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Poincaré duality groups of dimension two, II

BeENO EckMANN and PETER LINNELL

1. Introduction

A Poincaré duality group of dimension n, in short a PD™"-group, is a group G
acting on Z such that one has natural isomorphisms

H*(G; A)=H,_(G;ZQA)

for all integers k and all ZG-modules A (where Z® A is the tensor product over
Z with diagonal G-action). G is called orientable or not according to whether or
not Z is trivial as a ZG-module. All “surface groups”, i.e., fundamental groups of
closed surfaces of genus =1 are well-known to be PD?*-groups. In Eckmann—
Miiller [4] it was proved that a PD?-group with positive first Betti number B, is
isomorphic to a surface group. The purpose of the present paper is to show that the
condition on B; is automatically fulfilled:

THEOREM 1. The first Betti number B, of a PD*-group is positive.
As a consequence we thus have a complete classification of PD?*-groups.

THEOREM 2. A group G is a PD*-group if and only if it is isomorphic to a
surface group.

For notations and properties concerning PD"-groups, not explicitly mentioned
here, we refer to [4] where also several (algebraic and topological) consequences
are discussed.

2. Finitely generated projective ZG-modules

For the proof of Theorem 1 we need the following fact, which may be of
interest in connection with the conjectures of Bass (4.4 and 4.5 of [2]).
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If B is an abelian group, we let rank B denote the dimension of the Q-vector
space B®Q.

PROPOSITION 3. Let G be a PD*-group, M+ 0 a finitely generated projective
ZG-module, and Z the trivial ZG-module. Then rank (ZQ®gs M) # 0.

Proof. Let ry; denote the Hattori-Stallings trace of the identity endomorphism
of M as defined, e.g., in [1] and [2]. It is a finite linear combination with integral
coefficients of the conjugacy classes 7 in G,

= Z rM(T)T.

For x € G let ry(x) be the coefficient of the conjugacy class of x. Suppose that
rv(x) # 0 for an element x € G, x# 1. Then there exists, by Proposition 6.2 of [2],
a prime p and an integer n >0 such that x is conjugate to x”". It follows (see the
remark on p. 12 of [2]) that x is contained in a subgroup H=Z[1/p] of G. By
Strebel’s theorem [5] all subgroups of infinite index in G are of cohomological
dimension 1 and thus free. Therefore H has finite index in G; since G is finitely
generated so is H and we have a contradiction. Hence ry(x) =0 for all xe G\1
and it follows that (1) =rank (Z®sM).

We now consider the nonzero finitely generated projective CG-module
M@C. We have ry(1) = nyec(1) which is positive by Kaplansky’s theorem (see
[1], Theorem 8.9), and the result follows.

3. Proof of Theorem 1. Euler characteristic

The completion of the proof is now in the same spirit as [3]. We first note that
we can restrict attention to orientable PD*-groups. Indeed (see [4], p. 511), if G
is non-orientable and G, the orientable subgroup of index 2 in G then B;(G,)>0
implies B,(G)>0.

So let G be an orientable PD*-group, and

0>P—>ZG*>ZG» Z 6))

a projective resolution of the trivial ZG-module Z. Since PD"-groups are of type
(FP), the module P is finitely generated projective. Since H°(G;ZG)=
HY(G;ZG)=0 and H*(G;ZG)=Z with trivial G-action for any orientable
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PD?-group, applying Homg (—, ZG) to (1) yields an exact sequence

Z < P*<ZG*<ZG <0 (2)

where P*=Homg (P, ZG) is finitely generated projective. Let IG be the kernel
of & (the augmentation ideal) and L the kernel of . Applying Schanuel’s lemma
to (1) and (2) gives

P*OIG=ZG D L.

There is a surjection ZG? — L, and we obtain a surjection ZG%*'—» P*®IG
and hence a surjection ZG**' > P*, with kernel K# 0. Obviously K is a finitely
generated projective ZG-module, and we see from Proposition 3 that
rank (Z®;K) # 0. It follows that rank (ZQsP*)<d.

The Euler characteristic x(G) of G can be obtained by applying Z®;- to the
resolution (2) and taking the alternating sum of the ranks:

x(G)=rank (ZQsP*)—d+1=<1.

On the other hand x(G) = B,— B, + B, =2 — B3, since the Betti numbers 3, and 3,
of an orientable PD?-group are=1. Thus 2—8;<1, i.e., 8;>0.

4. Poincaré 2-complexes

As a corollary of the above group-theoretic results the topological application
mentioned in [4], Section 2 can be given an improved version.

We recall that a Poincaré n-complex is a CW-complex dominated by a finite
complex and fulfilling Poincaré duality of formal dimension n for arbitrary local
coefficients. By results of Wall [6] a Poincaré 2-complex X with finite fundamen-
tal group m;(X) is homotopy equivalent to the 2-sphere or to the real projective
plane; if #,;(X) is infinite, then X is aspherical, i.e., an Eilenberg-MacLane
complex K(G, 1) for G = 7,(X). In the latter case G is a PD?-group, and thus by
our Theorem 2 isomorphic to m(Y) where Y is a closed surface of genus =1. The
isomorphism 7,(X)= m,(Y) yields a homotopy equivalence between X and Y. In
summary we have

THEOREM 4. A CW-complex is a Poincaré 2-complex if and only if it is
homotopy equivalent to a closed surface of genus =0.
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