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The Signature of Smoothings 
of Complex Surface Singularities 

Alan H. Durfee* 
Department of Mathematics, Columbia University, New York, NY 10027, USA 

Let f :  (1~3, 0)-"~(t~, 0) be the germ of a complex analytic function with an isolated 
critical point at the origin. For e > 0  suitably small and 6 yet smaller, the space 
V ' = f - l ( 6 ) ~ D ,  (where D~ denotes the closed disk of radius e about 0) is a real 
oriented four-manifold with boundary whose diffeomorphism type depends only 
on f It has been proved that V' has the homotopy type of a wedge of two-spheres; 
the number p o f two-spheres is readily computable. Recently an interesting formula 
for g was given in terms of analytic invariants of a resolution of the singularity at 0 
of the complex surface f-1(0) [13]. This formula is proved by applying the 
Riemann-Roch theorem to the projective completions o f f - l ( 0 )  and f- i (6) ,  then 
canceling terms coming from the parts away from the origin. The purpose of this 
paper is to find a similar formula for the signature of the intersection pairing on the 
two-dimensional homology of the manifold V', using the Hirzebruch signature 
theorem instead of the Riemann-Roch theorem. 

Various other signature formulas are known, in higher dimensions as well as in 
dimension two. For f (x ,  y, z) of the form g(x, y) + z 2, the intersection pairing of V' is 
the same as a symmetrized Seifert matrix of the compound torus link 
{g(x, y )=0}~S  3. There is a simple formula for the signature of the symmetrized 
Seifert matrix of a compound link of one component [20]; hence if g-1(0) is 
irreducible, there is a simple formula for the signature of V' in terms of the Puiseux 
pairs ofg. If g-  1(0) has several branches at the origin, it is possible to find a Seifert 
matrix for the link defined by g and compute the signature [17], but this process is 
tedious for all but the simplest links. Formulas also exist for the signature when 
f(x, y, z) is of the type x a + yb + z c [10], or when f is weighted homogeneous [22]. 
There is in addition a formula for the signature in terms of mixed Hodge structure 
[233. 

The genus (or geometric genus) of the singularity f -  1(0) (assumed Stein) is the 
dimension of HI(V,, C~), where ~" is a resolution of f-1(0). By combining the 
formulas for the signature and the number # it is possible to show that twice the 
genus of the singularity f -  1(0) is equal to the number of positive plus the number of 
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zero eigenvalues of the intersection pairing (Proposition 3.1). This result provides a 
direct link between analytic and topological data of the germ f It is used, for 
instance, to extend to the case of  complete intersections Arnold's classification of  
germs with respect to the signature o f the intersection pairing, and obtain results on 
the local fundamental group (Proposition 3.3). 

It is possible to give a local proof  of  the formula for the signature of V' using the 
concept of the signature de fect. More generally, the local proof  makes it possible to 
give a formula for the signature of any smoothing V' of a complex analytic germ V 
with an isolated normal singularity, provided that the holomorphic tangent bundle 
of V' is topological trivial. This will be true if V is a complete intersection, and is 
probably true if V is Gorenstein. The general formula for the signature, Theorem 
1.7, is the main result of this paper. Sections 2 and 3 contain examples and 
applications to complete intersections, and the proof  of the theorem is given in 
Section 4. The corresponding formula for ~ has been conjectured by Laufer (given 
here as Conjecture 1.8), and similar methods using the integrality of the Todd genus 
enable it to be proved modulo 12. Thus the general theme of this paper is to compute 
invariants of a deformation of V from a resolution of  V. 

Section 5 contains some conjectures on the size of the signature, its relation to 
degenerating germs, and a necessary condition for smoothing Gorenstein singula- 
rities. An application to conjugate singularities is also given (Proposition 3.4). 

It is possible to obtain a similar formula for the signature in dimensions greater 
than two, but its computational value seems limited. 

All homology and cohomology is with integer coefficients unless otherwise 
indicated. 

I thank H. Laufer for helpful conversations. V. Arnold has informed me that the results of Section 2 
have been obtained independently by I. Dolgachev and M. Reid. 

1. The Main  Theorem 

Let ~ be the germ of  a normal two-dimensional complex analytic space with at 
most an isolated singularity. Let ~ be the germ of the complex numbers at the 
origin. A smoothin 9 o f ~/is  the germ o f a three-dimensional complex analytic set 
and a fiat map f :  "~/~-~ with f -  1(0) isomorphic to the germ ~ and f -  l(s) non- 
singular for s ~0.  The germ ~ has at most an isolated singularity [7, Satz 2.3]. 

Embed ~ in 117" (for some n) with the singularity o f ~  at the origin 0, and choose 
> 0 such that all spheres about 0 o f radius less than or equal to e intersect ~ / a n d  ~ 

transversally [27, Theorem 8.5], [15, p. 17]. Let D~ be the closed disk of radius e 
about 0, and set 

V = ~V'nD~ . 

The diffeomorphism type of the boundary O V o f  Vis independent of the choice of e, 
and Vis homeomorphic to the cone over 0V [15, p. 18]. 

We forget temporarily about the smoothing. Let 

~t: f+--+ V 

be a resolution of  the singularity of V. (See for instance [12].) ~'is nonsingular, ~ is a 
proper surjective analytic map whose restriction ~ ' -  ~-  1(0)--+ V -  {0} is an analytic 
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isomorphism, and n - I ( V -  {0}) is dense in V. Although Vhas boundary and is not 
strictly speaking an analytic set, this causes no difficulty. Note that n-1(0) is a 
deformation retract of E 

The genus p of the singularity of V is defined as 

p = dim~:H 1(~ ", ~ge). 

This number is independent of the resolution, and may alternatively be defined as 
the dimension o f the stalk at the origin of the sheaf R~n,(9p on V [5]. (Note that Vis 
Stein.) 

We may write the compact complex one-dimensional exceptional locus 
E = n-t(0) as the union of its irreducible components, say s of them: 

E = E l w . . . w E  s. 

E is connected since Vis normal. Without loss of generality, we may assume that the 
resolution is good, that is, that the curves E~ are non-singular, intersect transversally, 
and that no three meet at a point. Vhas a minimal good resolution, in the sense that 
any other good resolution factors through the minimal good resolution, and hence 
may be obtained from it by blowing up points, The matrix {E~. Ej}, where EI.E; is 
defined as the number of points of intersection of  E i and E~ for i+-j, and the self- 
intersection of  E~ for i = j  (the first Chern class of the normal bundle to E i in V), is 
known to be negative definite [12, p. 49]. Let 

h = rankH I (E). 

Next we discuss complex vector bundles. We let c i denote the i TM Chern class, and 
denote holomorphic tangent bundle. The following lemma is well known. 

Lemma 1.1. Let ~ be a two-dimensional complex bundle over a C W complex X with 
HI(X) = 0 for i > 3. The following conditions are equivalent: 

(i) ~ is topologically trivial. 
(ii) ~ is stably trivial. 

(iii) The first Chern class c1(~ ) is zero. 
(iv) The second exterior power A2~ is a topologically trivial line bundle. 

Proof. Condition (i) implies (ii) which implies (iii). Conditions (iii) and (iv) are 
equivalent since the first Chern class of A2~ equals the first Chern class of (. Finally, 
(iii) implies (i) since two-dimensional complex bundles over X are topologically 
isomorphic if and only if their first Chern classes are equal: Isomorphism classes of 
bundles overX are in one-to-one correspondence with homotopy classes IX, BU2] 
of maps of X into the classifying space BU 2 of complex two-plane bundles. Now 
Hi(X) = 0 for i>  3, and nl(B U2) = na(BU2) = 0, while n2(B U2) is infinite cyclic. Hence 
[21, 8.4.3], the set IX, BU2] is isomorphic to HE(X) under the correspondence which 
assigns to each bundle its first Chern class. This proves the lemma. 

Definition 1.2. The germ Vis Gorenstein if there is a nowhere-zero holomorphic two- 
form on its regular points V -  {0}. It is numerically Gorenstein if the holomorphic 
tangent bundle to V -  {0} is topologically trivial. 
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Hypersurface singularities as in Section 2 are Gorenstein, since the form 

(dx A dy)/(O f /dz) = (dy /x dz)/(c3 f /Ox) = (dz A dy)/(~3 f /Oy) 

is nowhere zero on V -  {0}. Gorenstein singularities are numerically Gorenstein by 
Lemma 1.1. 

Let Vbe a germ as above with resolution f ~  V, and consider the exact sequence 

wherej is the inclusion map. The abelian groups Hz(v,, a V) and H2(V) are free and of  
the same rank ; j* is injective since {Ei. E j} is negative definite. There is a unique 
class c s H 2 ( ~  Of/)®II~---HZ(V,, OV; II~) such that j*c = c~(z%. The canonical class 
KeH2(V; I1~) is defined to be the Lefschetz dual of - c. The class K can be written as 
~n~E~, where the n~ are rational numbers. 

Lemma 1.3. V is numerically Gorenstein if and only if the n i above are integers. 

Proof. The bundle z ( V -  {0}) is topologically trivial ,~, its restriction z ( V -  {0})10Vto 
BV is topologically trivial ~*-z(~')10f z is topologically trivial ¢~c~(r(fOlaf3=0 (by 
Lemma 1.1) ,~c is integral ~ the n~ are integers. 

For  example, a germ V whose minimal good resolution has exceptional set a 
curve E of genus zero and E 2 < - 2 is not numerically Gorenstein. The following 
lemma is well known. 

Lemma 1.4 (Adjunction formula). The rational numbers n i are uniquely determined 
by the equations 

-- K .  E i = E21 + )c(Ei) 

for i = 1, ..., s, where x(Ei) denotes the Euler characteristic of  Ei. 

Proof. Let ct~ : E ~  ~'be the inclusions, and let v denote holomorphic normal bundle. 
Since j*c=Cx(rV), for each i we have 

ct*j*c = c I (a*z V) = c 1 (vE,) + c t (zEi)" 

Hence 

(o:?j* c) [Ei] = c 1 (vE~) [ E J  + c I (zEi) [E~] 

for each i, where [Ei] denotes the orientation class of Ei. It is an exercise to show that 
the dual of this equation is the same as the equation of the lemma. Uniqueness 
follows since the matrix {E~.Ej} is negative definite. This completes the proof. 

The self-intersection of  K is defined to be the number 

K 2 = .~.n~n~E~ .Ej. 
I , J  

Since the matrix {E~,Ej} is negative definite, we know that K 2 <0,  and that K:  = 0  
implies K = 0. 
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We return to the smoothing of  V. Choose 6 > 0  such that f - l ( s )  intersects the 
sphere o fradius e transversaUy for all Is[ < 26. This is possible since the m a p f i s  flat, 
and hence a product near any point of 8V. Set 

V' = f -  l(b)c~D~. 

Then V' is a real four-manifold with boundary whose diffeomorphism type is 
independent of  the choice of  e, 8, and the embedding of~¢~ in 117". It is oriented by the 
complex structure on its interior. Furthermore, 0Vand 0V' are isotopic in 0D~, and 
thus in particular diffeomorphic. 

Lemma 1.5. Let V and V' be as above. I f  the holomorphic tangent bundle zV' of V' is 
topologically trivial, then V is numerically Gorenstein. 

This follows easily, since V-{0}  deformation retracts to 8V Smoothings of 
hypersurface and complete intersection singularities have zV' topologically trivial 
(cf. Section 2). 

Conjecture 1.6. Let V' be the smoothing of a Gorenstein singularity V. Then zV' is 
topologically trivial. 

The signature a(M) of an arbitrary real oriented four-manifold M with or 
without boundary is defined as follows: There is a symmetric bilinear intersection 
pairing ( , )  on H2(M; IR) defined by setting 

(x, y) = (x'uy') [M] 

where x' and y' in H2(M, OM; IR) are Lefschetz duals to x and y in H2(M; N), and 
[M] e H4(M, OM;~) is the orientation class. This bilinear form may be diagon- 
alized, with diagonal entries + 1, O, and - 1 .  The signature a(M) of M is the 
signature o f this bilinear form, namely, the number of positive minus the number o f 
negative diagonal entries. 

Theorem 1.7. Let ~/" be a germ of a normal two-dimensional complex analytic space 
with an isolated singularity, and let f :  ~1¢/'~ 5 # be a smoothing of ~/'. Construct V' as 
above and assume that the holomorphic tangent bundle to V' is topologically trivial. 
Let Z and ~ be the Euler characteristic and signature of V' respectively. Then 

Z=_-_K2+l-h+s (mod 12) 

and 

= - ½(2(:~- 1) + K 2 + s + 2h). 

Note that Z and t7 are invariants of the smoothing. Examples and applications of  
this result are given in Sections 2 and 3, and its proof  in Section 4. 

Conjecture 1.8 [13]. Under the same hypotheses as Theorem 1.7, 

•=K 2 + 1 - h + s +  12p. 

Laufer has proved this conjecture for complete intersections. The same method 
of proof  works for smoothings that may be put in a projective family with no other 
singularities, for instance as in Example 5.1. 
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2. Complete  Intersections 

Let ~/r be the germ of a two-dimensional complete intersection with at most an 
isolated singularity. Such a U is normal El, p. 435]. The versal deformation of ~e" is 
well understood [25, Theorem 8.1] ; in particular V has a unique smoothing up to 
diffeomorphism. I n fact, let f :  (~k + ~, 0)--* (~k, 0) for k > 1 be the germ o f an an alytic 
function with f -  1(0) isomorphic to "U. Let ~ be the germ of a line through the 
origin 0 in ~k such that f -  ~(s) is nonsingular for s in 5 e -  {0}, and set u~ = f -  ~(Sv). 
Then f : ~ W ~ 5  a is a smoothing of "//~. 

Construct V and V' as in Section 1. The diffeomorphism type of the smooth 
four-manifold V' depends only on q/'. The space V' has topologically trivial 
holomorphic tangent bundle by Lemma 1.1, since its holomorphic normal bundle is 
topologically trivial. It is shown in [15, Theorem 6.5] and [8, Satz 1.7] that V' has 
the homotopy type of a bouquet of  two-spheres. Let 

# =dimHz(V) 

be the Milnor number of ~U. For f : (~3,0)~(C,0) ,  this may be computed by the 
formula 

~f #=dim¢~{x'Y'Z}/(~ ' Ofoy' ~z) (1) 

[15, p. 115] or by various other methods. The signature a of V' is defined as in § 1. 
Both # and a are thus invariants of the germ ~/'. The following result is an immediate 
corollary of Theorem 1.7. 

Corol lary  2.1.  a = - ½(2# + K z + s + 2h). 

Furthermore, Conjecture 1.8 is true for complete intersections: 

Theorem 2.2 [13]. i t=KZ-h+s+ 12p. 

The remainder of this section gives a number of examples. It is often convenient 
to represent the configuration of the E i in the resolution of V(cf. Section 1) by a dual 
graph : Each curve Ej is represented by a vertex p~ weighted by the integer E~ and 
two vertices Pi and pj are joined by Ei. E s lines. 

Example 2.3. Let f :  (~3, 0)-->(¢, 0) be the germ of a rational double point [5, p. 135 ; 
4, § 3.1]. The minimal good resolution V o f f -  1(0) has dual graph a Dynkin diagram 
of  type A~ for s > 1, D s for s > 4, E6, ET, or Es, where all vertices represent curves of 
genus zero and self-intersection - 2. Using the adjunction formula 1.4, it is easy to 
compute that the divisor K is zero for each of the above, so K 2 =0. [Conversely, i fa  
germ has K =0, then the dual graph of its minimal good resolution must be one of 
the types listed: If  K =0,  then E~ + z(E~) = 0 for each i by the adjunction formula, so 
each E~ has genus 0, and E~ = - 2. Since the matrix {E i • Es} is negative definite, the 
assertion follows by standard arguments.] Clearly h = 0. Furthermore, ~l = s, as may 
be checked by (1), or Theorem 2.2. Thus cr = - i t ,  that is, the intersection pairing is 
negative definite. Of course this is well known; according to [24], fi is actually 
diffeomorphic to V'. 
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Example 2.4. Suppose the exceptional set in a minimal good resolution of  the germ 
of a complete intersection ~ consists of  two or more nonsingular curves E~ .. . . .  E s 
of  genus zero intersecting in a circular chain, so that the dual graph is 

-b~ - b  2 

(The fact that ~//" is a complete intersection imposes conditions on the bi; see 
Proposition 3.3D.) Clearly K = - ( E  1 + . . .  + Es), so K 2 =  ~ ( 2 - h i ) .  ~v" is minimally 
elliptic [14], so p = l .  Hence # =  l l + ~ ( 3 - b ~ ) ,  and a = 3 - # .  For  example, the 
function f (x ,  y, z) = (x 2 + ya) (x a + y2) + z 2 (whose type is I15, ~ in the notation of  
Arnold) has resolution whose dual graph is 

Hence/~ = 11 and ~ = - 8. This is the signature of  the two-component link defined 
by { (x ,y )~P z :(x2 + y3)(xa + y2)=O}c~S3: 

Example 2.5. Suppose that f ( x ,  y, z) = g(x, y) + z 2, where g -  2(0) is the union of  three 
cusps of  the form u 2 + v 3 with distinct tangent lines at the origin. The minimal good 
resolution consists o f  two rational curves E 1 and E 2 intersecting at three points, 
with E 2 = E 2 = --4. The divisor K is - 2 ( E  1 + E2). Using [2] we find # = 28. Hence 
o-=--18.  This is the signature of  the link {g(x,y)=0}c~S 3, which has three 
components, where each component  is a trefoil knot  linking each other component  
four times. 

Example 2.6. Let f ( x ,  y, z) = x k + ~ + z k. By (1), # = (k - 1 )3. The singularity o f f -  1 (0) 
may be resolved by blowing up the origin in p3;  E is a single curve of  
genus ½ ( k - 1 ) ( k - 2 )  with E z = - k .  Furthermore, K = ( k - 2 ) E .  Thus 

1 a =  - 5 ( k -  1)(k 2 + k -  3). 

3. Applications to Complete Intersections 

This section contains applications of the results in Section 2. As in that section, let 
~r be the germ of a two-dimensional complete intersection with at most an isolated 
singularity. Let a+, a 0, and a_ be the number of  positive, zero, and negative entries 
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in the diagonalization of the intersection pairing of V'. Hence the Milnor number is 

# = a +  + O'o + o'_ (t) 

and the signature is 

a = a +  - o ' _ .  (2) 

Note that a o equals the invariant h of Section 1, sinceao equals the rank of H,(c3V'), 
which equals h by the exact sequence of the pair (V, 0 V) and the fact that the matrix 
{E~.Ej} is negative definite. The genus p of W is defined as in Section 1. 

Proposi t ion 3.1. 2 p = a o + a  +. 

Thus p, an analytic invariant of the resolution, depends only on the topology of  
V'. The fact that o- o +a+  is an even number had already been obtained using the 
theory o f mixed Hodge structure [23, Proposition 4.14], answering a question in [4, 
§ 3.2.12] for dimension two. 

Proof. Solving (:1) and (2) for a+ yields 

~+ =½(~+~-~o), 
s o  

a+ +ao=½(e+,U+ao). 

Substituting the expression for a given in Corollary 2.1 and replacing a o by h yields 

a+ + a o = ~ { p + h - s - K 2 ) .  

Then substituting the expression for/~ given in Theorem 2.2 gives the desired 
formula. 

A germ ~" of a singularity of a complete intersection is rational ifp =0  [5], and 
minimally elliptic if p = 1 [14]. 

Corollary 3.2. The singularity of the complete intersection ~ is rational if and only if 
a = - # ,  and minimally elliptic if  and only if a o + ~+ = 2. 

The first part of this corollary was already known from the combined work of 
Artin, Brieskorn, and Tjurina. (See the survey article [6].) The second part may be 
used to extend the classification of hypersurface germs with small a 0 and a+ [4, 
§ 3.1 ] to the case o f complete intersections. Results on the local fundamental group 
n of the germ ~ also fit into this framework. (The local fundamental group is by 
definition the fundamental group of V -  {0}, which is isomorphic to the fundamen- 
tal group of 0V.) Parts (A) and (B) of the following proposition are well known, and 
are included for comparison. (Again see [6], for instance.) 

Proposition 3.3. Let E be the exceptional set in the minimal good resolution of the germ 
of a two-dimensional complete intersection 7V" with at most an isolated singularity. 

A. The following statements are equivalent. 
(i) a _  = a 0 = a  + = 0 .  

(ii) rc is trivial. 
Off) E is a point (so ~ is nonsinoular ), 
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B. The following statements are equivalent. 
(i) Cro=a + =0. 

(ii) n is finite. 
(iii) The dual graph of E is of type Ak(k >-_ 1), D~(k ~ 4), E6, ET, or E 8 (so ~ is a 

rational double point). 
C. The foIlowin# statements are equivalent. 

(i) a o = 2 and a + = O. 
(ii) 7z is infinite nilpotent. 

(iii) E is a elliptic curve with - 4  ~ Ez ~ - I. 
D. The following statements are equivalent. 

(i) cr o = a + = 1. 
(ii) n is infinite solvable and not nilpotent. 

(iii) E is a circular chain as in Example 2.4 with ~ ( b i - 2 ) < 4  and either 
(a) s > 2 with all b i >_ 2 and at least one b i > 3, or 
(b) s = 2  with b 1 = l  and b2>5. 

Proof First we show that (i) implies (iii) in both (C) and (D). By Corollary 3.2, p = 1 ; 
since ~ is a complete intersection, it is minimally elliptic [14, Theorem 3.10]. A 
minimally elliptic singularity has the property that every connected proper subset of  
the exceptional set is the exceptional set of a rational singularity [14, Theorem 3.4]. 
Now a o = h, as above, so a 0 = 2 implies that E must be an elliptic curve, and tr 0 = 1 
implies that E must be as in Example 2.4. A germ of a minimally elliptic singularity is 
a complete intersection if and only if K 2 > - 4 [14, Theorems 3.4(2) and 3.13]. The 
conditions on E 2 in (C) and on the bi in (D) are precisely those to make {Ei.Es} 
negative definite and insure that the germ is a complete intersection. This shows that 
(i) implies (iii) ; the reverse implication is obvious. 

Next we show that (ii) and (ii0 are equivalent. The paper [26] lists up to 
homeomorphism all resolutions V such that 0I~ has nilpotent or solvable 
fundamental group. The only such V whose corresponding V is a complete 
intersection are as in (iii) o f(C) and (D). This completes the proof o fProposition 3.3. 

Equations for the germs in (C) are listed in [26, p. 66-67] ; these have g = 11 + E 2. 
Equations for the germs in (D) are given in [14] and [11]. 

Finally, we note that Corollary 2.1 shows that the signature is an algebraic, and 
not just a topological, invariant. For  example : 

Proposition 3.4. Let z be a (discontinuous) automorphism of  C. Let f :  (C3,0)~(~., (3) 
be the germ of  an analytic function with an isolated critical point at O, and let f f  be the 
germ whose coefficients are the image under z of  the coefficients of  f Then the 
signature o f f  ~ equals the signature o f f  

Proof The Milnor numbers # o f f  and f '  are equal, since they may be calculated 
from (1) of  Section 2. The resolution of (f*) - 1(0) is obtained from the resolution of  
f -  1(0) by applying z, so the terms K 2, s, and h on the right-hand side o fCorollary 2.1 
are the same..Hence the signatures o f f  and f~ are the same. 

4. The Proof of Theorem 1.7 
The Hirzebruch signature theorem does not hold for four-manifolds M with 
boundary. Instead, one defines the signature defect of a framed three-manifold N by 
taking the difference of  the L-polynomial and the signature of  some M with OM = N 
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[9, 3. l]. This is independent of  the choice of  M. In our case, the three-manifold ~3Vis 
diffeomorphic to both 0I /and d V'. Hence the signature defect of 0 V can be comput- 
ed in two different ways, and setting these equal yields the equation for the signature 
of V'. The congruence for the Euler characteristic of V' is proved in the same way, 
using the well-known Adams e invariant in place of the signature defect, 

Let N be a real three-dimensional manifold, and assume that its tangent bundle 
(which is trivial) plus a trivial line bundle has the structure of a two-dimensional 
complex bundle which is trivial. (Such manifolds N with stable bundles occur in 
complex cobordism theory. However, it is necessary here to assume that the 
unstable bundles have a complex structure.) Assume that there is a four-manifold M 
with ~M = N and a complex structure on tangent bundle to M that restricts to the 
given complex structure on the bundle over N. Let X be the four-dimensional CW 
complex obtained from M by collapsing N to a point, and let p : M ~ X  be the 
projection. Choose a trivialization ~ of the complex bundle over N. This gives a 
complex bundle ~ on X with p*~ isomorphic to the tangent bundle of  M with its 
complex structure. 

The group H,(X) is infinite cyclic and generated by a class I-X] with 
p , [ M ]  = IX], where [M] is the orientation class of M. We let x(M) denote the Euler 
characteristic of  M and a(M) its signature. 

The signature defect d o of  the framed manifold N is by definition the rational 
number 

d¢(N, a) = ½(c12(~)- 2c2(~) ) IX] - a(M) 

where ci( 0 denotes the i th Chern class of the bundle ~, and its Todd defect d r (usually 
called the complex Adams e invariant) is by definition the element 

d~-(N, ~) = ~(c~(¢) + c~(O) IX] 

of Q/~7. We also define the Euler defect d z of the framed manifold N to be the integer 

d,( N, ~) = c2( 0 [X] - z(M). 

(It is here that we must not stabilize the bundles.) 
These invariants are independent of  the choice of  M;  we sketch the proof for 

dz(N, ~). The class c2(0 equals the Euler class ;((~R) of the underlying real bundle ~R" 
Choose a fixed smooth manifold M' whose boundary is N with the opposite 
orientation, and let ~' be the real bundle onX'  = M'/N obtained from the framing on 
N. Let W be the smooth manifold MuNM' and let "c be its tangent bundle. Then 
(;~(¢R) [XJ - z(M)) + (Z(~')[X'] - ;((M')) = (;C(~R)IX] + Z(#')IX'i) - (z(M) + )~(M')) 
= X(O[W]-  ;((W)= 0 by additivity of  the Euler class and Euler characteristic and 
the fact that the Euler class of  the tangent bundle of  a smooth oriented manifold 
evaluated on its orientation class is its Euler characteristic. Thus Z(~g)[X] - ;~(M) is 
independent of the choice of  M. The same argument together with the fact that 
elZ(~)- 2c2(¢ ) equals the first Pontrjagin class of the underlying real bundle shows 
that do(N, a) is independent of  the choice of  M [9, § 3.1]. The integrality of  the Todd 
genus shows that dr(N, ~) is independent o f the choice of  M;  the manifold M' exists 
since the complex cobordism group is zero in dimension three. 
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It is not hard to see that the decomposable Chern number c~(4)[X] is 
independent of the choice of  frame ~. We will not need this fact, though. Let - N be 
N with the opposite orientation. Note that d , ( - N ,  c0=-d , (N,~) ,  but that 
d~(- N,~)4: -dz(N,~). Note also that if one vector of the 2-frame ~ is always an 
outward-pointing normal, then dx(N, ~) =0. (Cf. [9, p. 222]" This vector field may be 
extended to a vector field on M and on X; its number of zeros is x(M) by a theorem 
of Hopf, and is X(~)[X] by obstruction theory.) Harder results from [16, § 3] show 
that the rational number c2(¢)[X]-2z(M) and the element ~(2c~(~)[X]+z(M)) 
of Q/2~ are independent of both M and the choice of frame ~. It is also possible to 
prove Theorem 1.7 this way, thus avoiding the Euler defect. 

Proof of Theorem 1.7, Choose a framing of the complex tangent bundle to V', and let 
a' be the restriction of  this frame to OV'. There is a diffeomorphism of ~3 V' to •V, and 
of c~V to ~3V. Let ~ be the corresponding framing over OV. Thus 

a(av',  ¢ )  =,~(aR ~) 

for d = d,, dT, and d z. Let 

x '  = v ' /a  v '  

with bundle 4' obtained as above from the framing a', and let 

g = f~/a f~ 

with bundle ( obtained from the framing ~. The bundle ~' is trivial. 
By the definition of d~, 

d,(d V,, ~) = ½(ea:(~) - 2c2(~)) [)f] - a(I~) 

and 

d~(aV', ¢ )  = - a(v ' )  

since 4' is trivial. Combining, 

a(V')= - , 2 "  2c2(~))[~] ~ ( v ) - ~ ( c ~ ( ¢ ) -  . (1) 

Similarly, dT(OV',~')=O since ~' is trivial, so 

(c~(4) + c2(~))[)(] ~ 0 (rood 12). (2) 

We analyze individual terms in these equations. First, 

,~(~3 = - s ,  (3) 

the negative of the number of components in the exceptional set, since E is a 
deformation retract of  V and the matrix {E~ .Ei} is negative definite. 

Also 

= d ~ ( a v ' , ¢ ) +  z (v )  

= - z(V') + Z(~'O (4) 
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by the definition of the Euler defect, and the fact that ~' is trivial. Finally, we claim 
that 

= K  2, (5) 

Let j :  (V,, 0 ) 4 ( ~  0~') be inclusion and let p: V~J~ be projection. The homology class 
K is defined to be the dual of  the unique cohomology class - c  in HZ(V, Of/) 
satisfying j*c=ct(vfQ. Thus 

K 2 = c2[V] 

where [V] e H4(V,, 0V) is the orientation class. Let q*: H2(j()-,H2(V, ~I/) be the map 
induced by projection; q* is an isomorphism. Now c =q*cl(~ ), since the map j* is 
injective and j*c = cl(z~" ) =p*cl(~)=j*q*q(~).  Thus 

c2~ r] ---- q*c2(¢)[ V]. 

Finally, it is not hard to see that 

= 

This proves (5). Substituting (3) through (5) into (1) and (2) proves the theorem. 

5. Remarks 

This section contains conjectures and further examples. 

Example 5.1. Let U be the germ of  a surface with a normal singularity whose 
minima/good resolution has exceptional set a curve E of genus 1 and self-intersec- 
tion - k, where k >= 1. It is shown in [18] that ~ is smoothable if and only if k _<9, 
and that the smooth fiber V' is obtained as follows: Embed E in ~lP 2 as a cubic, 
blow up 9 -  k points in general position on E to get a surface M, and remove an open 
tubular neighborhood T in M of  the proper transform (the non-exceptional curve) 
of E. Then IT' is M - T .  We can calculate the signature a of V' directly: Since 
~r(CP 2) = 1, we have a(M) = 1 - (9 - k) = k - 8. The closure 7"of Tin M has signature 
I since E z = + 9. Thus by Novikov additivity, a(V') = a ( M ) -  a(T) = k - 9. The Euler 
characteristic X of  V' may be calculated similarly: Since X(~P 2) = 3, we have z(M) 
= 3 + (9 - k) = 1 2 -  k. Now X(73 = 0 since it is a circle bundle, so by additivity, x(V') 
= x(M)-Z(73 = 12 -k .  ( ~  is Gorenstein and minimally elliptic, so this agrees with 
Conjectures 1.6 and 1.8 and Theorem 1.7.) 

Conjecture 5.2. Let ~e- be a germ of  a normal two-dimensional complex analytic space 
with an isolated singularity, and suppose 3 e~ is smoothable. Let ~r be the signature of 
the smoothing V' as in Section 1. Then a>O. 

When 3e" is Gorenstein, this combined with Conjectures 1.6 and 1.8 and 
Theorem 1.7 would yield a necessary condition for smoothing in terms of  the 
resolution, namely, that s + K 2 + 8p ~ 0. Conjectures 5.2 is true for smoothings 
of rational singularities which have simultaneous resolution (so 1 ? is homeo- 
morphic to V'), Example 5.1, and examples in [11]. It is also true for hyper- 
surfaces ~ defined as the zero locus of an equation of the form g(x, y) + z 2. (The 
signature of V' is then the same as the signature of a symmetrized Seifert matrix 
of  the link {g(x, y)=  0} nS~. If  g is irreducible, Conjecture 5.2 follows easily from a 
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formula for the signature of  compound knots [20]. If g is reducible, there is a 
Dynkin diagram for the intersection pairing ofg  as in [3]. The subspace spanned by 
the 6 i corresponding to double points is negative definite, and the number of such 6i 
is greater than p/2 by Lemma 4 of that paper.) It is also conjectured in [13] that the 
Euler characteristic X of  the smoothing satisfies ~ > 1. 

The rest of this section is concerned with germs ~ of complete intersections with 
at most an isolated singularity, as in Section 2. 

Conjecture 5.3. Let ,i/" be the germ of a complete intersection. Then 6p ~ #, with 
equality only when/~=0. 

For  example, the germ of  Proposition 3.3 (C) with E 2 ---- - -  4 has # =7  and p =  1. 
(Is this germ the non-trivial complete intersection of smallest Milnor number p?) 
Consider also Example 2.6, where # = ( k -  1)3 and p = ~k(k-  1) (k -  2). Here 6p < #, 
and the limit of#/6p as k approaches infinity is 1. The germ ~/is  nonsingular if and 
only if/~ =0 ;  for ¢ r a  hypersur face, this is shown in [15, Corollary 7.3]. Recently it 
has been shown that Conjecture 5.3 is true for singularities that are non-degenerate 
in the sense of Kouchnirenko [19]. The inequality 6 p < #  is equivalent to 
(r < - ( 2 p  + o-0). Hence Conjecture 5.3 implies Conjecture 5.2 for complete inter- 
sections. 

Suppose that f and g are germs of analytic functions as in Section 2. The germ f 
is said to topologically degenerate to the germ g if there is a family of  germs ft 
depending analytically on the complex parameter t with f l  = f and fo = g, and ft of  
constant Milnor number # for t # 0 .  Tables of  degeneracy in the case of  
hypersurfaces are found in [4]. It is easy to show that if f topologically degenerates 
to g, then the Milnor number o f f  is less than or equal to the Milnor number of g. 
The following conjecture is verified by all examples I know, and would imply 
Conjecture 5.2 for complete intersections. 

Conjecture 5.4. I f  the germ f topologically degenerates to the germ g, the signature o f f  
is greater than or equal to the signature of g. 

Here is a consequence of this conjecture: 

Corollary 5.5. Assume Conjecture 5.4 is true. I f  the germ f topologically degenerates 
to the germ g, then the genus p (see Section t)  o f f -  1(0) is less than or equal to the 
genus of g-  l(O). 

Proof. By Proposition 3.1, 2p = a o + a +. Assuming a _-< 0, it is not hard to see that the 
number a o + a+ is exactly the dimension of a maximal subspace restricted to which 
the intersection form is zero. Since the intersection form of f maps isometrically into 
the intersection form of g [24], this number cannot decrease. 
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