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of H(D", V), hence O(n) is a group of isometries of the compilete Riemanman manifold
(V,g). Now suppose A is a strongly elliptic differential operator of order 24,
A:Co(D R™) — C™(D", R™), such that A(Tf) = T(Af) for all Te0(n), for exampie
4 = A* where A is the Laplacian

" az

i=1 5&?' ’
Then .{:Q{V, g].Tﬁ R dFTﬁned by J( ) = AL f, satisfies J(Tf} = f for any T e 0{n).
.’161?]06 if fis a critical point of J so is Tf for any T e 0(x), and since non-degenerate critical
points of J are isolated, Tf = Fif fis a non-degenerate critical point of J. But 7f = fis

squivalent to R( f{x)) being a function F of :lx| where R is the distance measured along the -

sphere S™~! = V of a point on ¥ to the north pole. Moreover F will satisfy an ordinary
lifferential equation of order 2. With a little computation one sheould be able to compul::
11l the criticat points and their indices and hence, via the Morse inequalities, get information
ibout the homology groups of Q"(V, g) (which has the homotopy type of the ath loop
space of $™ 7). Clearly the same sort of process will work whenever we can force a large
legree of symmetry into the situation.
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ON THE DUNCE HAT

E. C. ZEEMAN
{ Received 1 June 1963)

THE TRADITIONAL DUNCE HAT is a cone obtained from a triangle, abe say, by identifying
the sides ab = ac. The topological dunce hat D, which is the subject of this paper, is defined
by identifying all three sides ab = ac = bc. One way to visualise D is to embed it in 3-space
by first making a traditional dunce hat and then, starting from & = ¢, sewing the generator
ab = ar onto the circular base be. '

o g
F-2e )
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[ is remarkabie because it is the simpiest example of a polyhedron that is contractible,
in the sense of homotopy, but not collapsible, in the sense of Whitehead [19]. Other
examples are well known (see for instance [7). To prove the contractibility of D is easy,
because it is only necessary to check that the homotopy groups vanish; although to visualise
the actual contraction is intriguingly difficalt. To prove the non-collapsibility we merely
observe there is nowhere to start collapsing: in any triangulation no 2-simplex has a free
face.

Now the phenomenon of being contractible yet not collapsible pinpoints a primary
squrce of difficulty in the study of manifolds of dimension 3 3. Inparticular the phenomenon
seems to be intimately connected with the Poincaré Conjecture in dimensions 3 and 4,
which are the two unsoived dimensions. In general terms the difficulty is one of passing
from finite structures (such as complexes) to ordered finite structures (such as handlebedies).
Therefore in order to gain insight into the phenomenon it is worthwhile studying the
simplest example in some detail: in this paper we analyse the dunce hat, and the manifolds
of which it is a spine, from a geometrical point of view, We give ten theorems and five
conjectures, which are related to the Poincaré Conjecture. For a more gegé;ral approach
see Curtis [5, 6] and Mazur [t21.
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42 E. C. ZEEMAN

Let 7 denote the unit interval. Although the dunce hat D is not collapsible, it transpires
hat:

THEOREM (1). D x [ is collapsible.
“his suggests:

CONIECTURE (1). If K is & contractible 2-complex then K x I i collupsible.
‘he interest of the conjecture is;

THEOREM (2). Conjecture | implies the 3-dimensional Poincuré Conjecture.

Before proving Theorems 1 and 2 we recall some definitions. in particular the definition

f collapsing, which will be our main tool. We shall work in the category of polvhedra and
iecewise linear maps. For notation we use = to denote homeomorphism. The m-sphere
d a-ball are denoted by S” and B". A face of B” is an (n—1)-ball in its boundary,
"M is a manifold, denote by M the boundary and M the interior.

COLLAPSING

We use a polyhedral definition of collapsing (as in [22]), which is a slight modification
" Whitehead's original definition [19]. Let X be a polyhedron and ¥ a subpolyhedron.

1ete is an elementary collapse from X 16 Y if, for some n, there is an »-ball 8" with face
£=1
such that

X=YuB&8"

Bl=Y B
e describe the elementary collapse from X 1o ¥ by saying collapse across B" onio B!,
collapse across B from B, ', where B," ! is the complementary face of 8" Simifarly
scribe the elementary expansion from ¥ to X by saying expand across B" from B"-,

expand across B onto B, . We say X collapses to ¥, written X N, Y. (or Y expands
X, written ¥ 7~ X}, if there is a sequence of elementary collapses

X=X X\ ..\ X,=7.
Y is a point we call X coltapsible and write X, 0. In particular:

LeEmMA (1). €Whitehead {19, Theorem 23, Corollary 1)). A4 manifold is collapsible if’
{only if it is & ball.

The polyhedral definition of coilapsing that we have given here is equivalent to the
iplicial definition: that is to say, given X N, ¥, then we can find a triangulation of X, ¥
1 a (finer} sequence of elementary collapses in which each elementary collapse is across

mplex of X from a fuce. For a proof see [22, Theorem 4}. A corollary to this equjval-
eis:

LeMMa (2). Let X, ¥ — X,, Y, be a piecewise linear map rhat maps X—Y homeo-

phically onto Xo—Y,. Then X\ Y if and only if X, \, Y. See [16, Lemma 1], and
a proof see [22, Chapter 7].
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SPINES

Let M be a compact bounded polyhedral manifold. Define a spine X of M to be a
subpolyhedron such that

i) MM\ X.
Without loss of geuerality we can aiso presume that a spine fulfils two further conditions
(iiy X < interior of M,
(i) 4im X < dim M, ‘
because we can first collapse away a collar from the boundary, aud then collapse away all

top dimensional simplexes of some triangulation. For example by Lemma (1) a manifold
has a point spine if and only if it is a ball.

LemMa (3). Let X, Xy, ..., X, be asequence of polyhedra in the interior of a manifold M
such that for each i, either X, N\, X, or X, /X If X, is a spine of M then so is X,
For a proof see {9, Corollary 2] or [22, Chapter 3].

Proof of Theorem (1). The definition of D as a triangle with the sides identified furnishes
a cell decomposition D = e, U &, U ¢;, where

e, = point,
¢, = open l-cell with both ends at e,
¢, = open 2~ceil with boundary formula ¢,e,e7 .
Let T denote the interior of the unit interval. Then D x f has the cell decoraposition

O-cells: ey x 0,85 x 1
1-cells: g, x 0, ey, x 1, ¢4 x !
2cells; e; x 0, ey x 1,8) x 1T

3-cell: e, % I

9
a
k Qoir

da

¢ x0 e x0

Fig. 2
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1 the square e, x let I 4, be the diagonal and &, be the triangle below the diagonal. Then

d, = open 1-celi running from ¢, x 0 to ey x 1,

d; = open 2-cell with boundary formula (e, = O)}e, x Nd;y .

11}16 trifmgu]ar prism e; x let ¢; be the unique open 2-cell ithat is a triangular cross
ction with boundary formula (e, x 0)d, d7' (see Fig. 2). |
‘e can then collapse (see Fig. 3):

DxIr \(en xNule x v e, collapsing the prism e, x [ onto its

walls and cross-section ¢, from top
and bottom, using Lemma (2);

\ .
e x Dule, x B udy wd, e, -collapsing the top triangle of the square
e, x Ifrom the top, using Lemma (2);
(oo x DY ute; x 0w dy we,, collapsing d, from the side e, x [t
N, 0, because it is a disk.

b eoxl e
. $ { “t
'./ - T

& nd %G

Fic. 3. The 3-cell is not shown, and the 2-cell ¢z is shown only i the last picture

Rem‘ark (1). The same trick can show that K = [is éo]]apsibie when K i3 a figure eight
' b, with two disks attached by the formulae ab, a"5"*!, or by the formulae gb" ab§+ 3
. T have been unable to discover whether or not K x [ is collapsible if the di:sks are.
iched by the formulae a®43, a*b*. It may be that the conjecture is only true for disks

n onte a figure eight when one of the disks is sewn on by a free generator of the free
upona b )

Proof of Theorem (2). We use an argument that is well known, and I believe was ori-
illy due to Curtis (see for instance [4]). Let F* be a fake 3-sphere, i.. a candidate for
:unte.rexample to the Poincaré Conjecture. Triangulate by Moise [13], and remove an
n 3-simplex, leaving a fake 3-ball, M? say. M7 collapses to a spine :Kz say, which i
tractible since M?* is. Assuming Conjecture (1), ’ ‘ S

M3 xIN K2 <IN 0

refor.e 1.'143 % Iis a 4-ball by Lemma (1), and so M?* < (M? x I} = §3 But M = §?2
wuse it is the boundary of the simplex removed, and so by the Schénflies Theorem [li
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M? is a true 3-ball. Therefore the original fake 3-sphere is a true 3-sphere after all, In other
words Conjecture (1) implies the 3-dimensional Poincaré Conjecture.

In fact Conjecture (1) is stronger than the Poincaré Conjecture, because:

TuroReM (3). There exist contractible 2-complexes that cannot be embedded in any
A-manifold. In fact there exist examples that can be embedded locally but not even immersed
in any 3-manifaid.

Proof. The simplest example of a non-embeddable 2-complex is the cone on a graph
that is non-embeddable in $2 But this cannot be embedded locally because the vertex
goes wrong. For a locally embeddable example let K be a figure eight. a v b, with two disks
X, Y attached by the formulae a, a’b’a -1p—1 respectively. Then X is contractible because
the fundamental group and Euler characteristic both vanish, and is not collapsible because
there is no free edge. (One can show that K x I, 0, as in Theorem (1)). K is locally
embeddable because in any triangulation the Iink of every vertex is embeddable in 52
the link of the wedge point is shown in Fig. 4.

Suppose K were immersed in a 3-manifold. The second disk ¥ is a hexagon whose
frst two sides are to be identified with @ A neighbourhood of these iwo sides in the
hexagon is identified into a Mobius strip, M say, with @ as the central curve. But @ also
hounds the disk X. Therefore 2 must be an orientation reversing curve, because as we travel
round it the three normals, one in ¥ and two in M, perform an odd permutation. But
a is homotopic to zero since it bounds the (immersed) disk X, and is therefore orientation

preserving, a contradictien.

&

ta} (h)
Fic. 4 (7) the link of the ver{ex; (b) the disk Y.

Remeiic (2). The examples of Theorem (3) suggest that we generalise to higher dimen-
sions and ask the question: if M™ is an m-manifold with a contractible 2-dimensional spine,
is M™ a bali? The answers are:

m = 3: Unknown. By Theorem (2) this is the same as the Poincaré Conjecture,

If the spine is the dunce hat then the answer is yes by Theorem ¢1).
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m = 4: No. The remarkable contractible 4-manifolds of Poénaru [14} and Mazur [11]
have 2-spines; in fact in Theorem (5) we show that a spine of the latter is
none other than the dunce hat. In Theorem (9) we give a criterion for a
4-manifold to have spine D, and in Theorem (8) we give a criterion for such
a manifoid to be a ball.

m = 5: Yes. Both Mazur [12] and Poénaru have proved this result independentiy.
It is a corollary to Mazur's Non-stable Neighbourhood Theorem [12, Chap-
ter 8]. But since the published proof of the tatter contains gaps, and since
Poénaru’s proof is not yet published, and since both proofs are long, we give

an elementary proof for the special case of the dunce hat in the next theorem.

m zz 6: Yes. By Smale’s Handlebody Theorem [15],

THEOREM (4). Ifm # 4, then any m-manifold having D as a spine is a bail,

Proof. Suppose M™ has D as a spine. If m = 3 then M is a ball by Theorem (1) and
proof of Theorem {2). Therefore suppose m = 5. Choose triangulations of M. D and
them by the same names. In particular the O-cell ¢, of D will be a vertex of D. Let

B= hﬁ(eﬂs M)
L = [kieq, D).

1 8i1san m-bal.l and L a l-compiex in B. From the definition of D we see that L is a
of circles, « and y say, joined by an arc, f = xy say.

FiG. §

:dim B > 4, we can span « by a disk, 4 say, in B not meeting L again. Therefore the
€p4 is a 3-ballmeeting D in eyx. Therefore D D U eg4 by expanding across e,4
A. Since a disk is collapsible (by two elementary collapses), there is a collapse 4 \\ x,
5 we can lift conewise to a collapse e,4 \ eqx W A. Therefore

D/ DuedN\D—eau 4

\ €, — epx w A, collapsing across e; — ey from egx;

N A collapsing across ¢, — eox from e,

N\ X

fore the point x is aiso a spine of M by Lemma (3), and so M is a ball by Lemma {1).
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Remark (3). The above proof breaks down when m = 4, becanse fhen Bisa }sphtfre,
and I may be embedded in B so that the circles « and y link, preventing the construction
of the disk 4. In fact this is exactly what happens in our next theorem (see Remark (4)
and Fig. 8), and turns out to be essential in Theorem (8).

MAZUR’S CONTRACTIBLE 4-MANIFOLD fll, 21]

Form M* by attaching a 2-handle 10 the boundary 5 1 x §2of §* x B¥bythe curve C
as shown in Fig. 6.

$1xés

‘,________________1‘1________'/’

Fia. 6

‘More precisely, choose a tubular neighbourhood of C, that is to say an embedding

j: B? x B® — §' x §?% such that (B? x 0) = C, where 0 € B and then define
M* =5 x B3y, B? x B%.

Up to isotopy there are a countable number of choices of neighbourhood, depending upon
how many times we twist the tube as we go round C, relative to a ihosen standard tube.
Mazur made a particular choice of tube in order to compute 7,{M") aé o {il, _pa'ge ?2?],
by which he proved M* 5 B*. Since his choice was algebraically the s1mplest., it is highly
probable that m,’s are non-trivial and mutually distinet for all different choices of tube.
M* is contractible because M* % Iis a 5-ball {by Theorems (5} and (7) below).

TrEOREM (5). D is a spine of Mazur's manifold.

Proof. It is not necessary to bother about the choice of tubular neighbe: lrhood;
because we show D is a spine in all cases. Divide $! into two atcs I, I, such that I; x §

contains the guts of the curve C (see Fig. 6). Let f: §! 5 §! be the map shrinking ; to
F
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seint. Let p: §' x §2 - &t

be the projection onto the first factor, and let g, & be the
mpositions

= . o -
C—— 5t x5t - 5!

Y
M{g), M{(h) denote the mapping cylinders of g
% §? to a homeomorphism Mg =S x 5
I x §% — 8 denote the restrictions of g R

woundary, with vertex Vsay. Map M(g,) homeomorphically ento the subcone V(I x 5%,
extend to a homeomorphism of M

g2} onto V(i x B¥) L1, x B3 Therefore we
write M(g) = §' x B3,

h. We can extend the identity on
as follows. Let g,:/, x $2 - /7, and

Meanwhile M(h) is a subcylinder of M(g), because # =

use a mapping cylinder collapses onto any subcylinder |
t* collapses to its core, B2 say,

glC. Therefore M(g) N\, M),
19, Theorem 8]. The 2-handle
which is a disk spanning C. Therefore

M*N S' x B® Uy, B? N\, M(B) ue B2,
M(h) U B? is none other than the dunce

hat, as is seen from the picture of M(#) in
7. Therefore M* has D as spine.

M ()

V:Go 51=;1
FiG. 7

mark {4). 1f the construction of Theorem (4} is made for Mazur's mantfold, then £
Lto be embedded in B4

with the circles x and ¥ linked, as promised in Remark {31
. 8,

egard the 4-ball f; x B® as a cone on
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— 1y
I
T
B
ﬂ ¥
. X

Fic. §

THEOREM (6). Suppose M* has a spine D and a non-simply connected boundary { for
HEQ! . . :
example Mazur’s manifold). Then D is not contained in a ball in M *,

4 4
i i 1, Corollary 4]. Write M = M*.
f variant of the proof of i1, Wr =M

Pmo{i'lclr-lu;hfvei;:o: b:lsl 'c; such that D < B = M. We can assume D he.s: in {l:le interior

S"lppm‘eh rwise replace B by a regular neighbourhood of B in M, which is a bigger ball.

?:th, ;:acregl-llar neighbourhood A, of D inthe interior of B. Since M, M are both regul;r

neiggbcurhoods of D, there is a homeomorphism A: M — M, keeping D fixed [9, Theorem 2).
Let B, = 4B, M, = hM,. Then

MoBasM, =28 ocM,oD.

By the annulus theorem for regular neighbourhoods [9, Corollary 1], there are homeo-
morphisms

B-B, =S xI,

M—J\:IIEM—I‘:fngXL

Therefore in the commutative triangle induced by inclusion

?Il(Ml}\ ;?TL(M ~ My)

rd
rd
rd
\ )
n,{B - By)

he iop arrow is an isomorphism and the bottom group trivial. But this contradicts
the ;
m,{M) # 0, and the theorem is proved.

Remark (6). The interest of Theorem {6) is that it focuses a ciii’f»f:‘rscnc]'?i ?:letwe;nni:ﬂg;l:r;
(= homotopy) and geometry as follows, R;ca]l that .a. polyhedron is ca;j ¢ q-;%rmensmn
the first ¢ homotopy groups vanish, or, equ:vah‘ently, if every subpolyh? l;'?n Gmmem,d .
< g can be shrunk to a poini. Define a manifold M to be geomeirically g-
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every subpelyhedron of dimension % g 15 contained in a ball. if g € dim A —3 then the
two concepts are equivalent {20, Theorem 1]

M Is g-connected <= M s geometrically g-connected,

But in codimension 2 the equivalence fails for compact bounded manifolds, because
the M* of Theorem {6) is 2-connected but not geometrically 2-connected, Similarly the
equivalence fails for apen ( non-compact without boundary) manifolds, because the interior
of M* provides a counter-example; another counter-example is given by Whitehead's
:ontractible 3-manifold [18], which is 1-connected but not geometrically 1-connected, Tt is

msolved whether or not the equivalence holds in codimension 2 for closed (compact -

~ithout boundary) manifolds: in fact the corjecture that it does hold is equivalent to the
*oincaré Conjecture in dimensions 3 and 4 (see [2, Theerem 1], [20, Theorem 21)

The existence of non-trivial 4-manifolds with D as spine prompt the questions “can
¢e classify such manifolds?” and “do they all look like Mazur's example ?’, We tackle
7ese questions in the next three theorems.

THEOREM (7). If M* has D as a spine then M* x Iisa bail.

CoroLLaRY (1). M* can be embedded in 5*. In other words M* is homeomorphic 10 a
gular neighbourhood of an embedding D < 5°.

Progf. The theorem follows immediately either from Theorem {1} by collapsing M* x
D X 1\0 and using Lemma (1), or from Theorem {(4) by collapsing M* x 1\
x N, D. The advantage of the second method js that it generalises to arbitrary
niractible 2-complexes by the Mazur [12}-Poénaru Theorem mentioned in Remark (3).
te corollary follows because M* = (M* x Iy= §* and M*is a regular neighbourhood
D = 5% because D is a spine. :

4

COROLLARY (2). Two dunce hats can link jn S*.

Proof (ef. Mazur [11, Corollary 4]). Choose M* as in Theorem (6). Then embed
x{c M x |c{M*x Iy= 5% If the dunce hats were unlinked we could enclose
*® 0ina ball, enclose D x lina tegular neighbourhood & disjoint from the ball, and
n isotope N onto M* x | keeping the dunce hats fixed, because any two regular

ghbourhoods are isotopic, {9, Theorem 3]. In the closure of the complement of N there
Ald be a situation violating Theorem (6).

Remark (6). Theorem (7) shows that the problem of classifying 4-manifolds with
1e D can be tackled by

(i) classifying isotopy classes of embeddings of D in 5%, and

(i1} determining when non-isotopic embeddings possess homeomorphic regular neigh-
bourhoods.

hasten to add that we do not solve these problems, because (i} is already more compli-

d than the classical knot problem. However (ii) affords a simplification, as is shown

he next two theorems. First let us describe how badly D can be (tamely) embedded in
T in a manifold of which it is a spine.
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THE HANDLEBODY STRUCTURE OF Af9

Let D = 5* be an arbitrary (tame) embedding. Any two regular neigpbourhoods of D
are homeomorphic keeping D fixed [9, Theorem 2], so we select a4convement :me. Choose
a triangulation 7 of $* containing D as a subcomp]ex.and lFt M* = N(D, T7), the closed
simplicidl neighbourhood of P in the second ba.r)fcentrlc derived cr_)mplex T of Ti L If ?;
£o e, U e, is the cell-structure of D, then ¢, is a vertex and &, a subcomp :.-x of D,
and so the derived neighbourhoods N{eq, T"), N(&,, T”) are subcomplexes of M*. Define

Hy= Nleo, T')
H, = N(e;, Tﬂ) — Hy
Hy,=M*—(H,u H,)
4
LeMMa (4). M* = Hy, U H, U H, is a pseudo handlebody structure of M*.

Procf. We shall show that H; is a 0-handle, &, is a 1-handie attached to H,, and H,
a pseudo 2-handle attached to Ay w Hi.

First observe that, fori =0, I, 2,
H N H 06 )\0,
and so.h’i is a 4-hall by Lemma {1}. Therefore H, is a 0-handle. Since HonH, = HynH1
collapses to two points, there is a homeomorphism
filxB — Hyn H, cH,

which can be extended by the combinatorial annulus theorem [9, Corollary 1] to a homeo-
morphism

i stibE Hl'

Therefore H, is a 1-handle attached to Hy by f. Since (Hy v Hy) n H; = (Hyu H)—
n H; collapses to a circle, there is a homeomorphism

915" x B — (Ho U Hy) n Hy = (Ho u HY,

and so H, is a pseudo 2-handle attached to H, U H; by g.

However H, is not a true 2-handle in general, hecause no choice of g can be.extended to
a homeomorphism

B? x B? = H,
if the solid torus (H, w H,) n H; happens to be knotted in the 3-sphere H .

THE EMBEDDING D < M?*

Continuing with the same notation, let D, = D H, i =0, 1, 2. The embedding
D = M* can be described in terms of the embeddings D, = H,, as follows.
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(1) H, is a cone with vertex ¢, and base $?, and D, is the subcone on L — 53, where L
msists of two circles joined by an arc (see Fig. 5). The circles of L may be linked and
wotted in 82 (see Fig. 9).

(2} H, is a tubnlar neighbourhood of the arc e, n H,, and D, consists of three strips
nning along the tube. Each strip has its inner edge on ¢, N H,, its outer edge in the
wundary of the tube, and its ends at the ends of the tube. The strips may be braided, and
salty knotted at interior vertices of e, n H, (see Fig. 9). We say D, is unknotted in H,
there is no braiding or local knotting; in other words when

(Hy, Dy} = I x (cone on (5% 3 points)).
(3) H, is a regular neighbourhood of the disk €1 n H,, and the boundarg of H,
1tains the boundary of the disk, but in general H, will not be a tubular neighbourhood
the disk, because the disk may be locally knotted at interior vertices. We say D, is

cnotted in H, if there is no local knotting (there can be no global knotting because
N, D;; see [9, Corollary 5]); in other words when

(H,. D,) = D, x (disk, interior point).
this case H, is a true 2-handle, not merely a pseudo handle.

Remark (7). There is vet a further complexity when discussing embeddings D = §%,
aely the global knotting of the disk in (3) besides the local knotting. Once we restrict
ntion to the regular neighbourhood AM* this further complexity becomes irrelevant,
we shall have cause to return to it in Theorem {10}, Meanwhile:

CONIECTURE (2). Forany tame embedding D = S* the complement S* ~ D is contractible.

By Alexander duality the complement has trivial homelogy, so it is only a matter of
¥ing it to be simply connected. The evidence for the conjecture is that it is true for
special embeddings of Theorem (7), D= D x 0 = (M* x Iy= 5% becawse the
plement §*— D is homeomorphic to the interior of M*, and it remains true if we add
s as follows (but I do not know if this covers all embeddings). Given P = §%, choose
tle ball B* = $* that meets D in an unknotted disk B2 = D ~ B* (for example take
itar of some vertex of the 2-cell of D where it is locally unknotted). Replace the un-

ted ball pair (8*, B®) by a knotted ball pair (8%, B?) having the same boundary, and
e Dy = (D-BY) v B,
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Lemua (5). If D satisfies Conjecture 2 then so does D,

Proof, Let X = 5*—D~B* and ¥ = B*—B;. Then §*—D, = XU ¥, and so0 we
can use van Kampen’s Theorem. X is contractible since it is a deformation retract C'ff
S§%—D, and X » ¥ is homeomorphic to the product of $* with an open d15ks ::,(1.’) is
genem;ed by conjugates of the irage of a generator of m, (X » T), which i3 itself killed
in 7,(X). Therefore m(X u ¥) =0.

Remark (8). The purpose of the above description. of tht;e embeddj‘l:ng D < M* wa§ to
illustrate the complexity involved in the statement D 1:1 a sptrf of M*”. But .1t' tranl:‘l:lres
in Theorem (8) that when we ask the next question “is M~ a bﬁll . o.nly one dftm.l : re. a;&
namely the linking of L in (1). And again when we come tq classify the M .w1.t spmltla o
in Theorem (%) it transpires that we can choose 2 new spa.ne .D 50 as .to eliminate a ke
complexities in (2) and (3), leaving only the knotting and linking of L in (1). Let us make
precise definitions. ’

LOCAL NICENESS OF D

L consists of two circles « and y joined by an arc f (see Fig. 5). Def.ine arf embeddl_nﬁ
L = §? to be unlinked if there exists an 57 separating « and 7, and meeting 8 :; ::mfa pn\n:n
(Fig. 8 and 9 show L linked). Notice that each f:ircle may be se;‘aarate.ly k;mt hem 1t:.e: if
hemisphere. We say that an embedding of Din a‘ 4-man1fol§l Ts zmh'nkid af Bt ve: ex s
for some trianguiation, the corresponding embedding L < 57 is unlinked. By con ¥
the definition is independent of the triangulation.

We say that an embedding of Dina 4-manifold is nice lecepr at fhe uerrel.: lf,df(;:' SOE:
triangulation, the handlebody structure of the secm:nd de?ived nelghbclnur‘tz(: . (;s; e
property that D,, D; are unknotted in H,, Hy, respectively; .1.e. the ciomp b:xl :,se of ) and
(3) do not accur. Again the definition is independent of the trl?ngulauon, eca cthe :oand
where the local knotting of (2) and (3) occurs musjc be vertwe; ot.' the triangu ,
the braiding of (2) is independent of the triangulation by continuity.

L3
COROLLARY TO LEMMA (4). If M? has a spine D thai is nice except al the vertex then M
has a true handlebody structure, M* = Hq v Hy v H,.

+ 4 3
Proof. By Theorem (7) there is 2 homeomorphism of M* onto the M* of Lcm;nat(;)d
By definition D, in unknotted in H,, and so H, is attached to Hy v H, by an unkno
solid torus, and so is a true 2-handle.

4
THEOREM (8). Let D be a spine of M*. If' D is unlinked at the vertex then M™ Is a bail.

ConiscTURE (3). The coﬁr:erse: if M* is a ball then D is unlinked at the vertex.

Proof of the theorem. The unlinking of L < 5% permits a refinement of the p:!'lc;of ::
Theorem (4). The proof of Thearem (4), as it stands, breaks down bef:ause \%;n o y b
knotted, and so ¢ may not span a disk. However we sha]l. construct a 2-cl'1men51 po
hedron A such that (the other symbols being the same as in Theorem ()
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(i) xcAdc 8

(H) 4N x;

diify AN f=nx;

(iv) Any=4g,

et B3 be the hemisphere, given by the unlinking hypothesis, that contains o and dces
aeet 3. Choose a (piecewise linear) homeomorphism 4: B* — A% outo a simplex that
/s the subarc f ~ B® onto a straight interval joining Ax to a point on the boundary,
ly be the singular cone on Az with vertex Ax, i.c. the union of all intervals joining fix
ints of Aa—x), and let 4 = 4,

Therefore A has the above four properties, which allow the proof of Theorem {7)
m to follow the proof of Theorem (4), word for word.

temark (9). Theorem (8) shows that if D is unlinked at the vertex, then the [ocal
ng at the vertex {of the circles & and ¥} is irrelevant, from the point of view of the
ymorphy type of the regular neighbourhood. Ogn the other hand if D is linked at
‘Ttex, then the local knotting becomes Important. For example if another knot js
to the curve C in Mazur’s example (Fig. 6) then m,(M*) changes, and so M* has
ed. Similarly if D is linked at the vertex then the local knotting and braiding away
he vertex affect M*, but, as we observed in Remark (8) and will show in Theorem {9),
i complexity can be replaced by tieing a different knot at the vertex ,without changing

NORMAL FORM FOR M+

‘e now show that Mazur’s example is indeed a prototype for all manifolds having a
2. Let C be a (tame) curve in §* x S2. Pick a base point {x, ) e8! x $? and call
rand x x S? the first and second factors, respectively. Define the algebraic index 7.
o0 be the unique integer such that C is homotopic to A times the first factor {we
tly assume both curves to be oriented). Define the geometric index uof Cto be the
urnber of intersections that a curve ambient isotopic to C can have with the second

Then by intersection theory, |A] € u and y—1 is even. For exampie in Fig. 6,
ind 4 = 3,

MMA (6) (Gluck [8, Lemma 9.1). IfC has geometric index 1 then it is isotopic to the
for,

20f. The easiest way to see the proof is I believe due to Fox. Isotope C until it cuts
»nd factor once, and then slice along the second factor, Map the resulting 7 x §2
norphically onto & roem minus an electric light bulb, the image of C being the

which the bulb hangs from the ceiling. Although the flex Jooks knotted at first,
€ untied 50 as to hang straight.

. EOREM (9). Assume that M* is not a ball. Then the following three conditions are
n:

Then 4, \ hx conewise, and A, N A(B r B°) = -
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(i) M* has a spine D; e ertex:
iy M* has a spine D that is nice except at the v 4 .
(5:3 M*is jbrmfd by attaching a 2-handle to S B? by {some rf;ba.o"ar neighbourhood of )
a curve C = 5" x §? of algebraic index 1 and geometric index 3.
iii) implies (ii he proof
ii) implies (i jori lies (ii) by Theorem (5), because t
© (i) implies () a fortiori, (iii) tmp : :
ada I:sr ?E{m:di)atelf from the special case to the general case of an ?rb:trary.ﬁurve of alge
brai?: index 1 and geometric index 3. There remains to prove (H Jmplle: (iif). e
= , the
Let M*havespine D. By Theorem {7}, Corollary (l),wi ca{l assume J:i I}::E?;ia;}gu]a
i i dding D = §*, with respect o 5o -
d neighbourhood of some embe ‘ .
Sfewr;:"jotij'esr‘l"\fc'.:.c)r}taiiing D as a subcomplex. For this proof we use D ambiguously to d;:ﬁ;et
E(Th the dunce hat and this particular triangulation as a subcomplex of T. {We remar
the presence of §* in the proof is not significant.)

Let ¢ be the barycentre of a 2-simplex of D. Then = is a vertex of 77, Define

the 4-ball, H, = st(v, Ty = M*,
the 4-manifold, ¥ =M*—H,,
the disk, D,=Dn H,,

and the curve, C =b,.

i i tood of §' in §*. Therefore
i =D, e, e =5, Visa regular neighbour : .
?/mje;: >g3 bDefZ:au:: 2“ uriknots in S*. By a standard combmatorlalbargtilmf):;t (;f‘ [iIZ,
" I i i hed to ¥ by the neighbourho n H;
91y H, is a 2-handle with core D, attac
Cfl'.l fll::eZurBe Cz' in ¥. Thercfore to complete the proof of Theorem (8), we only have to
Serify that the aigebraic index 4 and the geometric index u of C are correct.‘ I
Now M* = V o H, has trivial homology since it is contractible, and so 4 has {o hel jl:)
W = 2 : “
in ord:r to kill the homology of ¥ when attaching H,, amdb w;e can c?z)os; J.is . t:[:':hei
i i is odd. If u = 1, then by Lemma (6), f;
i C if necessary. Therefore u is od . . u.
;eor::)nitslgtgopyl) by the first factor of §* x §%, and so M ‘is co]lapm?le and thcll;etl';)re Ez; :;ly
i i ing that M* is not a ball.
thesis we are assuming
Therefore g = 3, because by hypo
we must show u < 3. . . .
Let w be the barycentre of a 1-simplex of D contained in e ; choose three arcs in the
w +
dual l-skeleton of D, with union U say, such that:
(i) each arc runs from v to W,
(i) the arcs have disjoint interiors, and
(i) D— U is connected (see Fig. 10). . .
Then I/ is a 1-dimensional subcomplex of the first derived complex of D.
let W = U—st (0, U). Define )
H,=NW.,T), Dy=DnH,,
=Dn H,
Ho=V —Hy, Dy o .
. _ 0,
Then H.. H. are 4-balls by Lemma (1), because both are manifolds and H, N,
¢ [ E] i E
Ho N Do N\ 0. Also
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H, N H, = = 4
becanse 0 1 =HonH =NDyn D, H,)=§° x g°,
1 Do N Dy = §° x (cone on three points) N\ 5°
Let $* denote the boundar ‘
y of one of th
e homeomartoss & components of H, N H,. Then we can choose
-
V=HyuH — 8§ x g?

0 ast 2
o throw §° onto the second factor of the boundary S' x §2. Meanwhile

CCNHNnH)=CA(S*x B =¢C
o 3 N (5 xB)_gn(DomD1)=six points,

€ which three lie in each com ]
ponent. In other words € meets §2
€ 3, and the proof of Theorem (9) is complete, e

- :e;}:aa:ic SO)L., gy cafnsl:rucnon D, is ll]:}kt‘lott&d in H,. Therefore the decomposition
‘- tha(; S lis . ﬁnzntde.above prf}of 15 a true handlebody structure. Also one can
0w that th; il ]_Skelet in A, (using the methods of [9, Corollary 6]), because we
hore D oo ol Lske eton of D, away from the vertices of T which are the only points
e 2 oo ¥ knotted. Therefore to find _the new spine that is nice except at th
ces to replace D, by a cone on D A H, in the 4-ball H,. ’

The following corollary has a bearing on Conjecture {2):

n three points. Therefore

. e D L= S‘ be i
: Rf 9 an dar blnmy (fﬂme) Elﬂbedaﬂ'lg- lelej'l

: < §* that is nice exce
e 1 mother : pt at the vertex, and
embedding of the plane E* as a closed subset of E* x 82, suck that

Sf—Dx .S"—D, = E? x ST.p?
Proof. $*—D = $*—(regular neighbourhood M* of D)

Pr—— —
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5% —{any spine of M*)
54— D,, by Theorem (9),
= (S*—SY)~ (D, —S"), where S* is the closure of the 1-cell of D,,
~ E? x §*—F?%,

e

which can be given a smooth structure because it is locally unknotted.

A CANDIDATE FOR A FAKE 4-SPHERE

Let D < S* be an embedding. Let M* be a regular neighbourhood of D and let
Pt = 5t - M

CONJECTURE (4). V* x [ = B

We cannot use the Mazur [12}-Poénaru Theorem to prove Conjecture (4) because in
general ¥* may not have a 2-dimensional spine, only 3-spines. By the above corollary
V% has a kind of ‘negative’ handlestructure

Cp* = B® x §?—({open 2-handle)

but this seems to be difficult to use. The evidence for Conjecture (4) is that the interior of
¥* x Iis a 5-ell by a theorem of Stallings [17, Corsollary (5.3), and:

“Tugorem (10) (Curtis [3, Theorem 1]).

(i) Conjecture 4 implies Conjecture 2;
(i} Conjecture 2 and the 4-dimensional Poincaré Conjecture imply Conjecture (4).

Proof. (i) Conjecture {4} implies that V* is contractible, therefore $*— D, which is
homeornorphic to 72, is also.

(i) Let F* = (¥'* x I), or in other words the double of ¥*. Conjecture (2) implies
that V* is contractible and so F* is a homotopy sphere. We assume that the 4-dimensional
Poincaré Conjecture says that F* is a combinatorial 4-sphere. Therefore we can glue a
5.bali onto P* x I and make a combinatorial manifold that is a homotopy 35-sphere.
By the known 5-dimensional Poincaré Conjecture [15, 16, 20], thisis a topological 5-sphere.
Remaoving the ball again leaves a complementary (steflar) topological ball V* x I by
Brown [3].

DEHN’S LEMMA IN 4 DIMENSIONS

In order to dispel the illusion that everything is known about manifolds with spine D
we conclude with an elementary conjecture, which would furnish a counter-example tc
Dehn’s Lemma in simply connected bounded 4-manifolds, and show Irwin’s Embeddin
Theorem [10] to be the best possible (with respect to codimension = 3).

CoNIECTURE (5). If M* has spine D and is not a ball, then there exists a curve in th
boundary that cannot be spanned by a non-singular disk.
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Since M is contractible, the curve can always be spanned by a singular disk, and any
/0 spanning disks are homotopic keeping the curve fixed. A suitable looking curve in
lazur’s example would be the first factor of §' x S? (marked §* in Fig. (6)). It is easy
span this §' by a locally unknotted disk with one self-intersection, but any attempt to

move the singularity seems to repeat the original problem.
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INTERPOLATING MANIFOLDS FOR KNOTS IN §°

LEe NEUWIRTH
{ Received 26 June 1963)

§I. INTRODUCTION

THE SEMI-LINEAR imbedding of a 1-sphere in the 3-sphere raises m.any qufestions both alge-
gical in nature. We are particularly interested in the interplay between

braic and topolo : ' . :
thy uestions. There are many theorems in the knot theory literature wh{c’h make topo
i ; ns {of course the contrapositive statements

i i i lusio
logical assumptions, and draw algebraic conc i ‘ ;
ofgthose t.heo;:-ems make algebraic assumptions, and draw topological conclusions). Ex

amples of this type of theorem may be found in {1, 2., 3,‘ 4 and 5}, wherelthe ieolmetﬁc

assumptions involve: the existence of an alternating projection [1], the boupc}mg of aloca 3;

flat disc in a half space in E* [2], the crookedness of a knot type [3], the l?srlnun;hl.e n;mb:r c-,c
i i to unknot [4], the genus [3]. gebrai

changes of overcrossings to undercrossmgs. 1o

conclglfssions involve: the Alexander polynomial {1, 2, 5], the minimal number ofhgene'rzfto:i

needed to generate the fundamental group of the complement of .the knot [3], the dt:muntal

number of generators of the abelianized kernel of the hom’omorph;lsm from ltthe: l:f"un me;n !

Z, [41. Of course these results by no m
roup of the complement of the knot onto £, '
gxhaist the list of such theorems; left out, for example, are many. pa‘mal results o:;j th;
Smith problem (no non-trivial knot is the fixed point set of a periodic homeomorphis;

of S*).
The question i

expressed as follows.

peind ’
: he complement af a non-trivial polygona
CTURE A: The fundamental group of & . -

e trivial free product with amalgamation, and the amalgamating

nvestigated here may be stated in a purely algebraic form, which is

knot in the 3-sphere is a non-
is free. ‘

subgro;i:si:rce of this conjecture is geometric, and will l?e explaine.d i;\ the next section.

In fact the conjecture will be strengthened, and expressed l.n geometric om.q. N
We have not been able 1o prové or dispr?ve this conjecture. ThT- mz:l:n:’l;?zr:f; ::. -

sented here makes a geometric assumption (Wh.lCl'.l may have other applicats

obtain the algebraic conclusion stated in the conjecture above, o of
The geometric aspects of the problem .addresset.l hefe w:re :is:r :ﬁ:d O e the

Aumann in [6], although his work was in a different direction, jor
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