Is algebraic topology a respectable field?

Preliminary remark

This is the text of a lecture delivered shortly before the 40 years's celebration
of FIM, as the last lecture of the Zirich Graduate Colloguium 2003/04, which
took place in the Hermann Weyl Zimmer of the FIM. I had been asked to recall
some memories of my long life in mathematics. Without revealing the topic,
1 suggested the title “Some Old Time Mathematics: 40 Years and Beyond”.
The topic was only formulated after I had mentioned my personal contacts with
Hermann Weyl.

Is Algebraic Topology a respectable field? Of course it is. Even more
than that: it is commonplace that today Algebraic Topology is a general name
for various more or less different branches, like differential topology, manifold
theory, combinatorial methods, £2-cohomology, general homology and K-theory,
homological algebra — each of them interesting in itself but also for applications
in many other fields of mathematics. But this was not always the case. After
the discovery — or invention? — of Algebraic Topology (called Analysis Situs) by
Poincaré in 1895 it took many decades for this field to be recognized generally
as a “regpectable” field of mathematics.

What follows is not meant to be a historical survey of that long develop-
ment. There exist many very detailed writings about it, and comparing them
closely one realizes that the history was quite complicated indeed. I just want
to describe, mostly from my own personal experience in that field, some of the
facts which support the claims formulated above, tell how gradually the field
became respectable and fully accepted in the family of mathematicians. Thus
there is no claim of completeness; to the contrary, what follows is just a number
of specific items chosen from a personal viewpoint.

1. Hermann Weyl, 1923 /24

“Why did you publish your two 1923/1924 papers on Algebraic Topology (“Analy-
sts Situs Combinatorio”) in Spanish in the Reviste Matematico Hispano-Ameri-
cana, a periodical which was not well-known and not easily accessible at that
time?”
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After his retirement from the Institute for Advanced Study, Hermann Weyl
spent most of his time in Zurich. I had known him before in Princeton and our
contacts continued in Zurich. I asked him the above question in 1954 when he
was just preparing the laudatio for the Fields Medals to be awarded to J-P. Serre
and to K. Kodaira at the International Congress in Amsterdam. Hermann Weyl
answered that he simply did not want to draw attention to those two publications
[484]*, the colleagues should not read them! The field was not considered to be
serious mathematics like the classical fields of Analysis, Algebra, Geometry. In
the spirit of the modern term political correctness it was at that early time not
“mathematically correct” to work in such a field. But one has to recall that the
medal was awarded to Serre for his famous thesis work in Algebraic Topology
(homotopy groups of spheres) [429]. So in the meanwhile things must have
changed considerably.

The two articles by Weyl give an clegant, very detailed and largely alge-
braic presentation of Combinatorial Topology as described by Poincaré in the
Compléments (see below).

Before going further into the development of “mathematical correctness”
of Algebraic Topology one has to take a short look at the early history from
the very beginning. This of course took place long before T was involved in
mathematics and topology. I say what I can find in the original papers.

2. Poincaré, 1895—1904

The birth of Algebraic Topology can be fixed historically in a very precise way:
the papers of Henri Poincaré from 1895 to 1904 [369] began with “Analysis Situs”
and were continued in a series of “Compléments”. They clearly do not look like
Algebraic Topology in a modern bock. But everything connected with homo-
logv of spaces and homological algebra can be traced back to these old papers.
This applies in particular to the multiple applications in Complex Analysis, in
Algebraic Geometry, in Algebra and Group Theory, and in Theoretical Physics.

Thus not only the vast fields of the various aspects of modern topology,
but many concepts used in mathematics today go back to one person, Henri
Poincaré. His Analysis Situs was inspired by earlier ideas of Riemann and Betti,
but these could not really he called a theory.

In Poincaré we find the concepts of cell complex, the cells being portions
of bounded manifolds; incidence numbers describing the boundary of a cell, i.e.
the way boundary cells of the next-lower dimension lie on a cell; cvcles and
homology; Betti numbers 3; and Euler characteristic ¥ = 3(—1)%a; where o is
the number of cells of dimension ¢; the Euler—Poincaré formula

x =) (~Diei = (-1)6:

* Our references in [ | refer to the bibliography of the monumental work by
Dieudonné “A History of Algebraic and Differential Topology 1900-1960”
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and Poincaré duality for a closed manifold of dimension n
Bi = Bn—i.

In the beginning everything was topologically invariant, at least in the differen-
tiable sense, not really rigorous by today’s standards. Then Poincaré turned to
the rigorous concept of simplicial complex with invariance of homology under
subdivision. But there topological invariance got lost — this is something we all
know from our own work: you gain something, but you have to pay for it! The
idea of simplicial approximation was already in the air; it later became one of
the most important tools.

3. Hilbert, 1900

Many of us have reread, in 2000, Hilbert’s famous address at the 1900 Interna-
tional Congress of Mathematicians, when the Millennium mathematical prob-
lems of the Clay Institute were formulated. Hilbert had established a program for
the development of mathematics in the century to come (from letters addressed
to his friends one knows that the original title was “the future of mathematics”).
Partly he formulated explicit problems and partly he asked, in a more general
way, for certain fields to be investigated and developed. Everywhere he insisted
on rigor in the sense of axioms and proofs. One knows to what extent that
lecture influenced mathematical research at least for the first half of the century,
and in certain fields up to now.

But — not a word about Analysis Situs, not a word of the tremendous effort
of Poincaré to establish this entirely new field! Was it on purpose, or a Freudian
slip? One must admit that Hilbert simply did not realize that here was something
to become more and more important throughout the century. This is in atrong
contrast to his remarkable anticipation of things to come in practically all other
fields.

It is interesting to note that the papers by Hermann Weyl mentioned above
are presented in a rigorous axiomatic way, in contrast to Poincaré’s highly intu-
itive approach. Maybe this would have been more to Hilbert’s taste.

4, After Poincaré

So it is a fact, mentioned explicitly by Hadamard in [217], that at the beginning
of the twentieth century only a few mathematicians were interested in Analysis
Situs. On the other hand those who were made very remarkable contributions;
we mention some of them. Brouwer [89] proved in 1911 topological invariance
of the dimension of R®: he solved a problem which had intrigued analysts since
Cantor’s (not continuous) bijective map of the real interval onto higher dimen-
sional cubes, and Peanc's continuous not bijective map of the interval onto-the
square. Very important for the future development was Brouwer’s method of
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simplicial approximation and the concept of degree for mappings of manifolds.
It is not clear whether even in the small family of topologists all this was really
known.

In 1915 the topological invariance of the Betti numbers, and thus of the
Euler characteristic, of a cell complex, was proved by Alexander [9]. In 1922
Alexander [11] found another interesting result: his duality theorem generalizing
the classical Jordan curve theorem to all higher dimensions.

Asg for the topological invariance proof simplicial maps and simplicial ap-
proximation played an important role, combined with the concept of homotopy
(making precise the earlier rather vague idea of deformation). Much later the
invariance proofs became very simple thanks to the concept of homotopy equiv-
alence and its algebraic counterpart.

All such results were considered as ingenious but somewhat exotic achieve-
ments, and it seems that not many mathematicians really knew exactly about
thermn,

5. Heinz Hopf

With the appearance of Heinz Hopf’s thesis and with his papers and lectures
immediately afterwards [238] things seem o have changed considerably. Topo-
logy - that was now the standard name — was somehow accepted, though still
considered a strange field. This change, what was the reason? Was it the fact
that Hopf’s work was intimately linked to easily accessible problems in differ-
ential geometry (Clifford-Klein problem, Curvatura Integra)? Was it his style,
clear and rigorous, his inventing methods and solving “concrete” problems at
the same time? Or his wonderful personality? Or his collaboration with Paul
Alexandroff, beginning in Géttingen 1926 and lasting for many years? Hopf
used to say later that his main merit was to have read, understood and made
accessible the difficult work of Brouwer. According to Alexandroff and Hopf they
both had largely been inspired by wonderful lectures of Erhardt Schmidt, Hopf’s
thesis adviser, on some of Brouwer’s papers. In any case, certain papers of Hopf
had a decisive influence on the later place of topology within mathematics, and
we list them in more detail.

5.1 Hop{, 1925

In close connection with his work relating topological arguments to global differ-
cntial geometry Hopf [240] proved for arbitrary dimension the famous theorem
on tangent non-zero vector fields on a closed manifold {extending Poincaré’s rc-
sult for surfaces): if the field has isolated singularities (or zeros) then the sum
of their indices is equal to the Fuler characteristic of the manifold — whence
a topological invariant. The index is an integer, defined as a mapping degree,
which is zero i and only if the field can be modified in the neighborhood of the
singularity so that the singularity disappears.
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It follows, in paxticulaf, that a sphere of even dimension cannot admit
tangent vector fields without singularities, while on an odd-dimensional sphere
such fields exist (and can easily be described).

5.2 Hopf, 1928

On the other hand the influence of Emmy Noether on Hopf must have played a
decisive role. In a 1928 paper by Hopf [241] algebraic concepts such as groups
and homomorphisms were used for the first time to describe “combinatorial®
aspects of (finite) cell complexes and homology. Instead of the matrices of in-
cidence numbers, the free Abelian groups C; generated by the i-dimensional
cells of a complex were considered. The boundary & becomes a homomorphism
C;——C;_1, its kernel is the cycle group Z; and Z; /8C;_; is the Homology group
H; of the cell complex; the Betti number 3; is its {J-rank. The sequence

Cp—..Ci 11— C—Ci_1— .. .Cp—Z—0)

was later called the chain complex of the cellular space: the boundary of a 0-¢ell,
a vertex, is by definition = 1 £ Z. That chain complex is exact (kernel=image)
if and only if all homology groups with z > 1 are 0.

Very soon algebraization took over; this may also be one of the reasons why,
after the first papers of Hopf, some more people got interested in what could
now truly be called Algebraic Topology. The term Analysis Situs disappeared,
the name Topology seemns to be old — after Poincaré both terms had been used
for some time. In the thirties the field was pretty well established. Several books
appeared and special meetings were organized.

5.3 Hopf, 1931 and 1935

In 1931 Hopf [243] showed that there are (infinitely many) maps $°--52 which
are contractible i.e. not homotopic to the constarit map. This fact, quite unex-
pected from the viewpoint of homology, was not recognized as being important
— for example topologists like Lefschetz did not find it interesting. It turned out
later to-be the starting point of a new branch of topology, homotopy theory.

In 1935 Hopf [245] extended that result to maps §%~1'— 5% for all k > 1.
In an appendix special such maps are constructed with the help of a simple
geometrical idea, namely “fibrations”. Later these again turned out to be the
root of & very vagt and important theory.

The fibrations considered were essentially the following
(1) §%+1sCPF, with fiber S1, k> 1
(2) S*FT3_HP*, with fiber $3, k> 1
(3) S¥*+7—QP*, with fiber S8 k=1 only
The spheres on the left are the unit spheres in complex (or quaternionic, or
octonionic respectively) number space of dimension & 4+ 1. The arrows denote

the passage to homogeneous coordinates and thus are (continuous) maps onto
the respective projective spaces. Since the octonicns arc not associative, the
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procedure is possible in (3) for £ =1 only. The fibers, the inverse images of the
points of these projective spaces, are easily seen to be the respective spheres.

Since the projective lines (k = 1) are the spheres 52, $4, and 58 respectively
one gets maps

(1M 53— 52
(2") 87—54
(37) S1%—58

which according to Hopf’s method are non-contractible,

Before telling about the generalization of the Hopf fiberings (fiber spaces)
and further results of Hopf we turn to another important event in Algebraic
Topology:

6. Hurewicz, 1935/36

The four Dutch Academy Notes by Witold Hurewicz [256] on the “Theory of
Deformations” had a great impact on the whole further development, although
in the beginning they remained almost unnoticed. There are two aspects:

6.1 Homotopy groups

A few words about the definition of the homotopy groups m(X) of a path-
connected space X with base-point, ¢ > 1. Its elements are the homotopy
classes of based maps $*— X, thus for ¢ = 1 the homotopy classes of loops, and
the group operation is a natural generalisation of the composition of loops. The
structure of the group m;{ X) is independent of the base-points. For ¢ > 2 these
groups are Abelian. They had been proposed, in 1932 already, by Cech: but then
topologists did not consider them as important because of the commusativity —
Hurewicz however put them to work. For any covering X of X the homotopy
groups m;(X) and 7;(X) are isomorphic for i > 2. X is called aspherical if all
mifX), i > 2 are 0.

6.2 Homotopy equivalence

A most important concept introduced by Hurewicz is homotopy equivalence,
generalizing homeomorphism. A map f : X—Y is called a homotopy equiva-
lence if there is a map g : ¥Y—X such that the two compositions gf and fg
are homotopic to the respective identities. The spaces X and V¥ are then called
homotopy equivalent. Their homotopy groups and their homology groups are
isomorphic.

Hurewicz proved, in particular, that two aspherical spaces X and Y with
isomorphic fundamental groups are homotopy equivalent; any isomorphism be-
tween their fundamental groups is induced by a homotopy equivalence. Thus, in
particular, an aspherical space with vanishing fundamental group is homotopy
equivalent to the trivial space consisting of a single point (contractible).
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7.

We approach the time when my own research began [148, 149, 151]. In 1939 Hopf
asked me to study the papers of Hurewicz mentioned above. Some of my other
Professors said that with Hopf I could certainly not go wrong, although Topology
was not a well-known field. But something exotic like homotopy groups? Who
might be interested?

Well, I was impressed by what I read and very soon noticed two extraordi-
nary things — miracles.

7.1 Miracle one.

The degree of a map S™"— 8" could easily be seen to be a homomorphism
T (S™)—Z, and by simplicial approximation one realized that 7, (.5™} is gen-
erated by the identity (degree = 1). Thus

Tp(S™) = Z,

i.e. one recovers by this simple argument Hopf’s Theorem that the homotopy
classes of maps 5™-——5" are characterized by the degree.

7.2 A concept which proved to be very suitable in connection with homotopy
groups was that of fiber spaces (or fibrations) generalizing the Hopf fibrations
(see 5.2). A fiber space is in the simplest case a map of spaces p : E—B such
that the fibers F', 1.e. the inverse images of the points of B are all homeomorphic
among themselves and constitute locally a topological product. The map p is
called projection, the space B the base space of the fibraticn. In the context of
homotopy groups, E and B are path-connected and have base-points (respected
by maps and homotopies), and F is the inverse image of the base-point of B.
I noticed that a fibration gives rise to an exact sequence

...}‘Tg(F)—“?"a‘l‘.g(E)—??F,'(B)—Wi‘g_j_(F)—).‘.

(The lowest dimensions require some changes which we do not mention here.)
The first homomorphism is induced by the imbedding of F into E, the second
by the map p. To define the third homomorphism and to prove exactness an
additional property is required, the homotopy lifting. It tells that if f is a map
f = pg: X—B via E then any homotopy of f is also obtained via E by a
homotopy of g. This “axiom” for fibrations (there were later many variants of
it) was eagily verified in all geometrical examples I was dealing with. Then the
third map in the sequence is constructed as follows: one represents an element
of 7;{B) by a map of the i-ball into B with boundary sphere $*~! mapped to
the base-point and lifts it up to a map into E with $7~! mapped into F.

7.3 Miracle two.
We apply the sequence to the Hopf fibration §2—82 above and get
‘.‘:rr;a,(Slj ............ >ﬂ3(53) ....... ,w3(52)ﬂﬁ2(31)_____,...
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But m;{S?) = 0 for i > 2 since the universal covering is contractible. Thus
m3(52) = 73(8%) = Z

and we get (even in a more precise way) Hopf’s result about non-contractible
maps 5°— 52,

7.4 Using homotopy groups, the homotopy lifting, and exactness, various prob-
lems of geometrical nature could be solved but many questions remained open.
‘We mention here only the vector field problem.

On a sphere 5" of odd dimension n there exist tangent unit vector fields
without singularities. Do there exist two or more (or even the maximum possible
number n) of such fields which are linearly independent at each point of ™7 I
proved that for n = 45+ 1 there cannot exist two independent such fields. Later,
with the development of algebraic topology, more and more results of this kind
were obtained: Kervaire [272] and Milnor showed that only the spheres S” with
=1, 3, 7 admit the maximum number n of independent fields (parallelizabil-
ity). This problem is related to (actually a special case of) the existence of a
continunous multiplication in R"t! with two-sided unit and with norm-product
rule. Adams [2] showed in 1960 that this is possible for n+1 =1, 2, 4, 8 only;
in these cases bilinear multiplications of the required type were known already
before 1900.

8. Hopf, 1944

According to Hurewlicz (see 6.2) aspherical spaces X and ¥ with isomorphic fun-
damental group G are homotopy equivalent and thus have isomorphic homology
groups. Thus these homology groups are determined by . A natural problem
came up: to express them in a purely algebraic way from the group G.

Hopf [249] solved this problem by constructing a free resolution of a module
M over the group algebra ZG of G (actually over any ring). This was a funda-
mental concept in the development of the algebraic field which later was called
Homological Algebra. A free resolution of M is an exact sequence

T —>C@ _’Ci—l —. ..01 —>CG — M —0

where all C; are free ZG-modules. It can easily be constructed since any module
is the quotient of a free module.

This wasg, of course, patterned after the methods of Hurewics. If X is
an aspherical {cellular) space then its universal covering X is contractible and
has vanishing integral homology groups H;(X) for i > 1 and Z for i = 0. The
fundamental group G acts freely on X and the chain grotps are free ZG-modules.
Thus the chain complex of X is precisely a free resolution of Z over ZG. The
homotopy equivalence of all aspherical spaces with the same G was imitated in
an algebraic way by Hopf; thus all free resolutions of Z yield the same homology
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groups with various coefficients, in particular those with coefficients Z (trivial
action of ZG); these yield in the case of X the homology of X.

9, The exact sequence

Here comes a correction: All the sequences, exact or not, mentioned in our
text so far were NOT at all expressed with arrows. The arrow notation for
maps A—B with domain A and range B did not yet exist. Maps were just
described by words. Arrows occurred together with a certain sequence for the
first time in 1941 in a short announcement by Hurewicz [257] which seems to
have remained unnoticed. Even in a note by Hurewicz and Steenrod (1941) [260]
where the exact homotopy sequence appears implicitly no arrows nor sequences
occur. As late as 1947 the importance of arrows and sequences was emphasized
by Kelley and Pitcher [271]; they invented the name “exact” and showed that
exact sequences play an important role in Algebraic Topology. Immediately this
was taken up by topologists and algebraists. The simplification in notation and
in concepts was so evident that Henri Cartan said in an Oberwolfach-meeting
1952: .

Sl est vrai gue la mathématique est la reine des sciences, qui est la reine
de la mathématique? La suite exacte!

This plaisanterie was not meant too seriously. But it showed that here was
a real improvement, in notation, concept and intuition. Not only sequences, but
large diagrams of sequences were used very soon (Eilenberg-Steenrod, Founda-
tions of Algebraic Topology). To express more complicated statements (and to
prove them!) without that new notation was almost impossible.

In the pre-arrow and pre-exact sequences time we (Hopf, the author, and
everybody elge) used lengthy descriptions of the maps and of the fact that an
image was equal to the kernel of another map — or not. It is today, for the
authors themselves, but even more so for younger mathematicians, difficult to
read the “old” papers.

10. After World War IT

During the War a great deal of work was done independently on both sides
of the Atlantic. Communication was almost impossible. After the War people
got together and were happy to compare results. In the meanwhile Algebraic
Topology had become a respectable field, recognized world-wide.

Not only that; the interest in this field scemed to grow every day. People
learned about various applications and wanted to understand the techniques,
which were more and more simplified and elegant, and useful here and there.

Most famous was certainly Hopf’s Theorem [246] on the Betti numbers of
compact Lie groups, as follows.




254 Is algebraic topology a respectable field?

10.1 Hopf algebras

This had occurred in 193% already. Thec paper was submitted to Compositio,
but that periodical stopped publication. The manuscript found its way to the
U.S. and was published in 1941 in Annals of Mathematics [246]. It became
really known after the war only. It was a real surprise: the results of Elie
Cartan (1936) on the topology of certain compact Lie groups furned out to be
a corollary of a topological theorem. It was about closed manifolds provided
with a multiplication with unit; the results were valid for all compact Lie groups
without using their deep Lie structure. This was exactly what Elie Cartan had
asked for, namely to find a general reason for the special topology of compact
Lie groups.

The multiplication was used by Hopf to give the cohomology ring of the
manifold (modern terminology) a second structure, a co multiplication. Such a
superposition was called later a Hopf Algebra; it turned out to be one of the most
important concepts, until today, in many fields beyond topology (e.g. theoretical
physics).

11. A list of highlights

There was, in the years following 1946, a real explosion of interesting applications
of Algebraic Topology to various fields, due to a continuous development of the
technigues. We mention only soine spectacular ones, with very few explanations.

11.1 Serre 1953

In his Ph.D thesis [429], Serre obtained a wealth of rcsults on the homotopy
groups of spheres; before, only very little was known. Serre used the Hopf
algebra structure of the cohomology of loop spaces and other recent techniques.

11.2 Cartan-Serre

In the 1953 paper “Variétés analytiques complexes et et cohomologie” [105] co-
homology with sheaf coefficients was applied to the Cousin problem in the theory
of functions of several complex variables. They consider a complex manifold X
and the sheaves 2 and M of germs of local holomorphic, and meromorphic re-
spectively, functions. Since () is contained in M one has an exact coefficient
cohomology sequence

e Y X Q) — HY (X, M)—HY (X, M/Q)—HTH X ) ...

where the quotient sheaf is the sheaf of germs of locally given principal parts.
HO(M) is the group of global meromorphic functions, and HO(X; M/Q) of
global principal parts on X. The existence of a meromorphic function on
X with given principal part {additive Cousin problem) is thus guaranteed if
H1{X;)) = 0. This is proved for Stein manifolds X (complex manifolds with
enough holomorphic functions).
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11.3 Hirzebruch, 1953/54

The Hirzebruch—Riemann-Roch Theorem for algebraic manifolds [234, 235 ex-
pressed, in its simplest form the holomorphic Euler—Poincar’e characteristic in
terms of topological invariants (Chern classes). It was based on many topolog-
ical theories established before (Thom cobordism theory, Steenrod operations,
sheaf theory etc). There were later many generalizations, in particular Atiyah-
Hirzebruch, “Differentiable Riemann-Roch and K-Theory”.

11.3 Bott, 1956

It was known in the thesis of the author already (1942) [148] that the homo-
topy groups m;{{/(n)) of the unitary groups U/{n) are constant for n > 1/2{i +
2) for even i and n > 1/2(: -+ 1) for odd i: these “stable” groups were known
to be = 0 for { = 0,2,4 and = Z for i = 1,3,5. Bott [77] proved by very
elaborate combination of Morse theory and differcntial geometry that the stable
group is = 0 for all even i and = Z for all odd i (periodicity modulo 2; similar
result for the orthogonal groups with periodicity modulo 8). There were later
many different and more transparent proofs. Bott’s theorem stimulated other
developments: topological K-theory, general cohomological functors,

11.4 Adams, 1960 and 1962

In 1960 appeared Adams’ theorem [2] about continuous multiplications in R"
with unit and norm product rule: they exist for n = 1, 2, 4, 8 only, with
many interesting corollaries (parallelizability of spheres, bilinear division alge-
bras etc). The proof was a real tour de force using the whole range of cohomo-
logical techniques developed before. Later the proof could be simplified thanks
to topological K-theory and the Ativah-Hirzebruch integrality results.

In 1962 Adams [Ann.of Math 75] solved completely the vector field problem
for spheres: the maximum number of independent tangent vector ficlds on 5™
is exactly the same as the corresponding number for vector fields which are
linear with respect to the coordinates of S in R"*! — known long ago. Here no
simplification of the proof seems to be known. -

12. The climax

12,1 ICM Stockholm, 1962

The International Congress Stockholm witnessed the triumph of Algebraic To-
pology (after that things calmed down). But there everything was topology
even if the field was very different; some connections could always be estab-
lished. The enthusiasm went very far. A joke went around, even quoted by the
Congress president L. Garding at the official dinner: All the different sections of
the Congress should be named “Topology” with some attribute, Algebraic. Dif-
ferential, Manifold-, Combinatorial, Geometrical, Analytical, Arithmetical, Nu-
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merical, Computational, ete ete, and finolly there should even be o Section on
Topelogical Topology!

12.2 Topology and Differential Geometry Zurich, 1960. FIM, 1964

The Swiss Mathematical Society organized in 1960 an international meeting de-
voted mainly to topology and global geometry. There was great general interest
for this “new” field of mathematics. An article for a general public appeared in
the Neue Ziircher Zeitung on the front page.

12.3. FIM, 1964

After Zurich 1960 and Stockholm 1962 I felt, and so did many others, that
the rapid development in all fields of mathematics — algebraic topology was
just a striking example — required much more and different contacts between
mathematicians. The idea was that there should be at the Department of the
ETH Zurich an institution for inviting people from all over the world, involved
in newest research for extended stays in Zurich. Thus professors and students
could learn from them and exchange views and problems, and collaboration
would be stimulated. The system should be as flexible as possible and provide
all necessary facilities for the visitors.

I approached President H. Pallmann of the ETH Zurich. I went to see
him and explained the idea, really quite new at that time. After thinking for a
fow moments he said: “We have no funds, no rooms, no infrastructure for this,
-nothing. But we will get it. You have the idea, just go ahead”.
_ Before any formal decision, we were allowed to start the Forschunggsinstitut
fiir Mathematik on January 1, 1964, with distinguished visitors, among them K.
Chandrasekharan and L. Bers.




