polyedra‘i homology manifold.

3) Mher examples of aspherical manifolds for Theorems 1 and 2 are obtainable

k k k
as follows : in the proofs, replace the degree one map T"— S~ by a map f : K—»S
inducing an isomorphism on integral homology, where K is a finite aspherical
polyhedron of dimension k (K and f exist by [Ma]). The manifold Q will then be a

thickening of K with 1, = a ef, which exists in the stable range.

Q
4) By obstruction theory, if K is a complex of dimension &, any map K—»BG
which lifts through BTOP admits a lifting through BPL. Therefore, it is not
possible to assert that the manifolds M of Theorem 2 are not homotopy equi-
valent to closed PL-manifolds. But if a homotopy equivalence f : M'—M existed
with M' a closed PL-manifold, then f would yeld a homotopy equivalence between
aspherical closed manifolds which is not homotopic to a homeomorphism. This

would be a negative answer to a question of A. Borel.
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Homology with simplicial coeflicients

W. G. DWYER AND D. M. KaN

§1. INTRODUCTION

1.1 Summary. This paper deals with homology of simplicial sets over a fixed simplicial set, say
L, and in particular with the simplicial coefficient systems for such homology.

A simplicial coefficient system (over L) consists of a collection of abelian groups and homomor-
phisms between them indexed by the simplices of L and the simplicial operators between them,
i.e, it is an abelian group object in the category of simplicial sets over L. If all the homomor-
phisms between the abelian groups are actually isomorphisms, then such a simplicial coefficient
system is essentially a local coefficient system in the usual sense.

It turns out that, given a simplicial coefficient system A and a weak (homotopy) equivalence
K — K' of simplicial sets over L, the induced map on homology H.(K;A) — H,(K'; A) need
not be an isomorphism unless either the structure map A — L is a fibration of simplicial sets or
both of the structure maps K — L and K' — L are so. This suggests calling a map 4 — A’
between simplicial coefficient systems a weak equivalence whenever it induces an isomorphism
H.(K; A) & H.(K;A') for every simplicial set K over L for which the structure map K — L
is a fibration, and asking whether, given any simplicial coefficient system A, there exists a weak
equivalence A — A’ such that the structure map of A’ is a fibration (and every weak equivalence
K — K' of simplicial sets over L thus induces an isomorphism H.(K;A') = H,(K';A")). We
give a positive answer to this question by showing that the category ab/L of simplicial coefficient
systems over L admits a closed simplicial model category structure in the sense of Quillen in which
the weak equivalences are as above and in which the fibrant objects are exactly those simplicial
coeflicient systems for which the structure map is a fibration.

In the remainder of the paper we compare the model cutcgories ab/L and ab/L’ for weakly
equivalent L and L' «ud we observe that, for connected L, the weak equivalence classes of the
simplicial coefficient systems over L are in a natural 1—1 correspondence with the weak equivalence
classes of the simplicial modules over the loop group GL of L (and hence with the weak equivalence
classes of non-negatively graded differential modules over the chains on GL).

1.2 Organization of the paper. After fixing some notation and terminology (in §2), we define
(in §3) the homology H,.(K;A) of a simplicial set K over L with simplicial coefficients A, and
obtain some of its basic properties. Weak equivalences betweeen simplicial coefficient systems then
are introduced in §4, where we also give a positive answer to the question which was raised in 1.1.
In §5, we establish the closed simplicial model category structure on ab/L. The proof is more
difficult than one would expect and requires a Bousfield cardinality argument. The remaining two
sections are devoted to the results which were mentioned at the end of 1.1.

1.3 Application. The arguments which establish the closed simplicial model category structure
on ab/L will be used in [3,§6] to obtain closed simplicial model category structures on the category
of abelian group objects over a fixed simplicial diagram of simplicial sets and on the category of
abelian group objects over a fixed small simplicial category. An understanding of thesc »tructures
is necessary for our study of Hochschild-Mitchell cohomology [3].

§2. NOTATION, TERMINOLOGY, ETC.

We will use among others the following notation, terminology and results:

This research was in part supported by the National Science Foundation.



2.1 Simolicial sets. As usual ([5} and [2, Ch. VIII]} S will denote the category of simplicial
sets; for every integer n > 0, Aln] € S will be the standard n-simplex (i.e., the simplicial set
freely generated by a single n-simplex 1,), Aln] C Aln] will be its subcomplex spanned by the
faces of in and, for every pair of integers (k,n) with 0 < k < n, Vin, k] C A[n] will be the
subcomplex spanned by the faces djin with j # k. If L € S and z € L is an n-simplex, then
Alz] : A[n] = L € S will denote the unique map which sends ¢, to z and Alz]: Alz]) > L €S
and V[z,k] : V[n, k] — L € S will be the restrictions of A[z] to Aln] and V[n, k], respectively.

2.2 The over category S/L. For L € S, we write S/L for its over category (which has as objects
the maps K — L € S). An object (K — L) € S/L will often be denoted by K alone, without its
structure map K — L. To avoid confusion we thercfore use x ;, for the product in S/L.

2.3 A model category structure for S/L. The category S/L admits a closed simplicial model
category structure [6, Ch.II] in which the simplicial structure is the obvious one and in which the
fibrations, the cofibrations and the weak equivalences arc induced by those of S (2, Ch.VIII]. Thus
(2.2) an object K € S/L is fibrant iff its structure map K — L € 8 is a fibration (in S).

2.4 Abelian group objects in S/L. An abelian group object in S/L consists of an object
(f : K - L) € S/L together with a multiplication map m: K x K — K,a unitmapu: L — K
and an inverse map i : K — K in S/L satisfying the usual abelian group axioms. These abelian
group objects in S/L form an abelian category which we denote by ab/L.

2.5 A pair of adjoint functors S/L « ab/L. The forgetful functor U : ab/L — S/L has as
left adjoint the functor Z; : S/L — ab/L which sends an object K € S/L (2.2) to the object
ZL K, consisting of the disjoint union of the free abelian groups on the inverse images (in K) of
the simplices of L.

Using this pair of adjoint functors, one can assign to each object A € ab/L its simplicial
resolution (Z,U)**! A which is the simplicial object over ab/L which, in dimeénsion n, consists of
(ZLU)"*1 A and which has the property that

7o(ZLU)* P A A and ni(ZLU) TP A = 01 > 0).

2.6 Homotopy categories. If C is a closed model category, then [6, Ch. 1, §1} ho(C) will denote
its homotopy category, i.e., the category obtained by formally inverting all weak equivalences.

§3. HOMOLOGY WITH SIMPLICIAL COEFFICIENTS

In this section, we define homology with simplicial coeflicients and prove some of its basic
properties. First some

3.1 Preliminaries. Let (2.1) L € S and (2.4) A, A’ € ab/L. Then one can form the tensor
product AQ A' € ab/L which assigns to every simplex of L the tensor product of its inverse images
in A and A’, and note that, for X, K' € S/L, there is a natural isomorphism (2.5) ZLK @ Z K' =
ZL(I{ XL I{’)

Another useful construction assigns to an object A € ab/L the simplicial abelian group QL)A
which, in dimension n, consists of the direct sum of the inverse images (in A) of the n-simplices
of L. For K € S/L, the simplicial abelian group ®@Z I\ is just the free simplicial abelian group
on the simplices of K. L

Now we can define

3.2 Homology with simplicial coefficients. Given K € S/L and A € ab/L, the homology

H,.(K; A) of K with simplicial coefficients A will be
HJ(K;A)=m, 6? (ZLK © A)

and this definition readily implies:

3.3 ProPOSITION. If K,K' € S/L, then H.(K;ZLK') is just the ordinary intesral homology of
K x L K,

3.4 P.ROPOSITION. Let A€ ab/L and K € S/L and let K,,K; C K be subcomplexes. Then
there is a natural long exact (Mayer-Vietoris) sequence

— Hn(I{l n KQ; A) - Hn(l(l,A) $ H,,(I{Q, A) bd Hn(I(l (V] I{z,A) hmad Hn-—l(I{l n 1{2, A) —

3.5 PROPOSITION. Let K € S/L andlet 0 — A" - A — A’ -0 b i
e a short exact
ab/L. Then there is a natural long exact sequence e seauence i

= Ho(K5AY) » Ho(KGA) — Ho(K; A') — Hy_ (K Ay = ...
Less obvious is

34615 PROPOSIT}ON. Let.A €ab/L andletg: K — K' € S/L be a weak equivalence (2.3). Then
g ullduces an isomorphism H,(K;A) = H,(K'; A) whenever one of the following conditions is
satisfied:

(1) the structure maps K — L and K' — L are both fibrations (in S) or,

(2) the structure map A — L is a fibration (in 8). ’

PROOF: If A = Z; K" for some K" € S/L, then part (1) is an easy consequence of 3.3 and the
general case now follows readily from (2.5) and the existence of simplicial resolutions.

Part (2) is proved in a similar manner using the following lemma.

31.‘7ZL}5’MMA. If the structure map of K € S/L is a fibration (in S), then so is the structure map
O, Liv.

PROOF: Given a pair of integers (k,n) with 0 < k < n (resp. 0 < k¥ < n), an n-simplex = € L
and an (n - 1)-.sxmp1ex Yk € Z1 K over diz such that diyx = 0 fori < k (resp. k < 1), a careful
calculation (which uses the fact that the structure map K — L € S is a fibration) yields an

n-simplex y € Z; K over z such that diy=yranddiy=0fori < k k<t
the proof now is straightforward. (resp: b < 6) The rest of

§4. WEAK EQUIVALENCES BETWEEN SIMPLICIAL COEFFICIENT SYSTEMS

Next we discuss the notion of weak equivalence between simplicial coefficient systems which was

ment ()Ile(l in 1 l and 1ve a positive answer (4 6 to the questlon Whlch was Ialsed theIe
P . -\Ve start

g.l :l‘;e;k equivalences between simplicial coefficient systems. Amap 4 — 4’ € ab/L will

e called a weak equivalence if, for every fibrant (2.3) object K € S it induces an i i

M) & Bty (2.3) object K € S/L, it induce~ an isomorphism
Using 3.4 and 3.6, one then readily shows

4.2 iROPCj:}TIOIL./Let A,A" € ab/L be such that (2.5) UA,UA' € S/L are fibrant. Then a

map A —+ A’ € ab/L is a weak equivalence iff th derlyi ! i

oo (33 e underlying map UA — UA' € S/L is a weak
One also has

4.3 PROPOSITION. A map A — A' € ab/L is a weak equi i i
‘ quivalence if the underlyin UA
UA' € S/L is a weak equivalence as well as a fibration. yne mar -

PROOF:' The map A — A’ fits into a short exact sequence 0 — A" — A — A’ — 0 such that the
unde;l(ymg 'r‘x:lp of the oblxlnous map A" — L € ab/L (recall that L is the zero object of ab/L) is
& weak equivalence as well as a fibration. By 4.2 the map A” — L € ab/L i i

and the desired result now readily follows from 3.5. [ fo o weak equivalence

Furthermore 3.3 implies



4.4 PROPOSITION. If a map K — K' € S/L is a weak equivalence, then so is the induced map
(23) ZLK — ZL K' € ab/L.

Abplying this to the maps V([z, k] — A[z] € S/L (2.1), one can construct as follows

4.5 The extension functor E : ab/L — ab/L. For A € ab/L, let EA € ab/L be determined

by the push out diagram
[H2LV(z, k] —— 1] Z.A[z)

! !

A _ EA
in which the sums are taken over all 4-tuples (k,n,z,g), where k and n are integers such that
0< k<n,zisan n-simplex of L and g is a map g : Z,V[z,k] —» A € ab/L. Then 3.5 implies
that the map A — EA € ab/L is a weak equivalence and hence so is the resulting map

A— EXA=lmE"A € ab/L .

This last statement immediately provides a positive answer to the question which was raised in
1.1 as one has, almost by definition:

4.6 PROPOSITION. For every object A € ab/L, the structure map of E®A is a fibration of
simplicial sets, i.e. UE®A € S/L is fibrant.

We end with observing that the above results also readily imply the following characterization
of weak equivalences in ab/L.

4.7 PROPOSITION. A map A — A' € ab/L is a weak equivalence iff the induced map UE®A —
UE>®A' € S/L is a weak equivalence.

4.8 PROPOSITION. Let P — L € S be a path fibration (i.e., a fibration such that (i) the induced
map moP — moL is an isomorphism and (ii) each component of P is contractible). Then a
map A — A' € ab/L is a weak equivalence iff the induced map H.(P;A) — H.(P;A’) is an
isomorphism.

§5. A MODEL CATEGORY STRUCTURE FOR ab/L

The preceding results suggest

5.1 PROPOSITION. The category ab/L admits a closed simplicial model category structure [6,
Ch. II] in which the simplicial structure is the obvious one, the weak equivalences are as in 4.1
and a map X — Y is a trivial fibration (i.e., a fibration as well as a weak equivalence) whenever
the underlying map UX — UY € S/L is so (2.3).

This, of course, implies the following rather formal

5.2 Definition of cofibrations and fibrations in ab/L.

(1) The cofibrations in ab/L are the maps which have the left lifting property [6, Ch. I, §5]
with respect to the maps X — Y for which the underlying map UX — UY € S/Lisa
trivial fibration.

(2) The fibrations in ab/L are the maps which have the right lifting property [6, Ch. 1,85]
with respect to the trivial cofibrations (i.e., the cofibrations which are weak equivalcuces).

A more useful description of the cofibrant object= and the cofibrations is

5.3 PROPOSITION.
(1) An object A € ab/L is cofibrant iff it is free (i.e. iff the inverse image in A of each simplex

in L is a free abelian group).
(2) A map A — B € ab/L is a cofibration iff it is relatively free (i.e., it fits into a short exact
sequence 0 = A — B — C — 0 in which C is free).

PROOF: A map in ab/L clearly has a trivial fibration in S/L as underlying map iff it has the
righ‘t lifting property with respect to all inclusions (2.1) Z1A[z] — Z1Alz) € ab/L. In view of
5.2(i) and the small object argument of {6, Ch. II, §3], this implies that the cofibrations in ab/L
are the retracts of the maps A — B € ab/L which admit (possibly transfinite) factorizatons

A=A - 24,9 4,,—> - ~1lim°A, =B

in v'vhich each map /.1, — A, Is obtained by pushing out an inclusion ZLA[:c] — ZpAlz] and in
which, for every limit ordinal t involved, A, = lim*<'4, . The desired result now follows readily.

For. fibrations one can, in general, do no better than 5.2(ii). However, for fibrant objects and
fibrations between them, one has:

5.4 PROPOSITION.

(1) An object Y € ab/L is fibrant iff the underlying object UY € S/L is fibrant (i.e., the
structure map Y — L € S is a fibration).

(2) Let X,Y € ab/L be fibrant. Thenamap X — Y € ab/L is a fibration iff the underlyi
map UX — UY € S/L is a fibration. e

!
5.5.COROLL‘ARY. Let X,Y € ab/L be fibrant. Then (4.2) amap X — Y € ab/L is a weak
equivalence iff the underlying map UX — UY ¢ S/L is a weak equivalence.

PROOF: In view of 4.4 and 5.2(ii) a fibration X — Y € ab/L has the right lifting property with
respect to the maps ZpV(z,k] —» ZyA[z] and hence its underlying map UX — UY € S/L is
also a fibration. It thus remains to show that a map X — Y € ab/L, for which the underlying
map UX — UY € S/L is a fibration between fibrant objects, has the right lifting property
with respect to all trivial cofibrations in ab/L. Because UX and UY are fibrant (in S/L), a
commutative diagram in ab/L ’

A— X

Lo

B—0wY

in which the map A — B is a trivial cofibration, admits a factorization (4.4)

A—— E*4 — X

! ! !

B ~— E*B — Y

in which the map E®A — E*B is a trivial cofibration. Moreover (4.5) UE>A and UE™B are
ﬁbrfmt objects of S/L and hence (4.2) the underlying map UE®A — UE®B € S/L is a weak
equlvalence. Using this fact it is now not difficult to obtain a lifting E*°B — X which, composed
with the map B — E*B, yields the desired lifting B — X. ,

We end with observing that the pair of adjoi :
: joint functors Z; : S/L :
expected, i.e., (4.4 and 5.3-5). o b S/ <2 ab/L U behaves a3

5.6 PROPOSITION. The functor Zy : S/L — ab/L preserves cofibrations and weak equivalences

agd tthe functor U : ab/L — S/L preserves fibrations and weak equivalences between fibrant
objects.

It thus remains to give a



5.7 Proof of 5.1. One has to verify axioms CM1-5 of [2, Ch. VIII, §2]. This is straightforward,
cept for axioms CM4(ii) and CM5(ii). . .
exT(f verify CM4(ii), it( szlfﬁces to show: f amap X — Y € 2.1b/L is a trivial ﬁbratlon,a t}tlin
se is the underlying map UX — UY € S/L. By the small object argument [6, Ch.II3 §3] the
map X — Y admits a factorization X — X' — Y in ab/L such tl'la,t the undferlylng map
UX' > UY € S/L is a trivial fibration and the map X — X' € ab/L is a cofibration. In view
of 4.3, the map X' = Y € ab/L is a weak equivalence and, b’ecause.: t..he map X'—b Y eab/Lis
a weak equivalence, it follows that the map X — X' € ab/L is a trivial coﬁprétxon. As the i}'nz}a.};)
X — Y € ab/L is also a fibration,one can apply CM4(i) a,x}d deduce .th.at it is a retract of the
map X' — Y € ab/L and that its underlying map therefore is also a ‘tr1v1a1 ﬁbratlo.n. .
Finally to verify CM5(ii) one uses the Bousfield argument [1, §1.1], i.e., one .corr'lbme.zs the smal
object argument [6, Ch. II, §3] with the observation that proposition 4.8 readily implies

5.8 LEMMA. Let ¢ be an infinite cardinal number at least as large as the.number of simph'ce's ‘in
L. Then a map in ab/L is a fibration iff it has the right lifting property with respect to all trivial
cofibrations A — B € ab/L in which the number of simplices in B is at most c.

§6 DEPENDENCE OF ab/L ON L

Qur aim in this section is to show

6.1 PROPOSITION. Let g : L — L' € S be a weak equivalence. Then g induces an equivalence
of categories ho{ab/L) = ho(ab/L') (2.6) and hence a 1-1 correspondence betx;veen the weak
equivalence classes of the simplicial coefficient systems over L and the ones over L.

To prove this we consider

6.2 A pair of adjoint functors g, : ab/L < ab/L': g*. Givenamap g: L — L' € Si)t};
pull back functor g* : ab/L' — ab/L has as left adjoint the push out 'functo'r g : ab/L — a /
which “takes direct sums, over the simplices of L which have the same image in L', of their inverse
images”, and which clearly has the property that 9g.A = GLBA for every object A € ab/L.

Moreover, one readily verifies:

6.3 PROPOSITION. The left adjoint g, : ab/L — ab/L' preserves cofibrations and wea'k equiv-
alences and the right adjoint g* : ab/L' — ab/L preserves fibrations and weak equivalences

between fibrant objects.
The desired result now follows immediately from {6, Ch. I, §4, Th. 3] and

6.4 PROPOSITION. Let g : L — L' € S be a trivial cofibration (i.e., a weak equivalen(,:e which
is 1-1). Then, for every cofibrant object A € ab/L and every fibrant ol?jt.ect A' € ab/L’, a map
A — g*A' € ab/L is a weak equivalence iff its adjoint g,A — A’ € ab/L’ is so.

PROOF: As g is 1-1, for every object A € ab/L the adjunction map A - g‘g.,.:‘i € ab/L is

an isomorphism and hence a map A — B € ab/L is a weak equivalence iff the .mdu‘ced map

g.A — ¢g.B € ab/L' is so. Moreover, because g is a weak equivalence, the adjunction map
Ll R .

g.g*A' = A' € ab/L’ is (in view of 3.6(ii) and 6.2) a weak equivalence for every fibrant object
*

A' € ab/L’. The proposition now readily follows.

§7. SIMPLICIAL MODULES OVER THE LOOP GROUP GL OF L

We end with showing that (7.4), for L € S connected, the weak eq}u'valence c]asse.? of the
simplicial coefficient systems over L are in a natural 1-1 correspondence w1t?1 the _wez.a.k equivalence
classes of the simplicial modules over the loop group GL of L (or more precisely, its integral group
ring ZGL).

First we recall from [6] the existence of

7.1 A closed model category structure for simplicial modules over GL. Let L € S be
connected and have a base point, let GL be its loop group [4] (which is a free simplicial group
which has the homotopy type of the loops on L) and let Mg, denote the category of simplicial
(left) modules over the integral group ring ZGL of GL. Then (6, ch. II, §6] Mgy, admits a closed
simplicial model category structure in which the simaplicial structure is the obvious one and in

which a map is a weak equivalence or a fibration whenever the underlying map in S is a weak
equivalence or a fibration.
Next we observe the existence of

7.2 A pair of adjoint functors h:ab/L « Mgy : k. Let EL — L € S be the path fibration
of [4], which is a principal fibration with group GL (ie., [5, §18] GL acts freely on EL from the
right and EL/GL = L). Then it is not difficult to see that the induced map Z;EL - L€Sisa
principal fibration with group ZGL. Thus one can consider the functor h : ab/L — Mg which
sends an object A € ab/L to the object %(ZLEL®A) € Mgy and the functor k: Mgy — ab/L

which sends an object M € Mg[ to the object M ®@z¢L ZLEL € ab/L. A straightforward

calculation then yields that these functors form a pair of adjoint functors h : ab/L & Mgy : &k
and that

7.3 PROPOSITION. Both of the functors h and k preserve weak equivalences and both adjunction
maps hk — id and id — kh are natural weak equivalences.

:
7.4 COROLLARY. The functor h induces an equivalence of categories ho(ab/L) = ho(Mgy,) (2.6)
and hence a 1-1 correspondence between the weak equivalence classes of the simplicial coefficient
systems over L and the weak equivalence classes of the simplicial modules over GL.

7.5 REMARK: The weak equivalence classes of the simplicial coefficient systems over L are also in
natural 1-1 correspondence with the weak equivalence classes of the differential graded modules
over the normalized chains on GL, which are trivial in negative dimensions. This follows imme-
diately from 7.4 and the fact that [3, §22 and §29] the normalization functor N gives rise to a
functor N : Mg — mgy, (where mgy, denotes the category of these differential graded modules),

which induces an equivalence of categories ho(MGL) = ho(mg). One proves this by observing
that

(1) the category mg admits a closed model category structure in which a map is a weak
equivalence whenever it induces an isomorphism on homology and a fibration whenever it
is onto in positive demensions, and

(2) the functor N : Mgz — mgy, and its right adjoint satisfy the conditions of [6, Ch. I, §4,
Th.3].
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