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A DUALITY THEOREM FOR REIDEMEISTER TORSION

BY JoHN MILNOR
(Received November 8, 1961)

This paper will show that the torsion invariant of Reidemeister, Franz,
and de Rham for a manifold satisfies a duality relation, analogous to
Poincaré duality. As an application one obtains a new proof that the
Alexander polynomial of a knot is symmetric (a result first proved by
Seifert [11]).

1. The duality theorem

First some algebraic preliminaries. Let P be a ring with an anti-auto-
morphism p — P of period two. Given any left P-module A define the
dual module A* to be Hom, (A4, P), considered as a left P-module in the
following way. For each pe P and f: A — P define of: A— P by the
formula

[ar Aof] = [a’f]ﬁ ’
where [a, f] denotes the value of the function f at a. If A is free and
finitely generated, then clearly A* is free and finitely generated, and A**
can be identified with A. Note that any homomorphism k: A, — A, gives
rise to a dual homomorphism k*: AF — Af.

As an example consider the following geometrical situation. Let M be
a simplical complex whose underlying space is an oriented n-manifold
without boundary. Let IT be a group of fixed point free simplicial auto-
morphisms of M. Then the chain group C,(M; Z) can be considered as a
free left module over the integral group ring Z[II].

Now suppose that M has a dual cell subdivision M’. Then the chain
group C,_(M'; Z) is also a free left Z[I1]-module. We will assume that
the quotient space M/II is compact, so that these modules are finitely
generated.

There is a canonical anti-automorphism o — @ of Z[II] which takes each
group element 7 into 7.

LEMMA 1 (Reidemeister). If theelements of I are orientation preserv-
ing automorphisms of M, then the Z[U]-module C,_(M'; Z) is canonically
isomorphic to the dual of C,(M; Z). Furthermore the boundary homo-
morphism

0: Cn—q(M,; Z) - Cn—q—l(M’; Z)

is (up to sign) dual to the corresponding homomorphism
137



138 JOHN MILNOR

0:C,.(M; Z)— C(M; Z) .
ProoF. For each chain ¢’ € C,_(M'; Z) define a homomorphism
[ ,c):C(M; Z)—> Z[11]
by the formula

[e, ¢l =2, cn e, meHm ;
where {c, z¢’> denotes the (integer) intersection number of ¢ and zc'.
The required identities
e, ¢'] = x[e, '],
[e, mc']l = [e, ¢'I7 ,
and
[Bc, '] = *£[e, ac']

are easily verified. (Compare Reidemeister [9], Burger [2], Blanchfield
[1].) This proves Lemma 1.

Now let us apply this duality to the torsion invariant. Given a com-
mutative field F'and a homomorphism

h: Z[1] — F,

we can consider F' as a right Z[I1]-module and hence form the vector
spaces

Cq = F®H Cq(M; Z) ’ Cr:—q = F®H C”,Q(M'; Z)
over F.

Assume that we are given an involution a — @ of F which satisfies the
identity k(@) = h(a). Then the vector space C,_, is canonically isomorphic
to the dual of C,.

If the chain complex C, is acyclic—i.e., if the sequence

0 C, C._. “ee C, 0
is exact—then the torsion invariant
A,Me Fy| +h(I1)

is defined. (See Franz [6] or de Rham [10]. The definition as given in
Milnor [7] will be repeated below.) Here F, denotes the multiplicative
group F' — 0 and +A(II) denotes the subgroup consisting of all elements
+h(x), T Il.

THEOREM 1. This torsion invariant A = A,M satisfies the identity
AA*™ = +R(IT)
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where e(n) = (—1)".
Thus if n is odd the torsion invariant is self-conjugate:
AM =AM,
and if n is even the torsion is unitary:
AM = (A, M) .

The classical illustration of torsion is provided by the (odd dimensional)
lens manifolds. (See [6], [10].) One uses the field of complex numbers,
and the usual complex conjugation operation. Hence Theorem 1 asserts
that the resulting torsion element is essentially a real number.

For an even dimensional manifold, with F the field of complex numbers,
the torsion must be a number on the unit circle defined up to multipli-
cation by certain roots of unity. I do not know any non-trivial examples.

Before proving Theorem 1, it is convenient to consider the more general
case of a triangulated n-manifold M with boundary bM. Again we assume
that each simplex of M has a dual cell. For a g-simplex of bM one can
define not only the dual (n — ¢)-cell in M, but also the dual (n — q¢ — 1)-
cell in bM. Taking the cells of both types we obtain a dual complex M’
with subcomplex bM’.

M M
with bM’ emphasized

Again assume that II acts freely, preserving orientation, and that M/II
is compact.

LEMMA 2. The left Z[11]-module C,_(M',bM’; Z) is dual to C,(M; Z);
and the boundary operator in C, (M',bM’; Z) is (up to sign) dual to the
boundary operator in C.(M; Z).

The proof is straightforward.

Again let h: Z[II] > F' be a homomorphism compatible with the con-
jugation operations.
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THEOREM 1'. If the torsion A, M is defined (i.e., if the chain complex
FQ@uCM; Z) is acyclic) then A,(M,bM) is defined, and conversely.
Furthermore

A(M, bM) = (A, M)~
where s(n) = (—1).
Clearly this result contains Theorem 1 as a special case. The following

reformulation is usually more convenient to use. According to [7, Lemma

4], if both A,M and A,(M, bM) are defined, then A,(bM) is also defined,
and

A(M,bM) = A,M|A,(bM) .
Combining this information with Theorem 1’, one obtains:
THEOREM 2. If A,M is defined then A,(bM) is also defined, and
A(bM) = (A M)A, M) ™ .

Examples will be given in § 2.
In order to prove Theorems 1 and 1’ it is first necessary to review the
definition of torsion, as given in [7]. For any vector space C of dimension

d over F, let AC denote the d'™ exterior power A’C. This is a one-dimen-
sional vector space.

Given a short exact sequence
0 A B C 0,

and given generators a€ AA,be AB, construct a generator bjac AC as
follows. Choose a basis ,, -« -, x, for B so that the last n — m vectors

Zmi1y ***, T, form a basis for the subspace A © B. Thus @ and b can be
written in the form

@=fCpu A\ AT, , b=gx, N -+ ANw,

for appropriate field elements £, g # 0. Define b/a to be the image in AC
of

9f X N\ e ATy, .

This construction does not depend on the choice of basis.
Now suppose that one is given a long exact sequence

0 C, Cn o C, 0

and a preferred generator v,e AC, for each ¢q. Using the short exact
sequence

0 Cn Cnﬁl acn~1 — 0 ’
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one constrﬁcts a generator
V, 1|V, € AOC,_,) .
Proceeding inductively, using the sequences
0—0C,, C, oC, 0,
one constructs generators
Vol (Vessl(+ + +[(Vaafv,) - - +)) € ABC,)

for each q. These will be written briefly as (v, /v i1/« *[Va_s/?V.).
In particular one obtains a generator

(/Ul//UZ/' ° '//vnfl/vn) € A(acl) = ACO .

Taking the ratio of this with the given generator v,€ AC, we obtain a
field element

D == vo[(v,[vy]« + + [v,) .

This ratio D € Fj is called the torsion' associated with {C,, v,}.
Note the identity

1 (v2fvaf +++[v,) = D7, .

Now let us apply duality to this situation. For any vector space C, note
that A(C*) is canonically isomorphic to the dual (AC)* of AC. In fact
given elements

v=x;, AN+ ANz, €AC, w=y, A -+ ANy, € A(C¥),

define [v, w] to be the determinant of the matrix ||[z;, ¥,]||. As an
example, if «x,, -+, 2, is a basis for C and =¥, ---, 2} is the dual basis
for C* then [z, A ++c A, 2F A --+ A x}] = 1.

Consider a short exact sequence

0 A B C 0
together with the dual sequence
0 A* B* Cc* 0.
Letac AA,be AB,b*c AB*, and ¢* € AC* be generators; with [b, b*] = 1.

LEMMA 3. Then [bla, ¢*] ts equal to +[a, b*/c*]".

Proor. Choose a basis z,, - - -, «, for Bso that ,,.,, + + -, =, form a basis
for A. Let af, -+, x} denote the dual basis for B*, so that x}, - -, z}
form a basis for C* c B*. Define field elements f, g, k by

t Actually this element D is the reciprocal of the torsion as defined by Franz.
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@ =fCuu N+ N2y, b =gx, A---A2x,,
b* =g wf A e AN,  *=hx*A -0 Ak
Then [b/a, c*] = gf'h and [a, b*/c*] = =fg~*h'. This completes the
proof.
Now given an acyclic chain complex 0 - C,—>C,_,— +++ > C,— 0
with generators v, € AC,, form the dual complex

0 C C* oo Cy 0

and the dual generators v, € AC,*. Just as before one constructs gener-
ators

(V7 [via] « =+ [vf[v5) € A@*C)
by induction on q. The torsion D, € F' of the dual complex is then defined
by the identity
D, = vy [(visy]« -+ [o¥[v5)
or
(2) (VaefVas+ « + [V [v5) = D'y .
Applying Lemma 3 to the dual exact sequences
0 0C, C, aC, >0,

and

0 *Ct Cr *Cy,«—0,
one obtains the identity
[Vo/ (Vg sa] = + + [V0s[V0), (V3] -+ = [0 [05)]
= [Wgnaf + * + [Vaa[ V), VS [(VF] <+ < [0F [05)]
In other words the field element
t f = [Wena] + « + [VaafVa), (VF [054] =« < [0 [0

is independent of q.
Taking ¢ = 0 and making use of formula (1) this gives

+f =[]+ [vasfva), ©] = [D7'0, v] = D
On the other hand, taking ¢ = n — 1 and using the formula (2) it gives
+ f = [v,, D7} = D™ |
Therefore the torsion D, of the dual complex satisfies the identity

3) DDi™ = +1.
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This completes the purely algebraic part of the proof.
The remainder of the proof is straightforward. The g¢-cells of M de-
termine a preferred basis for C,(M; Z) and hence a preferred generator

v, € AC, = A(F ®u C/(M; Z)) .

This generator is well defined up to multiplication by elements of the form
+h(m). If De F, denotes the torsion associated with {C,, v,} then A, M is
defined to be the coset A, M = +h(I1)D € Fy/+h(II).

The (n — g)-cellsof M’ — bM' determine a dual basis for C,_(M',bM’; Z)
and hence determine the dual generator

vy € AC = A(F Qu C,—o(M', bM'; Z)) .
Thus if D, denotes the torsion associated with {C}, v} then
A(M',bM'y = +h(11)D, € Fy/ +=h(11) .
According to formula (8):
(AM)AL (M, bM'))™ = +R(IT) .
But since M and M’ have a common subdivision, we have
A(M,bM) = A(M',bM") .
This completes the proof of Theorems 1, 1’ and 2.

2. Applications to knot theory

In this section, IT will always be an infinite cyclic multiplicative group
with generator . As field F'take the quotient field of the integral group
ring Z[II]. Thus F' can be described as the field Q(t) of rational functions
in one variable ¢ over the rational numbers. Let I: Z[II] — Q(t) be the
imbedding, and define the conjugation operation in Q(¢) by fF(¢) = f(t™).

LEMMA 4. Let K be a finite polyhedron having the homology of the

circle, and let L = K be its infinite cyclic covering complex. Then the
torsion

AL e Q(t)/ £

18 defined.

The proof will be given later.

As an application consider any differentiable imbedding of the (n — 2)-
sphere in the n-sphere. Removing a tubular neighborhood of the (n — 2)-
sphere from S™ we obtain a compact manifold K with boundary. Choose
some C'-triangulation of K (see Whitehead [13]) and let M = K denote
the infinite cyclic covering complex.



144 JOHN MILNOR

THEOREM 3. If M is obtained from a differentiable imbedding S™*—
S* as above, then the torsion A, M is defined and satisfies the symmetry
relation

AM =AM for n odd ,
(A, M)A, M) = =11/t — 1) for m even .

Proor. It follows from Lemma 4 that A, M is defined. According to
Theorem 2 we have
(%) (A M)A My™ = A (M) .

Iéut the boundary b~M is clearly equivariantly diffeomorphic to the product
S* x S*?; where S! denotes the universal covering space of the circle.
Thus bM can be given an equivariant cell structure consisting of four cells
e x e ?, e x e, el x e, e x e
together with their translates under the action of 1I. The boundary re-
lations are
o' x e ) = (t — 1) x e*7?), (e x &) =(t —1)e* x € .
The torsion invariant
D = ¢e" x &(e* x €°[1]+++[1]e" x e"*[e' x e"?)

for this chain complex can easily be computed. In fact D is equal to
(t — 1)7**™, The torsion computed from any C*-triangulation of bM will
be the same, since this cell complex has a C'-triangulation as an equi-
variant subdivision. Therefore

ABM) = 210/t — 1)+,

Combining this information with the formula (*) we obtain Theorem 3.
As an example, consider the standard imbedding of S*~* in S*. Then
AM==+10/t—1).

Therefore (A, M)A, M)*™ = +11/(t—1)(t*—1)*"isequal to +1II/(t—1)'**™,
as required by Theorem 3.

Now let us specialize to the case n = 3.

THEOREM 4. If K is a complex of dimension =<2, or a manifold of
dimension <3, having the homology of a circle, then the torsion invariant
A K is equal to +I1A(t)/(t — 1), where A(t) denotes the Alexander poly-
nomial of the fundamental group.

Combining this with Theorem 8 we see that the Alexander polynomial
A(t) for the complement of a knot in S® satisfies the relation
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A@®)E —1) = £EAEHI(E — 1)
hence
A = FtAQR) .

Combining this with the fact that A(1) = +1 (see for example Fox [4])
one easily obtains the following:

COROLLARY (Seifert). The Alexander polynomial A(t) of a knot has
the form =t (a, + a,;t + «++ + a,,t*) with ay = a,,, @, = Ay,_y, ***, Ay =
Qpyse

Note. The possibility that this corollary could be proved in this way
was conjectured by Reidemeister [8, § 5]. The above proof is close to that
given by Blanchfield [1].

The rest of this paper will be devoted to the proofs of Lemma 4 and
Theorem 4.

In order to prove Lemma 4 one must show that the chain complex
Q) Qu C,(L; Z) is acyclic. Lete?, «--, el , denote the standard basis for
C/L; Z), with one basis element for each g-cell of K = L/II. The boundary
homomorphism on C,(L; Z) can be described by a matrix || a(t)|| over the
integral domain Z[II], which is defined by:

et = 3 al(t)es™ .

Let 7, denote the rank of this matrix. Note that the difference
&, — 1, — T4, I8 equal to the ¢ Betti number of the chain complex

Ci = QM) QuCu(L; Z) .

Now consider the chain complex C.(K; Z). Note that the boundary
homomorphism

0: C(K; Z) — C,(K; Z)

can be described by a matrix of integers || a%,(1) || which is a homomorphic
image of the matrix above. Therefore the rank 7, of this boundary homo-
morphism satisfies 7, < r,. This implies that the Betti numbers
a, — 1y — 1y, of C(K; Z) are greater than or equal to the corresponding
Betti numbers of C,. But K has the homology of a circle. Therefore the
chain complex C, can have non-trivial homology at most in the dimensions
0 and 1.

On the other hand H(C,) is zero. For if ¢’ denotes any vertex, then
there certainly exists a 1-chain ¢ with ¢ = te? — ¢2. Since ¢t — 1 is a unit
in Q(t), this implies that e? itself is a boundary.

Finally, since the Euler characteristic &y —a, + @, — + +++ +a, is
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zero, the group H,(C,) must also be zero. This completes the proof of
Lemma 4.

Proor oF THEOREM 4. If K is a 3-manifold, then by pushing in one free
face at a time, we can collapse K down to a 2-dimensional subcomplex.
These collapsings do not affect the torsion. (Compare Whitehead [14].)

Furthermore the simplicial complex K can be replaced by a CW-complex
K, with a single vertex e!. For let ¢! be any edge of K, and let K’ be the
Cw-complex obtained from K by collapsing ¢! to a point. It is not difficult
to show that A, K’ = A, K. Now iterate this procedure, always selecting
an edge ¢' which has distinct end points. After a finite number of stages
we obtain a complex K, with a single vertex.

Let L = K,. The boundary of any edge ¢} of L clearly has the form

de} = (tr — t*)el .

Without loss of generality we may assume that the first edge ¢! has
boundary equal to (¢ — 1)e}. For otherwise it is only necessary to adjoin
a suitable 2-cell to K, having such an edge as free face. (Again compare
Whitehead [14].)

Now consider the matrices || ai,(t) || and || a},(t) || as defined earlier. If
m = «a, denotes the number of 2-cells, then the relationa, — a, + a, = 0
implies that @, = m + 1. Thus ||a%(?)|| is an m X (m + 1)-matrix and
[|a} |l is an (m 4 1) x 1-matrix. Itis well known that || a2,()|| is precisely
the Alexander matrix of that presentation of the fundamental group of
K which is associated with the given cell structure. (Compare Fox [3,
p. 547] and [4].) Hence the Alexander polynomial A(t) is defined to be a
generator of the principal ideal in Z[II] generated by the m x m minor
determinants of || a%,(t) ||

The first column of || a%;(t) || can be expressed as a linear combination
of the remaining columns. This follows from the relation

EJ a%ja’}l = 0 ’
together with the fact that ai, =t — 1, and that each a}, has the form

t" — t°; and hence is divisible by ¢ — 1. Therefore A(t) can be defined as
the determinant of the matrix obtained by deleting the first column of

| aZ ||
Now let us compute the torsion invariant. Let

V=€ N - Nen, V=€ N *** A €hy, v, =€,
and note that
et A (062 N\ ez N\ -+ A 0et) = A(t), .

Therefore, using the exact sequence
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0—C,— 0,2 C,—0,

we have A(t)v,/v, = del = (t — 1)v,, hence v,/(v,/v,) = A(t)/(t — 1). This
completes the proof of Theorem 4.

REMARK. A similar computation can be carried out for a knot with »
components in S3, n = 2. In this case the torsion

AIMG Q(tlr M) t'n)/i 1l

associated with the maximal abelian covering is precisely equal to the
Alexander polynomial A(t, ---,t,). Applying the duality theorem, one
obtains the symmetry relation

A(tfly ey t;I) = it{l e t:;"A(tl, ccy tn)
which is due to Torres [12]. (See also [1], [5].)
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