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FIFTEEN CHARACTERIZATIONS OF RATIONAL
DOUBLE POINTS AND SIMPLE CRITICAL POINTS

by Alan H. Durfee 1)

Rational double points of algebraic surfaces and simple critical points

of complex analytic functions in several variables can be characterized in

many ways, ail of which involve some form of finiteness. Thèse characteriz

ationscenter on a list of polynomials (the simplest of which is x
k +y2 + z'

2
),

the Dynkin diagrams A
k ,

D k and E
k ,

and the flnite subgroups of the group
of unit quaternions S3S

3

(Table 1).

This paper, which is expository in nature, is divided into two main

sections. The first, Part A, consists of seven characterizations (numbered Al
through A7) of rational double points drawn from the work of algebraic

geometers, among them Artîn, Brieskorn, Du Val, Kirby and Laufer. A

singularity of a complex analytic germ in C3C
3 is a rational double point if

a certain analytic cohomology group calculated from its resolution vanishes.

It is then shown that the minimal resolution of this singularity must cor
respondto one of the Dynkin diagrams listed above and that the germ must
be isomorphic to the zéro locus of one of the germs listed in column 1 of

Table 1. în terms of the method of resolution, thèse singularities are ab

solutelyisolated double points. They are also quotient singularities and

hâve imite local fundamental group. In addition, a limit involving volumes
must be flnite. The introduction to [Du Val 3] gives an historical account of
the rational double points.

Part B contains nine characterizations (numbered Bl through B9) of

simple critical points of complex analytic functions in several variables.
Thèse characterizations, the work of A'Campo, Arnold, Saito, Tjurina
•ind others, involve the space of moduli of ail germs, the quadratic form
on the Milnor fiber, the monodromy group, the minimum number of
critical values of a nearby Morse function, and the weights of weighted
homogeneous polynomials. Parts A and B together présent a total of

l
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fifteen characterizations, since Characterization Al coincides with Charac
terization82.

Most of the characterizations of Part B are shown to be équivalent to

Characterization 81. Other links between the two sets of characterizations

are provided by Theorem 12.2, which shows that Characterizations A2 and

B5 are équivalent, and a récent resuit (Theorem 11.1) partially Connecting
Characterizations A2 and 83. Part B also contains a summary of pertinent
work of Mather and Arnold.

There are two appendices. The first gives nine characterizations of

simple elliptic singularities and almost-simple critical points. They are the

next most reasonable class of singularities after rational double points, and

can be characterized as being "infinité but not too infinité". Ail remaining
singularities are "very infinité" in various sensés. The second appendix
contains Looijenga's proof that the monodromy group of the minimal

hyperbolic germs has exponential growth.
This paper is an expanded version of a séries of lectures given at the

University of Maryland in the spring of 1976, and I thank the department
of mathematics for its hospitality. The lectures were inspired by an un
publishedtalk given by E. Brieskorn at the American Mathematical Society

Summer Institute in Algebraic Geometry in Arcata (1974). I also thank
E. Looijenga and J. Wahl for helpful comments.

A. Seven characterizations of rational double points

Theorem A. Let f (x, y, z) be the germ at the origin 0 of a complex

analytic function, and suppose that /(0) =0 and that the origin is an

isolated critical point of f Then characterizations Al through A7 (which

are listed below) are équivalent.

1. Complex analytic spaces

Let V be the germ at v of a normal two-dimensional complex analytic

space with a singularity at v. (The définitions of thèse terms can be found

in [Laufer !]„) For example, Fcould be/~ *
(0), where/is as in the hypothèses

of Theorem A. Conversely, if Vis embedded m C3C
3 with v the origin, there

is a germ /as above such that Vis isomorphic to/" 1

(0) [Gunning and

Rossi, p. 113]. The singularity is isolated since V is normal. Two such



germs V and W embedded in C n at the origin are isomorphic if there is a

germ of an analytic automorphism of C" fixing the origin and taking V

to W.

Characterization AL The analytic set / 1

(0) is isomorphic to the

zéro locus of one of the functions listed in column 1 of Table 1.

2. Rational singularities

A resolution of a germ of a normal surface singularity V as above is a

complex analytic manifold M and an analytic map n: M -> V that is

surjective and proper (compact fibers) such that its restriction to

M- 7i
~1~ 1

(v) is an analytic isomorphism, and M- n' 1

(v) is dense in M.

Resolutions exist, and can be computed with a certain amount of effort.

The article [Lipman 2] contains a gênerai discussion of resolutions, and

[Laufer 1] and [Hirzebruch, Neumann, and Koh, §9] give a detailed method

with examples.

Among ail resolutions there is a minimal resolution n : M -» V that has

the following universal mapping property: Given any other resolution
%'\ M' -» V, there is a unique map p: M' -> M with n = n op.

The géométrie genus p of X is the dimension of the complex vector space

H 1

(M, (9
M ), where Mis any resolution of F, and 0 M

is the sheaf of holo
morphicfunctions on M [Artin; Wagreich 1, §1.4; Brieskorn 2; Laufer 2].

(V is assumed Stein.) This number is flnite, and independent of the choice

of resolution. It may alternately be defined as the dimension of the stalk

at the origin of the sheaf R
1

n*(9 M on V. The idea behind this définition is

that M is a collection of "thickened" curves, and that the genus of a curve X
is the dimension of H 1

{X, <9
X ). For example, H 1

(M, 0M)0

M ) =oifMis
the total space of a line bundle over a curve of genus zéro. On the other
hand, dim H 1

(M, 0M)0

M ) = k(k-\) (fc-2)/6 if Misa line bundle of Chern
class ~k over a curve of genus (k—l)(k — 2)/2 (the minimal resolution
°f /(*> y> z) =xk +yk + z

k
). In terms of V alone, pis the dimension of

;he space of holomorphic two-forms on V — v divided by square-integrable
r orms [Laufer 2, Theorem 3.4]. Another formula for/? in terms of topological
invariants of the resolution M and the nearby fiber F (see §11) is given in

fLaufer 6].

The analytic set F has a rational singularity if p = 0. A rational singu
arityembeds in codimension 1 if and only if it is a double point (its local
ing is of multiplicity two) [Artin, Corollary 6].



Characterization A2. The singularity of / 1

(0) is rational.
Characterizations Al and A2 will both be shown équivalent to Charac

terizationA3.

3. Exceptional sets

Let V be as above, and let n : M -* V be a resolution of V. The excep
tionalset E = tt" 1

(v) is compact, one-dimensional, and connected, and

hence is a union of irreducible complex curves E l9 ...,E S . It is possible to

arrange that the E
t are non-singular, the intersection of E

t
and Ej is trans

versefor i 7^ /, and no three E
t meet at a point. Such a resolution is called

good. If, in addition, the intersection of E
t

and Ej is empty or one point,
the resolution is very good; this is possible to arrange as well.

Suppose that the resolution is good. Let E
t

• Ej equal the number of

points of intersection of E
t

and Ej if i j (always a non-negative integer),

or the first Chern class of the normal bundle to E
t

evaluated on the orien
tationclass of E

t
if i=j (the self-intersection of E

t
). The matrix {E t

• Ej}
is called the intersection matrix of the resolution. It is proved in [Du Val 2]

(see also [Mumford; Laufer 1, p. 49]) that this matrix is négative definite.

Conversely, given a collection of curves E = E
1 u ... uEs in a two

dimensionalmanifold M with négative definite intersection matrix

{E t
- Ej}, a theorem of Grauert says that the quotient space M JE has a

normal complex structure and that the projection map M -» MjE is analytic
[Laufer 1, p. 60].

Characterization A3. The minimal resolution of / 1

(0) is very good,

and its exceptional set consists of curves of genus 0 and self-intersection — 2.

The équivalence of Characterizations A2 and A3 is proved in [Du Val I],

and [Artin]. The following facts are needed:

(i) Let M -> V be a resolution of a normal singularity V as above.

There is a certain unique non-zero divisor Z = IniE t on M with

n i >0 called the fondamental cycle, and it is shown that the singu

larityof V is rational if and only if the analytic Euler characteristic

%{Z) of Z is 1 (that is, the arithmetic genus of Z is 0) [Artin,
Theorem 3]. It is easy to see that the support of Z is the whole

exceptional set.of E.

(ii) Any resolution of a rational singularity V is very good, and the

curves in the exceptional set are of genus zéro [Brieskorn 2,

Lemma 1.3].



(iii) A rational singularity V embeds in codimension one if and only if

it is a double point, which is true if and only if Z2Z
2 = -2 [Artin,

Corollary 6].

(A2) => (A3) : We only need show É\ = -2 for ail /. Certainly

E) < -2, since if É\ — -1 the resolution could be contracted by Castel

nuovo'scriterion, and E\ >0 would contradict the fact that the matrix

{E t
• Ej} is négative definite. Let K be the canonical class of M. (This exists

since Kis Gorenstein; see for instance [Durfee 2].) The adjunction formula

-Ei • K = E\ + 2 then shows that E
t

• K > 0 for each i. The Riemann-

Roch Theorem x(Z) = - -(Z 2+Z • K) implies that Z•K = 0. Thus

O=Z•K >{E l + ... +^ s
) -K>E r K>o. Hence E r K =0 for ail z, so

again by the adjunction formula, E\ = —2.

f^JJ =^> (A2) : The adjunction formula implies that E
t

- K— 0 for

ail /; since the matrix {E t -Ej} is négative definite, K = 0. Thus / (Z)

= -Z2Z
2

by the Riemann-Roch Theorem. Since x (Z) <1 and Z2Z
2 <0

(again since [E t
• Ej] is négative definite), #(Z) must be 1 and Z2Z

2 must
be —2. This complètes the proof.

Now, exactly what exceptional sets satisfy Characteiïzation A3? First

some algebra. It is possible to associate a weighted graph to any symmetric
intégral bilinear form <,>ona free module with basis e l9 ..., e

s satisfying
(e h ej) >0 for i j: The vertices of the graph are v l9 ...,v s9 two vertices

ii ]

i
and Vj are joined by <e f , ej) edges, and the vertex v

t
is weighted by the

integer (e i9 e
t ). Conversely, a weighted graph defines such a bilinear form.

Let T
p>q>r

be the weighted graph

aère p9p
9 g, and r are positive integers, and ail vertices are weighted by

2.



Lemma 3.1 [Hirzebruch 2, p. 217]. The only connectée! graphs weighted
by -2 and whose associated bilinear form is négative definite are of type
T

P}qr ,
where p, q, and r are positive integers satisfying p'

1 + g'
1 + r~ x

>ï.

Proof. (a) If the bilinear form associated to a graph is négative definite,
so is the bilinear form associated to any subgraph.

(b) The graph (s > 2)

where ail vertices e l9 ..., e
s are weighted by —2, is not négative definite,

since (e x
+ ... + e

s
)

2 =0.

(c) The graph

where ail vertices are weighted by -2, is not négative definite, since

(2e ±
+ ...+2e s +/i + ... +/4/4 )

2 =0.
Thus the graph must be of the form T

PtqLtr . An elementary argument
shows that the bilinear form of T pAr

is isomorphic over the rationals to

the direct sum of a négative definite form and the one-dimensional form

<1 - p~
x - g'

1 - r' I
}. Hence T

p>qr
is négative definite if and only if

p~
i +q~ I +r~ I >\. This proves the lemma.

The only triples of positive integers (/?, g, r) satisfying p
1 + q

1

+ r" 1

> 1 are of course just (1, 1, r) for r>l, (2, 2, r) for r >2,
(2, 3, 3), (2, 3, 4), and (2, 3, 5).

The dual graph of a resolution of a singularity is defined to be the weighted

graph associated to the intersection matrix of the resolution. Applying the

above facts, we see that Characterization A3 is équivalent to :

Characterization A3' . The minimal resolution of / 1

(0) is listed in

column (3) of Table 1
.

Next we show that Characterization Al and A3 are équivalent. Charac

terizationAlimplies Characterization A3 since the singularises of the



functions / listed in column 1 of Table 1 hâve minimal resolutions as in

column 3. (I believe that this first appeared in [Hirzebruch I].) The converse

follows since the singularities listed are taut [Brieskorn 2; Tjurina 3;

Laufer 4]. (Two resolutions n: M-+ V and %' \ M' -> V are topologically

équivalent if their exceptional sets are homeomorphic by a homeomorphism

preserving the self-intersection numbers. A singularity Fis taut if any other

singularity with a good resolution topologically équivalent to a good

resolution of F is then isomorphic to F.)

The classification of rational double points has been generalized in

several ways: to rational triple points [Artin, p. 135], to elliptic singularities

[Wagreich I], and to minimally elliptic singularities [Laufer s]. The Dynkin

diagrams B
n9

C
n , F^ and G2G

2 occur when resolving singularities over non
algebraicallyclosed fields [Lipman I]. There is also a relation with simple

complex Lie groups [Brieskorn 3].

4. Absolutely isolated double points

There are at least three methods of resolving the singularity of the germ
of a normal two-dimensional complex space F. The first method is one of

local uniformization ; this is originally due to Jung, and is described in

détail in [Laufer I]. The second method, due to Zariski, is to alternately
blow up points and normalize. The third method (which generalizes to

higher dimensions), is to blow up points and non-singular curves.
The singularity of Fis absolutely isolated if it may be resolved by blowing

up points alone, that is, it is not necessary to normalize or blow up curves.
For example, the singularity of the zéro locus of f(x, y, z) = x

k + y
k + z

k

is absolutely isolated, since it may be resolved by blowing up the origin once.
The singularity of F is a double point if its local ring is of multiplicity

two. If Fis/" 1

(0), this is équivalent to the lowest non-zero homogeneous
term in the power séries expansion of / being quadratic.

Characterization A4. The singularity of / x
(0) is an absolutely

isolated double point.
The équivalence of Characterizations Al and A4 was proved directly

in [Kirby]. Later, it was shown [Tjurina 2; Lipman 1] that ail rational
singularities are absolutely isolated (thus showing Characterization A2

mplies A4), and in [Brieskorn 1, Satz 1] that A4 implies A3.



5. Quotient singularities

Let Übe a neighborhood of the origin oin C2C
2 and let Hbe a finite

group of analytic automorphisms of U fixing 0. The quotient space U/H
has the structure of a normal two-dimensional complex analytic space with
an isolated singularity, and the projection map U-> U/H is analytic
[Cartan]. An analytic space V is called a quotient singularity if there is a C/

and //" as above such that V is isomorphic to U/H.
An important example of a quotient singularity is C2/G,C

2
/G, where G is

some finite subgroup of GL (2, C). The space C2/GC
2

/G is not just analytic, but

algebraic. For any finite subgroup G of GL (2, C), the ring of functions on

the algebraic variety C2/GC
2

/G is isomorphic to the subring of invariant poly
nomialsin GL (2, C). Hence to find C2/GC

2
/G it suffices to find this subring of

invariant polynomials. Note that a finite subgroup G of GL (2, C) or

SL (2, C) is conjugate to a finite subgroup of U (2) or SU (2) respectively,
since it is possible to choose an invariant Hermitian metric on C 2

. A sub

groupG a GL (2, C) is small if no g e G has 1 as an eigenvalue of multi
plicityone. [Prill, p. 380].

Proposition 5.1. Let V be the germ of a normal two-dimensional

complex analytic space. The following statements are équivalent.

(a) V is a quotient singularity.

(b) V is isomorphic to C2/G,C
2

/G, for some finite subgroup G of GL (2, C).

(c) V is isomorphic to C2/G,C
2

/G, for some small finite subgroup of GL (2, C).

Condition (a) implies condition (b) by the usual linearization argument
[Brieskorn 2, Lemma 2.2]. It is shown in [Prill, p. 380] that condition (b)

implies condition (c). Obviously (c) implies (a). The following theorem is

also proved in [Prill]: Let G and G' be small finite subgroups of GL (2, C).

Then the analytic spaces C2/GC
2

/G and C 2
/G' are isomorphic if and only if G

and G' are conjugate.

Characterization A5. The analytic space / 1

(0) is a quotient singu
larity.

Since quotient singularities are rational [Brieskorn 2, p. 340], Charac

terizationA5 implies Characterization A2. The converse will follow in

round-about fashion.

Consider SU (2), which is of course isomorphic to the group S 3S
3 of unit

quaternions. The finite subgroups of S3S
3

are the cyclic group and the inverse



images of the finite subgroups of the rotation group SO (3) under the

double cover S3S
3

-> SO (3); thèse groups are listed in column 5 of Table 1.

Proposition 5.2. Let G be a non-trivial finite subgroup of SU (2) as

listed in column sof Table 1. Then C2/GC
2

/G is isomorphic to f' 1

(0), where f
is the corresponding polynomial in column 1.

In particular, for each polynomial /in column 1 of Table 1 the analytic

space/"
1

(0) is isomorphic to a quotient singularity. This proposition is

proved by classical invariant theory. For the cyclic group it is easy: Let

G a SU (2) be the cyclic group of order k9k
9 generated by the transformation

(u, v) -» (rçw, rj~
1

v) where rj is a primitive k- ih root of unity. Then we claim

that C2/GC
2

/G is isomorphic to

Let p 1
(w, v) = uv, p2p 2 (v, v) = u

k

, p3p 3 (v, v) = v
k

,
and let p= (p l9 p 2 ,P3)

define a map of C2C
2 to C 3

. The image of pis exactly V. Since p t (gu,gv)

=pi (v, v) for ail ginG, the map p induces a map pof C2/GC
2

/G to V. The

map p is easily seen to be injective, and thus is an isomorphism, since

C
2

jG and F are normal.
The proof for the other finite subgroups GofS3 is similar, and may be

found in [Du Val 3] : The éléments of G are listed, the subring R of C [u, v]

of invariant polynomials is found to be generated by three homogeneous

polynomials p l9 p 2,P32 ,P3 of various degrees, and they satisfy exactly one

weighted homogeneous relation f(p l9 p 2>Pz) ~0-It follows that C2/GC
2

/G is

isomorphic to the zéro locus of /. Spécial cases of this proof go back to

[Klein]. It is also possible to give a simpler uniform proof using vertices,

edges, and faces when G is the commutator subgroup [H, H] of another
linite subgroup HofS3 [Milnor 2, §4].

[Du Val 3, §30] gives a géométrie description of the links of thèse

singularities as regular solids with opposite faces identified. (The link of a

germ V c C" at v is V intersected with a suitably small sphère about v.)

The finite subgroups of GL (2, C) are listed in [Du Val 3, §21] and the

corresponding quotient singularities are studied in [Brieskorn 2, p. 348].
T he ring of invariant polynomials has been computed for the cyclic and

•Jihedral subgroups [Riemenschneider 1,2]. Generalizations of quotient
ingularities and their relation to weighted homogeneous polynomials may
e found in [Milnor 2; Dolgachev].

Characterization As' '. The analytic space / 1

(0) is isomorphic to
2/G,2

/G, where Gisa finite subgroup of SU (2).



Proposition 5.2 shows that characterizations As' and Al are équivalent.
Clearly Characterization As' implies A5; since A5 implies A2, they are ail

équivalent.

Corollary 5.3. Let G be a small finit e subgroup of GL (2, C). Then

G c SL (2, C) if and only if C2/GC
2

/G embeds in codimension one.

This corollary follows from the above case-by-case analysis. J. Wahl

points out that it is also possible to prove it directly, using the following
two facts:

Fact L Let G be a small finite subgroup of GL (2, C). Then

GcSL (2, C) if and only if the singularity of C2/GC
2

/G is Gorenstein.
This is a spécial case of [Watanabe]. A germ of a normal two-dimensional

complex space is Gorenstein if there is a nowhere-vanishing holomorphic
two-form on its regular points.

Fact 2. Let Fbe the germ at v of a two-dimensional rational singu
larity.Then Fis Gorenstein if and only if F embeds in codimension 1.

Proof. Any singularity embedded in codimension one is Gorenstein.

Conversely, suppose F is Gorenstein. Let n: M - F be the minimal resol

utionof F, and let F l u ... uEs = n' 1

(v) be its exceptional set as in

Section 3. Since F is Gorenstein, there is a divisor K on M (the canonical

class) satisfying the adjunction formula. Furthermore K•Et >0 for ail i

since the resolution is minimal, so K <0 [Artin, bottom of p. 130]. If

K < 0, then —K>o, so arithmetic genus p of —K satisfies p(-K) <0
[Artin, Proposition I]. On the other hand, p(-K) = 1 - x(-K) = 1 by

the Riemann-Roch Theorem, a contradiction. Hence K = 0. Thus K • E
t

= 0 for ail /, so F is a double point and embeds in codimension one, as in

the proof that Characterization A3 implies Characterization A2.

6. The local fundamental group

Let F be the germ of a normal two-dimensional complex analytic space

with an isolated singularity at v. Without loss of generality, we may assume

that F is a good neighborhood of v, that is, that there is a neighborhood
basis V

t of v in F such that each V
t - v is a déformation retract of F - v

[Prill]. The local fundament al group of Fatvis then defmed as n 1 (F— v).

This group is trivial if and only if Fis nonsingular at v [Mumford].



Proposition 5.1 (bis). The following statement is équivalent to those

listed above.

(d) The local fundamental group of V is finite.

It is shown in [Prill, p. 381; Brieskorn 2, p. 344] that conditions (a)

and (d) are équivalent.

Characterization A6. The local fïmdamental group of / 1

(0) is finite.

Thus Characterizations A5 and A6 are équivalent.
There is an algorithm for Computing the local fundamental group of V

from a resolution [Mumford], and singularises V with finite, nilpotent and

solvable local fundamental group hâve been classified [Brieskorn 2; Wag
reich2]. When Fis a complète intersection, this classification is particularly
simple [Durfee 2, Proposition 3.3].

7. Volume

Let/(x, y, z) be the germ at the origin 0 of a complex analytic function,
and suppose that/(0) = 0 and that the origin is an isolated critical point

of/ There is an s > 0 such that/" 1

(0) intersects ail sphères of radius s'

about 0 transversally for 0 < s' < s. (See Section 12.) For t e C, let

where D\ is the closed disk of radius s about 0. The function/(x, y, z) takes

df df df
the constant value /on F"

f , so —dx + —dy + —dz = 0 there. Hence a
ôx dy dz

nowhere-vanishing holomorphic two-form co t on V
t may be defined by the

équivalent expressions

Characterization A7. The intégral JFJ

F
œ 0 a co 0

is finite.
Note that the form œ 0 a œ 0 takes positive real values. The équivalence

of Characterizations A2 and A7 is due to Laufer, and follows easily from
lis expression for the géométrie genus in terms of forms [Laufer 2, Corol
'iry3.6].

A différent formulation of this characterization is due to E. Looijenga
unpublished) : Let A (r) = {teC: t < r}, let

ad let vol (X (r)) be its volume in C 3
.



Characterization A7\ lim r
2 vol {X (r)) is finite.

r-+0

Let co = dx a dy a dz, and note that a? a co is 8/z times the volume

form of C 3
. Characterizations A7 and A7' are équivalent since

but since

the above limit equals

B. NINE CHARACTERIZATIONS OF SIMPLE CRITICAL POINTS

We switch our attention from the analytic set defined by the zéro locus

of an analytic function / (x, y, z) to the function itself and the nature of its

critical point. We also generalize to functions /(z 0 , ..., z
n

) of an arbitrary
number of variables. The characterizations in the following theorem will

start in Section 9.

Theorem B. Let f(z 0 , ..., z
n

) with n>l be the germ at the origin 0

of a complex analytic function, and suppose further that /(0) — 0 and that 0

is an isolated critical point of f Then Characterizations Bl through B9 are

équivalent.

8. The classification of right equivalence classes

Let (9 be the set of germs/at the origin 0 of complex analytic functions

on Cn+l.C
n+1

. (In other words, 6is just the ring C {zO,z
0 , ..., z

n
} of convergent

power séries.) The ring (9 is local with maximal idéal



Let

be the idéal in G generated by the partial derivatives of /

Lemma 8.1. A germ/in m has an isolated critical point at oif and only

if there is afe such that m
fc

cz zl/ c m.

Proo/. The germ / has a critical point at oif and only if/em 2

, or

equivalently, Af c m. If this critical point is isolated, then the origin is an

isolated zéro of the functions df/dz 0 , ..., df/dz n . This is équivalent to saying

that the set of common zéros of ail the functions in the idéal zl/equals the

set of common zéros of the idéal rrt. By the Nullstellensatz, there exist

integers /
0 , ..., /„ such that z\ l

e Af. Setting k= (n+ 1) max {/0,...,/

0 , ..., /„}

gives m
fe

<= Af. Conversely, if m
k

c zl/then the origin is an isolated critical

point. This proves the lemma.

Let £F be the set of ail germs in (9 vanishing at the origin and with an

isolated critical point there. (This is the set of finitely-determined germs.)

The Milnor number of a germ fe 3F is

For a comprehensive discussion of fi, see [Orlik 2]. There are many ways
to compute this number, aside from the above formula [Milnor 1, §§7, 10;

A'Campo 1; Laufer 6]. The (right) codimension of/is fi — 1.

Two germs / and g in (9 are right équivalent (written / ~ g) if there is a

germ hofa complex analytic automorphism of Cn+lC n+1 fixing 0 with/ oh
= #. The germs /and g are contact équivalent if there is an /z as above such

that the idéal generated by/ o h in (9 is equal to the idéal generated by g.

This is équivalent to saying that the analytic sets/" 1

(0) and a" 1

(0) are

isomorphic. Note that right-equivalent germs are contact équivalent.
Mather, Arnold, and others hâve classified germs of low Milnor number

under right équivalence. The implicit function theorem shows, for example,
that if y* (0) = 0 but the derivative of/does not vanish at 0, then/is right
équivalent to the projection (z 0 , ..., z

n
) i-> zO.z

0 . If/(0) =0 and /has a non
degeneratecritical point at 0, then f(z 0 , ..., z

n
) ~ z

2

,
+ ... +z2 by the

Morse lemma.

Recall that the k-jet of a germ/in (9 is its power séries expansion up to

legree k. A germ fe (9 is k-determined if any germ with the same fc-jet

«s/is right équivalent to/ In particular, /is right équivalent to its own
'-'-jet. A germ is finitely determined if it is fc-determined for some k < 00.



The fundamental lemmas used in the classification are as follows :

Lemma 8.2. If mk+lm
k+1 cm2Af then/is &-determined.

For the proof, see [Arnold 1, Lemma 3.2; Zeeman, Theorem 2.9;

Siersma, p. B]. Note that m
7 '" 1

c zl/ implies that mk+lm
k+1 cm 2J/. The

corank of / is defined as n + 1 minus the rank of the Hessian matrix
{(d

2

f/dzidzj) (0)}. The proof of part (a) of the following lemma may
be found in [Arnold 1, Lemma 4.1 ; Siersma Lemma 3.2].

Splitting Lemma 8 .3
. (a) Let /(z 0 , ..., zj e#" be of corank r+ 1.

Then there is a# (z 0 , ..., z r
) em3 such that

(b) Let g (z 0 , ..., z
r

) and g' (z 0 , ..., z
r

) e n m
3

. If

#(z 0 ,...,z r
) + z; +1 + ... +z2 ~#'(z 0 ,...,z r

) + zz
2

+1 + ... +z2

then

The classification proceeds by low corank and low Milnor number.

A germ of corank ois right équivalent to z
2

,
+ ... + z

2

,
a germ of corank 1

and Milnor number k > 1 is right équivalent to Zq
+1 +z2 + ... + z

2

,

and so forth. The proofs are not hard [Arnold 1, Zeeman, Siersma].

Table 2, for instance, includes ail right-equivalence classes of germs with

Milnor number jn < 9.

9. CHARACTERIZATIONS UNDER RIGHT AND CONTACT EQUIVALENCE

Characterization 81. The germ/is right équivalent to one of the germs
in Table 2a.

Characterization 82. The germ /is contact équivalent to one of the

germs in Table 2a.

When n = 2, Characterization B2 is the same as Characterization Al.
Clearly Characterization Bl implies Characterization 82. Since ail the

germs in Table 2a are weighted homogeneous (§l6), the converse follows

from the next lemma.

Lemma 9.1. Let g be a weighted homogeneous polynomial, and

suppose that a germ/e #* is contact équivalent to g. Then/is right équiv
alentto g.



Proof. To say that /is contact équivalent to g means that there is a

germ of an analytic isomorphism h: (C n+l
, 0) -> (C n+l

,
0) and a function

m: C n+ 1

-> C with k (0) #0 such that f=u•(go h). Let h= (h°, ...,
A n

)

be the components of A, and suppose that g is weighted homogeneous with

weights (w 0 ,...,w n
). Then,

Hence/is right équivalent to g.

10. Degeneration

Let J k
be the set of /c-jets of germs in (P. There is a projection of (9 to

7/c7
/c by mapping germs to their power séries expansion truncated in degree k.

The ring (9 becomes a topological space by letting a basis of open sets be

inverse images of open sets in J k ,
for ail k.

The group of germs of analytic automorphisms flxing 0 acts on (9, and

the orbits of this action (right- équivalence orbits) are the right-equivalence
classes. Similarly, there is a contact équivalence group which acts on (9,

and the orbits of this action (contact-équivalence orbits) are the contact

équivalence classes [Mather, §2]. A. right-equivalence orbit is always con
tainedin a contact-équivalence orbit; Lemma 9.1 says that the right
equivalenceorbit of a germ /in Table 2a or b equals its contact-équivalence
orbit.

A subset A of (9 is said to right (or contact) degenerate to a subset B

of (9 if the closure of the right (or contact) équivalence orbit of A contains B.

If A dégénérâtes to B, then B simplifies to A (written A <- B). Right de

generacyis also called adjacency. For example, when n = 0, the germ Zq

right dégénérâtes to the germ zz

l

0 for k < l, since the one-parameter family

/"o+(1- zz
l

0
is z\ when t=o, and is right-equivalent to z\ when t 0.

\ll germs of low codimension can be arranged according to right de

reneracyin fascinating tables [Arnold 3; Siersma]. Table 3 lists some (but
lot ail) of the simplifications that occur. The following proposition is a

principal conséquence of the work on degeneration.

Proposition 10.1.

(i) The germs in Table 2a right simplify only to each other.

(ii) The germs in Table 2b right simplify only to the germs in Table 2a.



(iii) The germs in Table 2c right simplify only to the germs in Table 2b

and 2a.

(iv) A germ in !F not right équivalent to a germ in Table 2a, b, or c right
simplifies to a germ in Table 2c.

11. Simple germs and moduli

A germ/e m is said to be right (or contact) simple if there is a neigh
borhoodof/in m intersecting only finitely many right (or contact) équiv
alenceorbits. In the language of algebraic geometry, a germ / is contact

simple if and only if the versai déformation of/~ l
(0) contains only finitely

many isomorphism classes of analytic spaces.
The germs in Table 2a are right and contact simple by Proposition 10.1.

The germs in Table 2b are not contact simple (and hence not right simple) :

E6E
6

is a family of cônes over non-singular elliptic curves in CP 2

,
E

n
is a

family of four lines through the origin in C 2

,
and E 8

is a family of three

parabolas [Arnold 1
; Siersma]. Note that the germs of Table 2c form one

dimensionalfamilies under right équivalence, but ail members of the

family are contact équivalent [Laufer 4; Siersma p. 54]. Clearly if a germ g

right simplifies to/and/is not right simple, then g is not right simple; the

same applies to contact équivalence.

Characterization 83. The germ/is right simple.

Characterization 84. The germ/is contact simple.

The équivalence of Characterizations Bl and B3 follows from Prop
osition10.1 and the above remarks [Arnold I]. Characterization B3 implies
Characterization B4 by définition. Conversely, a contact simple germ /
which is not right simple right simplifies to a germ in Table 2b (by Prop
osition10.1), but thèse are not contact simple. Hence/must be right simple.

The classification of simple germs has recently been extended to complète
intersections [Giusti]. The modality of a germ / is defined in [Arnold 3].

A right-simple germ is zero-modal; ail right équivalence classes of 1 and

2-modal germs hâve been listed [Arnold 2, 3, s]. Moduli of resolutions of

two-dimensional normal singularises are studied in [Laufer 3,4]. The follo
wingresuit provides a connection between Characterizations A2 and 83.

Theorem 11.1 [Randell]. For almost ail germs f(x, y, z) (in the sensé

of the Newton diagram), the géométrie genus p of f~ 1

(0) is les s thon or

equal to the modality of f



12. The quadratic form

Let/(z 0 , ..., z
n

) be a germ with/(O) = 0 and an isolated critical point

at 0 (that is, a germ in #"). There is an s>o such that/" x

(0) intersects ail

sphères of radius e' about 0 transversally for 0 < e' < e. For suitably small

ô>o, Z"
1

(<s') intersects the closed disk D*"" 1 " 2 of radius s transversally

for ail \ô'\ <ô. Let

be the Milnor fiber of / [Milnor I]. The set F is a smooth real 2^-manifold

with boundary whose diffeomorphism type is independent of the choice

of s and <5. Furthermore, F is (n- l)- and the Milnor number \i

of §7 is the rank of H
n (F). The Milnor number is zéro if and only if the

germ/has a regular point at 0 [Milnor 1, Corollary 7.3]. The intersection

pairing (
,

) of Fis the intégral bilinear form H
n (F) x FI

n (F) -> Z deflned

by sending (x, .y) to (x'u/) [F], where x' and y' in i/" (F, dF) are Lefschetz

duals to x and j>, and [F] in H 2n (F, dF) is the orientation class of F given

by the underlying c.omplex structure. The intersection pairing is symmetric
if n is even, and skew symmetric if n is odd. For example, the germ

f(z 0 ,...,z n
) = zq + ... + Z* has H

n (F) a free cyclic group with generator e,

and (e, e) = 2 (- 1)" /2 or 0 according as n is even or odd. There are many
methods of Computing the intersection pairing in spécial cases.

By a tensor product theorem [Gabrielov 1; Sakamoto], the Milnor
numbers of/(z 0 , ..., z

n
) and/(z 0 , ..., z

n
) + z%

+1 + ... +z2 are equal. The

quadratic form of/(z 0 , ..., z
n

) is defined to be the intersection pairing of

the germ /(z 0 , ..., z
n

) + zz
2

+ 1
+ ... +z2 where m= 2 (mod 4). This is

independent of the choice of m. For example, if n = 0 (mod 4) then the

quadratic form of/is the négative of its intersection pairing; ail this follows
from the tensor product theorem. See also [Kauffmann and Neumann].

A germ / topologically dégénérâtes to a germ g if there is an r\ > 0 and

a family h
t

of germs for {t eC:|t| < 2;^} with h
n —/, /z

0 ~g, and /?, of

constant Milnor number for t 0. Compare [Le and Ramanujam]. Clearly
"ight degeneracy implies topological degeneracy.

Lemma 12.1 [Tjurina 1, Theorem I]. If / topologically dégénérâtes

og, then there is an injection of H
n (F f ) into H

n (F
g

) (where F f
is the

vlilnor fiber of/, and F
g

is the Milnor fiber of g), and this injection préserves
ie intersection pairing. In particular, if g topologically dégénérâtes to/as
ell, then the intersection pairings of/and g are isomorphic.



Characterization 85. The quadratic form of/is négative definite.

The équivalence of Characterizations Bl and B5 is proved in [Tjurina I].

By explicit compilation the quadratic forms of the germs in Table 2a are

shown to be négative definite, and those of Table 2b are shown to be

négative semi-definite. (In fact, the quadratic form of a germ in Table 2a

is isomorphic to the intersection pairing of its minimal resolution, and the

quadratic form of a germ of type E
k

in Table 2b is isomorphic to the quad
raticform of E k plus a two-dimensional zéro form.) The resuit then follows
from Proposition 10.1 and Lemma 12.1. When n = 2, the Milnor fiber .Fis

in fact diffeomorphic to the minimal resolution M of f~ x
(0), since the

singularity of/" 1

(0) is an absolutely isolated double point [Brieskorn 1,

Theorem 4; Tjurina 1, Lemma I].

When n = 2, the équivalence of Characterizations A2 and B5 follows
from the following resuit [Durfee 2, Proposition 3.1].

Theorem 12.2. Twice the géométrie genus p of f 1

(0) equals the

number of positive plus the number of zéro diagonal éléments in a diagonal
izationof the intersection pairing over the real number s.

The classification of germs according to signature of the quadratic
form has been extended in [Arnold 3]; see also [Durfee 2, Proposition 3.3].

13. Nearby Morse functions

A déformation of a germ fesF is a germ g: C" +1 xC->C with

g (z, 0) = f(z). Choose e and ô for /as in §11. Then choose rj > 0 such

that for ail |t\< rj and |ô'| <ô, the set {z e C n+ I:g(z,t)1

:g(z,t) = ô'} inter
sectsSl n+l transversally and the critical values of g (z,t) for fixed t are

less than ô in absolute value. A germ / is a nearby Morse function to / if /
has only non-degenerate critical points in DD

2

e

n+2 and there is a déformation

g and ato with | t
0

| < tj such that f (z) = g (z, f
0 ).

Char acter ization 86. There is a nearby Morse function to / with one

or two critical values.

In fact, the nearby Morse function has one critical value if and only

if/is right équivalent to ' A
2 ,

since the quadratic form diagram is connected

(§l4). This surprising characterization is in [A'Campo 211], where it is

shown that Characterization Bl implies 86, and B6 implies B7 below.



14. Vanishing cycles

Let/be a germ in #", and let / be a nearby Morse function with fi distinct

critical values t l9 ..., t
u

in the disk D2D
2 of radius ô about OinC.A path a

£
in

D5 - {ti, ...,t u
} from £tott détermines (up to sign) a vanishing cycle ô

t

in H
n (F). The self-intersection (5,-, ô

t
) is 2(- l) n/ 2 or 0 according as nis

even or odd. Choose paths a1?a

1? ..., a^ in D2D
2

— {t u ..., from ôto flsf

l5 ..., t^

respectively, such that the union of the images of the paths is a déformation

retract of DD
2

Ô ; then the corresponding vanishing cycles <5155

l5 ...,
<3/t3

/t are a basis

of H
n (F) [Brieskorn 4, Appendix]. The basis ô

u ...,
<5M5

M
is called an ordered

(or distinguished) basis of vanishing cycles if £
l5 ..., are ordered so that the

loop going once counter-clockwise around the boundary of D2D
2

is homo

topicin n 1 (D
2 - {t l9 ..., t^}, ô) to the product fi x

* ... * fi^ where p t
is

the loop going out a f
almost to around counter-clockwise, and back

along a t . Références for this are [Gabrielov 1, Lamotke, Durfee I].

Choose an ordered basis of vanishing cycles <51?5

1? ..., Ô^ for the inter
sectionpairing (

,
) of/(z 0 , ..., z

n
) + zz

2

+1 + ... + zf
n ,

where m=2 (mod 4)

The quadratic form diagram of / with respect to the basis ô
u ...,0^ has

vertices v
x , ..., v

fl
and edges from v

i to Vj if (ô t , ôj) 0, weighted by (ô t , ôj)
if (ô h ôj) 7^ 1. This diagram is connected [Lazzeri; Gabrielov 2]. It déter
minesail the topological information in the singularity if n 2 [Durfee I].

There are a number of methods of Computing thèse diagrams [A'Campo 21;

Gabrielov 3; Gusein-Zade]. The quadratic form diagrams of the germs of

Table 2 are listed in column 5. Lemma 12.1 can be strengthened to show

that if/topologically dégénérâtes to g, then some quadratic form diagram
for / is a subdiagram of some quadratic form diagram for g [Siersma,
p. 82].

Characterization 87. There is an ordered basis of vanishing cycles
for /such that the quadratic form diagram is a (weighted) tree.

It is shown in [A'Campo 211] that Characterizations Bl and B7 are

équivalent. In fact, the quadratic form diagrams for the germs in Table 2a

are the same as the graph of their minimal resolutions (column 3 of

Table 1).

15.The monodromy group

Let/be a germ in J% and as above choose an ordered basis <515...,5

l5 ..., ô^ of

nishing cycles for H
m (F), where F is the Milnor fiber of



with m = 2 (mod 4). The Picard-Lefshetz automorphisms T
t of H

m (F)

for i = 1, ..., n are defined by

Another way of writing T
t

is

which shows that T
t

is a reflection in ô
t [Lamotke].

The monodromy group of/is the subgroup of the automorphism group
of H

m (F) generated by T u ..., 7^. This group dépends only on/, since it

may also be defined as a représentation of the braid group of f, which is

the fundamental group of the complément of the bifurcation diagram in

the base space of the versai unfolding of/ [Arnold 3, §2.8]. (Hère is a direct

proof that the monodromy group of / is independent of the choice of

nearby Morse function / and paths alsa

l5 ..., a^: The set DJ — {t1,...,t
1 , ..., t^} is

the base space of a fiber bundle with fiber F, so n 1n

1 (Z)| - {t l9 ..., t^}, S)

acts on H
m (F). The image of p t

in Aut H
m (F) is TT

t \ since /? l5 ..., /?
M

generate nl,n
1 ,

the monodromy group is the image of n 1
in Aut H

m (F). Thus

the monodromy group is independent of the choice of a l9 ..., a^. It is

independent of the choice of / since any two nearby Morse functions with /i

distinct critical values can be joined by a family of such functions.)

Characterization 88. The monodromy group of/is finite.

Characterization B5 implies Characterization B8 since the auto
morphismgroup of any positive definite intégral lattice is finite. In fact,

the monodromy groups are precisely the Coxeter groups of the corre
spondingquadratic form diagram. Conversely, [Gabrielov 3] shows that

if a germ / topologically dégénérâtes to a germ g, then the monodromy

group of/is a quotient of a subgroup of the monodromy group of g. Since

the monodromy groups of the germs in Table 2b are infinité [Gabrielov I],

Proposition 10.1 shows that Characterization B8 implies Characteriz
ation81.

16. Weighted homogeneous polynomials

A polynomial g (z 0 , ..., z
n

) is weighted homogeneous if there are positive

rational numbers wO,w
0 , ..., w n (the weights) such that g (z 0 , ..., z

n
) may be

written as a sum of monomials zz
10°...l

0°...0

°

... zz
ll

n
n with ii

o /w o + ... + ijw n
= 1



[Milnor 1, p. 75; Orlik and Wagreich]. Another way of saying this is that

if the variables z t are weighted by l/w b then gis homogeneous of degree one,

that is, g (A 1/w oz
0 , ...,

Xl/WnX 1/Wn z
n

) =Xg (z 0 , ..., z
n

) for ail complex numbers X.

Ail the germs in Table 1 are weighted homogeneous with weights as listed

in Column 7. Thèse germs remain weighted homogeneous upon adding

squares of new variables, each weighted by 2. It is proved in [Saito 1,

Lemma 4.3] that the weights of a germ g are uniquely determined (up to

permutation) by the analytic isomorphism type of g~
x

(0).

Characterization 89. The germ / 1

(0) is isomorphic to g
1

(0),

where g is a weighted homogeneous polynomial with weights w t satisfying

wô
1

+ ... + w;
1

> tï/2.

The équivalence of Characterizations B2 and B9 is proved in [Saito 2,

Satz 2.11]. (The r there is wô
1 + ... + w' 1

.)

Appendix I

Nine Characterizations of Almost-Simple Critical Points

(Simple Elliptic Singularities)

Almost-simple critical points can also be characterized in several way s.

The nine characterizations presented in this appendix are analogues of

some of those in the main text.

Theorem C. Let f(z 0 , ..., z
n

) with «>2 k the germ at the origin 0

of a complex analytic function, and suppose further that f "(0) = 0 and that 0

is an isolated critical point. Then Characterizations Cl through C9 are

équivalent.

Characterization CL The germ /is right équivalent to one of the

germs in Table 2b.

Characterization C2. The germ /is contact équivalent to one of the

rerms in Table 2b.

The équivalence of thèse characterizations follows from Proposition 9.1.



A germ/e m is said to be right (or contact) almost-simple if /is not

right (or contact) simple, but there is a neighborhood of/in m intersecting
only finitely many right (or contact) équivalence orbits of lower codimension
in m.

Characterization C3. The germ/is right almost-simple.

Characterization C4. The germ/is contact almost-simple.
The équivalence of Characterizations Cl and C3 was conjectured by

Milnor and is proved in [Arnold 3, §3.2.6] using Proposition 10.1. As for

simple germs, Characterizations C3 and C4 are also équivalent.

Characterization C5. The quadratic form of/is not négative definite

but négative semi-definite.
The équivalence of Characterization Cl and C5 proved in [Arnold 3]

using §11 and the fact that the quadratic forms of the germs in Table 2c

hâve one négative and one zéro eigenvalue.

Characterization C6. The monodromy group of/is not finite but has

polynomial growth.
For the notions of polynomial and exponential growth, see [Milnor 3].

This was conjectured by Milnor. It is shown in [Gabrielov 1] that the

monodromy groups of the germs / in Table 2b hâve polynomial growth.

A'Campo fïrst proved that the monodromy groups of the germs in Table 2c

hâve exponential growth. In Appendix II we présent another proof of this

fact due to Looijenga. Hence Characterizations Cl and C6 are équivalent.

Characterization C7. Assume n = 2. Conjecture: The local funda
mentalgroup of/" 1

(0) is not finite but has polynomial growth.
This was also conjectured by Milnor. It is shown in [Wagreich 2] that

the local fundamental groups of the germs in Table 2b are nilpotent, and

hence hâve polynomial growth. In fact, it is conjectured that if the germ

f(z o ,z 1 ,z 2 ) is not simple or almost-simple, then the local fundamental

group off~ 1
(0) has exponential growth, and even contains a free non

abeliansubgroup of finite index. See also [Orlik I].

Characterization CB. Assume n = 2. The exceptional set in the mini
malresolution of/" 1

(0) is a nonsingular elliptic curve E with -3 <£ 2

<-l.



The équivalence of Characterizations C2 and C8 is proved in [Wag

reich2, p. 66; Saito 2, Theorem 1.9]. In fact, the zéro loci of the germs E69E
69

E-j and is
8

hâve minimal resolution as above with E2E
2 = -3, -2 and - 1

respectively.

Characterization C9. The germ / 1

(0) is isomorphic to g
1

(0),

where g is a weighted homogeneous polynomial with weights w t satisfying

wô
1 + ... + w;

1 = w/2.

The équivalence of Characterizations C2 and C9 is proved in [Saito 2,

Satz 2.11]. In fact, the germs in Table 2b hâve the following weights:

Appendix II

The Monodromy Groups of the Minimal Hyperbolic Germs

Proposition. The monodromy groups of the germs P
9 ,

XLO,X

L0 ,
and J lt

hâve exponential growth.

In this appendix, we présent an (unpublished) proof of this proposition
due to E. Looijenga. In fact, we will show that thèse groups hâve PSL (2, Z)

as subquotient (quotient of a subgroup). We let 0 (V) dénote the orthogonal
group of a Z- or R-module V equipped with a bilinear form.

Suppose G is a polyhedral graph whose edges are weighed by non-zero
integers. By convention, the weight 1 is omitted. Let LGL

G dénote the free

Z-module generated by the vertices v19...,v

l9 ...,v n
of G. Define a symmetric

bilinear form (
, )onLG by setting (v i9 v

t
) = -2, and (v i9 vj) =oif there

îs no edge from v t to v j9 otherwise equal to the weight on this edge. Con
ersely,given a symmetric intégral bilinear form (

,
) on a free module L

with basis a1?a

1? ..., a
n

with the property that (a f5 a
t
) = —2 for ail i, one

•associâtes a graph to it in the obvious way.



For ae L G ,
let s

a (reflection in a) be the isometry of LGL
G defined by

for fi g L
G . The reflection group M (G) of the graph Gis defined to be the

subgroup of 0 (L G
) generated by ,y

ai , ..., s
an .

Example 1. Consider a reduced irreducible root System in a vector

space V. Let alsa

l5 ..., oc
n

be a collection of simple roots, let Lbe the free

Z-module spanned by the a h and let (
, )be the négative of an invariant

bilinear form [Serre, Chapter s]. If ((pi 9c

i9 a t
) = -2 for ail i, then the cor

respondinggraph must be of type A
k9 D

k ,
E

6 ,
E7E

7 or EB.E
8 . The reflection group

of thèse graphs equals the Weyl group, the group generated by reflections
in ail the roots [Serre, p. V-16]. Furthermore, the reflection group together
with the generators s av ..., s

an
forms a Coxeter System [Bourbaki, p. 92].

(A Coxeter System is a group G, a collection of éléments g l9 ...,g n
and a

symmetric intégral nxn matrix {m tj ] with m it =1 and 2 <ra ij
- <oo

for i =£ j, with the property that G is isomorphic to the free group with

generators g l9 ..., g n
and relations (#;, g,-)"

I
'-' =1, for ail ij.)

Example 2. The monodromy group of a germ /is the reflection group
of a quadratic form diagram for /(Sections 13 and 14). When this diagram
is a tree (which is only possible for the simple germs), its reflection group
together with the generators 7\, ..., T^ forms a Coxeter System. In gênerai,
this reflection group is not a Coxeter System [A'Campo 2, 11, p. 403].

Lemma [Gabrielov 3]. If the graph G' is a subgraph of the graph G,

then 0t {G') is a subquotient of 31 (G).

Proof. Let a'v ..., a
m

be a basis of L G , corresponding to the vertices

of G', let a15...,a

l5 ..., a
m

be the corresponding éléments in L G ,
and extend this to

a basis a u ..., a
m ,

oc m+ 15 ..., a
n

of LGL
G corresponding to the vertices of G. The

map a'
f -» oc

t
is an isometric embedding of L G , in L G . Let 3t' be the sub

groupof M (G) generated by s
av ..., s

am
; it has a présentation with thèse

generators and certain relations. Any relation among thèse s
a . holds also

for s
a .

| L
G , = s

a
:. Thus 3t' maps onto 3t (G

f

).

Fact. If a subquotient of a group (7 has exponential growth, then so

does G.

Proof of Proposition. 1. A quadratic form diagram for the germs
P

9 ,
XlO9X

109 and / xl is given in column sof Table 2. Thèse graphs contain a



subgraph of the form T 3f3A ,
T 2Ai5 ,

and T2}3>lT

2}3>l respectively, where T
v%q%T

is the graph

Hence it suffices to show that the reflection groups of thèse graphs hâve

exponential growth.
Let F be the graph

with vertices corresponding to basis éléments a, a, fi in L r as indicated.
We claim that M (J VA^ has CO as subquotient, for (/?, q, r) = (3, 3, 4),

(2,4,5), and (2,3,7). Consider (for example) T 3f3A ,
with vertices cor

respondingto basis éléments a,- e Lt 3>3 >3 j 4as indicated:

This contains the graph .Eg. Let

He the largest root of E6E
6 [Bourbaki, p. 165]. Since ail the roots of E6E

6 are

;e same length, (oc, a) = -2. The lattice spanned by a, a, and /? has
( agram T. The réfactions

a
and s

fi are in 01 (r 3t 3f4 ). We claim that s~ is

( r 3, 3,4) as well: The restriction s~ \ L E6 is in 01 (E 6 ), since E6E
6

is a root
stem. Hence | L Ee = fe. (1)

o ... o j a . (m)
) | L^ 6 for some I<z (1),

,
z (m) < 6.



Also, s~ and s
a . (1)

o ... o s
a . (m) are both the identity when restricted

to the orthogonal complément of L E6 ®R in £r3r
3

,

3,43 ,4 ®R. Thus s~

= s
a . {l)

o ... o s
aiim) ,

and M (T 33A ) contains s~. A proof similar to that

of the lemma then shows that 01 (T 33A ) has subquotient 01 (F).

3. Next we show that (F) has subquotient PSL (2, Z). This uses

[E. Artin, Chapter V] heavily.
Let V be the 3-dimensional real vector space L r ®R. The bilinear

form (
,

) of r extends to V. This form is indefinite since a + a has length 0,

Let

Since Fis indefinite, it is known [E. Artin, p. 200] that

(1)

Since PSL (2, R) contains PSL (2, Z) as a subgroup, the idea is to fine

éléments of & (F) c: 0 (r) which are in 0' (V) and map to generators oi

PSL (2, Z). The standard generators of PSL (2, Z) are

with relations S2 = (ST)
3 = 1

. By inspection, it is found that the elementr

s~ Sp and Sp s
a

of 0 (L) satisfy (s~Sp)
2 = (spS a

)
3 =1, and hâve déterminant

equal to 1 and spinor norm equal to 1R* 2
. Therefore we would like to

choose the isomorphism (1) such that s~ s p maps to S, and s~ s
a

=

(s- s fi)'
1

(s
p

s
a

) maps to S' 1

(ST) =T.
The isomorphism (1) is done in two steps. First, let D o (V) be the

éléments of the Clifford algebra of V of norm 1
; then [E. Artin, p. 199]

(2)

We do not need to know exactly what this isomorphism is, but only that

for éléments v, w in V regarded as a subspace of the Clifford algebra,

and v o w their product. Hence under the above isomorphisms

(3)



Secondly [E. Artin, p. 199],

(4)

We examine this more closely. Let

Then A l9 A
2 ,

A3A
3

is an orthogonal basis of V, and the matrix of (
,

) with

respect to this basis is the diagonal matrix <+l, —1, -I>. Let C + (V)

be the subspace of.the Clifford algebra of V spanned by the éléments of

even grading; C +
(V) is generated by 1, i

l9
i

2 , 13, where i
1 =A2 -

A
3 ,

i2i

2 =A3 o A
l9 and z3z

3 =A1 o A 2i and has multiplication table as in

[E. Artin, top of p. 200] with a = -1. The map

(where M (2, R) is the algebra of ail 2 x 2 matrices over R) defined by

is an isomorphism. (This is slightly différent from the isomorphism of

[E. Artin, p. 200].), and the restriction of this map to D
o (V) gives the iso

morphism(4). Furthermore,

(5)

under this isomorphism. Combining isomorphisms (2) and (4) gives iso
morphism(1), and (3) and (5) show that

under isomorphism (1). Thus 0t (F) maps onto PSL (2, Z), and hence has

PSL (2, Z) as subquotient.

4. Finally, PSL (2, Z) is isomorphic to the free product (Z/2Z) * (Z/3Z)
LSerre, ch. 7; Lehner, p. 59], which has exponential growth.



Table

1

Rational

Double

Points



Tahli

2

Girms

01

Low

Mii.nor

Numiii-.r



Table

2

(continuation)



Table 3

Simplification Table

Table 3 lists some (but not ail) of the simplifications that occur among
the germs of Table 2.
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