172

3.

4.
s.

11.
i2.
13.
14.
15.
16.
17.

18.

HOCHSTER AND ROBERTS

A. GROTHENDIECK (notes by R. Hartshorne), “Local cohomology, Lecture Notes
in Math.,” Vol. 41, Springer—Verlag, Berlin, 1967.

E. HamanN, On the R-invariance of R[x], Thesis, University of Minnesota, 1973.
M. Hocuster, Rings of invariants of tori, Cohen—Macaulay rings generated by
monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.

M. HocasTeR AND J. L. ROBERTS, Actions of reductive groups on regular rings and

Cohen-Macaulay rings, Bull. Amer. Math. Soc. 80 (1974), 281-284.

. M. HocasTEr anD J. L. RopErTs, Rings of invariants of reductive groups acting on

regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175.

. E. Kunz, Characterization of regular local rings of characteristic p, Amer. J. Math. 91

(1969), 772-784.

. M. Nacata, “Local rings,” Interscience, New York, 1962.
. G. REeisNER, Cohen—Macaulay quotients of polynomial rings, Thesis, University

of Minnesota, 1974.

I. RerteN, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer.
Math. Soc. 32 (1972), 417-420.

J. Rossrts, Generic projections of algebraic varieties, Amer. J. Math. 93 (1971),
193-214.

J. P. Serrg, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197—2‘78.
R. STANLEY, Cohen-Macaulay rings and constructible polytopes, MIT Preprmt..
R. STaNLEY, The upper bound conjecture and Cohen—Macaulay rings, MIT Preprint.
D. TAYLOR, Ideals generated by monomials in an R-sequence, Theis, University of
Chicago, 1966. _

C. TRAVERSO, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa 24,
No. 3 (1970), 585-595. '

R. B. WARFIELD, JR., Purity and algebraic compactness for modules, Pacific J. Math.
28 (1969), 699-719.

|
%
:

ADVANCES IN MATHEMATICS 21, 173-195 (1976)

On the Morse Index in Variational Calculus
J. J. DUISTERMAAT

Mathematisch Instituut der Rijksuniversiteit, Budapestlaan 6,
De Usithof, Utrecht, The Netherlands

Communicated by M. Atiyah

INTRODUCTION

The main purpose of this paper is to show that the intersection theory
of curves of Lagrange spaces is a very flexible tool in the study of the
Morse index in variational calculus. '

In Section 1 the stage is set with a brief review of the classical transla-
tion of the Morse index into the number of negative eigenvalues of a
Sturm-Liouville problem. After a translation into Hamilton systems
using the Legendre transformation, this can then be read as the inter-
section number of a curve of Lagrange spaces pi+— graph &(u, T),
p running from —1 to 0, with a fixed one p. Here @(u, t): T*R* — T*R"
is the solution matrix of the linear Hamilton system with eigenvalue
parameter y, T is the final time,and p is a Lagrange space in T*R" X T*R"
determined by the (arbitrary) boundary condition in the variational
problem.

In Section 2 the main properties of the intersection number of curves
of Lagrange spaces w(f) with a fixed one « are collected. Firstly, it follows
from the results of Arnol’d [1] that it is invariant under a homotopy of w,
keeping the initial and end-point of w (which do not intersect o) fixed.
Secondly, replacing « by another Lagrange space o’ changes the inter-
section number by an integer, computed by Hérmander [10] and given
explicitly in terms of the signatures of some quadratic forms defined by «,
«, and only the initial and end-point of w. This allows for the definition
of an index of w as the intersection number with « plus a correction term
making it independent of «.

In Section 3 it is shown that for any curve of symplectic transformations
&(f) and any Lagrange space V in T*R", the index of the curve
t +> graph ®(t) of Lagrange spaces in T*R™ x T*R" is equal to the
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174 J. J. DUISTERMAAT

index of the curve ¢ @(¢)~Y(V) of Lagrange spaces in T*R?”, plus an
integer j(D(T), V) depending only on @(T) and V, generalizing the
“order of concavity” of Morse [12].

Applying a homotopy argument, the Morse index is expressed in
Section 4 as the index of the curve ¢+ graph @&(0, #), ¢ running from 0
to T, plus a correction term which can be computed from ®(0, T') and
the boundary condition of the original variational problem. Because
D(0, t) is related to the differential of the Euler-Lagrange flow by means
of the Legendre transformation, this can be regarded as a geometric
formula for the index.

The intersection number of ¢+ @(0, £)~Y(V) with a fixed Lagrange
space U, related to the index of ¢+ graph @(0, f) according to the
formula of Section 3, can be interpreted as a number of focal points
along the stationary curve if I = vertical space. It is equal to the number
of conjugate points if in addition U = V.

Section 4 is concluded with a short discussion of the fixed end-point
and the periodic boundary condition, thus recovering some classical
formulas of Morse [12]. For the periodic boundary condition a special
choice of U adapted to &(T) leads to the formula of Klingenberg [11]
(obtained in the Riemannian case and with a much more direct method).

This paper originated in an attempt to identify the exponent in a power
of 7 occurring in the asymptotic expansions of [8] for an elliptic operator
on a compact manifold, with a Morse index for periodic geodesics. This
relation was suggested by similar expansions of Colin de Verdiére [5] for
the Laplace operator on a Riemannian manifold, where the exponent
of 7 was equal to this Morse index almost by construction.

If &(¢) is the solution matrix of any periodic linear Hamilton system
with period T, then the index of graph ®(t), ¢ running from O to & - T
(k an integer) can be expressed in terms of the index of graph &(z), ¢
running from O to 7, the number k and the normal form of the real
symplectic linear transformation @(T). This application of the inter-
section theory will be worked out in a subsequent paper [6] with
R. Cushman. It generalizes the formulas obtained by Bott [3] and
Klingenberg [11] in the sense that no positivity assumptions are made for
the Hamilton system. However, their results are formulated in the
framework of hermitian forms of signature 0, for which an intersection
number has been introduced by Edwards [13, Sect. 4] in the same
fashion as here, but without using the analog of Hérmander’s signature
number. Some comments on the relation between the real symplectic
theory and the hermitian one will be given in the final section of [6].
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I finally would like to thank A. Weinstein, W. Klingenberg, and
R. Cushman for stimulating discussions on this subject.

1. Some CLASSICAL TRANSLATIONS OF THE MORSE INDEX

Let X be a smooth manifold of dimension #, points in its tangent
bundle TX will be denoted by (x, ), with xe X, v e T,X. Let f be a
real-valued smooth function on an open subset Z of R x TX. Then

T de
B = [ /(6 e0) 5 ) de (1.1)
defines a real-valued smooth function E on the space of curves
{ de
€ = €€ CYy[o, T1, X); (t, (), = (t)) €eZforallte[0,T). (1.2

% is a smooth Banach manifold modeled on the Banach space
CY([0, T], R*) with its usual topology of uniform convergence of the
curves and their derivatives.

Boundary conditions will be introduced by restricting E to the set of
curves

@ = {c€F; (c(0), «(T)) € R), (1.3)

here R is a given smooth submanifold of X x X. The most familiar
examples are R = {(xy, x7)} and R = {(x, ) € X X X; x = y}. In the
first case € is the space of curves with prescribed initial- and end-point,
in the second case % is the space of closed curves. In the general case %,
is a smooth submanifold of € of codimension equal to the codimension
of Rin X x X, with tangent space equal to

T r = t3c e CY(0, T], c*TX); (3c(0), 8c(T)) € To(,ornR}.  (1.4)

c € €y is called a stationary curve for the boundary relation R if the
restriction of E to % has a stationary point at ¢, that is, if DE(c)(8¢) = 0
for all 8ce T €. For such a curve the second-order differential
D?E(c) of E at ¢ is an invariantly defined symmetric bilinear form on



176 J. J. DUISTERMAAT

T.%r . Now the Morse index of the stationary curve ¢ for the boundary
relation R is defined as

ig(c) = sup{dim L; L is a linear subspace of TEr

on which D2E(c) is negative definite}. (1.5)
It is a classical result that iz(c) can only be finite if D, (¢(2)) is positive
semidefinite for all ¢ € [0, 7], and that conversely

D2 (&(t)) is positive definite for all &[0, T] (1.6)

implies that ig(c) is finite. Here D, denotes differentiation of functions
on £ with respect to v € T, X, keeping ¢ and x fixed, and we have used the
abbreviation

{1) = (t, o(t), %(t)) . (1.7)
(1.6) is called the sufficient condition of Legendre.

We repeat the proof of (1.6) = ig(c) < © briefly here, because it
contains a translation of the Morse index which will be used in the sequel.
For convenience we also reduce the computations of the differentials of E
to the case that X is an open subset of R*. This can be done for instance
by introducing a smooth map I': [0, T] X Y — X, Y an open neighbor-
hood of 0 in R®, such that y — I'(t, y) is a diffeomorphism from Y to an
open neighborhood of ¢(#) in X, mapping 0 to c(t), for each t [0, T].
The t-dependent substitution of variables x = I'(¢, y) then induces a
diffecomorphism between a neighborhood of ¢ in € and a neighborhood
of the zero curve in R".

Let g(¢) be a positive definite symmetric bilinear form on R”, depending
continuously on ¢ € [0, T, such that

q(2) + DA (&) DoDof E(D) i sositi -
( DD, () D.2f(2(2)) ) is positive definite for all £ [0, 7. (1.8)
(The possibility of finding such ¢(2) is equivalent to (1.6).)

Writing

O(c, 8¢') = fo " ()Ge(), 5¢'(1)) dt (1.9)

it follows that Q is an inner product on 7, % inducing the L2-topology,
and that Q + D2E(c) is an inner product on T %% inducing the H®-

i
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topology of L*-convergence of the curves and their derivatives. Let
0, resp. Hy! be the completion of T, %% with respect to Q, resp.
0O + D2E(c).
Now define the linear operator in Hg' by

D) = (Q + D*E(0)) < &3 (1.10)

here bilinear forms are regarded as mappings from the vector space to
its dual. Then & = I — K, with (Q + D?E(c)) K = Q, so K is
continuous: Hz? — Hp! and therefore compact as an operator in Hg? in
view of Ascoli’s theorem. It follows that K is a symmetric positive
operator in Hy! with a discrete spectrum converging to 0, so & is a
symmetric operator in H' with a discrete spectrum A < Xy < -v- such
that A; 7 1 as j — co. In particular the sum E- of the eigenspaces of &
for the negative eigenvalues is finite-dimensional and & = 0 on the
orthogonal complement E+ of E~ in Hg"

We conclude that Hy! = E- @ E*, D2E(c) < O on E~and D?E(c) =0
on E+. If L is another linear subspace of Hy! on which D?E(c) < 0 then
the linear projection to E~ along E* is injective on L, so dim L <dim E~.
Because T, %y is dense in H' one can find a linear subspace L of
T %y such that dimL = dim E- and D?E(c) < 0 on L (we will see
below that in fact E- C T, %), so we have proved:

Levma 1.1.  If (1.6) holds then ix(c) is equal to the number of negative
eigenvalues of &, counted with multiplicity, and this number is finite.

Straightforward calculations, involving a partial integration with
respect to £, show that ¢ € € is a stationary curve for the boundary
relation R if and only if
(Euler—Lagrange)

L (Df(E(0) = Daf E(1) (1.1

and
(D,f#0)), —D, fET))) € (Tcto,omB)™

Moreover, for such a curve ¢, and 8c € T, %5, we have &(8c) = A-dec
if and only if

(1.12)

L [DuD.f(E(2) - 8e(t) + DA (ED) ﬂi—) ]
d(

 DAEO) — - a(0) - 80(t) + DDLFE) - LoD 0, (1.13)
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with u = A/(1 — A), and

((d(%cc()()) ),(d((;cc()T) ))ET o(0) en \\ R, (1.14)
o) (o)) (22 57

dt

with
R = ;((Z) ’ (z{)) s (%, ) € R, (D,f(0, x,v), =D, f(T, y, w)) € (T(m<1/)R)'L§ .

The differential equations (1.11), (1.13) hold in distribution sense, but
their solutions are automatically smooth and satisfy the equations in the
classical sense because D,f is nondegenerate. The equations (1.13),
(1.14) for 8¢ are known in the literature as a Sturm—Liouville problem.
Note that (1.6) implies that it has only nonzero solutions 8¢ for p > —1
(<> A < 1) and that the sum of the dimensions of the solution spaces for
—1 < p < 0(< A < 0)is finite. For p = 0 the equations (1.13), (1.14)
are just the variational equations of (1.11), (1.12).

In many cases the choice (1.2) of the space of curves on which the
function E is studied is not the most appropriate one. For instance if
E(t, x,v) = || v|% for a Riemannian structure on X, then it is more
natural to define E on the Hilbert manifold of H®-curves in X, as in
Flaschel and Klingenberg [9]. However, if 5#;! is the subset of the
H®_curves satisfying the boundary condition R, then ce %' is a
stationary point for E: #%' — R if and only if (1.11), (1.12) hold, that is,
c €%y and ¢ is a stationary point for E: €z — R. Moreover, T, #3' =
Hg! and the definition of the Morse index does not change if we replace
%r by #,'. One can also replace €y by the finite-dimensional manifold
@0 of broken geodesics with k corners satisfying the boundary relation
R, and conclude that the Morse index of E: ¢ — R is the same as the
one defined above if % is sufficiently large. This follows from the observa-
tion that the spaces T,9%®, k = 1, 2,... form an increasing sequence of
linear subspaces of Hg!, the union of which is dense in H 2, so one of
these subspaces contains a linear subspace L with dim L = dim E~ and
D?E(c) < Oon L.

We conclude this section by another classical translation, called the
Legendre transformation. Consider the mapping

P (t, %, v) > (8, %, D, f(2, %, v)). (1.15)

The condition that D,%f is nondegenerate means that & is a smooth
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covering map from £ to an open subset of R X T*X, here T*X ‘denotes

the cotangent bundle of X. Because coverings induce local diffomor-

phisms between the corresponding spaces of curves, we will make the

abuse of notation of treating % as if it were a global diffeomorphism.
Let v = o(t, x, £€) be the solution of £ = D, f(t, %, v). Define

2, x, §) = <ot %, £), & — f(t, , 0(t, %, £))- (1.16)

Writing £(t) = D,f(t, (1), o(2)), x(t) = c(t), the equations ce¥x,
dx/di(t) = »(2), (1.11) and (1.12) are equivalent to

:‘% (1) = Deplt, x(1), £0)),

(Hamilton equations) (L.17)
2L (1) = —Duplt, 2(), £0)
with boundary conditions
((0), (7)) € R, (£(0), —&(T)) € (Twto),atrnR)™ (1.18)

Writing 56(1) = D,Dof (1) - 8a(t) + Df(c(t)) - 8(t), x(t) = e(t)
Sx(%) ;%gc(t),(tl)xe equations d(8x)/dt = dv, 8c € Hgt, (1.13) and (1.14) are
equivalent to

o aei) = 4000 ) 019

with

DD, p(t, x(1), £(2) Dep(t, x(2), £2) |
A ) = oty — Dop(t, (), €0) —DeDaplts x() ey (20

and with boundary conditions
T
(G20 Gery)) e
with
p = tangent space at ((ggg;) , (’;g:;))

(). Q) @R eRr & —neTeaBr. (121

of the manifold

607/21/2-5
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Let @(u, t) be the fundamental solution of (1.19), that is,

%fi (4, 1) = A(p 1) o D, 1), B, 0) == I = identity in T*R".  (1.22)
Then we have translated Lemma 1.1 into
ir(c) = Y, dim(graph @(u, T') N p). (1.23)

—1<u<0

The mapping A(u, t) is an infinitesimal symplectic transformation in
T*R» for the canonical symplectic form o = oy, in T*R™ defined by

8 3x’ , ’
o ((8’;) , (Sg)) — (8¢, 8x'> — (8, 87> (1.24)
This means that o(A(y, ?) - u, v) + o(u, A(n, t) - v) = 0 for all
v € T*R". It follows that $(u, £) is a symplectic transformation in T*R"
for all ¢, that is o(P(u, t) - u, P(u, t) - v) = o(u, v) for all u, ve T*R™
This can also be expressed by saying that the symplectic form

(1.25)

O = Opirst factor & —Tsecond factor

in T*R™ x T*R" vanishes on the graph of @(u, ¢). A 2n-dimensional
linear subspace of T*R™ x T*R" on which o vanishes is called a
Lagrange subspace of the symplectic vector space (T*R"” x T*R", o). Itis
easily verified that p is also a Lagrange subspace of (T*R" x T*R", o).
Indeed, the normal bundle in 7%X X T*X ~ T*X X X)of RCX x X
is a Lagrange manifold for o;.¢ tactor @ Tsecona tactor (¢f- [7, Sect. 3.7),
and p is obtained from its tangent space by a flip of sign in the fiber of the
second factor T*X. In this way the Morse index is reduced to a number
of intersections of a curve of Lagrange spaces with a fixed one.

2. INTERSECTION THEORY FOR CURVES OF LLAGRANGE SPACES

Let E be a real vector space and let o be a symplectic form on E, that
is, o is a nondegenerate antisymmetric bilinear form on E. For a linear
subspace « of E write

o’ = {ve E; o(u,v) =0 foralluea} (2.1)

for the orthogonal complement of « with respect to ¢. « is called isotropic

f
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if o C a° and « is called a Lagrange subspace of the symplectic vector space
(E, o) if it is maximal with this property. The set of Lagrange subspaces
of (E, o) will be denoted by A4 = A(E, o). It is easily seen that a € A
if and only if « = a, so dim E = 2 dim « and all « € 4 have the same
dimension d, dim E = 2d. If a € 4, write A%(o) = { € A; dim B N« = k}.

If o, Be A, « N B = 0, then any d-dimensional linear subspace y of
E withy N B = 0 can be written as

y ={u+ Cu;uea}  for alinear mapping C: o — f. (2.2)
Then the bilinear form
O(a, B; 7): (1, v) > o(C, ) (2.3)
on « is symmetric if and only if y € 4, so
O, B): v > Q(: B v) 24

is a bijection from A%B) to the space S2x of symmetric bilinear forms on a.

ProposiTiON 2.1. A is a regular algebraic wvariety of dimension
1.4d-(d+ 1) in the Grassmann-variety of all d-dimensional linear sub-
spaces of E. The mappings (o, B) with o, e A, a N B =0 form an
atlas of A. The differential of Q(«, B) at « does not depend on the choice of
B € A%«) and therefore defines a canonical identification of T /A with Sa.

For the straightforward proof, see for instance {7, Sect. 3.4]. Now let
y € A¥(a), choose B € A%a) N A%(y). On a suitable basis of « we can write

0B =5 o)

with A a nonsingular (n — k) X (n — k) matrix. If y" € 4 is close to y,
then y’ € A%B) and

, B C
0@ 87 = (¢ p)-
with C, D small and B close to 4, in particular B is invertible too. Now

(—th—l (})(tg g)(é —E;—IC) = (]g D— t%B—lc)’ 23
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so taking R(y") = D — 'CB'C e S¥Ker Q(x, B;v)) = SHaNy) we
have proved:

LEmMMA 2.2. For every y € A%(a) there exists a submersion R from an
open neighborhood O of y in A to S¥o N y) such that

(i) y ed¥(x) N O < dim Ker R(y') = k', and
(1) DR(Y) = parv ° & = Qurwv -

Here p,, denotes the restriction mapping: S%y — S¥a N y). If t— w(f)
is a differentiable curve in A and gyq.(;,)(dw/dH(1,)) is nondegenerate, then

sgn Q@ B (1)) = s8n Ole, B (te) + 587 Garat) (- (1)) (2)

for Be A%a) N A%w(ty)), t > ty, t — &, sufficiently small.

It follows that (J;'>; 4% () is an algebraic variety in A with regular
part equal to A%(«). For every y € A¥(a), T,4%(a) = Ker g,n, , s0 A%(x)
has codimension k- (k + 1) in 4. In particular ¥ («) := A\A%x)
is an algebraic variety of codimension 1 in /4, with regular part equal to
AY(x) and singular part J;/se A% (a) of codimension §-2-(2 4 1) = 3
in A. Moreover, AY(a) is oriented in 4, because for each y e AY«),
guny induces an isomorphism: T,4/T,A%a) — S*aNy), and the
1-dimensional space S« N y) is oriented by calling an element positive
if it is a positive definite bilinear form on « N y.

If w: St — A is a differentiable loop in A intersecting > («) only in
AYa) and transversally, then the intersection number of w with ¥ (a)
is given by

[w] :=

Y, S8 Garee (%"t—’— ®) - .7

w{t)eX(a)

Because 3 (a)\/(«) is a finite union of smooth manifolds of codimension
>3, a smooth homotopy of loops generically avoids ¥ (a)\4%(«) and is
transversal to A%(«), showing that w > [w] is homotopy invariant, so it
defines a homomorphism: ,(4) — Z. Using that A%a) is simply con-
nected and A(«) is connected it follows that w is contractible in A if
[w] = 0. On the other hand it is easy to find a loop w with [w] = I, so
the map w > [w] induces an isomorphism between () and Z. [w] does
not depend on the choice of a € A because /1 is connected. In other words,
3 («) defines an oriented cycle of codimension 1 in 4 not depending on
o« € A, which is dual by Poincaré duality to a generator of HY(A, Z) =~ Z.

R

R R

B

MORSE INDEX IN VARIATIONAL CALCULUS 183

For more details see [7, Sect. 3.4]. The results are due to Arnol’d [1]
who gives a somewhat different proof. [] will be called the Maslov—
Arnol’d index of the loop w.

If we C%[a, b, 4), w(a), w(b) e A%x), then the intersection number of
w with a will be defined as

[w: «] = [®], where & is the loop consisting of w

(2.8)

followed by a curve o’ in A%«) from w(b) to w(a).

Because A%«) is simply connected, this definition does not depend on
the choice of w'. Of course, [w : a] = Yioy [w:olifa =1, <t < <
t; = b, w(t;) € A%a) foralli = 0, 1,..., j, and w, is equal to the restriction
of w to [t;_, , t;]- Also [w : a] = [w] if w is a loop.

If o is another Lagrange space and w(a), w(b) € A%<’), then

[w:a] =[w:a] + s(a, o'; wla), w(b)). (2.9)
Here s(o, o'; B, B’) is the Maslov-Arnol’d index of the loop consisting
of a curve in A%a) from B to B’ followed by a curve in 4%«') from B’ back
to B. This number has been introduced by Hormander [10, Sect. 3.3],
who also gave the explicit formula

s(o, o' B, ') = Hsgn O, o5 f) — sgn O, o5 F)}-

Here the right-hand side has the following interpretation when
«n o =£0. If e is an isotropic subspace of (E, o), then o defines a
symplectic form on e°/e. Moreover, for each § € A(E, o), the image =(3)
of § N ¢ under the canonical homomorphism: €’ — ¢°/e is a Lagrange
subspace of (e°[e, o). This allows us to define

(2.10)

O(a, o5 y) = Q(me, wy; my) if yed, vno' =0

@2.11)

here 7 = Tyny’ -

Note that if y € 4°%(a) N A°%(a’) then Q(w, &'; ¥) is similar to O, v; o),

read as a bilinear form on ma’ by dividing out its null space « N & So
(2.10) also can be read as

s, o3 B, B7) == Hsgn O, B5 ) — sgn O, 5 )} (2.10')

In order to prove (2.10), note that s(x, o'; B, B') = [¢ : o] for any

curve & from B to Bin A%«’). & can be chosen such that it intersects Y ()
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only at A(«) and transversally. The bilinear form Q(md(ty), mo'; mdi(2))
is similar to the restriction of Q(d(Z,), «'; &(£)) to d(ty) N (« + «'), and
a4+ o = (anNa), so
dnd) do

SEN Granmatty) ~—g5 (t0) = SEN daritty g (f0) (2.12)
In view of (2.5) it follows that sgn Q(ma, na'; 7d(t)) jumps by +2,
resp. —2 at each positive, resp. negative crossing of A%«) by B and
remains constant elsewhere, thus proving (2.10).

We will also use the formula

(e, a3 B, B) = —s(B, B's o &);

see [10, (3.3.7)]. Combining (2.9), (2.13), and (2.10’) it follows that the
number [w : o] — 3 sgn Q(w(b), a; w(a)) does not depend on the choice
of a € A%w(a)) N A%w(b)). In order to obtain an integer we propose the
following

(2.13)

DeFINITION 2.3. The index of a continuous curve w € C%[a, b}, 4),
not necessarily closed, is given by

ind(w) = [ : o] + ind Q(w(b), ; w(a)). (2.14)

Here Q(w(b), a; w(a)) is the symmetric bilinear form on w(b) describing
w(a) as in (2.2), (2.3). Because the index of a symmetric bilinear form Q on
a vector space F is equal to #(dim F — dim Ker Q — sgn Q), the right-
hand side in (2.14) does not depend on the choice of o€ A%w(a)) N
A% w(b)).

If w € CY([a, c], A), b € [a, c], and w, , resp. w, is the restriction of w to
[a, b], resp. [b, c], then for any § € A%w(a)) N A%w(b)) N A%w(c)) the
formula [w : 8] = [w, : 8] 4 [w, : 8] implies that

ind(w,) -+ ind(w,) — ind(w)

— ind O(w(8), 8; w(@)) + ind O(w(c), 8; w(B)) — ind O(w(c), 8; w(a)).
(2.15)

Choosing a curve w such that w(a) = a, w(b) = B, w(c) = y, it therefore
follows that for any «, B, y € 4 the number

i(, B, y) = ind Q(B, 8; @) + ind Q(y, 8; B) — ind O(y, 8; @)
does not depend on the choice of § € 4%a) N AYB) N A%(y).

(2.16)
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LeMMA 2.4. Writing T = T(yn8)+-(Brv) »
i(a, B, v) = (index + nullity) Q(ma, 7f; 7). 2.17)

Proof. By letting the curve w run in o« + B + y one can reduce the
computation to the symplectic space (« + B + y)/(a N B N y), so we may
assume that a N BNy = 0.

Let t > off) be a differentiable curve in A such that «(0) = « and
g.(da/dt)(0) is positive definite. Taking & = «ft), t > 0, t sufficiently
small, we have indQ(B, 8;a) = indQ(«, B; 8) = 0 and similarly
ind O(y, 8; @) = 0, soi(x, B, ¥) = ind O(y, 8; B). Becausea N (BN y) =0,
the curve ¢ > mn,0(t) is differentiable in A((8 + y)/(B N ¥), o) and has
positive definite derivative at ¢ = 0, so reducing to (B + v)/(B N y) we
may now assume that § Ny = 0.

Write « = (¢ N B) @ «, for a linear subspace a; JaNy, and let
t+> o(2) be a differentiable curve in 4 such that a'(0) = o, a N B C ()
for all £ and g, (do'/d£)(0) is positive definite. Taking 8’ = &'('), t" >0, ¢/
sufficiently small, it can be arranged that § is attained from &' by traveling
into the positive definite direction, so ind O(y, 6; B) = ind Q(B, v; 8) =
ind Q(B, y; &'). Because « N B C o'(#) for all ¢ the curve # > m,~ga'(2) is
smooth in A((« 4 B)/(x N B), o) and has positive definite derivative at
t = 0, so reducing to (a+ B)/(x M B) we may now assume that
anp=0.

But then ind O(8,y;8) = ind —Q(y, B;8) = ind —Q(y, B; «) +
dim(y N «) = (index + nullity) Q(«, B; y). Because first reducing to
(B + %)/(B 1 ) and then t0 (monyt + TsB)| (o 1 Tors) i the same
as reducing to /e with € = (a N B) 4+ (B N y), (2.17) 18 proved.

We conclude this section with the computation of some intersection
numbers.

LEMMA 2.5. Let w intersect’s, («) at time t and have a right, resp. left
derivative at time t equal to 8%, resp. 6-. Assume that Q= = Gumaw(pbE 15
nondegenerate. Then, restricting w to a sufficiently small neighborhood of t,
this is the only intersection of w with 3, (o) and

[ :a] = Hsgn 0~ + sgn 0.

Proof. Take B € A%x). Then, applying (2.6),

[w:a] = [w: 8] — s(x B; w(a), w(d)) = —s(x B; w(a), «(b))
== H{sgn O(a, B; w(?)) + sgn OF — (sgn O(w, f; w(t)) — sgn 07}
= MsgnQ+ +sgnQ}, if.a <t < b, a,b sufficiently close to t.

(2.18)
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A curve we CY({a, b], A) is called a plus-curve if g, (dw/dt)(t) is
positive definite for every ¢ € [a, b].

COROLLARY 2.6. If w is a plus-curve, w(a), w(b)e€ A%x), then
intersects 3" (o) in finitely many points and

[w:a] = Z

()N

dim(w(t) N a). (2.19)

3. CURVES OF SYMPLECTIC TRANSFORMATIONS

Let (F, o) be a real symplectic vector space and E =F X F be
provided with the symplectic form o = o;yet actor & —Tsecond tactor 35 11
(1.25). Then the mapping @ > graph @ is a diffeomorphism from the
group Sp(F, o) of symplectic transformations in (F, o) to a dense open
subset of A = A(F X F, o). In order to describe its differential we
identify Tgpapn o With S*(graph @) by means of the mapping ggrapno D
Proposition 2.1, and in turn S%(graph @) with S¥(F) using u — (u, Pu)
as a similarity transformation.

LeEmMA 3.1.  With these identifications, 8@ € To(Sp(F, o)) corresponds
to the symmetric bilinear form

(v, ) > o{— D1 0 8Dv, D) on F. (3.1)

Proof. Take ¥ € Sp(F, o) such that its graph is transversal to graph @,
that is, ¥ — @ is invertible. For &' close to @ write (u, P'u) =
(v, Do) + (w, Pw), implying that w = (¥ — @)D — D). So
QO(graph @, graph ¥; graph @’) is given by

(v, 9) > o((w, Pw), (3, Pv))
= ow, §) — o(Pw, B5) = o((I — ¥)w, 5)
= o((I — S — &) YD — Do, §).

Differentiation with respect to @’ at @’ = & now gives (3.1).

LemMA 3.2. For each V € A(F, o), ¥+ ¥Y(V) is a smooth mapping
from Sp(F, o) to A(F, o). The image of 8¥ € To(Sp(F, o)) under its differen-
tial corresponds to the symmetric bilinear form

(v, B) > o(8¥ o W1, 5) on P(V'). (3.2)

;
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Proof. Choose U e A%V). For ¥ close to I, write v + u = Yo',
with v, o’ € V, u € U. Writing =y, for the linear projection onto V" along
U, this leads to o(u, §) = o(¥Pv’, 9) = o(¥(my¥) 0, 9) if v € V. Differen-
tiating this with respect to ¥ at ¥ = I (treating (my¥)! as a map:
V — V) leads to (3.2) for ¥ = I. The general case follows by replacing
Y(V) by V, and remarking that

(P + SWYV) = (I + 8% o P-1)(#(V)).

COROLLARY 3.3. Let t+> ®@(t), t running from O to T, be a curve in
Sp(F, ¢) with ®(0) = 1. Write ¢ for the curve ti> graph $(t) in
A(F x F, o), and @y for the curve t—> @) YV) in A(F, o) for any
V e A(F, o). Then

[py: Ul =[p:U X V] (3.3)

if UeAYV)Nn AND(TY (V).

Proof. By a homotopy we can make ¢ differentiable, intersecting
S (U x V) only in its regular part and transversally. In view of
Lemma 3.1, guxr)ne(o(de/dt)(t) is similar to the symmetric bilinear form
(u, @) > o —D(t)~Y(dD[dt)(t)u, i), restricted to Un &)y Y(V). In view
of Lemma 3.2 and using that

d i , 49 1
—7 Oy = =P - () 2()

this is in turn similar to gyae-1(dey/dt)(t). So @, intersects 3 (U)
only in its regular part and transversally, and (3.3) follows now from the
definition of the intersection number.

In view of Definition 2.3, (3.3) also can be read as

ind(p) — ind(pr)
— ind O(graph &(T), U x V; 4)— ind Q(H(T)X(V), Us V). (3.4)

Here 4 = graph I = diagonal in F x F. Choosing a curve in Sp(F, o)
from I to @, it follows that for any @ € Sp(F, o), V € A(F, o) the number
j(®, V) = ind Q(graph @, U x V, 4) — ind Q(@X(V), U; V) (3.5)

does not depend on the choice of U € AYV) N AY(P~X(V)).
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Lemva 3.4, Write ¥ = @Y. Then

O(w, @) = o(I — P)w, @), w,ded —¥)HV) (3.6)

defines a symmetric bilinear form Q on (I — ¥)-YV), and
j(@, V)= indQ + dim(V " (I — ®)(V)) — dim(V’ A Ker(I = ¥)). (37)

Proof. Let my, resp. m, denotes the linear projection onto U,
resp. V along V, resp. U. Then Q(graph @, U X V; 4) is similar to the
symmetric bilinear form Q, on F given by

Oy(w, @) = o(my(l — V) w, %) + o(my(l — ¥y w, ©).

On the other hand, Q(¥(V), U; V) is similar to the symmetric bilinear
form Q, on V defined by

Qs(2, ¥) = o —my¥v, ¥7),
which is just the restriction of Q; to V. It follows that
indQ; — indQ, = ind Q + dim(V’ N W) — dim(V’ N Ker 0),
here O is the restriction of O, to the space
W = {weF;Qy(w,v) = 0forallve V}

If O, is nondegenerate this formula can be read off from a standard
lemma preceding Witt’s theorem (cf. [2, Theorem 3.8]), and in general
it follows by reduction modulo Ker O, .

Now Qy(w, v) = o{my(I — o) if ve V, and this is equal to O for all
veV if and only if my(I — ¥Y)we ¥(V), hence my(l — P)w = 0,
because (V)N U = 0.80 W = (I — ¥)-{(V) and Q is given by (3.6).
The proof is completed by noting that Ker Q; = Ker(I — ¥).

4. COMPUTATION OF THE MORSE INDEX

ProOPOSITION 4.1. Let ®(u, t) be defined by (1.22), (1.20), with ¢(t)
positive definite, and assume that t > x(t) is not identically zero when
t i (3%(8) is a nonzero solution of (1.19). Then the curve p > graph ®(u, T)
is a plus-curve in A(T*R™ x T*R*, o).

i
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Proof. Solving the variational equations

o o0 o oA o
6 2 - 9P )+ 22 () 0 P, 1), —— (1, 0) = 0
T (p, t) = A, 1) o (1) + o (s 1) © P(ps 1) o (1, 0)

leads to
24

op

%g (1 1) = f: O, 1) o P, )71 e (1, 8) © P, 5) ds.

So in view of Lemma 3.1, 8/0u graph P(u, T)is given by the symmetric
bilinear form
T 04
. (T B, )t e
(v,9) > a (( jo (a5t o
04
o

(s 5) © B, 5) ) (&), 9)

(1, 5) o B, S)2, v) ds

[

:_:4

o (% D) (e -
Here we have written

8x(s . 3%(s)
Pl ) = (358) o W)= (sg(s)) :
Putting v = &, we get a positive number unless dx(s) = O for alls € [0, T,
which would imply v = 0 by assumption.

The assumption in Proposition 4.1 is already satisfied if, for instance,
D2p(t, x(t), £(2)) is nondegenerate for some € [0, T], so is certainly
satisfied if (1.6) holds, because D = (D)t (Use I = DJf » De,
v = D,p; see (1.16).)

So in view of Corollary 2.6, (1.23) now reads:

24 5
S (1 5) o D ), (u, s)'v) ds
[

T
J| a0, 35(6) s

ix(c) = [ : p], where i is the curve pi—> graph ®(u, T'), u running from —1to—0.

@.1)
Let y, be the composition of the curves

X§1) — graph ®(—1, 1), ¢ running from T to s,

x® = graph ®(u, s), p running from —1to 0, 4.2)

x® = graph @(0, t), ¢ running from s to T, and finally
' = graph O(u, T), it running from 0 to —O0.
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Letting s go from T to 0, we obtain a homotopy between ¢ and xq,
leaving the end-points graph &(—1, T), resp. graph &(—1, —0) fixed.
Using (2.8) and the fact that the Maslov—Arnol’d index of a loop is
homotopy-invariant, it follows that [¢ : p] = [xo : p]-

Now remember that the Sturm—Liouville problem (1.13), (1.14) only
has nonzero solutions for p > —1. The argument leading to this
observation remains true if we replace 7 by any t > 0, so graph
@(p, t) N p = Oforallz > 0, p < —1. Noting that x§* is constant equal
to 4 = graph I, we obtain:

ir(c) = [x : p], where x is the curve consisting of

@ = graph ®(—1, t), t running from -0 to 0, followed by (4.3)

@ = graph @(0, 1), ¢ running from 0 to T, and ',

In general ¢’ and ¢ cannot be left out because p need not be transversal
to @(0) = 4 or to ¢(T) = graph @(0, T).

LemMa 4.2. If g(0) is sufficiently large, then q,~,(d|dt) graph
D(—1, t)|,_o s nondegenerate and has index equal to dim m(p N A), here
is the projection: ((53), (3%)) — (8x, 8y): T*R™ X T*R™ — R" X R™.

Proof. Using Lemma 3.1, (1.22), (1.20), it follows that g,~4(d/dt)
graph @(—1, t)|,_, is similar to the restriction of

P — (DmZP(O, 2(0), £(0)) — ¢(0) DD, p(0, (0), 5(0)))
DxDEP(Ov V(O), (0)) D§2P(07 x(O), f(O))

to p4 = {u e T*R"; (u, u) € p}. P is positive definite on the intersection
of p4 with the “vertical space” = {(3) € T*R"; 8¢ € R"}, and choosing
¢(0) sufficiently large it is negative definite on a complementary space in
p4. This implies that P is nondegenerate and has index equal to the
dimension of the projection of p4 in the base (8x —) space, which in
turn is equal to dim m(p N 4).

TueoreM 4.3.  The Morse index is given by

in(c) = ind(g) + i(4, p; p(T)) + dim m(p N 4) — 2. (4.4)

Here ¢ is the curve t > graph (0, t), t running from O to T, i is defined
in (2.16) and = in Lemma 4.2.

.

et

MORSE INDEX IN VARIATIONAL CALCULUS 191

Proof. Using (2.9), (2.10), and (4.3), ix(c) = [x : o] — $(p, «; graph
O(—1, +0), graph 9(—0, Ty = [ : a] — %{sgn O(p, @; graph
(-1, +0)) - sgn Q(p, «; graph &(-0, T))}, here a € A%(d) N A%(T)) N
A%p). On the other hand, (2.6), Lemma 4.2, and the positivity of
w > graph ®(u, T) imply that

sgn O(p, «; graph &(—1, +0))
= sgnQ(p, a; 4) + dim p4 — 2 dim =(p N 4)
— dimp — dimp A 4 — 2ind Q(p, @ 4) + dim p4 — 2 dim m(p N 4),
and
sgn Q(p, o; graph &(—0, T))
= sgn Q(p, o; (1)) — dim p N ¢(T)
= 2ind Q(¢(T), ; p) — dim (7).
Finally [¢ : o] = ind(p) — ind Q(¢(T), «; 4), so collecting all the terms
and using that dimp = dim ¢(T) = 21, dimp N 4 = dim p4, (4.4)
follows.

The term (4, p; ¢(T)) can be computed explicitly using Lemma 2.4.
We now turn to a study of ind(p).

PropoSITION 4.4. If ®(t) = P(u, t) is the solution of (1.22), (1.20),
and V = {(2) € T*R™; 8¢ € R"} is the “‘vertical space,” then the positive
definiteness of D2p(t, x(t), &(t)) implies that @yt D) YV) is a
plus-curve in A(T*R", o). Moreover, if U e AAV) N A(D(T)™Y( V), then

ind(g) = Y dim U N ®()X(V) + ind Q(graph &(T), U x V; 4)
o<i<r

= Y dim V@@ NV +i(H(T), V).

ogt<T

(4.5)

Proof. Using the substitution u = D(¢)7'v, & = P(£)7'9, it follows
that the restriction of :

(1, 8) > o —@(t)3 T (0, 0

to ®(2)~Y V) is similar to D2p(t, x(2), (). So ¢y is a plus-curve and the
first equality follows from Definition 2.3 by taking intersection with
U x V and using (3.3).
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The second equality means that

ind(gy) = Y dim ¥ N &ty (V)

oi<T

(4.6)

if @y is a plus-curve. Denote by &y the curve §,(t),  running from 40 to
T — 0. Then

lpy: U] = [¢v: U]
— [y : V] + HsgnOQ(V, U; pv(+0)) — sgn OV, Us ov(T — 0))}
=[Gy : V] + Hn —sgnQ(V, Us y(T)) + dim V' (T}
= [@y: V] +n— ¥Hn—dim VN el(T)— sgn Q(ew(T), U; V)}
=[¢v: V] +n—indQenT), Us V),

proving (4.6). Here we have used (2.9), (2.10), (2.6), and the positivity
Of @y -

Remark. If ¢, is a minus-curve, then a similar calculation shows that

ind(gy) = — ¥, dim ¥ 0 &) (V). 4.7)
0<t<T
ProposiTiON 4.5. If p= U X V for any Lagrange space U in
T*R", and V = wertical space, then
i) = 3 dim U NGO, ) V).

o<t<T

Proof. Because of (4.5), ip(c) = [y1: p] -+ vz : p} + [ys : pl, where
y, = graph ®(—1, 1), ¢ running from +0 to 0, followed by graph
&(0, t), t running from 0 to 40, y, = graph ®(0, ). ¢ running from +0
to T — 0, and finally y, = graph ®(0, t), ¢ running from T —0to T
followed by graph ®(u, T), p running from 0 to —0. Applying Lemma 2.5
and Corollary 3.3 and the fact that pu— graph @(u, T) and t+>
®(u, t)~Y V) are plus-curves, (4.8) follows.

If R = S x {x} for a submanifold S of X, then p = U X V with
U = tangent space to the normal bundle S+ of Sin T*X, and V =
vertical space. @(0, t) is equal to the differential of the flow @' of the
Hamilton system (1.17). ¢ is called a focal point for the initial condition S
if o ®h SE— X is not a local diffeomorphism at (x(0), £(0)), and

dim Ker D(m o @%)(x(0), £(0)) N Ta(o),e)S™
— dim ®(0, )Y(U) N V = dim U N (0, )™(V)

(4.8)

is called the multiplicity of the focal point. Here 7 denotes the projection:

R O e N T—

%
!
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(% n—ox U=V, corresponding to R = {(%, x7)}, then ¢ is called
a conjugate point.

So in Proposition 4.5 we have recovered the classical theorem of Morse
[12] that for fixed end point conditions the Morse index is equal to the
number of conjugate points in 10, T'[. The proof is simpler than for
general boundary conditions, because Lemma 4.2 and Theorem 4.3
have not been used here. Combining Theorem 4.3 and Proposition 4.4
the Morse index for an arbitrary boundary relation is obtained as the
number of conjugate points in 10, T[ plus a correction term which can
be computed explicitly in terms of the boundary relation R and the
symplectic transformation (0, T). Note that the form of p C T*R™ X
T*R", resp. ®(0, T)e Sp(T*R", o) depend on the differentials of
yi>T'(0, y), resp. y = I'(T, y)aty = 0, here I'is the covering introduced
in the beginning of Section 1. On the other hand, the vertical space 1is
invariant under changes of I', so the number of conjugate points does not
depend on the choice of TI'.

ProOPOSITION 4.6. If R={xy)eX X X; x = v}, and I' is a
covering such that D,I'(0,0) = D,I'(T, 0), then
ig(c) = ind(gp) — 7.
Here @ denotes the curve t— graph D(0, t), t running from Oto T.

Proof. Apply (4.4) with p = 4.
Applying (4.5) one obtains the additional formulas

(4.9)

ie) = 3 dim U &0,y (V) + ind Qgraph 8(0, T), U x V5 4) —n

o<t<T

— number of conjugate points in 10, T 4 (@0, T), V) (4.10)

for the Morse index with periodic end conditions. Here Ue A%(V) N
AP0, T)=(V)). Identifying the number j(®(0, T), V) (given explicitly
in (3.7)) with the “order of concavity” of Morse [12], one recovers the
formula which he obtained in the case that &(0, T') — I is invertible.

If the Hamilton flow @¢in T*X is defined by a function p(x, £) which
does not depend on ¢ and is homogeneous in £, then the plane P spanned
by the Hamiltonian vector field and the tangent vector (0, §) of the cone
axis {(x, 7€); = > 0} is invariant under D®'. The computation of the
index then can be reduced to the orthogonal complement Pe of P with
respect to the symplectic form. P° is also invariant under D®!, and
complementary to P because o is nondegenerate on P.
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Using this reduction and choosing U appropriately adapted to
@(0, T), the first identity in (4.10) can be identified with the formula
obtained by Klingenberg [11]. For instance, if U is invariant under
@ = ®(0, T) then the restriction to U of the form O, (see the proof of
Lemma 3.4) vanishes and it follows that ind Q(graph @, U x V; 4) =
ind Q' + n — dim(U N Ker(® — I)). Here O’ is the symmetric bilinear
form on (@ — I)"(U) N V defined by

Q'(w’ 725) = 0((¢ - I)w’ Z‘(NJ)

If moreover @ — I is invertible, that is the Poincaré map (= restriction
of ®(0, T) to P°) has no eigenvalues equal to 1, then ind Q(graph @(0, T),
U x V; 4) = n, and we recover Klingenberg’s theorem that the Morse
index for periodic geodesics is equal to the number of intersections of the
d(t)(U), 0 < t < T, with the vertical space.

Any Lagrange space in T, e@(7*X) which is transversal to the
fiber is equal to the ‘“‘horizontal space” H = {(¥) € T*R"; 8x € R~} for a
suitable choice of local coordinates in X. So any UeA%V) N
AYD(0, T)YV)) can act as H by a suitable choice of I On such

coordinates,

raph 00, ) = (% 5 %) (¢ 5y Doa sl s e R @D

for an invertible # X n matrix 4 and symmetric B, C. (This is related
to the representation of the canonical transformation (0, T) by means of
a generating function, interchanging the role of x and £ in the first
factor. (Cf. Carathéodory [4].) With this notation,

(4.12)

t4 — I
O(graph &(0, T), H % V;A)N(AC 4 )

— 1 B

where ~ denotes similarity as symmetric bilinear forms.

Using the reduction of P° and (4.11), (4.12), the power of ¢ appearing
in the asymptotic expansions in [8] can be identified with ind (¢) — 7.
This relation remains valid if the condition that D/2p(x(t), £()) is
positive definite is dropped and the number can no longer be interpreted
as an index for a variational problem.

The condition for the covering I" in Proposition 4.6 can only be satisfied
if X is orientable along c. This flaw can be easily repaired, leading to
formulas like (4.10) also in the nonorientable case. The most natural way

R
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would be to develop the intersection theory of Section 2, 3 for a bundle
of symplectic vector spaces over a circle, rather than for a fixed symplectic
vector space (E, o). The details of this are left to the reader.
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