary homomorphism

$$\partial \colon C_{n-q}(M';Z) \longrightarrow C_{n-q-1}(M';Z)$$

is (up to sign) dual to the corresponding homomorphism

$$\partial: C_{q+1}(M; Z) \longrightarrow C_q(M; Z)$$
.

PROOF. For each chain $c' \in C_{n-q}(M'; \mathbb{Z})$ define a homomorphism

$$[, c']: C_q(M; Z) \longrightarrow Z[\Pi]$$

by the formula

$$[c,c'] = \sum_{r \in \Pi} \langle c, \pi c' \rangle \pi$$
;

where $\langle c, \pi c' \rangle$ denotes the (integer) intersection number of c and $\pi c'$. The required identities

$$[\pi c, c'] = \pi [c, c']$$
,
 $[c, \pi c'] = [c, c'] \overline{\pi}$,

and

$$[\partial c, c'] = \pm [c, \partial c']$$

are easily verified. (Compare Reidemeister [9], Burger [2], Blanchfield [1].) This proves Lemma 1.

Now let us apply this duality to the torsion invariant. Given a commutative field F and a homomorphism

$$h: Z[\Pi] \longrightarrow F$$
,

we can consider F as a right $Z[\Pi]$ -module and hence form the vector spaces

$$C_{\sigma} = F \bigotimes_{\Pi} C_{\sigma}(M; Z)$$
, $C'_{n-\sigma} = F \bigotimes_{\Pi} C_{n-\sigma}(M'; Z)$

over F.

Assume that we are given an involution $a \to \bar{a}$ of F which satisfies the identity $h(\bar{a}) = \bar{h}(a)$. Then the vector space C'_{n-q} is canonically isomorphic to the dual of C_q .

If the chain complex C_* is acyclic—i.e., if the sequence

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow 0$$

is exact—then the torsion invariant

$$\Delta_h M \in F_0 / \pm h(\Pi)$$

is defined. (See Franz [6] or de Rham [10]. The definition as given in Milnor [7] will be repeated below.) Here F_0 denotes the multiplicative group F - 0 and $\pm h(\Pi)$ denotes the subgroup consisting of all elements $\pm h(\pi)$, $\pi \in \Pi$.

THEOREM 1. This torsion invariant $\Delta = \Delta_h M$ satisfies the identity

$$\Delta \bar{\Delta}^{\varepsilon(n)} = \pm h(\Pi)$$

where $\varepsilon(n) = (-1)^n$.

Thus if n is odd the torsion invariant is self-conjugate:

$$\bar{\Delta}_h M = \Delta_h M$$
,

and if n is even the torsion is unitary:

$$\bar{\Delta}_h M = (\Delta_h M)^{-1}$$
.

The classical illustration of torsion is provided by the (odd dimensional) lens manifolds. (See [6], [10].) One uses the field of complex numbers, and the usual complex conjugation operation. Hence Theorem 1 asserts that the resulting torsion element is essentially a real number.

For an even dimensional manifold, with F the field of complex numbers, the torsion must be a number on the unit circle defined up to multiplication by certain roots of unity. I do not know any non-trivial examples.

Before proving Theorem 1, it is convenient to consider the more general case of a triangulated n-manifold M with boundary bM. Again we assume that each simplex of M has a dual cell. For a q-simplex of bM one can define not only the dual (n-q)-cell in M, but also the dual (n-q-1)-cell in bM. Taking the cells of both types we obtain a dual complex M' with subcomplex bM'.

Again assume that Π acts freely, preserving orientation, and that M/Π is compact.

LEMMA 2. The left $Z[\Pi]$ -module $C_{n-q}(M', bM'; Z)$ is dual to $C_q(M; Z)$; and the boundary operator in $C_*(M', bM'; Z)$ is (up to sign) dual to the boundary operator in $C_*(M; Z)$.

The proof is straightforward.

Again let $h: Z[\Pi] \to F$ be a homomorphism compatible with the conjugation operations.

THEOREM 1'. If the torsion $\Delta_h M$ is defined (i.e., if the chain complex $F \otimes_{\Pi} C_*(M; Z)$ is acyclic) then $\Delta_h(M, bM)$ is defined, and conversely. Furthermore

$$\Delta_{h}(M, bM) = (\overline{\Delta}_{h}M)^{-\varepsilon(n)}$$

where $\varepsilon(n) = (-1)^n$.

Clearly this result contains Theorem 1 as a special case. The following reformulation is usually more convenient to use. According to [7, Lemma 4], if both $\Delta_h M$ and $\Delta_h (M, bM)$ are defined, then $\Delta_h (bM)$ is also defined, and

$$\Delta_h(M, bM) = \Delta_h M / \Delta_h(bM)$$
.

Combining this information with Theorem 1', one obtains:

THEOREM 2. If $\Delta_h M$ is defined then $\Delta_h(bM)$ is also defined, and

$$\Delta_h(bM) = (\Delta_h M)(\overline{\Delta}_h M)^{\varepsilon(n)}$$
.

Examples will be given in § 2.

In order to prove Theorems 1 and 1' it is first necessary to review the definition of torsion, as given in [7]. For any vector space C of dimension d over F, let ΛC denote the d^{th} exterior power $\Lambda^d C$. This is a one-dimensional vector space.

Given a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

and given generators $a \in \Lambda A$, $b \in \Lambda B$, construct a generator $b/a \in \Lambda C$ as follows. Choose a basis x_1, \dots, x_n for B so that the last n-m vectors x_{m+1}, \dots, x_n form a basis for the subspace $A \subset B$. Thus a and b can be written in the form

$$a=fx_{{\scriptscriptstyle{m+1}}}\wedge\cdots\wedge x_{{\scriptscriptstyle{n}}}$$
 , $b=gx_{{\scriptscriptstyle{1}}}\wedge\cdots\wedge x_{{\scriptscriptstyle{n}}}$

for appropriate field elements $f,\,g \neq 0$. Define b/a to be the image in ΛC of

$$gf^{-1}x_1 \wedge \cdots \wedge x_m$$
.

This construction does not depend on the choice of basis.

Now suppose that one is given a long exact sequence

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow 0$$

and a preferred generator $v_q \in \Lambda C_q$ for each q. Using the short exact sequence

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \partial C_{n-1} \longrightarrow 0$$
 ,

one constructs a generator

$$v_{n-1}/v_n \in \Lambda(\partial C_{n-1})$$
.

Proceeding inductively, using the sequences

$$0 \longrightarrow \partial C_{a+1} \longrightarrow C_a \longrightarrow \partial C_a \longrightarrow 0$$

one constructs generators

$$v_q/(v_{q+1}/(\cdots/(v_{n-1}/v_n)\cdots)) \in \Lambda(\partial C_q)$$

for each q. These will be written briefly as $(v_q/v_{q+1}/\cdots/v_{n-1}/v_n)$.

In particular one obtains a generator

$$(v_1/v_2/\cdots/v_{n-1}/v_n) \in \Lambda(\partial C_1) = \Lambda C_0$$
.

Taking the ratio of this with the given generator $v_0 \in \Lambda C_0$ we obtain a field element

$$D = v_0/(v_1/v_2/\cdots/v_n)$$
.

This ratio $D \in F_0$ is called the $torsion^1$ associated with $\{C_q, v_q\}$.

Note the identity

$$(v_1/v_2/\cdots/v_n) = D^{-1}v_0.$$

Now let us apply duality to this situation. For any vector space C, note that $\Lambda(C^*)$ is canonically isomorphic to the dual $(\Lambda C)^*$ of ΛC . In fact given elements

$$v=x_1\wedge\cdots\wedge x_n\in \Lambda C$$
 , $w=y_1\wedge\cdots\wedge y_n\in \Lambda (C^*)$,

define [v, w] to be the determinant of the matrix $||[x_i, y_j]||$. As an example, if x_1, \dots, x_n is a basis for C and x_1^*, \dots, x_n^* is the dual basis for C^* then $[x_1 \wedge \dots \wedge x_n, x_1^* \wedge \dots \wedge x_n^*] = 1$.

Consider a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

together with the dual sequence

$$0 \longleftarrow A^* \longleftarrow B^* \longleftarrow C^* \longleftarrow 0$$

Let $a \in \Lambda A$, $b \in \Lambda B$, $b^* \in \Lambda B^*$, and $c^* \in \Lambda C^*$ be generators; with $[b, b^*] = 1$.

LEMMA 3. Then $[b/a, c^*]$ is equal to $\pm [a, b^*/c^*]^{-1}$.

PROOF. Choose a basis x_1, \dots, x_n for B so that x_{m+1}, \dots, x_n form a basis for A. Let x_1^*, \dots, x_n^* denote the dual basis for B^* , so that x_1^*, \dots, x_m^* form a basis for $C^* \subset B^*$. Define field elements f, g, h by

 $^{^{1}}$ Actually this element D is the reciprocal of the torsion as defined by Franz.

$$egin{array}{lll} a&=fx_{{}^{m+1}}\wedge\cdots\wedge x_{{}^{n}}\;, &b&=gx_{{}^{1}}\wedge\cdots\wedge x_{{}^{n}}\;, \ b^{*}&=ar{g}^{-1}\!x_{{}^{1}}^{*}\wedge\cdots\wedge x_{{}^{n}}^{*}\;, &c^{*}&=ar{h}x_{{}^{1}}^{*}\wedge\cdots\wedge x_{{}^{m}}^{*}\;. \end{array}$$

Then $[b/a, c^*] = gf^{-1}h$ and $[a, b^*/c^*] = \pm fg^{-1}h^{-1}$. This completes the proof.

Now given an acyclic chain complex $0 \to C_n \to C_{n-1} \to \cdots \to C_0 \to 0$ with generators $v_q \in \Lambda C_q$, form the dual complex

$$0 \longrightarrow C_0^* \longrightarrow C_1^* \longrightarrow \cdots \longrightarrow C_n^* \longrightarrow 0$$

and the dual generators $v_q^* \in \Lambda C_q^*$. Just as before one constructs generators

$$(v_q^*/v_{q-1}^*/\cdots/v_1^*/v_0^*) \in \Lambda(\partial^* C_q^*)$$

by induction on q. The torsion $D_1 \in F$ of the dual complex is then defined by the identity

$$D_1 = v_n^*/(v_{n-1}^*/\cdots/v_1^*/v_0^*)$$

or

$$(v_{n-1}^*/v_{n-2}^*/\cdots/v_1^*/v_0^*) = D_1^{-1}v_n^*.$$

Applying Lemma 3 to the dual exact sequences

$$0 \longrightarrow \partial C_{q+1} \longrightarrow C_q \longrightarrow \partial C_q \longrightarrow 0$$
 ,

and

$$0 \longleftarrow \partial^* C_q^* \longleftarrow C_q^* \longleftarrow \partial^* C_{q-1}^* \longleftarrow 0 ,$$

one obtains the identity

$$egin{aligned} & \left[v_q/(v_{q+1}/\cdots/v_{n-1}/v_n), \, (v_{q-1}^*/\cdots/v_1^*/v_0^*)
ight] \ & = \, \pm \left[(v_{q+1}/\cdots/v_{n-1}/v_n), \, v_q^*/(v_{q-1}^*/\cdots/v_1^*/v_0^*)
ight]^{-1} \,. \end{aligned}$$

In other words the field element

$$\pm f = [(v_{q+1}/\cdots/v_{n-1}/v_n), (v_q^*/v_{q-1}^*/\cdots/v_1^*/v_0^*)]^{arepsilon(q)}$$

is independent of q.

Taking q = 0 and making use of formula (1) this gives

$$\pm f = [(v_{\scriptscriptstyle 1}/\cdots/v_{\scriptscriptstyle n-1}/v_{\scriptscriptstyle n}),\,v_{\scriptscriptstyle 0}^*] = [D^{\scriptscriptstyle -1}v_{\scriptscriptstyle 0},\,v_{\scriptscriptstyle 0}^*] = D^{\scriptscriptstyle -1}$$
 .

On the other hand, taking q=n-1 and using the formula (2) it gives

$$\pm f = [v_n, D_1^{-1}v_n^*]^{\epsilon(n-1)} = \bar{D}_1^{\epsilon(n)}$$
 .

Therefore the torsion D_1 of the dual complex satisfies the identity

$$D\bar{D}_{\scriptscriptstyle 1}^{\varepsilon(n)}=\pm 1.$$

This completes the purely algebraic part of the proof.

The remainder of the proof is straightforward. The q-cells of M determine a preferred basis for $C_q(M; Z)$ and hence a preferred generator

$$v_q \in \Lambda C_q = \Lambda(F \bigotimes_{\Pi} C_q(M; Z))$$
.

This generator is well defined up to multiplication by elements of the form $\pm h(\pi)$. If $D \in F_0$ denotes the torsion associated with $\{C_q, v_q\}$ then $\Delta_h M$ is defined to be the coset $\Delta_h M = \pm h(\Pi)D \in F_0/\pm h(\Pi)$.

The (n-q)-cells of M'-bM' determine a dual basis for $C_{n-q}(M',bM';Z)$ and hence determine the dual generator

$$v_q^* \in \Lambda C_q^* = \Lambda ig(F igotimes_{\scriptscriptstyle \Pi} C_{n-q}(M', bM'; Z) ig)$$
 .

Thus if D_1 denotes the torsion associated with $\{C_q^*, v_q^*\}$ then

$$\Delta_h(M',bM')=\pm h(\Pi)D_1\in F_0/\pm h(\Pi)$$
.

According to formula (3):

$$(\Delta_h M)(\overline{\Delta}_h(M',bM'))^{\varepsilon(n)} = \pm h(\Pi)$$
.

But since M and M' have a common subdivision, we have

$$\Delta_h(M, bM) = \Delta_h(M', bM')$$
.

This completes the proof of Theorems 1, 1' and 2.

2. Applications to knot theory

In this section, Π will always be an infinite cyclic multiplicative group with generator t. As field F take the quotient field of the integral group ring $Z[\Pi]$. Thus F can be described as the field Q(t) of rational functions in one variable t over the rational numbers. Let $I: Z[\Pi] \to Q(t)$ be the imbedding, and define the conjugation operation in Q(t) by $\overline{f(t)} = f(t^{-1})$.

LEMMA 4. Let K be a finite polyhedron having the homology of the circle, and let $L = \widetilde{K}$ be its infinite cyclic covering complex. Then the torsion

$$\Delta_I L \in Q(t)_0 / \pm \Pi$$

is defined.

The proof will be given later.

As an application consider any differentiable imbedding of the (n-2)-sphere in the n-sphere. Removing a tubular neighborhood of the (n-2)-sphere from S^n we obtain a compact manifold K with boundary. Choose some C^1 -triangulation of K (see Whitehead [13]) and let $M = \widetilde{K}$ denote the infinite cyclic covering complex.

THEOREM 3. If M is obtained from a differentiable imbedding $S^{n-2} \rightarrow S^n$ as above, then the torsion $\Delta_I M$ is defined and satisfies the symmetry relation

$$\Delta_{{\scriptscriptstyle I}} M = \overline{\Delta}_{{\scriptscriptstyle I}} M \qquad \qquad for \,\, n \,\, odd \,\, , \ (\Delta_{{\scriptscriptstyle I}} M)(\overline{\Delta}_{{\scriptscriptstyle I}} M) = \pm \Pi/(t-1)^2 \qquad \qquad for \,\, n \,\, even \,\, .$$

PROOF. It follows from Lemma 4 that $\Delta_I M$ is defined. According to Theorem 2 we have

$$(*) \qquad (\Delta_I M)(\bar{\Delta}_I M)^{\varepsilon(n)} = \Delta_I (bM) \; .$$

But the boundary bM is clearly equivariantly diffeomorphic to the product $\tilde{S}^1 \times S^{n-2}$; where \tilde{S}^1 denotes the universal covering space of the circle. Thus bM can be given an equivariant cell structure consisting of four cells

$$e^{\scriptscriptstyle 1} imes e^{\scriptscriptstyle n-2}$$
 , $e^{\scriptscriptstyle 0} imes e^{\scriptscriptstyle n-2}$, $e^{\scriptscriptstyle 1} imes e^{\scriptscriptstyle 0}$, $e^{\scriptscriptstyle 0} imes e^{\scriptscriptstyle 0}$

together with their translates under the action of Π . The boundary relations are

$$\partial(e^1 \times e^{n-2}) = (t-1)(e^0 \times e^{n-2}) , \qquad \partial(e^1 \times e^0) = (t-1)(e^0 \times e^0) .$$

The torsion invariant

$$D=e^{\scriptscriptstyle 0} imes e^{\scriptscriptstyle 0}/(e^{\scriptscriptstyle 1} imes e^{\scriptscriptstyle 0}/1/\cdots/1/e^{\scriptscriptstyle 0} imes e^{\scriptscriptstyle n-2}/e^{\scriptscriptstyle 1} imes e^{\scriptscriptstyle n-2})$$

for this chain complex can easily be computed. In fact D is equal to $(t-1)^{-1-\varepsilon(n)}$. The torsion computed from any C^1 -triangulation of bM will be the same, since this cell complex has a C^1 -triangulation as an equivariant subdivision. Therefore

$$\Delta_I(bM) = \pm \Pi/(t-1)^{1+\epsilon(n)}$$
 .

Combining this information with the formula (*) we obtain Theorem 3. As an example, consider the standard imbedding of S^{n-2} in S^n . Then

$$\Delta_{I}M=\pm\Pi/(t-1)$$
.

Therefore $(\Delta_I M)(\overline{\Delta}_I M)^{\varepsilon(n)} = \pm \Pi/(t-1)(t^{-1}-1)^{\varepsilon(n)}$ is equal to $\pm \Pi/(t-1)^{1+\varepsilon(n)}$, as required by Theorem 3.

Now let us specialize to the case n=3.

THEOREM 4. If K is a complex of dimension ≤ 2 , or a manifold of dimension ≤ 3 , having the homology of a circle, then the torsion invariant $\Delta_I \tilde{K}$ is equal to $\pm \Pi A(t)/(t-1)$, where A(t) denotes the Alexander polynomial of the fundamental group.

Combining this with Theorem 3 we see that the Alexander polynomial A(t) for the complement of a knot in S^3 satisfies the relation

$$A(t)/(t-1) = \pm t^{i}A(t^{-1})/(t^{-1}-1)$$

hence

$$A(t^{-1}) = \mp t^{-i-1}A(t)$$
.

Combining this with the fact that $A(1) = \pm 1$ (see for example Fox [4]) one easily obtains the following:

COROLLARY (Seifert). The Alexander polynomial A(t) of a knot has the form $\pm t^{j}(a_{0} + a_{1}t + \cdots + a_{2r}t^{2r})$ with $a_{0} = a_{2r}$, $a_{1} = a_{2r-1}$, \cdots , $a_{r-1} = a_{r+1}$.

Note. The possibility that this corollary could be proved in this way was conjectured by Reidemeister [8, § 5]. The above proof is close to that given by Blanchfield [1].

The rest of this paper will be devoted to the proofs of Lemma 4 and Theorem 4.

In order to prove Lemma 4 one must show that the chain complex $Q(t) \otimes_{\Pi} C_*(L; Z)$ is acyclic. Let $e_1^q, \dots, e_{\alpha_q}^q$ denote the standard basis for $C_q(L; Z)$, with one basis element for each q-cell of $K = L/\Pi$. The boundary homomorphism on $C_q(L; Z)$ can be described by a matrix $||a_{ij}^q(t)||$ over the integral domain $Z[\Pi]$, which is defined by:

$$\partial e_i^q = \sum_j a_{ij}^q(t) e_j^{q-1}$$
 .

Let r_q denote the rank of this matrix. Note that the difference $\alpha_q - r_q - r_{q+1}$ is equal to the q^{th} Betti number of the chain complex

$$C_* = Q(t) \bigotimes_{\Pi} C_*(L; Z)$$
 .

Now consider the chain complex $C_*(K; \mathbb{Z})$. Note that the boundary homomorphism

$$\partial \colon C_q(K; Z) \longrightarrow C_{q-1}(K; Z)$$

can be described by a matrix of integers $||\alpha_{ij}^q(1)||$ which is a homomorphic image of the matrix above. Therefore the rank r_q' of this boundary homomorphism satisfies $r_q' \leq r_q$. This implies that the Betti numbers $\alpha_q - r_q' - r_{q+1}'$ of $C_*(K; Z)$ are greater than or equal to the corresponding Betti numbers of C_* . But K has the homology of a circle. Therefore the chain complex C_* can have non-trivial homology at most in the dimensions 0 and 1.

On the other hand $H_0(C_*)$ is zero. For if e_i^0 denotes any vertex, then there certainly exists a 1-chain c with $\partial c = t e_i^0 - e_i^0$. Since t-1 is a unit in Q(t), this implies that e_i^0 itself is a boundary.

Finally, since the Euler characteristic $\alpha_0 - \alpha_1 + \alpha_2 - \cdots \pm \alpha_n$ is

zero, the group $H_1(C_*)$ must also be zero. This completes the proof of Lemma 4.

PROOF OF THEOREM 4. If K is a 3-manifold, then by pushing in one free face at a time, we can collapse K down to a 2-dimensional subcomplex. These collapsings do not affect the torsion. (Compare Whitehead [14].)

Furthermore the simplicial complex K can be replaced by a CW-complex K_1 with a single vertex e_1^0 . For let e_1^0 be any edge of K, and let K' be the CW-complex obtained from K by collapsing e_1^0 to a point. It is not difficult to show that $\Delta_I \tilde{K}' = \Delta_I \tilde{K}$. Now iterate this procedure, always selecting an edge e_1^0 which has distinct end points. After a finite number of stages we obtain a complex K_1 with a single vertex.

Let $L = \widetilde{K}_i$. The boundary of any edge e_i^1 of L clearly has the form

$$\partial e_j^1 = (t^r - t^s)e_1^0$$
 .

Without loss of generality we may assume that the first edge e_1^1 has boundary equal to $(t-1)e_1^0$. For otherwise it is only necessary to adjoin a suitable 2-cell to K, having such an edge as free face. (Again compare Whitehead [14].)

Now consider the matrices $||a_{ij}^2(t)||$ and $||a_{ji}^1(t)||$ as defined earlier. If $m=\alpha_2$ denotes the number of 2-cells, then the relation $\alpha_2-\alpha_1+\alpha_0=0$ implies that $\alpha_1=m+1$. Thus $||a_{ij}^2(t)||$ is an $m\times(m+1)$ -matrix and $||a_{ji}^1||$ is an $(m+1)\times 1$ -matrix. It is well known that $||a_{ij}^2(t)||$ is precisely the Alexander matrix of that presentation of the fundamental group of K which is associated with the given cell structure. (Compare Fox [3, p. 547] and [4].) Hence the Alexander polynomial A(t) is defined to be a generator of the principal ideal in $Z[\Pi]$ generated by the $m\times m$ minor determinants of $||a_{ij}^2(t)||$.

The first column of $||a_{ij}^2(t)||$ can be expressed as a linear combination of the remaining columns. This follows from the relation

$$\sum_{i} a_{ij}^{2} a_{j1}^{1} = 0$$
 ,

together with the fact that $a_{11}^1 = t - 1$, and that each a_{j1}^1 has the form $t^r - t^s$; and hence is divisible by t - 1. Therefore A(t) can be defined as the determinant of the matrix obtained by deleting the first column of $||a_{ij}^2||_{\bullet}$.

Now let us compute the torsion invariant. Let

$$v_{\scriptscriptstyle 2}=e_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}\wedge\,\cdots\,\wedge\,e_{\scriptscriptstyle m}^{\scriptscriptstyle 2}$$
 , $v_{\scriptscriptstyle 1}=e_{\scriptscriptstyle 1}^{\scriptscriptstyle 1}\wedge\,\cdots\,\wedge\,e_{\scriptscriptstyle m+1}^{\scriptscriptstyle 1}$, $v_{\scriptscriptstyle 0}=e_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$,

and note that

$$e_1^1 \wedge (\partial e_1^2 \wedge \partial e_2^2 \wedge \cdots \wedge \partial e_m^2) = A(t)v_1$$
.

Therefore, using the exact sequence

$$0 \longrightarrow C_2 \stackrel{\partial}{\longrightarrow} C_1 \stackrel{\partial}{\longrightarrow} C_0 \longrightarrow 0$$
 ,

we have $A(t)v_1/v_2 = \partial e_1^1 = (t-1)v_0$, hence $v_0/(v_1/v_2) = A(t)/(t-1)$. This completes the proof of Theorem 4.

REMARK. A similar computation can be carried out for a knot with n components in S^3 , $n \ge 2$. In this case the torsion

$$\Delta_I M \in Q(t_1, \dots, t_n)/\pm \Pi$$

associated with the maximal abelian covering is precisely equal to the Alexander polynomial $A(t_1, \dots, t_n)$. Applying the duality theorem, one obtains the symmetry relation

$$A(t_1^{-1}, \dots, t_n^{-1}) = \pm t_1^{i_1} \dots t_n^{i_n} A(t_1, \dots, t_n)$$

which is due to Torres [12]. (See also [1], [5].)

PRINCETON UNIVERSITY

REFERENCES

- R. C. BLANCHFIELD, Intersection theory of manifolds with operators with applications to knot theory, Ann. of. Math., 65 (1957), 340-356.
- 2. E. Burger, Über Schnittzahlen von Homotopieketten, Math. Z., 52 (1949), 217-255.
- 3. R. H. Fox, Free differential calculus I, Ann. of Math., 57 (1953), 547-560.
- 4. ———, Free differential calculus II, Ann. of Math., 59 (1954), 196-210.
- 5. and G. Torres, Dual presentations of the group of a knot, Ann. of Math., 59 (1954), 211-218.
- W. FRANZ, Über die Torsion einer Überdeckung, J. reine angew. Math., 173 (1935), 245-254.
- J. MILNOR, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math., 74 (1961), 575-590.
- K. REIDEMEISTER, Überdeckungen von Komplexen, J. reine angew. Math., 173 (1935), 164-173.
- 9. ———, Durchschnitt und Schnitt von Homotopieketten, Monatsh. Math., 48 (1939), 226-239.
- 10. G. DE RHAM, Complexes à automorphismes et homéomorphie différentiable, Ann. Inst. Fourier, Grenoble, 2 (1950), 51-67.
- 11. H. SEIFERT, Über das Geschlecht von Knoten, Math. Ann., 110 (1934), 571-592.
- 12. G. TORRES, On the Alexander polynomial, Ann. of Math., 57 (1953), 57-89.
- 13. J. H. C. WHITEHEAD, On C1-complexes, Ann. of Math., 41 (1940), 809-824.
- 14. ———, Simple homotopy types, Amer. J. Math., 72 (1950), 1-57.