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ON HOMOTOPY INVARIANCE OF THE
TANGENT BUNDLE I

JOHAN L. DUPONT

1. Introduction.

A well-known result of M. F. Atiyah [2] states that if M and M’ are
compact g-dimensional oriented differentiable manifolds and f: M — M’
is an orientation preserving homotopy equivalence, then f* <’ is stably
fibre homotopy equivalent to 7. Here 7 and 7’ denote the tangent
sphere bundles of M and M’ respectively. The problem to be studied
in this note is, whether the word ‘“‘stably’” can be cancelled in the above
statement.

This was partly done by W. A. Sutherland [16] and we follow the
line of his paper. Only we use a method of ‘“least indeterminacy’ intro-
duced by W. Browder [6] to define an invariant b(£) for certain (¢ —1)-
dimensional sphere bundles & over M4, ¢ odd and different from 1,3,7.
This invariant is a substitute for the Euler class in the even case. Un-
fortunately I am not able to show that b(£) only depends on & except
in the case, where 7v(M9) is stably homotopy trivial, in which case this
is a consequence of the solution of the Hopf invariant one problem.
Therefore, this paper only gives new information for ¢=2¢—1; but
nevertheless I still hope to solve the general case by the same method.

At last we remark that b(z)=y*(M?), the semi-characteristic intro-
duced by M. Kervaire [8].

2. Stably equivalent bundles over a manifold.

SH(n) is the space of maps S»~! — §7-1 of degree + 1, and B,, = BSH(n)
is the classifying space, defined by J. Stasheff [14], for oriented (n—1)-
dimensional sphere bundles.

Consider a ¢-dimensional manifold M and an embedded disk D?< M
with boundary 8§21, According to J. Milnor [10, § 8] the triad

After this was written it was pointed out to me that the problem was solved in general
by different methods by René Benlian and John Wagoner in C. R. Acad. Sci. Paris Série
A-B 265 (1967), A 207-A 209.
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(M\D° 821, J) can be given a ‘‘self-indexing”’ Morse function with
no points of index q. So N =M \ D° has the homotopy type of a (¢g—1)-
dimensional CW-complex L, and M has the homotopy type of K=
Lugeq, where 0: 827! -~ N is the injection, and e? denotes a g-cell.

Pinching S?2-'< M defines a map c¢: M — M v 8¢, which defines an
action of 7, (X) on [M, X] for any space X (see P. Hilton [6, chapter XV]):
If ve[M,X] and u e m,(X), we denote the composite

M-5MvS -2 XvX L X

by v* e [M,X]. This action has the property that if v,,v,e[M,6X]
such that v», and v, restricted to N are homotopic, then there exists
u € my(X) such that v,=v* in [M,X].

Furthermore let u: N — X; W. D. Barcus and M. G. Barratt [3, § 2]
have defined a map «,: 7,(X¥,u) - 7, (X) such that if v: M - X is an
extension of u, then v*=v iff y € Ime,.

Now consider two stably equivalent (¢ — 1)-dimensional oriented sphere
bundles &,,&, over M4,

ProrosrTioN 2.1. Let v, and v, be the classifying maps from M into B,.
Then vy=0,""in [M, B ], where u, € 7, (B,) is in the kernel of

j* : nq(Bq) g nq(B(I"'l) :

Here j: B, - B, is the natural inclusion.

Proor. Restricting to N, », and v, become homotopic, because N
has the homotopy type of a (¢—1)-dimensional complex. Therefore,
vy=0,", where uemn,(B,). Without loss of generality we can assume
v, and v, restricted to N to equal a map u: N — B,.

Then j,v,=(jxv,)’*, and according to the g-dimensionality of M,
JxV2=Jx vy, because &, and &, are stably equivalent. So j, u€Ima;,. It fol-
lows easily (e.g. by using Theorem 22 in Spanier [11, chapter VIL, § 6]) that

Jy @ (BN, u) — nl(Bﬁl, juw) is onto.
Using this,
Jut = a5u(2)

where 2z =j,(x) for some xem,(B,N,u). Let u' = () and py=p —u’€m,(B,).
Then

vg = v = (vlu)—#’ = vll‘-—ll' = v,",
Finally

Jel = Juo,(®) = ‘xjuj#(x) =Jxlt,
80 Jjx fo=0.
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The following proposition is a well-known consequence of the solution
of the Hopf invariant one problem:

ProrosITION 2.2. The kernel of jy: my(B,) = 7,(By.,) 18 cyclic generated
by t,, the map classifying the tangent bundle of S2.

Z q even
Kerj, ={0 ¢=1,3,7
Z, q odd ¢#1,3,7.

Returning to the problem stated in § 1, let &, =7, é;=5*1". If v, and
v, are the classifying maps, v,=v,", y, € kerj,. So in case ¢=1,3,7
it is trivial that &; and &, are equivalent. Now consider the even case.
Letting E(v;) denote the Euler class of &; evaluated on the orientation
class, it is easily shown that E(vy)=E(v,)+ E(u,) for v,=v,*. Hence in
the present case E(u,)=0 and consequently u,=0, so also in this case
7 and f*(z’) are fibre homotopy equivalent.

3. Definition of b(§) in the stably trivial case.

In this section M is a g-dimensional manifold, ¢ odd and different
from 1,3,7, and we assume t(M) to be stably fibre homotopy trivial.
Let & denote a stably fibre homotopy trivial bundle over M. This means
that for & large there exists a Thom map

n: Stk o T(yy) ~ S+ (M) = T(E+k),
that is, a map inducing isomorphism by taking Hy,,.(+,Z). Let
Ug: T(¢) ~ K(Zy,9)
denote the map representing the Thom class. Put
0 = 3*¥U; o m: SP+k —» S*kK(Z,,q) .
DEFINITION 3.1. b(&) =8¢,2+1(3%.) € H%+k(S%a+k,Z,) =7Z,.

Here 1€ HYK(Z,,q)) and b(§) is defined as the functional Steenrod
square. (See W. Browder [5, §1].)

ProPOSITION 3.2. b(£) 18 independent of the choice of k and
n: 8%tk T(E+ k).

ProoF. Suspending n we evidently get the same b(¢), and thus it is
sufficient to prove the last part of the proposition.
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Let #:8%+k — T'(£+k) be another map of degree one. Then n=7'+y
in 7y, (Z*T(£)), where y: 8%tk — SkT(£). Consider the cofibration
(&) —> T(E) 2> S

Using the covariant Puppe sequence for stable homotopy, we see that
y=(Z*i)oy’ for k large, where y': 8%+ — T(£y). In fact (Z*p)oy has
degree 0.
&y is trivial and the trivialisation defines a map g: 7'(§y) - 8% Let
1: 82— K(Z,,q) be such that [*i=g0,, the generator of H%(87). Then
Ugoi = log: T(éy) > K(Zy,q) .
Putting
6= Zkern: 6 = kufonlﬁ ﬁ = (zkg)°7' ’
we have
0 =208+(ZH)op.

Hence by Lemma 1.6 in Browder [5]

8¢, e = Sgy®+t e+ Sqkii.pt -
According to Adams [1]

8q%kl.pe = Sqp7+1 (Za,) = 0

when ¢ is odd #+1,3,7.

ProrosITION 3.3. Let &4, &, be stably fibre homotopy trivial bundles over M,
and ¢ a third such over 8?9 Assume the classifying maps vy, v, and u,
satisfy v,=v".

Then b(&,)=b(£;) +b(().

Proor. If ¢c: M - M v 82 is the pinching map and &, v denotes the
bundle over M v 8¢, which is & over M and ¢ over 8¢, then c*(§,v()=&,
and so there is a natural map

h: T(Ey+k) > T((§+Kk) v (C+E)).
This is equivalent to a cofibration with cofibre S2¢+*, which we for con-
venience write
T(E,+k) —> T((E,+K) v (C+E)) s vk,
By the Thom isomorphism theorem,
H2q+k(T(E2+k)’ Z) = Z(dz) H
Hogi((61+ k) v (C+E)) = Z(dy) D Z(dy)
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and
h* d2 = dl + dO .
Consider
S2a+k 2, Q2a+k  Q2q+k YO T +k)vT(C+k)
’ g

- T((&,+k) v (C+E)).

Here 4 is the usual pinching map.
ny: B2k > T(E +k), ny: 8%k T(C+k)
are maps of degree one, and g is induced by the map
MuS?T—>MvSe.

Under this map g the bottom cells of the two Thom complexes are
identified. Further
VxOzqri = dy+dy,

80 poy has degree 0. Again by the covariant Puppe sequence there
exists a map
Ny SHH > T(E+ k)

such that hony=y. Clearly 7, has degree one. The proposition follows
from an easy computation using the commutative diagram:

S2a+k y S2a+k 0 Sk(£ ) v SKT(C) “'""Uh"z"U_;_)

o

3*K(Z,,q) v 3*K(Z5,9)

4 '—h—‘* ST (& v 8) P EkK(Izz’Q)
rask _,;’ T(és+k) kU,

ProrosiTioN 3.4. Let M be a q-dimensional compact differentiable
manifold, q odd=+1,3,7. If the tangent sphere bundle © is stably fibre
homotopy trivial, then

(g-1)/2
b(zr) = y*(M) = 3 dimHYM,Z,) (mod2).

=0

Proor. Choosing a tubular neighborhood of the diagonal in M x M
we get a map

j: MxM->1T(7)
by pinching everything outside. Let o, € HYM,Z,) be the generator.
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Following E. Thomas [17, § 4] we choose a basis {«,,...,&4,84-..,01}
for H*(M,Z,) such that if

deg o;+deg B; = ¢q,
then

a;UB; = 00,
where
d = y*(M) (mod2).

Let t: M x M — M x M be the transposition map, and put

d
A=30®p € H(MxM).
=1

Then
AUt*A = doyxy and j*U, = A+t*4.

Now let g: 82tk -~ kM, be a map of degree one. The map
gag: S22k S (M x M,)

defines an S-orientation of M x M, in the sense of Browder [5, § 1]
(S is the sphere cospectrum). This defines an operation

Y HQ(MxM)ﬁzz.
The map
o Stk _9r9, (M xM,) N 32%(T (7))

has clearly degree one. By Theorem 1.4 in Browder [5], it follows that
b(z) = y(j*U,) = p(A +t*4)
= p(d) + p(t*4) + (gag)*(Aut*4).
From the commutativity of the diagram
S2a+2k 929, ok} x M ,)

‘| | =

Srarth ——s 32 (M x M)
it follows that y(A4)=wy(t*A). Hence
b(7) = (grg)*(AUt*4) = dogg,g -
CoroLLARY 3.5. Let  be a stably fibre homotopy trivial (g — 1)-dimen-
sional sphere bundle over 8?. 7,=%(89). Then
(=1, <> b({)=1, q odd + 1,3,7.
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Proor. b(7,)=1 according to Proposition 3.4. It follows from Pro-
position 2.2 that either { is trivial or { =7,. If { is trivial, b({) = 0 accord-
ing to Proposition 3.3.

Using b in stead of E in the concluding remarks of § 2, we get

THEOREM 3.6. Consider M, M’ q-dimensional oriented compact differ-
entiable manifolds, ¢ odd+1,3,7. Assume the stable fibre homotopy classes
of the tangent sphere bundles are trivial. Let f: M — M’ be an orientation
preserving homotopy equivalence.

Then f*t' and T are fibre homotopy equivalent.

In fact, © is fibre homotopy trivial iff y*(M)=0.

Finally we remark that, if we use BSO(n) instead of BSH(n) in
Section 2, then we can prove in the same way

TurorEM 3.7. Consider M, M' and f: M — M’ satisfying the conditions
of Theorem 3.6. Let v and 1’ denote the tangent g-plane bundles of M
and M’ respectively, and assume further v and f* ' to be stably isomorphic.
Then t and f*1' are isomorphic.

Especially we get the following corollary implicitly proved in G.Bredon
and A. Kosinski [4].

CoroLLARY 3.8. Let M and M’ be w-manifolds and f: M — M' a homo-
topy equivalence. Then f*t' and T are isomorphic.
In fact, for g odd+1,3,7 T is trivial ¢ff y*(M)=0.

4. Remarks concerning the general case.

In this section we will explain the difficulty in the general case.
First we recall some notation of W. Browder [5]: We assume ¢ odd.

vq-)—l : Bn - K(Z2’ 9+ 1)
represents the Wu class v,,;. Consider the fibration
Bn<vq+1> _”_) Bn
induced by v,,; from the path fibration over K(Z,, ¢+ 1) with fibre
QK(Zy, q+1) = K(Z,,9)

and let §, = n*(y,) denote the pull back of the universal sphere bundle
over B,. Further Y,=7(7,) defines a Wu spectrum, and {X,} is the
dual Wu cospectrum.



12 JOHAN L. DUPONT

Now consider M? a compact differentiable oriented manifold with
normal bundle » and let £ be an oriented (¢— 1)-dimensional sphere
bundle over M% Choose a bundle & such that &+ &’ is trivial (such
one exists according to M. Spivak [13] or C.T. C. Wall [18]), and as-
sume that the classifying map ¢: M — B, (n large) for »+ &' is given
a specific lifting ¢’ through #. Then p=n¢’ and v+ & =¢'*($,). This
defines maps T'(v+£&’) - Y, and thus dual maps

X _ggoi = ZFT(E)
for k large such that

Gi» - H2q+k(X—2q—k> Z) - H2q+k(ZkT(§)’ Z)

is an isomorphism. Such a system of maps we call an X-orientation
for &.

Let U,e HYT(&), Z,). Assume ¢,*(3*U,)=0. (Using S-duality, see
E. Spanier [12], this is seen to be equivalent to the following condition:
If 4,+...+i,=¢, then w;(v+&)U...Uw;(v+¢&)=0. This is clearly
fullfilled if £ is stably equivalent to z.) Consider the map

0=3%U,o0g;,: X_ gy > 3*K(Z,,q)
and define
ba(s) = 8¢,71(3k) € H2q+k(X—2q—k) = Z,.

As in Browder [5] the indeterminacy is 0. A priori b,(&) might depend
on the orientation g¢,. In fact it does for ¢=1,3,7.
In turn the orientation depends on the following choices:

I a) »and the trivialization of v+ 7.
b) & and the trivialization of £+ ¢&’.
II The lifting ¢’ of ¢.

It turns out that II is not very serious, and the problem concerning I
can be reduced to the following:
Let y: M xSk-1 > M x S*-1 be a fibre-homotopy equivalence. This
induces a map
x=TEd®y): TE+k) > TE+E)

and g, =wxog, defines a new orientation for &.

If b,(&)=b,(&), then Section 3 goes through with minor changes,
and proves the conclusions of Theorems 3.6 and 3.7 without the assump-
tion on the stable fibre-homotopy class to be trivial. However, as pointed
out by the referee there are examples where £ =¢ contradicting Proposi-
tion 3.3 but not 3.6 and 3.7. Is this the only case? Or stated in another
way: If there is a map
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X o1 = T(E+ k)

with a non-zero functional Sg2+l, is it true then that &7=£? We will
discuss this in a later paper.
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ON HOMOTOPY INVARIANCE OF THE
TANGENT BUNDLE II

JOHAN L.DUPONT

1. Introduction.

This paper is a subsequence of the paper [5], in which the following
problem is considered.

Let M and M’ be oriented compact, differentiable manifolds, let
f: M — M’ be a homotopy equivalence preserving orientation, and denote
the tangent sphere bundles = and 7’ respectively. Is it true then, that ¢
and f*’ are fibre homotopy equivalent ?

This is actually shown by R.Benlian and J.Wagoner [3]; but here
we will prove it by the simple method developed in [5]. As kindly
pointed out to me by C.T. C. Wall, this method also applies to define
the unstable tangent sphere fibration for a Poincaré complex which is
necessary for developing a theory for embedding and surgery of Poin-
caré complexes.

Finally I also want to thank M. F. Atiyah, W. Browder and W. Suther-
land for interesting remarks on the note [5] which made this paper pos-
sible.

2. Sphere fibrations.

In this section we will study more closely the “action” defined in
[5, § 2]. The results of this section are closely related to the work of
James and Thomas [7], Rutter [8] and Barcus and Barratt [2]. In
particular our Corollary 2.3 and Proposition 2.7 are reformulations of
Theorem 1.8 in James and Thomas [7]. (Compare the remark following
our Definition 4.6.)

As usual H(n) denotes the space of homotopy equivalences of S"-1,
SH(n) denotes the component of H(n) consisting of maps of degree +1,
and F(n) denotes the subspace of SH(n+ 1) consisting of basepoint pre-
serving maps. There is a natural inclusion of SH(n) in F(n) by means of
unreduced suspension.

Received January 31, 1969.
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A Hurewicz fibration with fibre a homotopy n —1 sphere is called a
n—1 sphere fibration. According to J. Stasheff [12] there is a space
B, =BSH(n) classifying oriented n—1 sphere fibrations over CW-com-
plexes, such that homotopy classes of the classifying maps are in one-to-
one correspondence with equivalence classes of sphere fibrations under
orientation preserving fibre homotopy equivalence.

If &, and &, are sphere fibrations over a space X, &, +&, denotes the
fibrewise join of &, and &,. If &, and &, are sphere fibrations over X, and
X, respectively and p;: X, x X, > X, are the projections, we put

§1x &y = (P1™ &) +(D*Ey) -

The trivial £ —1 sphere fibration is simply denoted by k.

Analogously there are spaces BF(n) classifying pairs (£,s) consisting
of an oriented » sphere fibration & and a section s. Homotopy classes of
the classifying maps are in one-to-one correspondence with equivalence
classes of pairs under section and orientation preserving fibre homo-
topy.

If £ is an oriented sphere fibration and s and s’ are homotopic sections,
then the pairs (£,8) and (£,8") are clearly equivalent.

For any CW-complex X the natural map

[X,BF(n)] - [X,BSH(n+1)]
corresponds to forgetting the section, and the map
[X,BSH(n)] - [X,BF (n)]

corresponds to the map sending & to the pair (£+1,s;), where s, is the
section which is constantly 1.

LemMa 2.1, Let & be a q sphere fibration over a g-dimenstonal finite
CW-complex X.

Any section s of & gives rise to a q—1 sphere fibration &', such that
(&' +1,s,) and (&,8) are equivalent pairs. The equivalence class of &' only
depends on the homotopy class of s.

Proor. According to James [6], the map
Jxt m(SH(q)) > n(F(q))

is an isomorphism for 7<2(¢—2) and an epimorphism for ¢=2(¢q—2).
This, together with an easy calculation for ¢=2,3, implies that j, is an
isomorphism for 1 <g¢—1. Hence the map
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[X,BSH(q)] -~ [X,BF(q)]
is bijective for X at most ¢g-dimensional. This proves the lemma.

Especially consider X =Lue?, where L is a (¢—1)-dimensional com-
plex (according to Wall [15] this is the case for a ¢g-dimensional Poincaré
complex), and let £=¢&;+ 1, where &, is a ¢— 1 sphere fibration.

By obstruction theory any section s of £ is homotopic over L to the
trivial section s, which is constantly 1. Extending this homotopy to X
(Strem [13]) we conclude that any homotopy class of sections of &,+1
is representable by a section which is trivial over L. Trivializing &, over
e?, s defines a map

(e7,8771) — (89,%)
of a certain degree d(s).

Later in this section we will see that for &, oriented, d(s) depends only
on the homotopy class of s, and thus d(s) determines this uniquely.
(For &, non-orientable the homotopy class of s is determined by the
mod 2 degree.)

For any integer d let g; denote the composite map

X Xveee xyse,

where ¢ is the pinching map and f;: S¢ — 8¢ is of degree d. Further let
&, denote the fibration

€a = 9a*(oVvTy)
where 7, is the tangent sphere bundle of §?2. If vy: X — B, is classifying
for &, and p,: 8?2 > B, is classifying for 7,, then in the notation of [5,
Section 2] v,* is classifying for £;. Clearly there is a natural equi-
valence

Eat1 = g ((Eo+ D) v (5,41) = gaX(Go+ 1)V (g+1) = £o+1

which we denote by y;. Under this the constant section of &;+ 1 defines
a section o(d) of &+ 1 of degree d. In fact the constant section of 7,+1
over 82 has degree one with respect to the obvious trivialization.

Using Lemma 2.1 we clearly have

ProrosiTioN 2.2. For any section s of &,+1,
& = b0 = gz’;(a)(fov"’q)

18 the unique fibration such that

(£’+ 1;81) and (£0+ 1’8)
are equivalent pairs.
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Proor. In fact o(d(s)) and s are homotopic sections of &+ 1.

An equivalence « of a fibration & with itself is called an automorphism
of £ For any automorphism « of the fibration &,+ 1, where &, is a sphere
fibration over an arbitrary space X, we define the section s,=wxos,; of
&,+1. Here again s, denotes the trivial section, and clearly s;;=s,.

We now obtain in the special case of X =Lue?:

CoROLLARY 2.3. For q odd, we have vy#* = v, iff there is an automorphism
o of £y + 1 such that d(s,) is odd.

Proor. According to [5, Proposition 2.2], we have vy =wv,%° for d
odd. Hence v,=v," iff v,=v,%° or equivalently & ~&; for some odd
integer d.

If B: &, - &; is an equivalence, then the composite equivalence
vao (B+1): &g+1 >&+1

defines the section s, (5.1 =0(d) of degree d.

Conversely, if o:&y+1-—>&,+1 has d(s,)=d, then (£,+1,s;) and
(&o+1,s,) are equivalent pairs, and hence we conclude from Proposition
2.2 that

S0 = Eay = a-

Turning to the general case of a ¢—1 sphere fibration &, over an
arbitrary space X, we consider the Thom complex 7'(&,). This is defined
as the mapping cone on the projection map, and it is easily seen to be
homeomorphic to the space &,+ 1/s,(X), in such a way that the inclusion
X — T'(&,) in the mapping cone corresponds to the section s_; of &,+1
which is constantly —1.

When &, is oriented, the Thom class

U, € HY(%+1,Z)
is the unique class which restricted to the fibre is the generator and which
satisfies s,* U, =0.
DerintTION 2.4. For any section s of &,+ 1, put
d(s) = s*U, € HY(X,Z)
and for « an automorphism, put

x(x) = d(s,) € H(X,Z) .
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As an example the equivalence « induced by multiplication by —1 in
the trivial part 1 of &,+ 1, has y(x)=e(&,), the Euler class of &,.

PROPOSITION 2.5. For orientation preserving automorphisms « and 8 of
&+ 1 we have

wxof) = x(x)+x(B) -

Proor. Put w="U, for short and denote the projection for £,+1 by p.
Obviously
x*u = u + p*(d(s,)) .
Hence
8¥.pt = (xo08g)*u = sg*u+s,*p*(d(s,))
= d(sg) + d(s,) .

For X a g¢g-dimensional Poincaré complex Definition 2.4 agrees with
the previously defined degree. In fact for any integer d, the degree of
a(d) is d.

Notice that we could also have defined d and y mod2 for any sphere
fibration. Then Proposition 2.5 is valid for all automorphisms.

In view of Corollary 2.3 only the mod2 degree is essential for our
purpose. We will thus restrict to Z, coefficients in all cohomology groups
for the rest of this paper, unless otherwise specified.

DerINITION 2.6. Let £ be a sphere fibration over a space X with base
point z,, and consider an automorphism « of £ Denoting the unit
interval by I, consider & x I with the identifications

(%,1) ~ (xx,0) for =ze€é,
(x,t) ~ (x,t) for zeé&, and tt'el.
This defines a fibration denoted &, over X x S'/x,x St

Denote the Euler class by e, the suspension of X by XX, the suspen-
sion homomorphism by Z, and the natural map of X x §'/z, x S onto 2X
by j. We then have

ProrosrrioN 2.7. For any automorphism o« of §=£&,+1, where & is a
q—1 sphere fibration, we have

e(&,) = j*Z(x(x)) -

Proor. The Euler class of &, is the image under the transgression of
the generator of H?(S?, +). The transgression is the additive relation
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Ha(Se, +) > He+1(g,, 89) <25 HaH(X x 81,2 x SY) ,

where p is the projection.
Obviously e(&,+1)=0, so ¢(&,) is in the image of j*. Consider the
commutative diagram with exact columns:

HY(Se, +) —— Hosi(g, 81) E° He+(X x 1,24 x SY)

e | 1

HY((£y+1) x 0,8,(X) x 0) —— HIH(E,, (5+ 1) x 0) £ HI(ZX)

1o To
HY(£)+1,87) «— 2 Hu(X).

It is easy to see that the lower p* is an isomorphism, and hence ¢’ =0.
By definition «*U,, is the generator of H?%(S?, +). Hence (j*)'e(£,) is
the image of U, under the additive relation on the middle row. Now

P EJ(E+1)x0 > 2X
has a right inverse s, defined by
sy xid: X xI — (g+1)x1.
That is, (j*)~'e(¢,) is the image of U, under the map
Ho((£y+1) x 0, 8,(X) x 0) > HIH(£,[(8,+1) x 0) "> He{(ZX)

Define a space F' as the quotient space of (X x I) u (&,+ 1) with the iden-
tifications
(,1) ~ s, (x) for zxe X .

There is a map of triples
(F,(&+1) U X x0,X x0) > (&,,(§+1)x0,8/(X)x0)

defined by sending (z,t) to (s,z,t). Hence we have the commutative dia-
gram

HY(£y+1,8,(X)) — > HIH(£,, (£, +1) x 0)

l -
Ha(gy+1) —2 > Hi(ZX) .

Here the lower 6 is the connecting homomorphism for the pair (C, ,&,+1),
where O, = F[X x 0 is the mapping cone on s,. This proves Proposition
2.7.
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We conclude this section with a lemma concerning homotopy of
automorphisms. If & is a n— 1 sphere fibration over X with base point
z, and « is an automorphism of £, we have defined the fibration &, over
X x 8'/z,x 8, the restriction of which to X x 0 is £&. Hence fibre homo-
topy classes of automorphisms of & are in one-to-one correspondence
with homotopy classes of maps

X x 81xgx St — BH(n)

the restriction of which to X x 0 is the classifying map for £.

LemMA 2.8. Let & be a q sphere fibration over a finite g-dimensional
CW-complex, and « an automorphism of &+k, k> 0.

Then o is homotopic to an automorphism of the form «'+id, where o'
18 an automorphism of &.

Proor. The map BH(q+1) - BH(q+k+1) is a ¢+ 1 equivalence ac-
cording to James [6]. Hence the lemma follows from Spanier [9, Chapter
7, § 6, Theorem 22].

3. S-duality.

We shall need some simple lemmas concerning S-duality of Thom
complexes. We refer to the papers of Atiyah [1], Spivak [11] and Wall
[15] for the following fact:

Let M denote a g-dimensional Poincaré complex, with (k£ — 1)-dimen-
sional normal sphere fibration ». If £ and » are n—1 and m —1 sphere
fibrations over M such that £+ is trivial, then the diagonal 4: M —
M x M induces a map of Thom complexes

T+n+m) > Tv+n)ATE).
The composite with a Thom map
Setksnim  T(y+-n-+m) - T(-+17) A T(E)
is a S-duality for T'(v+#) and T'(£).
Prorosrrion 3.1. Let 1: M, < M, be an embedding of a closed manifold

in another. Denote the normal bundle of M, and M, by v, and v, respecti-
vely, and the normal bundle of © by v,. Then the dual map of

T(i*vy) — T(v,)
18 the map
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(M), ~ T(vy)
which collapses everything outside a tubular neighbourhood of M, in M,.
COROLLARY 3.2. Let M be a closed manifold with normal bundle v and
angent bund le v. Then the map
T(v+v) - T(»x»)
induced by the diagonal M — M x M is the dual of the map
(M x M), ~T(r)
which collapses everything outside a tubular neighbourhood of the diagonal.

Proor or ProrosiTioN 3.1. Let N be a tubular neighbourhood of M,
in M, with boundary N. Clearly

T() = Tgn)[T(vyz) -

Embedding M, in 8*, for » large, the proposition follows from the com-
mutative diagram

S T(an B T(vg) A T(vgpar,)

81— T(ry)[T(vgir) 22 T(o) A T(v)

T

> T(vg) —L ((My),) A T(wy).

Here f,, f, and f; are induced by the diagonals M, -~ M, xM;, N —
N xM, and M, - M, x M, respectively.

Now let M denote an arbitrary Poincaré complex with normal sphere
fibration », and let £ and % be sphere fibrations such that &+ is trivial.

Lemma 3.3. If « and B are automorphisms of & and n respectively, such
that the automorphism o+ of &+ is fibre homotopic to the identity, then

TA+p): Tw+n) > T(+n)
is the dual of
T(x): T(&) ~T(&) .

Lemma 3.4. For any automorphism « of &, there is an automorphism o'
of the trivial k—1 sphere fibration for some k>0, such that «+id and
id+«" are fibre homotopic automorphisms of &+ k.
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LemMmA 3.5. For any automorphism « of & there is an automorphism B
of n+k, for some k, such that «+ f is fibre homotopic to the identity.

Proors. The proof of Lemma 3.3 is trivial. Adding % to & it suffices to
prove Lemmas 3.4 and 3.5 for & trivial.

For ¢ trivial the stable fibre homotopy class of « corresponds to a
map 2M — BH, where BH=limBH(n). Lemma 3.5 now follows by
well-known arguments from the fact that [2XM,BH] is a group in one
and only one way.

Finally 3.4 follows from 3.5.

For later reference we finally state without proof the following well-
known fact.

LeEmMA 3.6. For M an n-dimensional Poincaré complex with normal k— 1
sphere fibration v, the composite map

H(M) 2> Hy o o(T) 2> H, (M)

of the S-duality homomorphism D and the Thom isomorphism @ equals the
Poincaré duality homomorphism. That 13, ®o D is cap product with the
orientation class [M].

4. Definition of b(E).

We recall the notation of [5, § 4].
Assume ¢ odd. The map

vq+1: Bn - K(Zz,QH‘ 1)
represents the Wu class v,,;. Consider the fibration
T Bn<vq+1> g Bn

induced by v,,; from the path fibration over K(Z,,q+1) with fibre
QK(Z,,9+1)=K(Z,,q). Put $,=n*y,, where y, is the universal n—1
sphere fibration over B,. Then Y, =7(j,) defines a Wu spectrum in
the sense of Browder [4]. {X,} is the dual Wu cospectrum.

Now consider M a g-dimensional compact differentiable oriented mani-
fold with normal bundle », and let £ be any oriented ¢ — 1 sphere fibration
over M. Choose a fibration % such that &+ # is trivial, and choose a lifting
¢’ through z of the classifying map ¢ for »+1.

Clearly »+#n=(¢')*(7,). This defines maps

T(V"H?) - Yn
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and thus dual maps
Ir: X—2q~lc - 2Z*T'(&)
for k large, such that

glc' : H2q+k(X-2q—k’ Z) - H2q+k(ZkT(§)’ Z)

is an isomorphism. We say that g, has degree one.
A system g={g,} of maps constructed in this way is called an X-orien-
tation for &.

In the following all homology and cohomology have Z, coefficients.

DEeFINITION 4.1. Let U, € H(T'(£)) be the Thom class. For a fixed
orientation g of & satisfying
9ie(Z*U) = 0
define the composite map
d = Z¥%hog,,
where h: T'(§) - K(Z,,q) represents U,, and put
by(§) = 8gs2H(2*1) € HMHX oy ) = Z,.

Here Sg,2+1 is the functionalized Sg?+! on 4. As in Browder [4] it is clear
that the indeterminacy is 0, and that b,(£) is independent of k.

LEMMA 4.2, Let & be stably equivalent to a SO sphere bundle. Then
9" (Z*U,) = 0
if
wy v+ U ... Vw (v+n) =0 for 4+...+ig=gq.

Proor. Here w; denotes the ith Stiefel-Whitney class. Since U, is the
bottom class of T'(¢), by S-duality

g, *(2*U,) = 0
iff
T(@')s: Hq+n(T(”+"7)) g Hq+n(T(77))

Tyt Hq(Bn<vq+1>) g Hq(Bn)

is zero. Now

is injective. Hence we only need to see that
@y Hy (M)~ H,(B,)

is zero. When ¢ factors through BSO(n), this is clearly fulfilled when the
Stiefel-Whitney numbers of »+# are zero.

Math, Scand. 26 — 14
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Remark. The condition of 4.2 is fulfilled for ¢ odd and & stably equiv-
alent to 7, because w;(v+») =0 only for ¢ even.

A similar necessary and sufficient criterion in general needs the struc-
ture of H*(BSH,Z,). This is calculated by J. Milgram.

When £ is X-orientable, the orientation depends on the following
choices:

I a) v and the Thom map for 7'(»).
b) 7 and the trivialization of &+.

II The lifting ¢’ of g.

First let us examine the choices according to I:
If +' is equivalent to » and %’ is equivalent to %, a choice of equivalences
B, and S, respectively defines the S-duality

SN > Tw+n)ATE+E) - T +7')AT(E+E)

where the last map is 7'(f; +f,)Aid. With respect to this S-duality an
orientation 7'(v' + ') — T'(7,) defines the same X-orientation for 7'(¢ + k)
as the composite map
To-+9) 0 T +') > T(7,)
does with respect to the original S-duality.
Another choice of »" and %’ thus amounts to a change of the S-duality

(4.1) SN > T(y+n+E+k) - Tw+n) A T(E+k)

by automorphisms of » and #.

Also, fixing » and 7, another choice of trivialization of £+# just
changes the S-duality map (4.1) by an automorphism of 5 +&.

Finally, according to Theorem 3.5 in Wall [15], another choice of
Thom map changes the S-duality map (4.1) by an automorphism of ».

Hence in all cases, a different choice according to I just changes the
S-duality map (4.1) by an automorphism of »+#+£&+k. Choosing # of
sufficiently large dimension, it follows from Lemma 3.4 that this auto-
morphism can be assumed to be of the form ¢d+ 8+ id, where 8 is an
automorphism of 7 only.

In this way we conclude from Lemma 3.3 that a different choice ac-
cording to I is equivalent to

I' Replace the orientation

Ir: X _gqr > T(E+K)
by the orientation
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g = T(x)ogy,
where T'(«): T(£+ k) — T(é + k) is induced by an automorphism « of £ + k.

LemMA 4.3. If b,(£) is independent of the choices 1, it is also independent
of the choices I1, and hence independent of the choice of X-orientation for £.

Proor. If ¢': M — B,{(v,,,) is a lifting of ¢, the other lifting is homo-
topic to the composite ¢’ :

M > M v 817" B (0,1 V K(Z3,9) — By(vgu1) -

Here c is the pinching map, and V the map folding K(Z,,q) onto the fibre
of n. Since V*7, is trivial over K(Z,,q),

T(V*?n) = T()-’n) v Zn(K(Zz»Q)) .

Taking the dual it is clear that 2*(K(Z,,q)) gives no contribution to the
functionalized Sq2+!.

We now consider the change of orientation originating from I'. Ac-
cording to Lemma 2.8, we can assume that the automorphism « of
E+k (£ a g—1 sphere fibration) is of the form «’+id, where «' is an
automorphism of &+1.

THEOREM 4.4. Let &, be an X-orientable ¢ — 1 sphere fibration over M4,
q odd, and let & be an automorphism of &y+1. Further choose an X-orien-
tation g of &, and let g’ denote the orientation defined by

gi' = T(x+id)og,
for k large. Then
by(&0) — by (&) = x(x) .

COROLLARY 4.5. The number b,(£,) depends on the choice of X-orienta-
tion, iff every q—1 sphere fibration which is stably equivalent to &,, auto-
matically is equivalent to &;.

Proors. Corollary 4.5 clearly follows from Theorem 4.4, Corollary 2.3
and Definition 2.4.

For the proof of Theorem 4.4 it suffices, according to Proposition 2.7,
to show that

by(&0) — by (&) = el£,) -
In the stable track group {7'(&,),T(&,)} put
y = T(a)—id.
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Use the Puppe sequences for the cofibrations

82 > T(&) L T(&,)/T(Ey)
and

T(Egy) — T(E) - 5%,

where N is homotopy equivalent to a (¢ —1)-dimensional complex, and *
is the base point of M. We then get a factorization of y through j and ¢,
that is, there is a stable element

n: T(EO)/T(SOP) - T(50|Av)
such that y =i0%0j. It is easy to see that if y is represented by the map

vi: 2¥T (&) - Z*T(&) ,
then
Sg(E*Uy,)

is well defined with zero indeterminacy, and furthermore
SEHE Us) = by&o) —by(&0) -

Put T'=2*T(&,) and f=T(x+id), where f is a map of 27T into itself.
Define M;=XT x I with identifications

(x,1) ~ (f(x),0) and (x,2) ~ (x,t')
for x € 2T and ¢,t' € I. Clearly
Mf = Z"T(é,) .
On the other hand, f is homotopic to the map

T A xrv iyt P spyyr S 3T

where 4 is the pinching map and V the folding map. Hence M, is homo-
topy equivalent to 27" x I, with the identifications

(x,2t,0) for t <}

(@,8,1) ~ (yur,2t—1,0) for ¢t =1}

and (*,8) ~ (*,8'), where z € T, 8,8’ € I and t is in the interval defining X7'.

Let Y be the subspace of points with coordinates (z,f,0) satisfying
t= % or coordinates (z,3%,s) satisfying 0<s<1. Obviously Y is homeo-
morphic to 27. The image of the set

{(z,t,8) [ t=}}
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in M,/Y is homotopy equivalent to the space T x S1/(x) x S! whereas
the image of the set

{(z,t,8) | t= 3}

is homotopy equivalent to Cy,, , the mapping cone on Zy,.
In this way M,/Y is homotopy equivalent to the space

2T x 8Y(*)xStu Cy,,,

where the base of the cone is 27 x 0 in 27T x 8. Denoting the projection
M x 8Y(*) x 8* - M by =, we have

T x 8Y(x) x 8t = T(n*(&y+k+1)) .

There is a unique class
u e HI+k+Y(M | Y)

such that the restriction to Z7' x 8/(*) x St is the bottom class. Let p
be the natural map M, > M,/Y. Then p*u is the bottom class of

Mf = Zk(T(Ea))
and
p*: H2rer2 (M [ Y) - Heavkr2(M )

is the sum map Z,pZ, - Z,. Now
Sqr+(Z*U, ) = p*Sq=iu .

In order to calculate Sq?+u € Z,Z, we restrict to T'(z*(&,+ &+ 1)) and

Cy,, respectively.

Clearly Sq2+! is zero in T'(z*(£y+k + 1)) so as an element in Z,
ST, ) = Sqi(itu)
= Sq¥,(Z¥1U,,),
where i: Cy,, — M/Y is the inclusion. On the other hand
Squ\(ZkU, ) = Z*¥U; = Z*P(e(E,)) s

where

&: H*(M x 8(x) x St) -~ H¥T(£,))
is the Thom isomorphism. This ends the proof of Theorem 4.4.

DEerINITION 4.6. If (&) is independent of the choice of X-orienta-
tion, we write b(£)=>5,(&) for any g—1 sphere fibration, which is stably
equivalent to &,.

REeMARK. Theorem 4.4 shows that b,(£,) is not independent of the
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choice of orientation, precisely in case there is an automorphism « of
&,+ 1 satisfying y(«)=+0 or equivalently e(&,) +0.

Now e(¢,)=w,,,(£,), and the collection of stable fibrations over
M x 8*/(x) x S* represented by &,, where « is any automorphism of &,+1,
is the same as the collection of stable fibrations of the form z*£,+ 7,
where 7 is the projection onto M and 7 is induced from a fibration over
M.

Hence b(,) is not well defined iff there is a sphere-fibration # over XM
satisfying

g+1
Wo(*&g+1) = _Zon*wi(fo) Uwgy1—4(n) + 0.
This is the criterion of James and Thomas [7] saying that there is only
one ¢ — 1 sphere fibration which is stably equivalent to &,.

5. The invariance theorem.
We are now in the position to prove the following theorem.

THEOREM 5.1. Let M and M’ be closed q-dimensional differentiable
manifolds with tangent sphere bundles T and t' respectively. If f: M — M’
is an orientation preserving homotopy equivalence, then T and f*t' are
fibre homotopy equivalent.

Proor. This theorem is proved in [5] for ¢ even and ¢=1,3,7, and
according to Atiyah [1], T and f*7’ are at least stably equivalent. We
know from Lemma 4.2 that 7 is X-orientable in the sense of Definition
4.1. Hence we conclude from Corollary 4.5 that either v and f*’ are in
fact equivalent, or the invariant b(£) is well defined for g— 1 sphere
fibrations which are stably equivalent to <.

The theorem now follows as in [5] from the following two lemmas.
Using the notation of [5] we have for ¢ odd different from 1,3,7:

LEMMA 5.2. Let & and &, be ¢ — 1 sphere fibrations over M with classify-
ing maps v, and v, respectively, and let { be a stably trivial ¢—1 sphere
fibration over S with classifying map p.

If vy=v#, then b(&,)=0b(&,)+b(L), whenever b(&,) is defined and inde-
pendent of orientation.

Proor. Let 7 be a fibration such that 5+ & is trivial, and choose an
X-orientation of &, originating from a classifying map
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@: M g Bn<vq+l>
for v +9.
Consider the commutative diagram

MU (x) —> MUS-2"s B (0,0 U (%)

l l
¥ ‘v

M ? Bn<vq+1> ’

where ¢ is the inclusion and j the collapsing map. Taking Thom com-
plexes on the appropriate fibrations, we get the dual homotopy commu-
tative diagram for £ large:

X gy p v 82tk B (e 4 by v T(q+k) 2 T((E+K) v (g+k)
T
I A 1 c1

> S = T(&+k).

Here 4 is the map which splits the top cell into two, and ¢ is the inclusion
of §2a+k in
T(g+k) = S2a+ky Sa+k

The natural map M uS? -~ Mv8? induces the map 7, of Thom complexes
i T(E+k) v T(g+k) > T((61+F) v (g +F)

which identifies the bottom cells. The pinching map ¢: M -~ Mv 8¢
induces
&: T(¢+k) > T((6+k) v (g+k)).

Analogously there are induced maps

r: T(&+k) v T +k) > T((E+E) v (C+ER),
¢ T(y+k) > T((61+k) v (E+E)) .

The fact that { is stably trivial, shows that there is an equivalence «
between & + & and &,+k, such that there are the commutative diagrams

T@T k) —2— T((&+Fk) v (g+Fk))
T(x)

T(E+k) —— T((E+E) v C+E)),
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T +k) I T(q+k) - T(E+k)vT(C+k)
71 I r
'
T((&+k) v (g+k) = T((&,+F) v (C+E)).

Clearly g,' =T(x)og; defines an X-orientation for &, in such a way that
we have the commutative diagram

X oo ¥ Sk s T(E, 4 E) ¥ T+ )
o i I
X_ggp 7= TEa+ k) — T((E+k) v (C+E)).
The lemma now follows by an easy calculation as in [5, § 3].
LemmA 5.3. Let f: M — M’ be an orientation preserving homotopy equiv-

alence of oriented q-manifolds with tangent sphere bundles v and ' re-
spectively. If b(t) s well defined, we have

b(r) = b(7’).
Proor. Let A € HY(M x M) denote the element defined in the proof of
[5, Proposition 3.4]. Also let
j: MxM,—~T(7)

denote the map collapsing everything outside a tubular neighbourhood.
Finally consider the twisting map

t: MxM—>MxM.

We know that j*U=A +t*A. The normal bundle » xv of M x M clearly
satisfies v,.,(v x ) =0. Accordingly we can find a map

@ MxM -~ Bn<vq+l>
classifying » x ». Obviously
pod: M - MxM - B,(v,;)

classifies v+» over M. Hence we conclude from Corollary 3.2 that the
corresponding X-orientation for 7 is the composite X%j o g, , where

is an X-orientation for M x M in the sense of Browder [4, § 1]. Hence
b(z) is the functionalized Sq?+! on the map X*hog,, where

h: MxM - K(Z,,q)
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represents 4 +t*A4. Clearly
ZE(fxf)ogy: X gpp—> M x M
is an X-orientation for M’ x M'. If
W M xM — K(Z,q)
represents the analogous element
A" +t*A" € H(M' x M),
we obviously have
(fxf)*¥(A +t*4") = A+t*4 ,

and thus
R o(fxf)=h: MxM — K(Z,,q) .

Hence b(7’) is also the functionalized Sg?+! on the map
Z¥h o ZE(fxf)o g, = Z¥h o g, .
This ends the proof of Lemma 5.3 and hence of Theorem 5.1.
Analogously using BSO(n) instead of BSH(n) we have the following

theorem.

THEOREM 5.4. Let f: M -~ M’ be a homotopy equivalence of oriented
g-manifolds with tangent q-plane bundles v and ' respectively. If f*<' and
T are stably isomorphic (as SO-bundles) then they are automatically iso-
morphic (as SO(q)-bundles).

As a consequence of Theorem 5.1 we have according to Sutherland
[14, Corollary 3.4]:

COROLLARY 5.5. Let M and M' be oriented gq-manifolds which are
oriented homotopy equivalent and suppose k< i(q—1). Then M admits a
k-field iff M’ does.

6. Connection with the semi-characteristic.

In this section we will show that under certain circumstances b(z)=
2*(M), the semi-characteristic of M. This is defined by the formula

gD .
M) = > dimHY(M,Z,) mod2 .
i=0

First we use B, = BO(n) for defining an X-orientation

Ir: X _gqp > ZH(M x M)
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for M an arbitrary ¢-dimensional manifold. We assume g odd. Let o
denote the operation introduced by Browder [4, § 1],

p: Ker(g*)ett — Z,.
Using the notation of Lemma 5.3 we have

by(t) = p(A+1*4) .

Lemma 6.1. If [M]=0 in the non-oriented bordism ring, then
2k4 e Ker(g,*)atk .
Proo¥. Arguing as in the proof of Lemma 4.2 and using Lemma 3.6,
we have to show that ¢, (An[M x M])=0, where ¢: M x M — B, is the

classifying map for » x», and [M x M] is the orientation class of M x M.
This is equivalent to show that

Auw,(vxv)U ... Vw;(yxv) =0

for all 4,,...,1, satisfying ¢;+ ... +4,=¢. Here of course w; denotes the
tth Stiefel-Whitney class. Now

d
4 =73 x0p
i=1
where {x;,...,x4,01,...,P4} is a basis for H*(M) satisfying
*; U By = 00y

for degx;+degf;=g. Here o,, denotes the top class of H*(M).

SUBLEMMA 6.2. Let x,y € H*(M) satisfy degx+degy=q. Then

1) (x®y)ud+0 < xUy=+0 for degz>degy,
2) (x®y)UA =0 for degx <degy.

SuBPROOF. 1) Assume degz >degy. Write x and y as a sum of §;’s
and «;’s respectively. Then
(z@y)ud + 0

iff, for an odd number of times, z contains §;, and y contains «;, iff
zUy£0.
2) is trivial.

Lemma 6.1 follows from the sublemma and the fact that

wrxv) = 3 0@ w_,v)
J=0
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We now use Theorem 1.4 in Browder [4] and the fact that
Aut*d = y*(M)oy,p
where oy, 5, is the top class of M x M, to conclude that

by(1) = w(A4) + p(t*4) + y*(M).

THEOREM 6.3. If [M]=0 in the non-oriented bordism ring, then there is
an X -orientation g for v, such that

by(v) = 2*(M) .

Proor. We want to show that for some X-orientation for M x M it
happens that y(A4)=y(t*4).
Analogously to the construction of B,(v,,;) let

Bn, = Bn(”(q+1)/2s cee ,’Uq+1>
denote the total space of the fibration
a': B, - B,

which kills the Wu classes v 1y9,...,%41- Put y,'=(@")*y,, ¥, =
T(y,'), and denote the corresponding dual cospectrum by X’'={X,’}.
Clearly the Whitney sum map
B,xB, - B,
lifts to a map
Bn, x Bn’ - an<vq+1> .

Hence the corresponding map of Thom complexes gives rise to a dual

map of degree one:
hk: X—2q—2k - Xl—q—k A X:—q—k .

Clearly the normal bundle » of M? has a classifying map ¢: M - B,’.
The map induced on Thom complexes defines a map

fk: X'—q—k > Z‘k(]‘l+) .

Hence the composite map (fiAf;)ohk, defines an X-orientation for
M x M. We can thus use

Xf—q——k A X,—q—k
for computing the functionalized Sg2+!, just we know that 2*4 (and
2%(t*A)) goes to zero under fyAf,. In that case y(d4)=y(t*4), because
the twisting map of X’ _,aX’, ; into itself has degree one.
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Arguing as in the proof of Lemma 6.1 and Lemma 4.2, we need to
require that

AU (w0 U ... Vwy(#))@(wysa () U ... Uy, (v)) = 0

whenever ¢, + ... +1,,=¢. According to the Sublemma 6.2, this is the
case precisely when all Stiefel-Whitney numbers are 0. This ends the
proof of Theorem 6.3.
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