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Codimension one immersions and the Kervaire
invariant one problem

BY PETER JOHN ECCLES

University of Manchester

(Received 30 March 1981)

1. Introduction

Let i : M<\ > Un+1 be a self-transverse immersion of a compact closed smooth
^-dimensional manifold in (n+ 1)-dimensional Euclidean space. A point of Un+1 is an
r-fold intersection point of the immersion if it is the image under i of (at least) r distinct
points of the manifold. The self^transversality of i implies that the set of r-fold inter-
section points is the image of an immersion of a manifold of dimension n+l—r (the
empty set if r > n+ 1). In particular, the set of (n+ l)-fold intersection points is finite
of order, say, 6(i). In this paper we are concerned with the set of values of 6(i) for (self-
transverse) immersions of all (compact closed smooth) manifolds of given dimension n.

Placing n +1 copies of the ^-sphere Sn in general position in Un+1 provides an
immersion i0: \jS

nc\ > Un+1 with 6(i0) = 2. Thus given an immersion ix: M3 > Un+1

disjoint union with i0 provides another immersion i% with 6(i2) = 0(ij) + 2. On the other
hand, given an immersion ix: M9 > Un+1 with 0(ix) ^ 2 handles may be attached to
M to eliminate two of the (n + 1 )-fold points giving an immersion i2 with 6(i2) = d(ix) — 2
(the argument for n = 2 is given in detail by T. F. Banchoff(2)). This leaves the problem
of whether d(i) can be odd.

In a previous paper (11) it was shown that if M is orientable then 6(i) can be odd if
and only if n = 0,1 or 3 (see also (18)). The method of proof was to observe that the
parity of 6 is a bordism invariant and so to translate the problem into homotopy theory
where it could be solved using standard techniques of algebraic topology. The same
method can be applied in the general case, as explained in § 2, but so far has not led to
a complete solution. However it does show that for certain values of n the problem is
equivalent to well known problems in homotopy theory. The main result of this paper
is as follows.

THEOREM (a) When n is even, d(i) can be odd if and only if n = 0,2 or 6. (b) When n is
congruent to 1 modulo 4, 6(i) can be odd if and only if there is a framed manifold of dimen-
sion n + 1 with Kervaire invariant 1. (This requires n + 3 to be a power of 2 and is true
for n = 1, 5, 13 (7), 29 (19) and 61 (4).)

Part (a) of the theorem is proved (in § 3) by observing that, for even n, 6(i) can be
odd if and only if (n+ 1)-dimensional real projective space Pn+1 is stably reducible.
This is true if and only if there is an element in the (n+ l)-stem 7r%+1 of Hopf invariant
one. Part (b) is proved (in § 4) by showing that, for these values of n, d(i) can be odd if
and only if there is an element of 7T%+1 detected by a certain secondary cohomology
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operation, a problem known to correspond to the Kervaire invariant problem. Thus in
each case the immersion problem considered here is equivalent to a famous problem
in the homotopy groups of spheres. Although the theorem is proved in these homotopy
theoretic terms some remarks on the construction of the immersions are included
in §5.

For n = 3 (mod 4) the only value of n for which it is known that 6(i) can be odd is
n = 3 which arose in the orientable case; there is an immersion of the 3-sphere in R4

with an odd number of 4-fold points. Specific calculation in low dimensions and some
more general considerations suggest that this is the only value of n = 3 (mod 4) for
which 6(i) can be odd. This is work in progress.

The results of this paper were announced in (10) which also contains a more leisurely
introduction to the problem.

2. Reducing the problem to homology theory

In this section a slightly more general form of the problem posed in the introduction
is reduced to an equivalent problem in the homology of certain infinite loop spaces. The
key idea enabling this to be done is the geometric formulation of stable Hopf invariants
given by U.Koschorke and B. J. Sanderson(17). A more detailed discussion of the
ideas which follow in the case of oriented codimension one immersions may be found
in ((11); § 2). That particular case is quite typical of the general case.

Suppose that £ and £ are A;-dimensional vector bundles. A bundle map g ->• £ will be
referred to as a ^-structure on £. If £ is the i-plane bundle associated with a universal
(?-bundle for a subgroup 6 of O(k), the group of k by k orthogonal matrices, then a
^-structure is usually described as a (?-structure. In particular, if £is the bundle over a
point, G is the trivial group and a ^-structure is a trivialization or framing.

An immersion i : Mn 9—*• Un+k of a compact closed smooth n-manifold will be called
a ^-immersion if the normal bundle of the immersion has been given a ^-structure. If
such an immersion is self-transverse and n = km then the set of (ra+ l)-fold inter-
section points is a finite set. If further k is even and £ is oriented then a sign may be
attached to each intersection point by comparing the standard orientation of Un+k

with that provided by the orientations of the m+ 1 normal fc-planes at the point. In
this case let 6(i)eZ be the number of (m + l)-fold intersection points counted with
signs. In other cases let 0(i)eZ2(= Z/2Z) be the number of (m+ l)-fold intersection
points modulo 2. In either case 6 gives a bordism invariant. The general problem is to
determine the possible values for d(i) given n and £.

To state an equivalent problem in homology theory some preliminaries are necessary.
For any pointed space X write QX for the direct limit lim D.nT.nX where S is the

n
reduced suspension functor, Q. is the loop space functor and QnSnX -> Qn+1Sn+1X is
the standard inclusion. If X is a connected space of the homotopy type of a CW-
complex there is a natural stable homotopy equivalence(3), (23)

QX = V DTX.
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Here DrX denotes the r-adic construction

where 2 r is the permutation group on r objects, WLr is an acyclic space on which Sr

acts freely and * is the base point of X. In particular D1X = X. This equivalence
implies that there is a natural isomorphism

Bt{QX) ~ © Bt{DrX), (2-1)
r = l

taking homology with any coefficients. Write

pr:Gi(QX)->Si(DrX)

for the resulting projection map.
When X = MC,, the Thorn complex of the &-plane bundle £, Hk(MQ is generated by

the Thorn class t of infinite order if £ is orientable (in which case a choice of orientation
determines the generator) and of order two if not. In either case DrX is (kr— 1)-
connected and the image of tm+1 e HHm+1)(X

(-m+1)) in HHm+1)(Dm+1X) under the map
induced by the inclusion map (also denoted tm+1) provides a generator for the group.
If £ is orientable and h is even tm+1 e Hldm+1)(Dm+1 X) has infinite order and otherwise it
is of order two (taking homology with integral coefficients) since its image in

H/c(m+i)(Dm+iX; Z2) = Z2

is in the image of the Bockstein (which may be identified with the dual of the Steenrod
square, Sq#).

Let h: n^m+1)(QM^) ->• HlAm+i){QMQ denote the Hurewicz homomorphism.

THEOREM 2-2. There exists a self-transverse ^-immersion i:Mkmq > R*O»+I> with
6(i) = A if and only if there is an element a. of n-Wm+1)(Qilf £) such thatpm+1h(a) = Mm+1.

The proof of this result is outlined at the end of the section.
When tm+1 is of order two it is sufficient to work with homology with Z2-coefficients

and in general this will determine the parity of 6{i). Then use can be made of the rich
structure of the Hopf algebra Hm(QX; 12) over the Steenrod algebra A2 which is
explicitly known and is determined by the structure of the coalgebra H^X) over A2

(6), (8), (9). Its description uses the Kudo-Araki operations which are homomorphisms

Qi-.Hn(QX;l2)->Hn+i(QX;Z2),

which are trivial for i < n and equal to the Pontrjagin square for i = n. Now for X
connected, if {zj is a homogeneous basis for B^X; Z2) <= H*{QX; I2), a basis for

; T2) is provided by the set of monomials in elements of the form

where / = (iv i2,..., iT) is an admissible sequence (i.e. ij < 2i^+1 for 1 ^ j < r) of excess
(i.e. ix — i2 — ... —ir) greater than the dimension of xa. This basis will be referred to as a
Dyer-Lashof basis for H* (QX; Z2). The Hopf algebra structure is given by the coproduct



486 PETER J. ECCLES

Cartan formula, the action of the Kudo-Araki operations is given by the Adem
relations and the product Cartan formula, and the action of the Steenrod algebra is
determined by the Nishida relations. These various formulae are conveniently listed
as ((8), Theorem I-1-1). Furthermore if we define a height function h on the Dyer-Lashof
basis by h(xa) = 1, h(Q%) = 2h(£,) and h(E,i}) = h(£,) + h{y) then under the isomorphism
(2-1) the basis elements of height r provide a basis for S^DyX) ((21), Proposition
2-4). Thus Theorem 2-2 can be reformulated as follows.

THEOREM 2-3. There exists a self-transverse ̂ -immersion i:MkmQ—• (fjM«»+i) y , j^
6(i) odd if and only if there is an element of Tr^m+niQ^O whose Hurewicz image in
Hidm+v(QM£-> Z«) involves tm+\

Here a homology class involves tm+1 when tm+1 has a non-zero coefficient when the
class is written in terms of a Dyer-Lashof basis.

This theorem is equivalent to Theorem 2-2 when d(i) is Z2-valued, i.e. when k is odd
or £ is non-orientable. In this paper only the case k = 1 is considered and so this is
sufficient. However interesting results can be obtained in other cases where Theorem
2-2 is needed, for example when k = 2 and £ is the universal SO(2)-bundle.

Theorem 2-2 is proved by observing, after R. Wells(25), that the bordism group of
^-immersions of compact closed smooth n-manifolds in Un+k is isomorphic to the
homotopy group nn+k{QMQ ((li), Proposition 2-1). Thus for n = km the order of the
(m+l)-fold intersection set of such a self-transverse immersion determines a
homomorphism

Now, following U. Koschorke and B. J. Sanderson(i7), this map may be identified with
a stable Hopf invariant

as defined in ((3), § 5) or (23). This is a special case of ((11), Proposition 2-2). The result
now follows once we observe that by the definition of h%+^1 the following diagram
commutes.

Hk<m+1)(QDm+1 MQ

Pm+l =/

The right-hand maps are isomorphisms since Dm+1M£ is ((m +l)k— l)-connected.

3. Primitive classes in H*{QPX; Z2): the main theorem for even n
The main theorem is proved by applying Theorem 2-3. When £is the universal (real)

line bundle, M£ is infinite-dimensional real projective space P00. Throughout the re-
mainder of this paper H+ denotes homology with 22-coefficients and at denotes the
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non-zero element in /^(P00) ^ 12 for i > 1. In particular ax is the Thorn class of the
bundle £.

Theorem 2-3 is applied by observing that a spherical class a in Hn+1(QP^), i.e. an
element in the image of the Hurewicz homomorphism, is necessarily primitive with
respect to the cup coproduct xjr, i.e.

f(a) = a ® l + l ® a .

The structure of the primitives in H*(QPCO) is rather complicated and a description is
not attempted here. All that is required is the following simple result about primitives
which involve a%+1.

LEMMA 3-1. Suppose that n+l = pq where p is a power of two and q is odd. Then a
primitive class in #n+1((2P°°) involves a™+1 if and only if it involves a%.

This is proved at the end of the section. It allows us to reformulate Theorem 2-3
in terms of classes of lower height.

COROLLARY 3-2. Suppose that n+ 1 = pq as in Lemma 3-1. Then a self-transverse
immersion i:MnC\—> Un+1 has d(i) odd if and only if the corresponding element of
TT71+1(QPQ0) has Hurewicz image involving av

a.
When n is even this shows that the intersection point question is equivalent to

the stable reducibility of (n+1)-dimensional real projective space P™+1. For if
a e nn+i(QPn+1) is such a stable reduction then its Hurewicz image in

Hn+1(QPn+1) <= Hn+1(QP")

involves an+v Conversely an element of 7rn+i(QP°°) whose Hurewicz image involves
an+1 maybe pulled back to a stable reduction in nn+1(QPn+1). However it is well-known
that Pn+1 is stably reducible if and only if n = 0, 2 or 6 (l). This completes the proof
of the main theorem for even n.

To prove Lemma 3-1, first observe that it is immediate for p = 1 (all that has been
used in the above argument) from the observation that a primitive class in Hg(QP'D)
involves a\aq_t if and only if it involves a\~laq-i+\ (f°r 1 < * < ?— 1). This in turn
follows from the fact that these are the only two elements of H^QP"3) involving
o\ ® aq-i in their coproducts (this uses q odd when i = q — 1).

The general result (which is needed later) follows from this using the fact that a
decomposable primitive is a square ((20), Proposition 4-21). For let A denote the
polynomial algebra I^a^i ^ 1]. This is a subalgebra of H^QP™): write B for its
orthogonal complement with respect to the Dyer-Lashof basis. Then H+ (QP00) = A © B
and the coproduct gives maps

rjr-.A -> A ® A,

by the Cartan formulae ((8), Theorem 1 1 1 (6)). Thus, for a = a1 + a2e H*(QP«>) where
ax e A, a2 e B, a is primitive if and only if ax and a2 are primitive. This means that we
may suppose, without loss of generality, that the primitive class referred to in the
lemma is an element of ^[a^i ^ 1].

However, if n+ 1 is even (say n+ 1 .= 2m), an+1 cannot be involved in a primitive
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class for it is the only basis element whose coproduct involves am ® am. Thus in this
case any (n + 1)-dimensional primitive of Z^a^i ^ 1] is decomposable and so, as
remarked above, is the square of a primitive.

Now suppose that p = 2l, I ^ 0. The result follows from the above argument by
induction on I.

4. The real reflection map: the main theorem for n = 1 (mod 4)

The relationship between the problem under consideration and the Kervaire
invariant one problem is provided by the real reflection map A: P°° -> QS°. This is
denned, up to homotopy, as the direct limit of maps An:P

n-+ Q,n+1Sn+1 given by
Xn(x) = A (̂x) * 1. Here X'n(x): Sn+1 ->• *Sn+1 is the one point compactification of the map
j^n+i _>. []$ra+i g i v e n by reflection in the hyperplane orthogonal to x e Pn, * denotes the
track sum and 1: Sn+1 -> Sn+1 is the identity map. Using the canonical infinite loop
structure of QS°, A may be extended to a map A: QP™ -> QS°. The induced map in
homotopy A*: 7Tn+1(QPco) ->• nn+1(QS°) is onto the 2-component for n ^ 0 by the
Kahn-Priddy Theorem(15).

The main theorem for n = 1 (mod 4) now follows from Corollary 3- 2 and the following
result.

PROPOSITION 4-1. If n = 1 (modi) and n+ 1 = 2m, an element <xenn+1(QP™) has
Hurewicz image involving a^ if and only if m + 1 is a power of 2, say m + 1 = 2\ and
A*(a) enn+1(QS°) ~ TTn+i is detected by the secondary cohomology operation <f>itj.

For it is well-known (7) that elements detected by fyj correspond under the
Pontrjagin(-Thom) construction to framed manifolds of dimension n + 1 with Kervaire
invariant one.

Here fyj is the secondary cohomology operation based on the Adem relation

Sq{2')Sq(2') = *£ /Srg-(2'+1-2*)/Sfg(2fe)
fc=0

in the mod 2 Steenrod algebra.
Of course the result of the previous section for n even can be formulated in the same

way. In that case ae7Tn+1(QPQ0) represents an immersion i with 6(i) odd if and only if
A*(a.) en%+1 is detected by Sqn+2, i.e. has (Steenrod-) Hopf invariant one.

To prove the proposition we again reformulate the method of detecting a. It should
cause no confusion if am is also used to denote the generator oiHm(PXl). The observation
that a certain James-Hopf invariant is equivalent to the Steenrod-Hopf invariant
gives the following result.

LEMMA 4.2. ocen2m(QP'x') has Hurewicz image involving a^ if and only if its stable
adjoint ae77fm(P°°) is detected by the functional cohomology operation Sq™+1 on
ameH>»(P<°).

This may be used first to obtain the restriction on m.

LEMMA 4-3. An element ae77fm(Pco) may be detected by Sq™+1 on am only ifm+ 1 is a
power of 2.

Finally the first Peterson-Stein formula ma}' be used to prove the following.
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LEMMA 4-4. Ifm = 2> - 1, then a677fm(Pco) is detected by Sq™+1 on am if and only if
A* (a) 6 77fm is detected by <f>}- r

These results imply Proposition 4-1. It remains to prove them.
Write P™ for the truncated projective space p*>/p™-i. Since the quotient map

pco _> p» i n d u c e s a n isomorphism of homology and cohomology groups of dimension
m and above, Lemma 4-2 is equivalent to the same statement with P00 replaced by P%
where am denotes the corresponding homology and cohomology classes in P£.

Now observe that for dimensional reasons Q£P™ -> QP% is a 2ra-equivalence.
Lemma 4- 2 is therefore equivalent to the statement that a 6 nSm( QSP^) has Hurewicz
image (involving) a% if and only if its adjoint aen2m+1(£lP%i) is detected by the
functional cohomology operation

Sqf+1 : ^

applied to the suspended class o~am, i.e. a has Steenrod-Hopf invariant one.
In the following commutative diagram the vertical maps h are Hurewicz maps and

the horizontal maps are induced by the James map QSX -»• QS(X A X) (13) with
X = P^ so that J is the James-Hopf invariant.

J
(QSP» A

h s U
-> ^2m(QSP» A PS)

Since the right-hand map is an isomorphism and the bottom one maps a^ to the
generator and a2m to 0, h{<x) involves aJi if and only if the James-Hopf invariant J(a)
in non-zero.

Lemma 4.2 now follows from the observation that this James-Hopf invariant is
equivalent to the Steenrod-Hopf invariant ((5), Corollary 5-15).

The other two results must be well-known but there does not appear to be a suitable
reference.

It is easier to prove a more general result than Lemma 4-3.

LEMMA 4-5. Suppose that n = 2p(morf2"+1) and a,enfl+m_1(P':o). Write Ca for the
mapping cone of a. Then Sqnam = OinH*(Ca)when(i)m = 2P — 1 (mod2v+1),m > 2P — 1,
or (ii) m < n-2P + 1 .

Since functional cohomology operations may be identified with cohomology
operations in the mapping cone, Lemma 4-3 follows from part (i) of this result witli
n = m+ 1. Part (ii) is used below in the proof of Lemma 4-4.

Lemma 4-5 is an exercise in the Adem relations. Part (i) may be proved by induction
on p. For p = 0,

Sqnam = SqlSqn^am (modd) = eSg1am+n_1 (e = 0 or 1)

= eSqlSq1am+n_i (m + n-1 even) = 0 (Adem).

For p > 0, the inductive step is provided by first proving that Sq(2p) am = 0 by the
inductive hypothesis using the Adem relation arising from Sq(2P) Sq(2p) and
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am = Sq(2P) am_zp. Now \in = 2v (mod 2P+1) and n > 2P, the Adem relations allow us
to write

Sq(n) = Sq(2P)Sq(n-2P) + P-£ Sq(n - 2«) Sq{2fi)
0=0

and so the general case follows from the special case again using the inductive hypo-
thesis. The proof of part (ii) is by a similar induction on p.

Finally to prove Lemma 4-4 the following well-known result concerning the stable
map A : P™ -> S° is required.

PROPOSITION 4-6. Sq\+1(g0) = at for all i ^ 1 where Sq\+1 :H°(80) -> /^(P00) is the
functional cohomology operation and goeH°(S°) is the generator.

This is another exercise using the Adem relations. The result holds for i = 1 since
the restriction of A to P 1 ~ S1 is the Hopf map. The result can now first be proved for
i = 2? by induction on p. This provides the starting point of a proof of the general
result by induction on the number of l's in the dyadic expansion of 2p-i where
2P-1 < i ?S 2P. For if i = 2« (mod 28+1) (0 ̂  q < p - 1), 2? - (i + 2«) has one less 1 in its
dyadic expansion than 2^ — i. The inductive step is provided by

the other terms in the Adem relation being zero for dimensional reasons.
Returning to Lemma 4.4, the first Peterson-Stein formula ((22); theorem 6-1) implies

that A*(a)e7rfj+i_2 is detected by the secondary operation (f>hj if and only if
£&=i Sq(2i+1 - 2k) a2k_x * 0 in H*(Ca). The lemma now follows from the observation
that Sq(2i+1-2k)a2*_1 = 0 for 1 sS k < j by part (ii) of Lemma 4-5.

This completes the proof of Proposition 4-1 and so of the main theorem.

5. The construction of immersions

We have shown that, for even n, there is an immersion i: M^ > Un+1 of an
n-dimensional manifold with d(i) odd if and only if Pn+1 is stably reducible. For even n
this is also a necessary and sufficient condition for Pn to immerse in Rn+1 ((12),
theorem 7-2). In fact any such immersion of P n will have 6(i) odd. For n = 2 this is a
consequence of T. F. Banchoff 's theorem (2) that 6(i) has the same parity as the Euler
characteristic of the immersed surface. Boy's surface provides such an immersion (10).
In fact the same proof holds for n = 6 since B. Hill-Tout has generalized Banchoff's
theorem to all even dimensional manifolds. Alternatively, consider the commutative
diagram

nf(MO(l)) >TT6(MO)

h \h

H,{M0{\)) >

where MO is the ilfO-spectrum (so that ^(MO) is the unoriented bordism ring),
the horizontal maps are stabilization maps (so that the upper map is induced by
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forgetting the immersion of an immersed manifold) and the vertical maps are Hurewicz
homomorphisms. Suppose xe7if(M0(l)) is represented by an immersion i :P6 -> W.
It is well-known that P6 represents a non-zero element of rr6(MO) and that the Hurewicz
map for MO is a monomorphism (24). Thus h(z) 4= 0 so that h(x) = a7. I t follows from
Corollary 3-2 and the remarks following it that 6(i) is odd.

For n = 1 (mod 4), it is possible to describe immersions with 6(i) = lforw = 1,5 and
13. Thus for m = 1, 3 or 7 choose an immersion ix of Sm in U2m with a trivialized normal
bundleand an odd numberof double points (i.e. representing an element a of 7T2m(QSm)
^ 77% of Hopf invariant 1) and any immersion i2 of P7"""1 in Rm (i.e. a representative of
y?e7r^(Pco) such that h(fi) = ameHm(P™)).Then fioaenfm(Px') is represented by an
immersion i: Smx P"«-iq > u2m constructed via a tubular neighbourhood of ix by
immersing Pm~1 by i2 in each normal fibre of ix identified with Um by the trivialization.
Furthermore /Soa is detected by Sqm+1 on am and so d(i) = 1 by Corollary 3-2 and
Lemma 4-2. For n = 29 and n = 61 it does not appear to be known which manifold
to take.

More generally it is possible to interpret the homotopy theory geometrically and
so to give a direct geometrical correspondence between immersions i:M9 > R n + 1

and (n+ 1)-dimensional manifolds with a trivialized stable normal bundle so that, for
n = 1 (mod 4), 6{i) corresponds to the Kervaire invariant.

In one direction we use the geometrical interpretation of the real reflection map
A*: 7rf+1(P

co) -> 7fn+1 which has been provided by B. Gray and U.Koschorke ((16),
§2) as follows. Suppose that i-.M^ > Un+1 is an immersion of an n-dimensional
manifold. Let v be the normal bundle of the immersion

i:M<\ > Un+1 = Un+1 x {0} <= Un+2.

An immersion of the total space N of the circle bundle of v may be obtained by placing
a figure eight in each normal plane with vertical axis parallel to the last axis of IRn+2.
Koschorke writes this St: N<] > Un+2. Clearly N is orientable and so after a choice of
orientation represents an element of n^+^QS1) s ^«+i- Gray and Koschorke have
proved that if i represents a6 7rf+1(P

c0) then 8i represents A!)[(a)e7i^+1. Thus the
remarks in § 4 show that 6(i) (mod 2) is the Kervaire invariant of N with the trivial-
ization of its stable normal bundle provided by 8^

Conversely the right inverse (at the prime 2) of A,,, may also be interpreted geo-
metrically. This is provided (14) by the stable Hopf invariant

(3) observing that Z^S1 is homeomorphic to £P°°. The identification of this map with
the double point invariant of a codimension one immersion is another application of
Koschorke and Sanderson's work. Given an oriented self-transverse immersion
i:M q > Un+2 of an (n+ 1)-dimensional manifold, the double point set is the image
of an immersion LQ > Un+2 of an ^-dimensional manifold with a non-vanishing
normal vector field provided by taking the average of the two normal vectors provided
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at each point of L by the orientation of M ((11), § 2). By Hirsch theory ((12), theorem
6-4) this is regularly homotopic to a (self-transverse) immersion

r i\ i | - \ i

By ((11), proposition 2-2) if i represents/?6n^^QS1) then ^2(i) represents

i.e. an element mapped by A* to ft (modulo odd torsion). Thus 0(iJr2(i)) is the Kervaire
invariant of M with the trivialization of its stable normal bundle provided by i.
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