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On the Arf Invariant 

R. H. DYE 

1 

FTC proffer a swift and elementary treatment of the Arf invariant that simul- 
taneously establishes that it is an invariant under equivalence for nondegenerate 
quadratic forms over fields of characteristic 2, and that is classifies these forms 

when the fields are perfect. 
Let Q(x) be a nondegenerate (nondefective) quadratic form on a vector space 1’ 

of dimension 2n over a field K of characteristic 2. Then the associated polar form 

B(x, y) z 0(x -t- y) + Q,(x) + O(Y) (1) 

is a nonsingular alternating bilinear form. Let e, , e, ,..., e,, be a symplectic 
base of I’, i.e., one with respect to which B(x, y) has the canonical coordinate 
form 

B(x, y) = f (“iYfl+i - 3’j”n+i). (2) 
i m-1 

The -Arf invariant of Q(x) with respect to this base is 

Let 1, ~-7 -(h2 + h : X E Kj : L is the image of the homomorphism X M h” t h of 

the additive group Kl- whose kernel is (0, l> L= GF(2), and so L is a subgroup 
of K isomorphic to fimjGF(2)‘. Write J(Q) for the class of O(Q) modulo L. 
In precise terms we prove the following 

THEOREM. (i) a(Q) is independent of the choice of symplectic base. 

(ii) If Q,(x) and C&(x) are equivalent nondexenerate quadratic forms on 1’ 

then 2i(,O,) : 2i(&). 
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(iii) If K p f t h t is er ec t en wo nondegenerate quadratic forms Q1(x), Qz(x) on V 

are equivalent if and only if a(Ql) = d(Q,). 

Parts(i) and (ii) were first proved by Arf whose argument proceeds by induction 
on 71 and is rather lengthy [l, pp. 15221571. Dieudonne [4] and Kneser [8] have 
given shorter proofs based on the properties of the Clifford algebra of Q(x), 
and yet other approaches have been given by Witt and Klingenberg [7, 91. 
Our method, which requires essentially nothing apart from the action of a 
transvection and a simple calculation for quadratic forms, yields (i), (ii), and (iii) 
at one fell stroke. Part (iii) is well known for finite K. It is then a consequence 
of the fact that 1 K+/L 1 = 2 (see above) and Dickson’s result [3, p. 197; 5, p. 341 
that there are two types of nondegenerate quadratic forms on V. Bourbaki 
[2, pp. 112, 1131 gives exercises for the reader leading to canonical forms for 
quadratic forms on V when K is perfect, and a field extension criterion for two 
such canonical forms to be equivalent. It is not difficult to deduce (iii) from this 
criterion. However, we shall adopt the reverse procedure and deduce the canonical 
form for Q(x) as an immediate consequence of our approach to the Theorem. 

2 

We now present the proof. If fi , fi ,..., fin is a symplectic base for B(x, y) 
then, because of the form (2), the linear map T given by Te, = f, (1 u < < 2~2) 
is a member of the symplectic group of B(x, y) and so [6, p. lo] is the product 
of symplectic transvections. Hence, since each transvection takes one symplectic 
base to another, to establish (i) we need only prove that the difference of the 
Arf invariant of Q(x) with respect to Te, ,..., Tezn and O(Q) is in L for each 
symplectic transvection T. So suppose, now, that T is the transvection [6, 
pp. 9, 101, 

T:x-+x+XB(x,q)q, (4) 

where q # 0 in V and h # 0 in K. Then, from (1), 

QCW = Q(x) + VQh) + Xl Mx, 41”. (5) 

Writing q = C”,“=, qUev we see that if p E K then the Arf invariant with 
respect to the base e, ,..., ezn of 

a(x) = Q(x) + P[% s>l" (6) 
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is 

A@) = f CQ(ei) + d+ilK2(en+0 + ~$1 
i=l 

= A(Q) I- P f ki2Q(ei) + d+iQ(e,J] + pL2 f qt& 
i=l i=l 

= A(Q) + cLQ(s) + P i qiqn+i + 
i=l 

by successive use of (2), (3) and (2) with (I). Thus A(o) - A(o)tL if and 

only if pQ(q) EL. 
When Q(x) = Q(Tx) then A(&) is the Arf invariant of Q(x) with respect to 

Tel ,..., Te2n , and, by (5) pQ(q) = [hQ(q)12 + hQ(q) EL: (i) follows. 
If Q2(x) is equivalent to Q(x) then there is an S in GL,,(K) such that Q2(x) = = 

Q( Sx). Then, from (1) the associated polar form of Q2(x) is B(Sx, Sy) and 

so S-le, ,..., S- 1e2n form a symplectic base for Q,(x). Its Arf invariant with 
respect to this base is 

gl Q2(S-‘ei) Q2C-‘en+i ) = f Q(SS-lei) Q(SS-le,,J = A(Q): 
i=l 

(ii) follows immediately. 

Now suppose that K is perfect and that d(Qr) = B(Q2). Since (2) is the 
canonical form for any nonsingular alternating bilinear form we need, in view 
of (ii), only prove that Qi(x) and Q,(x) are equivalent when Q,(x) == Q(x) 
and Q2(x) has B(x, y) for its associated polar form in order to establish (iii). 
Then, from (I), the associated polar form of Q2(x) - Q(x) is the null form and 

so Q&4 --I Q(x) = C”,:, u~~x,,~ for some a,, (1 .< u .< 2n) in K. Since K is 
perfect a,, is a square: write aj = qt+i , n,?, i ==: qi” (I ( i .< n). Then, by (2) 
Q2(x) is the Q(x) of (6) with p = 1. Hence, by the remark after (7), Q(q) EL, 
and so there is a v E K such that Q(q) = va + v. i2s v + 1 will also serve we may 

assume that v f 0. Let X = v-l. Then 

h"Q(q) -1 X z= +[Q(q)+ ~1 =; y-2$ z 1. 

If T is the transvection of (4) for this h then, by (5) and (6) 

Q2(x) - D(x) = Q(x) -t [B(x, q)]” = Q(Tx), 

and (iii) is proved. 
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We have the 

COROLLARY. If Q(x) is a nondegenerate quadratic form on a vector space of 

dimension 2n over a perfect field of characteristic 2 then coordinates may be chosen 
so that 

Q(x) = f -vn+i + 4~’ + &a>- 
i=l 

Proof. This form has the B(x, y) of (2) for its polar form and with respect 

to e, ,..., esn its Arf invariant is 9. Since v2 takes all values in K as v varies the 
result follows from (iii). 

An immediate consequence is that Q(x) has index n or n - 1. 
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