Double Point Manifolds of Immersions
of Spheres in Euclidean Space

Peter J. Eccles

Abstract

Anyone who has been intrigued by the relationship between homo-
topy theory and differential topology will have been inspired by the work
of Bill Browder. This note contains an example of the power of these
interconnections.

We prove that, in the metastable range, the double point manifold of
a self-transverse immersion S™ 4+ R"t¥ js either a boundary or bordant
to the real projective space RP™®. The values of n and k for which
non-trivial double point manifolds arise are determined.

1 Introduction

liven a self-transverse immersion f:S™ 9 R™** the r-fold intersection set
1.(f) is defined as follows:

L(f)={f(z1)=f(z2) =... = flz,) |zi € S*, i #j > zi £ z;}.

‘The self-transversality of f implies that this subset of R™+F g itself the image
of an immersion (not necessarily self-transverse) '

gr(f)i Ln—k(r—l) N ]R"+k

ol a manifold L of dimension n — k(r — 1) called the r-fold intersection manifold
of f. It is natural to ask for a given manifold L whether it can arise as an
intersection manifold of an immersed sphere and if so for which dimensions.
Alternatively we can consider simply the bordism class of L.

In the stable range n < k the map f is necessarily an embedding as I,.(f) is
ompty for r > 2. In this note we consider immersions in the metastable range,
n < 2k. In these cases the intersection manifolds are empty for r > 3 and so
the: double point manifold is embedded by 82(f).

I'heorem 1.1 In the metastable range, k < n < 2k,

(a) if n—k is odd then the double point manifold of a self-transverse immersion
S™ s R™t* is a boundary;
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(b) if n — k is even then the double point manifold of a self-transverse im-
mersion S™ ¢ R*tF s ezth.er a boundary or bordant to the real proyectwe
space RP™ %,

It should be recalled that odd dimensional real projective spaces are bound—
aries.

e AR 2 R

Theorem 1.2 In the metastable range, 0 < 4p < n, there exists an immersioni::.
8™ 4> R2=2P with double point manifold bordant to RP?” if and only if n =
29—1 mod 29, whereq=pifp=0 or3mod 4 andg =p+1lifp=1 or 2 mod 4.

In fact, it is known ([17]) that for p > 5 there is an immersion with double
point manifold homeomeorphic to RP?? in the dimensions given by this theo-?
rem. I am grateful to Andrds Szlics for drawing this reference to my attention. '
In addition, it was my efforts to understand his result that there exists an 1m-§
mersion M™ &+ R?"~? with double point manifold bordant to the projective’, %

L§

plane if and only if n = 3 mod 4 ([14]) which led to the present work. Theo*
rem 1.2 shows that in this result the mamfold M can always be taken to be a

sphere. %

The proof of these theorems is an application of the general method intro-
duced in [3]. It may be summarized as follows.

Step 1. Write RP° for the truncated real projective space RP> /RP""lu’
Then to an element a € 7, RP{° we can associate an immersion i4: S™ 3+ R*5]
well-defined up to rcgular homotopy. In the metastable range every regulari
homotopy class of such immersions arises in this way. Q

Step 2. Let MO(k) be the Thom space of the universal O(k)-bundle so tha,)_"
each element of m, MO(k) represents a bordism class of (n — k)-dimensiona;
manifolds. Then there is a map 3

1

Mkn:RP® — MO(k)

of Thom complexes, induced by the bundle k7 over RP°, the Whitney sum o i
k copies of the Hopf line bundle. The element (Mkn).a € 7, M O(k) represents
the bordism class of the double point manifold of the immersion i,.

Step 3. Since the bordism classes of a manifold is determined by its Stiefel-
Whitney numbers we apply the Hurewicz map in Z/2-homology to the class of
the double point manifold. The following diagram commutes by naturality.
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T RP® —_— T MO(k)
h h
(Mkn)

Z/2 o Ho(RPX;Z/2) —  Ha(MO(K);Z/2)

Results about the S-reducability of truncated projective spaces ([1]) imply that,
for £ € n < 2k, the left hand Hurewicz homomorphism is zero if and only if
k <n+1—p(n+1). Here p(n + 1) is the Hurwitz-Radon-Eckmann number
which has the property that p(n + 1) — 1 is the maximum number of linearly
independent tangent vector fields on S™. Thus, in this case, the double point
manifold is a boundary. The complete solution is obtained by evaluating the
map (Mkn),. in homology.

This paper is organized as follows. In §2 we discuss the generalized J-
liomomorphism which leads to the first step of the above proof. In §3 we con-
sider the relationship between this homomorphism and the Hopf invariant. The
rclationship between the Hopf invariant and the double point manifold described
in §4 then leads to the second step. The calculations required for the third step
are described in §5.

2 The generalized J-homomorphism

Let G(m) be a closed subgroup of the orthogonal group O(m) with inclusion
map i:G(m) — O(m). Then, if £ is an m-dimensional vector bundle on S™
represented by £ € 7, BO(m); a G(m)-structure on £ is a choice of element
£ € 1, BG(m) such that i,£ = €.

The normal bundle v of the standard embedding S™ — R™*™ is trivial and
o each element of 7,0(m)/G(m) determines a G(m)-structure on v. With
this structure, the embedded sphere represents an element of m,4mMG(m)
by the Pontrjagin-Thom construction. This process defines the generalized J-
lhomomorphism , .
J: 1, O(m)/G(m) = Ty MG(m)

Introduced by Bruno Harris ([4]).

The image of this map J consists of those elements which may be repre-
sented by the standard embedding of S™ in R™+™ with some G(m)-structure.
When G(m) is the trivial group, this reduces to the classical J-homomorphism
1, 0(m) = TpgpmS™.

We now consider the case of G(m) = O(k), for k£ < m, embedded in the
ntandard way. In this case O(m)/O(k) is the real Stiefel manifold V,,_,(R™)
nid MG(m) is the suspension £™~%MO(k) so that we have the following map:

J: 7ruVm-lc(Rm) d 7rn+m2m_kMO(k)-
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As an aside, we now describe a map of spaces inducing this J-homomorphism
which will be needed later. Recall that, as the classifying space BO(k), we can
take the infinite Grassmannian Gp(R*) of k-dimensional linear subspaces of -
R (see for example [9]). In this case, the total space EO(k) of the universal
bundle is given by "

EO(k) = {(u,U) |u €U, U € Gx(R™}. j

Now, let v = (v1,...,Vm-k) € Vin—k(R™) be an orthogonal (m — k)-frame.
Write U = (v1,...,Um_k)" € R™ C R, the subspace of R™ orthogonal to each }
v;. Then a point of R™ may be written uniquely as u + t1v1 + ... + ty—kUn—k
where t; € R and v € U. So we may define a continuous map J(v):R™ —
EO(k) x R™* by

JYu+tivr + .+ bk Um—k) = ((u, U),t1,... ,tm—k)-

This induces a map J(v): S — MO(k) A S™k, ie. J(v) € Q"E™*MO(k). .
Checking the definitions carefully gives the following result. _ .f,

Proposition 2.1 The continuous map J:Vm_k(R™) — Q™E™-EMO(k) m—
duces the generalized J-homomorphism '

J: T Vin—k(R™) = 1, Q™E™ % MO(k) 7rn+m2m""M0(k)

Returning to the differential topology, recall ([16]) that the bordism group.b
of immersed manifolds M™ 9+ R*+¥ is isomorphic to the stable homotopy group :
7S MO(k). An n-manifold embedded in R™*™ with an O(k)-structure, as above;:
has (m — k) linearly independent normal vector fields and by [5] these lead t
a regular homotopy of the embedding to an immersion in R*t* C R**+™, Th
process corresponds to the stabilization map

Tn+mE™ *MO(k) — n5  MO(k).
Composing this with J gives a stable J-homomorphism
IS T Vi i (R™) = 75 MO(k)

whose image consists of classes represented by immersed spheres, and all suclg
classes if m > n since then the stabilization map is an epimorphism. Recall}
the classical result of Stephen Smale ([10]) that for m > n + 1 the homotopy3
group 7, Vim—i(R™) represents regular homotopy classes of immersed sphereg}
8" 9+ R"*k; the stable J-homomorphism maps regular homotopy classes toj
bordism classes N
Fmally, recall that hyperplane reflection defines a (2k — 1)- eqmva,lences1

XRP ™ — Vi (R™). The composmon
#

JSoham,RPP Y 1S MO(k) !

provides the map a + [iy: S™ & R*¥] claimed in Step 1 of the introduction. §
From the above discussion, all bordism classes represented by immersed spheres
lie in the image of this map if m > n and 2k > n. :

§ ooz st iR 2 A

AR
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3 The Hopf invariant and the J -homomoi’phllm

In this section we demonstrate that the multiple suspension Hopf invariant g
closely related to the generalized J-homomorphism described in the previour
section.

To describe this invariant we need a preliminary definition. The quadratic
construction on a pointed space X is defined to be

D;)X=XANX Xz/2 S®=XAX Xz/2 Soo/{*} Xz/2 Soo’

where the non-trivial element of the group Z/2 acts on X A X by permuting
the coordinates and on the infinite sphere S* by the antipodal action. This
space has a natural filtration given by DiX = X A X xz /2 S*. The following
Lhomeomorphisms may be obtained directly from this definition.

Proposition 3.1 For a pointed space X,
(a) DIX 2 X AN X;
(b) fori>1, DiX/Di X = B{(X A X);
(¢) fori,j =1, DiTIX ~ 5D X/ DI X);
(d) in particular, for i,5 > 1, D§SI = EjRP;H.

We can now describe the basic properties of the multiple suspension James-
Hopf invariants hl. Write QX for the direct limit Q*E®X =1imQ"S"X. For
n connected space X and ¢ > 0, there is a natural transformation (see [11])

5 = h3(X): Q@S X — QDY X,

It the case 4 = 0 this is simply the stabilization of the classical James-Hopf
invariant:
QEX - QE(X AX) - QX ANX).

The main property of these maps is a generalization of the classical EH P-
sequence.

Theorem 3.2 ([8]) Let X be a (k — 1)-connected space where k > 1. Then, in
the metastable range j < 3k, there is an ezact sequence as follows:
; } X hé ’
X 25 st X 22 1 QDEX —s 1y X.
llsing adjointness and stability we can rewrite this as follows:

i+1 , h .
1I'J'X e 7l','+j+121+1X —l) WjD;X ——>7rj_1X.
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We also need to record the relationships between these invariants for different »;
values of . These follow directly from their definitions. ‘

Proposition 3.3 (a) For each i > 0 the following diegram is commutative.
h% '
Qi+12i+1X — QD%X

%

I h;+1
2yt Yy — QD;'HX 4

(b) For each i,j 2 0, the following diagram is commutative. P

h5 (X)
Qi+itlpititl x Q D;H b.¢

o |

Qiqitlyi+iyix QJQDEEJX o Q(D;+JX/D£_1X)

The first part of this proposition means that the invariants k% combine td:’f
form the stable James-Hopf invariant hy: QX — QDyX. '

We can now state the main result relating the Hopf invariant and the J-#
homomorphism.

Theorem 3.4 For 1 < k < m, the following diagram is commutative.

IR

W

T RPP! T Vin—k(R™) TnemE™ EMO(k) &
ok Tt kX Em—E MO(KE
m—k—1 f;

2 o

A

78, DR RISt — s 1S DPELMO(R) 3

S k m—1
Tk > RPY

T vy 7Y
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Here the isomorphism in the bottom row comes from the hom hismn of
Proposition 3.1(d) and the map i is induced by the map S* — MO(k) nrislng
from the inclusion of a fibre in the universal bundle.

This result may be proved by making use of the map inducing the Je
homomorphism introduced in the previous section beginning with a lemma
which corresponds to the & = 0 version of the theorem.

Lemma 3.5 For m > 2, the following diagram is homotopy commutative.

rRp™-1 A —  O(m)

i J
QR3S

QRP™ ! =~ QQDF 28! <+ Qmgm

Proof. The proof is by induction on m. For m = 2, the result is a formulation
of the statement that the Hopf map S° — S? has Hopf invariant 1.
The inductive step is based on the following commutative diagram.

Rpm-1 ——— RP™ gm
A A 1
O(m) om+1) ——— gm
J J
' C

Qongm Qm+lsm+1 i

QmpI(Ss™

QhT3(SY) Oy =1 (SY) 2(5™)

» A , B

QR Pm—l QRPm Q gm

[n this diagram, A is commutative by Proposition 3.3(a), B is commutative
sy Proposition 3.3(b) and C is commutative by [6]. Adjointing the vertical
naps in the diagram gives the following diagram of stable maps.
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b
R Pm—'l RP™ gm : 4
¢m-—1 ¢m l 1
RPm- RP™ sm ;
The inductive hypothesis is that ¢,,—1 ~ 1. Since the rows are cofibre
sequences this implies that the stable map ¢, ~ 1 as required to complete the :
inductive step. QO ¢
Proof of Theorem 3.4. Consider the following commutative diagram.
Rp*-1 —— gpm-1 - RP[! ;
A A A %
L n
Oo(k) ———= O(m) Vin—k (R™)
J J J

b 1 '

— anm—kzm—ksk — Qm.zvn—kMo(k)

Ok Sk —_— Qme™

Qrk-2(st) anp-2(s") QkRp R l(sh) Qkhp— -1 (MO(k)) G

QRP*1 —— QRP™! ———  Q*QDp* gk — Q*QDI*"1MO(K)

In this case, adjointing the vertical maps and using D'~ %18k ~ TkRP ! w,
obtain the following commutative diagram of stable maps.

TkRPE-T TFRPm-1 - LERPP!
Pr-1 Pm—-1 /
:I:(§
TR PE-1 TkRpm-1 TFRPP — DR RLMO(K) k

3

Here the stable map v exists by the basic properties of cofibre sequences. By
the lemma, ¢x—1 ~ 1 and ¢,—; =~ 1. It follows that the stable map ¢ =~ 1..

Now applying 7, to the unstable adjoint of the right hand triangle gives the’
theorem. 0
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4 The Hopf invariant and the double point
manifold

The final ingredient required to enable us to read off the bordism class of the
double point manifold of an immersed sphere is the observation that this is
determined by the stable Hopf invariant h3: 73, MO(k) — n5  DoMO(k) in
the following sense. If the self-transverse immersion f: M™ 9+ R™+* represents
the element a € w5, MO(k), then the double point manifold 3(f): Ln—k q
R"*+* respresents the element A5 (a). This has been proved independently by
Pierre Vogel ([15]), by Andrés Sziics ([12], [13]), and by Ulrich Koschorke and
Brian Sanderson ([7]).

Notice that 5(f) represents an element in the stable homotopy of Do M O(k)
hecause the immersion of the double point manifold automatically acquires some
ndditional structure on its normal bundle, namely that at each point f(z1) =
f(x2), the normal 2k-dimensional space may be decomposed as the direct sum
of the two (unordered) k-dimensional normal spaces of f at the points z; and
2. The universal bundle for this structure is

EO(K) x EO(k) X7/ 8 — BO(k) x BO(K) xz/3 %

which has the Thom complex DM O(k).

In the case of immersed spheres in the metastable range, Theorem 3.4 shows
that the double point manifold has a more refined structure corresponding to
Lhe restriction of the above universal bundle to {*} x {*} xz/2 S*:

R* x RF x z/5 §° — RP™.

As before, the involution on R¥ x R¥ is obtained by interchanging coordinates,
but in this case by a change of basis it can be written as (z,y) — (—=z,y). This
demonstrates that this bundle is simply the Whitney sum k7@ k where 7 is the
ITopf bundle. This is another way of proving that the Thom complex D;S¥ is
homeomorphic to the suspended truncated real projective space TFRPZ® (using
2.

In fact we are here not interested in this additional structure but merely in
the unoriented bordism class of the double point manifold. Forgetting the ad-
dlitional structure induces a map of Thom complexes {: D;MO(k) — MO(2k).
‘I'he bordism class of the double point manifold is then given by the composition

78 DeMO(k) &5 75, MO(2k) — T MO

where the final stabilization map to the homotopy of the M O-spectrum corre-
nponds to forgetting the immersion. The above identification of the restricted
universal bundle imples that the composition (yix: w5,  Z*RPXP = 75 | Dy Sk —
1 DaMO(k) — w8, . MO(2k) is given by £*(Mkn)..

We can sum this up in the following result.
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Theorem 4.1 Let szvr,f xMO(k) — Tn_gMO be the map defined geometri-
cally by the double point manifold of a self-transverse immersion. Then the
following diagram is commutative.

S oM 0 i, R

hs N
75 MO(k) — 75, DaMO(k) ~—— 75, D2S* T4k SFRPL
kMO 7l'n+kMO(2k) -~ ﬂ'SMO(k) WS]RPISO R

Some geometric comments

It is easy to see directly that the double point manifold of an immersed sphere: gq

has the refined structure discussed above. :
Let L be the double cover of the double point manifold L so that there 1s‘ ]

the following commutative diagram. &

BO(n+k)

f{n—k —_——— S’n

| K
62(f)

[k —— pntk

Then v|L"~* is trivial since n —k < n. A choice of trivialization induces a Z/ 2'r %
structure on the normal bundle of L» ¥ corresponding to the universal bundléfvr
discussed above with Thom complex DyS* & TFRPg°. é"

Notice that this construction applies to any immersion of a sphere and sug_’f;“-fl_'
gests that a stable retraction of Vi,—x(R™) onto ]RPT"‘ can be included in thJ‘:;
diagram of Theorem 3.4. This ought to lead to an extensmn of the results of
this paper beyond the metastable range to the general case. e

5 Determining the double point manifold

In this section we prove Theorems 1.1 and 1.2. The calculation is based upon
the following immediate corollary of Theorems 3.4 and 4.1.

]
e
B
*
-
¥

b
R

Proposition 5.1 For k < n < 2k, the following diagram is commutative.

e R R E R
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i (MEn)«
RPN —— 7 RPP® —— 1, MO(k)

JS o, o

0
75 wMO(k) - Tt MO

Thus, given o € wn]RP,'T"l, if iq: S™ & R™* 45 o self-transverse immersion
representing JS o A\,(a) then the bordism class of the double point manifold of
io 18 represented by (Mkn),i.(a) € 7, MO(k).

For m > n + 1 the above map i. is an isomorphism. We may complete
the proof by applying the Hurewicz homomorphism in Z/2-homology to Mkn
because this Hurewicz homomorphism for MO is a monomorphism ([9]).

(Mk"l)* o
T RP® ——+ 71, MO(k) —— w_xMO

1 lh
(Mk"])* o
Z/2 =~ H,RPZ®* —— H,MO(k) —— H,_tMO
Here and from now on-we write H, X for H,(X;Z/2).
It is well-known ([1]) that, for £ < n < 2k, the left hand Hurewicz ho-
momorphism is zero if and only if £ < n+ 1 — p(n + 1). So in this case
ao(Mkn), =0 TnRPZ° — m,_x MO and the double point manifold is a bound-

nry.

h

Proposition 5.2 Fork < n <2k, ifk2n+1—p(n+1), let a € 7,RP° be
such that h(a) # 0. Let L™ * be the double point manifold of a corresponding
immersion iy: S™ 9+ R™*. Then the (normal) Stiefel-Whitney numbers of L

are given by
AAYA: k
wI[Ln—k] - (i ) (' ) . (. )
1/ \%2 it

Jor partitions I = (i1,12,...,1;) such that iy +ig+... +iy =n—k.

PProof. The Thom complex MO(k) is homotopy equivalent to the quotient
Hpce

130(k)/BO(k — 1) so that H*MO(k) & wxZ/2[wy, . .., wi] with the Thom iso-
morphism H***MO(k) = H'BO(k) given by wrwy < wy. Hence the Stiefel-
Whitney number

wr[L] (h(Mkn)s(a), wywg) by the Thom isomorphism

(h{cx),w;(kn)a*) by naturality

i
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where @ € H'RP™ is the generator so that a* € H¥*RPg® is the Thom class.
Now the total Stiefel-Whitney class w(kn) = (1 + a)"’ H*RP™ 50 that .
wi(kn) = (¥)a’. The result follows. o

To complete the calculation we confirm that these are the normal Stiefel-
Whitney numbers of RP™~%,

Proposition 5.3 Ifk > n+1— p(n + 1), then the (normal) Stiefel- Whitney
numbers of RP"* are given by :

= ()(2) - (2)

Proof. Put n+1 = (2a + 1)2°. It is clear from the definition of p that- 5
p(n+1)<2bsothatk>n+1—p(n+1)=>n—k'<p(n+1 -1<2% A

The total tangent Stiefel-Whitney class of RP™* is given by (1 + a)”"“""1 {
since 7@ 1 = (n—k+1)n. Hence the total normal class is given by w(RP" ky =1
(1 +a)~"~1+k ¢ H*RP™~*. Hence, for i < n — k, wi(RP" %) = (T 1*F)q! = ‘§
(*)a' since, by the above, i < n—k =i < 2 and n+1 is a multiple of 2°. The 'ﬁ
result follows. IZIIg

This completes the proof of Theorem 1.1.
To complete the proof of Theorem 1.2 we simply examine the definition of_ ]
the function p. We have proved that in the case of even n — k, say 2p, there'v;
exists an immersion S™ 9+ R"** with double point manifold bordant to RP™ ¥4
ifandonlyif k> n+1—p(n+1),ie p(n+1) >2p+1. \
Recall that, for n+1 = (2a+1)2° where b=c+4dfor 0 < c < 3 and d >
the value of p is given by p(n +1) = 2¢ + 8d. It follows that the least value of- b“.
for whlch p(n+1) >2p+1is given by

for p=0mod 4: ¢ =0 and 84 = 2p, i.e. b = p;
forp=1mod4: c=2and8d=2(p—-1),ie b=p+1;
forp=2mod4: c=3and 8d=2(p—2),ie. b=p+1;
forp=3mod4: c=3and 8d =2(p—-3),ie b=0p.

This completes the proof of Theorem 1.2.
September 1994
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