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HOMOLOGY OF ITERATED LOOP SPACES.*

By Erpox DyEer?! and R. K. LasHOF.!

One of the impotrant problems of topology is to determine the stable
homotopy groups S,(X) of a space X ; i.e., limm,, (s?X), where siX denotes
e

the i-th reduced suspension of X and i (s°X) — mis1.n (742X ) is the Freuden-
thal Suspension Homomorphism. The Freudenthal Suspension Theorem as-
serts that this homomorphism is an isomorphism for n <1—1; and so, the
group S,(X) is isomorphic t0 iy (s°X) = m, (QisiX) for n < i—1, where
Q¢ denotes the i-th iterated loop space. As there is a natural imbedding of
QistX in Q¥*1st1X, it is clear that if @ (X) denotes the direct limit of the
spaces Q%s*X under this imbedding, then

S0(X) =ma(Q(X)).

The space Q(X) is in a well-defined sense an “infinite loop space.”
Araki and Kudo found [1] that iterated loop spaces have additional structure
beyond the H-space structure to be found in all loop spaces. This structure
affords a measure of the lack of commutativity of the H-space multiplication.
In terms of this structure they defined mod? “homology operations” much
analogous to the Steenrod Squares and were able to compute in terms of these
operations the mod? homology structure of Q¢S,, 1 <n, where S, denotes
the n-sphere.

Difficulties arise in attempting to extend their definitions to the mod p
case, for p an odd prime. Browder in his thesis [3] defined a type of mod p
homology operation and computed the modp homology of Q7s"X, where X
is arcwise connected and p > n/2.

In this paper the structure on iterated loop spaces found by Araki and
Kudo is further developed into a form which appears dual to the diagonal
structure used by Steenrod in defining cohomology reduced powers. In terms
of this structure operations on homology classes are defined, homology extended
powers. 'These operation have properties analogous to those of the Steenrod
operations. Also these operations are in a certain sense “stable” homology
operations, as distinct from Browder’s.

* Received January 3, 1961; revised December 11, 1961.
* This research was supported in part by the National Science Foundation under
contract number G-10369.
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36 ELDON DYER AND R. K. LASHOF.

As applications, we compute the modp homology of Q'S,, ¢ <n, and
Q(sX), for X an arcwise connected space. Also, partial results on Q%siX
are obtained. Unlike the mod?2 case, H,(Q%"X;Z,) is not generated by
homology operations (as defined herein) on im H,(s*iX;Z,). However,
Q (sX) is, roughly speaking, the smallest space containing sX for which the
homology operations are all defined, and, in fact, the homology of @ (sX) is
generated by homology operations on the homology classes of sX. This may
be compared with the result of James [8] that QsX is in some sense the
smallest H-space containing X. Also, we show that in a space Qis"X, i < n,
a number of cohomology operations are trivial.

I. Hr-spaces.

1. Definition of H"-spaces. Let S, denote the group of permutations
on p symbols and let J»3, denote the n-th-join of 3, with itself (in the sense
of Milnor [9]). Briefly, a point of J»3, is determined by a sequence o, * -, tny
of real numbers such that ¢, =0 and ¢, + - - - + ¢, =1, and an element ¢, € 3,
for each ¢ such that ¢;54 0. Such a point is denoted by (foo0 D - -+ D ty10w-1).
The set of these points is given the strong topology.

A space X is an Hmpy-space, n =0, provided it has an associative multi-
plication with unit e and there is a map (where X? is the Cartesian product
of X with itself p times)

Ony: Jr1S, X Xp— X
which is

1.1. Sp-equivariant; i.e., for each ¢ € 3,
0np(t00'0 D @tn(rn;ml; e 7551))

= 0" (tocos™ @ - - * D twono™ 5 Ta(1)," * 75 To(p)
and

1.2. normalized; i. e., for each ¢ € 3,
9%(0@' . '@0691'0';551;' . ‘,Qz'p)=$o(1) C o To(p)

Let J*3, = Lim J"S,, where J»S¢ C J"*13, is given by
-_—>

(tl‘o'l @ e @t‘nﬂ"n) - (0 @ t10'1 @ ot @tnan)

A space X is an H*p-space if there is a map 6°,: J*3, X X?— X such that
for each n, §<,|J"13, X X7 makes X an H",-space.

The H,-spaces defined by Araki and Kudo [1] are H",-spaces in the above
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sense. It is also clear that an H"-space is a fortiori an Hm",-space. Araki
and Kudo showed that an (n -} 1)-st loop space is an H";-space. The corre-
sponding theorem is true here also.

A space X ts a special H"y-space if it is an H"p-space and

1.3. the map 6%, is projective; i.e.,
i
0 (wse,- - e,m,0, - 6) =1
forall 4, 1=t=p, wc ™3, and z€ X.

TarEoREM 1.1. An H-space (in the usual sense — associative multiplica-
tion with unit) is a special H-space for all p. If X is a special H",-space,
then QX, the loop space of X, is a special H"'p-space.

In particular, we note that an (n + 1)-st-loop space is an H",-space for
all p.

Proof. We use the “Moore loop space.” This is of the same homotopy
type as the ordinary loop space and is more convenient for our purposes.
Recall that a point of Q(X,e) is a pair (w,7), r=0 a real number and w a
map: w:[0,r] = X, such that w(0) =w(r) =e¢, and if (w,r) and (w’,7")
are points of Q(X,e), then

(w, ) - (w',7") = (w”,7”)
is defined by
w(t)=w(t),0=t=r
w(t—r), r=t=r-+r.

For X a special H";-space, we define the loop (=0, t;=1,0=s=1)

1.4 0" (A —8)tooo @« * B (1—8)tnon @ se; (w1, 71)," * (wp, 7))(t)
for 0=t=r=r,+- - -+, in the space QX to be

07y (tooo @ - - “D laons w (8),- - o, wsp(t)),
where

ws (1) =wi(t—s(r++- - - +74)) and
Wi (t) = w;(0),¢ <0

wi(t),0=t=n,

wi(ry), s < L.

This defines 6" for oy, = ¢, the unit element of 3, ; for o,,, different from
e, we define ', by equivariance.
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It follows immediately from this definition that 67+, satisfies conditions
1.1, 1.2 and 1.3.

A map f: X - X of H*)-spaces will be called an H*,-map if

en
Jn+12p >< Xp ___p; X

[ixr |r
g,

TS, X X s X,

commutes up to a 3p-equivariant homotopy. In particular, if X — Q1Y
X =0"'¥ and f is the map induced by a map g: ¥ — ¥, then f is an H»,-map.

Tterated loop spaces have additional structure beyond that of being H",-
spaces. This structure is necessary to establish “Adem Relations” for the
homology operations.? We now describe it.

Recall that the wreath product %, {3; of 3, by 3; is the subgroup of 3,
described as follows: consider 3,,; as the permutation group on the ml objects
Ti,*  *,Tmi. Zp f 3 is the subgroup of 3,,; generated by (3,)¢ and 3, where
the i-th factor of (3,)! acts on the i-th block of m objects (leaving the others
fixed), 1=1,- - -, 1, and 3; acts by permuting the I such blocks. Explicitly,
if 0€3; and (ry," - -, 7) € (3m)%, then ofry,- - -, 7;] denotes an element of
S [ % and multiplication is given by

0’[71;' ' '7Tl]'6[?1)' ) ')?l] ==UE[TE(1):F1;' : ')T;(l)?l]-

It will be convenient for our purposes to have an explicit description of
the simplicial structures of the complexes J*S; and J=3,, X JtS,. A vertez v
of JrS; is a point of the form

v=0(1)= (0D - PODcDOD - -DO),

0=1=r—1. We call i the weight of v, and write w(v) —i. 4 g-simplex
in Jr3; is of the form (70(%)," * *,7q(%)), 7€ Sy, o< - - - < 1g < 1, and
consists of all points (aeso @+ - * @ @r40,-,) in JS; whose coordinates are
all zero except in the 4; places and oy, =17, j=0," - -, q.

For u a vertex of J3, and v a vertex of J'S,, (uv) will denote the
corresponding vertex of J3, X JtS,. Let w(uv) =w(w) 4+ w(v). Given
p- and g-simplices of J¢3,, and J'S,, respectively, we simplicially subdivide
their direct product in the usual way; i.e., an r-simplex of their product is a

?The Adem relations are not explicitly used in the examples we compute in this
paper, so that the remainder of this section may be omitted on first reading.
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sequence (Uolo," * *,Ur¥y), Where u; and v; are vertices of the p and g-simplices,
respectively, satisfying

(1) w(uws) <w(Unavisg) and

(1) w(w) =w(usu) and w(v;) = w(Visa).
(Note that w(v;) = w (vs41) implies v; = v;;.)

JoHS X (JT13,) s a S, f Si-free complex; i.e. the i-th factor of (3,)?
acts on the ¢-th factor of (J7*'=,)! and leaves the other factors as well as
Js13; fixed and 3; acts by permuting the factors in (J7*'3,)! and acts on
J5+13; in the usual way.

Corresponding to the inclusion map of 3, (3 in 3., there is a 3, (-
equivariant map

Yo TS, X (TS, Lo JHIS,, b= s+ 1,
which we describe explicitly. A vertex in J513; X (J™*5,,) 1 is of the form
v=0()m(j1) - m(p),w@) =i+i+ -+ p=k
Let y(v) = [71," - +,7] (k). The condition (i) above implies that y is
simplicial. Equivariance is immediate from the definitions.

An Ht-space is an H-space X which is an H?,-space for every positive

integer p and if ¢{=s- 7, then

@ X (6"m)"
Js+121 >< (Jnlzm >< Xm) 5 Js+1zl X Xt

Pl
9tml

Jt+12ml >< Xmi X

commutes up to a 3, {-equivariant homotopy, where ¢ is the composition

Js+121 >< (er—lgm >< Xm) [JEEN J8+121 X (Jr+12m) 1 X Xml
N Jt+12ml >< Xmt,

THEOREM 1.2. Kvery (- 1)-st loop space is an Ht-space.
Proof. Let t=s-4rl. We first define a map
4) : Js+121 >< (Jr+12m) [5EN Jt+22Z X (Jt+22m) 13

which is 3, f S-equivariantly homotopic to the standard inclusion of
JEZ X (JT13,)E in S5 X (J1*25,) N For each vertex v=o(¢)7(j1)
(i), let ¢ (v) =o(k)ri(k) - - -7(k), where k=i-+j+- - 47
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This map is simplicial, as above, and since dim (J**'3; X (J™'3,)!) =1 and
Jt+2@, @ any finite group, is (¢ -+ 1)-connected, any two 3, {S;-equivariant
maps of J#13; X (J715,) 0 into JH2S; X (J123,)t are 3, [ S-equivariantly
homotopic.

It is this sufficient to show that the diagram

¢
Js+1zl >< (JHIEm >< Xm) [ SN Jt+22l >< (Jt+22m >< Xm) 1
1 X (8)*

T3, X X

<

0

0
JHSy X XM —— X

is commutative. We will show this by an induction on dimension of cells of
S5, in the image of y.
Since
ﬂrn(s(yo'o D DSor 2 @ 03Ny, - ';)\/n) (t)
= 0r71n(8000 DD Sr-»zUr—ZB)\l(t); o ,)\n(t) ),
the result is immediate for O-cells. Assume then that the diagram commutes
for p-simplices in the image of ¢; i.e., a simplex
(00[701: ce, T (B0, ey o[ 7Py, - - -, 7] (7)),
where
Lty ] (1) = (o () (%) - - 7))
and k¢=i*+j*+- - -4 4% Thus, we assume

V4
gtml( @ Swo"z[‘ral, RN ,‘.al] (ka) ;)\1,. I )\ml)
a=0
V4 D
= 0t+1l( D Saaa(k“) 50t+1m( fa>) Sa.ral(ka) SAL )\m), SR
a=0 a=0
b4
0%+ ( 690 $a70 (k%) 5 Ami-1y+1, * "5 Ama) )
a=

We shall use the formula (1.4) to reduce the case of the (p -+ 1)-simplex to
that of the p-simplex. It is sufficient to prove the formula when the (p + 1)-st
vertex is the unit element of Em_f 3; as the action of the group on the two
sides of the equation corresponds.
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b4
‘etml( ® Sa(l _S)Ua["'ab Ty Tal] (ka) @ Se(kl’”) 5AL, 5 Amt) (t)
a=0
» .
_ gt—lml( @ Saga[ral’ RN Tal] (ka) ; )\sl(t), I )\sml(t))
a=0

F4 » m-1
= 0% D $q0%(k?) ; 0%n( 690 Sam% (k%) 5 M(8), - At —s 21 U))s "
a=0 a= =

D m(1-1)
atm( ) sa"al(ka) 5 )\m(lr—l)+1(7f —3$ 21 'u'i)) T,
a=0 =

)\ml(t—-smgtlui)))

D
— 0t D 3409k 3 671 B sa(L — 8)7% () D se (bo*1) 5
a=0 a=0
Ay, " }AM)(t): T
» m(l-1)
6t+1m( (S5} Sa(l '—-S)Tal(ka) ) 86(761"1) 5 A,m(l-—l)+1, T, /\ml)(t —S 2 uz))
a=0 <

= gt+1y( é 8a(1—8)o%(k®) @ se(kr*t) 5 94+%,,( Gpa 8a(1—8)79,(k*) @ se(kr+t);
a=0 8=0
)\1’. . .’)\m)7. N
Y4
6+ ( EPosa(l —8)1(k) D se(k*) s Ami-1ys1,* * * 5 M) )(2).

= 8 X (0°) DB @ ol — )or(ie)em (o) - o)
@ se(i)e(jP) - - - ([P s Ay 5 A (D).

Thus, 6% o =20"0 (X (6**4)") on (p-+ 1)-simplices of J*13,,; in the
image of . The induction is complete.

II. Definition and first properties of homology operations. Our
definitions are closely patterned on those of Steenrod ([15], [16]) for co-
homology operations. The homology operations will have many properties
similar to those of cohomology operations.

For any space 4, let C(A4) denote the normalized cubical chains of A.
An action of the symmetric group 3, on 4 induces an action of 3, on C(4).
Now let X be an H",-space and §=49,: J"*13, X X»—> X be the 3,-equi-
variant map defined in Section 1. The induced chain map §: O (J"*23, X X?)
— 0(X) is then an equivariant chain map. Further, let 7n: O(Jn13,) @ C(X7)
= O(J"™135, X X?), h(w ® a) = w*¥a, w € C(J™'3,), a € O(X?), be the standard
chain equivalence (Eilenberg-Zilber Theorem). Then

Goh: C(J™13,) ® C(X?)— O(X)

is again clearly equivariant. If = C 3,, then J"'zx C J"'3, and every 3,-
equivariant map is w-equivariant. Summarizing we have:
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Lemwma 2.1. For any subgroup = of 3, the equivariant map 6: J"'x
X X?— X induces an equivariant chain group 6o h: C(J"1x) @ C(X?) — C(X)
on normalized cubical chains, where h(w ® a) = w*a, w € C(J"'x), a € C(X?).

Let C(X)?2=0(X)®- - -Q@C(X), p times, and let 3, act on C(X)? in
the usual way by permitting factors (with the appropriate sign [13]). In
Lemma 2.1, we would like to substitute C'(X)? for C(X?) as it is easier to
handle. Although one may write down an explicit equivariant chain map
from C(X)? to C(X?), we would like to know how unique the result is and
whether we are losing any information by this substitution. The answer is
given by the following theorem and corollary

Let K and L be covariant functors on a category (I with values in the
category 9% of chain complexes and let f: K — L be any map. Let = be a
finite group, and assume that K and L are wfunctors; i.e., = is a group of
natural transformations. If W and V are any w-chain complexes (assumed
free over the integers) we make W® K and V ® L into « functors by having
« act on both factors. For a complex W we will write W for the n-skeleton:

ie. WO =W, (See [5] for notation.)
=0

THEOREM R.1. If W is m-free, if K is representable and L is acyclic (for
some set of models M C U, and if f is equivariant in dimension zero; then
gwen any w-equivariant chain map t: W—V.

(2) 3 a m-equivariant map F: WQ K — V ® L, satisfying
(1) F(WWQRK(X))CTVWQL(X), all n,
(R) F(w®a)=1t(w)Qf(a), we W, a€ K,(X).

(b) If t, t*: W=V are w-equivariantly chain homotopic, and F, F*
are any two maps satisfying (1) and (R) above for t, t* respectively, then F
and F* are w-equivariantly chain homotopic.

(c) We may further choose F so that given any two dimensional -
generator e, of W, F(e,®a) =1t(e,) ®f(a), a € K(X).

Proof. Choose a set § of w-free generators of W. Define F(e,®a)
=1(eo) ffa), a€ K(X), all o-dim = generators ¢, € §; and extend to all of
W,® K (X) by equivariance. Since f is a natural chain map, F will be a
natural chain map, equivariant by definition, and clearly satisfying (1) and
(R).

Assume F has been defined on W® ® K (X), then define it on W;,, ® Ko(X)
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by (). Now assume F is defined on WD ® K (X)® ; we show that F may
be extended to Wi+ @ K(X)+9). Thus F will be extended to all of W ® K(X)
by induction.

For any (¢ 4 1) dim =-generator e;,; € S, and any my,; € K.y (M), M C M,
consider ;1 @ M. Then

F(a(eiﬂ ® m“r+1) ) = F(aeiu ® mr+1) + (_ 1 ) i+1F(6{,+1 ®0m,,«+1)
is defined by the induction assumption, and is a cycle. Further, it is of the
form Evl’@b” dimv=i+1, v€V, b€ L(M). Let {v*.}, be a set of
generators of V., over the integers. Then 2 QR bhr = 2 A @ DA 17 R b,
g

dim v* =1. Since ZvP®bP is a cycle, and

a(v)\iﬂ ® b)\) = aviﬂ ® b)\ + (_ 1) i+lv>\i+1 ® ab)\>
it follows (since the v%,; are independent) that v*,; ® 9b* =0 and hence

obr =0. But b*e L,(M), and H,(L(M)) =0 if >0, so that b>=ac,
€ Ly (M). On the other hand, if r=0,

F(@iﬂ ®07"’/“1) = t(e'i+1) ®f(’amr+1) = t(e'h»l) ®a]c(mr+1)

by (2), and the form is the same as above, taking c* = f(myy).
Consider now Fo(e;1 ® myy) — (20N, @er). This is again a cycle
and is of the form X v* ® b, dim v =¢. Proceeding as above, we got finally:

F (0 (001 ® Mmipss)) = 0(S 07 ®c7), dim o™ =< i+ 1.
T

Hence we may set F (€41 ® myyq) =2 v®¢”. Since K is representable, and

T
hence any @,.; € K, (X) is of the form K (¢) (mp1) = @pir, Where ¢p: M - X
and (¢, M) is the chosen representative; we can define

F(ei+1®wr+1) =®L(¢) (F(6i+1®mr+1));

i: V=V the identity. F is then extended to all of WD QK (X)) by
equivariance. It is easy to check that F' has all the desired properties, including
(¢). This completes the induction argument.

The proof of (b) is entirely analogous, using condition (2) and the fact
that ¢ and ¢* are = equivariantly chain homotopic, to get the induction started.
We leave the details to the reader.

CoroLLARY. Let W be any =-free chain complex, = C 3p; then

(a) Given any w-equivariant chain map t: W— C(J™'x), there exist a
natural =-equivariant chain map F: W& C(X)? — C(J+n) Q ((XP) such that



44 ELDON DYER AND R. K. LASHOPF.

1) F(w®z,® - -Qup) =t(w)®uay* - - *z, dimz; =0,
j= 1,- -, p
) F(WOC(X)r) C O(Ja)®QC(XP)

(b) If W& =0 for i >n (e.g., if W is the n-skeleton of any =-free
complex), then a map t: W— C(J*'x) always exists, and any two maps F,
F* with equivariant chain maps ¢, t* resp., satisfying 1), 2), of (a), are
equivariantly chain homotopic when restricted to W1 Q@ C(X)e.

If further, Ho(W) =2, H(W) =0, 0<i<mn, then 3 a map G:
C(Jrta) D Q O(X?) = W C(X)?, so that GF: WD Q C(X)yr— W ® O(X)»
and FG: C(Jmtn) D Q C(X?) — C(J"x) @ C(X?) are equivariantly chain
homotopic to the respective inclusion maps.

(¢) Any two maps F, F* for equivariantly chain homotopic maps t, t*,
satisfying 1), ®) of (a), are equivariantly chain homotopic; if t is an equi-
variant chain equivalence, F is an equivariant chain equivalence. In particular
if W=C(J"*x) and t is the identity, then any F satisfying 1) and 2) of (a)
s an equivarient chain equivalence.

(d)  If e, is any zero dimensional =-generator of W, then we may further
choose F so that F(e,®@u,- - - Quy) =1(eo) Qu *- - - *x,, € O(X). Also,
t may be chosen so that t(e,) is any giwen zero cell in C(Jx).

From the comparison theorem applied to the Cartan-Leray spectral
sequence for covering spaces, one gets immediately the following two Lemmas:

Lemma. If Wis a =-free complex, p: C— D a map of m-complexes such
that py: H(C) =H (D), then (= acting triwially on G):

pryt HWQzC3;G) =H(W®xD; )

Lemua. If W is a =-free complex, C is any w-complex, G is a field of
coeflicients or the cycles of C ® G are a direct summand, then (triwial boundary
on H(C;@))

HW®:0;G)=H(WQ-H(C;Q))
under a natural isomorphism.
Applying these lemmas to our situation we get:
LemmaA 2.3, If p: X — Y induces py: H(X) =H(Y), then

pre: H(W® @y C(X)?;6) = H(WM @ C(Y)?; G).
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Lemwma R.4. If G=K s a field or of G=1Z, H(X,Z) has no torsion
and the cycles of C(X) are a direct summand, then
H(W™WQrC0(X)?;G) =H(W™Q: H(X;G)?)
under a natural isomorphism.

Definition 2.1. Now consider the case where p is an odd prime, =« is the
cyclic group of order p with generator a. Then we take for W the complex:

T A T A €
s lr—— 7 ——>ln—>- - >l I A Z.

where Zx is the group ring of = ; i.e., W, has a single =-generator ¢;, 1 = 0, and

065 1,1 = Aey 4, A=a—1, 1=0
0es 5o =Tr0s 111, r=14a-4- - 4o, 1=0.
561=1.

From this and Lemma 2.4 we get:

ProrosiTION 2.2. Let 7 be the cyclic group on p elements, p an odd
prime, W the free w-resolution of Z defined above, and K = H (X ;Z,) a mod p
chain complex with trivial boundary. Then if @1, @., - - - s a vector basis of
homogeneous elments for K, the homology classes of the following cycles form
a vector basis for H(W Qg K?) :

6 Qrary, all j,1>0, 2%, =2;,Q- - -Qu; (p times)
60®7"xi1®. ’ .®xjp3

where we choose one representative from each class obtained by cyclic per-
mutation of the indices.

Proof. In the proof we will represent chains in W ®x K? by chains in

W ® K? but consider them as identified under .
Let cn= X 6,®d;, di€ K?, be any chain of W®K?. Then dc,
k+l=n

= D\ 0e;; ® d; and hence dc, — 0 implies

(a) K even (and not zero)

Bek®dl=I‘ek_1® dl= ek_1®I‘dl=0

for each 1, and therefore
T'd; = 0 mod p.
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(b) K odd
06k® dl= Aek_l ® dl= Cr—1 ®Adz= 0

for each I, and
Ady= 0 mod p.

Further, all chains of the following forms are cycles:
() ex®d;, k even (540), Tdy=0modp
(b) ex®dy, k odd, Ad;=0mod p
(c) e, ®dy, d; arbitrary.

We proceed to examine these cases:

(a) Td;=0modp, k even

d; is a linear combination of terms of the form #;, ®: - -Qu;,.

Divide the terms up into transitivity classes under =; i.e. dy=d4 - - - 4 d%
with T'd"; linearly independent from the other T'ds;, ss£r. Hence I'd";=0.
But d=P(a)(2;,®- - -Qu;,) for some fixed term 2;,®- - -@=;,, where
P(a) € Zy(w); and either z; ®- - -®z;, =a?; or the representation Z,(r)
—Zy(7) (2, ®- - -Qu;,) is faithful. In the first case, ¢, ® d" is simply a
multiple of e, ®2?; as demanded by the proposition. In the second case, we
must have T'P(a) =0 in Z, (=), and it follows (by the well-known argument
for the acyclicity of W) that P(a) =AQ(«), for some Q(«) € Z,(=), and
6, Qd=0(Q(a)er, ®dr).

(b) Ad;=0modp, k odd
Writing di=d* -+ - -+ d?; as in (a), we have
Adry=AP (a)(2;,®- - -Qug;,) =0.

Again either z;,®- - -®u;, = a?; or AP(a) =0. Now AP(a) =0 implies
P(a) =TQ(«) and ¢, ®d",—0(Q (@) e, ® dr;). Hence again either ¢, ® dr
is a boundary or it is a multiple of e;,® a?;.

(e) Since
1(.Q2;,Q - - Qu;) =26, ®;,® + " Quj, =e,@A(2;,®- - -Qu,),

and A—a—1; we see that two cycles of the form ¢,®z;, ®- - -®u;, are
homologous if and only if they differ by a cyclic permutation of indices.
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Finally we note that no cycle of the form e;® z?; can be a boundary ; since
it only could be a boundary of something of the form P(a)e;; ®a?; But
0(P(<Z) €1 ® avf’j) = P(d) 06,1 @ 22;=0.

This proves the proposition.

Remark. If instead of W ®r K? we consider W™ &, K?, n > 0, then it
is clear from the above proof, that we get the same result except that for the
first class of cycles in Proposition 2.2 we restrict ¢ so that 0 <i=n, and in
addition we get all cycles of the form

en®P(a) (2, - -Quy,), P(a) =0, n even
AP(a) =0, n odd
Consider now the map: @7 = fzhrFr: H(W™ Q- C(X)?, () > H(X; G).
Definition 2.2. Let X be an Hmy-space. lLet z€ H;(X;Z,), TFor
0=i=n, define Qi(v) — QP (2) € Hypu(X,Z,) by
Q¢($) =®1r(61; Qr :1:1’),

where we write again ¢; ®r 22 for the homology class in H (W™ ®, C(X)?;Z,)
represented by this cycle. @;(x) is called the i-th extended p-th power of w.

Remarks.

1. It follows from (d) of Theorem 2.1, that

Or(e0®rz;, @+ -Quy,) =0hF (e, ®2, Q- + - Qu;) = mwj,+ * Ty,
the Pontrjagin product of the homology classes. In particular,

Qo(2) =z -2 - ~z=12",

2. It follows from (b) of Theorem 2.1, that Q;(z), 0=1i<mn, is
uniquely defined (i.e. independent of the choice of F). However, Qn () is

not determined until a choice of ¢: W — J®#)3, has been made. See Lemma
2.5 below.

3. The classes ¢, ® P(a) (2;,® - -®u;,) can be thought of as defining
‘non-stable” operations in the sense that they disappear under an H",-map
of X into an H"*'-gpace.

4. Using different coefficients in H(W® Q' (X)?; @), other stable
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and non-stable operations may be defined. In the non-stable case, Browder
[8] has studied non-stable operations for p =2, corresponding to the cycles

en QA (zQy), n even
e QT (2 ®y), n odd,

where o and y are cycles in X, arbitrary coefficients. In particular,

let yu(2,9) = ¢@p(2,y) =0 (e, Qr A(2Ry)), n even
=07 (e, Qr T'(2Qy)), n odd,
€ Hi(X;2y), y€ Hi(X,Zp). Then yu(2,y) € Hupn(X ;Zy).

In this paper, we will consider only the extended p-th powers, and the
operations y,, defined above.

Note that (2, 9) =0z (e, ®r A(z®y)) =y — (— 1) ¥yx, for an HO,-
space X.

5. If X is connected and is a special H",-space, and 1€ Hy(X ;Z,) is the
unit element, then @;(1) =0, ¢ > 0. In fact the extra condition implies that
the inclusion of (¢) — X is an H”,-map, (e¢) the space consisting of the unit
element of X only. Hence @;(1) is in the image of H;((e) ;Z,) =0, 4> 0.

LemMmA R.5. Let W be as in Definition 2.1 and consider J*x as a

simplicial complex then there ewxists an equivariant chain map S: W— Jx,
w="Zyp, such that S(Wm) C Jnr+iy,

Proof. Given a simplex (oo(%)," * ,00(%)) In J*Z, we will let
(oo(io)s ~ *50r () © 0ria (tra) = (00 (), * *, 07 (i), 0raa (iri) ),

and extend this operation linearly to chains.
Now set S (o) = (e(0)), ¢ the unit of Z,

S(ex) = (e(0),€(1)) — («(0),e(1)) =— (ASe,) o ¢(1)
and in general
S (€s141) = (— ASey) 0e(Ri+1)
8 (2i42) = (T'Sezi1) 0€(R1+2)
Then S (es11) = (—0ASey) 0e(+ 1) + Aey)
= (—AdSey) 0e(20+ 1) + A(ex)
= (— AT'Sey) 0e(20+1) + Aes)
= AS(es).
Similarly 08 (zi42) =T'S (€2441).
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JOROLLARY. Let t: W— C(J*Zy) be the equivariant chain map defined
by sending W into the simplicial complex of J*Z, as described in the proof
above, then the simplicial complex into the simplicial singular complex, and
finally the simplicial singular complex into the cubtcal singular complex by
the canonical maps described in ([5]). Then t: W — C(J™1Zy) is an equi-
variant chain map, and if F of Theorem 2.1, Corollary, satisfies 1) and 2)
for this t,

F: WO ® 0(X)2—> € (Jir) ® O (X7),

Any two maps F, F* with equivariant chain map &, are equwvariantly chain
homotopic.

If we define the operation Q®, using this ¢ and such an F, it will be
uniquely defined in an H?,-space. Likewise for the Browder operations y®,.

TREOREM R.2. Let X be an H"y-space. Then

a) Q0 is a homomorphism for i =n—1.

b) Q®, is the Pontrjagin p-th power.

¢) If 9, ts the homology Bockstein operator induced by the sequence
0> Zp>Zp—>Zpy—>0, then QWy ; = 5,0®),;, =n—1.

d) For p an odd prime, € H (X ;Z,), QP (z) =0 unless the change
m dimension, 2t -+ pr—r is an even multiple of p— 1.

e) The operations are natural under H",-maps.
Proof.
(a) TFor i < n, we show that for »,y€ H,(X;Z,),
T= (6:®r (2+y)?) — (6:Ora?) — (6:Bry?),

is a boundary in W ®, H (X ;Zp)?. This will give (a) above.

Since (z -+ y)?—a? —y? is invariant under , the terms in its expansion
are divided into transivity classes. But after cancelling out 22 and yr all
remaining terms in (z - y)? involve both 2’s and #’s, and cannot be left fixed
by any cyclic permutation. Consequently, T'=TS, where S is obtained by
choosing one representative from each transitivity class in 7. Since AT =0
and I'T = pI' =10 mod p, it follows as in proof of Proposition 2.2, that T' is
a boundary. Explicitly, since I'= AP mod p,

(e, ®8) =T (¢ 0dd), 01,1 ® AP28) =T (i even)
(b) This follows from the definition (see Remark 1 on Definition 2.3).
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(¢) In W™ Qg ((X)?, consider e, Orx? where z is a mod p cycle; i.e.
gz =py. Then
0(e2i Q. 2P) = €34 Qra? + p X (— 1)dim 2C-Dg,; Qr gh-tyr-k
= Peyy Or 2? + pzzi Qnr T (yar?)
= p{s; O 22 + 0 (2441 Or 2272 (y2P~*) } mod p2.
The result follows.

(d) From the definitions we have the commutative diagram:

tQqp Ao F
WO ® 0(X)? ——— J71r ® O (X ) ———> O(X)
l j QP Qo F
T3, ® (X))

where #: C(X)?— O(X)? is the identity, j: J**r— J?*'3, is the inclusion
induced by the inclusion of = in 3,, ¥, F are the maps of Proposition 2.1,
Corollary for , 3,, respectively, and 6 is the defining map for the H", structure
of X. All maps are = equivariant, but §o 7 is 3, equivariant as well.

From the above we get

(80 F)«
(WD Z,) ®r O(X)?® Zy————> C(X) ®Z,®sy7Zy

Jjot@sm (60 F)xp

(I3, 82,) ®s, (C(X)?®Z,)
commutes in the following cases:
i) 3, acts trivially on both coefficient groups Z,
ii) Bach ¢ € 3, multiplies both coefficients by the sign of o.

In both cases, = acts trivially on the coefficients since cyclic permutation, p
odd prime, are even. Also Z, ®s, Z, == Z, with trivial action. Hence in either
case we have:

6
H(WO ®, 0(X)?;2,) ——> H(X;Z,)

(ot ®xiv) Iwmm

H (Jv3, ® Zyp) Bxp (C(X)?®Zy))

commutes.
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Let « is a cycle in C(X), thus jo¢®zi?(ex®ra?) = jot(ex) Ospar.
Let &, —jot(ex). Thus since ey represents a modp cycle in W /x, &y
represents a mod p cycle in J*Zp/Sp. Consider

i) z even dimensional
If éy=20cmod p in J™'Zp/3p, then
G spa? = 0(c Ozp 2?) mod p,

Since ¢ sy 2? depends only on the class of dc under 3, as the action of Zp
on z? is trivial. It will then follow from the above diagram, case i, that
® (65, Qr a?) is homologous to zero and hence Q®,;(z) =0.

ii) odd dimensional

If 6, =20c in J"'3Sp®s,Z, acting in Z, by sign of permutation; then
83 Qspa? —0(c®ar) in (J"3,RQ7Z,) Os, (C(X)?®Z,), as the action of Zp
on 22 is trivial in O(X)?® Zp; 3, acting on Z, by the sign of the permutation.
Hence again, @@, (2z) =0. Now observe that Hi(w) = H;(W®/z), i < n;
and H;(3,) = H;(J"'Sp/3p), i < n; and further that

(J o t)sy
Hy(W® fqr) ——————> H;(J"3,/3,)

corresponds to the inclusion map of = in Sp. Hence our result will follow
from:

LEMMA. Let jor: Hoi(w3 Zp) = Hoi(Sp3Z2Z,) be induced by the inclusion
map ; then

i) If 3Sp acts trivially on Zp, ju=0 if 2¢ is not an even multiple
of p—1.

ii) If 3, acts on Z, by the sign of the permutation, jy =0 if 24 is not
an odd multiple of p—1. (For proof see [15]).

(e) This follows from the definitions.

Remark. If z is an integral cycle, then e, ®a? is an integral cycle,
and we may consider (s, as an integral operation. However, letting 9, be
the Bockstein for the sequence 0—Z—>Z— Zp— 0, we get again as in (c)
that:

Q21}—1 = 3* in-

We now derive a Cartan formula for operations on products:
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For two H"p-spaces X and ¥, X X Y has an obvious H",-structure given

by:
6: JiS, X (X X Y)P>X X7,

a(w 5 (331, :’/1); ) (xm yp)) = (gﬂv(w) (PR 3317)} 011(7’0 5Y,t 0 s :’/P));

where 6, and 6, are the defining maps for X and Y respectively. The properties
for 4 follow immediately from those for 6,, 6,. The same formula holds if we
restrict to J™*r, # C 3, We may write 6 as the composition of maps:

AX 1
Jn+ln >< (X >< Y)p__.__)Jnu,n. >< Jn+ln >< (X >< Y)p

T 0, X 6y
— I X XP X e X YP—m— X X Y,
where A is the diagonal map on J**z, r the permutation of factors.
In the following diagram we write simply J for J**z; the bottom line

is the chain map induced by #.

AQq G X G,
C()BC((X X Y)?)—— C(J X ) C((X X ¥)?) ——— C(J) RC(J) R C(X?) ® C(¥?) -

AX1
O X (X X X)) = C(J X J X (X X ¥)?)
6,90,
C(T)®C(X?)®C(J)® C(¥?) > C(X) R C(Y)

020,
C(J X X7 X I X X?) C(X XT).

Here G4, G- are the natural maps from direct product to tensor product given
by the Eilenberg-Zilber theorem, and the vertical maps are the natural chain
maps from tensor product to direct product. The fact that the above squares
all commute up to w-equivariant chain homotopies, follows from the fact that
they all commute up to natural chain homotopies and = operates on each
factor separately. (I.e. = induces a map in the category).

Consider next the diagram
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G1AQ1 Qo
C(J)@(C(X)@C(Y))P——L)C(J)®C(J)®(C(X)®C(Y))P:—>0(J)®C(J)®C'(X)”®C’(Y)”

iQ®fr TF,@Fyr
Foxy (6:®G,)0(a®1)
C(W)BC(X X Y)yr——C(/)®C((X®Y)?) C(J)QC(JI)RC(X?)RC(Y?)

L ) RO(X YR O ®O(TY
F.QF,
L 0()® (XY SO ®O(TY).

The maps F, and F, are chosen to satisfy Theorem 2.1 for the standard maps
C(X)y»— C(X?) and C(Y)?— C(Y?) respectively. The second square then
commutes by definition. Also F,x, is chosen to satisfy Theorem R.1 for the
standard map C(X X Y)?— C((X X Y)?). Further, f: C(X)QC(Y)—>C(X XY)
is the standard map. Finally, o is the permutation of factors. The first
square commutes up to a w-equivariant homotopy by Theorem 2.1, because in
going around either way in the square we get a map satisfying Theorem ®. 1 for
the map: (2, Qy ) - - (@, R yp)—> (@, ¥+ - - *yp) O (y1*- - - *y,) where z; and
Y t=1,- - -+, p, are zero dimensional.

Combining the two diagrams we have:

G, AR 7(1®0)
C(W)Q(C(X)®C(Y))»—— C(J)RC(J)R(C(X)RC(Y))———> C(J)®C(X)?QC(J)QC(Y)?
iQfr 0,80,
C(N®CXXY) ° C(XXY) f C(X)®C(Y)

commutes up to a w-equivariant homotopy.

Now let W by the w-free acyclic complex defined previously (Definition
R.1). If we restrict to W, any two w-homotopic, since C(J™1x) ® C(J™x)
is acyclic in dimensions less than n.

Consequently, we have

LEMMA R.6.

d®1 7(i®0)
We-D® (C(X)® O(T))p——s WD QW@ (C(X) C(¥) > W-D@ (X @ WD @ (Y )

@0i®f 0,00,

CXXY)< ! C(X)®C(Y)

commutes up to a m-equivariant homotopy.
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We are now in a position to prove the following:

TarEOREM 2.3. (a) For p an odd prime, X and Y Hm-spaces,
@, € H (X ;7Z,), ys€ Hy(Y 5Zp), 21 < n, the following holds in X X Y :

QW4 (2, @ ) = (— 1) rs01/2 ; QW4s(2) ® QD1 25(ys)
(b) Forp=2,i1<n
Q& @) — 3 Qs (ar) B Qs (3a).

CoroLLARY 1. If X is the n-th loop space of an H-space, then the fol-
lowing holds where multiplication indicates Pontrjagin product:

QP (2, ys) = (_1)r8(p_1/2) % QPy(a,) - QWi 55(ys), R n
j=

Qi (2 s) =j§0 Q®5(2r) - QDii(ys), 1<n
where @, € H (X ;7Z,), ys € Hy(X ;7Z,).

Proof. Let = be the cyclic group on p elements with generator a, W the
w-free acyclic complex of Definition 2.1; let as in [18], d: W—> W QW be
defined by,

i i-1
dey =2 (Y] ® O2i2j 1 > Aesjia ® O2i—2j-1
j=o =0
and
4
desia =12 (32j ® €2i-2j+1 -+ €241 ® 9‘321,—23'),
=0

where A=Y a* X 2}, 0 =k <I=p—1. Then dis an equivariant chain map.
Using the commutative diagram of Lemma 2.6 and modp coefficients,
we have:

Or (€21 ®r (2, @ Ys)?) =0 (8,) 2@ (®y)z 070 (1Q0) (dexy ®r (2, B Ys)")
i
=10 (02) 1® (8,)n{(—1)?0/Drs 3 (€2 Or ay) @ (212 ® w ys)
j=0
i-1
+ 2 (—1) G202 3 (okessi On 28,) @ (@lesi2j-1 O y25).
§=0 k<1
But 27, and y?; are invariant under = and hence for p odd prime:

3 (0eui @) (a2 Br 1)
=p(p—1/R) (€21:1 O 22) (21251 O y?s) =0
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Hence

Or (62 Or (2, B y5)?)
= (—1)@/Arsf 2 (@2) 7 (625 O 2?,) ® (®y) 7 (€2i-2) B YPs)
j=0

or
QP (2, O ys) = (—1)@H/2rs %Q@)zj(wr) ® QP2 2i(ys)-
i

Similarly, for p=2, using the above result and the corresponding one for
62141, We get for ¢ odd or even:

On (01 @ (2 D gs)?) — széo (02)r (6@ a2) ® (8,)x (e ®r 47%)

or
0
0®i(2- B ys) = 2 0; () © Qe (3s) -
This proves the theorem.

Proof of Corollary 1. Now assume X = Q"Z, where Z is an H-space,
h:Z X Z— Z the multiplication. This induces Q"h: Q*"(Z X Z) - Q"Z. On
the other hand, the H-structure in X is defined by considering X = Q(Q»*7),
and adding loops to define the multiplication p: X X X — X.

We wish to apply the theorem to the case where ¥ —=X. Since X is an
Hrp-space, X X X has an H",-structure as defined previously. But, Q*(Z X Z)
has an H»*-structure, and it is easy to check that the canonical map
12 Q(Z X Z)—>QZ X Q*Z is an H"*p-map. Further, it is well known and
trivial to prove that

)
O(ZXZ)—>QZ X QZ

AN

QZ
commutes up to homotopy. Since iy : Hy (QW(Z X Z);Z,) = H,(Q"Z X Q7))
and Q"h is an H"'j-map, it follows that u, commutes with the homology
operations:
P @P2i = QPipy. <m0 pe@Ps=QPipy, 1<

the corollary now follows immediately by applying u, to both sides of the.
equations of the theorem.



56 ELDON DYER AND R. K. LASHOF.

CorOLLARY 2. If X is an Hnp-space, and x,€ H,(X ;Z,) is a primitive
homology class; then Q;(x,) ts primite, 1 < n, p any prime.

Proof. The diagonal map X - X X X is an H";-map, and hence com-
mutes with the operations. The result now follows from the theorem.

III. Further properties of homology operations. As seen in Theorem
2.2(d) many of the homology operations Q®; are trivial. It is thus con-
venient to define

87y () = QP 350y p-1) (), n=dimz.
We shall find it convenient to introduce also a ‘numerical coefficient.

THEOREM 3.1. Let oy: Hypy (QX;Zy) > Hyu(X ;Z,) be the usual hom-
ology suspension and suppose for y € H,+(QX ; Z,) both 87 ) (y) and 87 ) (oxy)
are defined (this requires X to be an H™,-space, where

m+1=2j—n+1)(p—1)),
then
087 () (y) = (—1) @D -y (n) - § ) (047),
where y(n) = (—1)@H@E/2. ((p—1)/2!)mod p.
Proof. Let PX denote the space of paths over X and =: PX — X denote
the end point projection. Suppose given classes
2€ Hy(X;2Zp), y€ Hy 1 (QX ;Z,) and z€ H,(PX,QX ;Z,)
such that
me(2) =2 € Ho(X, e52,) =H,(X;Z,) and 0,(2) =1y.

We must show there is a chain ¢ € Cppi(PX), where t= (2j—n) (p—1),
such that

{¢} € Hpnut(PX, QX ; Z,),

i€} = (—1) @D/ (n) - S ) (), and

O{c} =87 (y).

Let (2,y), y = 02, denote the subchain complex of C (PX), the normalized
cubical singular complex of PX, generated by a chain representing z (which
we also denote by 2) and by 9z, which represents y.

As X is an H™,-space, we have the equivariant maps

mp: J2S, X X2 — X and
gty s I3, X (QX)?— QX,
the latter being defined by formula (1.4).
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Let f: Jm13,— J™23, be defined by

f(tW0®' : ‘@tmﬂ'm) =(t000®' : @tmom@o)
and let

g s Jmes, X (QX)?7— QX

be the composition 6™, 0 (f X (id.)?).

Define
gmy: Jm13, X (PX)?— PX
by
07y (togo @ * * * @ twom; Wy, ", wp) (£)
=0",(booo @+ * - D twom s wa (), -, wp(t))
and define
Gmy: (Jm13,0¢) X (@X)?t X (PX) — PX

by

Gmy((1—3)tooo @« @ (1—8) twom D €31, + *, lpg, ) (£)
= 0" (tooo @« * * @ twom; 1 (1), 5 1 (2), w (F) ),
where, as before,
() =L(t—s(ri+- - -+r)) and ws(t) =w(@E—s(ri 4+ +7pa)).
It is clear that
700 (too @+ * @ tuom @ twes b+ by, w) —m(w).

As each two of the maps ém,,, gm, and @"‘p agree on the common part of
their domains of definition, we have the commutative diagram

Jm23, X (QX)P oX
(773, X (U] U [(775,) e} (X X PX]U [/745, X (PX)] > Y

Jm13, X (PX)?

JmHS, >J2 X? — X

Let W® be the k-skeleton of the standard acyclic complex for Z,, and
let (W™, ¢,,,) denote the subcomplex of W2 having only the generator
em+z in dimension m 4 2 (not Tien,s, 1 < i< p).

Then by the Corollary of Theorem 2.1 the diagram
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W2 QC(QX)P cQXx)
[WerQC(QX)r] © [(JT;V(’"”), emiz) C(QX)QC(PX)] @ [WmLQC(PX)?]—-C (ZSLX )
W(m+1)£0 (PX)»
W m+1) Q\% C(X)r 0X)
commutes.

The chain complex
(W2 @yr} @ {(WD, o) @ yr @ 23 @ (WD @ (2, )7}
is a subcomplex of the chain complex
[Wm2QC(QX)?] @ [(WmD), e,,) @C(QX)P1QC(PX)] @ [WmDRC(PX)r]
and the image of any term of this subcomplex involving at least one factor y
projects under 7 into a degenerate chain in C'(X) since y € C(QX).

We shall define a chain ¢’ in this subcomplex such that modulo residual
chains and with coefficients Z,

= (—1)z2-y(n) - 6;® 22 4 terms involving at least one v,
and
0 = 61491 ® yP.

Then if ¢ is the image of this chain in C'(PX), it follows from the above that
¢ has the required properties.

To define ¢’ it is convenient when p is an odd prime to replace (z,%)?
by a smaller chain complex, and to this end we use a lemma of R. G.
Swan [17].

Lemma. Let K be the chain complex

T A N A n
0—>2Z, KZ, R KZ, KZ, Z,—0,

where KZ, denotes the Z, group ring of Z,, p5=2, n is augmentation,
A=a—1, T=art+4- - -+ a4 1, and dimensions range from (n—1)p
to np. (@ acts as left multiplication in KZ, and trivially on the two end
groups Zy; this action commutes with boundary.) Then there is an equi-
variant equivalence ¢: K — (z,y)? such that

¢(€) =P, €€ Z1)=K(n—1)p
¢ (€) =y1Q2, ¢€ KZp=K (n-1)ps1, a0d
¢(€) =y(n) 2P, €€ Zp=-Knp, where

y(n) = (—1)eDeDE- ((p—1)/2)!)mod p.
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We shall define a chain ¢” in W® ® K such that its image in W ® (z, p)»
under the map 1 ® ¢ is the desired chain ¢’.
Since t= (2j—mn) (p—1) and p is odd, ¢ is even. We let
' =01p1 ® €(n-1)p+1 T Cirp-2 ® APe(y_1ype2
— Cirp-s ® €(n-1)prs — Cirp-s O AP Pe(naypus £+
+ (—1)226;® ey
Then
0¢” = eisp1 D €(n1)p + Tisp2 ® (n-1)ps1— Cirp2 @ AP (1) pi
+ Ay ®Ap_2€(vn,—1)p+2 — Ciup-3 ® Te(n1)ps2
—Teip s Qe+ -
+ (—1)72Te; ; @ enp

=0jp1 Q €n1)p, modulo residual chains and with coefficients modulo p.
(Note that in WQK, aa®b=a® ab, mod residual chains; hence Aa®b
=a®Ab and Ta®b=0a®THh. Also, I'=A??* modp and Te,, = 0mod p.)
It is clear that ¢” has the property described above.
For the case p =12, it is sufficient simply to let
=002+ ¢,.,8284y.
Then

0¢’ = e;,; ® y2 mod 2 and mod residual chains.

As is the case with the Steenrod operations, it is also convenient here to
multiply the homology operations 8%, by suitably selected numerical coeffi-
cients so that they will commute precisely with the homology suspension homo-
morphism. That is, we wish to determine numbers f(j,n) such that if
Q) (w) =f(j,n) -8 (w), dimw=mn, then

(1) Q%) (w) =wr, if n=2%F, and

(R) 0@/ (W) =@ (p) (o5w).

The conditions (1) and (2) may be translated into conditions on f(j,n) as
follows:

(1) Q*(wew) =w? =8o(wer) =8 (wen).

Thus, f(k,Rk) =1.

0@ (y) = o4 (4, n — 1) (y) =1, n—1) - (—1)7/2- y(n) - 89(0y),

©) and o,Q/(y) = Q(o4y) = 1(j, n) S (o4y)-
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Thus, f(]: n— 1) (_ 1)p_1/27(") = f(]: n): where
y(1) = (— 10062 (p—1/2) ! mod p.
A moment’s calculation reveals that
f(j,n) = (— 1) mi@D/2aE-D2E-112 . (p —1/21)2-"mod p.

In terms of the operations @7 ,, the Corollary 1 of Theorem 2.3 becomes,

n
Q" (r" Ys) =§0 Q') (2) Q") (Ys)-
The following is proved in [3], we give our proof for completeness.

TaEOREM (Browder). Letoy: H,1(QX;Zy) > H (X ;Z,) be the usual
homology suspension. Let X be an Hmy-space. Let u€ H,,(QX;Z,),
v€ H; 1 (QX ;Z,), then

Tatnan (U V) = (— 1) """ (04U, 040).

Proof. Let oyu=x€ Hi(X;Z,), ow=y€H;(X;Z,). Also let
€ H(PX,QX;Z,), j€ H(PX,QX ;Z,) be such that =.(Z) =z €H (X, e;Z,)
—H(X;Z,) and 0,(2) =u, 7 () =y€Hn(X,e;Z,) =H(X;Z,) and
04 (9) =v. We must show there is a chain ¢ € Cyjn (PX), such that: ¢ is a
relative cycle; i.e. {¢} € Hyjn (PX, QX ;Z,),

(1) me{c} = (—1)"*"*yu(z,y), and

() 0y{c} =ynn(u,v).
For n even,

let ¢’ be the chain in WD Q C(PX)?

(=0, QA(ZQY) — 01 ® (u®F) + (—1)¥ep, ® (vQI).
Then 9¢" = (—1)%1e,,; OT (4 Q v).
For n odd,
let =6, T (ZQY) + n1®@ (u®Y) + (—1)¥e: @ (v ).

Then 9¢" = (—1)%ey; @ A(uQv).

Now as in Theorem 3.1, ¢’ is contained in the special complex

[(Wm, e,.,) ®C(QX) ®C(PX)] 4+ [Wm® O (PX)?]



ITERATED LOOP SPACES. 61

which maps into C'(PX). By the same reasoning as in Theorem 3.1, the
image ¢ of (—1)%"+¢’ satisfies (1) and (2) above. The result follows.

Remark. From Theorem 1.2 it may be shown that certain “Adem
Relations ” hold for the homology operations in an iterated loop space. This
may be done (following Adem) using the homology of the symmetric group.
However, the device used by Adem to find the effect on odd classes from that
on even classes does not apply here. Consequently, it appears necessary to
compute the homology of the symmetric group with twisted coefficients to
obtain the rest of the relations for the homology operations. (Note also that
no universal space, such as a K (, n) exists in the case of homology operations.)

IV. Some theorems on Hopf algebras and spectral sequences. The
object of this section is to present certain results, largely of an algebraic
nature, which are useful in making explicit computations in Sevtion V. We
use the notation and results of The Structure of Hopf Algebras by Milnor
and Moore [11] and assume acquaintance with that paper on the part of the
reader.

Our first theorem is a slight strengthening of the standard comparison
theorem for spectral sequences essentially due to Zeeman [19].

THEOREM 4.1. Suppose {h'}: {"E'}— {E"} is a homomorphism of
homology spectral sequences and

.2 ’ ’ .
’Xa,b- ‘Eza,b"> Eza,0® Ezo,b and Xa,b ¢ E2a,b_>E2a,o®E20,b

are isomorphisms such that the diagram

’

Xa,b
,Eza.b E— ’Eza,o ® ,Ezo,b

l h?ap l h2a,0 ® W,
Xae, b

B2y ——— E%,,Q E%,

commutes
(an)  h240 s an isomorphism for 0 =a=mn,
and
(va)  h=qp is an isomorphism if 0=a-+b=n and b =n—2.

Then

(Bnz) h2% is an isomorphism for 0 =b<n—2, and
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hra,p 18 an epimorphism if either a +b=n—1,a=r—2,and b=n—2
or b=n—r and a =mn,
and
Wrap 18 @ monomorphism if b=n—2 and either a+b=n—1 and
n—(r—1)=aora=n—(r—1).
Proof. (i) o, and B, for m =n—2 imply
(@ra) "4 is epic on Z ("Er,3) into Z (E™,5)
if eithera+b0=m+1L,a=r—2,0=m
orb=m—(r—R),a=n
(brs) B 24,p is monic on Z ("1,5) and is an isomorphism
from B(’E",3) onto B(E"™1,3)
if either a +0=n—1,n—(r—1)=a, b=m
ora=n—(r—1),b=m

(cr)7qp is epic if eithera +0=m+1,a=r—2,b=m
orb=m—(r—R®), a=n, and

(dr)h7qp is monic if either a+b=n—1,n— (r—1)=a b=m
ora=n—(r—1), b=m.

This argument is by induction on r. Clearly (c¢,) and (d,) are true
for r=2.

It is easy to see that (a,,) implies (¢,) and (b,—,) implies (d,).

We now show that (¢,) and (d,) imply (ar). For a+bd=m-+1,
a=r—1, b =m, every element of "E",; and E7,; is a cycle. Thus, (¢,)
alone is sufficient to imply (ar) in this case. For «a€ Z(E7,;) with
b=m—(r—1) and a = n, by (¢,) there is an ’a € "E7,; such that r"('a) = a.
We wish to show ’« is a cycle. But ’d"(‘a) € ’Erpiy and a—r=n—r
<n—(r—1) and b+r—1 =m; and so, k" is monic on ’d"("«). But
’dr(h*’a) =0. Hence, ‘d"("a) =0 and a,) is proved in this case also.

It is clear that (d,) implies (b,) for the cycles in “E7y, and also that A"
is monic on B(’E",;) in the range stated. We need to show only that it
is epic.

Let B€ B(Ey,). There is a y€ Ergurpria such that dr(y) =p.
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fatbdb=n—1, n—r=a and b=m, then n—r4+b=n—1 and
b—r+4+1=0. Forb—r+1<0, y=0andso §=0. Forb—r-+4+1=0,
b=r—1and a+r—1=n—1; ie, a+r=n. But n—r=a. Thus,
v€E,, Also, b=m and b—r+4+1=0 implies 0=m—r4+1=m
— (r—=2). By (c¢,) there is a’y€’E7,, such that A7(’y) =y. Hence, if
'B="'dry € 'E"yy, then A" (’8) =g.

If a=n—r and b=m, we have y€ E'4pppnn With a4r=n and
b—rt+l=m—(r—1)=m— (r—2). Thus, by (c¢,) there is a
"y € "B 41r,p-rs1 such that A7 (’y) =v; and so, A" ("d”y) =B. Thus, A" is epic
as stated in (b,).

(1) o, ym, and Bn Imply A% e is an isomorphism for r=2 and
s =1 if either

(a) m+2=n—1,n—s=2r or
(b) Rr=n—s.

The argument is by induction downwards on r + s and follows from the
diagram '

' F rs
rym-r+2 .
0c—/'Er+st 7B+ Y B(Ers )0
7ymM—~1r+2 T7yM=1+2 Tym—1+2
0 «——"'Fress1 (___Z(rEm,g ) (——B('E'”" ) 0.
TyM-1+2 5M=1+2 7mM-1r+2
Flres
ryMm~r+2

The isomorphism on the boundaries follows from (b,,s) as
m—4-2=r4+m—r4+2=n—1Ln—(r4s)=r,m—r+2=m
in the case (a) and
r=n—(r+4s),m—r-+2=m in the case (b).

That the isomorphism holds for large r - s s implied by (y»). The induction
then follows by the “five lemma ”

(ii1) A mrse is an isomorphism on cycles for » =2 if either
(a) m4+2=n—1=2r
or

(b) Rr=n—1.
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This follows from the diagram

0 ’E::r:b—nz Z (’E:,m—rw ) B (,E :,m-r+2 ) 0
\: \: \:
0«—— E:;:_“z «—7Z( E:,m-m-z) «—— B( E’;',m_ﬂz ) «—0.

(iv) @y yny B Imply Buss if m +2=n—1.

That A"g . is an isomorphism, 7 = 2, is shown by induction down on r
with the following diagram

0 ——"Foml e 'Rr «—'Er «—Z(E" )
0,m+1 1ym—1+2 Tym=1+2
\ \: ) )
0c—— Er* «— Er  «— Fr — Z(Br ).
0,m+1 0,m+1 rym=1+2 yM=1+2

That &' mrs. is monic follows from (d,) since r+ (m—1r—+42) =m + 2

=n—1 and m—r-+2=wm. That it is epic follows from (c¢,) since the

only cases in which the groups are not zero are those in which m —r 42 =0;
Finally the second part of the conclusion of the theorem is simply the

statements (¢,) and (d,) with m =n—2.

iLe, r=m-+2=n—1. Of course, m—r +R2=m— (r—2).

The next theorem is from [11].

THEOREM 4.2. If A is a connected Hopf algebra of finite type over a
field of non-zero characteristic p, then A is primitwely generated if and only
if A is cocommutative and coassoctative and for each positive dimensional
element u € A%, u» =0.

In our applications 4 will be the mod p homology algebra of an H-space;
and so, the conditions ‘cocommutative” and “coassociative” will be auto-
matically satisfied (as they are equivalent to commutativity and associativity
of cup products in cohomolgy).

Recall (see [11]) that if B is a connected, commutative associative Hopf
algebra and A is a sub-Hopf algebra, then letting A denote the module of
positive dimensional elements of A and 0 —B//A=B/B-4, C is a Hopf
algebra and the projection map »: B—> C is a map of Hopf algebras. Further,
if there is a Hopf algebra map j: C'— B such that « o is the identity, then
A®C =B as Hopf algebras. Finally, recall also that if 4 is a sub-Hopf
algebra of the connected commutative Hopf algebra B, then the diagram

0—> P(4) —> P(B) —> P(BJ/A)
Q(4)—Q(B)— Q(B/A)—>0

is commutative and each of the horizontal rows is exact.
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TuareoREM 4.3. Suppose B is a free, primitively generated, connected,
commutative, assaciative Hopf algebra of finite type over a field of charac-
teristic p=40 and f: A— B is a map of Hopf algebras such that both f and
Q(f) are monomorphisms.

Then A and B A are primitively generated and
B=A® (B/A) as Hopf algebras.

Proof. It is clear from the above diagram that C =B/ A is primitively
generated. Since f¥: B¥— A* is an epimorphism, and B* is commutative
and associative and has all p-th powers zero (by Theorem 4.2), A* has the
same properties. Again by Theorem 4.2 it follows that A is primitively
generated.

We shall define inductively direct sequences {A®),fm gmM} gsuch that
(1) AO9=4, (?)

A __.) A

\f‘(n) /(nﬂ)

is a commutative diagram of maps of Hopf algebras, (8) A1) =A®Q H (™)
as Hopf algebras, where H (z(*D) is the free monogenic Hopf algebra generated

by 2, and (4) both f® and @ (f™) are monomorphisms. Finally, we shall
require that

(5) Lim (fr) : Lim (4®, gm) — B
—_— —_

be an isomorphism of Hopf algebras.

Before proceeding to the construction, let us observe that this is indeed
sufficient to prove the theorem. It follows from (3) and (5) that A®+
=AM Q (A™D JAM) as Hopf algebras, that

AWD = A Q (ADJA) ®- - -® (AW JAW)

as Hopf algebras, and finally that B=A ®{A® /AR A® JAO Q" - -} as
Hopf algebras. Letting ¢ = {A® /A Q@ A® J/A®®- - -}, we then have

C=B/j/A=(; and so,
B=A4®C as Hopf algebras.



66 ELDON DYER AND R. K. LASHOF.

Assume g, f A defined and having the stated properties for i = n.
If there is an element of Q(B) not in the image of f® (if not the induction
is complete), let 21 be a primitive element of B projecting onto one of
least dimension. Let A®™D—A®Q H (z(»V), let g™ be the inclusion
AW > A® Q@1 — AmD and let £ be the extension of f® defined by sending
2™ into (1), Clearly (1), (2) and (3) are true. To show that f» is
a monomorphism, it is sufficient to show that P(f®1) is. As P(f®) is a
monomorphism, it is thus sufficient to show that no a#* (letting 2 —a®)
lies in the image of f®. Suppose 27’ is in the image of f. As a7’ is primitive
and decomposable and @ (f™) is a monomorphism, there is an element
a € AM™ such that

o — f) (a2).

Thus, (2#"*—f®™(a))? =0, and since B is free, 27’ = f®(a). Since z is

not in the image of £, this leads to a contradiction. To see that @ (f»))
is a monomorphism, it is sufficient to abserve thot

dim Q (A1) — dim Q@ (A™) 41
and that by construction
dim fmDQ (A®D)) = dim f™Q (A™) + 1.

But by assumption @ (f®) is a monomorphism. Thus, (4) is proved. The
statement (5) follows from the fact that B is of finite type and f™ is a
monomorphism together with the method of choosing 2(**% (by exhaustion!).
A commutative Hopf algebra homology spectral sequence {£",dr} (over
Z,) is a homology spectral sequence in which each E* is a commutative Hopf
algebra over Z,, dr is a derivative, and B = H,(E") as Hopf algebras.

Definition. A commutative Hopf algebra homology spectral sequence
{Er,dr} over Z, is a model spectral sequence provided either

(a) FE?,,=E(z,n) and E?% , = P(y,n—1), these isomorphisms being
as Hopt algebras, where 7 is odd and d" (2 ® yi) = yi** for all 1 =0, (F(,n)
denotes the monogenic exterior Hopf algebra with generator # in dimension z

and P(y,n—1) the monogenic polynomial Hopf algebra with generator y in
dimension n—1) or

(b) E?2,,=P(z,n) and E?%,, = ® E(yy, pin—1)® ® P(zj, pin—2),
these isomorphisms also being as Hopf algebras where n 1s even and
dm* (a#") =y for k=0 and
A’ @-0 ((207)p 1 Q@ y;) =254 for §=0.
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(The spectral sequence (a) is that of the modp homology (ps%2) of the
fibration @S, —> PS,—> 8y, n 0dd, and (b) is the spectral sequence of the mod p
homology of the fibration Q28,— PQS,—> QS,, n odd (see Moore [12]). In
the latter case it is also true that 9%,(yx) = -+ 21, where 0%, denotes the
homology Bockstein of the sequence 0 = Z,— Z,»— Z,—0.)

It is known [11] that if A is a connected, free, associative, commutative,
primitively generated mod p Hopf algebra of finite type, then A is isomorphic,
as Hopf algebra, to a tensor product of free monogenic Hopf algebras; i.e.,
to a tensor product of exterior and polynomial Hopf algebras each having
one generator. Associated with each of these free monogenic Hopf algebras
is a model spectral sequence with that Hopf algebra as the term K2, , The
tensor product of these model spectral sequences, one for each monogenic
factor in the decomposition of A, is a canonical spectral sequence for A.
It will be shown later in this section that two canonical spectral sequences for
4 corresponding to different decompositions of 4 into monogenic factors are
isomorphic as spectral sequences of Hopf algebras. We shall denote such a
spectral sequence by {C7(4)}.

TuroREM 4.4. Suppose {E7,d"} is an associative, commutative Hopf
algebra homology spectral sequence over Z,, ps42, such that E* =0 and if
x € B%, 4 such that dre =0 for all r < 2n, then

(i) dr(ap) =0 for all r < 2np,
(ii) dr(2*Qr(z)) =0 for all r <2n(p—1), and
(iii) o d#eN (P Q1 (2)) 540, then d*(ar) 5£0.
Then
(a) if B2, is transgressively generated, it is primitively generated and

free,

(b) if B2, is primitively generated and free, and
Q E (i, m) @ Q P (y;, my)
iel jed
1s a Hopf algebra decomposition of B2, , into its monogenic parts, and there
do not exist n;, mj, my and integers f and g, f =1 and g =1, such that either
(&) mi=24 (n—1) - pf, or
(B) mj=2+ (my-p*—R) - pt,

then B2, , is trangressively generated, and
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(c) if B2, is transgresswely gemerated, then {E'} is isomorphic to
(O (B?y,0)} as spectral sequences of algebras.
In proving part (b) of this theorem we shall need

LeEMMA 4.5. Suppose A and B are connected, associative, commutative,
Hopf algebras of finite type, A is free, n is a positive integer, and f: A— B
is an algebra homomorphism which is an isomorphism in dimensions less
than n. Then if Q(A),=0 and n~p*-m for some integer k and even
integer m such that @ (A)m=~0, then f is a monomorphism in dimension n.

Proof of Lemma. As f is an algebra isomorphism in dimensions less than
n, Q(f) is an isomorphism in dimensions less than n and, in particular,
dim Q(A4);=dim @ (B); for 1 <n. As an algebra B=Q® E (&) @ P/ (v;),
where P7i(n;) denotes the truncated polynomial algebra in 7; of height pfs.
Further as B is free in dimensions less than n, (dim7;)-pfs >n. Let
B=Q®E(Z)®KRP(7) and =: B— B be the unique algebra extension of
7(Z;) = & and = (7;) — 7;, Where the tensor product is over just those Z; and %;
of dimension less than n. The map = is a map of algebras, is an isomorphism
in dimensions less than n, and is a monomorphism in dimension n. There
is a sub-Hopf algebra 4 —® E(z;) ® @ P(y;) of A such that Q(4);=0
for 1=n and the inclusion map .: 4 — 4 is an isomorphism in dimensions
less than or equal to n. Define f: 4 — B to be the unique algebra extension
of f(z) ==fu(z) for each z=ua; or c=1y;. Then

f

Y —
]
f

d————8B

«— ™
E]

is a commutative diagram of algebra homomorphisms; and so, Q(=of)
=Q(fo.). In dimension i < n,

dim Q(fou) (Q(4)s) — dim Q(4);— dim Q(4); and
dim @ (=) (@ (B)+) = dim @ (B); = dim @ (B)s.
Were @ (f); not an epimorphism, then
dim @ (7o) (Q(4):) < dim @ (Bi) = dim @ (fo ) (Q(4)4).
Thus, @(f) is an epimorphism; and since f is a map of algebras, 7 is an

epimorphism. A counting argument then shows that f is a monomorphism,
and the conclusion follows immediately.

Proof of Theorem 4. 4.
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(a) As any transgressive element in a Hopf algebra spectral sequence
is primitive, it is immediate that B2, , is primitively generated. To show it
is free, it will suffice to show that if z is an even dimensional generator in
B2, ,, then 22*=40 for all 4. Suppose 22’540 and 22" =0. Let y—a?',
Both y and y» (=0) transgress, by hypothesis. Let w —=+(y) and let @ be an
element in E%%*,, the dual cohomology spectral sequence, such that <@, w>» % 0.
As (i, dvy> 40, <8, y> %0 and §=38,® 40, where n—=dimy. Since
y? =0, by hypotheses (ii) and (iii), all d” on y»*@w are 0. Thus, ' Qo
is not a coboundary in E,. Since E?,, is primitively generated, by Theorem
4.2 we have # —0. But 8;(#?* ® @) =0 for 1 < n and $,(y7* Q@ @) = y?=0.
Thus, all 8, on ##* ® @ are 0; and so, ¥»*@w is not a boundary in any ET.
The class 47> ® w thus leads to a non-zero class in F, which is a contradiction.

(b) Let 96 be the set of all generators of B2, , which transgress. %6 7= ¢,
as the least dimensional generator of E?,, transgresses.

Suppose ¥ does not generate F?,, Let # be a least dimensional gen-
erator of F?%,, not in the algebra generated by J. Among all generators of
the dimension of # not in that algebra let v be one which is maximally trans-
gressive; i.e.,

dsv=0, s<r
p=drvs40, and

if ¥ is any other generator of the dimension of z not in the algebra generated
by &% and
dtr—0, t < 7,

then # = r. Further, if there is such an element y which is primitive, choose
it. Let n=dimz= dimv.

For each 2 € %, let {C"(x)} be the model spectral sequence for E(z) or
P(z), as the case may be. It follows as a routine verification from the hypo-
thesis (i), (ii) and (iii) that there is an algebra homomorphism of spectral
sequences

{hr ()} :{C ()} = {B"}.
Let '"BE= @ C(z) and

z€X
{h}: B} = {B7}

be the map induced by the {A7(z)}. {h"} is an algebra homomorphism of
spectral sequences and A%, is an isomorphism for 1 =n—1.
Let u, be an element of E?,,,, projecting onto u. There is an element
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"uy € "E?, r_y such that A2(’us) = ps. Since pu, projects onto u, the class of p,
in Es, s <r, is not a boundary under ds. Thus, the same is true for “u..
Since h%,3 is a onomorphism for ¢ + b =n—2 and b =n—3, no ’ds on the
class of ‘u, is non-trivial for s < 7, unless possibly some ’ds(“uz) € ’E% ns.
We shall return in the next paragraph to show this cannot occur. Thus, “u.
projects onto a class ‘u such that A"(‘w) =pu. If there were no element
'y €’E%,, such that ‘d"("y) ="p, then ’p would give rise to a non-zero term
of "E®y ppy. But’E® =0. Thus, there is a ’y € "E?, , such that "d" ("y) ="u.

Hence,
dr{y—hr("y) } = u—hr ('p) =0,

and y—h?(’y) is more transgressive than ». As h%(y) is in the algebra
generated by %, v—h?('y) is a generator of K2, , not in that algebra; and
so, the assumption that b does not generate E2, , leads to a contradiction;
i.e., B2, is transgressively generated.

We have only to show that it is impossible for ‘A, ="d""(‘u;) to be
non-zero. Since 7%, is an isomorphism for t=n-—1 and A* is an isomor-
phism (both “E« and E* are trivial), k"7, ; is an isomorphism for 1 =n—3.
If '\ € "E™", , Were non-zero, then since A" (’Ay—r) =0, by Lemma 4.5
either it is indecomposable in ’E"r,, or n—2=p* - m, where m is the
dimension of some even dimensional generator of "E*r,.. If ‘A,, were
indecomposable, then since "E?, ,—'E*", . is an epimorphism of algebras,
there is a generator ‘A, € 'E?%, , which projects onto ’A,—. In the canonical
spectral sequence ’E any odd dimensional generator in ‘E?,, is the trans-
gression of an element in “E2?,, and thus cannot be the image under ‘d»
of some element. The even dimensional generators are either transgressions
of odd dimensional generators in “E2, ,, and cannot be in the image of ’d",
or are the images of elements of the form (“22*®r(2’)), where 'z ="2* for
some even dimensional generator z. Let m =dim’z and 'y =r("z). Let =
and y denote the images of 2. Let m =dim’z and 'y=r("z). Let 2 and
y denote the images of ‘z and "y under A. In E™ both & and y are primitive
and (2 ®y) is not primitive. For '\, to be the differential of "z ® ('z))
we must have p= (22 ®y) and d'v=p, r=m. Since v is a generator of
B2y, it is also one in Em,,. As E™,, is a sub-Hopf algebra of E?, ,, it is
primitively generated by the first part of Theorem 4.3. Thus, v=w -}y in
Em, o, where w is a primitive generator in E™, , and y is decomposable. Since
v is a generator in K%, , and vy is decomposable, w is a primitive generator in
B2y . Ttisthen atleast as transgressive as v; and so, by our initial assumption
on v, v is primitive. It is impossible for d'v to be p, which is not primitive
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in E™. The only case remaining is for n— 2 = p*- m, where m is the dimen-
sion of some even dimensional generator of "E™", ., k¥ > 0. Such a generator
is the image of a generator y in "E?,,. Such generators arise in one of two
ways:

(1) y=r(z), where z is an odd dimensional generator of ’E?,,, or

() y=r(w), where w= (2¢")?1®+(2?") and z is an even dimen-
sional generator of K2, .

In case (1), n—2=pk-dimy; i.e, n=2 -+ (dimz—1) - p*, which is ex-
cluded by hypothesis. In case (R), ’A=r(w ®y?*1); and so, 'p=w Q yr*,
If k=1, then
dimy =1+ dim w - dim (y?*-*)
=2 4 p*- {mp™*—2}, where

m=dim 2 and f = 0. This is also excluded by hypothesis.

(¢) Onme picks a multiplicative base of transgressive generators and for
each of them maps a model spectral sequence into {£7}. The tensor product
of these maps (as in part (b)) is an algebra map of spectral sequences and
induces isomorphisms on E?%,, and E®. By Theorem 4.1 the conclusion
follows.

In view of the complicated technical nature of the hypotheses, it is appro-
priate to discuss them. The standing hypotheses (i), (ii) and (iii) are
vacuously true if HZ, , is an exterior Hopf algebra.

One can see that conditions (i) and (ii) hold in a loop space X —QY,
by considering the canonical map sQX — X, which in homology is onto all
transgressive elements. Also, since QY — QsQY — QY is a retraction, the
diagram

Q520X > QsX - X

T
X

shows that if conditions (i) and (ii) hold in mod p homology spectral sequence
of the fibration
Q2s*W — PQs*W — Qs W

for every space W, then they hold for the fibration
QX —->PX—>X

for every loop space X. Browder, in his thesis, has determined explicitly the
structure of the mod p homology spectral of the fibration

Q22W — PQs*W — Qs2W
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and the conditions (i) and (ii) hold. He has asserted elsewhere that condition
(iii) also is valid. We shall give later (Theorem 4.7) a homology analogue
of Kudo’s Transgression Theorem which gives more precise information about
the conditions (i), (i) and (iii) in case X is a special H®-?,-space. Regarding
the hypothesis in (b), there are examples of non-transgressively gemerated
spectral sequences satisfying the other hypotheses which do not satisy (A)
and also examples which do satisfy (B). Finally an inspection of the proof
of (b) shows that the only place in which the Hopf algebra structure is used
is in showing %%, is & monomorphism, where n is the dimension of some
generator in E?%,, If E?%, is an exterior algebra, in each of the canonical
spectral sequences, "E?, , is a polynomial algebra and has no odd dimensional
elements. Thus, %, is vacuously a monomorphism. Hence, we have the
following dual of Borel’s Transgression Theorem:

TurOREM 4.6. Suppose {E7,d"} is an associative, commutative, algebra
homology spectral sequence over Z, such that E* =0 and E?y, is an exterior
algebra of finite type. Then each generator of K2y, is transgressive and
{Br} == {07 (B?,)} as algebra spectral sequences. In particular, By is the
polynomial alegebra generated by the transgressions of the generators of K2y o.

As for the standing hypotheses (i), (ii), and (iii) of Theorem 4.4,
we have

THEOREM 4.7. If X is a special H,®-space, p odd, (see Theorem 1.1),
{E"} is the mod p homology spectral sequence of the fibration QX — PX — X,
and x € B2y, is a transgressive class and y € E% qnq 18 a class such that
m(z) =y in E*, then

(@) — Q) (y) in B2
and
(@ ®y) =+ 0%,Q"m (y) in B,

where 0%, is the homology Bockstein homomorphism associated with the exact

coefficient sequence
0>Zy—>Zp—>7Z,—0.

Proof. Since oy (y) =z, it follows from Theorem 3.1 that ¢4Q" ) (y)
= Q" (2), but Q) () = 22. Thus, 22 is transgressive and 7(2?) = Q") (y)
in E?mw, More specifically, the class ¢”” for =0 in the proof of Theorem 3.1
is relevant.

" =ep1 Deana)psr + p2 @ AP Pe(anaypia ++ 4 (—1)7 2, @ exnp.
0c” = ep1 Qe(zn-1)p + (T — A7) {€5 > @ €(2n1)ps1 — €p-5s @ €(2n-1)ps2
4 (— 1) 26, @ €anpy-1)-
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The polynomial T'— A?* is congruent to zero mod p; i.e., T — AP = pR(a).
This implies that (1) —1; and so, the sum of the coefficients of R(a) is 1.
Under the map ¢ of the proof of Theorem 3.1, we have

¢ (e2n-1)p) = (02)7,
¢ (ezn-1)ps1) = 2@ (02)77,

¢ (eonp1) = P(a) - 222 ® (02), and
¢(€2M)) =y 2,

where z€ C(PX) such that dz=y -+ p-C, y€ C(QX), 7 (2) = {2} mod p,
and P(«) is some polynomial in «. We can determine P(a) as follows:

T-P(a) 2@ (02) = ¢(Teanps) = (Oeznp)
=0 (eanp) =7y 022 =y T - 221 Q (02).

Thus, T P(a) =T and so P(a) =y+A-Q(a). (Actually, Q(«) is a

polynomial in A, but this will not be needed.) Letting ¢ denote the image of
¢’ in C(PX), we have

c=a, +- -+ a, and
de="0bo+4p-R(a){bs—Dbs+- « -+ (—1)7*/%bp},

where @, = (—1)22-y 22, b= (—1)?/*+y-Q™,(y) modp and mod p?
(since (92)? = (y + pc)? = y?mod p*) and

pbpa=p - {y+ 8 Q@) (y+ pc)) = p{y +A-Q(x)}(2*7* - y) mod p=.

Thus, modulo p* we have

(—=1)72y- QM (y)

—d0—R(@) - {pb—pba - -+ (— 1) [y + 80 (@)1 (7 p).
Since Ae, is a boundary, A(z#-y) is a boundary and since PX is homotopy
commutative and the dimension of z is even, for any ¢ we have that

(at—1) (#1-y) is a boundary. Since the sum of the coefficients in ()
is 1, it follows that (B(a) —1)(2*'-y) is a boundary. Hence, we have

(—1)P 2 90%,Q0My (y)
—0d— (—1)72p-y- (27 y) —R(a) - {pbs—pb2 £ + * + pbps}.
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mod p?; and so,

(— 1)z 04,0y (y)
=4y (—D)P (@ y) +R(@) {bi—bat by}

The filter degrees of the terms b, to b,_, are such that they all give zero in
B0 (p-1),2n-1. Hence,

04pQ™y (y) = 47 (221 y).

We next show that a canonical spectral sequence for 4 is independent of the
particular monogenic decomposition of 4 used in its construction. To this
end the follownig lemma suffices:

Lemuma 4.8. If {'E"} and {E"} are canonical spectral sequences (mod p,
p#4R) and f:'E%, o— B2, is a Hopf algebra homomorphism, then there is
a Hopf algebra spectral sequence homomorphism {fr}:{’r} — {Er} such that
0 =T.

Proof. Tt suffices to prove this for the case where B2, , is a monogenic
Hopf algebra, H(u). f(u), being a primitive element of E2,,, is either
2 av;, where the v; are odd dimensional generators of the particular decom-
position of K2, , used in describing {E"} or > bw#"*:, where the w; are even
dimensional generators. In the former case, each of the v; transgresses into a
primitive element y; € E%, .. We let f2.("r(u)) = S ay;. This induces a
Hopf algebra map f2: "E?— E2. There is only one non-trivial differential d,
r=dimu, and the induced fr commutes with it. Hence, f~ is defined as a
Hopf algebra homomorphism of spectral sequences. The latter case is slightly
more troublesome. Let z;—bw;". Then #; is primitive and transgresses into
the primitive element #;. Let %, ('r(u)) =Xt As (Z2)? = 3(2)?, we
let %, ("r(u?)) =X 7(2z)?. We must show that (Z2)»'® (t;) trans-
gresses. The terms z;71- + -2, 7% 1, with at least two non-zero j’s as exponents
are boundaries under d, r = dim u, of 2,71+ - -2, /% #/; since j; +- - -+ jr+1
=p, two js’s are non-zero and so no z, has exponent p. The terms 2-; ® ¢; for
1% j are boundaries of 2#%;- z;. Thus, in B7, (2 2)7® (2 t;) — (D 2# 4, t,)
is a boundary.' As (X227 ®1;) transgresses, in fact to a primitive class, it
follows that (X 2)?*® (X #;) also does. Let

Pos (r(ur? ®@7r(u))) =7 ({f24,0(u) } © f* .07 (u)).

Clearly, a similar argument is valid for terms of the form w#* and
(ur')?* ®’r (wr'). Thus, there is described a Hopf algebra map f2: 'E? — E?
which commutes with differentials.
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In particular, we have that if {/C"(4)} and {C"(4)} are canonical
spectral sequences induced by different monogenic decompositions of 4, then
the extension of the identity map of A into itself is a Hopf algebra homo-
morphism of spectral sequences, and since it induces isomorphisms on ’C2, ,(4)
and ’C= levels, it is then a Hopf algebra isomorphism of spectral sequences.

THEOREM 4.9. Suppose {Y"} is a canonical spectral sequence, {X7} is
a spectral sequence of algebras, X2, ,1s a Hopf algebra, and {fr}: (X7} — {¥Y"}
is an algebra homomorphism of spectral sequences such that f2, , and Q (f24,0)
are monomorphism, f2, o is a map of Hopf algebras and X* =0. Then

(a) {Xr} 1s isomorphic as algebra spectral sequence to a canonical
spectral sequence
(b)) f2,+ and Q(f%,4) are monomorphisms

(e) of {Xr} us a spectral sequence of Hopf algebras and {f7} is a Hopf
algebra homomorphism of spectral sequences, then {Xr} 4s tso-
morphic as Hopf algebra spectral sequence to a canowical spectral
sequence.

Proof. By Theorem 4.3 there is a Hopf algebra D and a homomorphism

(FP4.0®9) .
g: D— Y%, such that X%, (® D———> Y2, is a Hopf algebra iso-

morphism. By Lemma 4.8 there is an extension

{(fg)7}: {C"(X%,0@ D)} > {¥"}.

{(fg)r} is a Hopf algebra isomorphism of spectral sequences. But there is
an isomorphism

{7} {C7(X%,0) } ®{C"(D) } = {0"(X*,0,® D) }

as Hopf algebra spectral sequences.

Thus, we have the sequence of maps

{1 (&7} U
(X7} {¥7} {07(X%4,0)} @ {07 (D) } ———= {07 (X?4,0) }

in which {k*} and {I*} are Hopf algebra maps and 12, ,0k?, 0%, is the
identity.

The conclusions (a) and (c¢) are then immediate from Theorem 4.1;
(b) is clear since Q (identity) is the identity on Q.
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V. Homology of iterated loop spaces.

Definition 5.1. A spectrum S={X;,f;} (see [18]) is a sequence of
spaces {X;},1=0,1,2,---, and maps f;: X;— QX;,;. Our spaces are assumed
to have base points and the maps are base point preserving. Also in this
definition we take only loops of length one. The suspension below is the
reduced suspension.

By the well-known natural isomorphism p: {X,0QY}— {sX, Y}, ({4, B}
= set of maps from A to B), the last is equivalent to being given maps
gi: sX;— Xi.q, where g;=p(f).

Ezample 1. Let X be any topological space and let §(X') be the spectrum
defined by the sequence of spaces {siX}, 1=0,1,2,- - - with maps g¢;: s(s*X)
— s¥1X, g; = identity.

Definition 5.2. The homology groups H,(S) are defined by:
Hn(S) == le Hnw(X@); Hn-n(Xm) '_>H>n+i+1 (X4,+1)
—_—

oz ! Ji
is the composite Hy.i(X;) — Hpyinr (X)) —> Hpiina (Xii1), where o is the
suspension isomorphism.

The homotopy groups m,(S) are defined by:
Tn (S) = Lim Tvywt(X'i) s T+ (X’L) —> Tneirl (X'iu)
—_

Y i
is the composite (X)) — mnsiss (8Xi) — mnui1 (Xis1), where o is the

suspension homomorphism.

Example 2. If S(X) is as in Example 1, then

H,(8(X)) = Hu(X), n>0,
H,(8(X)) =Hy(X) (reduced homology group)
(8 (X)) = n-th stable homotopy group.

Definition 5.3. The associated spectrum Q(S) to the spectrum § is
defined by the sequence of spaces {siQiX;}, 1=0,1,2, - -, and maps

SHIQIf; 0 s (X)) — SN,

Example 3. Let S(X) be as in Example 1, then @ (S(X)) is defined
by the sequence {s’QsX} and maps s*'Qif;: s*1QisiX — s#*1Q#*1si+1 X, where
fi: X > QsX, f;=p""(¢;). The map f; may be considered as an inclusion,
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and then Qifi: QisiX — Qs X is an inclusion. Consequently, we may define
Q(X) =Lim QsX. Then Q(X) satsfies

Ha(Q(X)) — Ha(Q(S(X))
(Q(X)) = mu(8(X))
0Q (sX) — Q(X).

Also, one may consder the spectrum & defined by {@(s'X)} with maps
it Q(s'X) > QQ (s X) = @ (s'X), ¢’; the identity. Then

Ha(Q(8)) = Ha(Q(X)) = Ha(Q(S(X))).

Example 4. Suppose that X is a space and we are given a map f:
X—>0%X. Then we may form a spectrum S defined by the sequence:
X, 01X, 02X, - -, 0X, X Q1X,- - -, with every k-th map being f:
X — Q(9*X), the other maps being identities.

If further, f is a homotopy equivalence (or at least induces isomorphisms
of the homology groups), then

Ha(Q(8)) = Ha(X)

(Remark. This holds true of Bott’s infinite Lie groups U (e ) and SO ().)

Let S and @Q(S) be as in Definitions 5.1 and 5.8. Then H,(Q(S))

= Lim H,,;(s°Q'X;) = Lim H,(Q*X), where in the last limit the maps are
—_ —_—
induced by Qif;: QIX;— Qi (QX,,,).

Since the inclusion of the subspace of loops of length one into the Moore
loop space is natural and induces isomorphisms on homotopy and homology
groups, we may substitute the Moore loop space in the last limit. Then
Qf; is a map of Hi-*-spaces. This enables us to introduce homology operations
Q®;, for arbitrarily largej, in H(Q(S);Z,).

Definition 5.4. For x€ Hn(Q(S);2Z,), define Q®;(x) — Lim Q®;(x;),
where x = Lim x; € H, (Q'X;), 4 sufficiently large so that Q®;(x;) defined.

This rich structure in H,(Q(S);Z,) will enable us to compute
H,(Q(8(X));Z,) =H(Q(X),Z,) for any connected space X. We will
show that it is the free graded algebra generated by all ¢ allowable words’ in the

homology operations, acting an a vector basis of H*(X;Z,)C H(Q(X);Z,).
Explicitly,

Definition 5.5. A word mod p, p odd, is a formal product of Bocksteins

0%, and extended p-th powers Q;i-1y, > 0. A word w acting on a class @
of dim r is allowable if :
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1. w is empty
R. w=Qjp-»w, w allowable, and one of the following holds
(a) o’ empty, j and r same parity
(b) o begins with Qip-1), =1, § and 7 same parity
(¢) w begins with 9%,Q;p—1), § <1, 7 and ¢ same parity
3. w=~0+uw’, v allowable, w’ begins with Q;(,1).
For any graded vector space V, we designate by &= (V) the free com-
mutative, associative, graded algebra generated by all allowable words acting’

on a basis of V+.
We will show that there exists a natural inclusion

bs: Hy(X525) > Hy (Q(X) 52p).

Since all operations are defined in this last homology algebra, ¢, extends to a
homomorphism ¢*,: F* (Hy.(X;Z,)) > H,(Q(X;Z,). Then it will remain
to be shown that ¢, is an isomorphism.

Definition 5.6. A map ¢: S— 8 of spectra, S = {X,,f:}, &’ = (X", {3}
is a sequence of maps ¢;: X;— X”;, such that (2, 1) ofsi=F1o¢;. In
terms of the maps g;=p7fi, ¢’s=p7fs, this condition is equivalent to
$ir1© gi=g'i 0 (s¢s).

Lemma 5.1, The map ¢: S(X) — Q(S(X)) defined by

$i: $X — siQisiX, ¢y =sp7i(s\), A1 X —> X the identity,
induces a monomorphism ¢y : Hy (S(X)) > H,(Q(S(X))).
Proof. The map
NI L N
§t X —— siQisiX —— s X, gy = pt (QisiA),
is the identity. In fact,
Y30 i = p! (Qis'd) 0 sl (sih) = p’(@'s?A 0 pi(sIA) )

= plp7i(siA 0 50\ ) = si\ = identity.

Consequently, ¢¥;: H, (sX) — H, (s'Q'sX) is a monomorphism for every i.

It follows that ¢, is a monomorphism.

Remark. We had H(X)=H,(S(X)) and H,(Q(X)) = H,(Q(8(X)))
and it is clear that the map ¢, : H,(X) - H,(Q (X)) is the monomorphism
induced by the topological inclusion X — @ (X), defined by the sequence of
inclusions pt(siA): X — QisiX.
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Lemma 5.2, Let X be connected. For p an odd prime, H, (Q*s'X ;Z,),
1 < k=1, is isomorphic in dimensions < 31—k, to the free commutative
associative graded algebra generated by:

(1) The allowable words in the extended p-th powers and the Bockstein,
acting on a vector basis (z;) of H*y(s"%X ;Z,) C H,(Q*'X ;Z,) ; and

(R) The classes 1 (21, Tm), | < m, where (z;) 1s ordered by dimension
(arbitrary order for elements of the same dimension) ; and yi (21, 21), dim z;
same parity as k.

Remark. If z¢ H,(s**X;Z,) and dim Q) (2) < 8¢—2k, then
j(p—1) <k, and the operation is defined. In fact, since r=1—k - 1, we
have

3i—Rk >pr+j(p—1) Zpi—pk+j(p—1)
or

E>j(p—1) + (p—3)(i—k)4+p>j(p—1).

Hence all allowable words in the operations within the dimension restriction
are defined.

Proof. For k=2, this is contained in the result of Browder [8]. (He
obtains the complete algebra H, (Q%s'X ;Z,), but his argument is quite long;
we give a short argument in the proposition below for he weaker result required
here.)

We now proceed by induction using the partial comparison theorem (4.1).
That is, we can map the canonical spectral sequence into the spectral sequence
for the acyclic fibre space Q¥'s'X C PQ*siX — QFsiX for terms of base degree
< 81—2k; since for k < 4, H*, (s**X ;Z,) C H, (Q*sX ;Z,) is transgressive,
and hence the same is true for all operations on such classes. Thus, the base
is transgressively generated in dimensions < 8¢— 2k, and since Q%X is an
H**)-space, the hypothesis of Theorem (4.4) is fulfilled (see Theorem 4. 7).
It follows that H,(Q*stX ;Z,) is isomorphic to the fibre of the canonical
spectral sequence in dimensions < 8i—2k—2=2381—2(k-41).

Explicitly, H, (Q**siX ;Z,) is generated by the transgressive images of
the generators of H, (Q*s'X ;Z,), the transgressive images of the p-th powers
of the generators of H,(Q%s'X;Z,), and the Bocksteins of the latter. The
words acting on a basis of H*,(s"*X;Z,) transgress into (=) the corres-
ponding words acting on the corresponding basis of

Hy (92X 5 Z,) C Ho (945X 5 Z,)
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i.e., w(x;) transgresses into w’(r(2;)) where each Q;, 4) in w(a;) is replaced
in w(r(z:)) by (=)@ ) -1, and Bocksteins transgress into Bocksteins.
Also, (w(x;))?" transgresses into Q7,w’(rz;), and in addition we get the
generators 0+,Q7,w’ (r2;). The words w’ (v(z1)), Q1 (w'rz;) ), 04,07, (W' (v21) )
give all allowable words (under the given restriction) in H, (Q*siX ;Z,).
Finally, each yy 1 (21, 2,n) transgresses into yy (v, 7@m). (Notes that the p-th
power of 4 (21, ) is too large a dimension to enter the given range.)

This completes the induction and establishes the Lemma.

PropostTioN 5.1. Let X be connected. For p an odd prime,
H,(Q%'X;Z,), 1=2, is isomorphic in dimensions =3i—4, to the free
commutative associatwe graded algebra generated by:

(1) The allowable words in the extended p-th power Q,—, and the Bock-
stein, acting on a vector basis (z;) of H*y(s%2X ;Z,) C Hy (Q%'X ;Z,) ; and

(R) The classes Y1 (21, Tm), | < m, (1) order by dimension ; and y(zy, 1),
dim @; even.

Proof. H,(Qs'X;Z,) is well known (Cartan Seminar, 1954-55) to be
the free associative (non-commutative) algebra generated by a basis (y;) of
H+y (s2X ;7Z,) C Hy(Qs°X ;Z,). Any such algebra may be written additively
as a tensor product of polynomial algebras with new generators the basic
products,” (b,), r=1,2,- - -, of the original generators (see Hilton or
Browder [8] for details). If (y;) is the original basis ordered by dimension,
then the basic products are yy,¥s.* * « 5[4, yml, 8ll 1 < m 3 [y1, [Yms yn]], ete.
Here [43, ym] = yym— (—1)dmvrdimony, y; — g4 (43, ym). For any b, of odd
dimension we may further write the polynomial algebra P(b,) = E(b,) ® P(b?,)
(additive isomorphism), E (b,) the exterior algebra on b,. The H,(Qs‘X ;Z,)
will be additively isomorphic to the tensor product of exterior algebras
generated by odd dim classes and polynomial algebras generated by even
dimensional clases. Further, all these generators are transgressive. In fact,
all y; are transgressive and hence [y, @m] =0 (21, Tm) is transgressive, etc.
Also o (by, by) = 202, if b, odd dimensional, and hence b2, is transgressive.

Since Qs¢X is an H-space, the differential in the spectral sequence of the
fibration Q%s'X C PQsiX — QsiX is a derivation. Also

B2 =H, (05X ;Z,) @ H, (2*sX ; Z,)

as algebras (in particular, any class in H,(Qe'X ;Z,) commutes with any
class in H, (Q%X ;Z,).
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For dimensions < 8t—2, H,(Qs'X ;Z,) is additively isomorphic to the
tensor product of exterior algebras and polynomial algebras generated by the
classes (v1); Yo(Y, Ym), I <m; and yo(y1,9:1), dimy; odd. Further, since
dimy; =+, all p-th powers of the above classes are of dimension =3¢ It
follows that we may again map in our canonical spectral sequence (additively)
for base degree < 3¢t—2. That is the images of the canonical sequence C (bg)
for each basic product above are multiplied together in the given order in E.
Since the differential commutes with the map on each C7(bg) and the differ-
ential is a derivation in E*, the map on ® C(bg) is a spectral sequence map
(even though it is not an algebra map). Moreover the map is an algebra
map on the fibre. The conclusion now follows by Theorem 4. 1.

Remark. We have considered only p an odd prime. For p—2, the
problem is much simpler because the operation Q®, already exists in
H,(Q%iX;Z,), and hence all 27 powers of transgressive classes in H,(QsiX;Z,)
again transgress. Similarly, the needed operations in the higher loop spaces
exist. Consequently, one may apply the ordinary comparison theorem (and
the canonical spectral sequence) to obtain the complete algebras H . (Q¥siX ;Z,)
k=+1. Since this result is already given in Browder [8], we do not repeat
it here.

Returning to Lemma 5.2, we see that for %=+, it states that
H,(Q%s'X ;7Z,) is isomorphic in dimensions < 1 to the free commutative asso-
ciative graded algebra generated by the allowable words acting on a vector
basis of H*,(X;Z,) C H,(Q's'X;Z,). (Note that dim yss(2s2m) > 1.)
It follows that Qip*(s™*I)): Qis’X — Q1 X induces a homomorphism
Qi (s"\) 4+ H (X ;Zy) — H, (Q*sX ;Z,), r<i. Taking the direct
limit we get:

TurorEM 5.1. H,(Q(X);Z,) is isomorphic to the free commutative
associative graded algebra gemerated by the allowable words in the extended
p-th powers and the Bockstein acting on a wvector basis of H*.(X;Z,)
CHy(Q(X) ;7).

Remark. This result holds for p = 2 as well as p an odd prime, as follows
directly from the results of Browder discussed above.

COROLLARY. H,(Q(sX);Z,) is isomorphic as a Hopf algebra to the
tensor product of monogenic Hopf algebras, these are exterior or polynomial
algebras according as the generator is odd or even; the generators being the
allowable words in the extended p-th powers and the Bockstein, acting on a
vector basis of H*y(sX ;7,) C Hy(Q (sX) 37Zy).

6
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Proof. This follows from the fact that all classes in H,(sX;Z,) are
primitive (in fact transgressive in H,(Q(sX);Z,)) and consequently the
same is true of the words acting on these classes.

THEOREM 5.2. Let S» be a sphere of dimension n, n odd. Then
H, (Q%8", Z,), k < n, is the tensor product as a Hopf algebra of monogenic
algebras; exterior algebras for odd dim generators, polynomial algebras for
even dim genmerators. Further there is one generator for each allowable word
in the extended p-th powers Qjp-1), j <k, and the Bockstein ‘acting’ on the
generator of H, 1, (Q¥S";Z,). (Note that we do not claim that these operations
are actually defined in Q%S».)

Proof. Consider the map QFS*»— Q¥Q(S*) =@ (S**). We have
H,(Q(S"*);Z,) is transgressively generated for &k < n—1, and primitively
generated for & < n. Further the map QS»— @(8™*) induces a monomorphism
H,(QS";7Z,) —> H, (Q(8"?*) ;Z,) since it takes generator into generator and
both are free. Since H, (28";Z,) is a polynomial algebra, the only indecom-
posable element is the generator, so that this map is also a monomorphism on
the space I of indecomposable elements. By Theorem (4.9), it follows
inductively, that

(1) 0->H.(9Q*¥8";Z,) > H,.(Q(8**;Z,) exact, k< n
(R) 0—=>I(H (Q*8";Zy) > I(H,(Q(S"*;Zy)) exact, k <n
(8) H,(Q%8";Z,) is transgressively generated, k¥ < n—1.

From (1) and (R) we conclude that H,(Q*S"; Z,) is primitively generated
and free, k< n. From (3) we see that the acyclic fibre space over Q*S»,
k < n—1, has a canonical spectral sequence. Consequently, we can compute
the number of generators in each successive loop space inductively. But it
is easy to check that the number of generators must be the same as the number
of allowable words and have the same dimensions.

COROLLARY. H, (Q*S";Z,), k < n, n even, p an odd prime, is the tensor
product as Hopf algebras of polynomial and exterior momnogenic algebras.
In fact, as Hopf algebras:

H, (Q¥S"; Z,) = H, (2183 Z,) @ H, (48203 Z,).

Proof. The generator of s, (S") defines a map 82t — S, from which
we get a map of - XX Q8%"* — QS”, by multiplying the inclusion 8§71 — QS»
by the induced map Q8%»1— Q8». This induces an isomorphism

m (871 X Q8%1) = i (QS™)
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in suitable C-theories (Serre [13]) and consequently the isomorphism of the
Corollary.

TrrorEM 5.3. Let X be a homotopy commutative H-space, which is
n-connected. If H,(Q¥X ;Z,) is primitively generated and all primitive ele-
ments transgress, k=n—1; then Piu,=0 for 1> (q—mn)/?, uq € H(X; Z,),
Pi the Steenrod reduced power.

Proof. The proof is by induction on g. If u, is an element of lowest (non-
zero) dimension in H*= H*(X,Z,). Then u, is primitive, and likewise
Piy, is primitive. Since H, is primitively generated, the p-th power of every
element in H* is zero, and a non-zero primitive element of H* is indecom-
posable i.e.

0— P*— Q*
is exact.

Since every primitive element in H, (Q*X,Z,) is the image of a primitive
element in H, (Q*'X,Z,), for k <n—1, Q(H*(Q*X,Z,)) is mapped mono-
morphically into @ (H*(Q**X,Z,)) by the suspension homomorphism. Also
Q(H*(9»*X,Z,)) is mapped monomorphically into H*(Q"X,Z,), since
H,(Q"X,Z,) is transgressively generated. Hence if s"Piu, =0, then Piu,
=0. But s"Piu, = Pis"u;=0 if ¢+ > (¢g—n) /2.

Now assume the theorem is true for all elements of dim less that g.
Then if ug =10, wg_r, 0 < r < ¢, Piug= ;2 Piv,- Pi-iw, .. Now by the induc-

tion assumption

Piy, 540 implies j < (r—n) /2
Piriw, 540 implies 1 —j < (¢—7r—mn) /2
and Piy,- Priwg .40 implies 1 < (g—n) /2 + (—n)/2 < (g—n) /2.

It follows that the assertion holds for any decomposable element. On the
other hand, even if u, is indecomposable we claim that Piu, is primitive; and
hence, zero by the same argument as in the first two paragraphs. To see
that Péu, is primitive, suppose ¢*uq=1,®1 4+ 1Qu, -+ terms of the form
1, Qwgr, 0 <7< g (p* the diagonal homomorphism in H*). Again by the
Cartan formula, and the argument above applied to v, ® wq_p, Pi(v, ® wy,) =0
if i > (¢—mn) /2. Hence Piug is primitive if 1 > (¢—mn) /2, and Piu,=0.

The theorem now follows by induction.

CoROLLARY 1. In H*(Q(s"X;Z,), Piug=0 for i> (¢g—n)/2, X an
arbitrary connected space.
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CoROLLARY 2. In H*(Q!S™¥;Z,); Piug=0 for 1> (¢g—mn)/2.

Proof. For n + 1+ 1 odd, this follows from the fact that H,(Q¥S+; Z,)
maps monomorphically onto H,(Q™*(8"*); Z,) and hence the cohomology map
coming back is onto. For even spheres it follows by Corollary to Theorem 5. 2.

Remark. The above result may be sharpened slightly to give: In
H*(QW8";Z,), Piug=0 for t > (¢—n) /2. The following is a brief outline
of the argument:

All stable cohomology operations on y*, € H"(Q!s"!;Z,) are trivial since
this is true in H*(S™*;Z,). Hence the same is true of y*, € H*(Q(S") ;Z,).
On the other hand, all homology operations on y, € H,(Q (8");Z,) transgress
to Hy(Q(8°);Z,) (see Lemma 5.3 below); and hence as in the proof of
Theorem 5.3, the result follows from the primitive cohomology classes and
then for all classes by the Cartan formula. Hence as in Corollary 2, the result
holds for H*(Q!S™!;Z,).

We wish to prove that certain cohomology operations are not zero in
H*(QkS";Z,). For this we need the:

Lemyma 5.3. Let X be a k-th loop space and suppose € H,(X ;Z,).

K,
Then there exist a map aw:J—weQOX, QX the connected component of the
™
wdentity loop, m=12Z, If p(ax): s(Jr/x)—>X 1is the corresponding map,
then (par)y(Sbup—i) = Qi(2), 1+ p—1<k, where &y € Hy(J*x/m) 1s
tr* (Cispo1), bot WED /g — Jhn /o,

Proof. Since X is an H*,gspace, we can define an H*?j -structure on
the space of paths PX by:

0 (w, &, -5 ) (1) = (w,3:(2),- + % (1)),

7, € PX, 6% the defining map for X, w € J¥z. This map restricted to QX
gives an H*'-structure to QX which is the same as that given by the H*-
structure on QX defined previously (1.4). For any loop w € QX,

X wP G-t w P
a: Jog —— Jhg X P QX QX

is equivariant, and the image of J%r will be in the identity component of QX.
On the other hand, since z € H, (X ;Z,) is spherical, it is represented by a
loop w, and we define « as above for this w.

Now let X* be the simply connected covering space of X, then the map
61y Jhr X X?— X induces a unique lifted map 6%1,: Jhnr X (X*)?— X*,
such that
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(; w Do
Jhr X (PX)» PX PX
1 X Ay AE j A*
0* wPo
Jhr W (X*)? X* X*
1X pv P
9
Jr X X — X commutes.

The loop w: [0,7] = X defines a singular 1-cube in X, which we again denote
by @,z(t) =w(tr), 0=¢=1. Let & be the singular 1-cube in PX defined
by Z(¢) (s) =w(ts), 0=t=1, 0 <s=+r. Then Z projects on z by the end
point map A: PX — X.

Consider e; ® 27 ; this projects onto ¢;® z?. We know from Section (III),
that there exists a chain ¢ in W® ® ¢ (PX)? of the form

ei®ﬂ 4 e Cpa &® (0:2)1"1(8)2’6,

all terms except the first involving 0%, and such that 9¢ = == e;,,, ® (9%)2.
Now 9% = w—¢, so that the projection of the terms involving 4% are terms
involving 9z =0, and hence (1®A?),(¢) =e¢;®a?. For then, f,(¢) is a
chain in PX whose 9 is in QX ; hence dr*8, (¢) is degenerate in X*; i.e. is a
cycle, and pA*(G) = My (¢) = 6,(C) = Q;(z).

On the other hand, we claim that b (€ups @ (02)?) = by (€isps @ wP) in
QX. Once this is shown, we have w20, (€4.p_1 @ w?) — a1, (8i4p1), and our
result will follow from the commutativity of the above diagram.

To show this last, note that the map 6%, as defined inductively for a
k-th loop space satisfies the additional property.

Oy (wy @y, ap) — O (wse, - -, e, @, - ),

where z;€ X, j=1,- - -, p, are such that p—r of them are the base point e,
the rest being @y, - -, @, written in their given order; i.e., 4, <1, <+ * * < iy
This property then also holds of #1,: Jhr X (2,X)?— Q,X. For chains
we claim we may then assume

(w®%® - Q&) —i(wdI® - -®I®%,Q - -QF),

where ;€ C(Q0X), j=1,- - -, p, p—r of them are the unit element J, the
rest being &y, - -, %, written in their given order. It follows immediately
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from this that all terms in the expansion of fy(en,+® (w—1)?) involving
the same number of I’s are equal ; and hence

O (Cirpr ® (w0 —1)?) = 4 (ip-1 @ W) — Oy (Ci1p1 @ 17) , mod p.

But as remarked in (I1.R), 4 (€iups ® %) =0, since i 4 p—1 > 0.

It remains to show that § has the desired property. To see this, for any
space Y, take the explicit S,-equivariant chain map ¢: C(Y)?—C(Y?)
defined as follows: Let g: C(Y)—>S(X) be the natural chain equivalence
[5], f: S(Y)?»— S(Y?) the explicit Eilenberg-Zilber map as given in [6],
and : C(Y?) — S(X?) be the natural chain equivalence inverse to g. Then
since f is 3,-equivariant, the same is true of

g f h
¢: O(Y)r—> 8 (Y)»— S(Y?) —> C(Y?)
Then the map t®¢: WEDQ (' (Y)?— Jir ® C(Y?) satisfies the conditions
of Theorem (2.1), and hence for ¥ —Q,X we may take =00 ({®¢).
That § has the above property follows from the fact that ¢ is 3p-equivariant
and is such that ¢(e® X7-1) C C(e X X2'), by the naturality of its com-
ponent maps.

COROLLARY 1. Let yny € Hyuy(Q8S";Z,) be a generator. There exists
a map p**(ar) s sPF (I /w) — QFS™ such that

p"E (on) 5 (8" iy (n1) (0-1)) = Qi(yn-r), 1 <n—1— (n—Fk) (p—1).

CoROLLARY 2. Let @ (S8°) = Lim Q%S% H,(Q(8°);Z,) is the free asso-
—_

ciative commutative graded algebra with generators in 1-1 correspondence to
all allowable words “acting’ on the unit element 1€ H,(Q(s°);Z,). (Note
that we do not say H,(Q(s°);Z,) is generated by these words acting on 1,
as all such operations are trivial.)

Proof. Q(8°) = Q,Q(8*) = Q(Q(8*)*), Q(8*)* — simply connected cover-
ing space of Q(S*). . (Q(S*)) =2, and hence by a well-known spectral
sequence arguments we have the exact sequence of H,(Q(S*)*;Z,) modules:

0— H(Q(8Y)*; Zy) > H(Q(8") 5 Zp) > Hi(K(Z,1) 3 Z,) @ H,( (Q(8)* 5 Zy)
— 0.

It follows that H ,(Q(S*)*; Z,) is isomorphic to the subalgebra of H,(Q(S); Z,)
generated by all the non-empty allowable words acting on H,(S*;Z,)
C Hy(Q(8Y) 5Zy), but not the class y, itself (y; — generator of H, (S*;Z,)).
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Now the Lemma implies that all words of the form Q;—1)y: transgress,
even though v, no longer exists in H, (@ (5*)*;Z,). Since all other allowable
words are operations on these words, H,(Q(S*)*;Z,) is transgressively
generated. The Corollary now follows immediately.

As a consequence of Corollary 1 of Lemma 5.3, we show that there axe
a number of non-trivial ways in which the Steenrod Algebra can act on the
cohomology of iterated loop spaces of spheres.

TeEEOREM b5.4. In H*(QWS™;Z,), if t is an even integer, t =n and
(t—mn) (p—1) <1, for which there is an integer § such that (t/2(p—1),7)
== 0mod p and (t+27) (p—1) < n+1—1, then, letting g=n -+ t(p—1),
there is a class u, € H1(QWS™; Zy) such that Pi(uq) 0. In particular, if 24
s an even multiple of (p—1), p<n+41l—1and 0=2j—n(p—1) <,
then PJ(ty2;) 5~ 0.

Proof. By the cited Corollary there exists a map
p =p”'k(a7r) : Sn(JrHl—lZp/Zp) — QIQn+t

such that py(s"€in(p-1y) = Qi(yn), in mod p homology, provided 7 <7 and
t+n(p—1) <n-+1—1. Then if ¢ is even and ¢t =n,

ps (8"€t(p-1)) = @ (t=n) (p-1) (yn) 7~ 0.

Let ve H2(J™VZy/Zy; Zy) denote the dual of (e;). Then v¢/2@D ig the
dual of e;p1). An easy computation shows that
Pi(otl20D) = (£/2 (p—1), j)v@# D@D, (¢/2 4 §) (p—1) <n+1—1.

Thus, Pi(sm?/2eN) — (1/2 (p—1, j) s"o®/zD0-D, In H*(QIS™;Z,), letting
Ug be non-zero on @ () (p-1) (ya), we have P7(u,) 540 ; provided

(1) g=n+t(p—1),

(2) tiseven and t =mn,

(3) (#/2(p—1),]) #0mod p,

(4) (t—n)(p—1) <1, and

(5) (E+2)(p—1) <n+4Il—1
Letting j=1/2(p—1), (3) is satisfied, (1) becomes g=n -+ 27, and (2),

(4) and (5) are equivalent to

Rjg<n+I—1,and 0=2—n(p—1) <1
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Remark. Comparing Theorem 5.4 with Corollary 2 of Theorem 5.3 and

the remark following it, we see that is is the best possible result.
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