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A MINIMAL BRIESKORN 5-SPHERE IN THE

GROMOLL-MEYER SPHERE AND ITS APPLICATIONS

CARLOS DURÁN AND THOMAS PÜTTMANN

Abstract. We recognize the Gromoll-Meyer sphere Σ7 as the geodesic join

of a simple closed geodesic and a minimal subsphere Σ5
⊂ Σ7, which can be

equivariantly identified with the Brieskorn sphere W 5

3
. As applications we in

particular determine the full isometry group of Σ7, classify all closed subgroups

which act freely, determine the homotopy types of the corresponding orbit

spaces, identify the Hirsch-Milnor involution in dimension 5 with the Calabi

involution of W 5

3
, and obtain explicit formulas for diffeomorphisms between

the two Brieskorn spheres W 5

3
and W 13

3
and standard Euclidean spheres.

1. Introduction

In 1974 Gromoll and Meyer [GM] constructed an exotic sphere as biquotient

of the compact group Sp(2) and thereby the first exotic sphere with nonnegative

sectional curvature. This sphere, Σ7, can be regarded as the basic example of a

biquotient in Riemannian geometry and, simultaneously, as the basic example of

an exotic sphere. Σ7 is naturally an S3-bundle over S4 and by choosing two local

trivializations of this bundle properly, Σ7 is identified with the Milnor sphere Σ7
2,−1,

which is a generator of the group of homotopy spheres Θ7 ≈ Z28 in dimension 7.

Recently, it was shown that Σ7 is actually the only exotic sphere that can be

modeled by a biquotient of a compact Lie group [KZ], [To].

Because of this exceptional status of the Gromoll-Meyer sphere it seems natural

to study the geometry of Σ7 in detail. Papers that do this from various viewpoints

are [Du], [Esch], [PS], [Ym], [Wh], for example. Here, we investigate Σ7 through the

interaction between symmetry arguments, submanifold stratifications, and geodesic

constructions. It is important, however, to note that we do not only consider the

Gromoll-Meyer metric on Σ7 but the entire 2-parameter family of metrics 〈 · , · 〉µ,ν
that are O(2)×SO(3) invariant by construction. This family includes the Gromoll-

Meyer metric (µ = ν = 1
2 ) and the pointed wiedersehen metric constructed in [Du]

(µ = ν = 1) but not the metrics of almost positive sectional curvature obtained in

[Esch] and [Wh]. Extending the constructions of [Du] and [ADPR] we obtain the

following structural information:
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Theorem 1.1. The Gromoll-Meyer sphere Σ7 is the join of a simple closed geodesic

Σ1 and a minimal subsphere Σ5, which is O(2)×SO(3)-equivariantly diffeomorphic

to the Brieskorn sphere W 5
3 . For µ = 1 and ν > 0 the distance between Σ1 and

Σ5 is constant π
2 and the join structure is realized by distance minimizing geodesics

from Σ1 to Σ5.

This theorem and its applications concern the interplay between the Riemann-

ian geometry of the metrics 〈 · , · 〉µ,ν on Σ7 and the equivariant geometry of the

Brieskorn sphere W 5
3 . Recall that the Brieskorn sphere W 5

3 is the submanifold of

C4 defined by

z3
0 + z2

1 + z2
2 + z2

3 = 0,

|z0|2 + |z1|2 + |z2|2 + |z3|3 = 1

and that there is a natural action of O(2) × SO(3) on W 5
3 (see section 5). On the

one hand, it is perhaps not surprising that W 5
3 plays a central role for the geometry

of Σ7 if one recalls that Σ7 is diffeomorphic to W 7
6j−1,3 for any j ∈ {1, 9, 17, . . .}

(see [Bk]). Here, W 7
6j−1,3 ⊂ C ⊕ C4 is defined by the equations

u6j−1 + z3
0 + z2

1 + z2
2 + z2

3 = 0,

|u|2 + |z0|2 + |z1|2 + |z2|2 + |z3|3 = 1.

On the other hand, while Σ5 and W 5
3 are O(2)×SO(3)-equivariantly diffeomorphic,

the ambient spaces Σ7 and W 7
6j−1,3 are never even SO(3)-equivariantly diffeomor-

phic (see Corollary7.2).

It is important to note that W 5
3 is not equivariantly diffeomorphic to S5 with any

linear O(2)×SO(3)-action and this holds true if one restricts from O(2)×SO(3) to

the subgroup O(3) = {±1}×SO(3). This follows from the classification theorems of

Jänich and Hsiang/Hsiang (see [Bd2], [HzMa]). On the other hand, these theorems

imply that there exist SO(3)-equivariant diffeomorphisms S5 → W 5
3 where SO(3)

acts diagonally on S5 ⊂ R3 × R3.

This brings us to the first application of Theorem 1.1. Using the geodesic join

structure we derive an explicit formula for an SO(3)-equivariant diffeomorphism

S
5 → W 5

3 . This non-trivial formula can be verified by a straightforward computa-

tion and immediately carries over to dimension 13:

Theorem 1.2. Formula (9) in section 5 provides an SO(3)-equivariant diffeomor-

phism S5 →W 5
3 and a G2-equivariant diffeomorphism S13 →W 13

3 .

According to our knowledge this is the first explicit formula for diffeomorphisms

between standard spheres and Brieskorn spheres W 2n−1
d with n > 2 and odd d > 1.

Related to Theorem 1.2 is Theorem 9.3 where we provide nonlinear actions of

O(2)×SO(3) and O(2)×G2 on the Euclidean spheres S5 and S13 that are equivalent

to the O(2)×SO(3)-action on W 5
3 and to the O(2)×G2-action on W 13

3 , respectively.

Various models existed for these actions previously (see [Bd1]) but only on manifolds

that were inexplicitly diffeomorphic to S5 and S13.

In order to explain the second application of Theorem1.1 we have to digress

briefly into the history of exotic involutions of spheres. A fixed point free involution
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of the standard sphere is called exotic, if the quotient is not diffeomorphic to the

real projective space. The first examples of such involutions were given by Hirsch

and Milnor [HsMi]. They considered the exotic Milnor sphere S3 · · ·Σ7
2,−1 → S4

and the involution of Σ7
2,−1 induced by the antipodal map on the S3-fibers, detected

invariant subspheres of dimensions 5 and 6 in Σ7
2,−1, and proved that the restrictions

of the involution of Σ7 yield exotic involutions of these subspheres. The next

example of an exotic involution was given by Calabi (unpublished, see [Bd1]) who

showed that the involution of W 5
3 given by the map (z0, z

′) 7→ (z0,−z′) is exotic.

In [HzMa], the Calabi involution was identified with an involution constructed by

Bredon and this in turn was identified with the Hirsch-Milnor involution by Yang

[Yg]. The latter identification, however, turned out to be incorrect (see a footnote

in [SS]), so that an explicit identification between the Hirsch-Milnor involution and

the Calabi involution was still missing.

In [ADPR] it was shown that the Hirsch-Milnor involutions are induced by the

action of −1l ∈ Sp(2) on Σ7 = Σ7
2,−1 and that the invariant subspheres of Hirsch

and Milnor are precisely the sphere Σ5 and the intermediate equators Σ5 ⊂ Σ6
±A ⊂

Σ7 (see section 2). In combination with explicit diffeomorphisms S
5 → Σ5 and

S6 → Σ6
±A provided by the geodesic geometry of Σ7 this was used to derive explicit

formulas for exotic involutions of the Euclidean spheres S5, S6, S13, and S14. As

consequence of Theorem1.1 we now obtain

Corollary 1.3. The equivariant diffeomorphism Σ5 → W 5
3 identifies the Hirsch-

Milnor involution in dimension 5 with the Calabi involution of W 5
3 .

Since Σ5/{±1l} and Σ6
±A/{±1l} are not diffeomorphic to real projective spaces

it is natural to investigate the metrics on Σ5 and Σ6
±A induced by the metrics

〈 · , · 〉µ,ν on Σ7. We will show that for none of these metrics Σ5 or Σ6
±A are totally

geodesic in Σ7. Moreover, the induced metrics always have some negative sectional

curvatures.

The third application of Theorem1.1 concerns the full isometry group of Σ7. As

mentioned already in [GM], Hsiang showed that the maximum dimension of the

isometry group of any metric on Σ7 is 4 (see [Sm] for a proof). Thus the identity

component of the isometry group of 〈 · , · 〉µ,ν is the group SO(2)×SO(3). It remains

the nontrivial problem to determine the other components. Of particular interest

is to see which finite groups can act freely on Σ7. Recent papers [Sh], [GSZ] dealt

with the analogous problem for the homogeneous and cohomogeneity one manifolds

of positive sectional curvature. Surprisingly, it turned out that sometimes noncyclic

groups can act freely on these spaces. For the cohomogeneity 3 metrics 〈 · , · 〉µ,ν on

Σ7 the structural information of Theorem1.1 can be used to reduce the problem to

the corresponding problem for the induced cohomogeneity one metrics on Σ5. This

latter problem can be solved with the help of some curvature computations.

Theorem 1.4. The group O(2) × SO(3) is the full isometry group of the metrics

〈 · , · 〉µ,ν on Σ7 and on Σ5. Any subgroup that acts freely on either Σ7 or Σ5 is

a finite cyclic group. Conversely, for any m ∈ Z the group Zm acts freely and
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isometrically on Σ7 and on Σ5, even in several non-conjugate ways for a fixed

m > 2.

All the Zm-quotients of Σ7 inherit nonnegative sectional curvature from the

Gromoll-Meyer metric 〈 · , · 〉 1
2
, 1
2
. (It is interesting, however, to note that for m > 2

the known metrics with almost positive sectional curvature on Σ7 [Esch], [Wh] are

not invariant with respect to the Zm-actions.) In the case of Σ5 none of the metrics

〈 · , · 〉µ,ν has nonnegative curvature but by the Grove-Ziller construction [GZ] there

exist O(2) × SO(3)-invariant metrics on Σ5 with K ≥ 0.

Corollary 1.5. For any m not divisible by 6 and any two integers p, q with p 6= 0,

3p − q 6= 0, 3p + q 6= 0 such that m is relatively prime to p, 3p − q, and 3p + q

there is a 7-manifold with K ≥ 0 that is homotopy equivalent to the lens space

L7
m(p, p, 3p − q, 3p + q) but not diffeomorphic to any standard lens space. If m is

even there also exists a 5-manifold with K ≥ 0 that is homotopy equivalent to the

lens space L5
m(p, 3p− q, 3p+ q) but not diffeomorphic to any standard lens space.

In dimension 5 the case m = 2 was already covered in [GZ]. Apart from this

these seem to be the first known exotic homotopy lens spaces with K ≥ 0. Exotic

lens spaces with positive Ricci and almost nonnegative sectional curvature in higher

dimensions were found by Schwachhöfer and Tuschmann [ST].

The non-trivial part of Corollary 1.5 is to determine the homotopy type of the

free Zm-quotients of Σ7 and Σ5. It is well-known that the orbit spaces of free Zm-

actions on homotopy spheres are homotopy equivalent to lens spaces (see [Bw]).

For a concretely given action on a homotopy sphere, however, there is no canonical

tractable way to determine the homotopy type of the quotient. In our case we

will follow an idea of Orlik [Or] and construct branched coverings Σ5 → S5 that

can be extended by the join structure of Theorem1.1 to (continuous) branched

coverings Σ7 → S7. The essential property of these branched coverings is that they

are O(2) × SO(3)-equivariant where O(2) × SO(3) acts linearly on S7 and S5. The

target spaces of the induced maps Σ7/Zm → S
7/Zm and Σ5/Zm → S

5/Zm are thus

standard lens spaces and this allows us to determine the homotopy type of Σ7/Zm
and Σ5/Zm.

The fourth application of Theorem1.1 resides in determining the structure of

fixed point sets of isometries of Σ7. Fixed point sets of isometries are useful to

understand the geometry of Riemannian manifolds since each connected component

is a totally geodesic submanifold. In particular, they provide significant curvature

information since the extrinsic and intrinsic sectional curvature of a plane tangent

to a totally geodesic submanifold are equal. In a general biquotient it is fairly

difficult if not impossible to determine the structure of all fixed point sets. In Σ7,

however, we can employ Theorem1.1 to determine the metric structure of all fixed

point sets in a very geometric way (see section 7). It turns out that all fixed point

sets with dimension > 1 are congruent to one of three 3-spheres Σ3
0, Σ3

1, Σ3
2, to

a real projective space P 3, or a lens space L3 ≈ S3/Z3. It is interesting to see

how the biquotient structure of Σ7 causes Σ3
0 and L3 to have more intrinsic than

extrinsic isometries: Both are intrinsically homogeneous although they only inherit
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a cohomogeneity one action from the O(2)× SO(3) action on Σ7. The fact that L3

and P 3 are fixed point sets with non-trivial fundamental group shows how much the

geometry of Σ7 differs from the geometry of the standard sphere S7 with constant

curvature. The induced metrics 〈 · , · 〉µ,ν on Σ3
2 are properly of cohomogeneity 2.

They are remarkable since the curvature tensor looks like the metrics would be of

cohomogeneity 1 and there is no obvious deformation to the constant curvature

metric through metrics with this property.

The authors would like to thank Uwe Abresch and A. Rigas for many useful

discussions. We also thank Luigi Verdiani whose Maple applets allowed to cross-

check some of the curvature computations in a very efficient way.

2. The geodesic join description of the Gromoll-Meyer sphere

In this section we review and extend some of the constructions of [Du] and

[ADPR]. In particular, we use a 1-parameter family of metrics on the Gromoll-

Meyer sphere Σ7 with the pointed wiedersehen property along a circle Σ1 to recog-

nize Σ7 as the geodesic join of Σ1 and a minimal subsphere Σ5 ⊂ Σ7.

Let S3 denote the unit sphere in the quaternions H and Sp(2) the group of 2× 2

quaternionic matrices A such that Āt ·A = 1l. On Sp(2) we consider the class of left

invariant and Sp(1) × Sp(1) right invariant Riemannian metrics. After rescaling,

these metrics correspond precisely to the AdSp(1)×Sp(1)-invariant inner products

〈
[
x1 −ȳ1
y1 z1

]
,
[
x2 −ȳ2
y2 z2

]
〉µ,ν = Re

(
µ x̄1x2 + ȳ1y2 + ν z̄1z2

)

on the Lie algebra sp(2). The standard biinvariant metric on Sp(2) is 〈 · , · 〉 1
2
, 1
2
.

This metric has nonnegative sectional curvature and it follows from Cheeger’s con-

struction [Ch] that all metrics 〈 · , · 〉µ,ν with µ, ν ≤ 1
2 have nonnegative sectional

curvature as well.

Two free isometric actions of S
3 on Sp(2) play a central role in the rest of the

paper: the standard action

S
3 × Sp(2) → Sp(2), q •A = A ·

[
1 0
0 q̄

]

and the Gromoll-Meyer action [GM]

S
3 × Sp(2) → Sp(2), q ⋆ A = q ·A ·

[
q̄ 0
0 1

]
.

Both these actions foliate Sp(2) by S3-orbits in two different ways: The orbit space

of the standard action • can be naturally identified with S7 ⊂ H2 by restricting

a matrix in Sp(2) to its first column. The orbit space Σ7 of the Gromoll-Meyer

action ⋆ is diffeomorphic to the exotic Milnor sphere Σ7
2,−1. The corresponding

projection maps are denoted by πS7 : Sp(2) → S
7 and πΣ7 : Sp(2) → Σ7. Through-

out this paper both orbit spaces, S7 and Σ7, are supposed to carry metrics induced

from 〈 · , · 〉µ,ν on Sp(2) by Riemannian submersion. The metrics on S7 and Σ7 will

also be denoted by 〈 · , · 〉µ,ν . Since Riemannian submersions are curvature nonde-

creasing it is clear that the sectional curvature of (Σ7, 〈 · , · 〉µ,ν) is nonnegative for

µ, ν ≤ 1
2 .
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The starting point for our subsequent geometric constructions and considerations

is the following elementary fact: The •-orbit and the ⋆-orbit through any real matrix

A ∈ O(2) ⊂ Sp(2) are equal as sets since A commutes with all q ∈ S3. A geodesic

in Sp(2) that passes perpendicularly through the common orbit

S
3 •A = S

3 ⋆ A =
{
A ·

[
1 0
0 q̄

] ∣∣ q ∈ S
3
}

is perpendicular to all •-orbits and all ⋆-orbits and hence projects to geodesics in

both orbit spaces, S7 and Σ7. (Recall that the inner product between the velocity

vector field and a Killing field is constant along a geodesic). Now, fixing a matrix

A′ ∈ S
3 • A = S

3 ⋆ A, we get an identification between the geodesics in S
7 that

start at the point S3 • A and the geodesics in Σ7 that start at the point S3 ⋆ A:

Two such geodesics γS7 and γΣ7 correspond to each other if and only if there is a

common horizontal lift through A′, i.e., a geodesic γ̃ in Sp(2) which starts at A′

perpendicularly to S3 •A = S3 ⋆A such that γS7 = πS7 ◦ γ̃ and γΣ7 = πΣ7 ◦ γ̃. Since

S3•A = S3⋆A are only equal as sets, this identification depends on the choice of A′.

There is, however, a canonical choice for A′ since S3 • A = S3 ⋆ A intersects O(2)

precisely in the set
{
A,A·

[
1 0
0 −1

]}
and hence contains a unique element A′ ∈ SO(2).

Figure 1. For A ∈ SO(2) ⊂ Sp(2) a geodesic in S7 through S3 •A
corresponds precisely to one geodesic in Σ7 through S3 ⋆ A via a

common horizontal lift through A.

This correspondence has an immediate application in the case µ = 1 where

each left invariant metric 〈 · , · 〉1,ν on Sp(2) induces the standard metric on S
7: All

unit speed geodesics of S7 pass through their antipode after time π and return to

their starting point after time 2π. This holds in particular for the geodesics that

start at a point S3 • A with A ∈ O(2). Since the antipode of S3 • A is the orbit

S3 • (−A) = S3 ⋆ (−A), the geodesic correspondence above implies the following

recurrency behavior:



A MINIMAL BRIESKORN 5-SPHERE IN THE GROMOLL-MEYER SPHERE 7

Theorem 2.1 (see [Du] in the case ν = 1). The unit speed geodesics of (Σ7, 〈 · , · 〉1,ν)
that start at a point S3 ⋆ A with A ∈ O(2) all pass through S3 ⋆ (−A) after time π

and return to S3 ⋆ A after time 2π (but do not close smoothly in general). These

geodesics are length minimizing until time π.

In accordance with the literature (see e.g. [Bs]) the points of the circle

Σ1 := {S
3 ⋆ A | A ∈ O(2)} ⊂ Σ7

will be called wiedersehen points. The wiedersehen property allows us to define

natural subspheres of Σ7: For A ∈ O(2) the bisector

Σ6
±A :=

{
x ∈ Σ7

∣∣ dist(x, S3 ⋆ A) = dist(x, S3 ⋆ (−A)) = π
2

}

is given by the midpoints of the geodesics that start at S
3 ⋆A and end at S

3 ⋆ (−A).

The intersection of all the bisectors Σ6
±A in Σ7 is the set

Σ5 :=
⋂

A∈O(2)

Σ6
±A =

{
x ∈ Σ7

∣∣ dist
(
x,Σ1

)
= π

2

}
.

Recall that the joinX∗Y of two spacesX and Y is the quotient ofX×Y×[0, 1]/ ∼
where (x, y, 0) ∼ (x, y′, 0) and (x, y, 1) ∼ (x′, y, 1) for all x ∈ X and all y ∈ Y . For

our purposes it is convenient to substitute [0, 1] by [0, π2 ].

Corollary 2.2. For µ = 1 the Gromoll-Meyer sphere Σ7 is the geodesic join of

the circle Σ1 and the subsphere Σ5 which have constant distance π
2 , i.e., the map

Σ1 ∗ Σ5 → Σ7 that maps (x, y, t) to γ(t), where γ : [0, π2 ] → Σ7 is the unique unit

speed geodesic segment from x to y, is a homeomorphism.

The identification of geodesics in S7 that start at S3 • A with the geodesics of

Σ7 that start at a point S3 ⋆ A provides an SO(3)-equivariant homeomorphism

between S7 and Σ7 that restricts to a diffeomorphism between S7 r (S3 • (−A)) and

Σ7 r (S3 ⋆ (−A)).

This diffeomorphism further restricts to diffeomorphisms S6
±A → Σ6

±A and S5 →
Σ5 where

S6
±A =

{
[w1
w2

] ∈ S
7 ⊂ H

2
∣∣ dist

(
[w1
w2

] , [ a11
a21

]
)

= dist
(
[w1
w2

] ,− [ a11
a21

]
)

= π
2

}

=
{
[w1
w2

] ∈ S
7 ⊂ H

2
∣∣ Re(a11w1 + a21w2) = 0

}

= {A · [ pw ] ∈ S
7 ⊂ H

2 | p ∈ Im H, w ∈ H}

and

S5 =
{
[ p1p2 ]

∣∣ p1, p2 ∈ Im H, |p1|2 + |p2|2 = 1
}
.

Note that

π−1
Σ7 (Σ6

±A) = π−1
S7 (S6

±A) = {A · [ p ∗
w ∗ ] ∈ Sp(2) | p ∈ Im H, w ∈ H}

π−1
Σ7 (Σ5) = π−1

S7 (S5) = {[ p1 ∗
p2 ∗ ] ∈ Sp(2) | p1, p2 ∈ Im H}

(1)

since the two sets on the right hand side are invariant under the ⋆-action.
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There are explicit formulas for the horizontal lifts of the relevant geodesics in

S7 and hence for the diffeomorphisms S6
±A → Σ6

±A and S5 → Σ5: Consider the

geodesic

γ[ pw ](t) = cos t
[

1
0

]
+ sin t [ pw ]

in S7 ⊂ H2 that emanates from the north pole with initial velocity [ pw ] ∈ S6 ⊂
Im H × H. The unique horizontal lift γ̃[ pw ] of γ[ pw ] to Sp(2) with γ̃[ pw ](0) = 1l is

given by

γ̃[ pw ](t) = cos t

[
1 0

0
w
|w|e

tp w̄
|w|

]
+ sin t

[
p −etpw̄

w − w
|w|pe

tp w̄
|w|

]
,(2)

where ep = cos |p| + p
|p| sin |p| denotes the exponential map of S3 ⊂ H at 1. Note

that for w = 0 equation (2) simply becomes γ̃[ p0 ](t) =
[
etp 0
0 1

]
. Now the curve

πΣ7 ◦ γ̃[ pw ] is a geodesic of Σ7 for all metrics 〈 · , · 〉1,ν and

S
6 → Σ6

±1l, [ pw ] 7→ πΣ7 ◦ γ̃[ pw ](
π
2 )(3)

is an analytic diffeomorphism. This diffeomorphism restricts to an analytic diffeo-

morphism S
5 → Σ5 for Rew = 0.

In [ADPR] it was shown that Σ5/{±1l} and Σ6
±A/{±1l} are homotopy equivalent

but not diffeomorphic to RP
5 and RP

6, respectively. We conclude this section with

the following observation:

Lemma 2.3. Let A0 :=
[

0 −1
1 0

]
. For any A ∈ O(2) the bisector Σ6

±A·A0
in

(Σ7, 〈 · , · 〉1,ν) is geodesic at the two points S3 ⋆ A and S3 ⋆ (−A), i.e., any geo-

desic of (Σ7, 〈 · , · 〉1,ν) that starts at one of these points tangentially to Σ6
±A·A0

is

completely contained in Σ6
±A·A0

.

Proof. It suffices to consider the case A = 1l. By (1) we have

Σ6
±A0

= πΣ7

({[
w′ ∗
p′ ∗

]
∈ Sp(2)

∣∣ p′ ∈ Im H, w′ ∈ H
})
.

Form (2) it is now evident that all the geodesics πΣ7 ◦ γ̃[ pw ] with Rew = 0 are

contained in Σ6
±A0

. �

Corollary 2.4. The exotic projective space Σ6
±A/{±1l} inherits from Σ7 a one

parameter family of metrics that are Blaschke at one point.

3. The isometry group of the Gromoll-Meyer sphere

The •-action of S3 on Sp(2) of the previous section extends to the action

O(2) × S
3 × Sp(2) → Sp(2), (A, q) •B = A ·B ·

[
1 0
0 q̄

]
.

This action is isometric for all metrics 〈 · , · 〉µ,ν on Sp(2) and commutes with the

Gromoll-Meyer action ⋆. Hence, it induces an effective isometric action

O(2) × SO(3) × Σ7 → Σ7, SO(3) = S
3/{±1},
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on Σ7 that will again be denoted by •. This action already appeared in the original

paper of Gromoll and Meyer [GM]. At the end of this section we will show that

O(2) × SO(3) is the full isometry group for all the metrics 〈 · , · 〉µ,ν on Σ7. The

following simple fact is fundamental for the rest of the paper. It allows us to

investigate geometric properties of the metrics that Σ5 inherits from Σ7, it yields

an equivariant diffeomorphism between Σ5 and the Brieskorn sphere W 5
3 , and it is

the key to determine which isometries act freely on the Gromoll-Meyer sphere.

Lemma 3.1. The •-action of O(2)×SO(3) on Σ7 leaves Σ1 and Σ5 invariant. The

induced •-action on Σ5 is of cohomogeneity one.

The cohomogeneity one action is studied in detail in section 4. Note that the

•-action of O(2) × SO(3) does not leave any of the Σ6
±A invariant. The largest

action that preserves Σ6
±1l (and also Σ6

±A0
with A0 =

[
0 −1
1 0

]
) is the restriction of

the •-action to Z2 ×Z2 × SO(3) where Z2 ×Z2 is the group of diagonal matrices in

the O(2)-factor.

Corollary 3.2. The Gromoll-Meyer sphere Σ7 is O(2)×SO(3)-equivariantly home-

omorphic to the join Σ1 ∗ Σ5.

In the following three lemmas we use the geodesic constructions from the previous

section to get some immediate structural information about fixed point sets. Any

element (or any subgroup) of O(2) × SO(3) either fixes the entire circle Σ1, two

antipodal points in Σ1, or no points in Σ1 at all.

Lemma 3.3. If an element ψ ∈ O(2) × SO(3) does not have a fixed point in Σ1

then its fixed point set (Σ7)ψ is completely contained in Σ5.

Proof. It suffices to consider any of the metrics 〈 · , · 〉1,ν . By Lemma 3.1 the isom-

etry ψ maps Σ1 and Σ5 to themselves. Through any point p ∈ Σ7 outside Σ1 ∪ Σ5

there is a unique geodesic segment from Σ1 to Σ5 with length π
2 . If p is fixed by

the isometry ψ this segment is fixed pointwise as well. �

Corollary 3.4. For all the metrics 〈 · , · 〉µ,ν the 5-sphere Σ5 is a minimal subman-

ifold of Σ7 and of each Σ6
±A.

Proof. All principal isotropy groups of the •-action on Σ5 ⊂ Σ7 are conjugate to

the subgroup H ⊂ O(2) × SO(3) determined in Lemma4.5. The union Σ7
(H) of all

orbits of type (H) in Σ7 (i.e., the set of all points whose isotropy group is conjugate

to H) is a perhaps disconnected open minimal submanifold of Σ7 (see [HL]). Any

subgroup conjugate to H contains an element of the form (−1l,±q). All elements

of this form act on Σ1 by the antipodal map. Thus, Lemma 3.3 implies that Σ7
(H)

is contained in Σ5. Now, Σ5 is apparently the closure of Σ7
(H) and hence minimal.

An analogous argument using the Z2×Z2×SO(3) action shows that Σ5 is minimal

in Σ6
±1l. �

Lemma 3.5. If ψ ∈ O(2)×SO(3) fixes precisely two antipodal points S3⋆(±A) ∈ Σ1

with A ∈ O(2) then (Σ7)ψ is contained in Σ6
±A·A0

with A0 =
[

0 −1
1 0

]
. Moreover,

(Σ7)ψ is a suspension of (Σ5)ψ from the two points S3 ⋆ (±A). In particular, (Σ7)ψ

and (Σ5)ψ are both diffeomorphic to spheres.
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Proof. It suffices to consider any of the metrics 〈 · , · 〉1,ν . Between any two points

p, q ∈ Σ7 with p ∈ Σ1 and q 6∈ Σ1 there exists a unique minimizing geodesic segment

from p to q. If ψ fixes p and q then it fixes the geodesic as well. Note that (Σ7)ψ is

either empty or odd dimensional since ψ is orientation preserving. (As a generator

of the group Θ7 ≈ Z28 of homotopy spheres, Σ7 does not admit orientation reversing

diffeomorphisms.) �

Lemma 3.6. If ψ ∈ O(2) × SO(3) fixes all points in the circle Σ1 then (Σ7)ψ is

either equal to Σ1, or (Σ7)ψ is the join of Σ1 and (Σ5)ψ and hence the suspension

of (Σ6
±A)ψ from any two antipodal points S3 ⋆ (±A) ∈ Σ1. In particular, (Σ7)ψ,

(Σ6
±A)ψ, and (Σ5)ψ are diffeomorphic to spheres.

Proof. Similar to the proofs of Lemma3.3 and Lemma 3.5. �

The three lemmas above show that the topologically interesting fixed point sets

are all contained in Σ5. In section 7 we will study the induced metrics on all existing

fixed point sets.

In Lemma3.1 it was shown that all elements of O(2)× SO(3) map Σ1 and Σ5 to

themselves. The same is true for any isometry of (Σ7, 〈 · , · 〉µ,ν):

Lemma 3.7. Every isometry of (Σ7, 〈 · , · 〉µ,ν) maps Σ1 and Σ5 to themselves.

Proof. The maximum dimension of any compact differentiable transformation group

on Σ7 is 4 (see [Sm]). The •-action of G = O(2)× SO(3) on Σ7 is effective. Hence,

the subgroup G0 = SO(2) × SO(3) of G is the identity component of the isometry

group G̃ of Σ7. Let ψ ∈ G̃ be any isometry of Σ7. Since G0 is a normal subgroup

of G̃ conjugation by ψ on G̃ maps SO(3) to itself. Hence, ψ maps the fixed point set

of SO(3) in Σ7 to itself. This fixed point set is precisely the circle Σ1 of wiedersehen

points. Moreover, ψ also maps G0-orbits diffeomorphically to G0-orbits. It thus

follows from the isotropy groups like in the proof of Corollary3.4 that ψ maps Σ5

to itself. �

Theorem 3.8. The isometry group of (Σ7, 〈 · , · 〉µ,ν) is the group O(2) × SO(3).

Proof. We need some geometric facts from the following sections for the proof. In

Lemma4.7 it will be shown that O(2)×SO(3) is the isometry group of (Σ5, 〈 · , · 〉µ,ν).
By the previous lemma, every isometry of (Σ7, 〈 · , · 〉µ,ν) maps Σ5 to itself. It suf-

fices to show that the only isometry of Σ7 that fixes Σ5 pointwise is the identity.

Let ψ be such an isometry. The fixed point set of ψ is the disjoint union of to-

tally geodesic submanifolds. Consider the component M that contains Σ5. Clearly,

Σ2 ⊂ M ∩ Σ3
2 (see section 7). Since Σ2 is not totally geodesic in Σ3

2 it follows that

Σ3
2 ⊂ M . Now consider the congruent copy Σ̃3

2 of Σ3
2 given by the fixed point set

of the isometry
([−1 0

0 1

]
,±k

)}
in Σ7. By the same argument as above Σ̃3

2 is also

contained in M . The inclusion Σ5 ∪Σ3
2 ∪ Σ̃3

2 ⊂M implies that dimM = 7 (inspect

the tangent spaces along the normal geodesic) and hence that ψ = idΣ7 . �
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4. The cohomogeneity one action on Σ5

We will now study the cohomogeneity one action • on Σ5 in detail. The essential

technical step is to find a normal geodesic, i.e., a geodesic that crosses all •-orbits

perpendicularly. Recall from (1) that

Σ5 = πS7

(
{[ p1 ∗
p2 ∗ ] ∈ Sp(2) | p1, p2 ∈ Im H}

)
.

We will show that the curve α(s) = πΣ7(α̃(s)) with

α̃(s) =
[
j cos s k sin s
k sin s j cos s

]

is such a normal geodesic and compute the isotropy groups along this geodesic and

the induced Riemannian metrics on the principal orbits. Finally, we will show that

O(2) × SO(2) is the full isometry group of (Σ5, 〈 · , · 〉µ,ν).

Lemma 4.1. The curve α̃ intersects all ⋆-orbits in Sp(2) perpendicularly, i.e., α̃

is horizontal with respect to the submersion πΣ7 : Sp(2) → Σ7.

Proof. For all the metrics 〈 · , · 〉µ,ν the tangent vector of α̃,

α̃′(s) = α̃(s) ·
[

0 −i
−i 0

]
,

is perpendicular to the vertical space at α̃(s), which is spanned by the three vectors

ξ1(s) := d
dτ

(
eiτ · α̃(s) ·

[
e−iτ 0

0 1

])
|τ=0

= α̃(s) ·
[ −2i 0

0 −i
]

ξ2(s) := d
dτ

(
ejτ · α̃(s) ·

[
e−jτ 0

0 1

])
|τ=0

= α̃(s) ·
[
j(cos 2s−1) k sin 2s
k sin 2s j cos 2s

]

ξ3(s) := d
dτ

(
ekτ · α̃(s) ·

[
e−kτ 0

0 1

])
|τ=0

= α̃(s) ·
[−k(cos 2s+1) j sin 2s

j sin 2s −k cos 2s

]
. �

Lemma 4.2. The curve α̃ is a geodesic for any of the metrics 〈 · , · 〉µ,ν on Sp(2).

Proof. Since α̃ is an integral curve of the left invariant vector field v given by[
0 −i

−i 0

]
∈ sp(2) it suffices to compute ∇vv at the identity matrix. For an arbitrary

left invariant vector field w the Kozul formula for the Levi-Civita connection yields

〈∇vv, w〉µ,ν = −〈v, [v, w]〉µ,ν .

Using the special value of v at the identity matrix and the fact that adv is skew

symmetric with respect to the biinvariant metric 〈 · , · 〉 1
2
, 1
2

one gets

〈∇vv, w〉µ,ν = −〈v, [v, w]〉µ,ν = −〈v, [v, w]〉 1
2
, 1
2

= −〈[v, v], w〉 1
2
, 1
2

= 0

at the identity matrix. �

Corollary 4.3. The curve α := πΣ7 ◦ α̃ is a geodesic in Σ7, and this geodesic is

contained in the 5-sphere Σ5 ⊂ Σ7.

Lemma 4.4. The geodesic α in Σ5 ⊂ Σ7 intersects all •-orbits perpendicularly.
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Proof. The tangent space to the •-orbit through α̃(s) is spanned by

v̂0(s) := d
dθ

([
cos θ − sin θ
sin θ cos θ

]
· α̃(s)

)
|θ=0

= α̃(s) ·
[
i sin 2s − cos 2s
cos 2s −i sin 2s

]
,

v̂1(s) := d
dτ

(
α̃(s) ·

[ 1 0
0 e−iτ

])
|τ=0

= α̃(s) ·
[

0 0
0 −i

]
,

v̂2(s) := d
dτ

(
α̃(s) ·

[ 1 0
0 e−jτ

])
|τ=0

= α̃(s) ·
[

0 0
0 −j

]
,

v̂3(s) := d
dτ

(
α̃(s) ·

[ 1 0
0 e−kτ

])
|τ=0

= α̃(s) ·
[

0 0
0 −k

]
.

(4)

All four vectors are perpendicular to the horizontal vector α̃′(s). �

The isotropy groups of the •-action along the geodesic α are regular for s 6∈ π
4 ·Z

and are denoted by H . The singular isotropy groups at s = 0 and s = π
4 are

denoted by K− and K+, respectively. Straightforward computations yield

Lemma 4.5. The isotropy groups along the normal geodesic α are given by

H =
{
(1l,±1), (−1l,±i),

([
1 0
0 −1

]
,±j

)
,
([−1 0

0 1

]
,±k

)}

≈ Z2 × Z2,

K− = {(1l,±ejτ )} ∪ {(−1l,±iejτ )} ∪
{([

1 0
0 −1

]
,±ejτ

)}
∪

{([−1 0
0 1

]
,±iejτ

)}

≈ Z2 × O(2),

K+ =
{([

cos θ − sin θ
sin θ cos θ

]
,±e− 3

2
iθ

)}
∪

{([
cos θ − sin θ
sin θ cos θ

]
·
[

1 0
0 −1

]
,±e− 3

2
iθj

)}
.

≈ O(2).

Note that K+ is isomorphic to an O(2) that projects surjectively onto the O(2)

factor in the definition of the •-action while K− is isomorphic to Z2 × O(2) where

the O(2)-factor corresponds to {(1l,±ejτ )} ∪ {(−1l,±iejτ )}, which is contained in

the identity component of the acting group O(2) × SO(3). The singular orbit at

s = 0 is diffeomorphic to S2 ×Z2
S1 and the singular orbit at s = π

4 is diffeomorphic

to SO(3).

We will now compute the induced metrics on the principal orbits. This com-

putation will be used later in this section to determine the isometry group of the

Gromoll-Meyer sphere and in section 7 where we discuss the geometric properties

of the metrics on Σ5 and Σ6. We need to compute the inner products of four lin-

early independent Killing fields along the normal geodesic α in Σ5. Such Killing

fields v0(s), . . . , v3(s) are given by the horizontal parts ṽ0(s), . . . , ṽ3(s) of the Killing

fields v̂0(s), . . . , v̂3(s) along α̃ given in (4). Straightforward computations using the

orthogonal basis ξ1(s), ξ2(s), ξ3(s) of the vertical space at α̃(s) given in (4) show

ṽ0(s) = α̃(s) ·
(

3 sin 2s
4µ+ν

[
iν 0
0 −2iµ

]
+ cos 2s

[
0 −1
1 0

])
,

ṽ1(s) = α̃(s) · 2
4µ+ν

[
iν 0
0 −2iµ

]
,

ṽ2(s) = α̃(s) ·
([

0 0
0 −j

]
+ cos 2s

ν cos2 2s+4(1−(1−µ) sin2 s) sin2 s

[
j(cos 2s−1) k sin 2s
k sin 2s j cos 2s

])
,

ṽ3(s) = α̃(s) ·
([

0 0
0 −k

]
+ cos 2s

ν cos2 2s+4(1−(1−µ) cos2 s) cos2 s

[
k(1+cos 2s) −j sin 2s
−j sin 2s k cos 2s

])
.
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The action of the principal isotropy group H on these four Killing fields along α is

given by the matrices
[ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
,

[ 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
,

[−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

]
,

[−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]
.

The inner products 〈ṽj(s), ṽk(s)〉 of the Killing fields are given by the matrix


a(s) b(s) 0 0

b(s) 4µν
4µ+ν

0 0

0 0 c(s) 0
0 0 0 d(s)


(5)

where

a(s) = 1 −
(
1 − 9µν

4µ+ν

)
sin2 2s,

b(s) = 6µν
4µ+ν sin 2s,

c(s) = ν 4(1−(1−µ) sin2 s) sin2 s

ν cos2 2s+4(1−(1−µ) sin2 s) sin2 s
,

d(s) = ν 4(1−(1−µ) cos2 s) cos2 s
ν cos2 2s+4(1−(1−µ) cos2 s) cos2 s .

This matrix description of the cohomogeneity one metrics 〈 · , · 〉µ,ν on Σ5 will be

interpreted in section 7 in terms of totally geodesic submanifolds L3, Σ2, and Σ̃2,

which intersect pairwise perpendicularly in the normal geodesic α. The upper left

2 × 2-block of the matrix in (5) describes cohomogeneity one metrics on the lens

space L3 ≈ S3/Z3 (the block becomes singular at s ∈ π
4 + π

2 Z; the smoothness at

these times can best be seen by passing from ṽ0 to 2ṽ0 − 3ṽ1 and from s to s+ π
4 ).

The numbers c(s) and d(s) describe cohomogeneity one metrics on the 2-spheres

Σ2 and Σ̃2. In section 7 we will see the following:

Lemma 4.6. For all µ, ν > 0 the lens space L3 ≈ S
3/Z3 is totally geodesic in Σ5

and Σ6
±A and inherits an intrinsically homogeneous metric. For µ = 1 and ν = 1

2

the lens space L3 has constant curvature 1.

It is interesting to compare these metrics on Σ5 (and hence on the exotic projec-

tive space Σ5/{±1l} ) briefly to those that come from the Grove-Ziller construction

for cohomogeneity manifolds with codimension 2 singular orbits [GZ]. Our metrics

are analytic and there are always points with negative sectional curvature. The

Grove-Ziller metrics are merely smooth but have nonnegative sectional curvature;

on the lens space L3 they induce a proper cohomogeneity one metric with planes

of zero sectional curvature over an open set of points.

Lemma 4.7. The isometry group of (Σ5, 〈 · , · 〉µ,ν) is the group O(2) × SO(3).

Proof. It is obvious from the isotropy group computation above that the •-action

of G = O(2)×SO(3) on Σ5 is effective. The full isometry group G̃ of Σ5 cannot act

transitively on Σ5. Otherwise all fixed point sets of isometries would be homoge-

neous which they are not (see section 7). Hence, the geodesic α is perpendicular to

all G̃-orbits. Let H̃ denote the common principal isotropy group along the geodesic

α and let H̃(s) denote the group of isomorphisms of R4 that preserve the symmetric

bilinear form given by the matrix (5). Clearly, H̃ is isomorphic to a subgroup of
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the intersection of all H̃(s). It is straightforward to see that the intersection of all

H̃(s) is the group of order 8 generated by the three involutions
[−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

]
,

[ 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

]
,

[ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
.

If this entire group of order 8 were the isotropy group along α then the curvature

tensor 〈R(α′, v1)v2, v3〉µ,ν of Σ5 would vanish identically. However, computations

show that

〈R(α′, v1)v2, v3〉µ,ν = rµ,ν(cos 2s) sin 4s

where rµ,ν is a rational function with rµ,ν(0) = − −8µν
(1+µ)(4µ+ν) . This implies that

〈R(α′, v1)v2, v3〉µ,ν does not vanish for s close to but not equal to π
4 . It follows

that the isotropy group H of the •-action is the full principal isotropy group H̃ of

(Σ5, 〈 · , · 〉µ,ν). Since the principal orbits G/H are connected, G is the full subgroup

of G̃ that preserves the principal orbits. Moreover, G̃ is a finite extension of G and

G ⊂ G̃ is a normal subgroup. If G were a proper subgroup of G̃ then G̃/G would

act nontrivially on the orbit space and the Weyl group of the cohomogeneity one

action of G̃ on Σ5 would be larger than that of the action of G. This is impossible,

as one can see from the isotropy groups in Lemma 4.5. �

5. The identification of Σ5 with the Brieskorn sphere W 5
3

We will now construct a O(2) × SO(3)-equivariant diffeomorphism between the

sphere Σ5 ⊂ Σ7 and the Brieskorn sphere W 5
3 given by the equations

8
9 z

3
0 + z2

1 + z2
2 + z2

3 = 0,

4
3 |z0|

2 + |z1|2 + |z2|2 + |z3|2 = 4
9

in C
4 = C ⊕ C

3. It is crucial for section 8 that we have modified the coefficients

compared to the standard definition of W 5
3 . The advantage of our choice is that

there exists an explicit formula for a unit speed geodesic in W 5
3 that intersects all

orbits of the action

O(2) × SO(3) ×W 5
3 →W 5

3 ,([
cos θ − sin θ
sin θ cos θ

]
, A

)
· (z0, z) = (e2iθz0, e

3iθAz),
([

1 0
0 −1

]
, A

)
· (z0, z) = (z̄0, Az̄)

(6)

with z ∈ C3 perpendicularly. This action on W 5
3 has first been considered by Cal-

abi (see Bredon’s survey [Bd1]). In the literature, however, almost exclusively the

subaction of the identity component SO(2)×SO(3) is used. The additional Z2 sym-

metry causes the fixed point set of the principal isotropy group to be 1-dimensional.

Hence, we have preferred normal geodesics and hence canonical identifications be-

tween Σ5 and W 5
3 (see Lemma5.2 below).

Consider the curve

β(s) =
(
− 1

2 cos 2s, 1
6

[
0

3 cos s−cos 3s
3i sin s+i sin 3s

])
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in W 5
3 ⊂ C⊕C3. It is straightforward to check that β is parametrized by arc length

and to compute the isotropy groups along β.

Lemma 5.1. The isotropy groups H at β(s) for s 6∈ π
4 Z , K− at β(0), and K+ at

β(π4 ) are given by

H =
{
(1l, 1l),

(
−1l,

[
1 0 0
0 −1 0
0 0 −1

])
,
([

1 0
0 −1

]
,
[−1 0 0

0 1 0
0 0 −1

])
,
([−1 0

0 1

]
,
[−1 0 0

0 −1 0
0 0 1

])}

≈ Z2 × Z2,

K− =
{(

1l,
[ ∗ 0 ∗

0 1 0
∗ 0 ∗

])}
∪

{(
−1l,

[ ∗ 0 ∗
0 −1 0
∗ 0 ∗

])}

∪
{([

1 0
0 −1

]
,
[ ∗ 0 ∗

0 1 0
∗ 0 ∗

])}
∪

{([ −1 0
0 1

]
,
[ ∗ 0 ∗

0 −1 0
∗ 0 ∗

])}

≈ Z2 × O(2),

K+ =
{(
D(θ),

[
1 0
0 D(−3θ)

])}
∪

{(
D(θ) ·

[
1 0
0 −1

]
,
[

1 0
0 D(−3θ)

]
·
[−1 0 0

0 1 0
0 0 −1

])}
.

≈ O(2),

where D(θ) =
[

cos θ − sin θ
sin θ cos θ

]
denotes the rotation in R2 with angle θ.

Lemma 5.2. The curve β is a unit speed geodesic in W 5
3 that intersects all orbits

of the O(2) × SO(3)-action perpendicularly.

Proof. The fixed point set of the principal isotropy group H clearly contains a

geodesic that intersects all orbits perpendicularly. This fixed point set is given by

Im z0 = 0, z1 = 0, Im z2 = 0, Re z3 = 0.

It is easy to check that this fixed point set is one dimensional and that β maps into

the fixed point set of H . �

In the following theorem it is supposed that SO(3) = S3/{±1} is identified

with the matrix group SO(3) by the action of S3 on the imaginary quaternions by

conjugation.

Theorem 5.3. The map

Σ5 →W 5
3 , (A,±q) • α(s) 7→ (A,±q) · β(s)

is a well-defined O(2) × SO(3)-equivariant diffeomorphism.

Proof. This follows from the isotropy groups in Lemma 4.5 and Lemma5.1 �

Corollary 5.4. There is an O(2) × SO(3)-equivariant homeomorphism

S
1 ∗W 5

3 → Σ7.

Here, O(2) acts on S1 in the canonical way.

Proof. This follows directly from Corollary 2.2 and Theorem5.3. �
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Figure 2. The elements in the maximal torus of SO(2) × SO(3)

with fixed points on Σ5 are precisely illustrated by the black lines.

6. Free actions on the Gromoll-Meyer sphere

In this section we classify all closed subgroups of O(2)×SO(3) that act freely on

Σ7 and determine the homotopy type of the orbit spaces. Recall that O(2)×SO(3)

is the full isometry group of (Σ7, 〈 · , · 〉µ,ν) and (Σ5, 〈 · , · 〉µ,ν) and that all elements

in O(2) × SO(3) that are not contained in SO(2) × SO(3) have fixed points in

Σ5 ⊂ Σ7 since they reverse the orientation of Σ5. In SO(2) × SO(3) it suffices to

consider the elements of a maximal torus.

Lemma 6.1. An element in SO(2) × SO(3) has a fixed point in Σ7 if and only if

it has a fixed point in Σ5.

Proof. It follows from the isotropy group K− determined in Lemma4.5 that any

isometry (1l,±q) has fixed points in Σ5. All other elements of SO(2) × SO(3) are

covered by Lemma3.3. �

Lemma 6.2. An element in SO(2) × SO(3) has fixed points on Σ5 if and only if

it is conjugate to an element of the subset of the maximal torus of SO(2) × SO(3)

illustrated in Figure 2.

Proof. This follows with a few considerations from the computation of the isotropy

groups of the O(2) × SO(3)-action on Σ5 in Lemma 4.5. �

Corollary 6.3. Every finite group that acts freely and isometrically on (Σ5, 〈 · , · 〉µ,ν)
and equivalently on (Σ7, 〈 · , · 〉µ,ν) is cyclic.

Proof. Let G be a finite subgroup of SO(2)×SO(3). From Figure 2 we see that the

kernel of the projection from G to the SO(2) factor is trivial. �

Corollary 6.4. All finite cyclic groups act freely and isometrically on (Σ5, 〈 · , · 〉µ,ν)
and hence also on the Gromoll-Meyer sphere (Σ7, 〈 · , · 〉µ,ν).
Proof. This is evident from extending the pattern of Figure 2 periodically to all

of R
2. �
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Corollary 6.5. For every m ∈ N there are 7-dimensional exotic homotopy lens

spaces with fundamental group Zm and nonnegative sectional curvature. For every

even m ∈ N there are 5-dimensional exotic homotopy lens spaces with fundamental

group Zm and nonnegative sectional curvature.

Proof. It is well-known that the quotient of a homotopy sphere by a cyclic group is

homotopy equivalent to a lens space (cf. [Bw]). Since the Gromoll-Meyer sphere is

not diffeomorphic to the standard sphere, its quotients by finite cyclic groups cannot

be diffeomorphic to lens spaces. This completes the proof in the 7-dimensional case.

In the 5-dimensional case note that our metrics 〈 · , · 〉µ,ν on Σ5 do not have K ≥ 0.

By the Grove-Ziller construction [GZ], however, there are O(2) × SO(3)-invariant

metrics on Σ5 ≈ W 5
3 with K ≥ 0. The quotient of W 5

3 by the Calabi involution is

homotopy equivalent but not diffeomorphic (and not homeomorphic) to RP
5. As

is easily seen from Figure 2 the j ∈ Z2j acts by the Calabi involution for all free

Z2j-actions as above. Hence, all corresponding quotients are not diffeomorphic to

lens spaces. �

In the rest of this section we will determine to which lens spaces the orbit spaces

of the Zm-actions on Σ7 and Σ5 are homotopy equivalent. Following an idea of

Orlik [Or] we construct O(2) × SO(3)-equivariant (continuous) branched coverings

Σ5 → S5 and Σ7 → S7. Using these branched coverings we obtain maps of degree

ml+1 for some positive integer l from Σ7/Zm and Σ5/Zm to standard lens spaces.

By a theorem of Olum [Ol], the existence of such maps implies the existence of

homotopy equivalences.

Let D(θ) denote the counterclockwise rotation in R2 by the angle θ. Then the

subgroup Hm;p,q of SO(2) × SO(3) generated by the element

ψm;p,q =
(
D(2π

m
p),±ei π

m
q
)

=
(
D(2π

m
p),

[
1 0
0 D( 2π

m
q)

])

acts freely on Σ7 if and only if p 6= 0, 3p− q 6= 0, 3p+ q 6= 0, m and p are relatively

prime, m and 3p − q are relatively prime, and m and 3p + q are relatively prime.

This is precisely what Figure 2 expresses graphically.

Lemma 6.6. If m is not divisible by 6 then the quotient of W 5
3 by the free action

of Hm;p,q is homotopy equivalent to the lens space L5
m(p, 3p+ q, 3p− q).

Proof. Suppose first that m is not divisible by 3. The map

ϕ : W 5
3 → S

5, (z0, z1, z2, z3) 7→ 1√
2(1−|z0|2)

(
√

2z1, z2 + iz3, z3 + iz2)

is a 3 : 1-covering branched along the singular orbit of the SO(2)×SO(3)-action on

W 5
3 given by z0 = 0. If we define a Zm-action on S5 by

Zm × S
5 → S

5,
(
j +mZ, (z1, z2, z3)) 7→

(
ei

2πj
m

3pz1, e
i
2πj
m

(3p+q)z2, e
i
2πj
m

(3p−q)z3
)

then ϕ is Zm-equivariant. The orbit space of this Zm-action on S5 is a lens space

generally denoted by L5
m(3p, 3p−q, 3p+q). Since m is not divisible by 3 there exists

a positive integer r such that 3r ≡ 1 mod m. Identify S
5 homeomorphically with
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the join S1 ∗S3 and consider the continuous map ρ : S5 → S5 of degree r induced by

map S1 ∗ S3 → S1 ∗ S3, (λ,w) 7→ (λr, w). We now obtain the commutative diagram

W 5
3

ϕ−−−−→ S5 ρ−−−−→ S5

y
y

y

W 5
3 /Hm,p,q −−−−→ L5

m(3p, 3p− q, 3p+ q) −−−−→ L5
m(3rp, 3p− q, 3p+ q)

= L5
m(p, 3p− q, 3p+ q)

(7)

which includes a map of degree 3r between W 5
3 /Hm,p,q and L5

m(p, 3p− q, 3p + q).

By Theorem4 of [Ol] these two spaces are homotopy equivalent. In the case where

m is not divisible by 2 we can proceed similarly by exchanging the role of z0 and

z1 in the definition of ϕ. �

Corollary 6.7. W 5
3 /H7;1,0 and W 5

3 /H7;1,1 are not homotopy equivalent.

Proof. This follows from the homotopy classification of lens spaces, see [Ol]. �

Corollary 6.8. If m is not divisible by 6 then the quotient of Σ7 by the free action

of Hm;p,q is homotopy equivalent to the lens space L7
m(p, p, 3p− q, 3p+ q).

Proof. By Corollary 5.4, Σ7 is equivariantly homeomorphic to the join S1 ∗W 5
3 . We

obtain the statement by joining all spaces in the diagram (7) with S1 (note that

ψm;p,q acts on the circle Σ1 ⊂ Σ7 as the rotation D(2π
m
p)). �

The condition “m is not divisible by 6” seems to be a technical artifact.

Corollary 6.9. Σ7/H5;1,0 and Σ7/H5;1,1 are not homotopy equivalent.

7. Fixed point sets of isometries

Recall from section 3 that there are three types of isometries of Σ7: Isometries

that do not have fixed points in Σ1 (type I), isometries that fix precisely two points

in Σ1 (type II), and isometries that fix all points in Σ1 (type III).

Isometries of type III are of the form (1l,±q) with q ∈ S3, q 6= ±1. They

correspond up to conjugation to the black vertical line in Figure 2. From Lemma4.5

we see that the fixed point set in Σ5 is a circle that is located in the singular orbit

through α(0). Thus by Lemma 3.6 the fixed point set in Σ7 is the join of Σ1 and

this circle and hence diffeomorphic to S3. Although not all elements of the form

(1l,±q) are conjugate to (1l,±i), all their fixed point sets are congruent to the fixed

point set of (1l,±i), which will be denoted by Σ3
0.

Lemma 7.1. The fixed point set Σ3
0 of (1l,±i) on Σ7 is isometric to a 3-sphere

equipped with a Berger metric where the horizontal geodesics have length 2π and

the Hopf circles have length 2π
√
µ.

Proof. With the structural information above it is immediate that Σ3
0 = πΣ7(U(2)),

which is isometric to the homogeneous space U(2)/U(1) where U(1) is embedded

into the right lower corner and U(2) is equipped with the metric 〈 · , · 〉µ,ν . �
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Corollary 7.2. There is no SO(3)-equivariant homeomorphism between Σ7 and

any of the Brieskorn spheres W 7
6j−1,3.

Proof. In W 7
6j−1,3 the fixed point set of ±i = diag(1,−1,−1) ∈ SO(3) is the integral

homology sphere W 3
6j−1,3 = W 3

6j−1,3,2. For j = 1 this space is diffeomorphic to

Poincare dodecahedral space and for j > 1 the universal cover of W 3
6j−1,3,2 is

S̃L(2,R) (see [Ml]). �

Note that this last argument also gives a simple reason for why there are no

SO(3)-invariant Riemannian metrics on W 7
6j−1,3 with K > 0 for j > 1.

Lemma 7.3. The circle Σ1 is a closed geodesic for all SO(3)-invariant Riemannian

metrics on Σ7, in particular for all metrics 〈 · , · 〉µ,ν .

Proof. It is easy to check that Σ1 is the intersection of all the fixed point sets

(Σ7)(1,±q), i.e., the common fixed point set of SO(3). �

Isometries of type I are contained in SO(2) × SO(3). Those with fixed points

correspond up to conjugation to the skew lines in Figure 2. It suffices to consider

the left half of Figure 2 since one can conjugate any isometry by
([

1 0
0 −1

]
, 1l

)
∈

O(2) × SO(3). The isometry (−1l,±i) corresponds to the midpoint of the torus in

Figure 2. Its fixed point set L3 is diffeomorphic to a lens space S
3/Z3. The fixed

point sets of the remaining isometries of type I are all contained in the singular

orbit through α(π4 ) by Lemma 4.5. Up to conjugation only the fixed point set P 3

of the isometry
([

cos 2π
3

− sin 2π
3

sin 2π
3

cos 2π
3

]
, 1l

)
is more than 1-dimensional.

Lemma 7.4. The fixed point set P 3 of the isometry
([

cos 2π
3

− sin 2π
3

sin 2π
3

cos 2π
3

]
, 1l

)
on Σ7 is

isometric to RP
3 covered by a Berger S3 whose horizontal geodesics have the length

2π
√
ν and whose Hopf circles have length 2π

√
4µν

4µ+ν .

Proof. It is immediate from the isotropy groups along the normal geodesic α in

Lemma4.5 that P 3 is precisely the O(2)×SO(3)-orbit through α(π4 ). The subgroup

SO(3) acts simply transitively on this orbit and the induced metric can be obtained

from (5). �

Lemma 7.5. The fixed point set L3 of the isometry (−1l,±i) on Σ7 is diffeomorphic

to the lens space S3/Z3 and totally geodesic in Σ5, Σ6
±A, and Σ7. Moreover, L3 is

isometrically covered by a Berger metric on S3 where the horizontal geodesics have

length 2π and the Hopf circles have length 2π
√

9µν
4µ+ν . In particular, the extremal

values of the sectional curvature of L3 at any point are 9µν
4µ+ν and 4 − 27µν

4µ+ν .

Proof. In section 5 it is shown that Σ5 and the Brieskorn sphere W 5
3 are equiv-

ariantly diffeomorphic. In W 5
3 the corresponding fixed point set is W 3

3 which is

well-known to be diffeomorphic to S3/Z3 (see e.g. [HzMa]). In Σ5 there exists a

direct argument that allows a simple curvature computation: Straightforward com-

putations show that the horizontal lift of Tα(s)L at α̃(s) is spanned by the horizontal

vectors α̃′(s), ṽ0(s), ṽ1(s). Thus L is 3-dimensional. Let U(2) be the centralizer
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of [ i 0
0 i ] in Sp(2). It is straightforward to see that πΣ7 (jU(2)) embeds into the

fixed point set. Now πΣ7(jU(2)) is isometric to the quotient of jU(2) ⊂ Sp(2)

by the U(1)-action (λ, jA) 7→ λjA
[
λ̄ 0
0 1

]
where U(2) carries the metric 〈 · , · 〉µ,ν

induced from Sp(2). Since i and j anticommute this quotient is isometric the ho-

mogeneous space U(2)/
{[

λ̄2 0
0 λ̄

]}
and hence diffeomorphic to S3/Z3. The vector

α̃′(0) = j
[

0 −i
−i 0

]
is horizontal with respect to the fibration

U(2)/
{[

λ̄2 0
0 λ̄

]}
→ U(2)/(U(1) × U(1)) = CP

1

and the curve exp(tα̃′(0)) closes first after length 2π in U(2). The vector ṽ1(0) =

j 2
4µ+ν

[
iν 0
0 −2iµ

]
is vertical. It is easy to check that the curve exp(tṽ1(0)) in U(2)

meets the circle
{[

λ̄2 0
0 λ̄

]}
first at time T = π. Hence, the length of the vertical

circle in the lens space is π|ṽ1(0)| = 2π
√

µν
4µ+ν . In the universal cover S3 the length

of this Hopf circle is three times as long. �

We finally deal with isometries of type II, i.e., isometries that fix precisely two

points in Σ1. It is clear that these isometries are not contained in SO(2) × O(3).

By Lemma 4.5 and Lemma3.5 they are conjugate to
([

1 0
0 −1

]
,±1

)
or

([
1 0
0 −1

]
,±j

)

if the dimension of the fixed point set is > 1. From Lemma3.5 it is also clear that

the fixed point sets of these isometries are suspensions of subspheres of Σ5 from the

two points S3 ⋆ (±1l).

Lemma 7.6. The fixed point set Σ3
1 of the isometry

([
1 0
0 −1

]
,±1

)
is diffeomorphic

to S3. The induced metric on Σ3
1 r (S3 ⋆ (±1l)) is isometric to the metric

µ
(
dt2 + ν sin2 t

ν+4µ sin2 t
gS

2

can

)

on [0, π] × S2. Hence, the sectional curvatures vary between ν
µ(4µ+ν) and 12µ+ν

µν
.

Proof. By Lemma 4.5 the fixed point set is the suspension of homogeneous 2-spheres

from the two points S3 ⋆ (±1l). This suspension is given by the geodesics πΣ7 ◦ γ̃[ p0 ]
in (2). It is straightforward to compute the diameter of the SO(3)-orbits through

πΣ7 ◦ γ[ p0 ](t). �

Lemma 7.7. The fixed point set Σ2 of the isometry
([

1 0
0 −1

]
,±j

)
on Σ5 and on

Σ6
±1l is isometric to a 2-sphere equipped with the metric ds2 + 1

4c(s)dφ
2. Here, c(s)

is the function [0, π] → R defined in (5). The sectional curvature K of Σ2 satisfies

K|s=0 = 12
ν
− 8 − 3µ, K|s= π

4
= 4ν

1+µ , K|s=π
2

= − ν(1+2µ)
µ(4µ+ν) .

Proof. The manifold structure of the fixed point set in Σ5 can best be determined

by passing from Σ5 to the Euclidean sphere S5 with the nonlinear action obtained in

section 9. On S5 ⊂ Im H ×H it is straightforward to check that the transformation([
1 0
0 −1

]
,±j

)
fixes precisely the 2-sphere that consists of all unit vectors of the form[

p
w

]
with p ∈ jR and w ∈ span

R
{i, k}. The metric on the fixed point set Σ2 ⊂ Σ5,

however, has to be determined in Σ5. It is easy to see that Σ2 contains the normal

geodesic α and that the tangent space to Σ2 at α(s) is spanned by α′(s) and the

Killing field v2(s) if s 6∈ πZ. A straightforward computation shows that the circle

which corresponds to v2 and acts effectively on Σ2 inherits the length π ·
√
c(s)
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at time s. This completes the computation of the induced metric. The curvature

computations are straightforward. Finally, Lemma 3.3 assures that the fixed point

set of the isometry on Σ6
±1l is contained in Σ5. �

Corollary 7.8. The fixed point set Σ3
2 of the isometry

([
1 0
0 −1

]
,±j

)
on Σ7 is dif-

feomorphic to S
3.

In order to describe the metric that Σ3
2 inherits from Σ7 it is useful to note that

the horizontal lift of the tangent space TS3⋆1lΣ
3
2 at 1l is spanned by the three vectors

[
j 0
0 0

]
, [ 0 i

i 0 ] ,
[

0 k
k 0

]
.

Hence, Σ3
2 can be parametrized by the horizontal geodesics γ̃[ pw ] given in (2) with

p = j cos θ and w = i sin θ cosφ+ k sin θ sinφ

where t ∈ [0, π], θ ∈ [0, π], and φ ∈ [0, 2π]. Thus, Σ3
2 corresponds to a maximal

choice of anticommuting p and w. In the coordinates (t, θ, φ) the metric on Σ3
2 is

given by

g11 = 1 − 1
D

(1 − µ)
(
4 sin2 t sin2 θ + ν(1 − 2 sin2 t sin2 θ)2

)
cos2 θ,

g22 = sin2 t+ 1
D

sin2 t sin2 θ
(
ν sin2 θ (2t− sin 2t)2 − (1 − µ) ·

·
(
(ν + 4 sin2 t sin2 θ) cos2 t+ 2t ν sin2 θ (2t sin2 t sin2 θ − sin 2t)

))
,

g33 = 1
D
ν sin2 t sin2 θ

(
1 − (1 − µ) sin2 t sin2 θ

)
,

g23 = 1
D
ν sin2 t sin3 θ

(
2t− sin 2t+ 1−µ

2 (sin 2t− 4t sin2 t sin2 θ)
)
,

g13 = − 1
D
ν(1 − µ) sin2 t sin2 θ cos θ (1 − 2 sin2 t sin2 θ),

g12 = 1−µ
4D sin 2θ

(
4 sin 2t sin2 t sin2 θ

− ν(1 − 2 sin2 t sin2 θ)(4t sin2 t sin2 θ − sin 2t)
)

where

D = 4
(
1 − (1 − µ) sin2 t sin2 θ

)
sin2 t sin2 θ + ν(1 − 2 sin2 t sin2 θ)2.

This specializes for µ = 1 to

g =
[

1 0 0
0 sin2 t 0
0 0 0

]
+ ν sin2 t sin2 θ

4 sin2 t sin2 θ+ν(1−2 sin2 t sin2 θ)2

[
0

(2t−sin 2t) sin θ
1

]
·
[

0
(2t−sin 2t) sin θ

1

]tr

.

Note that Σ3
2 is invariant under the isometry of Σ7 induced by −1l ∈ Sp(2). In

our coordinates, this isometry is given by (t, θ, φ) 7→ (π− t, θ+π, φ−2π cos θ). This

coordinate change allows us to glue Σ3
2 from two disks equipped with g.

Although the metric g is of cohomogeneity 2 the curvature of g behaves like the

action on Σ3
2 were of cohomogeneity 1: The orbit space of the natural SO(2)-action

on Σ3
2 (in our coordinates given by translation in φ) can easily be shown to be the

hemisphere of constant curvature 1 for µ = 1. In our coordinates this hemisphere

is given by 0 ≤ t ≤ π, 0 ≤ θ ≤ π and represented by geodesics from a point in
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the boundary. It is reasonable to switch to polar coordinates, i.e., to make the

coordinate change
[

cos t
cos θ sin t
sin θ sin t

]
=

[
sinω cosψ
sinω sinψ

cosω

]

with 0 ≤ ω ≤ π
2 and 0 ≤ ψ ≤ 2π.

Lemma 7.9. The orbit space of the natural SO(2)-action on (Σ3
2, 〈 · , · 〉µ,ν) is a

hemisphere which inherits a rotationally invariant metric with curvature

µ 1+2(1−µ) cos2 ω
(1−(1−µ) cos2 ω)2 .

In particular, the curvature is constant if and only if µ = 1.

The eigenvalues of the Einstein tensor (i.e., the critical values of the sectional

curvature) of Σ3
2 also turn out to be independent of ψ. The metric g itself, however,

does not improve in the coordinates (ω, ψ, φ) nor does the curvature computation

become simpler. The next lemma gives some more detailed curvature information.

Lemma 7.10. The scalar curvature of (Σ3
2, 〈 · , · 〉1,ν) is given by

4(−12+4ν+9ν2+2(21ν−8) cos 2ω+(9ν2+16ν−4) cos 4ω+2ν cos 6ω)
(4+ν+4 cos 2ω+ν cos 4ω)2

For µ, ν ≤ 1 the minimum of the sectional curvature is given by

minK = min
{

µν
4µ+ν ,

12−8(µ+ν)−3µν
4µ+ν

}
.

In the Gromoll-Meyer case µ = ν = 1
2 , Σ3

2 inherits a metric with minK
maxK = 1

145 .

Note that by construction and Lemma3.5, Σ3
2 is totally geodesic in Σ7 and in

Σ6
±A0

with A0 =
[

0 −1
1 0

]
, and Σ2 is totally geodesic in Σ5 and in Σ6

±1l.

Corollary 7.11. There is a point in Σ2 which has negative curvature for all the

metrics 〈 · , · 〉µ,ν on Σ7. Moreover, Σ5 and Σ6
±1l are not totally geodesic in Σ7 for

any of these metrics.

Proof. The intrinsic sectional curvature of Σ2 at α(π2 ) is − ν(1+2µ)
µ(4µ+ν) < 0 by Lemma 7.7.

The point α(π2 ) ∈ Σ2 ⊂ Σ3
2 corresponds to the coordinates t = θ = φ = π

2 on Σ3
2.

The extrinsic sectional curvature of the tangent space of Σ2 at this point can be

computed to µν
4µ+ν > 0. �

We would like to add some comments on these fixed point sets: First, the spheres

Σ3
0, Σ3

1, and Σ3
2 are indexed according to their intrinsic cohomogeneity. Second, the

fixed point sets Σ3
0, L

3, and Σ3
2 yield necessary conditions for (Σ7, 〈 · , · 〉µ,ν) to have

nonnegative sectional curvature: That Σ3
0 inherits K ≥ 0 implies µ ≤ 4

3 , that L3

inherits K ≥ 0 implies 4(4µ+ ν) − 27µν ≥ 0, and that Σ3
2 inherits K ≥ 0 implies

12 − 8(µ+ ν) − 3µν ≥ 0. The last inequality is the most restricting one.

Of particular interest is the question of whether the nice behaviour of geodesics

on Σ7 for µ = 1 can be combined with nonnegative sectional curvature. In this case

the inequalities above show that necessarily ν ≤ 4
11 (this is precisely the inequality

that guarantees that Σ3
2 inherits K ≥ 0). For µ = 1 and any ν > 0 there are always

some negative sectional curvatures on (Sp(2), 〈 · , · 〉µ,ν). The question whether

these disappear for small ν > 0 when going down to Σ7 seems to be subtle.
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A distinguished metric on Σ7 is 〈 · , · 〉1, 1
2
. In this case Σ3

0 and L3 both have

constant curvature 1.

Finally, we would like to point out that not all totally geodesic submanifolds of

Σ7 are fixed point sets of isometries:

Lemma 7.12. For any metric 〈 · , · 〉µ,ν the rectangular 2-torus T 2 in Sp(2) para-

metrized by

1√
2

[
1 i
i 1

]
·
[
eiα 0
0 ejβ

]
= 1√

2

[
eiα iejβ

ieiα ejβ

]

with α, β ∈ R is totally geodesic and horizontal with respect to the submersion

πΣ7 : Sp(2) → Σ7. Its image is a totally geodesic rectangular 2-torus in Σ7 covered

twice by T 2.

Proof. Consider the subgroup G of Sp(1) × Sp(1) ⊂ Sp(2) generated by the two

elements [ i 0
0 1 ] and

[
1 0
0 j

]
. This group G acts by conjugation isometrically on

(Sp(2), 〈 · , · 〉µ,ν). The rectangular torus
{[

eiα 0
0 ejβ

] ∣∣∣ α, β ∈ R

}
⊂ Sp(2)

is the common fixed point set of G and hence totally geodesic. Hence, its left

translated copy T 2 is totally geodesic, too. It is straightforward to show that T 2

is horizontal and that πΣ7 restricted to T 2 induces an embedding of T 2/
[

1 0
0 ±1

]

into Σ7. �

This torus was already implicitly contained in [GM] and is also listed in [Wh].

The fundamental difference between the standard action • of S3 on Sp(2) and the

Gromoll-Meyer action ⋆ appears here very clearly: The torus T 2 is horizontal for

the ⋆-action while only an S
1-factor is horizontal for the •-action.

8. An explicit parametrization of two Brieskorn spheres

In this section we present an explicit formula for two diffeomorphisms between

Euclidean spheres and Brieskorn spheres. The coefficients in this formula are ra-

tional functions of the coordinates of the sphere. They are simple enough that the

entire formula fits into a few lines but complicated enough that they could never be

guessed. The formula was obtained by combining the geodesic parametrization of

Σ5 ⊂ Σ7 and the cohomogeneity one diffeomorphism between Σ5 and the Brieskorn

sphere W 5
3 . The steps of the computations behind this approach will be explained

at the end of this section. The properties of the final formula, however, can be

verified straight, which shows that the formula is also valid in dimension 13 where

no geometric derivation is possible so far.

Analogously to the previous section the Brieskorn sphere W 2n−1
3 is defined by

the equations

8
9 z

3
0 + z2

1 + z2
2 + . . .+ z2

n = 0,

4
3 |z0|

2 + |z1|2 + |z2|2 + . . .+ |zn|2 = 4
9
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for (z0, z) ∈ C⊕Cn. For odd n ≥ 3 the Brieskorn sphere W 2n−1
3 is diffeomorphic to

the Kervaire sphere (see e.g. [HzMa]). By a result of Brouwder, W 2n−1
3 can hence

only be diffeomorphic to S2n−1 if n = 2m− 1. Up to now, this is known to hold for

n ∈ {3, 7, 15, 31}. For n = 3, 7 the classification theorems of Jänich and the Hsiang

brothers show that there exist SO(3)-equivariant diffeomorphisms S5 → W 5
3 and

G2-equivariant diffeomorphisms S13 → W 13
3 . We will construct the first explicit

formulas for such diffeomorphisms here.

We decompose z0 and z into their real and imaginary parts, i.e., we set z0 =

x0 + iy0 and z = x + iy. This leads to the equivalent definition of the Brieskorn

sphere W 2n−1
3 by the three real equations

|x|2 = 2
9 (1 − 2x3

0 + 6x0y
2
0 − 3x2

0 − 3y2
0),

|y|2 = 2
9 (1 + 2x3

0 − 6x0y
2
0 − 3x2

0 − 3y2
0),

〈x, y〉 = 4
9 y0 (y2

0 − 3x2
0)

(8)

for x0, y0 ∈ R and x, y ∈ R
n. The natural SO(n)-action on W 2n−1

3 multiplies x and

y by a matrix A ∈ SO(n) and leaves x0 and y0 unchanged. Analogously to [HzMa,

pages 31–32] one can show that the orbit space of this action can be identified with

the disc D2 = {λ ∈ C
∣∣ |λ| ≤ 1} by the projection map W 2n−1

3 → D2, (z0, z) 7→ 2z0.

For n = 7 the action of G2 ⊂ SO(7) has the same orbits as the SO(7)-action.

We now parametrize the standard spheres S5 and S13 by two vectors p, w ∈ R3

(resp. R7) with |p|2 + |w|2 = 1 and set

x0 = 1
2 (|w|2 − |p|2),

y0 = − 〈p, w〉,

x = 1
3(1+|p|2)2

((
(3 − 2|p|2) (1 + |p|2)2 − 4(1 − |p|2)〈w, p〉2

)
p

− 2
(
3 + 8|p|2 + |p|4 − 4〈w, p〉2

)
〈p, w〉w − 8|p|2〈p, w〉 p× w

)
,

y = 1
3(1+|p|2)2

((
−(1 + 2|p|2) (1 − 6|p|2 + |p|4) − 4(1 + 3|p|2)〈w, p〉2

)
w

+ 2(1 − |p|2) (1 + 3|p|2)〈w, p〉 p − 4(1 + 2|p|2) (1 − |p|2) p× w
)
.

(9)

Here, we use the standard cross product on R3 and the cross product on R7 that

comes from the imaginary part of the product of two imaginary octonions. It is

straightforward but tedious to check that x0, y0, x, y satisfy the equations (8).

On S5 ⊂ R3×R3 and on S13 ⊂ R7×R7 we consider the diagonal actions of SO(3)

and G2, respectively. The orbit spaces of these actions can again be identified with

D2 by the projection maps S2n−1 → D2, (p, w) 7→ |w|2 − |p|2 − 2i 〈p, w〉. Note that

the preimage of the boundary of D2 consists precisely of the pairs (p, w) for which

p and w are linearly dependent.

Theorem 8.1. The formulas (9) above provide an SO(3)-equivariant diffeomor-

phism S5 →W 5
3 and a G2-equivariant diffeomorphism S13 →W 13

3 .

Proof. The maps ψ : S2n−1 → W 2n−1
3 defined by (9) are smooth, equivariant, and

induce the identity between the orbit spaces D2. Hence they are homeomorphisms.
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Their inverses ψ−1 : W 2n−1
3 → S2n−1 can be computed explicitly: The coefficients

in the equations for x, y, and x × y as combinations of p, w, and p × w are ra-

tional functions of x0 and y0 with nonzero denominators. The determinant of the

coefficient matrix is a polynomial of degree 12 in x0 and y0 that can be seen to

be always greater than or equal to 256
9(3−2x0)8 if x2

0 + y2
0 ≤ 1

4 . Hence, the coefficient

matrix can be inverted even if p and w become linearly dependent and p and w can

be expressed as combinations of x, y, and x× y with rational coefficients in x0 and

y0 that do not have singularities for x2
0 + y2

0 ≤ 1
4 . �

If n is different from 3 and 7 formula (9) does not work. What we need is to

assign to p, w ∈ R
n a vector that is perpendicular to both and that is different

from zero if p and w are linearly independent. Such a cross product exists only in

dimensions 3 and 7 (see [Ms]).

In the rest of this section we will describe how formula (9) was obtained in the

case n = 3. During this derivation we will meet a simple formula for an injective

map S
5

r {w = 0} → W 5
3 that extends to a all odd dimensions and thus yields

injective maps S2n−1 r {w = 0} → W 2n−1
3 . These maps are given by substituting

the expressions for x and y in (9) by

−3x =(|p|2 + 3|w|2 − 4〈 w|w| , p〉
2)p+ 2|p|2〈p, w|w|〉 w|w| ,

3y = − (3|p|2 + |w|2)w + 6〈w, p〉p .

The cross products in dimensions 3 and 7 are needed to twist these maps such that

they extend to diffeomorphisms S
5 →W 5

3 and S
13 →W 13

3 .

Now we start with the derivation of formula (9). There are two different para-

metrizations of Σ5 ⊂ Σ7: The explicit geodesic parametrization given in (2) de-

scribes a point in Σ5 by (p, w) ∈ S5 ⊂ Im H × Im H, and the cohomogeneity one

action of SO(3)× SO(2) on Σ5 describes the same point by the parameter s of the

normal geodesic, an angle θ, and a unit quaternion q ∈ S
3 (with several ambigui-

ties). More precisely, the identity

q′ ⋆ γ̃[ pw ]
(
π
2

)
=

([
cos θ − sin θ
sin θ cos θ

]
, q

)
• α̃(s)(10)

has to hold for some q′ ∈ S3. In principle, one now solves for s, θ, and ±q in

dependence of p and w (not caring about any ambiguities) and plugs the results

into the corresponding cohomogeneity one parametrization
([

cos θ − sin θ
sin θ cos θ

]
,± q

)
· β(s) =

(
− 1

2 cos 2θ cos 2s− i
2 sin 2θ cos 2s, x(s, θ, q) + iy(s, θ, q)

)(11)

of W 5
3 where x(s, θ, q), y(s, θ, q) ∈ R

3 will be evaluated below. By Theorem5.3 it

is clear that this procedure yields a well-defined smooth diffeomorphism S5 →W 5
3 .

The actual computations, however, are lengthy and not straightforward. It thus

seems appropriate to indicate how they can be done efficiently. First, we identify

R3 with the imaginary quaternions. The homomorphism S3 → SO(3) is then given

by assigning to ±q the matrix (qiq̄, qjq̄, qkq̄) ∈ SO(Im H). With this identification
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x(s, θ, q), y(s, θ, q) can be evaluated to

−3x(s, θ, q) =2 (1 + cos 2θ cos 2s) q(j cos s cos θ − k sin s sin θ)q̄

− (4 cos 2θ + cos 2s) q(j cos s cos θ + k sin s sin θ)q̄,

3y(θ, s) = 2 (1 − cos 2θ cos 2s) q(j cos s sin θ + k sin s cos θ)q̄

+ (4 cos 2θ − cos 2s) q(j cos s sin θ − k sin s cos θ)q̄.

(12)

With a few computations one sees from (10) that

cos 2θ = |p|2−|w|2√
(|p|2−|w|2)2+4〈p,w〉2

, sin 2θ = 2〈p,w〉√
(|p|2−|w|2)2+4〈p,w〉2

,

cos 2s =
√

(|p|2 − |w|2)2 + 4〈p, w〉2, sin 2s = 2
√

(|p|2|w|2 − 〈p, w〉2.
Moreover, (10) is equivalent to

[
cos θ sin θ

− sin θ cos θ

]
· γ̃[ pw ]

(
π
2

)
= q̄′ ⋆ (q • α̃(s)).

Computing formally the “determinant” ad− bc of the quaternionic 2 × 2 matrices

[ a cb d ] on both sides of the latter equation one obtains

q̄′ cos 2s =
(
(|p|2 − |w|2) w

|w| − 2〈 w|w| , p〉p
)
e

π
2
p w̄
|w| q.

This identity can now be plugged into (10) and the result allows us to evaluate

(12):

−3x = w
|w|e

−π
2
p
(
(|p|2 + 3|w|2 − 4〈 w|w| , p〉

2)p+ 2|p|2〈p, w|w|〉 w|w|

)
e

π
2
p w̄
|w| ,

3y = w
|w|e

−π
2
p
(
−(3|p|2 + |w|2)w + 6〈w, p〉p

)
e

π
2
p w̄
|w| .

Expressing all quaternionic products by inner products and cross products we ob-

tain the formulas

3x =
(
3 − 2|p|2 − 2 1+cosπ|p|

1−|p|2 〈w, p〉2
)
p

− 2
(
3 + |p|2 1+cosπ|p|

1−|p|2 − 2 1+cos π|p|
(1−|p|2)2 〈w, p〉

2
)
〈p, w〉w

− 2|p|2 sinπ|p|
(1−|p|2)|p| 〈w, p〉 p× w,

3y = − (1 + 2|p|2) cosπ|p| · w + 2 −1+4|p|2+(1+2|p|2) cosπ|p|
|p|2(1−|p|2) 〈w, p〉2w

− −1+4|p|2+(1+2|p|2) cosπ|p|
|p|2(1−|p|2) |w|2〈w, p〉 p − (1 + 2|p|2) sinπ|p|

|p| p× w

where all the fractions are real analytic functions of |p|. This can now be seen as

a final formula for the diffeomorphism S5 → W 5
3 . In formula (9) we passed to an

isotopic rational version by substituting sin π
2 |p| and cos π2 |p| by 2|p|

1+|p|2 and 1−|p|2
1+|p|2 ,

respectively.

Remark 8.2. Note that the diffeomorphisms of Theorem9.3 equip W 5
3 and W 13

3

with explicit SO(3) and G2 invariant metrics of constant curvature 1. Wilking

(unpublished) proved that there do not exist SO(n)-invariant metrics with positive

sectional curvature on any of the W 2n−1
d with n > 3 and odd d > 1. Moreover,

it was shown [GVWZ] that there do not exist cohomogeneity one metrics with

nonnegative sectional curvature on any of the W 2n−1
d with n > 3 and odd d > 1.
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9. Nonlinear cohomogeneity one actions on Euclidean spheres

In this section we present the first explicit formulas for cohomogeneity one actions

of O(2) × SO(3) and O(2) × G2 on the Euclidean spheres S5 and S13 that are

equivalent to the standard cohomogeneity one actions on the Brieskorn spheres W 5
3

and W 13
3 (see section 5).

The essential parts of these actions are the nonlinear subactions of SO(2) ⊂
O(2). It is convenient, however, to describe the linear parts first: Let p and w

denote two imaginary quaternions (octonions) with |p|2 + |w|2 = 1. The action of

SO(3) = S3/{±1} on S5 is given by

SO(3) × S
5 → S

5, (±q) •
[
p
w

]
= q

[
p
w

]
q̄ =

[
qpq̄
qwq̄

]
.

The G2-action on S13 is defined in the same diagonal way. (Recall that G2 is the

automorphism group of the octonions). The O(2)-actions on S5 and S13 contain

the linear Z2-subactions

Z2 × S
5 → S

5,
[

1 0
0 −1

]
•

[
p
w

]
=

[ p
−w

]

We will now turn to the nonlinear SO(2)-actions. In order to write them down

explicitly we need some preparatory work. Let ep denote the exponential map of

S3 ⊂ H (or S7 ⊂ O). For θ ∈ R set
[
pθ
wθ

]
:=

[
cos θ − sin θ
sin θ cos θ

]
·
[
p
w

]
=

[
p cos θ−w sin θ
p sin θ+w cos θ

]

and

Q
([

p
w

]
, θ

)
= w

|w|e
−π

2
p wθ

|wθ|
w̄
|w|e

π
2
pθ w̄θ

|wθ| .

At first glance one would not expect that this formula defines a smooth map.

Lemma 9.1. Q extends to an analytic map S
5 × S

1 → S
3 and S

13 × S
1 → S

7,

respectively.

Proof. Expanding the exponential maps in the definition of Q and applying the two

identities pθ = w(θ+π
2
) and wθwκwτ = wτwκwθ one obtains

Q
([

p
w

]
, θ

)
= wwθw̄w̄θ · cos π

2
|p|

1−|p|2 · cos π
2
|pθ|

1−|pθ|2 − pθp · sin π
2
|p|

|p| · sin π
2
|pθ|

|pθ|

+ wpθw̄ · cos π
2
|p|

1−|p|2 · sin π
2
|pθ|

|pθ| − wθpw̄θ · sin π
2
|p|

|p| · cos π
2
|pθ|

1−|pθ|2 �

Lemma 9.2. Q has the following property:

Q
([

p
w

]
, θ

)
Q

([
pθ
wθ

]
, τ

)
= Q

([
p
w

]
, θ + τ

)
.

Proof. This property is based on the identity wθw̄wτ = wτ w̄wθ. �

Theorem 9.3. The assignment
[

cos θ − sin θ
sin θ cos θ

]
•

[
p
w

]
:= Q

([
p
w

]
, θ

) [
pθ
wθ

]
Q

([
p
w

]
, θ

)
.

defines nonlinear SO(2)-actions on S5 and S13 that extend to cohomogeneity one

actions of O(2) × SO(3) and O(2) × G2, respectively. These latter actions are

equivalent to the standard actions on the Brieskorn spheres W 5
3 and W 13

3 .
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Proof. The map Q : S5 × S1 → S3 is equivariant under conjugation with unit

quaternions, i.e.,

Q
([

qpq̄
qwq̄

]
, θ

)
= q Q

([
p
w

]
, θ

)
q̄,

andQ : S13×S1 → S7 is in an analogous way equivariant under G2. With Lemma9.2

it is now straightforward to check that the assignment of Theorem9.3 defines SO(2)-

actions on S5 and S13 which commute with the SO(3)-action on S5 and the G2-

action on S
13. It can be proved in various ways that S

5 and S
13 equipped with the

full actions of O(2) × SO(3) and O(2) × G2 are equivariantly diffeomorphic to W 5
3

and W 13
3 , e.g., by computing the isotropy groups along the curve

s 7→
[ j cos s

(k cos(π cos s)−i sin(π cos s)) sin s

]

which corresponds precisely to the geodesics α on Σ5 and β on W 5
3 and W 13

3 under

the identifications established in the previous sections. (For the isotropy group

computation note that if p and w anticommute and have the same norm then we

have pθ = e−v
θ
2 pev

θ
2 where v = p

|p|
w
|w| and a similar expression for wθ.) �

Remark 9.4. The formula of Theorem9.3 was obtained by pulling back the •-action

on Σ5 by the explicit diffeomorphism S5 → Σ5 given in (3).

Remark 9.5. For θ = π the formula of Theorem9.3 gives exotic involutions on S5

and S13. These are studied in the paper [ADPR].

Remark 9.6. If one substitutes π
2 in the definition of Q by (2m + 1)π2 then one

obtains an action that is conjugate to the original action by σm where σ is the

restriction of the exotic diffeomorphism σ : S6 → S6 to S5 (see [Du]).
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