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Preface

The last ten years have witnessed that geometry, topology, and algorithms
form a potent mix of disciplines with many applications inside and outside
academia. We aim at bringing these developments to a larger audience. This
book has been written to be taught, and it is based on notes developed during
courses delivered at Duke University and at the Berlin Mathematical School,
primarily to students of computer science and mathematics. The organization
into chapters, sections, exercises, and open problems reflects the teaching style
we practice. Each chapter develops a major topic and is worth about two
weeks of teaching. The chapters are divided into sections, each a lecture of
one and a quarter hours. To convey a feeling for the boundary of the current
knowledge, we complement the material with descriptions of open problems.
An interesting challenge is the mixed background of the audience. How do
we teach topology to students with limited background in mathematics, and
how do we convey algorithms to students with limited background in computer
science? Assuming no prior knowledge and appealing to the intelligence of the
listener is a good first step. Motivating the material by relating it to situations
in different walks of life is helpful in building up intuition that can cut through
otherwise necessary formalism. Exposing central ideas with simple means helps
and so does minimizing the necessary amount of detail.

The material in this book is a combination of topics in geometry, topology,
and algorithms. Far from getting diluted, we find that the fields benefit from
each other. Geometry gives a concrete face to topological structures and al-
gorithms offer a means to construct them at a level of complexity that passes
the threshold necessary for practical applications. As always, algorithms have
to be fast because time is the one fundamental resource human kind did not
yet learn to manipulate for its selfish purposes. Beyond these obvious relation-
ships, there is a symbiotic affinity between algorithms and the algebra used to
capture topological information. It is telling that both fields trace their name
back to the writing of the same Persian mathematician, al-Khwarizmi, work-



ing in Baghdad during the ninth century after Christ. Besides living in the
triangle spanned by geometry, topology, and algorithms, we find it useful to
contemplate the place of the material in the tension between extremes such as

local vs. global;

discrete vs. continuous;

abstract vs. concrete;

intrinsic vs. extrinsic.

Global insights are often obtained by a meaningful integration of local infor-
mation. This is how we proceed in many fields, taking on bigger challenges
after mastering the small. But small things are big from up close and big ones
small from afar. Indeed, the question of scale lurking behind this thought is
the driving force for much of the development described in this book. The
dichotomy between discrete and continuous structures is driven by opposing
goals, machine computation and human understanding. Both are illusions that
are useful to have but should not be confused with anything intangible like
reality. The tension between the abstract and the concrete as well as between
the intrinsic and the extrinsic have everything to do with human approach to
knowledge. An example close to home is the step from geometry to topology
in which we remove the burdens of size to focus on the phenomenon of con-
nectivity. The more abstract the context the more general the insight. Now,
generality is good but it is not a substitute for the concrete steps that have
to be taken to build bridges to applications. Zooming in and out of generality
leads to unifying viewpoints and suggests meaningful integrations where they
exist.

While these thoughts have certainly influenced us in the selection of the ma-
terial and in its presentation, there is a long way to the concrete instantiation
we call this book. The hardest part is to land, and we do in four parts decom-
posed into a total of ten chapters. Part A is a gentle introduction to topological
thought. Discussing Graphs in Chapter I, Surfaces in Chapter II, and Com-
plexes in Chapter III, we gradually build up topological sophistication, always
in combination with geometric and algorithmic ideas. Part B presents classical
material from topology. We focus on what we deem useful and efficiently com-
putable. The material on Homology in Chapter IV and on Duality in Chapter
V is exclusively algebraic. In the discussion of Morse Theory in Chapter VI,
we build a bridge to differential concepts in topology. Part C is mostly novel
and indeed the main reason we write this book. The main new concept is
Persistence introduced in Chapter VII and its Stability discussed in Chapter
VIII. Finally, we address connections to Singularities in Chapter IX. Part D
concludes the book with a small collection of open problems in computational



topology. It is our hope that they point in the right direction, leading a new
generation of researchers far and beyond what we currently imagine.

In a project like writing this book there are many who contribute, directly
or indirectly. We want to thank all and we don’t know where to begin. Above
all, we thank our colleagues in academia and industry, our students, and our
postdoctoral fellows for their ideas, criticism, and encouragement. And most
of all for the sense of purpose they provide. We thank Duke University for
providing the facilities and intellectual environment that allowed us to engage
in the line of research leading to this book. We thank the Computer Science and
the Mathematics Departments at Duke University and the Berlin Mathematical
School for the opportunity to teach computational topology to their students.
These courses provided the motivation to develop the notes that turned into
this book. Last not least, we thank the funding agencies, in particular DARPA
but also NSF and NIH, for nurturing this research and for opening up numerous
connections to topics that lie well beyond the scope of this book.

Herbert Edelsbrunner and John Harer
Durham, North Carolina, 2008





Chapter I

Graphs

In topology we think of a graph as a 1-dimensional geometric object, vertices
being points and edges being curves connecting these points in pairs. This
view is different but compatible with the interpretation of a graph common in
discrete mathematics where the vertices are abstract elements and the edges
are pairs of these elements. In more than one way, this book lives in the tension
between the discrete and the continuous and graphs are just one example of this
phenomenon. We begin with the discussion of an intrinsic property, namely
whether a graph is connected or not. Indeed, this does not depend on where we
draw the graph, on paper or in the air. Following are extrinsic considerations
about curves and graphs in the plane and in three-dimensional space. While
the extrinsic questions are natural to people, the mathematician usually favors
the intrinsic point of view since it tends to lead to more fundamental insights
of more general validity.

I.1 Connected Components
I.2 Curves in the Plane
I.3 Knots and Links
I.4 Planar Graphs

Exercises

1



2 I Graphs

I.1 Connected Components

A theme that goes through this entire book is the exchange between discrete
and continuous models of reality. In this first section, we compare the notion
of connectedness in discrete graphs and continuous spaces.

Simple graphs. An abstract graph is a pair G = (V,E) consisting of a set of
vertices, V , and a set of edges, E, each a pair of vertices. We draw the vertices
as points or little circles and edges as line segments or curves connecting the
points. For now, crossings between the curves are allowed. The graph is simple
if the edge set is a subset of the set of unordered pairs, E ⊆

(

V
2

)

, which means
that no two edges connect the same two vertices and no edge joins a vertex
to itself. For n = cardV vertices, the number of edges is m = cardE ≤

(

n
2

)

.
Every simple graph with n vertices is a subgraph of the complete graph, Kn,
that contains an edge for every pair of vertices; see Figure I.1.

Figure I.1: The complete graph with five vertices, K5. It has ten edges which form
five crossings if drawn as sides and diagonals of a convex pentagon. The four thick
edges connect the same five vertices and form a spanning tree of the complete graph.

In a simple graph, a path between vertices u and v can be described by a
sequence of vertices, u = u0, u1, u2, . . . , uk = v, with an edge between ui and
ui+1 for each 0 ≤ i ≤ k − 1. The length of this path is its number of edges, k.
Vertices can repeat, allowing the path to cross itself or backtrack. The path
is simple if the vertices in the sequence are distinct, that is, ui 6= uj whenever
i 6= j.

Definition A. A simple graph is connected if there is a path between every
pair of vertices.
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A (connected) component is a maximal subgraph that is connected. The small-
est connected graphs are the trees, which are characterized by having a unique
simple path between every pair of vertices. Removing any one edge disconnects
the tree. A spanning tree of G = (V,E) is a tree (V, T ) with T ⊆ E; see Figure
I.1. It has the same vertex set as the graph and uses a minimal set of edges
necessary to be connected. This requires that the graph is connected to begin
with. Indeed, a graph is connected iff it has a spanning tree. An alternative
characterization of a connected graph can be based on the impossibility to cut
it in two.

Definition B. A separation is a non-trivial partition of the vertices, that
is, V = U ∪̇W with U,W 6= ∅, such that no edge connects a vertex in U with
a vertex in W . A simple graph is connected if it has no separation.

Topological spaces. We now switch to a continuous model of reality, the
topological space. There are similarities to graphs, in particular if our interest
is limited to questions of connectedness. Starting with a point set, we consider a
topology, which is a way to define which points are near without specifying how
near they are from each other. Think of it as an abstraction of Euclidean space
in which neighborhoods are open balls around points. Concretely, a topology
on a point set X is a collection U of subsets of X, called open sets, such that

(i) X is open and the empty set ∅ is open;

(ii) if U1 and U2 are open, then U1 ∩ U2 is open;

(iii) if Ui is open for all i in some possibly infinite, possible uncountable, index
set, then the union of all Ui is open.

The pair (X,U) is a called a topological space, but we will usually tacitly assume
that U is understood and refer to X a topological space. Since we can repeat
the pairwise intersection, Condition (ii) is equivalent to requiring that common
intersections of finitely many open sets are open.

To build interesting topologies, we start with some initial notion of which sets
might be open and then form appropriate combinations of these until the three
conditions are satisfied. A basis of a topology on a point set X is a collection
B of subsets of X, called basis elements, such that each x ∈ X is contained in
at least one B ∈ B and x ∈ B1 ∩B2 implies there is a third basis element with
x ∈ B3 ⊆ B1 ∩B2. The topology U generated by B consists of all sets U ⊆ X

for which x ∈ U implies there is a basis element x ∈ B ⊆ U . This topology
can be constructed explicitly by taking all possible unions of all possible finite
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intersections of basis sets. As an example consider the real line, X = R, and
let B be the collection of open intervals. This gives the usual topology of the
real line. Note that the intersection of the intervals (− 1

k ,+
1
k ), for the infinitely

many integers k ≥ 1, is the point 0. This is not an open set which illustrates
the need for the restriction to finite intersections.

We often encounter sets inside other sets, Y ⊆ X, and in these cases we can
borrow the topology of the latter for the former. Specifically, if U is a topology
of X then the collection of sets Y ∩ U , for U ∈ U , is the subspace topology of Y.
As an example consider the closed interval [0, 1] ⊆ R. We have seen that the
open intervals form the basis for a topology of the real line. The intersections of
open intervals with [0, 1] form the basis of the subspace topology of the closed
interval. Note that the interval (1/2, 1] is considered an open set in [0, 1], but
isn’t open when considered as a set in R.

Continuity, paths and connectedness. A function from one topological
space to another is continuous if the preimage of every open set is open. This
is derived from the concept of continuity familar from calculus; for example the
function f : R → R that maps (−∞, 0] to 0 and (0,∞) to 1 is not continuous
because for any 0 < ε < 1, (−ε, ε) is open, but f−1((−ε, ε)) is not.

A path is a continuous function from the unit interval, γ : [0, 1] → X. It
connects the point γ(0) to the point γ(1) in X. Similar to paths in graphs we
allow for self-intersections, that is, values s 6= t in the unit interval for which
γ(s) = γ(t). If there are no self-intersections then the function is injective
and the path is simple. Now we are ready to adapt our first definition of
connectedness to topological spaces.

Definition A. A topological space is path-connected if every pair of points
is connected by a path.

There is also a counterpart of our second definition of connectedness. We
formulate it using open sets and there is an equivalent formulation in terms of
closed sets which, by definition, are complements of open sets.

Definition B. A separation of a topological space X is a partition X =
U ∪̇W into two non-empty, open subsets. A topological space is connected if
it has no separation.

It turns out connectedness is strictly weaker than path-connectedness, although
for most spaces we will encounter they are the same. An example of a space that
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is connected but not path-connected is the comb with a single tooth deleted. It
is constructed by gluing vertical teeth to a horizontal bar and finally deleting
the interior of the last tooth: taking the union of [0, 1]× 0 with 1

k × [0, 1], for
all positive integers k, we finally delete 0 × (0, 1). To construct a topology,
we take the collection of open disks as the basis of a topology on R2 and we
use the subspace topology for the comb. This space is connected because it is
the union of a path-connected set and a limit point. It is not path-connected
because no path from anywhere else can reach 0× 1.

Disjoint set systems. We return to graphs and consider the algorithmic
question of deciding connectedness. There are many approaches and we present
a solution based on maintaining a disjoint set system. This particular algorithm
has various other applications, some of which will be discussed in later chapters
of this book. Using the integers from 1 to n as the names of the vertices, we
store each component of the graph as a subset of [n] = {1, 2, . . . , n}. Adding
the edges one at a time and maintaining the system of sets representing the
components, we find that the graph is connected iff in the end there is only
one set left, namely [n]. Formulated as an abstract data type, we have two
operations manipulating the system:

Find(i): return the name of the set that contains i;

Union(i, j): assuming i and j belong to different sets in the system, replace
the two sets by their union.

We need the find operation to test whether i and j indeed belong to different
sets. Each successful union operation reduces the number of sets in the system
by one. Starting with n singleton sets, it therefore takes n−1 union operations
to get to a single set. Since trees connecting the n vertices can be generated
this way, we thus have a proof that every tree with n vertices has m = n − 1
edges.

A standard data structure implementing a disjoint set system stores each
set as a tree embedded in a linear array, V [1..n]. Each node in the tree is
equipped with a pointer to its parent, except for the root which has no parent;
see Figure I.2. Who is parent of whom is not important as long as the vertices
are connected in a single tree. We implement the find operation by traversing
the tree upward until we reach the root, reporting the root as the name of the
set.
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Figure I.2: Top: two trees representing two disjoint sets. Bottom: storing the two
trees in a linear array using an arbitrary ordering of the nodes.

int Find(i)
if V [i].parent 6= null then return Find(V [i].parent)

else return i
endif.

If i is not the root then we find the root recursively and finally return it.
Otherwise, we return i as the root. We implement the union operation by
linking one root to the other.

void Union(i, j)
x = Find(i); y = Find(j);
if x 6= y then V [x].parent = y endif.

After making sure that the two sets are different, we assign one root as the
parent of the other.

Improving the running time. The above implementation is not very ef-
ficient, in particular if we have long paths that are repeatedly traversed. To
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prevent this from happening we always link the smaller to the larger tree.

void Union(i, j)
x = Find(i); y = Find(j);
if x 6= y then if V [x].size > V [y].size then x↔ y endif;

V [x].parent = y
endif.

Now a tree of k nodes cannot have paths longer than log2 k edges since the size
of the subtree grows by at least a factor of two each time we pass to the parent.
To further improve the efficiency, we compress paths whenever we traverse
them. Here it is convenient to assume that roots are identified by pointing to
themselves.

int Find(i)
if V [i].parent 6= i then
return V [i].parent = Find(V [i].parent)

endif;
return i.

If i is not the root then the function recursively finds the root, makes the root
the parent of i, reports the root, and exits. Otherwise, the function reports i
as the root and exits.

In analyzing the algorithm, we are interested in the running-time for execut-
ing a sequence of m union and find operations. Finding tight bounds turns out
to be a difficult problem and we limit ourselves to stating the result. Specifi-
cally, if n is the number of vertices then the running-time is never more than
O(mα(n)), where α(n) is the notoriously slow growing inverse of the Acker-
mann function. Eventually, α(n) goes to infinity but to reach even beyond five
we need an astronomically large number of vertices, more than the estimated
number of electrons in our Universe. In other words, for all practical purposes
the algorithm takes constant average time per operation but theoretically this
is not a true statement.

Bibliographic notes. Graphs are ubiquitous objects and appear in most
disciplines. Within mathematics, the theory of graphs is considered part of
combinatorics. There are many good books on the subject, including the one
by Tutte [3]. The basic topological notions of connectedness are treated in
books on point-set or general topology, including the text by Munkres [1].
The computational problem of maintaining a system of disjoint sets, often
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referred to as the union-find problem, is a classic topic in the field of algorithms.
Solutions to it are known as union-find data structures and the most efficient of
all is the up-tree representation maintained through weighted union and path-
compression as explained in this section. A complete description of the highly
non-trivial analysis of the algorithm can be found in the text by Tarjan [2].

[1] J. R. Munkres. Topology. A First Course. Prentice-Hall, Englewood Cliffs, New
Jersey, 1975.

[2] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia,
Pennsylvania, 1983.

[3] W. T. Tutte. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1984.
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I.2 Curves in the Plane

In the previous section, we used paths to merge points into connected compo-
nents. To capture aspects of connectivity that go beyond components, we need
different maps.

Closed curves. We distinguish primarily between two kinds of (connected)
curves, paths and closed curves. As defined in the previous section, paths
are continuous maps from [0, 1] to X. Sometimes, a closed curve is defined
as a path in which 0 and 1 map to the same point. Usually, we will define a
closed curve to be a map from the unit circle, γ : S1 → X, where S1 = {x ∈
R2 | ‖x‖ = 1}. This second version emphasizes the important fact that paths
and closed curves capture different properties of topological spaces, since the
interval and the circle are different topological spaces. To make this precise,
we call two topological spaces homeomorphic or topologically equivalent if there
exists a continuous bijection from one space to the other whose inverse is also
continuous. A map with these properties is called a homeomorphism. Notice
that a homeomorphism between two spaces gives a bijection between their
open sets. The unit interval and the unit circle are not homeomorphic. Indeed,
removing the midpoint decomposes the interval into two components while
removing its image leaves the circle connected. This contradicts the existence
of a bijection that is continuous in both directions.

Figure I.3: The shaded inside and the white outside of a simple closed curve in the
plane.

Considering maps into the Euclidean plane, X = R2, it makes sense to dis-
tinguish curves with and without self-intersections. A simple closed curve is
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a curve without self-intersections, that is, a continuous injection γ : S1 → R2.
Interestingly, every such curve decomposes the plane into two pieces, one on
each side of the curve, as in Figure I.3.

Jordan Curve Theorem. Removing the image of a simple closed curve
from R2 leaves two connected components, the bounded inside and the un-
bounded outside. The inside together with the image of the curve is homeo-
morphic to a closed disk.

This may seem obvious but proving it is challenged by the generality of the
claim which is formulated for all and not just smooth or piecewise linear simple
closed curves. There are reasons to believe that there is no simple proof for
such a general claim. The fact that the inside together with the curve is
homeomorphic to the closed disk, B2 = {x ∈ R2 | ‖x‖ ≤ 1}, is known as the
Schönflies Theorem. The Jordan Curve Theorem remains valid if we replace
the plane by the sphere, S2 = {x ∈ R3 | ‖x‖ = 1}, but not if we replace it by
the torus.

Parity algorithm. Given a simple closed curve in the plane, a fundamental
computational question asks whether a given query point x ∈ R2 lies inside,
on, or outside the curve. To write an algorithm answering this question, we
assume a finite approximation of the curve. For example, we may specify γ at
a finite number of points and interpolate linearly between them. The result
is a closed polygon; see Figure I.4. It is simple if it is a closed curve itself.
To decide whether the point x lies inside such a simple closed polygon, we
draw a half-line emanating from x and count how often it crosses the polygon.
Assuming x does not lie on the polygon, it lies inside if the number of crossings
is odd and outside if that number is even. Hence, the name Parity Algorithm.
In the implementation of this idea, we let x = (x1, x2) be the query point
and a = (a1, a2), b = (b1, b2) the endpoints of an edge of the polygon. We
assume the generic case in which no three points are collinear and no two lie
on a common vertical or horizontal line. To simplify the code, we choose the
horizontal half-line leaving x toward the right and we assume that a is below b,
that is, a2 < b2. We first make sure that the entire horizontal line crosses the
edge, which we do by testing a2 < x2 < b2. If it does then we test whether the
crossing lies to the left or the right of the query point. To this end we compute
the determinant of the matrix

∆(x, a, b) =





1 x1 x2

1 a1 a2

1 b1 b2



 ,
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x

Figure I.4: Approximation of the simple closed curve in Figure I.3 by a simple closed
polygon. The point x lies inside the polygon and the half-line crosses the polygon an
odd number of times.

which is positive iff the sequence of points x, a, b forms a left-turn. To see this,
we verify the claim for x = (0, 0), a = (1, 0), b = (0, 1) and then notice that
the sign of the determinant switches exactly when the three points become
collinear. We use this fact to decide whether the half-line crosses the edge:

boolean doesCross(x, a, b)
if not a2 < x2 < b2 then return false endif;
return det∆(x, a, b) > 0.

Now we run this test for all edges and this way count the crossings. The
trouble with this implementation are the non-generic cases. We finesse them
using two infinitesimally small, positive numbers 0 < ε1 ≪ ε2 and substituting
x′ = (x1 + ε1, x2 + ε2) for x. A generic case for x is generic for x′ and we get
the same decision for both points. A non-generic case for x is generic for x′

and we use the decision for x′.

Polygon triangulation. Sometimes it is useful to have a more structured
representation of the inside of the polygon, for example for navigation to find
the exit out of a maze. The most common such structural representation is
a triangulation which is a decomposition into triangles. Here we require that
the triangles use the vertices of the polygon but do not introduce new ones.
Furthermore, they use the edges of the polygon together with diagonals, which
are new edges that connect non-adjacent vertices of the polygon. The diagonals
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are required to pass through the inside and not cross any other diagonals and
any polygon edges; see Figure I.5.

Figure I.5: A triangulation of the polygon in Figure I.4. Each diagonal passes from
one side of the inside to the other.

To prove that a triangulation always exists we just need to show that there
is at least one diagonal, unless the number of edges in the polygon is n = 3.
Indeed, we may consider the leftmost vertex, b, of the polygon. Either we can
connect its two neighbors, a and c, or we can connect b to the leftmost vertex
u that lies inside the triangular region abc. Drawing this diagonal decomposes
the n-gon into two, an n1-gon and an n2-gon. We have n1+n2 = n+2 and since
both are at least three, we also have n1, n2 < n. We can thus use induction to
complete the proof. The same inductive argument shows that there are n− 3
diagonals and n−2 triangles, no matter how we triangulate. This is suggestive.
Indeed, we can think of the triangles as the nodes and the diagonals as the arcs
of a tree. Since every tree with n− 2 ≥ 2 nodes has at least one leaf, that is, a
node with only one neighbor, every triangulation has an ear, that is, a triangle
formed by one diagonal and two polygon edges. Incidentally, this property does
not generalize to tetrahedral decompositions in R3.

Winding number. We return to a general, not necessarily simple, closed
curve γ : S1 → R2. Let x be a point not in the image of the curve. Suppose
we traverse γ and view the moving point from x. Specifically, we let s go
once around the circle and observe the unit vector (γ(s)−x)/‖γ(s)− x‖ rotate
about the origin. When the vector completes a full turn we count +1 or −1
depending on whether this turn is counterclockwise or clockwise. The sum
of these numbers is the winding number of γ and x, denoted as W (γ, x). It
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is necessarily an integer and gives the net number of counterclockwise turns
we observe. If γ is simple then the points inside the curve all have the same
winding number, −1 or +1. To reduce this to one case we may reorient the
curve, e.g. by reflecting the unit circle along the horizontal coordinate axis, and
get

W (γ, x) =

{

+1 if x is inside;
0 if x is outside.

However, for non-simple curves we can get winding numbers of absolute value
larger than one; see Figure I.6. Suppose we move x in the plane. As long as

+1

+4

+3

+2

+4

+1

+3
+2

+1

+4

+3
+2

+1

+4

+2
+3 +5

0

Figure I.6: An oriented non-simple closed curve with regions distinguished by the
winding number of their points.

it does not cross the curve, the winding number does not change. Crossing
the curve changes the winding number, namely by −1 if we cross from left to
right and by +1 if we cross from right to left. But this implies that at least two
regions in the decomposition defined by γ have their boundary arcs consistently
oriented. Specifically, the neighbors of a region with locally maximum winding
number all have winding number one less so the region lies to the left of all its
boundary arcs. Similarly, a region with locally minimal winding number lies
to the right of all its boundary arcs.

Bibliographic notes. The Jordan Curve Theorem is well known also be-
yond topology, in part because it seems so obvious but at the same time is
difficult to prove. We refer to [4] for a deeper discussion. The difficulties en-
countered in the implementation of the parity algorithm have been voiced in
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[3]. A provably correct implementation can be achieved with exact arithmetic
and symbolic perturbation as described in [2]. Triangulations of simple closed
polygons in the plane have been studied in computational geometry. Construct-
ing such a triangulation in time proportional to the number of vertices seems
rather difficult and the algorithm by Chazelle [1] that achieves this feat is not
recommended for implementation.

[1] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.
Geom. 6 (1991), 485–524.

[2] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Trans. Graphics 9

(1990), 86–104.

[3] A. R. Forest. Computational geometry in practice. In Fundamental Algorithms
for Computer Graphics, E. A. Earnshaw (ed.), Springer-Verlag, Berlin, Germany,
1985, 707–724.

[4] C. T. C. Wall. A Geometric Introduction to Topology. Addison-Wesley, 1971.
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I.3 Knots and Links

In this section, we study closed curves in three-dimensional Euclidean space
and questions about how they relate to each other or to themselves.

Knots. A closed curve embedded in R
3 does not decompose the space but it

can be tangled up in inescapable ways. The field of mathematics that studies
such tangles is knot theory. Its prime subject is a knot which is an embedding
κ : S1 → R3, that is, an injective, continuous function that is a homeomorphism
onto its image. It turns out that any injective, continuous function from the S1

to R3 is an embedding, but this is not true for general domains. Another knot is
equivalent to κ if it can be continuously deformed into κ without crossing itself
during this process. Equivalent knots are considered the same. The simplest

Figure I.7: From left to right: the unknot, the trefoil knot, and the figure-eight knot.
The trefoil knot is tricolored.

knot is the unknot, also known as the trivial knot, which can be deformed to
a geometric circle in R3. Two other and only slightly tangled up knots are
the trefoil and the figure-eight knots, both illustrated in Figure I.7. A subtlety
in the definition of equivalence is that deformations in which knotted parts
disappear in the limit are not allowed. It is therefore useful to think of knots
as curves with small but positive thickness, similar to shoelaces and ropes.

Reidemeister moves. Let us follow a deformation of a knot by drawing its
projections to a plane, keeping track of the under- and over-passes at crossings.
We are primarily interested in generic projections defined by the absence of any
violations to injectivity, other than a discrete collection of double-points where
the curve crosses itself in the plane. In a generic deformation, we observe three
types of non-generic projections that transition between generic projections,
which are illustrated in Figure I.8. It is plausible and also true that any two
generic projections of the same knot can be transformed into each other by
Reidemeister moves.
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Type I Type II Type III

Figure I.8: The three types of Reidemeister moves.

It seems clear that the trefoil knot is not equivalent to the unknot, and there
is indeed an elementary proof using Reidemeister moves. Call a piece of the
knot from one under-pass to the next a strand. A tricoloring of a generic
projection colors each strand with one of three colors such that

(i) at each crossing either three colors or only one color come together;

(ii) at least two colors are used.

Figure I.7 shows that the standard projection of the trefoil knot is tricolorable.
A useful property of Reidemeister moves is that they preserve tricolorability,
that is, the projection before the move is tricolorable iff the projection after
the move is tricolorable.

Figure I.9: The different cases in the proof that the Type III Reidemeister move
preserves tricolorability. In each case there is only one new strand whose color can
be chosen anew.

Type I. Going from left to right in Figure I.8, we use the same one color, and
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going from right to left we observe that we have only one color coming
together at the crossing.

Type II. From left to right we have two possibilities, either using only one
color or going from two to three colors. The reverse direction is symmetric.

Type III. There are five cases to be checked, all shown in Figure I.9.

The trefoil knot is tricolorable and the unknot is not tricolorable. It follows
that the two are not equivalent. It is not difficult to see that the figure-eight
knot is not tricolorable. This implies that the trefoil knot and the figure-eight
knot are different but the method is not powerful enough to distinguish the
figure-eight from the unknot.

Links. A link is a collection of two or more disjoint knots. Equivalence
between links is defined the same way as between knots, and Reidemeister
moves again suffice to go from one generic projection to another. A disjoint
plane splits a link if there are knots on both sides. A link is splittable if
an equivalent link has a splitting plane. The unlink or trivial link of size
two consists of two unknots that can be split, like the two circles in Figure
I.10 on the left. The easiest non-splittable link consisting of two unknots is
the Hopf link, which is shown in Figure I.10 in the middle. We can again

Figure I.10: From left to right: the unlink, the Hopf link, and the Whitehead link.

use tricolorability to prove that the Hopf link is different from the unlink.
Alternatively, we may count the crossings between the two knots, κ and λ,
counting with a sign. Specifically, we orient each knot arbitrarily and we look
at each crossing locally. If the under-pass goes from the left of the over-pass to
its right then we count +1 and otherwise we count −1. Letting x be a crossing
and signx be plus or minus one as explained, the linking number is half the
sum of these numbers over all crossings,

Lk(κ, λ) =
1

2

∑

x

signx.

Changing the orientation of one knot but not the other has the effect of revers-
ing the sign of the linking number. Clearly, Reidemeister moves do not affect
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the linking number. Since the linking number of the unlink is zero and that of
the Hopf link is plus or minus one, we have another proof that the two links are
different. An easy link that is not splittable but has vanishing linking number
is the Whitehead link in Figure I.10. It consists of two unknots but cannot be
tricolored, which implies that it is not splittable.

Writhing number. Next we introduce a number that measures how con-
torted the curve is in space. Let κ : R1 → R3 be a knot and assume that it is
smooth and its tangent vector κ̇(s) is non-zero for every s. Projecting along a
direction u ∈ S2 we get a closed curve in the plane. Assuming the projection
is generic, we distinguish under- from over-passes and count each crossing plus
or minus one time, as before. However, different from the case of the linking
number, we count crossings the curve makes with itself and we do not divide by
two. The sum of these numbers is the directional writhing number, DWr(κ, u).
The writhing number is the average over all directions. This is the integral of
the directional writhing number over all directions divided by the area of the
unit sphere,

Wr(κ) =
1

4π

∫

u∈S2

DWr(κ, u) du.

The directions with non-generic projections form only a measure zero subset
of the sphere. We therefore make no mistake when we average only over all
generic projections. In contrast to the linking number, the writhing number
is not necessarily an integer and it depends on the exact shape of the curve.
Besides the shape it also captures topological information as we will see shortly.

The main motivation for studying the writhing number comes from molecular
biology and, more specifically, the shape of DNA within the cell. Modeling its
double-helix structure with a constant width ribbon, we are interested in the
writhing number of the center axis, κ. The boundary of the ribbon consists
of two closed curves. We need only one, λ : S1 → R3. In the case of DNA,
λ twists and turns around κ. Intuitively, the twisting number is the average
motion of λ relative to κ. To formalize this idea, we assume that the center
axis and the boundary curve are one unit of length apart and parametrized
such that λ(s) − κ(s) has unit length and is normal to the center axis. We
construct a frame of mutually orthogonal unit vectors consisting of the tangent
vector at s, T (s) = κ̇(s)/‖κ̇(s)‖, the normal vector connecting the two curves,
N(s) = λ(s) − κ(s), and the binormal vector, B(s) = T (s) × N(s). Using
this frame, the twisting number is the average length of the projection of the
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derivative of the normal vector onto the binormal vector,

Tw(κ, λ) =
1

2π

∫

s∈S1

〈Ṅ(s), B(s)〉 ds.

This number may be interpreted as the number of local crossings between κ
and λ, counted with a sign and averaged over all directions u ∈ S2. To make
sense of the idea of a local crossing we use a limit process in which the distance
between κ and λ goes to zero. Details are omitted. Similarly, the writhing
number of κ may be interpreted as the number of global crossings between κ
and λ, again counted with a sign, averaged over all directions, and in the limit
when the separation between the knots goes to zero. Since the linking number
counts all crossings, we get a relationship between the three measures, which
we state without formal proof.

Călugăreanu-White Formula. Let κ be smooth closed curve in R3 and
λ one of the two boundary curves of a ribbon centered along κ. Then Lk(κ, λ) =
Tw(κ, λ) +Wr(κ).

Relation to winding number. The writhing number of a is related to the
winding number of the curve of critical directions. It is defined such that
the directional writhing number remains unchanged as long as we move u on
the sphere of directions without crossing the curve and it changes as soon as
we cross the curve. The only Reidemeister move that affects the directional
writhing number is Type I. The curve of critical directions is therefore traced
out by the unit tangent vector and its negative, T,−T : S1 → S2. In other
words, we have two curves decomposing the sphere into maximal faces of in-
variant directional writhing number. It will be convenient to identify antipodal
points on the sphere and think of a direction as a pair (u,−u). Formally, this
means we replace the sphere by the two-dimensional projective plane but we
don’t have to be this formal yet. The pair (u,−u) crosses the curve T iff u
crosses T or −T .

Recall that the winding number is defined for a closed curve and a point in
the plane. Here we have a closed curve and an antipodal point pair on the
sphere. Assuming u and −u are not on the curve, we let the winding number
be the net number of counterclockwise turns formed by T around the directed
line defined by u. We use the same notation as in the plane denoting this
number by W (T, u). Here we define counterclockwise as seen by looking in the
direction u. Figure I.11 illustrates the situation in which −u crosses T from its
left to its right. The winding number of T and (u,−u) thus decreases by one,
same as the directional writhing number. Indeed, the two change in synchrony
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T

u’
u

+1 0 0 −1

Figure I.11: The change of the viewpoint from u to u′ is indicated on the sphere of
directions. On the left, this removes a positive crossing and on the right, this adds a
negative crossing. The effect is the same, namely a decrease in the directional writhing
number by one. It remains the same even if the curves change their orientation.

in all cases and we have DWr(κ, u0) − DWr(κ, u) = W (T, u0) −W (T, u) for
all u0, u ∈ S2. As a consequence, the average winding number differs from
the average directional writhing number by an integer. Integrating the above
relation over all directions of the sphere gives DWr(κ, u0) minus Wr(κ) on the
left and W (κ, u0) minus the average winding number on the right. Hence,

Wr(κ) = DWr(κ, u0)−W (κ, u0) +
1

4π

∫

u∈S2

W (κ, u) du.

Bibliographic notes. Knots and links have been studied for centuries and
there are a number of excellent books on the subject, including the text by
Adams [1]. Motivation for studying the writhing number of a space curve and
the twisting number of a ribbon is derived from the double-helix structure of
DNA whose discovery is comparably recent [7]. These numbers measure how
wound up, locally and globally, DNA is within the cell [3]. The noteworthy
relation between writhing, twisting, and linking numbers has been discovered
independently by Călugăreanu [4], Fuller [5], Pohl [6], and White [8]. The
relationship to the winding number has been described in [2] and used to give
an algorithm that computes the writhing number of a closed space polygon in
subquadratic time.
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[4] G. Călugăreanu. Sur les classes d’isotopie des noeuds tridimensionnels et leurs
invariants. Czech. Math. J. 11 (1961), 588–625.

[5] F. B. Fuller. The writhing number of a space curve. Proc. Natl. Acad. Sci. USA
68 (1971), 815–819.

[6] W. F. Pohl. The self-linking number of a closed space curve. J. Math. Mech. 17

(1968), 975–985.

[7] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acid. A
structure for deoxyribose nucleic acid. Nature 171 (1953), 737–738.

[8] J. H. White. Self-linking and the Gauss integral in higher dimensions. Amer. J.
Math. XCI (1969), 693–728.



22 I Graphs

I.4 Planar Graphs

Only graphs with relatively few edges can be drawn without crossings in the
plane. We consider properties that distinguish such graphs from others. We
also prove Tutte’s Theorem which implies that every graph that can be drawn
without crossing can also be drawn this way with straight edges.

Embeddings. Let G = (V,E) be a simple, undirected graph. A drawing
maps every vertex u ∈ V to a point f(u) in R2, and it maps every edge uv ∈ E
to a path with endpoints f(u) and f(v). The drawing is an embedding if the
points are distinct, the paths are simple and do not cross each other, and
incidences are limited to endpoints. Not every graph can be drawn without
crossings. The graph is planar if it has an embedding in the plane. As
illustrated in Figure I.12 for the complete graph of four vertices, there are many
drawings of a planar graph, some with and some without crossings. A face of

Figure I.12: Three drawings of K4. From left to right: a drawing that is not an
embedding, and embedding with one curved edge, and a straight-line embedding.

an embedding is a component in the defined decomposition of the plane. We
write n = cardV , m = cardE, and ℓ for the number of faces. Euler’s formula
is a linear relation between these numbers.

Euler Relation for Planar Graphs. Every embedding of a connected
graph in the plane satisfies n−m+ ℓ = 2.

Proof. Choose a spanning tree of G = (V,E). It has n vertices, n− 1 edges,
and one face. We have n − (n − 1) + 1 = 2, which proves the formula if G
is a tree. Otherwise, draw the remaining edges, one at a time. Each edge
decomposes one face into two, thus maintaining the relation by increasing both
the number of edges and the number of faces by one.

If the graph has more than one connected component then the right hand
side of the equation is replaced by one plus that number. Note that the Euler
Relation implies that the number of faces is the same for all embeddings and is
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therefore a property of the graph. We get bounds on the number of edges and
faces, in terms of the number of vertices, by considering maximally connected
graphs for which adding any one edge would violate planarity. Every face of a
maximally connected planar graph with three or more vertices is necessarily a
triangle, for if there is a face with more than three edges we can add a path that
crosses none of the earlier paths. Let n ≥ 3 be the number of vertices, as before.
Since every face has three edges and every edge belong to two triangles, we have
3ℓ = 2m. We use this relation to rewrite the Euler Relation: n−m+ 2m

3 = 2

and n− 3ℓ
2 + ℓ = 2 and hence m = 3n− 6 and ℓ = 2n− 4. Every planar graph

can be completed to a maximally connected planar graph, which implies that
it has at most these numbers of edges and faces.

Non-planarity. We can use the Euler Relation to prove that the complete
graph of five vertices and the complete bipartite graph of three plus three
vertices are not planar. Consider first K5, which is drawn in Figure I.13, left. It

Figure I.13: K5 on the left and K3,3 on the right, each drawn with the unavoidable
one crossing.

has n = 5 vertices and m = 10 edges, contradicting the upper bound of at most
3n−6 = 9 edges for maximally connected planar graphs. Consider second K3,3,
which is drawn in Figure I.13, right. It has n = 6 vertices and m = 9 edges.
Each cycle has even length, which implies that each face of a hypothetical
embedding has four or more edges. We get 4ℓ ≤ 2m and m ≤ 2n− 4 = 8 after
plugging the inequality into the Euler Relation, again a contradiction.

In a sense, K5 and K3,3 are the quintessential non-planar graphs. Two
graphs are homeomorphic if one can be obtained from the other by a sequence
of operations, each deleting a degree-2 vertex and merging their two edges into
one or doing the inverse.

Kuratowski Theorem. A simple graph is planar iff no subgraph is home-
omorphic to K5 or to K3,3.
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The proof of this result is omitted. The remainder of this section focuses on
straight-line embeddings of planar graphs.

Convex combinations. Two points a0 6= a1 define a unique line that passes
through both. Each point on this line can be written as x = (1− t)a0 + ta1, for
some t ∈ R. For t = 0 we get x = a0, for t = 1 we get x = a1, and for 0 < t < 1
we get a point in between. If we have more that two points, we repeat the
construction by adding all points y = (1 − t)x + ta2 for which 0 ≤ t ≤ 1, and
so on, as illustrated in Figure I.14. Given k + 1 points a0, a1, . . . , ak, we can

Figure I.14: From left to right: the construction of the convex hull of five points by
adding one point at a time.

do the same construction in one step, calling a point x =
∑k

i=0 tiai a convex

combination of the ai if
∑k
i=0 ti = 1 and ti ≥ 0 for all 0 ≤ i ≤ k. The set of

convex combinations is the convex hull of the ai.

We are interested in graphs that arise as edge-skeletons of triangulations of
the disk, like the one in Figure I.15. Letting G = (V,E) be such a graph, we
distinguish edges and vertices on the boundary from the ones in the interior
of the disk. When we embed G in R2, we make sure that the boundary edges
and vertices map to the boundary of the outer face. Since we only consider
straight-line embeddings, it suffices to study mappings of the vertex set into
the plane. We call f : V → R2 a strictly convex combination mapping if for
every interior vertex u ∈ V there are real numbers tuv > 0 with

∑

v tuv = 1 and
f(u) =

∑

v tuvf(v), where both sums are over all neighbors v of u. In words,
every interior vertex maps to a point in the interior of the convex hull of the
images of its neighbors. We will repeatedly use this mapping in combination
with a linear function h : R

2 → R defined by h(x) = 〈x, p〉 + c, where p ∈ R
2

is a non-zero vector and c is a real number. Composing f with h we get
h(f(u)) =

∑

v tuvh(f(v)). In words, the value we get for u is the same strictly
convex combination of the values for its neighbors.
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Straight-line embeddings. Suppose we have a straight-line embedding of
G in which the boundary edges map to the boundary of the outer face. Then
every interior vertex lies inside the cycle connecting its neighbors. It follows
that this embedding defines a strictly convex combination mapping. We now
show that the reverse is also true provided the boundary vertices map to the
corners of a strictly convex polygon.

Tutte’s Theorem. Let G = (V,E) be the edge-skeleton of a triangulation
of the disk and f : V → R2 a strictly convex combination mapping that maps
the boundary vertices to the corners of a strictly convex polygon. Then drawing
straight edges between the image points gives a straight-line embedding.

We will give the proof in three steps, which we now prepare with two observa-
tions. A separating edge of G is an interior edge that connects two boundary
vertices. It is convenient to assume that G has no separating edge, but if it
does we can split the graph into two and do the argument for each piece. Call
a path in G interior if all its vertices are interior except possibly the first and
the last. Under the assumption of no separating edge, every interior vertex u
can be connected to every boundary vertex by an interior path. Indeed, we can
find an interior path that connects u to a first boundary vertex w. Let w0 and
w1 be the neighboring boundary vertices. Since none of the edges separate, the
neighbors of w form a unique interior path connecting w0 to w1. It follows that
there is an interior path connecting u to w0. By repeating the argument sub-
stituting w0 for w we eventually see that u has interior paths to all boundary
vertices.

Now suppose that h ◦ f takes its maximum at an interior vertex, u. Since
h ◦ f(u) is a strictly convex combination of the values the the neighbors, we
conclude that h ◦ f(v) = h ◦ f(u) for all neighbors v of u. We can iterate
and because of the mentioned interior path property we eventually reach every
vertex. It thus follows that h ◦ f has the same value at all vertices of G. We
refer to this observation as the maximum principle and its symmetric version
as the minimum principle.

Proof of Tutte’s Theorem. We now present the proof in three steps. First,
all interior vertices u of V map to the interior of the strictly convex polygon
whose corners are the images of the boundary vertices. To see this, choose
p ∈ R

2 and c ∈ R such that the line h−1(0) defined by h(x) = 〈x, p〉 + c
passes through a boundary edge and h(f(w)) > 0 for all boundary vertices
other than the endpoints of that edge. Then h(f(u)) > 0 else the maximum
principle would imply h(f(v)) = 0 for all vertices. Repeating this argument for
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all edges of the convex polygon implies that all interior vertices u have f(u)
in the interior of the polygon. This implies in particular that each triangle
incident to a boundary edge is non-degenerate, that is, its three vertices are
not collinear.

Second, letting yuv and zuv be the two triangles sharing the interior edge uv
in G, the points f(y) and f(z) lie on opposite sides of the line h−1(0) that passes
through f(u) and f(v). To see this, assume h(f(y)) > 0 and find a strictly
rising path connecting y to the boundary. It exists because h(f(y)) > h(f(u))
so one of the neighbors of y has strictly larger function value, and the same
is true for the next vertex on the path and so on. Similarly, find a strictly
falling path connecting u to the boundary and the same for v, as illustrated in
Figure I.15. The rising path does not cross the falling paths, but the two falling

u

v
y

z

Figure I.15: One strictly rising and two strictly falling paths connecting y, u, and v

to the boundary.

paths may share a vertex, as in Figure I.15. In either case, we get a piece of
the triangulation bounded by vertices with non-positive function values. Other
than u and v all other vertices in this boundary have strictly negative function
values. If z belongs to the boundary of this piece then it has strictly negative
function value simply because it differs from u and v. Else it belongs to the
interior of the piece and we have h(f(z)) < 0 by the maximum principle. We
note that this argument uses h(f(y)) > 0 in an essential manner. To show that
this assumption is justified, we connect yuv by a sequence of triangles to one
incident to a boundary edge. In this sequence, any two contiguous triangles
share an edge. As observed in the first step, the image of the last triangle is
non-degenerate. Going backward, this implies that the image of the second
to the last triangle is non-degenerate and so on. Finally, the image of yuv is
non-degenerate, as required.
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Third, no two of the edges cross. To get a contradiction, assume x is a point
in the common interiors of two edges, uv and u′v′. Choose a half-line that
emanates from x and avoids the images of all vertices. Since the vertices y
and z that form triangles with uv map to opposite sides of the line passing
through f(u) and f(v), the half-line intersects exactly one of the edges yu, yv,
zu, zv. Continuing this way we get a sequence of edges starting with uv and
ending with a boundary edge. Similarly, the half-lines defines another sequence
of edges starting with u′v′ and ending with the same boundary edge. Going
back in both sequences, we pass from one edge to an unambiguously define
preceding edge. Since we start with the same boundary edge we get uv = u′v′.
This completes the proof of Tutte’s Theorem.

Constructing straight-line embeddings. Tutte’s Theorem leads to a sim-
ple algorithm for constructing a straight-line embedding of a planar graph. For
simplicity, we assume that it is the edge-skeleton of a triangulation of the disk
and that none of its edges separates. We reindex such that u1 to uk are ordered
along the boundary of the outer face and uk+1 to un are the interior vertices
of the graph. First, we set f(ui) = (cos(2iπ/k), sin(2iπ/k)), for 1 ≤ i ≤ k, to
place the boundary vertices in order on the unit circle in the plane. They form
the corners of a strictly convex polygon, as required. Expressing the image
of each interior vertex as a strictly convex combination of the images of its
neighbors, we write

f(uj) =
1

dj

∑

f(v),

for each k + 1 ≤ j ≤ n, where dj is the degree of ui and the sum is over all
neighbors v of uj in the graph. We get a system of n − k linear equations in
n − k unknowns, the images of the interior vertices. Writing the system in
matrix form, we get one non-zero coefficient for each interior vertex and two
more for each edge connecting two interior vertices. By Euler’s relation, the
number of edges is less than 3n. If follows that the system is sparse with fewer
than 7n non-zero coefficients. It thus permits efficient methods to find the
solution, which by Tutte’s Theorem corresponds to a straight-line embedding
of the graph.

Bibliographic notes. Graphs that can be drawn in the plane without cross-
ings arise in a number of applications, including geometric modeling, geographic
information systems, and others. We refer to [3] for a collection of mathemat-
ical and algorithmic results specific to planar graphs. The fact that all planar
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graphs have straight-line embeddings has been known long before Tutte’s The-
orem. Early last century, Steinitz showed that every 3-connected planar graph
is the edge-skeleton of a convex polytope in R3 [4]. This skeleton can be pro-
jected to R2 to give a straight-line embedding. In the 1930s, Koebe proved that
every planar graph is the intersection graph of a collection of possibly touching
but not otherwise overlapping closed disks in R2 [2]. We get a straight-line em-
bedding by connecting the centers of the touching disks. The original theorem
by Tutte is for coefficients tuv equal to one over the degree of u [6]. The more
general version and the proof presented in this section are taken from the more
recent paper by Floater [1]. Efficient numerical methods for solving systems of
linear equations can be found in the linear algebra text by Strang [5].
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768.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Deciding connectivity (two credits). Given a simple graph with n ver-
tices and m edges, the disjoint set system takes time proportional to
(n+m)α(n) to decide whether or not the graph is connected.

(i) Describe a different an algorithm that makes the same decision in
time proportional to n+m.

(ii) Modify the algorithm so it computes the connected components in
time proportional to n+m.

2. Shelling disks (three credits). Consider a triangulation of a simple closed
polygon in the plane, but one that may have interior vertices inside the
polygon. A shelling is a total order of the triangles such that the union
of the triangles in any initial sequence is homeomorphic to a closed disk.
Prove that every such triangulation has a shelling.

3. Jordan curve (one credit). Recall the Jordan Curve Theorem which says
that every simple closed curve in the plane decomposes R

2 into two.

(i) Show the same is true for a simple closed curve on the sphere, S2 =
{x ∈ R2 | ‖x‖ = 1}.

(ii) Give an example that shows the result does not hold for simple closed
curves on the torus.

4. Homeomorphisms (two credits). Give explicit homeomorphisms to show
that the following spaces with topologies inherited from the respective
containing Euclidean spaces are homeomorphic:

• R1 = R , the real line;

• (0, 1), the open interval;

• S1 − {(0, 1)}, the circle with one point removed.

Generalize your homeomorphisms to show the same for the Euclidean
plane, the open disk, and the sphere with one point removed.

5. Splitting a link (two credits). Prove that the Borromean rings shown in
Figure I.16 on the left are not splittable.
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Figure I.16: Left: Any two of the three knots of the Borromean rings can be split but
are held together by the third knot. Right: Two generic projections of the Whitehead
link.

6. Deforming a link (two credits). Use Reidemeister moves to demonstrate
that the two links in Figure I.16 in the middle and on the right are equiv-
alent.

7. Planar graph coloring (two credits). Recall that every planar graph has
a vertex of degree at most five. We can use this fact to show that every
planar graph has a vertex 6-coloring, that is, a coloring of each vertex with
one of six colors such that any two adjacent vertices have different colors.

Indeed, after removing a vertex with fewer than six neighbors we use
induction to 6-color the remaining graph and when we put the vertex back
we choose a color that differs from the colors of its neighbors. Refine the
argument to prove that every planar graph has a vertex 5-coloring.

8. Edge coloring (three credits). We color each edge of a maximally con-
nected planar graph with one of three colors such that each face (triangle)
has all three colors in its boundary.

(i) Show that a 4-coloring of the vertices implies a 3-coloring of the edges.

(ii) Show that a 3-coloring of the edges implies a 4-coloring of the vertices.

In other words, proving that every planar graph has a vertex 4-coloring
is equivalent to proving that every triangulation in the plane has an edge
3-coloring.



Chapter II

Surfaces

The most common two-dimensional spaces are 2-manifolds, or surfaces, which
come in two varieties: with and without boundary. We usually envision them
put into three-dimensional space, sometimes with and preferably without self-
intersections. Not all surfaces can be embedded in three-dimensional Euclidean
space and self-intersections are unavoidable, but often they are accidental. In-
deed, choosing a nice embedding of a surface in space is an interesting compu-
tational problem. We address this question for surfaces made out of triangles.

II.1 Two-dimensional Manifolds
II.2 Searching a Triangulation
II.3 Self-intersections
II.4 Surface Simplification

Exercises
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II.1 Two-dimensional Manifolds

In our physical world, the use of the term surface usually implies a 3-
dimensional, solid shape of which this surface is the boundary. In mathematics,
the solid shape is not assumed and we discuss surfaces in their own right. In-
deed, there are closed surfaces that are not the boundary of any solid shape.
They are non-orientable and do not embed into three-dimensional Euclidean
space, which is why our intuition for them is lacking.

Topological 2-manifolds. Consider the open disk of points at distance less
than one from the origin, D = {x ∈ R2 | ‖x‖ < 1}. It is homeomorphic to
R2, as for example established by the homeomorphism f : D → R2 defined
by f(x) = x/(1 − ‖x‖). We will call any subset of a topological space that
is homemorphic to D an open disk. A 2-manifold (without boundary) is a
topological space M whose points all lie in open disks. Intuitively, this means
that M looks locally like the plane.

M is compact if for every covering of M by open sets, called an open cover, we
can find a finite number of the sets that cover M. We say that the open cover
always has finite subcover. Examples of non-compact 2-manifolds are R2 itself
and open subsets of R2. Examples of compact 2-manifolds are shown in Figure
II.1, top row. We get 2-manifolds with boundary by removing open disks from

Figure II.1: Top from left to right: the sphere, S
2, the torus, T

2, the double torus,
T

2#T
2. Bottom from left to right: the disk, the cylinder, the Möbius strip.

2-manifolds without boundary. Alternatively, we could require that each point
has a neighborhood homeomorphic to either D or to D+, the half disk obtained
by removing all points with negative second coordinate from D. The boundary
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of a 2-manifold with boundary consists of all points x whose neighborhoods are
homemorphic. Within the boundary, the neighborhood of every point x is an
open interval, which is the defining property of a 1-manifold, or curve. There
is only one type of connected, compact 1-manifold, namely the closed curve.
Following the practice of considering topologically equivalent spaces the same,
we will therefore often refer to it as a circle. If M is compact, this implies that
its boundary is a collection of circles. Examples of 2-manifolds with boundary
are the (closed) disk, the cylinder, and the Möbius strip, all illustrated in Figure
II.1, bottom row.

We get new 2-manifolds from old ones by gluing them to each other. Specifi-
cally, remove an open disk each from two 2-manifolds, M and N, find a homeo-
morphism between the two boundary circles, and identify corresponding points.
The result is the connected sum of the two manifolds, denoted as M#N. Form-
ing the connected sum with the sphere does not change the manifold since it
just means replacing one disk by another. Adding the torus is the same as
attaching the cylinder at both boundary circles after removing two open disks.

Orientability. Of the examples we have seen so far, the Möbius strip has
the curious property that it seems to have two sides locally at every interior
point but there is only one side globally. To express this property intrinsically,
without reference to the embedding in R

3, we consider a small, oriented circle
inside the strip. We move it around without altering its orientation, like a clock
whose fingers keep turning in the same direction. However, if we slide the clock

Figure II.2: Left: the projective plane, P
2, obtained by gluing a disk to a Möbius

strip. Right: the Klein bottle obtained by gluing two Möbius strips together. The
vertical lines are self-intersections that are topologically not important.

once around the strip its orientation is the reverse of what it used to be and
we call the path of its center an orientation-reversing closed curve. There are
also orientation-preserving closed curves in the Möbius strip, such as the one
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that goes around the strip twice following along close to the boundary. If all
closed curves in a 2-manifold are orientation-preserving then the 2-manifold is
orientable, else it is non-orientable. The curves drawn on the projective plane
and the Klein bottle in Figure II.2 are all orientation-preserving. We leave
finding orientation reversing curves on the same two surfaces as an instructive
exercise to the reader.

Note that the boundary of the Möbius strip is a single circle. We can therefore
glue the strip to a sphere or a torus after removing an open disk from the latter.
This operation is often referred to as adding a cross-cap to the sphere or torus.
In the first case we get the projective plane, the sphere with one cross-cap, and
in the second case we get the Klein bottle, the sphere with two cross-caps. Both
cannot be embedded in R

3, so we have to draw them with self-intersections,
but these should be ignored when we think about these surfaces.

Classification. As it turns out, we have seen examples of each major kind
of compact 2-manifold. They have been completely classified about a century
ago by cutting and gluing to arrive at a unique representation for each type.
This representation is a convex polygon whose edges are glued in pairs, called a
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Figure II.3: Top from left to right: the sphere, the torus, the projective plane, and
the Klein bottle. After removing the (darker) Möbius strip from the last two, we are
left with a disk in the case of the projective plane and another Möbius strip in the
case of the Klein bottle. Bottom: the polygonal schema in standard form for the
double torus on the left and the double Klein bottle on the right.

polygonal schema. Figure II.3 shows that the sphere, the torus, the projective
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plane, and the Klein bottle can all be constructed from the square. More
generally, we have a 4g-gon for a sphere with g tubes and a 2g-gon for a sphere
with g cross-caps attached to it. The gluing pattern is shown in the second row
of Figure II.3. Note that the square of the torus is in standard form but that
of the Klein bottle is not.

Classification Theorem for Compact 2-manifolds. The two infinite
families S2,T2,T2#T2, . . . and P2,P2#P2, . . . exhaust the family of compact
2-manifolds without boundary.

The first family of orientable, compact 2-manifolds consists of the sphere, the
torus, the double torus, and so on. The second family of non-orientable, com-
pact 2-manifolds consists of the projective plane, the Klein bottle, the triple
projective plane, and so on. To get a classification of the connected, compact 2-
manifolds with boundary we can take one without boundary and make h holes
by removing the same number of open disks. Each starting compact 2-manifold
and each h ≥ 1 give a different surface and they exhaust all possibilities.

Triangulations. To triangulate a 2-manifold we decompose it into triangu-
lar regions, each a disk whose boundary circle is cut at three points into three
paths. We may think of the region and its boundary as the homeomorphic im-
age of a triangle. By taking a geometric triangle for each region and arranging
them so they share vertices and edges the same way as the regions we obtain
a piecewise linear model which is a triangulation if it is homeomorphic to the
2-manifold. See Figure II.4 for a triangulation of the sphere. The condition

Figure II.4: The sphere is homeomorphic to the surface of an octahedron, which is a
triangulation of the sphere.

of homeomorphism requires that any two triangles are either disjoint, share an
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edge, or share a vertex. Sharing two edges is not permitted for then the two
triangles would be the same. It is also not permitted that two vertices of a
triangle are the same. To illustrate these conditions we note that the triangu-
lation of the first square in Figure II.3 is not a valid triangulation of the sphere,
but the triangulation of the second square is a valid triangulation of the torus.

Given a triangulation of a 2-manifold M, we may orient each triangle. Two
triangles sharing an edge are consistently oriented if they induce opposite ori-
entations on the shared edge, as in Figure II.4. Then M is orientable iff the
triangles can be oriented in such a way that every adjacent pair is consistently
oriented.

Euler characteristic. Recall that a triangulation is a collection of triangles,
edges, and vertices. We are only interested in finite triangulations. Letting
n, m, and ℓ be the numbers of vertices, edges, and triangles, same as in the
previous chapter, the Euler characteristic is their alternating sum, χ = n−m+
ℓ. We have seen that the Euler characteristic of the sphere is χ = 2, no matter
how we triangulate. More generally, the Euler characteristic is independent of
the triangulation for every 2-manifold.

Euler Characteristic of Compact 2-manifolds. A sphere with g
tubes has χ = 2− 2g and a sphere with g cross-caps has χ = 2− g.

The number g is the genus of M; it is the maximum number of disjoint closed
curves along which we can cut without disconnecting M. To see this result we
may triangulate the polygonal schema of M. For a sphere with g tubes we have
ℓ = 1 region, m = 2g edges, and n = 1 vertex. Further decomposing the edges
and regions does not change the alternating sum, so we have χ = 2− 2g. For a
sphere with g cross-caps we have ℓ = 1 region, m = g edges, and n = 1 vertex
giving χ = 2− g.

Observe that adding a tube decreases the Euler characteristic by two while
adding a cross-cap decreases it by only one. Indeed, we can substitute k handles
for 2k cross-caps and obtain the g-fold projective plane from the k-fold torus by
gluing g − 2k cross-caps, provided g > 2k. Note that non-orientability cannot
be cancelled by the connected sum. Hence, this operation can get us from the
orientable to the non-orientable manifolds but not back.

Doubling. The compact, non-orientable 2-manifolds can be obtained from
the orientable 2-manifolds by identifying points in pairs. For example, if we
identify opposite (antipodal) points of the sphere we get the projective plane.
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We can also go the other direction, constructing orientable manifolds from non-

Figure II.5: Doubling the Klein bottle produces the torus.

orientable ones; see Figure II.5. Imagine a triangulation of a connected, com-
pact, non-orientable 2-manifold N in R3, drawn with self-intersections, which
we ignore. Make two copies of each triangle, edge, and vertex off-setting them
slightly, one on either side of the manifold. Here sidedness is local and therefore
well defined. The triangles fit together locally, and because N is connected, they
form the triangulation of a connected 2-manifold, M. It is orientable because
one side is consistently facing N. Since all triangles, edges, vertices are doubled,
we have χ(M) = 2χ(N). Using the relation between genus and Euler character-
istic we have χ(N) = 2− g(N) and therefore χ(M) = 4− 2g(N) = 2− 2g(M). It
follows that M has g(M) = g(N)−1 tubes. As listed in Table II.1, the doubling
operation constructs the sphere from the projective plane, the torus from the
Klein bottle, etc.. The double is sometimes called the double cover, since the
reverse operation of re-identifying doubled regions maps M to N covering it
twice.

χ(N) g(N) N M g(M) χ(M)

1 1 P
2

S
2 0 2

0 2 P
2#P

2
T

2 1 0
−1 3 P

2#P
2#P T

2#T
2 2 −2

. . . . . . . . . . . . . . . . . .

Table II.1: Doubling turns the non-orientable 2-manifold on the left into the orientable
2-manifold on the right.

Bibliographic notes. The confusing aspects of non-orientable 2-manifolds
have been captured in a delightful novel about the life within such a surface [1].
The classification of compact 2-manifolds is sometimes credited to Brahana [2]
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and other times to Dehn and Heegard [3]. The classification of 3-manifolds, on
the other hand, is an ongoing project within mathematics. With the proof of
the Poincaré conjecture by Perelman, there is new hope that this can be soon
accomplished. In contrast, recognizing whether two triangulated 4-manifolds
are homeomorphic is undecidable [4]. The classification of manifolds beyond
dimension three is therefore a hopeless undertaking.

[1] E. A. Abbot. Flatland. Dover, New York, 1952.

[2] H. R. Brahana. Systems of circuits on two-dimensional manifolds. Ann. Math.
23 (1922), 144–168.

[3] M. Dehn and P. Heegard. Analysis situ. Enz. Math. Wiss. III A B 3, Leipzig
(1907).

[4] A. A. Markov. Insolubility of the problem of homeomorphy. In Proc. Int. Congr.
Math., 1958, 14–21.
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II.2 Searching a Triangulation

Many algorithms benefit from a convenient data structure that represents a
surface by storing its triangulation. In this section, we describe such a data
structure and show how to use it to determine the topological type of a surface.

Ordered triangles. We begin with the description of the core piece of the
data structure, which is a representation of the symmetry group of the standard
triangle. Its main function will be to keep track of direction and orientation
when we navigate the triangulation. This group is isomorphic to the group
of permutations of three elements, the vertices of the triangle. We call each
permutation an ordered triangle and use cyclic shifts and transpositions to
move between them. As illustrated in Figure II.6, the cyclic shift from abc to

ENEXT ENEXT

ENEXTENEXT

ENEXT

ENEXT

SYM SYM SYM

c a b

a b b c c a

b a c b a c

bac

Figure II.6: The symmetry group of the standard triangle consists of six ordered
versions. The cyclic shifts partition the group into two orientations, each consisting
of three ordered triangles.

bca corresponds to advancing the leading directed edge to next position, from
ab to bc. The transposition of the leading two vertices corresponds to reversing
the direction of the lead edge while keeping the third vertex fixed.

We store each triangle in a single node of the data structure to be described
shortly. A reference to the triangle consists of a pointer to this node, µ, together
with a three-bit integer, ι, identifying the ordered version of the triangle. Using
the first bit to identify the orientation, we represent abc, bca, cab, bac, cba, acb by
ι = 0, 1, 2, 4, 5, 6, in this sequence. Moving between different ordered versions
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of the same triangle can be done with simple arithmetic operations on ι. To
advance the lead edge, we increment using modulo arithmetic.

ordTri enext(µ, ι)
if ι ≤ 2 then return (µ, (ι+ 1) mod 3)

else return (µ, (ι+ 1) mod 3 + 4)
endif.

To reverse the direction of the lead edge, we flip the first bit.

ordTri sym(µ, ι)
return (µ, (ι + 4) mod 8).

We see that encoding the symmetry group requires very little overhead, just a
few bits whenever we point to a triangle.

Data structure. We are now ready to describe the data structure represent-
ing the triangulationK of a connected, compact, 2-manifold without boundary.
We store the vertices of K in a linear array, V [1..n], and the triangles in the
nodes of a graph. The arcs connect nodes of neighboring triangles defined by
shared edges. Since every triangle has exactly three neighbors, the degree of
every node is three. Inside a node, we store pointers to the three neighbors as
well as to the three vertices, which are indices into V .

z

ba

x

cy

Figure II.7: The triangle abc with its three neighbors. The arrowheads identify the
directed lead edges.

Let abc be a triangle and x, y, z the respective third vertices of the neighbor
triangles. Each ordered version of the triangle points to its lead vertex and
the ordered neighbor triangle that shares the directed lead edge. To describe
this in an example, we assume the nodes µ, µx, µy, µz store the four triangles
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with ι = 0 corresponding to the ordered versions abc, abx, ayc, zbc, as drawn
in Figure II.7. Assuming a is stored at positions i in V and observing that ab
is the lead edge of abx, the ordered triangle abc stores pointers (µ, 0).org = i
and (µ, 0).fnext = (µx, 0). Assuming furthermore that b and c are stored at
positions j and k of the vertex array, the other five ordered triangles in µ store
pointers to the positions j, k, j, k, i and to the ordered triangles (µz , 1), (µy , 2),
(µx, 4), (µz , 5), (µy, 6), in this sequence. To move around in the triangulation,
we use simple functions to retrieve this information.

ordTri fnext(µ, ι)
return (µ, ι).fnext .

int org(µ, ι)
return (µ, ι).org .

There is clearly redundancy left in the proposed data structure, but we resist
further optimizations to keep the implementation transparent.

Depth-first Search. A common operation is visiting all triangles of the tri-
angulation. This corresponds to searching the entire representing graph. Two
of the most popular strategies are Breadth-first Search and Depth-first Search.
As suggested by the name, Bepth-first Search proceeds along an advancing front
that expands around an initial node. In contrast, Depth-first Search ventures
directly into the unknown and covers the neighborhood only after returning
from the adventure. We implement the latter strategy using a recursive func-
tion. Assuming all nodes are initially unmarked, we start the search by calling
that function for an arbitrary first node, µ0.

void Visit(µ)
if µ is unmarked then mark µ; P1;

forall neighbors ν of µ do

Visit(ν)
endfor; P2

else P3
endif.

The search proceeds along a spanning tree of the graph defined by calling a
neighboring node ν a child of µ if the first visit to ν originates from µ. The
root of this tree is µ0. To customize the function, we would add instructions
at the three indicated places:
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P1. steps to be executed the first time the node is visited;

P2. steps to be executed after all children have been processed;

P3. steps to be executed each time the node is revisited.

We will see examples of such customizations shortly. After searching the graph
once, we will typically search it once more to remove all the marks and pre-
pare the graph for further processing. Without accounting for the additional
instructions, the running time of Depth-first Search is linear in n + m, the
number of nodes and arcs in the graph. Indeed, each arc is traversed exactly
twice, once in each direction.

Orientability. We use Depth-first Search to decide whether a connected,
compact 2-manifold without boundary given by a triangulationK is orientable.
We do this by orienting all triangles in a consistent manner and report non-
orientability if the attempt fails. In other words, we choose one of two orienta-
tions for each triangle such that the shared edge between neighboring triangles
are directed in opposite ways. Assuming none of the orientations are yet cho-
sen, we start the process by calling the function for an arbitrary first ordered
triangle, (µ0, ι0).

boolean isOrientable(µ, ι)
if µ is unmarked then mark µ and choose orientation containing ι;

bx = isOrientable(fnext(sym(µ, ι)));
by = isOrientable(fnext(enext(sym(µ, ι))));
bz = isOrientable(fnext(enext2(sym(µ, ι))));
return bx and by and bz

else return [orientation of µ contains ι]
endif.

Here we orient µ at P1, we unwind the for-loop, and we return a boolean value
at P2 and another at P3. The latter value indicates whether or not we have
consistent orientations in spite of the triangle µ having been oriented prior to
the current visit. The boolean value returned at P2 indicates whether or not we
have found a contradiction to orientability. A single value of false anywhere
during the computation is propagated to the root of the search tree telling us
that the surface is non-orientable. Since each triangle has only three neighbors,
the running time of the algorithm is linear in the number of triangles.

Classification. Recall from the preceding section that the type of a con-
nected, compact 2-manifold without boundary is uniquely determined by its
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genus and whether or not it is orientable. Since every triangle has three edges
and every edge belongs to two triangles, we have 3ℓ = 2m and therefore
2n− ℓ = 4− 4g in the orientable case and 2n− ℓ = 4− 2g in the non-orientable
case. Assuming we know the number of vertices from the size of the array, we
just need to count the triangles, which we do again by Depth-first Search.

int #Triangles(µ, ι)
if µ is unmarked then mark µ;

ℓx = #Triangles(fnext(µ, ι));
ℓy = #Triangles(fnext(enext(µ, ι)));
ℓz = #Triangles(fnext(enext2(µ, ι)));
return ℓx + ℓy + ℓz + 1

else return 0
endif.

Combining the information, it is now easy to determine the genus.

int Genus(µ, ι)
ℓ = #Triangles(µ, ι);
if isOrientable(µ, ι) then return (ℓ− 2n+ 4)/4

else return (ℓ− 2n+ 4)/2
endif.

In summary, we can decide the topological type of a triangulated, compact
2-manifold without boundary in time linear in the number of triangles. We
can clearly not do it faster since the entire triangulation must be searched,
else we could alter the type by a small modification. By adding another search
counting the boundaries, we can extend this result to compact 2-manifolds with
boundary.

Bibliographic notes. Data structures for storing triangulated 2-manifolds
have been described in the computer science literature since Baumgart [3]; see
also the doubly-linked edge lists in [7] and the quad-edge structure in [6]. These
data structures differ in their details from the graph representation described
in this section but are functionally very similar. Extensions to storing 3- and
higher-dimensional complexes can be found in [5] and in [2]. Searching graphs
is a core topic in computer science and descriptions of Depth-first Search can
be found in most algorithms texts, including [1] and [4].

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Massachusetts, 1973.
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II.3 Self-intersections

Since non-orientable, compact 2-manifolds without boundary cannot be embed-
ded in three-dimensional Euclidean space, all their models in that space occur
with self-intersections. In contrast, all orientable, compact 2-manifolds have
embeddings, but their models may have accidental self-intersections. Removes
those is a core topic in repairing surface models of solid shapes.

Mapping into space. Let M be a compact 2-manifold without boundary.
We want to say what it means for M to be smooth and for a continuous map
f : M→ R

3 to be a smooth mapping. We define a coordinate chart {(U, φ)} to
be an open set U ⊂ M together with a continuous map φ : U → R2 that is a
homeomorphism onto its image. Two coordinate charts {(U, φ)} and {(V, ψ)}
are compatible if U and V are disjoint, or the map

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V )

extends to a smooth (C∞) map R2 → R2. We define M to be smooth if it is
covered by a maximal collection {(U, φ)} of compatible coordinate charts. A
continuous function f : M→ R is smooth if for each coordinate chart {(U, φ)},
f ◦ φ−1 is smooth. A map to f : M → R3 is smooth if each of the component
functions fi = πi◦f is smooth, where πi denotes projection onto the i-th factor.

For the time being, we assume that M and f are smooth. If we choose a
coordinate chart, we get a local parameterization of M with two variables. We
then think of the coordinate functions fi as mapping pairs (s1, s2) to xi, for
i = 1, 2, 3. Collecting the gradients of the coordinate functions in a matrix, we
get the Jacobian of f ,

J =















∂f1
∂s1

∂f1
∂s2

∂f2
∂s1

∂f2
∂s2

∂f3
∂s1

∂f3
∂s2















.

While this Jacobian matrix depends on the choice of local coordinates, its rank
does not. Notice that the rank of the Jacobian is at most two. The mapping
f is an immersion if the Jacobian has full rank two at all points of M. It
is an embedding if f is a homeomorphism onto its image, an embedding is
necessarily an immersion, but not vice-versa. For smooth mappings, there are
three types of generic self-intersections, all illustrated in Figure II.8. The most
interesting of the three is the branch point, which comes in several guises. We
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xx
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Figure II.8: From left to right: a double point, a triple point, a branch point.

can construct it by cutting a disk from two sides toward the center, folding
it, and re-glueing the sides as shown in Figure II.9. Embeddings have no self-
intersections at all and immersions have only the first two types and no branch
points.

Figure II.9: Constructing the Whitney umbrella from a disk.

The piecewise linear case. The classification of generic self-intersections is
similar in the piecewise linear case in which M is given by a finite triangulation,
K. However, in contrast to the smooth case, the enumeration of the generic
types is elementary. Since M is a 2-manifold, the triangles that contain a vertex
form a disk. It is not difficult to see that imposing this condition on the vertices
suffices to guarantee that K triangulates a 2-manifold without boundary. On
the other hand, requiring that each edge belongs to exactly two triangles is not
sufficient.

We put K into space by mapping each vertex to a point in R3. The edges
and triangles are mapped to the convex hulls of the images of their vertices.



II.3 Self-intersections 47

Figure II.10: The three ways two triangles whose vertices are in general position in
R

3 can cross each other.

This mapping is an embedding iff any two triangles are either disjoint or they
share a vertex or they share an edge. Any other type of intersection is improper
and referred to as a crossing. It is convenient to assume that the points are in
general position, that is, no three are collinear and no four are coplanar. Under
this assumption, there are only three types of crossings possible between two
triangles, all shown in Figure II.10. Each crossing is a line segment common to
two triangles. In the first case, one of the endpoints of the line segment coincides
with the image of a vertex, which necessarily belongs to both crossing triangles.
In the other two cases, each endpoint of the line segment lies on the images of
an edge in the triangulation.

Recognizing crossings. We reduce the recognition problem from two trian-
gles to an edge and a triangle and further to four points in space. Writing a1,
a2, a3 for the coordinates of the point a in space and similarly for the points
x, y, and z, we say the sequence axyz has positive orientation if the matrix

∆(a, x, y, z) =









1 a1 a2 a3

1 x1 x2 x3

1 y1 y2 y3
1 z1 z2 z3









has positive determinant. We observe that this corresponds to the case in which
a sees xyz make a right-turn in space. The four points lie in a common plane
iff the determinant vanishes. Finally, we say axyz has negative orientation if
det∆(a, x, y, z) < 0.

Using the ability to decide the orientation of a sequence of four points, we now
return to the next more complicated problem given by five points, a, b, x, y, z
in R3. We say the edge ab stabs the triangle xyz if the two have an improper
intersection. Assuming the five points are distinct and in general position, we
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have only two cases, namely either the intersection is empty or a point in the
common interior of the edge and the triangle. Thus, ab stabs xyz iff a and
b lie on different sides of the plane spanned by xyz and ab forms the same
orientation with the three directed edges xy, yz, and zx.

boolean doesStab(a, b, x, y, z)
return sign det∆(a, x, y, z) 6= sign det∆(b, x, y, z) and

sign det∆(a, b, x, y) = signdet∆(a, b, y, z) = signdet∆(a, b, z, x).

We finally return to the original recognition problem formulated for two tri-
angles, abc and xyz. We first consider the case in which they share one of
the points, a = x. Then we have a crossing iff one of the respective opposite
edges stabs the other triangle. We second consider the case in which the six
points are distinct. Then the triangles are disjoint iff none of the six edges
stabs the other triangle, and the triangles cross iff exactly two edges stab the
other triangle. Assuming general position, there are no other cases. If the two
stabbing edges belong to the same triangle, we have the case in the middle in
Figure II.10, and if they belong to different triangles, we have the case on the
right.

Curves and preimages. Returning to the case on the left in Figure II.10,
we see that one endpoint of the line segment lies on the image of an edge of
the triangulation. There is a unique triangle on the other side of that edge
that continues the intersections. Similarly, there are unique continuations of
the intersection in the middle and the right case. Starting at a crossing, we can
therefore trace the intersection triangle by triangle, adding a line segment at a
time. Since we only have finitely many triangles, the curve must either end or
close up by coming back to where it started. These are the only two cases:

• a path that starts at the image of a vertex and ends at the image of another
vertex;

• a closed curve that avoids the images of all vertices in the triangulation.

Almost all points of such a path or closed curve are double points. Exceptions
are triple points at which the curves intersects each other or themselves. The
number of triple points is at most the number of ways we can choose three
triangles, which is finite, and generically there are no points that belong to
more than three triangles.

When we trace a path or a closed curve in space, we can, at the same time,
trace its preimage under the mapping f . In the case of a path, we get two
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arcs starting at a common vertex and ending at another common vertex of the
triangulation. In the case of the closed curve, we get either two loops or one
loop whose image covers the curve twice. The three cases are illustrated in
Figure II.11. The most interesting case is the double-covering loop. Such a

f f f

Figure II.11: The preimage of an intersection curve. From left to right: two arcs with
common endpoints, two loops, one loop covering the closed curve twice.

loop is necessarily orientation-reversing. To see this, we may again trace the
closed curve, its image in R3, and this time draw parallel curves to the left and
the right on one of the two intersecting sheets. At the time we come back to
where we started, the parallel curves have moved to the other sheet. There is
either a clockwise or a counterclockwise rotation of the first sheet to the second
that maps each curve locally to itself. If the rotation is clockwise, as seen by
looking in the direction of the curve, then it is clockwise at all points of the
curve. Same for counterclockwise. This implies that after another round we
map the first sheet to itself but with reversed orientation. The double-covering
loop can thus only happen if M is non-orientable. No conclusion can be drawn
if the preimage consists of two loops.

To construct an example of a double-covering loop, we sweep the midpoint
of a rod (a line segment) along a circle in space. The rod is normal to the circle
at all times but it may rotate within the normal plane as we sweep along. If
there is no rotation then the rod sweeps out a cylinder, and if the rotation is
π after one time around then we get a Möbius strip. However, if the rotation
is π

2 , we need a second time around to complete the surface. We thus get a
Möbius strip that crosses itself along the center circle, which is covered twice.

Immersions of the Klein bottle. We have seen a first picture of the Klein
bottle in Figure II.2. The surface in that drawing intersects itself along a
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path which ends at two branch points. In the smooth case, we get rank-
deficient Jacobians at the branch points implying that this is not the image of
an immersion. However, the Klein bottle can also be mapped without branch
points and we conclude this section with the description of two such mappings.

Figure II.12: Two immersions of the Klein bottle. Both models intersect themselves in
a closed curve whose preimage are two loops. On the left, these loops are orientation-
preserving and on the right, they are orientation-reversing.

In the first immersion, the neck of the bottle extends and turns back to
the body, like a sleeping Flamingo, but then continues and passes through
the surface, as sketched in Figure II.12 on the left. The closed intersection
curve is the common image of two orientation-preserving loops. The second
immersion is obtained by sweeping the cross point of a figure-8 along a circle
in space. Similar to the rod example above, we keep the figure-8 normal to
the circle at all times but we rotate within the normal plane. Turning the
figure-8 upside down during one time around we exchange the lobes and form
a surface that intersects itself along the circle, as sketched in Figure II.12 on
the right. The preimage of the circle consists of two loops, both of which are
orientation-reversing.

Bibliographic notes. The way surfaces in three-dimensional space intersect
each other and themselves is discussed in length and with many illustrations by
Carter [2]. In the generic case, a smooth mapping to R3 has only three types of
singularities, double points, triple points, and branch points. Whitney proved
that every d-manifold has an immersion in R2d−1 [4]. This implies that every 2-
manifold can be immersed in R3, meaning there are smooth mappings without
branch points. For the projective plane, we must have a branch point or a triple
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point which implies that every immersion has a triple point [1]. Whitney also
proved that every d-manifold can be embedded in R2d [3], implying that every
2-manifold can be embedded in R4.

[1] T. F. Banchoff. Triple points and surgery of immersed surfaces. Proc. Amer.
Math. Soc. 46 (1974), 403–413.

[2] J. S. Carter. How Surfaces Intersect in Space. An Introduction to Topology.
Second edition, World Scientific, Singapore, 1995.

[3] H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Annals
of Math. 45 (1944), 220–246.

[4] H. Whitney. The singularities of a smooth n-manifold in (2n− 1)-space. Annals
of Math. 45 (1944), 247–293.



52 II Surfaces

II.4 Surface Simplification

In applications, it is often necessary to simplify the data or its representation.
One reason is measurement noise, which we would like to eliminate, another
are features, which we look for at various levels of resolution. In this section,
we study edge contractions used in simplifying triangulated surface models of
solid shapes.

Edge contraction. Suppose K is a triangulation of a 2-manifold without
boundary. We recall this means that edges are shared by pairs and vertices by
rings of triangles, as depicted in Figure II.13. Let a and b be two vertices and
ab the connecting edge in K. By the contraction of ab we mean the operation
that identifies a with b and removes duplicates from the triangulation. Calling
the new vertex c, we get the new triangulation L from K by

• removing ab, abx, and aby;

• substituting c for a and for b wherever they occur in the remaining set of
vertices, edges, and triangles;

• removing resulting duplications making sure L is a set.

As a consequence of the operation, there are new incidences between edges and
triangles that did not exist in K; see Figure II.13.

ba c

y

x

y

x

Figure II.13: To contract ab, we remove the two dark triangles and repair the hole
by gluing their two left edges to their two right edges.

Algorithm. To simplify a triangulation, we iterate the edge contraction op-
eration. In the abstract setting, any edge is as good as any other. In a practical
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situation, we will want to prioritize the edges so that contractions that preserve
the shape of the manifold are preferred. To give meaning to this statement,
we will define shape to mean the topological type of the surface as well as the
geometric form we get when we embed the triangulation in R3. We will discuss
the latter meaning later and for now assume we have a function that assigns to
each edge ab a non-negative real number Error(ab) assessing the damage the
contraction of ab causes to the geometric form. Small numbers will mean little
damage. To write the algorithm, we assume a priority queue storing all edges
ordered by the mentioned numerical error assessment. This is a data struc-
ture that supports the operations of returning the top priority edge as well
as of inserting and deleting an edge, each in time at most logarithmic in the
number of edges in the queue. Specifically, we assume a a function isEmpty
that tests whether or not the priority queue still contains edges, and a function
MinExtract that removes the edge with minimum error from the priority
queue and returns it. Furthermore, we assume the availability of a boolean
test isSafe that decides whether or not the contraction of an edge preserves
the topological type of the surface.

while not isEmpty do ab = MinExtract;
if isSafe(ab) then contract ab endif

endwhile.

Some modifications are necessary to recognize edges that no longer belong to
the triangulation and to put edges back into the priority queue when they
become safe for contraction. Details are omitted. The running time of the al-
gorithm depends on the size of local neighborhoods in the triangulation and on
the data structure we maintain to represent it. Under reasonable assumptions,
the most time-consuming step is the maintenance of the priority queue, which
for each step is only logarithmic in the number of edges.

Topological type. We now consider the question whether or not the con-
traction of an edge preserves the topological type. Define the link of an edge
ab as the set of vertices that span triangles with ab, and the link of a vertex
a as the set of vertices that span edges with a and the set of edges that span
triangles with a,

Lk ab = {x ∈ K | abx ∈ K};
Lka = {x, xy ∈ K | ax, axy ∈ K}.

Since the topological type of K is that of a 2-manifold without boundary, each
edge link is a pair of vertices and each vertex link is a closed curve made up of
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edges and vertices in K. Let L be obtained from K by contracting the edge ab.
We show that the contraction of the edge ab preserves the topological type of
the surface iff the links of the endpoints, a and b, meet in exactly two points,
namely in the vertices x and y in the link of ab, as in Figure II.13. We will
simplify language by blurring the difference between a triangulation and the
topological space it triangulates.

Link Condition Lemma. The triangulations K and L have the same topo-
logical type iff Lkab = Lka ∩ Lk b.

Proof. We have Lk ab ⊆ Lk a,Lk b, by definition. The only possible violation
to the link condition is therefore an extra edge or vertex in the intersection of
the two vertex links. If Lk a and Lk b share an edge then the contraction of ab
creates a triangle sticking out of the surface, contradicting that L triangulates
a 2-manifold. Similarly, if the two vertex links share a vertex z 6∈ Lk ab then
the contraction of ab creates an edge cz that belongs to four triangles, again
contradicting that L triangulates a 2-manifold.

a b
c

Figure II.14: Mapping the neighborhood of c in L to a triangulated polygon and
overlaying it with a similar mapping of the neighborhoods of a and b in K.

To prove the other direction, we draw the link of c in L as a convex polygon
in R

2; see Figure II.14. Using Tutte’s Theorem from the previous chapter,
we can decompose the polygon by drawing the triangles incident to c in L.
Similarly, we can decompose the polygon by drawing the triangles incident to
a and b in K. We superimpose the two triangulations and refine to get a new
triangulation, if necessary. The result is mapped back toK and to L, effectively
refining the neighborhoods of a and b in K and that of c in L. The link of c
and everything outside that link is untouched by the contraction. Hence, on
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and outside the link K and L are the same and inside the link K and L are
now isomorphic by refinement. It follows that K and L are isomorphic and
therefore have the same topological type.

Squared distance. To talk about the geometric meaning of shape, we now
assume that K is embedded in R3, with straight edges and flat triangles. To
develop an error measure, we use the planes spanned by the triangles. Letting
u ∈ S2 be the unit normal of a plane h and δ ∈ R its offset, we can write h as
the set of points y ∈ R3 for which 〈y, u〉 = −δ. Using matrix notation for the
scalar product, the signed distance of a point x ∈ R3 from h is

d(x, h) = (x− y)T · u = xT · u+ δ.

Defining xT = (xT , 1) and uT = (uT , δ), we can write this as a four-dimensional
scalar product, xT · u. We use this to express the sum of squared distances
from a set of planes in matrix form. Letting H be a finite set of planes, this
gives a function EH : R3 → R defined by

EH(x) =
∑

hi∈H

d2(x, hi)

=
∑

hi∈H

(xT · ui)(uTi · x)

= xT ·
(

∑

hi∈H

ui · uTi

)

· x.

Hence EH(x) = xT ·Q · x, where

Q =
∑

hi∈H
(ui · uTi ) =









A P Q U
P B R V
Q R C W
U V W Z









is a symmetric, four-by-four matrix we refer to as the fundamental quadric of
the map EH . Writing xT = (x1, x2, x3) we get

EH(x) = Ax2
1 +Bx2

2 + Cx2
3 + 2(Px1x2 +Qx1x3 +Rx2x3)

+ 2(Ux1 + V x2 +Wx3) + Z.

We see that EH is a quadratic map that is non-negative and unbounded.
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Error assessment. In the application, we are interested in measuring the
damage to the geometric form caused by contracting the edge ab to the new
vertex c. We think of the operation as a map between vertices, ϕ : VertK →
VertL, defined by ϕ(a) = ϕ(b) = c and ϕ(x) = x for all x 6= a, b. Letting K0

be the initial triangulation, we obtain L by a sequence of edge contractions
giving rise to a composition of vertex maps, which is again a vertex map,
ϕ0 : VertK0 → VertL. The vertices in Vc = ϕ−1

0 (c) ⊆ VertK0 all map to c
and we let H be the set of planes spanned by triangles in K0 incident to at
least one vertex in Vc. Finally, we define the error of the contraction of ab as
the minimum, over all possible placements of c as a point in R3, of the sum of
squared distances from the planes,

Error(ab) = min
c∈R3

EH(c).

For generic sets of planes, this minimum is unique and easy to compute. The
gradient of E = EH at a point x is the vector of steepest increase, ∇E(x) =
( ∂E∂x1

(x), ∂E∂x2
(x), ∂E∂x3

(x)). It is zero iff x minimizes E. The derivative with
respect to xi can be computed using the multiplication rule,

∂E

∂xi
=

∂xT

∂xi
·Q · x + xT ·Q · ∂x

∂xi

= Q[i]T · x + xT ·Q[i],

where Q[i] is the i-th column and Q[i]T is the i-th row of Q. The point c ∈ R3

that minimizes E can thus be computed by setting ∂E
∂xi

to zero, for i = 1, 2, 3,
and solving the resulting system of three linear equations.

Maintenance of the error measure. It can be expensive to compute the
fundamental quadric from scratch but relatively inexpensive to maintain it
throughout the algorithm. When we contract an edge ab we associate the new
vertex with the union of the two plane sets, Hc = Ha ∪Hb. Unfortunately, this
is not a disjoint union and we cannot just add the two quadrics. Instead, we use
inclusion-exclusion and subtract the quadric of Hab = Ha ∩Hb, which we store
with the contracted edge. We describe how this works from the beginning.

Starting with the initial complex, K0, we store a quadric with every vertex,
every edge, and every triangle. For a triangle, abx, we store the quadric Qabx

defined by the one plane that contains the triangle. An edge, ab, is shared
by two triangles, abx and aby, and we store the quadric defined by the two
corresponding planes, Qab = Qabx + Qaby. A vertex, a, is shared by the ring
of triangles in its star and we initialize its quadric, Qa, to the sum of the
quadrics of these triangles. Note that the triangles that share the edge ab are
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precisely the ones that share both endpoints, a and b. This gives rise to a
simple relationship between the sets of planes.

Invariant. Let abx be a triangle in the surface triangulation, with edges ab,
ax, ay and vertices a, b, x. Then Hab = Ha ∩Hb and Habx = Hax ∩Hbx.

To maintain these two relations past an edge contraction, it is important that
we limit ourselves to those that satisfy the Link Condition Lemma and therefore
the topological type of the surface. The relations are therefore indeed invariants
of the algorithm. Now consider the contraction of the edge ab. By the Invariant,
the set of planes associated with the edge is the intersection of those of the
endpoints. Hence we can compute the quadric of the new vertex as Qc =
Qa + Qb −Qab. We also get two new edges, cx and cy, and to maintain the
Invariant, we associate each with the union of plane sets of the corresponding
old edges. By the Invariant, these two sets overlap in the plane set of the shared
triangle, which consists of a single plane. Hence, we get Qcx = Qax+Qbx−Qabx

and Qcy = Qay + Qby −Qaby.

Bibliographic notes. The algorithm described in this section is essentially
the surface simplification algorithm by Garland and Heckbert [2]. They com-
bine edge contractions with the error measure remembering the original form
through accumulated quadrics. However, instead of maintaining the quadric
through inclusion-exclusion, they take a short-cut and compute the quadric of
the new vertex as the sum of quadrics of the endpoints of the contracted edge,
without removing duplicates. In practice, this makes little difference because
planes contribute at most in triplicates The test for maintaining the topologi-
cal type has been added later and more general versions of the Link Condition
Lemma can be found in [1]. Priority queues are standard tools in computer sci-
ence and implementations are described in most texts on algorithms, including
volume three of Knuth’s pioneering series [3].

[1] T. Dey, H. Edelsbrunner, S. Guha and D. V. Nekhayev. Topology pre-
serving edge contraction. Publ. Inst. Math. (Beograd) (N.S.) 66 (1999), 23-45.

[2] M. Garland and P. S. Heckbert. Surface simplification using quadric error
metrics. Computer Graphics, Proc. siggraph, 1997, 209–216.

[3] D. E. Knuth. Sorting and Searching. The Art of Computer Programming, Vol.
3. Addison-Wesley, Reading, Massachusetts, 1973.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Classifying 2-manifolds (two credits). Characterize the two surfaces de-
picted in Figure II.15 in terms of genus, boundary, and orientability.

Figure II.15: Left: a 2-manifold without boundary obtained by adding tunnels inside
the sphere. We see four tunnel openings and one tunnel passing though a fork of the
other. Right: a 2-manifold with boundary obtained by thickening a graph.

2. 2-coloring (two credits). Let K be a triangulation of an orientable 2-
manifold without boundary. Construct L by decomposing each edge into
two and each triangle into six. To do this, we add a new vertex in the
interior of each edge. Similarly, we add a new vertex in the interior of each
triangle, connecting it to the six vertices in the boundary of the triangle.
The resulting structure is the same as the barycentric subdivision of K,
which we will define in Chapter III.

(i) Show that the vertices of L can be 3-colored such that no two neigh-
boring vertices receive the same color.

(ii) Prove that the triangles of L can be 2-colored such that no two tri-
angles sharing an edge receive the same color.

3. Klein bottle (two credits). Cut and paste the standard polygonal schema
for the Klein bottle (a, a, b, b) to obtain the polygonal schema in which
opposite edges of a square are identified (a, b, a−1, b); see Figure II.3.
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4. Triangulation of 2-manifold (two credits). Let V = {1, 2, . . . , n} be a set
of n vertices and F ⊆

(

V
3

)

a set of ℓ = cardF triangles. Give an algorithm
that takes time at most proportional to n+ ℓ for the following tasks:

(i) decide whether or not every edge is shared by exactly two triangles;

(ii) decide whether or not every vertex belongs to a set of triangles whose
union is a disk.

5. Intersection tests in R3 (two credits). Let a, b, c ∈ R3 and u, v, w ∈ R3

be the vertices of two triangles in space. Write numerical tests for the
following questions:

(i) does u see a, b, c form a left-turn or a right-turn?

(ii) does the line segment with endpoints u and v cross the plane that
passes through a, b, c?

(iii) are the boundaries of the two triangles linked in R3?

6. Irreducible triangulations (three credits). An irreducible triangulation
is one in which every edge contraction changes its topological type. Prove
that the only irreducible triangulation of S2 is the boundary of the tetra-
hedron, which consists of four triangles sharing six edges and four vertices.

7. Graphs on Möbius strip (one credit). Is every graph that can be em-
bedded on the Möbius strip planar?

8. Squared distance minimization (two credits). Let S be a finite set of
points in R

3 and f : R
3 → R be defined by f(x) =

∑

p∈S ‖x− p‖
2
.

(i) Show that f is a quadratic function and has a unique minimum.

(ii) At which point does f attain its minimum?
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Chapter III

Complexes

There are many ways to represent a topological space, one being a decomposi-
tion into simple pieces. This decomposition qualifies to be called a complex if
the pieces are topologically simple and their common intersections are lower-
dimensional pieces of the same kind. Within these requirements, we still have
a great deal of freedom. Particularly attractive are the extreme choices: few
complicated or many simple pieces. The former choice lends itself to hand-
calculations of topological invariants but also to the design of aesthetically
pleasing shapes, such as car bodies and the like. The latter choice is preferred
in computation and automation. Since we focus on computational aspects of
topology, we favor the latter extreme choice of which the simplicial complex is
the prime example.

III.1 Simplicial Complexes
III.2 Convex Set Systems
III.3 Delaunay Complexes
III.4 Alpha Complexes

Exercises

61
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III.1 Simplicial Complexes

In this book, we use simplicial complexes as the prime data structure to repre-
sent topological spaces. In this section, we introduce them in their geometric as
well as abstract forms. The main technical result is the existence of simplicial
maps that approximate continuous maps arbitrarily closely.

Simplices. Let u0, u1, . . . , uk be points in Rd. A point x =
∑k
i=0 λiui is an

affine combination of the ui if the λi sum to 1. The affine hull is the set of
affine combinations. It is a k-plane if the k+1 points are affinely independent by
which we mean that any two affine combinations, x =

∑

λiui and y =
∑

µiui,
are the same iff λi = µi for all i. The k + 1 points are affinely independent iff
the k vectors ui − u0, for 1 ≤ i ≤ k, are linearly independent. In R

d we can
have at most d linearly independent vectors and therefore at most d+1 affinely
independent points.

An affine combination, x =
∑

λiui, is a convex combination if all λi are non-
negative. The convex hull is the set of convex combinations. A k-simplex is the
convex hull of k+ 1 affinely independent points, σ = conv {u0, u1, . . . , uk}. We
sometimes say the ui span σ. Its dimension is dimσ = k. We use special names
for the first few dimensions, vertex for 0-simplex, edge for 1-simplex, triangle
for 2-simplex, and tetrahedron for 3-simplex; see Figure III.1. Any subset of

Figure III.1: From left to right: a vertex, an edge, a triangle, and a tetrahedron. We
note that an edge has two vertices, a triangle has three edges, and a tetrahedron has
four triangles as faces.

affinely independent points is again affinely independent and therefore also
defines a simplex. A face of σ is the convex hull of a non-empty subset of the
ui and it is proper if the subset is not the entire set. We sometimes write τ ≤ σ
if τ is a face and τ < σ if it is a proper face of σ. If τ is a (proper) face of σ we
call σ a (proper) coface of τ . Since a set of size k+1 has 2k+1 subsets, including
the empty set, σ has 2k+1 − 1 faces, all of which are proper except for σ itself.
The boundary of σ, denoted as bdσ, is the union of all proper faces, and the
interior is everything else, intσ = σ − bd σ. A point x ∈ σ belongs to intσ iff
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all its coefficients λi are positive. It follows that every point x ∈ σ belongs to
the interior of exactly one face, namely the one spanned by the points ui that
correspond to positive coefficients λi.

Simplicial complexes. We are interested in sets of simplices that are closed
under taking faces and that have no improper intersections.

Definition. A simplicial complex is a finite collection of simplices K such
that σ ∈ K and τ ≤ σ implies τ ∈ K, and σ, σ0 ∈ K implies σ ∩ σ0 is either
empty or a face of both.

The dimension of K is the maximum dimension of any of its simplices. The
underlying space, denoted as |K|, is the union of its simplices together with the
topology inherited from the ambient Euclidean space in which the simplices
live. A polyhedron is the underlying space of a simplicial complex. A trian-
gulation of a topological space X is a simplicial complex K together with a
homeomorphism between X and |K|. The topological space is triangulable if
it has a triangulation. A subcomplex of K is a simplicial complex L ⊆ K. It
is full if it contains all simplices in K spanned by vertices in L. A particular
subcomplex is the j-skeleton consisting of all simplices of dimension j or less,
K(j) = {σ ∈ K | dimσ ≤ j}. The 0-skeleton is also referred to as the vertex
set, VertK = K(0). Skeleta are generally not full.

A subset of a simplicial complex useful in talking about local neighborhoods
is the star of a simplex τ consisting of all cofaces of τ , St τ = {σ ∈ K | τ ≤ σ}.
Generally, the star is not closed under taking faces. We can make it into a
complex by adding all missing faces. The result is the closed star, St τ , which
is the smallest subcomplex that contains the star. The link consists of all
simplices in the closed star that are disjoint from τ , Lk τ = {υ ∈ St τ | υ ∩ τ =
∅}. It τ is a vertex then the link is just the difference between the closed star
and the star. More generally, it is the closed star minus the stars of all faces of
τ . For example if K triangulates a 2-manifold without boundary then the link
of an edge is a pair of points, a 0-sphere, and the link of a vertex is a cycle of
edges and vertices, a 1-sphere.

Abstract simplicial complex. It is often easier to construct a complex
abstractly and to worry about how to put it into Euclidean space later, if at
all.

Definition. An abstract simplicial complex is a finite collection of sets A
such that α ∈ A and β ⊆ α implies β ∈ A.



64 III Complexes

The sets in A are its simplices. The dimension of a simplex is dimα = cardα−1
and the dimension of the complex is the maximum dimension of any of its
simplices. A face of α is a non-empty subset β ⊆ α, which is proper if β 6= α.
The vertex set is the union of all simplices, VertA =

⋃

A, the collection of all
α such that α ∈ A for some simplex A. A subcomplex is an abstract simplicial
complex B ⊆ A. Two abstract simplicial complexes are isomorphic if there is a
bijection b : VertA→ VertB such that α ∈ A iff b(α) ∈ B. The largest abstract
simplicial complex with a vertex set of size n+ 1 is the n-dimensional simplex
with a total number of 2n+1 − 1 faces. Given a (geometric) simplicial complex
K, we can construct an abstract simplicial complex A by throwing away all
simplices and retaining only their sets of vertices. We call A a vertex scheme
of K. Symmetrically, we call K a geometric realization of A. Constructing
geometric realizations is surprisingly easy if the dimension of the ambient space
is sufficiently high.

Geometric Realization Theorem. Every abstract simplicial complex of
dimension d has a geometric realization in R

2d+1.

Proof. Let f : VertA→ R2d+1 be an injection whose image is a set of points
in general position. Specifically, any 2d+ 2 or fewer of the points are affinely
independent. Let α and α0 be simplices in A with k = dimα and k0 = dimα0.
The union of the two has size card (α ∪ α0) = cardα+cardα0−card (α ∩ α0) ≤
k + k0 + 2 ≤ 2d + 2. The points in α ∪ α0 are therefore affinely independent,
which implies that every convex combination x of points in α ∪ α0 is unique.
Hence, x belongs to σ = conv f(α) as well as to σ0 = conv f(α0) iff x is a
convex combination of α ∩ α0. This implies that the intersection of σ and σ0

is either empty of the simplex conv f(α ∩ α0), as required.

Simplicial maps. The natural equivalent of continuous maps between topo-
logical spaces are simplicial maps between simplicial complexes, which we now
introduce. Let K be a simplicial complex with vertices u0, u1, . . . , un. Ev-
ery point x ∈ |K| belongs to the interior of exactly one simplex in K. Let-

ting σ = conv {u0, u1, . . . , uk} be this simplex, we have x =
∑k
i=0 λiui with

∑k
i=0 λi = 1 and λi > 0 for all i. Setting bi(x) = λi for 0 ≤ i ≤ k and bi(x) = 0

for k+1 ≤ i ≤ n we have x =
∑n

i=0 bi(x)ui and we call the bi(x) the barycentric
coordinates of x in K.

We use these coordinates to construct a piecewise linear, continuous map
from a particular kind of map between the vertices of two simplicial complexes.
A vertex map is a function ϕ : VertK → VertL with the property that the
vertices of every simplex in K map to vertices of a simplex in L. Then ϕ can
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be extended to a continuous map f : |K| → |L| defined by

f(x) =

n
∑

i=0

bi(x)ϕ(ui),

the simplicial map induced by ϕ. There is an alternative way to think of this
construction. Fix a vertex uj and consider the map bj : |K| → R which maps
each point x to its j-th barycentric coordinate. The graph of this map has
the shape of a hat, increasing from zero on and outside the link to one at uj.
The map bj is continuous and is sometimes referred to as a basis function.
The simplicial map is thus the weighted sum of the n+ 1 basis functions. To
emphasize that the simplicial map is linear on every simplex, we usually drop
the underlying space from the notation and write f : K → L.
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Figure III.2: A vertex map and its induced simplicial map from the square to the
torus.

As an example, we consider the simplicial map f : [0, 1]2 → T2 illustrated
in Figure III.2. Given the vertex map, the simplicial map is unique and glues
the simplices of the triangulation of the square to obtain a triangulation of
the torus. If the vertex map ϕ : VertK → VertL is bijective and ϕ−1 :
VertL → VertK is also a vertex map then the induced simplicial map f is
a homeomorphism. In this case we call f a simplicial homeomorphism or an
isomorphism between K and L.

Subdivisions. A simplicial complex L is a subdivision of another simplicial
complex K if |L| = |K| and every simplex in L is contained in a simplex
in K. There are many ways to construct subdivisions. A particular one is
the barycentric subdivision, L = SdK, illustrated in Figure III.3. A crucial
concept in its construction is the barycenter of a simplex, which is the average
of its vertices. We proceed by induction over the dimension. To get started, the
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Figure III.3: Left: a simplicial complex consisting of two triangles, six edges, and five
vertices. Middle and right: its first two barycentric subdivisions.

barycentric subdivision of the 0-skeleton is the same, SdK(0) = K(0). Assuming
we have the barycentric subdivision of K(j−1), we construct SdK(j) by adding
the barycenter of every j-simplex as a new vertex and connecting it to the
simplices that subdivide the boundary of the j-simplex.

The diameter of a set in Euclidean space is the supremum over the distances
between its points. Since the simplices of K are point sets in Euclidean space,
their diameters are well defined. The mesh of K is the maximum diameter of
any simplex or, equivalently, the length of its longest edge.

Mesh Lemma. Letting δ be the mesh of the d-dimensional simplicial com-
plex K, the mesh of SdK is at most d

d+1δ.

Proof. Let τ and υ be complementary faces of a simplex σ ∈ K, that is,
τ ∩ υ = ∅ and dim τ + dim υ = dim σ − 1. The line segment connecting the
barycenters of τ and υ has length at most δ, and it splits into two edges in
SdK, in proportions 1 + dim υ to 1 + dim τ . The fraction of length is therefore
between 1

k+1 and k
k+1 , where k = dimσ. Both edges have therefore length at

most k
k+1 ≤ d

d+1 times δ.

By the Mesh Lemma, we can make the diameters of the simplices as small as
we like by iterating the subdivision operation. For n ≥ 1, the n-th barycentric
subdivision of K is SdnK = Sd(Sdn−1K). As n goes to infinity, the mesh of
SdnK goes to zero.

Simplicial approximations. It is sometimes convenient to think of a vertex
star as an open set of points. Formally, we define N(u) =

⋃

σ∈St u intσ. Let K
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and L be simplicial complexes. A continuous map g : |K| → |L| satisfies the
star condition if the image of every vertex star in K is contained in a vertex
star in L, that is, for each vertex u ∈ K there is a vertex v ∈ L such that
g(N(u)) ⊆ N(v). Let ϕ : VertK → VertL map u to the vertex ϕ(u) = v that
exists by the star condition. To understand this new function, we take a point
x in the interior of a simplex σ in K. Its image, g(x), lies in the interior of a
unique simplex τ in L. It follows that the star of every vertex u of σ maps into
the star of a vertex v in L that contains the interior of τ . But this implies that
v is a vertex of τ . We conclude that each vertex u of σ maps to a vertex ϕ(u)
of τ . Hence, ϕ is a vertex map and thus induces a simplicial map f : K → L.
This map satisfies the condition of an simplicial approximation of g, namely
g(N(u)) ⊆ N(f(u)) for each vertex u of K.
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Figure III.4: The circle on the left is mapped into the closed annulus by a continuous
map and a simplicial approximation of that map. Corresponding vertices are labeled
by the same letter.

We illustrated the definitions in Figure III.4. The image we have in mind is
that g and f are not too different. In particular, g(x) and f(x) belong to a
common simplex in L for every x ∈ |K|. Given a continuous map g : |K| → |L|,
it is plausible that we can subdivide K sufficiently finely so that a simplicial
approximation exists. To be sure we prove this fact.

Simplicial Approximation Theorem. If g : |K| → |L| is continuous then
there is a sufficiently large integer n such that g has a simplicial approximation
f : SdnK → L.

Proof. Cover |K| with open sets of the form g−1(N(v)), v ∈ VertL. Since |K|
is compact there is a positive real number λ such that any set of diameter less
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than λ is contained in one of the sets in the open cover. Choose n such that
each simplex in SdnK has diameter less than half of λ. Then each star in K
has diameter less than λ implying it lies in one of the sets g−1(N(v)). Hence g
satisfies the star condition implying the existence of a simplicial approximation.

Bibliographic notes. The terminology we use for abstract and geometric
simplicial complexes follows the one in Munkres [3]. The geometric realiza-
tion of a d-dimensional abstract simplicial complex in R2d+1 goes back to Karl
Menger. We have seen that 2d+ 1 dimensions suffice for the geometric realiza-
tion of any d-dimensional abstract simplicial complex. Complexes that require
that many dimensions have been described by Flores [1] and van Kampen [5].
An example of such a complex is the d-skeleton of the (2d+ 2)-simplex, which
does not embed in R2d. For d = 1 this is the complete graph of five vertices,
which does not embed in the plane as discussed in Chapter I.

A stronger version of the Simplicial Approximation Theorem played an im-
portant role in the development of combinatorial topology during the first half
of the twentieth century. Known as the Hauptvermutung (German for “main
conjecture”), it claimed that any two simplicial complexes that triangulate the
same topological space have isomorphic subdivisions. This turned out to be
correct for simplicial complexes of dimension 2 and 3 but not higher. The first
counterexample found by Milnor was a simplicial complex of dimension 7 [2].
We refer to the book edited by Ranicki [4] for further information on the topic.

[1] A. Flores. Über n-dimensionale Komplexe die in R2n+1 selbstverschlungen sind.
Ergeb. Math. Koll. 6 (1933/34), 4–7.

[2] J. Milnor. Two complexes which are homeomorphic but combinatorially distinct.
Ann. of Math. 74 (1961), 575–590.

[3] J. R. Munkres. Elements of Algebraic Topology. Perseus, Cambridge, Mas-
sachusetts, 1984.

[4] A. A. Ranicki (editor). The Hauptvermutung Book. Kluwer, Dordrecht, the
Netherlands, 1996.

[5] E. R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ.
Hamburg 9 (1933), 72-78.
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III.2 Convex Set Systems

Simplicial complexes often arise as intersection patterns of collections of sets.
We begin with two fundamental results for convex sets and then proceed to the
special case in which the sets are geometric balls.

Sets with common points. Let F be a finite collection of convex sets in
Rd. The smaller the dimension of the ambient Euclidean space, d, the more
restrictive are the intersection patterns we observe. For example, if d = 1 and
we have three intervals that intersect in pairs then it is not possible that they
do not intersect as a triplet. This result generalizes to higher dimensions.

Helly’s Theorem. Let F be a finite collection of closed, convex sets in Rd.
Every d+ 1 of the sets have a non-empty common intersection iff they all have
a non-empty common intersection.

Proof. We prove only the non-obvious direction, by induction over the dimen-
sion, d, and the number of sets, n = cardF . The implication is clearly true for
d = 1 and all n as well as for n = d+1. Now suppose we have a minimal coun-
terexample consisting of n > d+1 closed, convex sets in Rd, which we denote as
X1, X2, . . . , Xn. By minimality of the counterexample, the set Yn =

⋂n−1
i=1 Xi

is non-empty and disjoint from Xn. Because Yn and Xn are both closed and
convex, we can find a (d−1)-dimensional plane h that separates and is disjoint
from both sets, as in Figure III.5. Let F ′ be the collection of sets Zi = Xi ∩ h,

Xn

h

Yn

Figure III.5: The (d − 1)-plane separates the n-th set from the common intersection
of the first n − 1 sets in F .

for 1 ≤ i ≤ n−1, each a non-empty, closed, convex set in Rd−1. By assumption,
any d of the first n− 1 sets Xi have a common intersection with Xn. It follows
that the common intersection of the d sets contains points on both sides of h
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implying that any d of the sets Zi have a non-empty common intersection. By
minimality of the counterexample, this implies

⋂

F ′ 6= ∅. This intersection is

⋂

F ′ =

n−1
⋂

i=1

(Xi ∩ h) = Yn ∩ h.

But this contradicts the choice of h as a (d− 1)-plane disjoint from Yn.

Convexity is a convenient but unnecessarily strong requirement in Helly’s
Theorem. Indeed, the conclusion holds if the sets in F are closed and all their
non-empty common intersections are contractible, a property we will define
shortly.

Homotopy type. We prepare the next step by introducing a notion of equiv-
alence between topological spaces that is weaker than topological equivalence.
We begin by considering two continuous maps, f, g : X → Y. A homotopy
between f and g is another continuous map H : X× [0, 1]→ Y that agrees with
f for t = 0 and with g for t = 1, that is, H(x, 0) = f(x) and H(x, 1) = g(x) for
all x ∈ X. We may think of t ∈ [0, 1] as time and the homotopy as a time-series
of functions ft : X → Y defined by ft(x) = H(x, t). It starts at f0 = f and
ends at f1 = g. Noting that this defines an equivalence relation, we write f ≃ g
and call f and g if there is a homotopy between them.

This notion can be used to relate spaces. Beginning with a special case, we
call Y ⊆ X a retract of X if there is a continuous map r : X→ Y with r(y) = y
for all y ∈ Y. The map r is called a retraction. We call Y a deformation
retract and r a deformation retraction if there is a homotopy between r and
the identity on X, r ≃ idX. Clearly, every deformation retract is a retract but
not the other way round. For example, a connected interval on the circle is
a retract but not a deformation retract of S1. An insubstantial generalization
of the notion of deformation retract is obtained by considering maps in both
directions. Specifically, we call two not necessarily nested topological spaces,
X and Y, homotopy equivalent if there are continuous maps f : X → Y and
g : Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY. This gives an equivalence
relation and we write X ≃ Y and say they have the same homotopy type if
they are homotopy equivalent. The maps f and g are sometimes referred to as
homotopy equivalences and as homotopy inverses of each other.

To see that having the same homotopy type indeed generalizes being a de-
formation retract we note if r : X → Y is a deformation retraction then f = r
and g = idY are continuous maps that satisfy the conditions and thus establish
X ≃ Y. If Y is a single point then X has the homotopy type of a point and we
say X is contractible.
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Nerves. We now return to our finite collection of sets, F . Without assuming
the sets are convex, we define the nerve to consist of all non-empty subcollec-
tions whose sets have a non-empty common intersection,

NrvF = {X ⊆ F |
⋂

X 6= ∅}.
It is always an abstract simplicial complex, no matter what sets we have in
F . Indeed, if

⋂

X 6= ∅ and Y ⊆ X then
⋂

Y 6= ∅. We can realize the
nerve geometrically in some Euclidean space, so it makes sense to talk about
its topology type and its homotopy type. We will sometimes do this without
explicit construction of the geometric realization. As an example, consider the
collection of four sets in Figure III.6 whose union is obviously not homotopy
equivalent to the nerve. Nevertheless, taking the nerve preserves the homotopy
type if the sets in the collection are convex. This is a fundamental result which
we state formally but without proof.

Figure III.6: A collection of four sets whose union is a disk with three holes in the
plane. The nerve is the boundary complex of the tetrahedron which has the homotopy
type of a sphere.

Nerve Theorem. Let F be a finite collection of closed, convex sets in Eu-
clidean space. Then the nerve of F and the union of the sets in F have the
same homotopy type.

Similar to Helly’s Theorem, the requirement on the sets can be relaxed without
sacrificing the conclusion. Specifically, if

⋃

F is triangulable, all sets in F are
closed, and all non-empty common intersections are contractible then NrvF ≃
⋃

F . We note that Helly’s Theorem can be interpreted as a constraint on the
structure of the nerve. Specifically, if the sets live in Rd then a subcollection
of k ≥ d+ 1 sets cannot have all

(

k
d+1

)

d-simplices in the nerve without having
the entire k-simplex in the nerve.
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Čech complexes. We now consider the special case in which the convex sets
are closed geometric balls, all of the same radius, r. Let S be a finite set of
points in Rd and write Bx(r) = x + rBd for the closed ball with center x and
radius r. The Čech complex of S and r is isomorphic to the nerve of this
collection of balls,

Čech(r) = {σ ⊆ S |
⋂

x∈σ
Bx(r) 6= ∅}.

Clearly, a set of balls has a non-empty intersection iff their centers lies inside
a common ball of the same radius. Indeed, a point y belongs to all balls
iff ‖x− y‖ ≤ r for all centers x. An easy consequence of Helly’s Theorem is
therefore that every d+1 points in S are contained in a common ball of radius r
iff all points in S are. This is Jung’s Theorem which predates the more general
theorem by Helly. The Čech complex does not necessarily have a geometric
realization in Rd but it is fine as an abstract simplicial complex; see Figure
III.7. For larger radius, the disks are bigger and create more overlaps while

Figure III.7: Nine points with pairwise intersections among the disks indicated by
straight edges connecting their centers. The Čech complex fills nine of the ten possible
triangles as well as the two tetrahedra. The only difference between the Vietoris-Rips
and the Čech complexes is the tenth triangle, which belongs only to the former.

retaining the ones for smaller radius. Hence Čech(r0) ⊆ Čech(r) whenever
r0 ≤ r. If we continuously increase the radius, from 0 to ∞, we get a discrete
family of nested Čech complexes. We will come back to this construction later.

Smallest enclosing balls. Beyonds sets of two points it seems cumbersome
to recognize the ones that form simplices in the Čech complex. Nevertheless,
there is a fast algorithm for the purpose.
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Let σ ⊆ S be a subset of the given points. We have seen that deciding
whether or not σ belongs to Čech(r) is equivalent to deciding whether or not
σ fits inside a ball of radius r. Let the miniball of σ be the smallest closed
ball that contains σ, which we note is unique. The radius of the miniball is
smaller than or equal to r iff σ ∈ Čech(r), so finding it solves our problem.
Observe that the miniball is already determined by a subset of k + 1 ≤ d + 1
of the points, which all lie on its boundary. If we know this subset then we can
verify the miniball by testing that it indeed contains all the other points. In
a situation in which we have many more points than dimensions, the chance
that a point belongs to this subset is small and discarding it is easy. This is
the strategy of the Miniball Algorithm. It takes two disjoint subsets τ and υ
of σ and returns the miniball that contains all points of τ in its interior and all
points of υ on its boundary. To get the miniball of σ we call MiniBall(σ, ∅).

ball MiniBall(τ, υ)
if τ = ∅ then compute the miniball B of υ directly

else choose a random point u ∈ τ ;
B = MiniBall(τ − {u}, υ);
if u 6∈ B then

B = MiniBall(τ − {u}, υ ∪ {u})
endif

endif; return B.

When τ is empty, we have a set υ of at most d+1 points, which we know all lie
on the boundary. Assuming the dimension, d, is a constant, we can compute
their miniball directly and in constant time. To analyze the running time, we
ask how often we execute the test “u 6∈ B”. Let tj(n) be the expected number
of such tests for calling MiniBall with n points in τ and j = d + 1 − cardυ
possibly open positions on the boundary of the miniball. Obviously, tj(0) = 0,
and it is reassuring that the constant amount of work needed to compute the
ball for the at most d+ 1 points in υ is payed for by the test that initiated the
call. Consider n > 0. We have one call with parameters n− 1 and j, one test
“u 6∈ B”, and one call with parameters n− 1 and j − 1. The probability that
the second call indeed happens is at most j out of n. Hence,

tj(n) ≤ tj(n− 1) + 1 +
j

n
· tj−1(n− 1).

Setting j = 0 we get t0(n) ≤ t0(n− 1) + 1 and therefore t0(n) ≤ n. Similarly,
t1(n) ≤ t1(n − 1) + 2 ≤ 2n. More generally, we get tj(n) ≤ (j + 1)!n, which
is a constant times n since j ≤ d + 1 is a constant. In summary, for constant
dimension the algorithm takes expected constant time per point.
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Vietoris-Rips complexes. Instead of checking all subcollections, we may
just check pairs and add 2- and higher-dimensional simplices whenever we can.
This simplification leads to the Vietoris-Rips complex of S and r consisting of
all subsets of diameter at most 2r,

Vietoris-Rips(r) = {σ ⊆ S | diamσ ≤ 2r}.

Clearly, the edges in the Vietoris-Rips complex are the same as in the Čech
complex. Furthermore, Čech(r) ⊆ Vietoris-Rips(r) because the latter contains
every simplex warranted by the given edges. We now prove that the contain-
ment relation can be reversed if we are willing to increase the radius of the
Čech complex by a multiplicative constant.

Vietoris-Rips Lemma. Letting S be a finite set of points in some Euclidean
space and r ≥ 0, we have Vietoris-Rips(r) ⊆ Čech(

√
2r).

Proof. A simplex is regular if all its edges have the same length. A convenient
representation for dimension d is the standard d-simplex, ∆d, spanned by the
endpoints of the unit coordinate vectors in Rd+1; see Figure III.8. Each edge of

0

z

Figure III.8: The standard triangle connecting the unit coordinate vectors in R
3.

∆d has length
√

2. By symmetry, the distance of the origin from the standard
simplex is its distance from the barycenter, the point z whose d+1 coordinates
are all equal to 1

d+1 . That distance is therefore ‖z‖ = 1/
√
d+ 1. The barycen-

ter is also the center of the smallest d-sphere that passes through the vertices of
∆d. Writing rd for the radius of that sphere, we have r2d = 1−‖z‖2 = d

d+1 . For
dimension 1, this is indeed half the length of the interval, and for dimension
2, it is the radius of the equilateral triangle. As the dimension goes to infinity,
the radius grows and approaches 1 from below. Any set of d+1 or fewer points



III.2 Convex Set Systems 75

for which the same d-ball of radius rd is the miniball has a pair at distance√
2 or larger. It follows that every simplex of diameter

√
2 or less belongs to

Čech(rd). Multiplying with
√

2r we get Vietoris-Rips(r) ⊆ Čech(
√

2rrd). Since
rd ≤ 1 for all d, the latter is a subcomplex of Čech(

√
2r), which implies the

claimed subcomplex relationship.

Bibliographic notes. Helly proved his theorem at the beginning of last cen-
tury, first for convex sets and then for sets with contractible common intersec-
tions [4, 5]. The concept of nerve has been introduced at about the same time
by Alexandrov [1]. The Nerve Theorem goes back to Borsuk [2], Leray [6], and
others. It has a complicated literature, with version differing in the generality
of the assumption and the strength of the conclusion. The Čech complexes are
inspired by the theory of Čech homology, from which they borrow their name.
The Vietoris-Rips complex appears in Vietoris [7] and in later work by Rips;
see [3]. Algorithms for finding the smallest ball enclosing a finite set of points
have been studied in computational geometry, culminating in the randomized
minidisk algorithm of Welzl which has versions that are efficient even for large
sets in high dimensions [8].
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III.3 Delaunay Complexes

In this section, we introduce a geometric constructions that limits the dimension
of the simplices we get from a nerve. The main new structures are the Voronoi
diagram and the Delaunay complex of a finite set of points. We begin by
studying the inversion of space.

Inversion. Recall that Sd is the d-dimensional sphere with center at the
origin and unit radius in Rd+1. To invert Rd+1, we map each point x 6= 0 to
the point on the same half-line whose distance from the origin is one over the
distance of x from 0. More formally, the inversion maps x to ι(x) = x/‖x‖2. It
exchanges inside with outside and leaves points on Sd fixed. Clearly, ι(ι(x)) =
x. We construct the image of a point x inside S

d by drawing right-angled
triangles. First, we get a point p ∈ Sd such that 0xp has a right angle at x.
Second, we choose x′ on the half-line of x such that 0px′ has a right angle at
p. The angle at 0 is the same in both so the two triangles are similar. Hence,
‖x‖ : ‖p‖ = ‖p‖ : ‖x′‖ which implies ‖x‖‖x′‖ = ‖p‖2 = 1 and thus x′ = ι(x).
We use this construction to show that the inversion maps spheres to spheres.
We note, however, that it generally does not map centers to centers.

0xx’ y’ y

z’

z

Figure III.9: As z sweeps out the circle passing through x and y, its image, z′ = ι(z),
sweeps out the circle passing through x′ and y′.

Inversion Lemma. Let Σ be a d-sphere in Rd+1. If 0 6∈ Σ then ι(Σ) is a
d-sphere and if 0 ∈ Σ then ι(Σ) is a d-plane.

Proof. Consider first the case in which Σ does not pass through the origin, as
in Figure III.9. If 0 is the center of Σ then the result is obvious, so assume 0 is
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not the center. Draw the line passing through 0 and the center; it intersects Σ
in points x and y, which we invert to get points x′ = ι(x) and y′ = ι(y). Let z
be another point on Σ and z′ = ι(z) its inverse. Then ‖x‖‖x′‖ = ‖z‖‖z′‖ = 1
which implies that the triangles 0xz and 0z′x′ are similar. By the same token,
0yz and 0z′y′ are similar. But xyz has a right angle at z implying the angles
at x′ and y′ inside x′y′z′ add up to a right angle. It follows that x′y′z′ has a
right angle at z′. As z travels on Σ, the sphere with diameter xy, the image z′

travels on ι(Σ), the sphere with diameter x′y′. What happens when Σ passes
through the origin, say 0 = x? Then the triangle 0y′z′ has a right angle at y′.
Equivalently, the image of Σ is the plane normal to the vector y and passing
through the point y′.

The Inversion Lemma suggests we think of a d-plane as a special kind of
d-sphere, namely one that passes through the point at infinity.

Stereographic projection. The inversion can be defined relative to any
center z ∈ Rd+1 and any radius r > 0, that is, ιz,r(x) = r · ι(x−zr ) + z. It is
not difficult to check that x and x′ = ιz,r(x) indeed lie on the same half-line
emanating from z and the product of their distances is ‖x− z‖‖x′ − z‖ = r2,
as desired. We consider the special case in which the center is the point N =

N

Figure III.10: The stereographic projection maps a circle on the unit sphere to a
circle in the plane. If the circle on the sphere passes through the north-pole then its
image is a line, that is, a circle that passes through the point at infinity.

(0, . . . , 0, 1), the north-pole of Sd, and the radius is r =
√

2, the Euclidean
distance between the north-pole and the equator. The image of S

d is the d-
plane of points with vanishing (d + 1)-st coordinates, which we denote as Rd.
The stereographic projection is the restriction of this particular inversion to
the unit sphere, that is, ς : Sd − {N} → Rd defined by ς(x) = ιN,

√
2(x), as
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sketched in Figure III.10. Similar to the inversion, the stereographic projection
preserves spheres.

Stereographic Projection Lemma. Let Σ′ be a (d− 1)-sphere on S
d. If

N 6∈ Σ′ then ς(Σ′) is a (d−1)-sphere and if N ∈ Σ′ then ς(Σ′) is a (d−1)-plane
in Rd.

Indeed, every (d − 1)-sphere considered in the lemma is the intersection of Sd

with another d-sphere. Its image is therefore the intersection of Rd with the
image of the d-sphere, which is either a d-sphere or a d-plane. The intersection
is thus either a (d−1)-sphere or a (d−1)-plane. As before, we consider a plane
as a special sphere that passes through the point at infinity.

Voronoi diagram. We use the stereographic projection and the more general
inversion to elucidate the construction of a particular simplicial complex from
a finite set S ⊆ Rd. The Voronoi cell of a point u in S is the set of points for
which u is the closest, Vu = {x ∈ Rd | ‖x− u‖ ≤ ‖x− v‖, v ∈ S}. It is the

Figure III.11: The Voronoi diagram of nine points in the plane. By definition, each
vertex of the diagram is equally far from the points that generate the incident Voronoi
cells and further from all other points in S.

intersection of half-spaces of points at least as close to u as to v, over all points
v in S. Hence, Vu is a convex polyhedron in Rd. Any two Voronoi cells meet
at most in a common piece of their boundary, and together the Voronoi cells
cover the entire space, as illustrated in Figure III.11. The Voronoi diagram of
S is the collection of Voronoi cells of its points.

We will shortly use a generalization of the concept to points u with real
weights wu. The weighted squared distance, or power, of a point x ∈ Rd from
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u is then πu(x) = ‖x− u‖2 − wu. For positive weight, we can interpret the
weighted point as the sphere with center u and square radius wu. For a point
x outside this sphere, the power is positive and equal to the square length of
a tangent line segment from x to the sphere. For x on the sphere the power
vanishes, and for x inside the sphere the power is negative. The bisector of two
weighted points is the set of points with equal power from both. Just like in
the unweighted case, the bisector is a plane normal to the line connecting the
two points, except that is not necessarily halfway between them; see Figure
III.12. Given a finite set of weighted points, we can thus define the weighted

Figure III.12: The bisectors of pairs of weighted points. From left to right: two
disjoint circles side by side, two intersecting circles, and two nested circles.

Voronoi cell, or power cell, of u as the set of points x ∈ Rd with πu(x) ≤ πv(x)
for all weighted points v in the set. Finally, the weighted Voronoi diagram, or
power diagram, is the set of power cells of the weighted points.

Lifting. We get a different and perhaps more illuminating view of the Voronoi
diagram by lifting its cells to one higher dimension. Let S be a finite set of
points in Rd, as before, but draw them in Rd+1, adding zeros as (d + 1)-st
coordinates. Map each point u ∈ S to Sd using the inverse of the stereographic
projection, and let Πu be the d-plane tangent to Sd touching the sphere in the
point ς−1(u), as illustrated in Figure III.13. Using inversion, we now map each
d-plane Πu to the d-sphere Σu = ι(Πu). It passes through the north-pole and is
tangent to Rd, the preimage of Sd. The arrangements of planes and of spheres
are closely related to the Voronoi diagram. We focus on the spheres first.

First Sphere Lemma. A point x ∈ Rd belongs to the Voronoi cell of u ∈ S
iff the first intersection of the directed line segment from x to N is with the
d-sphere Σu.

Proof. Interpret the sphere Σu as a weighted point, namely its center with
weight equal to the square of its radius. The power of a point x is the squared
length of a tangent line segment, which is equal to ‖x− u‖2 if x ∈ Rd. It
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N

u v
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u

Figure III.13: We map the points u and v in R
1 to the lines Πu and Πv tangent

to S
1 and further to the circles Σu and Σv passing through N and tangent to R

1.
The dashed line connecting N and the midpoint between u and v passes through the
intersection of the two circles and the intersection of the two lines.

follows that the weighted Voronoi cell of the weighted center intersect R
d in

the Voronoi cell of u. The claim follows because all bisectors of the weighted
points pass through N .

Switching from spheres to planes we get a similar characterization of the
Voronoi diagram in terms of tangent planes.

First Plane Lemma. A point x ∈ Rd belongs to the Voronoi cell of u ∈ S
iff the first intersection of the directed line segment from N to x is with the
d-plane Πu.

Delaunay triangulation. The Delaunay complex of a finite set S ⊆ Rd is
isomorphic to the nerve of the Voronoi diagram,

Delaunay = {σ ⊆ S |
⋂

u∈σ
Vu 6= ∅}.

We say the set S is in general position if no d+2 of the points lie on a common
(d − 1)-sphere. This assumption implies that no d + 2 Voronoi cells have a
non-empty common intersection. Equivalently, the dimension of any simplex
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in the Delaunay complex is at most d. Assuming general position, we get a
geometric realization by taking convex hulls of abstract simplices, as in Figure
III.14. The result is often referred to as the Delaunay triangulation of S. To

Figure III.14: The Delaunay triangulation superimposed on the Voronoi diagram. No
four of the given points are cocircular implying the Delaunay complex has simplices
of dimension at most two and a canonical geometric realization in R

2.

see that this construction gives indeed a geometric realization of the Delaunay
complex, we lift the points to the set ς−1(S) on Sd. Similarly, we lift a general
point x ∈ R

d to the d-plane Πx tangent to S
d at the point ς−1(x). Keeping

the same normal direction, we move this plane toward N . This corresponds to
growing a (d − 1)-sphere around x. The first point encountered by the plane
corresponds to the first point encountered by the sphere, which is therefore the
nearest to x. This suggests we add N to the set of lifted points and we take the
convex hull in Rd+1. The boundary of the resulting convex polytope consists of
faces up to dimension d, some of which share N as a vertex. We are interested
in the other faces, since they are spanned by points that correspond to Voronoi
cells with a non-empty common intersection. Using central projection from N ,
we map these faces to Rd. By convexity of the polytope, the images of the
faces have no improper intersections. Indeed, we get the geometric realization
of the Delaunay complex, as promised.

Similar to the Voronoi diagram, we can generalize the Delaunay complex to a
finite set of points with real weights. Specifically, the weighted Delaunay com-
plex is the abstract simplicial complex that contains a subset of the weighted
points iff their weighted Voronoi cells have a non-empty common intersection.
In contrast to the unweighted case, the cell of a weighted point can be empty, a
difference that is sometimes overlooked. As a consequence, the vertex set of the
weighted Delaunay triangulation is a subset and not necessarily the entire set
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of given weighted points. Assuming general position, this complex can again
be geometrically realized by taking convex hulls of the abstract simplices. The
appropriate notion of general position is that no point of Rd has the same power
from more than d + 1 of the weighted points. This property is satisfied with
probability one, a necessary requirement for a general position assumption.

Bibliographic notes. Voronoi diagrams are named after Georgy Voronoi
[4] and Delaunay triangulations after Boris Delaunay (also Delone) [2]. Both
structures have been studied centuries earlier by others, including Dirichlet,
Gauß, and Descartes. Weighted Voronoi diagrams are perhaps as old as the
unweighted ones and are known under a plethora of different names, including
Thiessen polygons, Dirichlet tessellations, and power diagrams; see the survey
article by Aurenhammer [1]. Their dual weighted Delaunay triangulations are
also known under a variety of names, including regular triangulations and
coherent triangulations; see e.g. [3].

[1] F. Aurenhammer. Voronoi diagrams — a study of a fundamental geometric data
structure. ACM Comput. Surveys 23 (1991), 345–405.

[2] B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematich-
eskii i Estestvennyka Nauk 7 (1934), 793–800.

[3] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky. Discriminants, Re-
sultants and Multidimensional Determinants. Birkhäuser, Boston, Massachusetts,
1994.

[4] G. Voronoi. Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. J. Reine Angew. Math. 133 (1907), 97–178, and 134 (1908),
198–287.



III.4 Alpha Complexes 83

III.4 Alpha Complexes

In this section, we use a radius constraint to introduce a family of subcomplexes
of the Delaunay complex. These complexes are similar to the Čech complexes
but differ from them by having canonical geometric realizations.

Union of balls. Let S be a finite set of points in Rd and r a non-negative real
number. For each u ∈ S, we let Bu(r) = u+ rBd be the closed ball with center
u and radius r. The union of these balls is the set of points at distance at most
r from at least one of the points in S. To decompose the union, we intersect
each ball with the corresponding Voronoi cell, Ru(r) = Bu(r) ∩ Vu. Since balls
and Voronoi cells are convex, the Ru(r) are also convex. Any two of them
are disjoint or overlap along a common piece of their boundaries, and together
the Ru(r) cover the entire union, as in Figure III.15. The alpha complex is
isomorphic to the nerve of this cover,

Alpha(r) = {σ ⊆ S |
⋂

u∈σ
Ru(r) 6= ∅}.

Since Ru(r) ⊆ Vu, the alpha complex is a subcomplex of the Delaunay complex.

Figure III.15: The union of disks is decomposed into convex regions by the Voronoi
diagram. The corresponding alpha complex is superimposed.

It follows that for a set S in general position, we get a geometric realization
by taking convex hulls of abstract simplices, same as in the previous section.
Furthermore, Ru(r) ⊆ Bu(r) which implies Alpha(r) ⊆ Čech(r). Since the
Ru(r) are closed and convex and together they cover the union, the Nerve
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Theorem implies that the union of balls and Alpha(r) have the same homotopy
type,

⋃

u∈S Bu(r) ≃ |Alpha(r)|.

Weighted alpha complexes. For many applications, it is useful to permit
balls with different sizes. An example of significant importance is the modeling
of biomolecules, such as proteins, RNA, and DNA. Each atom is represented
by a ball whose radius reflects the range of its van der Waals interactions and
thus depends on the atom type. Let therefore S be a finite set of points u with
real weights wu. Same as in the previous section, we think of u as a ball Bu
with center u and squared radius r2u = wu. We again consider the union of the
balls, which we decompose into convex regions, now using weighted Voronoi
cells, Ru = Bu ∩ Vu. This is illustrated in Figure III.16. In analogy to

Figure III.16: Convex decomposition of a union of disks and the weighted alpha
complex superimposed.

the unweighted case, the weighted alpha complex of S is isomorphic to the
nerve of the regions Ru, that is, the set of abstract simplices σ ⊆ S such that
⋂

u∈σ Ru 6= ∅. The weighted alpha complex is a subcomplex of the weighted
Delaunay complex. Assuming the weighted points are in general position, we
get again a geometric realization by taking convex hulls of abstract simplices.
It will be convenient to blur the difference, which we do by using the exact
same notation and dropping the term weighted unless it is essential.

Filtration. There is a free parameter, r, which we may vary to get smaller
and larger unions and smaller and larger alpha complexes. Sometimes, there is



III.4 Alpha Complexes 85

a best choice of r but more often it does not exist. Indeed, the more interesting
object is the family of alpha complexes, since it represents the data at different
scale levels, if you will, and it allows us to draw conclusions from comparisons
between different complexes in the same family.

We first explain the construction in the relatively straightforward unweighted
case. Given a finite set S ⊆ Rd, we continuously increase the radius and thus get
a 1-parameter family of nested unions. Correspondingly, we get a 1-parameter
family of nested alpha complexes, but because they are all subcomplexes of the
same Delaunay complex, which is finite, only finitely many them are distinct.
Writing Ki for the i-th alpha complex in this sequence, we get

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km,

which we call a filtration of Km = Delaunay. What we have here is a stepwise
assembly of the final complex in such a way that every set along the way is a
simplicial complex.

There is more than one way to generalize this construction to the weighted
case. For example, we could grow the corresponding balls uniformly. Starting
with Bu, which has radius

√
wu, we would increase the radius to

√
wu + r

for r > 0. This makes sense in many applications, including the modeling of
biomolecules, but has the complicating side effect that the Voronoi diagram of
the set of balls for different values of r are not necessarily the same. Hence,
the resulting alpha complexes are not necessarily nested. Instead, we let Bu(r)
be the ball with center u and squared radius wu + r2. The points x with equal
power from Bu(r) and Bv(r) satisfy ‖x− u‖2−(wu+r2) = ‖x− v‖2−(wv+r

2).
The squared radius cancels, implying that the same points x form the bisector
for all choices of r. Hence, the union of balls are decomposed into convex sets
by the same weighted Voronoi diagram for any r. Similarly, the weighted alpha
complexes are all subcomplexes of the weighted Delaunay triangulation of the
given points. More specifically, the alpha complex for r0 is a subcomplex of
that for r whenever r0 ≤ r and we get again a filtration that starts with the
empty complex and ends with the entire weighted Delaunay complex, same as
in the unweighted case.

The structure of a simplex. We are interested in the difference between
two contiguous complexes in the filtration, Ki+1 − Ki. For this purpose, we
study the structure of an abstract simplex, and not just because it arises as
element of the alpha complex. Recall that an abstract d-simplex, α, is a set
of d + 1 points. It has 2d+1 subsets, including the empty set and α itself. In
the Hasse diagram of this set system, we draw a node for each subset of α and
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an arc for each subset relation, avoiding arcs that are implied by transitivity.
Drawing the containing sets above the contained ones and keeping subsets of
same cardinality in common rows, we get a picture like in Figure III.17. It looks

Figure III.17: The Hasse diagram of an abstract 3-simplex. From top to bottom, the
rows of nodes contain the 3-simplex, the four 2-simplices, the six 1-simplices, the four
0-simplices, and the empty set.

like the edge-skeleton of the (d+ 1)-dimensional cube, and not by coincidence.
Indeed, we can construct the Hasse diagram inductively, first drawing the Hasse
diagram of a (d − 1)-face. By inductive assumption, this is the edge-skeleton
of a d-cube. When we add the last point, ud, to the simplex, we get a new set
β ∪ {ud} for each old set β. To update the Hasse diagram, we add a second
copy of the d-cube and connect corresponding sets. This is precisely the recipe
for drawing the (d+ 1)-cube.

Another useful method constructs the Hasse diagram one pair of adjacent
nodes at a time. We describe this in the other direction, disassembling the
diagram one pair at a time. Specifically, we allowed ourselves to remove a
pair β0 ⊂ β if β is the only remaining set that properly contains β0. Note
that β is necessarily maximal and we have dimβ0 = dimβ − 1 because the
operation maintains the system as an abstract simplicial complex. It is easy to
see that disassembling the Hasse diagram of the d-simplex this way is possible,
for example by removing the pairs β0 ⊂ β0 ∪ {ud} in the order of decreasing
dimension of β0.

Collapses. Now suppose we have a geometric d-simplex, σ, and we consider
the Hasse diagram of its system of faces, to which we add the empty set to be
consistent with before. The operation of removing a pair β0 ⊂ β corresponds to
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removing a pair of faces τ0 < τ . The condition is that τ is the only remaining
proper coface of τ0. The operation of removing the pair τ0 < τ is referred
to as an elementary collapse, or a (k, k + 1)-collapse when k = dim τ0. As
illustrated in Figure III.18, a d-simplex can be reduced to a single simplex
by a sequence of 2d − 1 elementary collapses. Since the elementary collapses
maintain the set as a simplicial complex, the remaining simplex is necessarily
a vertex. We can apply elementary collapses more generally to any simplicial
complex, K, and not just that consisting of all faces of a simplex. Letting L
be the result of the collapse, we note that there is a deformation retraction
from |K| to |L|. This implies that K and L have the same homotopy type. We
call K collapsible if there is a sequence of elementary collapses that reduces
K to a single vertex. Since collapses preserve the homotopy type, this is only
possible if |K| is contractible. As it turns out, not every simplicial complex
with contractible underlying space is also collapsible.

Figure III.18: From left to right: a tetrahedron, the three triangles left after a (2, 3)-
collapse, the three edges left after three additional (1, 2)-collapses, and the vertex left
after three additional (0, 1)-collapses.

It is convenient to extend the notion of collapse and consider pairs of simplices
τ < υ whose dimensions differ by one or more. Instead of requiring that υ is
the only proper coface of τ , we now require that all cofaces of τ are faces of
υ. Letting k = dim τ and ℓ = dim υ, we get

(

ℓ−k
i

)

simplices of dimension

i + k and therefore a total of 2ℓ−k =
∑ℓ−k

i=0

(

ℓ−k
i

)

simplices between τ and υ,
including the two. The Hasse diagram of this set of faces has the structure of
an (ℓ− k − 1)-simplex, which we have seen can be collapsed down to a vertex
by a sequence of 2ℓ−k−1−1 elementary collapses. Each (i, i+1)-collapse in this
sequence corresponds to an (i+ k + 1, i+ k + 2)-collapse in the sequence that
removes the cofaces of τ . We append a (k, k+1)-collapse which finally removes
τ together with the last remaining proper coface. We refer to this sequence
of 2ℓ−k−1 elementary collapses as a (k, ℓ)-collapse. Since elementary collapses
preserve the homotopy type so do the more general collapses.
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Critical and regular events. Let ri be the smallest radius such that Ki =
Alpha(ri). A simplex τ belongs to Ki+1 but not to Ki if the balls with radius
ri+1 have a non-empty common intersection with the corresponding intersection
of Voronoi cells but the balls with radius ri do not; see Figure III.19. Assuming
general position and dim τ = k, the intersection of Voronoi cells, Vτ =

⋂

u∈τ Vu,
is a convex polyhedron of dimension d − k. By definition of ri+1, the balls
Bu(ri+1) intersect Vτ in a single point, x.

Figure III.19: Left: three points spanning an acute triangle. In the alpha complex
evolution, the three edges appear before a critical event adds the triangle. Right:
three points spanning an obtuse triangle. Two edges appear before a regular event
adds the triangle together with the third edge.

Consider first the case that x lies on the boundary of Vτ . Then there are
other Voronoi polyhedra for which x is the first contact with the union of balls.
Assume Vτ is the polyhedron with highest dimension in this collection and let
Vυ be the polyhedron with lowest dimension. Correspondingly, τ is the simplex
with lowest dimension inKi+1−Ki and υ is the simplex with highest dimension.
The other simplices in Ki+1 −Ki are the faces of υ that are cofaces of τ . In
other words, we obtain Ki from Ki+1 by a (k, ℓ)-collapse, where k = dim τ and
ℓ = dim υ. We call this collapse a regular event in the evolution of the alpha
complex.

Consider second the case that x lies in the interior of Vτ and it is not the
first contact for any higher-dimensional Voronoi polyhedron. In other words,
τ is the only simplex in Ki+1 −Ki. We call the addition of τ a critical!event
because it changes the homotopy type of the complex. Since the union of balls
has the homotopy type of the complex, we know that also the union changes
its type when the radius reaches ri+1.
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Bibliographic notes. Alpha complexes have been introduced for points in
R2 by Edelsbrunner, Kirkpatrick, and Seidel [2]. They have been extended to
R3 in [3] and to weighted points in general, fixed dimension in [1]. The three-
dimensional software written by Ernst Mücke has been popular in many areas
of science and engineering, including structural molecular biology where they
serve as an efficient representation of proteins and other biomolecules. Alpha
complexes have been the starting point of the work on persistent homology to be
discussed in Chapter VII. The difference between critical and regular events
in the evolution of the alpha complex reminds us of the difference between
critical and regular points of a Morse function, which will be studied in Chapter
VI. The connection is direct but made technically difficult because Morse
theory has been developed principally for smooth functions [4]. A lesser known
development of the same ideas for non-smooth functions is based on the concept
of a topological Morse function [5] of which the Euclidean distance and power
functions for a finite points set are examples.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Deciding isomorphism (three credits). What is the computational com-
plexity of recognizing isomorphic abstract simplicial complexes?

2. Order complex (two credits). A flag in a simplicial complex K in Rd is
a nested sequence of proper faces, σ0 < σ1 < . . . < σk. The collection of
flags form an abstract simplicial complex A sometimes referred to as the
order complex of K. Prove that A has a geometric realization in Rd.

3. Barycentric subdivision (one credit). Let K consist of a d-simplex σ
and its faces.

(i) How many d-simplexes belong to the barycentric subdivision, SdK?

(ii) What is the d-dimensional volume of the individual d-simplices in
SdK?

4. Covering a tree (one credit). Let P be a finite collection of closed paths
that cover a tree, that is, each node and each edge of the tree belongs to
at least one path.

(i) Prove that the nerve of P is contractible.

(ii) Is the nerve still contractible if we allow subtrees in the collection?
What about sub-forests?

5. Nerve of stars (one credit). Let K be a simplicial complex. Prove that
K is a geometric realization of the nerve of the collection of vertex stars
in K.

6. Helly for boxes (two credits). The box defined by two points a =
(a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) in Rd consists of all points x whose
coordinates satisfy ai ≤ xi ≤ bi for all i. Let F be a finite collection of
boxes in Rd. Prove that if every pair of boxes has a non-empty intersection
then the entire collection has a non-empty intersection.

7. Alpha complexes (two credits). Let S ⊆ Rd be a finite set of points
in general position. Recall that Čech(r) and Alpha(r) are the Čech
and alpha complexes for radius r ≥ 0. Is it true that Alpha(r) =
Čech(r) ∩Delaunay? If yes, prove the following two subcomplex relations.
If no, give examples to show which subcomplex relations are not valid.
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(i) Alpha(r) ⊆ Čech(r) ∩Delaunay.

(ii) Čech(r) ∩Delaunay ⊆ Alpha(r).

8. Collapsibility (three credits). Call a simplicial complex collapsible if there
is a sequence of collapses that reduce the complex to a single vertex. The
existence of such a sequence implies that the underlying space of the com-
plex is contractible. Describe a finite 2-dimensional simplicial complex
that is not collapsible although its underlying space is contractible.
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Chapter IV

Homology

Homology is a mathematical formalism for talking in a quantitative and un-
ambiguous manner about how a space is connected. Compared to most other,
competing formalisms, homology has faster algorithms but captures less of the
topological information. We should keep in mind, however, that detailed clas-
sifications are not within our computational reach in any case. Specifically, the
question whether or not two triangulated 4-manifolds are homeomeomorphic or
homotopy equivalent are both undecidable. In practice, having fast algorithms
is a definitive advantage and being insensitive to some topological information
is not necessarily a disadvantage. More useful than knowing everything is being
able to assess the importance of information and to rank it accordingly, a topic
we will address directly in Chapter VII. Before we get there, we need to learn
the ropes, which we do in this chapter.

IV.1 Homology Groups
IV.2 Matrix Reduction
IV.3 Relative Homology
IV.4 Exact Sequences

Exercises

93
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IV.1 Homology Groups

Homology groups provide a mathematical language for the holes in a topological
space. Perhaps surprisingly, they capture holes indirectly, by focusing on what
surrounds them. Their main ingredients are group operations and maps that
relate topologically meaningful subsets of a space with each other. In this
section, we introduce the various groups involved in the setup.

Chain complexes. Let K be a simplicial complex and p a dimension. A
p-chain is a formal sum of p-simplices in K. The standard notation for this is
c =

∑

aiσi, where the σi are the p-simplices and the ai are the coefficients. In
computational topology, we mostly work with coefficients ai that are either 0 or
1, called modulo 2 coefficients. Coefficients can, however, be more complicated
numbers like integers, rational numbers, real numbers, elements of a field, or
elements of a ring. Since we are working modulo 2, we can think of a chain as
a set of p-simplices, namely those σi with ai = 1. But when we do consider
chains with other coefficient groups, this way of thinking is more cumbersome,
so we will use it sparingly.

Two p-chains are added componentwise, like polynomials. Specifically, if
c =

∑

aiσi and c′ =
∑

biσi then c+ c′ =
∑

(ai + bi)σi, where the coefficients
satisfy 1 + 1 = 0. In set notation, the sum of two p-chains is their symmetric
difference. The p-chains together with the addition operation form the group
of p-chains denoted as (Cp,+), or simply Cp = Cp(K) if the operation is
understood. Associativity follows from associativity of addition modulo 2. The
neutral element is 0 =

∑

0σi. The inverse of c is −c = c since c+c = 0. Finally,
Cp is abelian because addition modulo 2 is abelian. We have a group of p-chains
for each integer p. For p less than zero and greater than the dimension of K this
group is trivial, consisting only of the neutral element. To relate these groups,
we define the boundary of a p-simplex as the sum of its (p−1)-dimensional faces.
Writing σ = [u0, u1, . . . , up] for the simplex spanned by the listed vertices, its
boundary is

∂pσ =

p
∑

j=0

[u0, . . . , ûj , . . . , up],

where the hat indicates that uj is omitted. For a p-chain, c =
∑

aiσi, the
boundary is the sum of the boundaries of its simplices, ∂pc =

∑

ai∂pσi. Hence,
taking the boundary maps a p-chain to a (p−1)-chain, and we write ∂p : Cp →
Cp−1. Notice also that taking the boundary commutes with addition, that is,
∂p(c + c′) = ∂pc + ∂pc

′. This is the defining property of a homomorphism,
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a map between groups that commutes with the group operation. We will
therefore refer to ∂p as the boundary homomorphism or, shorter, the boundary
map for chains. The chain complex is the sequence of chain groups connected
by boundary homomorphisms,

. . .
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ . . .

It will often be convenient to drop the index from the boundary homomorphism
since it is implied by the dimension of the chain it applies to.

Cycles and boundaries. We distinguish two particular types of chains and
use them to define homology groups. A p-cycle is a p-chain with empty bound-
ary, ∂c = 0. Since ∂ commutes with addition, we have a group of p-cycles,
denoted as Zp = Zp(K), which is a subgroup of the group of p-chains. In other
words, the group of p-cycles is the kernel of the p-th boundary homomorphism,
Zp = ker ∂p. Since the chain groups are abelian so are their cycle subgroups.
Consider p = 0 as an example. The boundary of every vertex is zero (C−1 = 0),
hence, Z0 = ker ∂0 = C0. For p > 0, however, Zp is usually not all of Cp.

A p-boundary is a p-chain that is the boundary of a (p + 1)-chain, c =
∂d with d ∈ Cp+1. Since ∂ commutes with addition, we have a group of p-
boundaries, denoted by Bp = Bp(K), which is again a subgroup of the p-chains.
In other words, the group of p-boundaries is the image of the (p+1)-st boundary
homomorphism, Bp = im ∂p+1. Since the chain groups are abelian so are their
boundary subgroups. Consider p = 0 as an example. Every 1-chain consists of
some number of edges, each with two endpoints. Taking the boundary cancels
duplicate endpoints in pairs, leaving an even number of distinct vertices. Now
suppose the complex is connected. Then for any even number of vertices, we
can find paths that connect them in pairs and we can add the paths to get a
1-chain whose boundary consists of the given vertices. Hence, every even set of
vertices is a 0-boundary and every odd set of vertices is not. If K is connected
this implies that exactly half the 0-cycles are 0-boundaries. The fundamental
property that makes homology work is that the boundary of a boundary is
necessarily zero.

Fundamental Lemma of Homology. ∂p∂p+1d = 0 for every integer p
and every (p+ 1)-chain d.

Proof. We just need to show that ∂p∂p+1τ = 0 for a (p+ 1)-simplex τ . The
boundary, ∂p+1τ , consists of all p-faces of τ . Every (p− 1)-face of τ belongs to
exactly two p-faces, so ∂p(∂p+1τ) = 0.
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It follows that every p-boundary is also a p-cycle or, equivalently, that Bp

is a subgroup of Zp. Figure IV.1 illustrates the subgroup relations among the
three types of groups and their connection across dimensions established by
the boundary homomorphisms.

B

Z

Cp+1

p+1

p+1

C

Z

B

p

p

p

C

Z

B

p−1

p−1

p−1

0 0 0

p+2 p+1 p p−1

Figure IV.1: The chain complex consisting of a linear sequence of chain, cycle, and
boundary groups connected by homomorphisms.

Homology groups. Since the boundaries form subgroups of the cycle
groups, we can take quotients. In other words, we can partition each cycle
group into classes of cycles that differ from each other by boundaries. This
leads to the notion of homology groups and their ranks, which we now define
and discuss.

Definition. The p-th homology group is the p-th cycle group modulo the
p-th boundary group, Hp = Zp/Bp. The p-th Betti number is the rank of this
group, βp = rankHp.

Each element of Hp = Hp(K) is obtained by adding all p-boundaries to a given
p-cycle, c + Bp with c ∈ Zp. If we take any other cycle c′ = c + c′′ in this
class, we get the same class, c′ + Bp = c + Bp, since c′′ + Bp = Bp for every
c′′ ∈ Bp. This class is thus a coset of Hp and is referred to as a homology class.
Any two cycles in the same homology class are said to be homologous, which
is denoted as c ∼ c′. We may take c as the representative of this class but
any other cycle in the class does as well. Similarly, addition of two classes,
(c+ Bp) + (c0 + Bp) = (c+ c0) + Bp, is independent of the representatives and
is therefore well defined. We thus see that Hp is indeed a group, and because
Zp is abelian so is Hp.

The cardinality of a group is called its order. Since we use modulo 2 coeffi-
cients, a group with n generators has order 2n. For example, the base 2 loga-
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rithm of the order of Cp is the number of p-dimensional simplices in the complex.
Furthermore, the group is isomorphic to Zn2 , the group of bit-vectors of length n
together with the exclusive-or operation. This is an n-dimensional vector space
generated by n bit-vectors, for example the n unit vectors. The dimension is
referred to as the rank of the vector space, n = rankZn2 = log2 ordZn2 . The cy-
cles and boundaries exhibit the same vector space structure, except that their
dimension is often less than that of the chains. The number of cycles in each
homology class is the order of Bp, hence the number of classes in the homol-
ogy group is ordHp = ordZp/ordBp. Equivalently, the rank is the difference,
βp = rankHp = rankZp − rankBp. This suggests two alternative methods for

0

y

x

x+y

0+

Bx+y+

x+ y+B1

1

1B

B1

y

x

Figure IV.2: The first homology group of the torus has order 4 and rank 2. In the
middle, the four elements are drawn as the cosets in the group of 1-cycles. On the
right, the four elements are the vertices of a square.

illustrating a homology group, as a partition of the set of cycles or the hy-
percube of dimension βp. As an example consider the torus in Figure IV.2.
There are only four homology classes in H1, namely B1, x + B1, y + B1, and
(x+ y)+B1, where x and y are the non-bounding 1-cycles that go once around
the arm and the hole of the torus. The two corresponding cosets, x + B1 and
y + B1, generate the first homology group.

The homology of a ball. We define a ball to be any triangulated topological
space that is homeomorphic to Bk, the subset of points at distance at most one
from the origin in R

k. What is the homology of a ball? Given our intuition that
homology should measure holes, it should be trivial. This turns out to almost
be true, actually if K is a ball, then Hp(K) = 0 except when p = 0 where it
has rank 1. This is surprisingly hard to prove, however! It is usually done with
a lot of machinery like simplicial approximations and homotopy equivalences.
For now, let’s at least see this directly when K is the set of faces of a single
simplex of dimension k. In this case, the p-chains of K have rank equal to
the number of p-faces, which is

(

k+1
p+1

)

. Let the vertices be u0, u1, . . . , uk and

consider a p-chain c with simplices of the form [ui0 , ui1 , . . . , uip ]. The condition
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∂c = 0 is equivalent to every (p − 1)-simplex occurring an even number of
times as a face of a p-simplex in c. Assuming p > 0, we can construct a (p+1)-
chain d with boundary ∂d = c. This will imply that every p-cycle is also a
p-boundary and, equivalently, that Hp is trivial. Specifically, we let d be the
set of (p+ 1)-simplices of the form [u0, ui0 , ui1 , . . . , uip ]. In words, d picks up a
(p+1)-simplex for each p-simplex in c that does not contain u0 as a vertex. To
see that c is the boundary of d, we distinguish three types of p-faces of simplices
in d. A p-simplex in c that does not contain u0 occurs exactly once as a face
of a (p + 1)-simplex in d and therefore belongs to ∂d. A p-simplex τ not in
c occurs an even number of times, namely once for each time the (p − 1)-face
σ obtained by dropping u0 occurs in the boundary of a simplex in c. By the
same argument, we get a p-simplex τ in c that contains u0 an odd number of
times because one of the p-simplices in c that contains the (p− 1)-face σ does
not give rise to a (p+ 1)-simplex in d, namely τ itself.

This covers all positive dimensions. For p = 0, we have already observed
that exactly half the cycles are boundaries. Hence, H0 = Z0/B0 is isomorphic
to Z2 and β0 = 1, as claimed.

Reduced homology. There is something dissatisfying about the 0-th ho-
mology group behaving differently for the ball than the others. The reason for
the difference is that we have set up things so that β0 counts the components,
but if there is one component there is no hole. More satisfying would be to
count one for two components, namely for the one gap between them. This is
achieved by a small but often useful modification of homology, namely adding
the augmentation map ǫ : C0 → Z2 defined by ǫ(u) = 1 for each vertex u to
the chain complex. We thus get

. . .
∂2−→ C1

∂1−→ C0
ǫ−→ Z2

0−→ 0 −→ . . .

Cycles and boundaries are defined as before and the only difference we notice
is for Z0 which now requires that each 0-cycle has an even number of vertices.
This results in the reduced homology groups, H̃p, and the reduced Betti numbers,

β̃p = rank H̃p. Assuming K is non-empty, we have β̃p = βp for all p ≥ 1 and

β̃0 = β0 − 1. For K = ∅ we have β̃−1 = 1 since both elements of Z2 are (−1)-
cycles, they belong to the kernel, but only one is a (−1)-boundary, it belongs
to the image of the augmentation map.

Induced maps. A continuous map from one topological space to another
maps cycles to cycles and boundaries to boundaries. We can therefore use the
images to construct new homology groups. The are not necessarily the same as
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the ones of the original space since cycles can become boundaries, for example
trivial cycles. We describe this more formally for two simplicial complexes and
a simplicial map, f : K → L, between them. Recall that f takes each simplex
of K linearly to a simplex of L. It induces a map from the chains of K to the
chains of the same dimension of L. Specifically, if c =

∑

aiσi is a p-chain in
K, then f#(c) =

∑

aiτi, where τi = f(σi) if it has dimension p and τi = 0 if
f(σ) has dimension less than p. Writing ∂K and ∂L for the boundary maps in
the two complexes, we note that f# ◦ ∂K = ∂L ◦ f#, that is, the induced map
commutes with the boundary map. This is obvious when f(σi) has dimension
p, since then all (p−1)-faces of σi map to the corresponding (p−1)-faces of τi.
If, on the other hand, f(σi) has dimension less than p, then the (p− 1)-faces of
σi map to simplices of dimension less than p − 1, with the possible exception
of exactly two (p − 1)-faces whose images coincide and cancel each other. So
both f#(∂Kσi) and ∂Lf#(σ) are zero. Note that in the case when f : K → L
is the inclusion of one simplicial complex into another, simplices always keep
their dimension, so the induced map, f#, is a little easier to understand.

The fact that the induced map commutes with the boundary map implies
that f# takes cycles to cycles, f#(Zp(K)) ⊆ f#(Zp(L)), and boundaries to
boundaries, f#(Bp(K)) ⊆ f#(Bp(L)). Therefore, it defines a map on the quo-
tients, which we call the induced map on homology, written f∗ : Hp(K) →
Hp(L). The rank of the image is bounded from above by both Betti numbers,
rankf∗(Hp(K)) ≤ min{βp(K), βp(L)}.

Degree of a map. We now present a first application of the concept of in-
duced maps. We describe it for general continuous maps, appealing to the
Simplicial Approximation Theorem proved in Section III.1 when we need tri-
angulations and an approximating simplicial map. Let g : Sp → Sp be a
continuous map and let c be the unique generator of the k-th homology group
of the p-sphere. Then g(c) is either homologous to c or to 0. In other words,
g(c) ∼ αc and α ∈ {0, 1} is called the modulo 2 degree of g. If g is the identity
then α = 1. However, if g extends a continuous map g0 : Bp+1 → Sp then
the induced map on homology, g∗ : Hp(S

p) → Hp(S
p) is the composite of two

induced maps, Hp(S
p) → Hp(B

p+1) → Hp(S
p), where the first is induced by

inclusion. The middle group is trivial, hence α = 0. We are now ready to prove
a classic result on fixed points of continuous maps.

Brouwer’s Fixed Point Theorem. A continuous map f : Bp+1 → Bp+1

has at least one fixed point x = f(x).
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Proof. Let A,B : Sp → Sp be maps defined by A(x) = (x− f(x))/‖x− f(x)‖
and B(x) = x. Since B is the identity its modulo 2 degree is 1. If f has no fixed
point then A is well defined and has modulo 2 degree 0 because it extends a map
from the (p + 1)-ball to the p-sphere. We now construct H : Sp × [0, 1] → Sp

defined by H(x, t) = (x − tf(x))/‖x− tf(x)‖. For t = 1 we have x 6= f(x)
because there is no fixed point and for t < 1 we have x 6= tf(x) because
‖x‖ = 1 > ‖tf(x)‖. We conclude that H is a homotopy between A and B which
implies that the modulo 2 degree of the two are the same, a contradiction.

Bibliographic notes. Like many other concepts in topology, homology
groups were introduced by Henri Poincaré in one of a series of papers on
“analysis situ” [5]. He named the ranks of the homology groups after another
mathematician, Betti, who introduced a slightly different version years earlier.
The field experienced a rapid development during the twentieth century. There
were many competing theories, simplicial and singular homology just being two
examples, which have been consolidated by axiomizing the assumptions under
which homology groups exist [1]. Today we have a number of well established
textbooks in the field. We refer to Giblin [2] for an intuitive introduction and
to Hatcher [3], Munkres [4], and Spanier [6] for more comprehensive sources.

[1] S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology. Princeton
Univ. Press, New Jersey, 1952.

[2] P. J. Giblin. Graphs, Surfaces and Homology. Chapman and Hall, London, 1981.

[3] A. Hatcher. Algebraic Topology. Cambridge Univ. Press, England, 2002.

[4] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.

[5] H. Poincaré. Complément à l’analysis situs. Rendiconti del Circolo Matematico
di Palermo 13 (1899), 285–343. .

[6] E. H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.
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IV.2 Matrix Reduction

The homology groups of a triangulated space can be computed from the matri-
ces representing the boundary homomorphisms. Their reduced versions readily
provide the ranks of the cycle and boundary groups, and their differences give
the Betti numbers. Summing these same differences leads to a proof of the
Euler-Poincaré formula which generalizes the Euler relation for planar graphs.

Euler-Poincaré formula. Recall that the Euler characteristic of a simplicial
complex is the alternating sum of the number of simplices in each dimension.
Similarly, recall that the rank of the p-th homology group is the rank of the p-th
cycle group minus the rank of the p-th boundary group. Writing np = rankCp

for the number of p-simplices in K, zp = rankZp and bp = rankBp for the ranks
of the cycle and boundary groups, we have np = zp + bp−1. This is the general
fact that for any linear transformation between vector spaces f : U → V , the
dimension of U equals the sum of the dimension of the kernel of f and the
dimension of the image of f . The Euler characteristic is the alternating sum of
the np, which is therefore

χ =
∑

p≥0

(−1)p(zp + bp−1)

=
∑

p≥0

(−1)p(zp − bp),

which is the same as the alternating sum of Betti numbers. To appreciate the
beauty of this result, we need to know that homology groups do not depend
on the triangulation chosen for a topological space. The technical proof of this
claim is difficult and we refer the reader to more advanced texts, but even the
more general result that homotopy equivalent spaces have isomorphic homology
groups is plausible. For example, we can free ourselves from the triangulation
entirely and define chains in terms of continuous maps from the standard sim-
plex into the space X. This gives rise to singular homology, which can be shown
to give groups isomorphic to the ones we get by simplicial homology, the theory
we describe in this chapter. If we now have a continuous map f : X→ Y we can
map the chains from X to those of Y by simply composing. If f is a homotopy
equivalence then it turns out that X and Y have isomorphic homology groups.
This also implies that the Euler characteristic is an invariant of the space, that
is, it does not depend on the simplicial complex we use to triangulate it.

Euler-Poincaré Theorem. The Euler characteristic of a topological
space is the alternating sum of its Betti numbers, χ =

∑

p≥0(−1)pβp.
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Boundary matrices. To compute homology, we combine information from
two sources, one representing the cycles and the other the boundaries, just as in
the proof of the Euler-Poincaré Theorem. Let K be a simplicial complex. Its p-
th boundary matrix represents the (p−1)-simplices as rows and the p-simplices
as columns. Assuming an arbitrary but fixed ordering of the simplices, for each
dimension, this matrix is ∂p = [aji ], where i ranges from 1 to np−1, j ranges

from 1 to np, and aji = 1 if the i-th (p − 1)-simplex is a face of the j-th p-

simplex and aji = 0, otherwise. Given a p-chain, c =
∑

aiσi, the boundary can
be computed by matrix multiplication,

∂pc =











a1
1 a2

1 . . . a
np

1

a1
2 a2

2 . . . a
np

2
...

...
. . .

...
a1
np−1

a2
np−1

. . . a
np

np−1





















a1

a2

...
anp











.

In words, a collection of columns represents a p-chain and the sum of these
columns gives its boundary. Similarly, a collection of rows represents a (p− 1)-
chain and the sum of these rows gives its coboundary, a concept that will be
defined in the next chapter.

Row and column operations. The rows of the matrix ∂p form a basis of
the (p − 1)-st chain group, Cp−1, and the columns form a basis of the p-th
chain group, Cp. We use two types of column operations to modify the matrix
without changing its rank: exchanging columns k and l and adding column k
to column l. Both can be expressed by multiplying with a matrix V = [vji ]
from the right. To exchange two columns, we have vlk = vkl = 1 and vii = 1 for

k

l

k k ll+k

=

Figure IV.3: The effect of a single off-diagonal one in the matrix V is the addition
of one column in the boundary matrix to another. The effect on the basis of Cp is
similar.

all i 6= k, l. All other entries are zero. To add column k to column l, we have
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vlk = 1 and vii = 1 for all i. All other entries are zero. As indicated in Figure
IV.3, the effect of the operation is that the l-th column now represents the sum
of the k-th and the l-th p-simplices, or the sum of whatever the two columns
represented before the operation. Similarly, we have two row operations, one
exchanging two rows and the other adding one row to another. This translates
to multiplication with a matrix U = [uji ] from the left. To exchange two rows,
we again have ulk = ukl = 1, uii = 1 for i 6= k, l, and all other entries zero. To
add the k-th to the l-th row we have ukl = 1, uii = 1 for all i, and all other
entries zero, as in Figure IV.4. The effect of this operation is that the k-th row

k

l

k

ll

k+l
=

Figure IV.4: The effect of a single off-diagonal one in the matrix U is the addition of
one row in the boundary matrix to another. The effect on the basis of Cp−1 is that
the row that was added now represents the sum of (p − 1)-chains, the opposite of a
column operation.

now represents the sum of the k-th and the l-th (p−1)-simplices, or the sum of
whatever the two rows represented before the operation. Although the (p− 1)
and p-chains represented by the rows and columns change as we perform row
and column operations, they always represent bases of the two chain groups.

Smith normal form. Using row and column operations, we can reduce the
p-th boundary matrix to Smith normal form. For modulo 2 arithmetic, this
means an initial segment of the diagonal is 1 and everything else is 0, as in
Figure IV.5. Recall that np = rankCp is the number of columns of the p-
th boundary matrix. Let np = bp−1 + zp so that the leftmost bp−1 columns
have ones in the diagonal and the rightmost zp columns are zero. The former
represent p-chains whose non-zero boundaries generate the group of (p − 1)-
boundaries. The latter represent p-cycles that generate Zp. Once we have
all boundary matrices in normal form, we can extract the Betti numbers as
differences between ranks, βp = rankZp − rankBp for p ≥ 0. To get the bases
of the boundary and cycle groups, we keep track of the matrix products that
represent the row and column operations. Writing Up−1 and Vp for the left and
right products, we get the normal form as Np = Up−1∂pVp. The new basis for
the cycle group is given in the last zp columns of Vp. Similarly, the new basis
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Z

rankB

C
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p

rank

rank
rank

p

p−1

Figure IV.5: The entries in the shaded, initial portion of the diagonal are 1 and all
other entries are 0. The ranks of the boundary and cycle groups are readily available
as the numbers of non-zero and zero columns.

for the boundary group is encoded in Up−1 and we get the basis vectors from
the first bp−1 columns of the inverse.

Reduction. To reduce ∂p, we proceed similar to Gaussian elimination for
solving a system of linear equations. In at most two exchange operations, we
move a 1 to the upper left corner, and with at most np−1 − 1 row and np − 1
column additions, we zero out the rest of the first column and first row. We
then recurse for the submatrix obtained by removing the first row and first
column. We start the reduction by initializing the matrix to Np[i, j] = aji for
all i and j, and by calling the function for x = 1, the position of the considered
diagonal element.

void Reduce(x)
if there exist k ≥ x, l ≥ x with Np[k, l] = 1 then

exchange rows x and k; exchange columns x and l;
for i = x+ 1 to np−1 do

if Np[i, x] = 1 then add row x to row i endif
endfor;
for j = x+ 1 to np do

if Np[x, j] = 1 then add column x to column j endif
endfor;
Reduce(x+ 1)

endif.

We have at most np−1 row and np column operations per recursive call and
hence at most (np−1 + np)min{np−1, np} row and column operations in total.
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Multiplying with their lengths, we thus get a running time of a constant times
2np−1npmin{np−1, np}. The amount of memory is at most some constant
times (np−1 + np)

2 needed to store the matrices. In summary, we reduce the
boundary matrices in time at most cubic and in memory at most quadratic in
the number of simplices in K.

Example. To get a feeling for the algorithm, we use it to compute the reduced
homology group of the 3-ball triangulated by the faces of a single tetrahedron.
We do the computations one dimension at a time and this way get the reduced
Betti numbers of all skeleta of the complex as we go. The 0-skeleton consists

=

=
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=
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bcd

acd
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Figure IV.6: From top to bottom: the matrix equations Np = Up−1∂pVp for reducing
the zeroth, first, second, and third boundary matrices of the tetrahedron. The ones
are shaded and the zeros are white. The bases are indicated both for the boundary
and the normal form matrices. For clarity, no exchanges are performed.

of four vertices and its sole non-trivial boundary matrix is ∂0 consisting of a
row of ones, shown as part of the first equation in Figure IV.6. Three column
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operations remove three of the four ones and we get β̃0 = 3, the number or
zero columns in N0. Proceeding to the 1-skeleton, we add the six edges and
consider the first boundary matrix. After reduction, it has three ones in the
diagonal, shown as part of the second equation in Figure IV.6. Combining the
information from N0 and N1 we get β̃0 = 3 − 3 = 0, and counting the zero
columns in N1 we get β̃1 = 3. Proceeding to the 2-skeleton, we add the four
triangles and thus get a triangulation of the 2-sphere. After reduction, the
boundary matrix has again three ones in the diagonal, shown as part of the
third equation in Figure IV.6. The triangles do not affect the zeroth homology
group and we have β̃0 = 0, same as before. Combining the information from
N1 and N2 we get β̃1 = 3 − 3 = 0, and counting the zero columns in N2 we
get β̃2 = 1. We finally get the triangulation of the 3-ball by adding the one
tetrahedron. After reduction, the boundary matrix has a single one in the
diagonal, shown as part of the fourth equation in Figure IV.6. The first two
reduced Betti numbers remain unaffected and the other two also vanish, so we
get β̃0 = β̃1 = β̃2 = β̃3 = 0, as expected.

Bibliographic notes. The generalization of the Euler relation for planar
graphs to the Euler-Poincaré Theorem has an interesting history analyzed from
a philosophical viewpoint by Lakatos [2]. The result of reducing the boundary
matrix is sometimes referred to as Smith normal form [4]. We describe the al-
gorithm for modulo 2 arithmetic, but other, more elaborate coefficient groups
can also be used. Already for integers, this complicates matters significantly
and it is no longer straightforward to guarantee a running time that is poly-
nomial in the number of simplices [3]. However, improvements to polynomial
time are possible [1, 5].

[1] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput. 8 (1979),
499–507.

[2] I. Lakatos. Proofs and Refutations: the Logic of Mathematical Discovery. Cam-
bridge Univ. Press, Cambridge, England, 1976.

[3] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.

[4] H. J. Smith. On systems of indeterminate equations and congruences. Philos.
Trans. 151 (1861), 293–326.

[5] A. Storjohann. Near optimal algorithm for computing Smith normal forms of
integer matrices. In “Proc. Internat. Sympos. Symbol. Algebraic Comput., 1997”,
267–274.
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IV.3 Relative Homology

We extend homology beyond closed spaces by considering nested pairs of closed
spaces and studying their difference. We need two new concepts to relate the
homology of such a pair to the homology of the individual closed spaces, induced
maps and exact sequences.

Relative homology groups. Homology groups have been defined for trian-
gulated spaces, which are therefore necessarily closed. To extend them to other
spaces, we introduce homology groups for pairs of closed spaces. Let K be a
simplicial complex and K0 a subcomplex of K. The relative chain groups are
quotients of the chain groups of K and of K0, Cp(K,K0) = Cp(K)/Cp(K0).
Taking this quotient partitions Cp(K) into cosets, c+ Cp(K0), whose p-chains
possibly differ in the p-simplices in K0 but not in the ones in K − K0.
The boundary map is induced by the one for K, that is, ∂p(c + Cp(K0)) =
∂pc+ Cp−1(K0). As before, ∂ commutes with addition and taking the bound-
ary twice gives zero. We thus define relative cycle groups, relative boundary

K −K 0 K0

K:

Figure IV.7: The pair (K, K0), where K triangulates the annulus and K0 the right
half of the annulus. The displayed paths are neither boundaries nor cycles in K but
are both relative cycles and one is a relative boundary in (K, K0). Which one?

groups, and relative homology groups as kernels, images, and quotients,

Zp(K,K0) = ker ∂p;

Bp(K,K0) = im ∂p+1;

Hp(K,K0) = ker ∂p/im ∂p+1,

just as before. Let c+Cp(K0) be a relative p-chain. It is a relative p-cycle iff ∂c
is carried by K0, which includes the possibility that ∂c is zero. Furthermore,
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it is a relative p-boundary is there is a (p+ 1)-chain d of K such that c− ∂d is
carried by K0; see Figure IV.7.

Excision. By construction, relative homology depends only on the part of K
outside K0 and ignores the part inside K0. Hence, we can remove simplices
from both complexes without changing the homology.

Excision Theorem. Let K0 ⊆ K and L0 ⊆ L be pairs of simplicial com-
plexes that satisfy L ⊆ K and L− L0 = K −K0. Then they have isomorphic
relative homology groups, that is, Hp(K,K0) ≃ Hp(L,L0) for all dimensions p.

Instead of giving an algebraic proof of this fairly obvious fact, we take a look
at the Smith Normal Form Reduction for Relative Homology. Ordering the
simplices in K0 before the ones in K − K0, all the relevant information is
contained in the lower right submatrices that belong to rows and columns of
simplices in K − K0. We reduce these submatrices, ignoring the rows and
columns of simplices in K0. As illustrated in Figure IV.8, we get the ranks
of the relative boundary and cycle groups by counting the non-zero and zero
columns in the submatrices. Using the same ordering of simplices, we get
the boundary matrices of L by removing rows and columns that correspond
to simplices in K − L. By definition of L and L0, these rows and columns
correspond to simplices in K0. The lower right submatrices defined by L− L0

are therefore the same as before. This implies Hp(K,K0) ≃ Hp(L,L0) for all
dimensions p, as claimed in the Excision Theorem.

Zprank

−1

Cp−1rank

rankCp

K0K(   ,     )

K0K(   ,     )

K0K(   ,     )

Bprank

K K0(   ,     )

Figure IV.8: By ordering the simplices of K0 before the others, we get the incidences
between simplices in K−K0 in the lower right submatrix, which we reduce to compute
the homology of the pair (K, K0).
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We could have deleted the rows and columns of simplices in K0 but chose
to keep them because they contain the information that relates the relative
homology groups of (K,K0) with the (absolute) homology groups of K and
K0. We need new concepts to describe this connection.

Induced maps. A continuous map from one topological space to another
maps cycles to cycles and boundaries to boundaries. We can therefore use the
images to construct new homology groups. They are not necessarily the same as
the ones of the original space since cycles can become boundaries, for example
trivial cycles. We describe this more formally for two simplicial complexes and
a simplicial map, f : K → L, between them. Recall that f takes each simplex
of K linearly to a simplex of L. It induces a map from the chains of K to the
chains of the same dimension of L. Specifically, if c =

∑

aiσi is a p-chain in
K, then f#(c) =

∑

aiτi, where τi = f(σi) if it has dimension p and τi = 0 if
f(σi) has dimension less than p. Writing ∂K and ∂L for the boundary maps in
the two complexes, we note that f# ◦ ∂K = ∂L ◦ f#, that is, the induced map
commutes with the boundary map. This is obvious when f(σi) has dimension
p, since then all (p−1)-faces of σi map to the corresponding (p−1)-faces of τi.
If, on the other hand, f(σi) has dimension less than p, then the (p− 1)-faces of
σi map to simplices of dimension less than p − 1, with the possible exception
of exactly two (p − 1)-faces whose images coincide and cancel each other. So
both f# ◦ ∂K(σi) and ∂L ◦ f#(σ) are zero. Note that in the common case when
f : K → L includes one simplicial complex into the other, simplices always
keep their dimension, so the induced map, f#, is a little easier to understand.

The fact that the induced map commutes with the boundary map implies
that f# takes cycles to cycles, f#(Zp(K)) ⊆ Zp(L), and boundaries to bound-
aries, f#(Bp(K)) ⊆ Bp(L). Therefore, it defines a map on the quotients, which
we call the induced map on homology, written f∗ : Hp(K)→ Hp(L). Similarly,
we have an induced map on reduced homology. The order of the image is of
course bounded from above by the order of the domain and of the range, and
hence, rank f∗(Hp(K)) ≤ min{βp(K), βp(L)}. It is easy to construct examples
for which the rank of the image is strictly smaller than both Betti numbers.

Degree of a map. We present a first application of the concept of induced
maps. Describing it for general continuous maps, we appeal to the Simplicial
Approximation Theorem proved in Section III.1 when we need triangulations
and an approximating simplicial map. Let g : S

d → S
d be a continuous map

and let c be the unique generator of the d-th reduced homology group of the
d-sphere. Then g(c) is either homologous to c or to 0. In other words, g(c) ∼ αc
and α ∈ {0, 1} is called the modulo 2 degree or just the degree of g. If g is the
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identity then α = 1. However, if g extends a continuous map g0 : Bd+1 → Sd

then the induced map on reduced homology, g∗ : H̃d(S
d) → H̃d(S

d) is the
composite of two induced maps, H̃d(S

d)→ H̃d(B
d+1)→ H̃d(S

d), where the first
is induced by inclusion. The middle group is trivial, hence α = 0. We note
that a homotopy cannot change the degree of a map. With this, we are ready
to prove a classic result on fixed points of continuous maps.

Brouwer’s Fixed Point Theorem. A continuous map f : B
d+1 → B

d+1

has at least one fixed point x = f(x).

Proof. Let A,B : Sd → Sd be maps defined by A(x) = (x− f(x))/‖x− f(x)‖
and B(x) = x. Since B is the identity, its degree is one. If f has no fixed point
then A is well defined and has degree zero because it extends to a map from the
(d+ 1)-ball to the d-sphere. We now construct H : S

d × [0, 1]→ S
d defined by

H(x, t) = (x− tf(x))/‖x− tf(x)‖. For t = 1, we have x 6= f(x) because there
is no fixed point, and for t < 1, we have x 6= tf(x) because ‖x‖ = 1 > ‖tf(x)‖.
We conclude that H is a homotopy between A and B which implies that the
degree of the two are the same, a contradiction.

Maps between vector spaces. Since we use modulo 2 arithmetic, the in-
duced map on homology is a linear transformation between vector spaces. We
discuss such maps in generality, without burdening ourselves with the interpre-
tation that these vector spaces are obtained by taking quotients, or what have
you. Letting f : U→ V be a linear transformation between vector spaces, the
kernel, image, and cokernel are defined as usual,

ker f = {u ∈ U | f(u) = 0 ∈ V};
im f = {v ∈ V | there exists u ∈ U with f(u) = v};

cok f = V/im f.

For example, if f is represented by a matrix, like ∂, we can reduce and get the
kernel spanned by the zero columns, the image by the non-zero rows, and the
cokernel by the zero rows. All three are vector spaces in their own right, so we
can take direct sums, recalling that this is like taking Cartesian products and
using the group operations componentwise. A fundamental result from linear
algebra states that U and V are completely described by the three. Specifi-
cally, U is isomorphic to the direct sum of the kernel and the image and V is
isomorphic to the direct sum of the image and the cokernel,

U ≃ ker f ⊕ im f ;

V ≃ im f ⊕ cok f.
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Again, this has obvious interpretations in terms of the reduced matrix rep-
resenting f . If we have three vector spaces and two linear transformations,
f : U → V and g : V → W, we say the sequence U → V → W is exact at V

if im f = ker g; see Figure IV.9. Note that this implies g ◦ f = 0, thus the
sequence might be three terms in a chain complex, and exactness would mean
that the homology group at V was 0. But we will use this concept in more
general ways than that. If 0 → U → V is a sequence, then exactness at U is

0 0 00

U W

V

gf

Figure IV.9: A short exact sequence of vector spaces. It starts and ends with zero
and is exact at each of the three vector spaces between the two ends.

equivalent to injectivity of U→ V. Similarly, if V→W→ 0, then exactness at
W is equivalent to surjectivity of V→W. A short exact sequence is a sequence
of length five,

0→ U
f→ V

g→W→ 0,

that starts and ends with the trivial vector space and is exact at U, V, and W.
By what we said above, f : U→ V is injective and g : V→ W is surjective. In
this situation, it is always true that the middle vector space is isomorphic to
the direct sum of the adjacent vector spaces, V ≃ U⊕W. Thus if we somehow
already know U and W then we have calculated V.

Exact sequence of a pair. Sequences that are exact are convenient means
to express otherwise cumbersome relationships between homology groups. Ex-
ceptionally powerful are long exact sequences which are infinite sequences of
vector spaces that are exact at all of them. A long exact sequence is like a chain
complex, but with trivial homology throughout. A particular example relates
the relative homology groups of a pair with the absolute homology groups of
the spaces forming the pair.

Exact Sequence of a Pair Theorem. Let K be a simplicial complex
and K0 ⊆ K a subcomplex. Then there is a long exact sequence

. . .→ Hp(K0)→ Hp(K)→ Hp(K,K0)→ Hp−1(K0)→ . . .



112 IV Homology

The same statement holds if we substitute the reduced homology groups of K
and K0 for their non-reduced homology groups.

The next section will give a general method for constructing long exact se-
quences, including that of a pair. Therefore we will content ourselves here with
a brief description of the maps between the groups. The map Hp(K0)→ Hp(K)
is just the map on homology induced by the inclusion K0 ⊆ K. The map
Hp(K) → Hp(K,K0) is also induced by inclusion, K ⊆ K, that is, a class
generated by a cycle c in K is mapped to the relative class generated by
c + Cp(K0). The third map, Hp(K,K0) → Hp−1(K0), is called the connect-
ing homomorphism and is the crucial piece of the construction. To describe it,
let c =

∑

aiσi generate a relative p-cycle, that is, ∂c ∈ Cp−1(K0). In K0, the
boundary of c is clearly a cycle and therefore represents a class in Hp−1(K0).
This defines the connecting homomorphism, mapping the relative homology
class generated by c+ Cp(K0) to the absolute homology class generated by ∂c.
Indeed, any cycle in the same relative class with c can be written as c+ c′ + c0,
where c′ ∈ Bp(K) and c0 ∈ Cp(K0). But then ∂c′ = 0 and ∂c0 is a boundary
in K0. Hence, ∂(c+ c′ + c0) = ∂c+ ∂c0 is homologous to ∂c as a cycle in K0.

As an example, consider the pair (B3, S1), the 3-ball modulo its equator,
triangulated by (K,K0). We can use the exact homology sequence to figure
the relative homology of this pair. Using reduced homology, all groups of B3

are zero. Similarly, the only non-zero reduced homology group of S1 is the first
one, which has rank one. Except for dimension p = 2, we therefore have

. . .→ 0→ Hp(B
3, S1)→ 0→ . . . ,

implying that Hp(B
3, S1) itself is zero. For p = 2 we have the only non-trivial

portion of the long exact sequence,

. . .→ 0→ H2(B
3, S1)→ H̃1(S

1)→ 0→ . . .

The map between the middle two groups is thus injective as well as surjective,
which implies that H2(B

3, S1) has rank one, same as H̃1(S
1). Indeed, we have a

single non-trivial relative homology class of dimension 2, namely the one gener-
ated by the disk spanned by the equator circle. The connecting homomorphism
maps this class to the absolute homology class of dimension 1 generated by the
circle itself.

Bibliographic notes. Relative homology groups were introduced in the
1920s by Solomon Lefschetz for application to his fixed point theorem. They
seem barely more than an afterthought to absolute homology groups. Never-
theless, they have many applications, including the study of the local homology
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of a space, see e.g. [3, 4], and the computation of absolute homology groups via
exact sequences. Brouwer’s Fixed Point Theorem impresses by its generality
and is popular also outside mathematics. He proved the 3-dimensional case in
1910 [1] and the general case in 1912 [2].
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IV.4 Exact Sequences

As we have seen above, long exact sequences are handy for deriving homology
groups from others. In this section, we introduce a general method for con-
structing such sequences and use it to get a divide-and-conquer formulation of
homology, known as the Mayer-Vietoris sequence.

Chain complexes and chain maps. Freeing ourselves from the simplicial
complex background, we consider a sequence of vector spaces with homomor-
phisms between them, U = (Up, up) with up : Up → Up−1. If upup+1 = 0 for
every p then we call U a chain complex and the up its boundary maps. The
vanishing of the pairwise compositions of maps is all we need to define cycle
groups, Zp(U) = kerup, boundary groups, Bp(U) = imup+1, and homology
groups, Hp(U) = kerup/imup+1, in the usual way. Of course, the best example
is the chain complex of a simplicial complex, C(K) = (Cp(K), ∂d).

Letting V = (Vp, vp) be another chain complex, a chain map is a sequence
of homomorphisms φp : Up → Vp, one for each dimension p, that commute
with the boundary maps. Specifically, vpφp = φp−1up, for every p, but we
will often drop the indices and just write vφ = φu to express this property.
Commutativity guarantees that cycles go to cycles, φp(Zp(U)) ⊆ Zp(V), and
boundaries go to boundaries, φp(Bp(U)) ⊆ Bp(V). Just as in the case of the
induced map defined in the previous section, this implies that the chain map
induces a map on homology, (φp)∗ : Hp(U)→ Hp(V), for every dimension p.

Letting W = (Wp, wp) be a third chain complex and the sequence of ψp :
Vp → Wp a second chain map, we call U → V → W exact at V if kerψp = imφp
for every p. A short exact sequence of chain complexes is a sequence of length
five,

0→ U φ→ V ψ→W → 0,

that begins and ends with the trivial chain complex and is exact at U , V , and
W . Equivalently, we have a short exact sequence of vector spaces, 0 → Up →
Vp → Wp → 0, for each dimension p. Recall that this implies that each φp is
injective, each ψp is surjective, and each Vp is isomorphic to the direct sum of
Up and Wp, although there is no natural choice for this isomorphism.

The snake or zig-zag. We are now ready to explain the general method
for constructing long exact sequences of homology groups from short exact
sequences of chain complexes.
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Snake Lemma. Let 0 → U φ→ V ψ→ W → 0 be a short exact sequence of
chain complexes. Then there is a well-defined map D : Hp(W) → Hp−1(U),
called the connecting homomorphism, such that

. . .→ Hp(U)→ Hp(V)→ Hp(W)
D→ Hp−1(U)→ . . .

is a long exact sequence.

Other than the connecting homomorphism, the maps in the long exact sequence
are induced by the chain maps. Before looking at the algebraic details of the
construction, let us see how the Snake Lemma gives rise to the Exact Homology
Sequence of a Pair described in the previous section. We have a simplicial
complex, K, and a subcomplex, K0 ⊆ K. Inclusion of K0 in K and K in K
induces a short exact sequence of chain complexes,

0→ C(K0)→ C(K)→ C(K,K0)→ 0,

where C(K) = (Cp(K), ∂p) and similar for K0 and (K,K0). Indeed, C(K0) →
C(K) is injective and C(K)→ C(K,K0) is surjective. Finally, we have exactness
in the middle because a chain of K is carried by K0 iff it is zero in (K,K0).
The implied long exact sequence is the exact homology sequence of (K,K0),

. . .→ Hp(K0)→ Hp(K)→ Hp(K,K0)
D→ Hp−1(K0)→ . . .

As always, the crucial piece of the sequence is the connecting homomorphism.
We now give a detailed description of its construction, in the general setting of
the Snake Lemma. We omit the proof that the long exact sequence is in fact
exact, leaving that as an exercise to the interested reader.

Connecting homomorphism. We construct D in four steps using the por-
tion of the short exact sequence of chain complexes shown below. The vertical
arrows are boundary maps and the horizontal arrows are chain maps. To sim-
plify the discussion, we will frequently suppress the subscripts that indicate
the dimensions on the maps φ, ψ, u, v, w as they can be determined from the
domain and the clutter they introduce is more confusing that it is helpful.

Vp+1 → Wp+1 → 0
↓ �3 ↓

0 → Up → Vp → Wp → 0
↓ �2 ↓ �0 ↓

0 → Up−1 → Vp−1 → Wp−1 → 0
↓ �1 ↓

0 → Up−2 → Vp−2
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Notice the labeled commutative squares in the diagram. We will refer to them
when we want to emphasize that the maps around their boundaries commute.
For example, the fact that �0 is a commutative square means that wψ = ψv as
a map from Vp to Wp−1. With this in mind, here are the steps in establishing
the connecting homomorphism.

Step 1: define γ. We begin with a cycle α ∈ Wp representing a class in
Hp(W). Since ψ is surjective, there exists a chain β ∈ Vp with ψ(β) = α. Since
α has zero boundary and �0 is commutative, the boundary of β lies in the
kernel of the second chain map, v(β) ∈ kerψ. Exactness at Vp−1 then implies
that there exists a chain γ ∈ Up−1 whose image under the first chain map is
the boundary of β, φ(γ) = v(β). We summarize the situation by extracting the
relevant piece of the above diagram, and a little more:

β
ψ→ α

↓ �0 ↓
γ

φ→ v(β)
ψ→ 0

↓ �1 ↓
0

φ→ 0

Step 2: γ is a cycle. By commutativity of �1 and the fact that vv = 0, we
have φu(γ) = 0. But φ is injective, so this implies that u(γ) = 0, which means
that γ is a cycle; see the drawing above. Hence, γ represents a class in Hp−1(U)
and this class is the image of the class represented by α under the connecting
homomorphism. The map goes left, from α to β, then down to v(β), and then
left again, to γ. We may draw this as a snake or a zig-zag cutting through the
diagram, thus the name. Notice, however, that we have made choices for α and
β and we need to show that our answer does not depend on them.

Step 3: choice of β. Suppose first that we make another choice for β, call
it β0, and let γ0 to be the unique element of Up−1 such that φ(γ0) = v(β0). We
again summarize the situation by extracting a piece of the diagram:

µ
φ→ β, β0

ψ→ α
↓ �2 ↓ �0 ↓

γ, γ0
φ→ v(β), v(β0)

ψ→ 0

We have ψ(β) = ψ(β0) = α and therefore β+β0 ∈ kerψ = imφ, so there exists
a chain µ ∈ Up with φ(µ) = β+β0. Since �2 commutes, φu(µ) = φ(γ)+φ(γ0).
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But φ is injective, so u(µ) = γ + γ0. In words, γ and γ0 differ by a boundary,
namely u(µ), and therefore represent the same homology class.

Step 4: choice of α. Finally, we consider what happens with a different
choice of α, say α0. Let β0 and γ0 be defined from α0, the same way β and
γ are defined from α. Since α and α0 are two choices of representative for
the same homology class in Hp(W), there exists a chain ν in Wp+1 such that
w(ν) = α + α0. Since ψ is surjective, there exists a chain ̺ ∈ Vp+1 with
ψ(̺) = ν. The situation is again summarized in a portion of the diagram:

̺
ψ→ ν

↓ �3 ↓
µ′ φ→ v(̺), β, β0

ψ→ α, α0

↓ �2 ↓ �0 ↓
γ, γ0

φ→ 0, v(β), v(β0)
ψ→ 0.

By commutativity of �3, v(̺) and β+β0 both map to α+α0. This implies that
their sum lies in kerψ = imφ and there is a chain µ′ in Up with φ(µ′) = v(̺)+
β+β0. Using commutativity of �2 and vv = 0, we see that φu(µ′) = v(β+β0).
But injectivity of φ implies that the preimage of v(β + β0) is γ + γ0 and hence
u(µ′) = γ + γ0. We see that γ and γ0 differ by a boundary and thus represent
the same homology class, as required. This finishes the construction of the
connecting homomorphism, D.

Mayer-Vietoris sequence. We use the Snake Lemma to derive the divide-
and-conquer formulation of homology known as the Mayer-Vietoris sequence.
Given two spaces, it relates their homology to the homology of the union and
the intersection.

Mayer-Vietoris Sequence Theorem. LetK be a simplicial complex and
K ′,K ′′ subcomplexes such that K = K ′ ∪K ′′. Let A = K ′ ∩K ′′. Then there
exists a long exact sequence

. . .→ Hp(A)→ Hp(K
′)⊕ Hp(K

′′)→ Hp(K)→ Hp−1(A)→ . . .

and similarly for the reduced homology groups.

Proof. On the level of chains, Cp(A) is a subgroup of both Cp(K
′) and Cp(K

′′).
Forming the direct sums, Cp(K

′) ⊕ Cp(K
′′), for all dimensions p, we get a

chain complex C(K ′)⊕C(K ′′) with boundary map defined componentwise. We
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have two copies of Cp(A), and can kill one off with the image of Cp(A) via
the diagonal, and the quotient is easily identified with Cp(K). Stated more
formally, let i′ : A → K ′ and i′′ : A → K ′′ be the inclusions of A, and let
j′ : K ′ → K and j′′ : K ′′ → K be the inclusions intoK. Set i(a) = (i′(a), i′′(a))
and j(x, y) = j′(x) + j′′(y). Then it is not difficult to see that we have a short
exact sequence of chain complexes, namely

0→ C(A)
i→ C(K ′)⊕ C(K ′′)

j→ C(K)→ 0.

The long exact sequence implied by the Snake Lemma is the Mayer-Vietoris
sequence. The above is easily adapted to the reduced sequence as well.

Exactness of the Mayer-Vietoris sequence at Hp(K) tells us that this group
is isomorphic to the image of j∗ : Hp(K

′)⊕ Hp(K
′′)→ Hp(K) direct sum with

the kernel of i∗ : Hp−1(A) → Hp−1(K
′) ⊕ Hp−1(K

′′). This distinguishes two
types of homology classes in K. A class in im j∗ lives in K ′, in K ′′, or in both.
A class in ker i∗ corresponds to a (p− 1)-dimensional cycle γ ∈ A that bounds
both in K ′ and K ′′. If we write γ = ∂α′ = ∂α′′, with α′ a p-chain in K ′ and α′′

a p-chain in K ′′, then α = α′ + α′′ is a cycle in K that represents this second
type of class; see Figure IV.10. It is useful to check through the four steps

α

K K

α

Figure IV.10: The 1-cycle α decomposes into 1-chains α′ in K′ and α′′ in K′′. The
common boundary of the two 1-chains is a pair of points, a reduced 0-cycle in A.

constructing the connecting homomorphism, D. They take a class in Hp(K)
and define one in Hp−1(A) as follows. Represent the class by α, a p-cycle of K.
As before, there exists β, a p-chain in Cp(K

′) ⊕ Cp(K
′′), such that j(β) = α.

In fact, there are several and we get them by writing α = α′ + α′′, with α′

in K ′, α′′ in K ′′, and setting β = (α′, α′′). Different ways of decomposing α
give different β, but note that any two differ by something in A. Now take
∂β = (∂α′, ∂α′′). The fact that α is a cycle tells us that ∂α′ = ∂α′′ and lies in
A. Thus, the cycle γ in the construction of D is ∂α′.
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The sphere, Sd. To illustrate the utility of the Mayer-Vietoris sequence, we
use it to compute the homology of the d-dimensional sphere, Sd. Specifically,
we show that

β̃p(S
d) =

{

1 if p = d;
0 if p 6= d.

Writing the sphere as the union of its upper and lower hemisphere, Sd = U ∪ L,
we get the equator as the intersection, A = U ∩ L. Each hemisphere is a ball
and the equator is a sphere of dimension d− 1. This allows us to compute the
homology of Sd inductively, using the reduced Mayer-Vietoris sequence,

. . .→ H̃p(A)→ H̃p(U)⊕ H̃p(L)→ H̃p(S
d)→ H̃p−1(E)→ . . .

For d = 0, the sphere is two points, so its reduced homology has rank one in
dimension 0, and rank zero otherwise. This established the induction basis.
For general d, the sequence decomposes into pieces of the form

0⊕ 0→ H̃p(S
d)→ H̃p−1(S

d−1)→ 0⊕ 0,

where 0 ⊕ 0 is of course the zero element in the direct sum of the homology
groups of the two hemispheres. This implies that the rank of the p-th reduced
homology group of Sd is the same as the rank of the (p−1)-st reduced homology
group of Sd−1, namely one for p = d and zero otherwise, as claimed. Note that
the generator of H̃d(S

d) is the second type of class, consisting of two chains, one
from each hemisphere, whose boundary is the generating cycle of H̃d−1(S

d−1).
In particular, it is represented by the sum of all its d-dimensional simplices.

The real projective space, Pd. As another example, we consider the real
projective d-dimensional space which is the quotient space of the antipodal
map, f(x) = −x. In other words, Pd is obtained by gluing Sd to itself by
identifying antipodal points in pairs. Specifically, we show that the reduced
Betti numbers are

β̃p(P
d) =

{

1 for 1 ≤ p ≤ d;
0 otherwise.

For dimensions d = 0, 1 we have familiar spaces, namely the point, P0, and the
circle, P1. We already know their homology and their reduced Betti numbers
agree with the claimed formula. This establishes the induction basis. For gen-
eral d, we decompose Sd into three subspaces by limiting the d-th coordinate
to xd ≤ −1/2, −1/2 ≤ xd ≤ 1/2, and 1/2 ≤ xd. The first and the last are
identified by f and give a single subspace B ⊆ Pd, which is a ball. The middle
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subspace becomes a space M that is homotopy equivalent to the quotient space
of the equator, where xd = 0, which is in turn homeomorphic to Pd−1. The
middle subspace intersects the union of the other two in two spheres of dimen-
sion d−1. Taking the quotient identifies the two spheres, implying that B and
M intersect in a single sphere of dimension d− 1. Since the reduced homology
of B vanishes in all dimensions p, the Mayer-Vietoris sequence decomposes into
pieces of the form

0→ 0⊕ H̃p(P
d−1)→ H̃p(P

d)→ 0,

for p < d − 1. By induction, this establishes β̃0(P
d) = 0 and β̃p(P

d) = 1 for
1 ≤ p ≤ d − 1. We still need to show that the d-th reduced Betti number is
equal to one. The piece of the Mayer-Vietoris sequence we use for this is

0⊕ 0→ H̃d(P
d)

D→ H̃d−1(S
d−1)

g∗→ 0⊕ H̃d−1(P
d−1)→ H̃d−1(P

d)→ 0.

We claim that the map g∗ is 0. This will imply that D is injective as well as
surjective and hence β̃d(P

d) = 1, as required. To see that g∗ is zero, we use
the inductive assumption, namely that β̃d−1(P

d−1) = 1. The corresponding
homology group has a unique generator, namely the sum of all (d−1)-simplices
triangulating Pd−1. The map g takes each simplex in the triangulation of Sd−1

to its quotient, which means each simplex in Pd−1 is counted twice. The top-
dimensional simplices cancel in pairs, which completes the calculation.

Bibliographic notes. The introduction of exact sequences is often con-
tributed to Eilenberg and sometimes to Lyndon, but see also [1]. The Snake
Lemma is a major achievement of algebraic topology and the construction of
the connecting homomorphism is its critical piece. A complete proof can be
found in many algebraic topology texts, including [3]. The Mayer-Vietoris se-
quences are older than the Snake Lemma and go back to work by Mayer [2]
and by Vietoris [4].

[1] J. L. Kelley and E. Pitcher. Exact homomorphism sequences in homology
theory. Ann. of Math. 48 (1947), 682–709.

[2] W. Mayer. Über abstrakte Topologie. Monatschr. Math. Phys. 36 (1929), 1–42
and 219–258.

[3] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.

[4] L. Vietoris. Über die Homologiegruppen der Vereinigung zweier Komplexe.
Monatschr. Math. Phys. 37 (1930), 159–162.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Sperner Lemma (three credits). LetK be a triangulated triangular region
as in Figure IV.11. We 3-color the vertices such that

• the three corners receive three different colors;

• the vertices on each side of the region are 2-colored.

Prove that there is a triangle in K whose vertices receive three different
colors.

Figure IV.11: Each vertex receives one of three colors, white, shaded, or black.

2. Isomorphic homology (one credit). Construct two topological spaces
that have isomorphic homology groups but are not homotopy equivalent.

3. Fixed point (two credits). Let f : Bd → Bd be a continuous map with the
property that there is a δ < 1 such that ‖f(x)− f(y)‖ ≤ δ‖x− y‖ for all
points x, y ∈ Bd. In words, the distance between any two points diminishes
by at least a constant factor δ < 1 each time we apply f . Prove that such
a map f has a unique fixed point x = f(x). [On orientation maps, this
point is usually marked as “you are here”.]

4. Klein bottle (one credit). Show that the Betti numbers of the 2-
dimensional Klein bottle are β0 = 1, β1 = 2, β2 = 1. Which other 2-
manifold has the same Betti numbers?
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5. Dunce cap (three credits). The dunce cap is constructed from a piece of
cloth in the shape of an equilateral triangle as follows. Orienting two edges
away from a common origin we glue them to each other as prescribed by
their orientation. This gives a piece of a cone with a rim (the third edge)
and a seam (the glued first two edges). Now we orient the rim and glue it
along the seam, again such that orientations match. The result reminds
us of the shell of a snail, perhaps.

(i) Give a triangulation of the dunce cap.

(i) Show that the reduced Betti numbers of the dunce cap vanish in all
dimensions.

(ii) Show that the dunce cap is contractible but any triangulation of it is
not collapsible.

6. 3-torus (three credits). Consider the 3-dimensional torus obtained from
the unit cube by gluing opposite faces in pairs, without twisting. That
is, each point (x, y, 0) is identified with (x, y, 1), (x, 0, z) with (x, 1, z),
and (0, y, z) with (1, y, z). Show that the Betti numbers of this space are
β0 = β3 = 1 and β1 = β2 = 3.

7. The Steenrod Five Lemma (two credits). Suppose we have a commu-
tative diagram of vector spaces and homomorphisms,

U1 → U2 → U3 → U4 → U5

↓ ↓ ↓ ↓ ↓
V1 → V2 → V3 → V4 → V5,

where the horizontal sequences are exact at the middle three vector spaces
and the first two and last two vertical arrows are isomorphisms. Prove
that then the middle vertical arrow is also an isomorphism.

8. Exact sequence of a triple (one credit). Let C be a simplicial complex
with subcomplexes A ⊆ B ⊆ C. Prove the existence of the following exact
homology sequence of the triple:

. . .→ Hp(B,C)→ Hp(A,C)→ Hp(A,B)→ Hp−1(B,C)→ . . .



Chapter V

Duality

Instead of computing homology from a triangulation, we can also work with
different decompositions and get isomorphic groups. The alpha complex and
the dual Voronoi decomposition of a union of balls come to mind. General-
izing this geometric idea beyond Euclidean space, and in particular beyond
manifolds, runs into difficulties. This is the motivation for taking the issue
to the algebraic level, where it leads to the concept of cohomology groups.
For modulo 2 arithmetic, these are isomorphic to the corresponding homology
groups, but the isomorphisms are not natural. For nice topological spaces,
such as manifolds and manifolds with boundary, there are relations between
the homology and the cohomology groups that go beyond the general relations.
In this chapter, we will see three of them, Poincaré duality, Lefschetz duality,
and Alexander duality. The last of the three has algorithmic ramifications for
subsets of three-dimensional Euclidean space.

V.1 Cohomology
V.2 Poincaré Duality
V.3 Intersection Theory
V.4 Alexander Duality

Exercises
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V.1 Cohomology

In this section, we introduce cohomology groups. They are similar to homology
groups but less geometric and motivated primarily by algebraic considerations.
They belong to the standard tool-set of an algebraic topologist and appear
in modern statements of the duality results discussed in the subsequent three
sections.

Groups of maps. Let G = Z2, the group of two elements, 0 and 1, together
with addition modulo 2. All abelian groups we have encountered so far are
vector spaces isomorphic to Gn for some integer n. Let U be such a vector
space and ϕ : U → G a homomorphism. To define ϕ, it suffices to specify its
values on the generators of U. If ϕ0 is a second such homomorphism, their
sum is defined by (ϕ+ ϕ0)(u) = ϕ(u) + ϕ0(u). This is again a homomorphism
because

(ϕ+ ϕ0)(u + v) = ϕ(u+ v) + ϕ0(u+ v)

= ϕ(u) + ϕ(v) + ϕ0(u) + ϕ0(v)

= (ϕ+ ϕ0)(u) + (ϕ+ ϕ0)(v).

It is easy to see that addition of homomorphisms is associative. We also have a
neutral element, the zero homomorphism that sends every u ∈ U to 0 ∈ G, and
an inverse, which for modulo 2 arithmetic is the identity, −ϕ = ϕ. We thus
have a group of homomorphisms from U to G, denoted as Hom(U,G). Think for
example of U as the group of p-chains of a simplicial complex and Hom(U,G)
as the group of labelings of the p-simplices by 0 and 1. The vector spaces U

and Hom(U,G) are isomorphic, although the isomorphism requires us to pick
a basis of U. Specifically, if U has the basis e1, e2, . . . , en, then Hom(U,G) has
the basis f1, f2, . . . , fn, where fi(ej) = δi,j , the Kronecker delta that is 1 if
i = j and 0 otherwise, and the isomorphism is defined by mapping ei to fi for
all i. If we choose a different basis, the isomorphism changes. As a specific
example, take U = G2, with basis e1 = (1, 0) and e2 = (0, 1). Then the vector
from the origin to (a, b) is written as ae1 + be2. The isomorphism from U to
Hom(U,G) takes w = (a, b) to the map fw = af1 + bf2 whose value on another
vector (x, y) = xe1 + ye2 is ax + by. Suppose instead that we take the basis
e′1 = e1+e2 and e′2 = e2. Then (a, b) = ae′1+(b−a)e′2, and the new isomorphism
takes w = (a, b) to the map f ′

w = af ′
1 + (b − a)f ′

2, whose value on the vector
(x, y) = xe′1 + (y − x)e′2 is ax + (b − a)(y − x). We see that fw and f ′

w assign
generally different values which shows that the two isomorphisms are indeed
different. This is the reason cohomology is worth defining at all, because if
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there was a natural isomorphism between U and Hom(U,G), the theories of
homology and cohomology would be the same.

Given another vector space V and a homomorphism f : U → V, there is
an induced dual homomorphism, f∗ : Hom(V,G) → Hom(U,G), that maps
ψ : V → G to the composite f∗(ψ) = ψ ◦ f : U → G. The map f∗ is indeed a
homomorphism since

f∗(ψ + ψ0)(u) = (ψ + ψ0) ◦ f(u)

= ψ ◦ f(u) + ψ0 ◦ f(u)

= f∗(ψ)(u) + f∗(ψ0)(u)

for every u ∈ U. The group of homomorphisms and the dual homomorphism
can be defined for more general abelian groups U, V, and G but this will not
be necessary for our purposes.

Simplicial cohomology. Let K be a simplicial complex. We construct co-
homology groups by turning chain groups into groups of homomorphisms and
boundary maps into their dual homomorphisms. To begin, we define a p-
cochain as a homomorphism ϕ : Cp → G, where G = Z2 as before. Given a
p-chain c ∈ Cp, the cochain evaluates c by mapping it to 0 or 1. It is common
to write this evaluation like a scalar product, ϕ(c) = 〈ϕ, c〉. Letting ℓ be the
number of p-simplices σ in c with ϕ(σ) = 1, we have 〈ϕ, c〉 = 1 iff ℓ is odd.
Considering chains and cochains as sets, the evaluation thus distinguishes odd
from even intersections.

The p-dimensional cochains form the group of p-cochains, C
p = Hom(Cp,G).

Recall that the boundary map is a homomorphism ∂p : Cp → Cp−1. It thus
defines a dual homomorphism, the coboundary map

δp−1 : Hom(Cp−1,G)→ Hom(Cp,G),

or simply δ : Cp−1 → Cp. It is worth looking at this construction in more
detail. Let ϕ be a (p − 1)-cochain and ∂c a (p − 1)-chain. By definition of
dual homomorphism, ϕ applied to ∂c is the same as δϕ applied to c, that is,
〈ϕ, ∂c〉 = 〈δϕ, c〉. Suppose for example that ϕ evaluates a single (p−1)-simplex
to one and all others to zero. Then δϕ evaluates all p-dimensional cofaces of this
simplex to one and all others to zero. This gives a concrete interpretation of
the coboundary map which will allow us to construct more elaborate examples
shortly. Since the coboundary map runs in a direction opposite to the boundary
map, it raises the dimension. Its kernel is the group of cocycles and its image
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is the group of coboundaries,

Z
p = ker δp : C

p → C
p+1,

B
p = im δp−1 : C

p−1 → C
p.

Recall the Fundamental Lemma of Homology according to which ∂◦∂ : Cp+1 →
Cp−1 is the zero homomorphism. We therefore have 〈δδϕ, c〉 = 〈δϕ, ∂c〉 =
〈ϕ, ∂∂c〉 = 0. In other words, δ ◦ δ : Cp−1 → Cp+1 is also the zero homomor-

0 0 0

p p p+1 −1 −2δ

Cp+1

Z p+1

Bp+1

C p

Z p

Bp

Cp−1

Z p−1

Bp−1

pδ δ δ

Figure V.1: The cochain complex consisting of a linear sequence of cochain, cocycle,
and coboundary groups connected by coboundary homomorphisms.

phism. Hence, the coboundary groups are subgroups of the cocycle groups and
we have the familiar picture, except that the maps now go from right to left,
as in Figure V.1.

Definition. The p-th cohomology group is the quotient of the p-th cocycle
group modulo the p-th coboundary group, Hp = Zp/Bp, for all p.

Reduced cohomology. Similar to homology, it is often useful to modify the
definition slightly and to define the reduced cohomology groups, denoted as H̃p.
Recall that for homology, this is done by introducing the augmentation map
ǫ : C0 → Z2 defined by ǫ(u) = 1 for each vertex u. The (−1)-st cochain group,
C−1 = Hom(Z2,G), has two elements, the map φ0 mapping 1 to 0 and the
map φ1 mapping 1 to 1. The dual homomorphism of the augmentation map,
ǫ∗ : Hom(Z2,G) → C0, maps φ0 to ψ0, which evaluates every vertex to zero,
and φ1 to ψ1, which evaluates every vertex to one. With this we have

. . .
δ1←− C

1 δ0←− C
0 ǫ∗←− Hom(Z2,G)

0←− 0
0←− . . .

Before the modification, the only 0-coboundary was the trivial 0-cochain, ψ0.
Now we have two 0-coboundaries, ψ0 and ψ1. The net effect of this modification
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is that the rank of the zeroth cohomology group drops by one, same as the
rank of the zeroth homology group when we add the augmentation map. As
an exception to this rule, the ranks of H0 and H̃0 are the same if C0 is trivial,
in which case rank H̃−1 = 1, again same as in reduced homology.

An example. To get a better feeling for cohomology, let us consider the tri-
angulation of the annulus in Figure V.2. The 0-cochain that evaluates every
single vertex to one is a 0-cocycle because every edge has exactly two vertices,
which implies that the coboundary of this particular 0-cochain is the zero ho-
momorphism. This is the only non-trivial 0-cocycle, and since for dimensional
reasons there are no non-trivial 0-coboundaries, this implies that the zeroth
cohomomology group, H0, has rank one. Correspondingly, the zeroth reduced
cohomology group has rank zero.

Figure V.2: The 1-cocycle is drawn by highlighting the edges it evaluates to one.
They all cross the “dual” closed curve. The 1-cocycle is a 1-coboundary because it is
the coboundary of the 0-cochain that evaluates a vertex to one iff it lies in the shaded
region inside the closed curve.

One dimension up, we consider a 1-cochain ϕ : C1 → G. Its coboundary is
the 2-chain δϕ : C2 → G that evaluates a triangle to one iff it is the coface of an
odd number of edges evaluated to one by ϕ. Hence, ϕ is a 1-cocycle iff every
triangle is incident to an even number of edges evaluating to one. A 1-cocycle
thus looks like a picket fence; see Figure V.2. In this example, we can draw a
closed curve such that an edge evaluates to one iff it crosses the curve, and a
1-chain is evaluated to the parity of the number of times it crosses that curve.
(We can actually do this in general, but the curve may have more than one
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component.) If the 1-chain is a 1-cycle then this number is necessarily even
and the evaluation is zero. The 1-cocycle in Figure V.2 is also a 1-coboundary.
To get a 1-cocycle that is not the image of a 0-cochain, we construct a picket
fence that starts with an outer boundary edge of the annulus and ends with an
inner boundary edge. All such picket fences are cohomologous and any one of
them can be used as representative of the cohomology class that generates the
first cohomology group. It follows that the rank of H1 is one.

Another dimension up, we have Z2 = C2 simply because every 2-cochain
maps to zero, the sole element of C3, and is therefore also a 2-cocycle. We
also have B2 = C2. To see this, note that the 2-cochain that evaluates a single
triangle to one and all others to zero is a 2-coboundary. Indeed, we can draw
three curves from a point in the interior of the triangle to the boundary of the
annulus and get a “dual” 1-cochain as the sum of three picket fences, one for
each curve, whose coboundary is the 2-cochain. Other 2-cochains are obtained
as coboundaries of sums of such triplets of picket fences. It follows that the
second cohomology group, H2, has rank 0. Observe that the ranks of the
cohomology groups are the same as the ranks of the corresponding homology
groups. This is not a coincidence.

Coboundary matrix. Recall that we can get the rank of the p-th homology
group from two boundary matrices transformed into normal form by row and
column operations. Recall also that rankHp = rankZp−rankBp. As illustrated
in Figure V.3, the right hand side of this equation is the number of zero columns
in the p-th matrix minus the number of non-zero rows in the (p+ 1)-st matrix;
see Figure IV.5. As we have seen earlier, a cochain evaluates a single p-simplex
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Figure V.3: The p-th and (p+1)-st boundary matrices in normal form. They are also
the (p − 1)-st and p-th coboundary matrices in normal form transposed.
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to one and all others to zero iff its coboundary evaluates each (p + 1)-coface
of this p-simplex to one and all other (p + 1)-simplices to zero. It follows
that the coboundary matrices are the boundary matrices transposed. The
normal form of the boundary matrices thus already contains the information
we need to get at the ranks of the cohomology groups. Specifically, rankHp =
rankZp − rankBp, the rank of the cocycle group is the number of zero rows
in the (p + 1)-st boundary matrix, and the rank of the coboundary group is
the number of non-zero columns in the p-th boundary matrix, both in normal
form. The number of columns of the p-th matrix is the number of rows of the
(p+1)-st matrix, hence rankBp+rankZp = rankZp+rankBp; see Figure V.3.
This implies

rankH
p = rankZ

p − rankB
p

= rankZp − rankBp = rankHp.

Since homology and cohomology groups have the same rank, there is no concept
of co-Betti number. For modulo 2 arithmetic, the rank determines the group,
hence homology and cohomology groups are isomorphic, Hp ≃ Hp for all p. This
is the Z2-version of a standard result in algebraic topology. For more general
coefficient groups, it relates the free parts and torsion parts of the homology
groups with those of the cohomology groups. A more complete statement of
the result for Z2-coefficients is the following.

Universal Coefficient Theorem. Given a topological space, X, there
are maps Hp(X)→ Hom(Hp(X),G)→ Hp(X) in which the first map is a natural
isomorphism and the second is an isomorphism that is not natural.

We saw at the beginning of this section that the second isomorphism depends
on a choice of basis and is therefore not natural. The first isomorphism does
not depend on such a choice. It is natural in the sense that if Y is another
topological space and f : X→ Y is a continuous map, then the diagram

H
p(X) → Hom(Hp(X),G)
↑ ↑

H
p(Y) → Hom(Hp(Y),G)

of induced maps commutes. The fact that the isomorphism between Hp and
Hom(Hp,G) is natural is the reason there is no need to introduce a theory of
co-cohomology.

Bibliographic notes. Similar to homology, cohomology is an established
topic within algebraic topology today, but it took some time to become clearly
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established. Cohomology has a long and complicated history with a variety
of precursors that go back to Poincaré, Alexander, Lefschetz, De Rham, Pon-
tryagin, Kolmogorov, Whitney, Čech, Eilenberg, Steenrod, Spanier and others.
All these approaches were unified with the clear statement of a set of axioms
that characterize homology and cohomology theories [1]. The Universal Co-
efficient Theorem and the duality theorems in the coming three sections were
originally proven in more elementary forms before being reformulated in terms
of homology and cohomology as we describe them here [2].

[1] S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology. Princeton
Univ. Press, New Jersey, 1952.

[2] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.
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V.2 Poincaré Duality

For sufficiently nice topological spaces, there are relations between the homol-
ogy and cohomology groups that go beyond the ones we have already seen.
These relationships go under the name of duality. The first and most im-
portant of these is Poincaré duality, which we describe in this and the next
section.

Combinatorial manifolds. In the rest of this chapter, we work only with
triangulations of manifolds that satisfy a condition on the topology of the
links. Specifically, a combinatorial d-manifold is a manifold of dimension d
together with a triangulation such that the link of every i-simplex triangulates
the sphere of dimension d − i − 1. The condition implies that the closed star
of every simplex has the topology of the d-dimensional ball, Bd. To describe
this in greater detail, we introduce the join of two topological spaces, X and Y,
which we denote as X∗Y. Begin with the product X×[0, 1]×Y. For each x0 ∈ X

identify all points (x0, 0, y) together, and for each y0 ∈ Y identify all points
(x, 1, y0) together. The quotient space of these identifications is X ∗ Y. Also,
X∗∅ = X. Figure V.4 illustrates the construction by showing the suspension of
X, that is, the join with the 0-sphere, denoted as ΣX = X ∗ S0. Geometrically,
we can think of the join as a union of line segments connecting X to Y that are
disjoint except possibly sharing the endpoint in X or the endpoint in Y.

b

a
a

b

0

1

0

1

Figure V.4: Constructing the join of a line segment and a pair of points. Left: the
product of the two with the unit interval. Right: the suspension obtained from the
product by identification.

Returning to the definition of a combinatorial manifold, we recall that the
star of a simplex, σ, consists of all simplices τ that contain σ as a face. Besides
σ, each simplex in the star is the join of σ with a simplex in the link of σ. If
σ is an i-simplex then Lkσ is a (d − i − 1)-sphere. Taking the join, we get a
d-ball, as mentioned earlier.
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Exotic manifolds. Not every triangulation of a manifold satisfies the condi-
tions on the links given above. We describe the construction of a triangulation
of the 5-sphere that has a vertex whose link is not a 4-sphere. We begin with
a triangulation, P , of the Poincaré 3-sphere. This space is homologically the
same as but topologically different from the 3-sphere, S3. There are many ways
to describe it. A particularly convenient way uses three complex numbers to
write a point in R6. Letting x1 to x6 be the coordinates, we set x = x1 + ix2,
y = x3 + ix4, z = x5 + ix6 and recall that their conjugates are x̄ = x1 − ix2,
ȳ = x3 − ix4, z̄ = x5 − ix6. Consider the following two equations:

xx̄+ yȳ + zz̄ = 1;

x2 + y3 + z5 = 0.

The first equation describes the 5-sphere. The second equation is really two
equations, one for the real and the other for the imaginary parts, and it define
a 4-dimensional space whose points have neighborhoods homeomorphic to R4

except at the origin, where the space is singular. The intersection of the two
spaces is the Poincaré 3-sphere. It is triangulable and we let P be a triangula-
tion of the Poincaré 3-sphere. Next, we take two suspension steps to construct
a triangulation of the 5-sphere. Writing this in terms of triangulations, wet get

ΣP = {a, b} ∪ {σ, a ∗ σ, b ∗ σ | σ ∈ P};
Σ2P = {u, v} ∪ {τ, u ∗ τ, v ∗ τ | τ ∈ ΣP}.

The shared link of the vertices a and b in ΣP is P , which is not a triangulation
of S3. It follows that a and b do not have neighborhoods homeomorphic to
R3. Hence, the underlying space of ΣP is not even a manifold. Taking the
suspension twice is the same as forming the join with a circle. Hence, Σ2P
triangulates the join of the Poincaré 3-sphere with S1. As it turns out, this
join is homeomorphic to S

5. The proof of this fact is not easy and omitted.
But now we have a triangulation of a 5-manifold, namely Σ2P , that violates
the condition on the links. Specifically, the shared link of the vertices u and v
in Σ2P is ΣP , which is not even a 4-manifold.

Dual blocks. Let now M be a compact, combinatorial d-manifold triangu-
lated by K. Recall that the barycentric subdivision, SdK, is obtained by
connecting the barycenters of the simplices in K; see Section III.1. It is not
difficult to show that if K has the link property required for a combinatorial
manifold, then so does SdK. Label each vertex in SdK by the dimension of the
corresponding simplex in K and note that each simplex in SdK has distinct
labels on its vertices. The vertex with smallest label is therefore unique. Let-
ting u be the barycenter of σ in K, the dual block, denoted by σ̂, is the union
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of the simplices in the barycentric subdivision for which u is the vertex with
minimum label; see Figure V.5. We let B be the set of dual blocks and call it
the dual block decomposition of M. For example, in the case of a combina-

Figure V.5: A small piece of a triangulation of the torus, the barycentric subdivision,
and the dual block decomposition.

torial 3-manifold, the dual blocks to a vertex, edge, triangle, and tetrahedron
are, respectively, a ball, a disk, an interval, and a point. The relationship
between K and B is much like that between the Delaunay triangulation and
its dual Voronoi diagram. In particular, if the p-simplex σ is a face of the
(p + 1)-simplex τ , then the dual block σ̂ contains τ̂ in its boundary. In fact,
the boundary of σ̂ is the union of dual blocks τ̂ over all proper cofaces τ of σ.
We denote this boundary by bd σ̂, noting that σ̂ is the join of bd σ̂ with the
barycenter of σ. Since we have a combinatorial manifold, bd σ̂ has the topology
of the (q − 1)-sphere, where p+ q = d.

We construct a new chain complex from the dual block decomposition as
follows. Choosing complementary dimensions p + q = d, a block chain of
dimension q is a formal sum

∑

aiσ̂i, where the σi are the p-simplices of K and
the σ̂i are the dual blocks of dimension q, with modulo 2 coefficients as usual.
The collection of block chains of dimension q form an abelian group, Dq. The
boundary homomorphism connecting the q-th group to the (q − 1)-st group
is defined by mapping σ̂i to ∂qσ̂i =

∑

τ̂j , where the sum is over all proper
cofaces τj of σi whose dimension is p+ 1. The full boundary homomorphism,
∂q : Dq → Dq−1, is the linear extension to block chains. It is easy to see that
∂q−1 ◦ ∂q = 0 so that (Dq, ∂q) is indeed a chain complex.

Blocks or simplices. We now have three ways to compute the homology
of M, using the simplices in K, using the simplices in SdK, or using the dual
blocks in B. We formally prove what is to be expected, namely that SdK and
B give the same homology. Write C = (Cp, ∂p) for the chain complex defined
by SdK and D = (Dq, ∂q) for the chain complex defined by B. Mapping
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each q-dimensional dual block to the sum of q-simplices it contains, we get a
homomorphism bq : Dq → Cq. The maps bq commute with the boundary maps
and thus form a chain map between the two chain complexes, which we denote
as b : D → C.

Block Complex Lemma. The chain map b : D → C induces b∗ : Hp(D)→
Hp(C) which is an isomorphism for each dimension p.

Proof. Let Xp be the subcomplex of SdK consisting of all simplices that lie
in blocks of dimension at most p. Clearly, X0 ⊆ X1 ⊆ . . . ⊆ Xd = SdK. The
p-th relative homology group of the pair (Xp, Xp−1) is isomorphic to Dp. More
generally,

Hp(Xq, Xq−1) ≃
{

Dp if p = q;
0 if p 6= q.

Indeed, each pair (σ̂, bd σ̂) has the homology of a q-ball relative to its boundary.
Next, consider the long exact sequence of the pair (Xq, Xq−1),

. . .→ Hp+1(Xq, Xq−1)→ Hp(Xq−1)→ Hp(Xq)→ Hp(Xq, Xq−1)→ . . .

The relative groups are all zero, except possibly Hq(Xq, Xq−1). Hence, the
maps from Hp(Xq−1) to Hp(Xq) are isomorphism for p + 1 < q. Composing
these isomorphism for q from p+2 to d implies that Hp(Xp+1) is isomorphic to
Hp(SdK). The main tool in this proof is a two-dimensional diagram connecting
pieces of the long exact sequences of the pairs (Xq, Xq−1) for q = p−1, p, p+1.
We write this diagram identifying Hq(Xq, Xq−1) with Dq.

Dp+1 0 = Hp−1(Xp−2)

↓e ց ↓

0 = Hp(Xp−1) −→ Hp(Xp)
f−→ Dp

g−→ Hp−1(Xp−1)

↓l ց ↓h

Hp(Xp+1) Dp−1

↓

0 = Hp(Xp+1, Xp)
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We see the block chain complex run diagonally, from the upper left to the
lower right in the diagram. The two triangles in the diagram commute. As
mentioned above, the relative homology groups off the main diagonal are zero,
which explains the trivial group at the bottom of the diagram. We also note
that Hp(Xq) = 0 for all q < p simply because the dimension of Xq is less than
p. This gives two additional trivial groups in the diagram.

We are now ready for some diagram chasing. The subgroup of p-cycles in
Dp is the kernel of ∂p = h ◦ g. Since h is injective, this group is also the kernel
of g. By exactness of the horizontal sequence, we have ker g = im f , and since
f is injective, this implies that Hp(Xp) is isomorphic to the group of p-cycles.
The subgroup of p-boundaries in Dp is the image of ∂p+1 = f ◦ e. Since f
is injective, this group is isomorphic to the image of e. The p-th homology
group is the quotient of the two, Hp(D) = Hp(Xp)/im e. By exactness of the
first vertical sequence, this is equal to Hp(Xp)/ker l. But l is surjective, so this
quotient is isomorphic to Hp(Xp+1) and therefore to Hp(SdK), as required.

First form of Poincaré duality. There is a fairly direct translation be-
tween chains formed by dual blocks and cochains formed by the corresponding
simplices. We have all results lined up to prove the main result of this section.

Poincaré Duality Theorem (first form). Let M be a compact, combi-
natorial d-manifold. Then there is an isomorphism between Hp(M) and Hq(M)
for every pair of complementary dimensions p+ q = d.

Proof. Let K be a triangulation of M and define q such that p + q = d. If
σ is a q-simplex of K, let σ∗ be the dual q-cochain defined by 〈σ∗, σ〉 = 1 and
〈σ∗, τ〉 = 0 if τ 6= σ. The map PDq : Dp → Cq is defined on the chain level by
setting PDq(σ̂) = σ∗ and extending linearly. It is, of course, an isomorphism.
To prove Poincaré duality, we only need to show that PDq commutes with
boundary and coboundary:

PDq−1 ◦ ∂p = δq ◦ PDq.

But this is easy since 〈δq(σ∗), τ〉 = 〈σ∗, ∂(τ)〉 = 1 iff σ is a face of τ , which is
exactly the definition of ∂q.

Recall that the Universal Coefficient Theorem states that Hp(M) is isomor-
phic to Hp(M). Together with the Poincaré Duality Theorem, we thus have
Hp(M) ≃ Hq(M) for all p+ q = d.



136 V Duality

Bibliographic notes. Poincaré mentioned a form of his duality in a paper
in 1893, without giving a proof. He tried a proof in his 1895 Analysis situ
paper [4] based on intersection theory (see the next section), which he invented.
Criticism of his work by Poul Heegard led him to realize that his proof was
flawed, and he gave a new proof in two complements of the Analysis situ paper,
[5, 6], now based on dual triangulations. Poincaré duality took on its modern
form in the 1930s when Eduard Čech and Hassler Whitney invented the cup
and cap products of cohomology.

In this book, we have assumed that we are working with combinatorial man-
ifolds. The construction of a triangulation of the 5-sphere described in this
section is due to Edwards [1]. See [7] for further exotic manifolds, including
some for which all triangulations violate the condition on the links. While the
restriction to combinatorial manifolds is a loss of generality, the Poincaré Du-
ality Theorem nevertheless holds for arbitrary triangulated manifolds [3]. In
fact, if we use singular homology, Poincaré duality holds for arbitrary topo-
logical manifolds and even for non-compact manifolds if we use what is called
cohomology with compact support. A nice proof of this can be found in [2,
Chapter 20].

[1] R. D. Edwards. Approximating certain cell-like maps by homeomorphisms. No-
tices Amer. Math. Soc. 24 (1977), A647.

[2] J. P. May. A Concise Course in Algebraic Topology. Chicago Lectures in Math-
ematics, Univ. Chicago Press, Chicago, Illinois, 1999.

[3] J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Redwood City,
California, 1984.

[4] H. Poincaré. Analysis situs. J. Ecole Polytechn. 1 (1895), 1–121.

[5] H. Poincaré. Complément à l’analysis situs. Rend. Circ. Mat. Palermo 13

(1899), 285–343.

[6] H. Poincaré. Cinquième complément a l’analysis situs. Rend. Circ. Mat.
Palermo 18 (1904), 45–110.

[7] A. A. Ranicki (editor). The Hauptvermutung Book. Kluwer, Dordrecht, the
Netherlands, 1996.
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V.3 Intersection Theory

There is a second version of Poincarè duality which can be stated purely in
terms of homology. It is based on an intersection pairing between homology
classes of complementary dimensions introduced in this section.

Counting intersections modulo 2. Let M be a combinatorial manifold of
dimension d and K a triangulation of M. Furthermore, let p and q be integers
such that p + q = d. As explained in Section V.2, if σ is a p-simplex in K
then its dual block, σ̂, is q-dimensional. The two meet in a single point, the
barycenter of σ. If τ is another p-simplex then σ 6= τ implies that σ and τ̂ are
disjoint. We therefore define

σ · τ̂ =

{

1 if σ = τ ;
0 if σ 6= τ.

We are mainly interested in intersections of cycles. Suppose that c =
∑

i aiσi
is a p-cycle in K and d =

∑

j bj τ̂j is a q-cycle in the dual block decomposition.
Then the intersection number of the two cycles is

c · d =
∑

i,j

aibj(σi · τ̂j),

counting the intersections modulo 2. In other words, c · d = 0 if the two cycles
are disjoint or meet in an even number of points, and c · d = 1 if they meet
in an odd number of points. As an example, consider the center circle of the
Möbius strip and a pulled off copy, that is, a nearby closed curve that meets
the center circle in a finite number of points, as sketched in Figure V.6. The

Figure V.6: The black center circle of the Möbius strip intersects the gray pulled off
copy in three points.

topology of the Möbius strip forces an odd number of intersections. This is



138 V Duality

unlike the orientable case in which a pulled off closed curve meets the original
in an even number of points.

It is not difficult to show that if we replace c or d by a homologous cycle, then
the intersection number does not change. For example, if c ∼ c0, we consider
the intersection of d with a (p+1)-chain γ in K for which ∂γ = c+c0. Let τ be
a (p+1)-simplex of γ and σ̂ a block of dimension q = d−p. The key observation
is that τ and σ̂ are disjoint unless σ is a face of τ in which case they intersect
in the edge connecting the barycenter of τ to the barycenter of σ. Completing
the intersection between γ and d, the edge extends to either a closed curve or
a path with two endpoints. These points either lie both on c, or both on c0,
or one on c and the other on c0. The total number of endpoints is even, which
implies that the intersection numbers are the same, that is, c · d = c0 · d.

Pairings. Since the intersection number is invariant under choosing different
representatives of a homology class, we have a map # : Hp(M) × Hq(M) → G

defined by #(γ, δ) = c · d, where c and d are representative cycles of γ and
δ. We call this map the intersection pairing of the homology groups, where
p + q = d, as before. Using the same notation as for simplices and cycles, we
write γ · δ = #(γ, δ) and call it the intersection number of γ ∈ Hp(M) and
δ ∈ Hq(M). The pairing is bilinear and symmetric, that is,

(aγ + a0γ0) · δ = a(γ · δ) + a0(γ0 · δ);
γ · (bδ + b0δ0) = b(γ · δ) + b0(γ · δ0);

γ · δ = δ · γ.

Since we work modulo 2, we do not have to worry about orientations of simplices
and manifolds. To define intersection theory over an arbitrary field, we would
need to deal with this issue, and the intersection number would be an element
of the field. In this case, bilinearity still holds but symmetry does not. Indeed,
if γ is p-dimensional and δ is q-dimensional then γ · δ = (−1)pq(δ · γ).

Pairings can be defined more generally. For example, let U and V be vector
spaces over G = Z2. A bilinear pairing # : U × V → G gives a natural homo-
morphism φ# : V → Hom(U,G) defined by φ#(v) = fv, where fv(u) = u · v.
The pairing is perfect if for every non-zero u ∈ U there exists at least one
v0 ∈ V with #(u, v0) = 1 and, symmetrically, for every non-zero v ∈ V there
exists at least one u0 ∈ U with #(u0, v) = 1.

Perfect Pairing Lemma. The pairing # : U × V → G is perfect iff the
implied natural homomorphism φ# : V→ Hom(U,G) is an isomorphism.
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Proof. Suppose first that φ# is an isomorphism. If we take v 6= 0, then since
φ# is injective, fv 6= 0, which means there is at least one u0 with #(u0, v) = 1.
Furthermore, if u 6= 0, since φ# is surjective, there is a v0 ∈ V with φ#(v0) =
u∗, and this means that #(u, v0) = 1.

Conversely, suppose that the paring is perfect. The map φ# is injective
because if fv = 0, then #(u, v) = 0 for every u, so # perfect gives v = 0. Note
that this implies rankV ≤ rankHom(U,G) = rankU. The similarly defined map
from U to Hom(V,G) is injective by the analogous argument, which implies
rankU ≤ rankHom(V,G) = rankV. Thus φ# is an injective map between
vector spaces of the same dimension, which implies it is an isomorphism.

Since V and Hom(U,G) are isomorphic, this implies that U and V are iso-
morphic. However, this isomorphism depends on a choice of basis.

Intersection and cohomology. We can define the Poincaré duality map
using intersection numbers. Indeed, if σ is a p-simplex of K and σ̂ is its dual
block of dimension q, then PDq(σ̂) = σ∗. That is, PDq(σ̂) is the p-dimensional
cochain for which

〈σ∗, τ〉 =

{

1 if σ = τ ;
0 if σ 6= τ.

Since the same holds for intersection numbers, we have 〈PDq(σ̂), τ〉 = σ̂ · τ .
By linear extension, this formula holds for chains, and since it is the same
for different representatives of the same class, the formula also holds for the
induced map on homology, that is,

〈PD∗(γ), δ〉 = γ · δ.

Using this formula, there is a second version of Poincaré duality.

Poincaré Duality Theorem (second form). Let M be a compact,
combinatorial d-manifold. Then the pairing # : Hp(M) × Hq(M) → G defined
by #(γ, δ) = γ · δ is perfect for all integers p+ q = d.

The proof follows from the first form and is omitted.

The torus and the Klein bottle. To illustrate Poincaré duality formulated
in terms of intersection numbers, we now consider the two examples sketched in
Figure V.7. For the 2-dimensional torus, S1×S1, the most interesting case is in
dimension 1 for which the second form of Poincaré duality gives a perfect pairing
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x

y

x x

y

Figure V.7: The meridian and longitudinal curves of the torus on the left and of the
Klein bottle on the right.

# : H1 × H1 → G. Natural generators of H1 are the meridian curve, x, which
bounds a disk in the solid region enclosed by the torus, and the longitudinal
curve, y, which meets x in a single point and does not bound. The intersection
numbers are easy to compute. Pushing off x and y give homologous closed
curves that are disjoint from the originals or meet them in an even number of
points. Hence, the intersection numbers between x and x and between y and
y vanish and the intersection number between x and y is one, see Table V.1
on the left. Note that the determinant of the matrix of intersection numbers is
one.

The modulo 2 homology of the Klein bottle is the same as that of the torus.
However, the intersection pairing on H1 is different. Like for the torus, we can
take two curves x and y that generate H1 with x · y = y · x = 1 and x · x = 0.
However, a neighborhood of the curve y is a Möbius strip, so pushing off y gives
a closed curve that intersects y and odd number of times, that is, y ·y = 1. If we
change the basis, we still do not get the same matrix as that of the torus. Once
again, the matrix of intersection numbers, given in Table V.1 on the right, has
determinant one.

x y x y

x 0 1 0 1
y 1 0 1 1

Table V.1: The intersection numbers of the meridian and the longitudinal curves for
the torus on the left and the Klein bottle on the right.

Euler characteristic. By the Euler-Poincaré Theorem, the Euler character-
istic of any space is the alternating sum of its Betti numbers. Letting M be
a compact, combinatorial d-manifold, the Poincaré Duality and the Universal
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Coefficient Theorems imply βi = βd−i for all i. For odd d, this gives

χ(M) = β0 − β1 + . . .+ βd−1 − βd,

which vanishes. For even d, this tells us that the terms above and below half
the dimension contribute equal amounts to the Euler characteristic. Writing
d = 2k, this gives

χ(M) = 2[β0 − β1 + . . .± βk−1]∓ βk.

It follows the Euler characteristic is even iff βk is even. However, the group
Hk(M) is paired with itself and is therefore self-dual. If M is orientable, this can
be used to show that βk is indeed even, and so is the Euler characteristic. In
contrast, homology and cohomology modulo 2 does not capture this subtlety.

Manifolds with boundary. If M is a manifold with boundary, Poincaré
duality does not hold. For example, if we take the ball, Bd, its 0-dimensional
homology has rank one while its d-dimensional homology vanishes. There is
a form for manifolds with boundary, however, called Lefschetz duality, which
reduces to Poincaré duality when the boundary is empty. It relates an absolute
homology or cohomology group to a relative one. Returning to our example,
note that H0(B

d) and Hd(B
d, Sd−1) both have rank one.

Lefschetz Duality Theorem (first form). Let M be a compact, com-
binatorial d-manifold with boundary ∂M. Then for every pair of complemen-
tary dimensions p + q = d, there are isomorphisms Hp(M, ∂M) ≃ Hq(M) and
Hp(M) ≃ Hq(M, ∂M).

Again this can be combined with the Universal Coefficient Theorem, Hp(M) ≃
Hp(M), to see that Hp(M, ∂M) ≃ Hq(M) for all p + q = d. The proof of
the Lefschetz Duality Theorem follows that of the Poincaré Duality Theorem
exactly, inserting relative chains and cochains where needed. We omit the proof.
There is also a second version of Lefschetz duality based on the extension of the
intersection pairing to a pairing between absolute and relative classes. Again
we omit the details and the proof.

Lefschetz Duality Theorem (second form). Let M be a compact,
combinatorial d-manifold with boundary ∂M. Then the intersection pairing
# : Hp(M) × Hq(M, ∂M)→ G is perfect for all p+ q = d.

We illustrate Lefschetz duality formulated in terms of intersection numbers
for the capped torus sketched in Figure V.8. Being homeomorphic to the
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cylinder, the first homology group of the capped torus has a single generator,
the meridian curve of the full torus. Similarly, the first relative homology group
has a single generator, namely the portion of the longitudinal curve connecting
points on the two boundary circles; see Figure V.8.

Figure V.8: The displayed generators of the first absolute and first relative homology
groups of the capped torus meet in a single point.

Bibliographic Notes. Henry Poincaré invented intersection theory to prove
his duality theorem in 1895 [3], but this attempt failed. It is also said that
Alexander and Lefschetz founded the intersection theory of cycles on manifolds
in the 1920s. Their theory was one of the precursors of cohomology. The
Lefschetz Duality Theorem dates back to the 1920s when Solomon Lefschetz
introduced it along with the concept of relative homology [1]. A good modern
account can be found in [2].

[1] S. Lefschetz. Manifolds with a boundary and their transformations. Trans.
Amer. Math. Soc. 29 (1927), 429–462.

[2] C. R. F. Maunder. Algebraic Topology. Cambridge Univ. Press, England, 1980.

[3] H. Poincaré. Analysis situs. J. Ecole Polytechn. 1 (1895), 1–121.
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V.4 Alexander Duality

Prisons in d-dimensional space are made of (d − 1)-dimensional walls. This is
because a wall of dimension d− 2 or less cannot separate any portion of space
from the rest. The topic of this section is a formal expression of a generalization
of this statement and its use in the design of a fast algorithm for homology.

The theorem. The complement of a 2-sphere in the 3 sphere consists of two
balls and thus has homology only in dimension 0. The complement of the torus,
however, is two solid torii, and each of these has homology in both dimensions
0 and 1. This suggests a relationship between the homology of a subspace
and its complement. In the general case of one submanifold in another such a
statement exists, but the most famous and prettiest case is the case where the
manifold is the sphere. We state that here.

Alexander Duality Theorem. Let K be a triangulation of Sd and X ⊆
Sd be triangulated by a non-empty subcomplex L ⊆ K. Then H̃p(X) ≃
H̃d−p−1(Sd − X).

Proof. We prove the claim using Lefschetz duality, excision, and the exact
sequence of a pair. We begin by constructing a regular neighborhood N of the
space X. Consider the second barycentric subdivision of K, Sd2K = Sd(SdK).
Define N to be the closed star of L in that subdivision and E to be the closure
of the complement of N in the same subdivision. It can be shown that K is
a deformation retract of N , and E is a deformation retract of Sd − X. The
complexes E and N share the same boundary which is the link of L in Sd2K.

We now prove Alexander duality for 0 ≤ p < d− 1 by showing the following
chain of isomorphisms:

H̃
d−p−1(Sd − X) ≃ H̃

d−p−1(E) ≃ H
d−p−1(E) ≃ Hp+1(E, ∂E)

≃ H̃p+1(E, ∂E) ≃ H̃p+1(S
d, N) ≃ H̃p(N) ≃ H̃p(X).

The first isomorphism follows from the fact that Sd − X deformation retracts
onto E. The second follows because cohomology and reduced cohomology are
the same in dimensions greater than zero. The third isomorphism is Lefschetz
duality for E, which is a d-manifold with boundary. The fourth follows like
the second, this time for homology. The fifth isomorphism is excision, where
we excise the interior of N to see that the inclusion of pairs (E, ∂E)→ (Sd, N)
induces an isomorphism on homology. For the sixth we notice that the map
H̃p+1(S

d, N) → H̃p(N) is the connecting map in the reduced exact sequence
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of the pair (Sd, N). Since p + 1 < d, H̃p+1(S
d) = H̃p(S

d) = 0, we get the
isomorphism. The final one follows from the fact that N deformation retracts
onto L.

When p = d − 1, the difference is in Lefschetz duality for E and in the fact
that H̃d(Sd) has rank one. We have

H
0(Sd −X) ≃ H

0(E) ≃ Hd(E, ∂E)

≃ Hd(S
d, N) ≃ Hd−1(N)⊕ G ≃ Hd−1(X)⊕ G ≃ H̃d−1(X)⊕ G,

and H0(Sd −X) ≃ H̃0(Sd −X)⊕G The extra copy of G is easily seen to match
up, as it is the generator of H0(Sd) ≃ Hn(S

d). This implies the result.

Knots in S3. Let N ⊂ S3 be a submanifold homeomorphic to a circle. We
think of N as obtained by gluing the ends of a piece of string that we have tied
in a knot, and so call N a knot itself. Define the exterior X of N to be the
closure of the complement S3 −N . In studying knots, we look for topological
invariants of the X of N . By Alexander duality, H̃1(X) ≃ H̃1(N) ≃ G, and the
other reduced groups of X are 0. Thus homology doesn’t distinguish knots in
S3! What is needed is the fundamental group of X , and we refer the reader to
other texts on topology to learn about this.

Incremental algorithm. [[Explain the computation of homology by adding one

simplex at a time.]]

[[When adding the simplex σi to Ki−1 we define K = Ki−1 ∪ {σ}, K0 = Ki−1, and
consider the exact homology sequence of the pair (K, K0),

. . . → Hp(K0) → Hp(K)
g∗
→ Hp+1(K, K0) → Hp−1(K0) → . . .

All the relative homology groups are zero except for Hp(K, K0), where p = dim σi. Then

there are two cases, namely that g∗ is the zero homomorphism or it is injective. In the

first case, the rank of the (p − 1)-st homology group drops by one. In the second case,

the rank of the p-th homology group increases by one.]]

Union-find for first homology. [[Explain briefly how the union-find data struc-

ture can be used to maintain the rank of the first homology group in α(m) time per

vertex and edge.]]
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Alexander duality for second to the last homology. [[Reduce the (d−1)-st

homology to the first homology formulated in terms of dual blocks.]]

[[In summary, we have an algorithm that computes the Betti numbers of a simplicial

complex in S
3 in time proportional to mα(m), where m is the number of simplices.]]

Bibliographic note. [[We may think of the Alexander Duality Theorem as a gen-

eralization of the Jordan Curve Theorem proved by C. Jordan in 1892.]]

[[Alexander duality was presaged by work of J. W. Alexander in 1915. This was later

further developed, in particular by P. S. Alexandrov and Lev Pontryagin.]]

[[Reference Delfinado and Edelsbrunner [2] for incremental algortihm.]]

[1] J. W. Alexander. A proof of the invariance of certain constants of analysis situ.
Trans. Amer. Math. Soc. 16 (1915), 148–154.

[2] C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for
Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom.
Design 12 (1995), 771–784.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Coboundary (one credit). Prove that the coboundary map can be thought
of as taking each simplex to its cofaces of one dimension higher. Formally,
〈δϕ, τ〉 = 1 iff 〈ϕ, σ〉 = 1 for an odd number of faces σ of τ with dimension
dimσ = dim τ − 1.

2. Universal Coefficient Theorem (two credits). Let ϕ ∈ Zp be a cocycle
representing a cohomology class γ ∈ Hp and let c ∈ Zp be a cycle repre-
senting a homology class α ∈ Hp. Let j : Hp → Hom(Hp,Z2) be defined so
that j(γ) applied to α is equal to 〈ϕ, c〉.

(i) Show that j is well defined, that is, it does not depend on the repre-
sentatives chosen for γ and α.

(ii) Show that j is an isomorphism.

3. Dual vector spaces (two credits), Let U be a vector space over G = Z2

and U
∗ = Hom(U,G) be its dual.

(i) Show that U∗ is also a vector space and U and U∗ are isomorphic.
However, note that the isomorphism between U and U∗ depends on
a choice of basis and is thus not natural.

Let (U∗)∗ = Hom(U∗,G) be the dual of the dual of U. Let j : U → (U∗)∗

be defined by mapping u ∈ U to j(u) = φ ∈ (U∗)∗ such that φ(f) = f(u)
for every f ∈ U∗.

(ii) Prove that j is an isomorphism.

4. Poincaré Duality (two credits). Use the Perfect Pairing Lemma to prove
the first form from the second form of the Poincaré Duality Theorem.

5. Duality on Torus (how many credits?).

6. Poincaré Duality (how many credits?). Show Poincaré Duality without
assuming a PL triangulation.

However, there is a weaker property that is true and suffices for the correct-
ness of the above argument on Euler characteristics. Letting D be a (d − j)-
dimensional block, we write D̄ for its closure and Ḋ = D̄−D for its boundary.
Then the relative homology of the pair (D̄, Ḋ) is that of the (d−j)-dimensional
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ball relative its boundary, namely Hp(D̄, Ḋ) ≃ Z2 if p = d− j and it vanishes if
p 6= d− j. This property of blocks can be used to prove the following striking
symmetry of manifolds.

Intersection theory extended. We don’t need p+ q = d in order to define
intersections. In fact, if σ1 and σ∗

2 are a p simplex and a dual q block, where
σ2 is a d− p simplex, then the intersection σ1 ∩σ∗

2 is the union of all p+ q− d
in Sdσ1 ⊂ SdK whose

Intersection theory for even-dimensional manifolds. For 2d-
dimensional manifolds, the intersection pairing in dimension d,
Hd(M) × Hd(M) → G is an important invariant. Choosing a basis of
Hd(M), this bilinear map can be represented by a βd × βd matrix I, via
the formula v · w = vtIw. Poincaré duality implies that this matrix is
non-degenerate, which in turns tells us that it is non-singular (has determinant
one).
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Chapter VI

Morse Functions

The class of real-valued functions on a manifold is an unwieldy animal, and
restricting it to continuous functions does not do a whole lot to tame it. Even
smooth functions can be rather complicated in their behavior and it is best
to add another requirement, namely genericity. What we get then is the class
of Morse functions, which distinguishes itself by having only simple critical
points. Most of the theory is concerned with the study of these critical points,
their structure, and what they say about the manifold and the function. In
spite of the fact that we rarely find Morse functions in actual applications, or
smooth functions for that matter, knowing about their structure significantly
benefits our understanding of general, smooth functions and even piecewise
linear functions, as we will see.

VI.1 Generic Smooth Functions
VI.2 Transversality
VI.3 Piecewise Linear Functions
VI.4 Reeb Graphs

Exercises

149
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VI.1 Generic Smooth Functions

Many questions in the sciences and engineering are posed in terms of real-valued
functions. General such functions are a nightmare and continuous functions are
not much better. Even smooth functions can be exceedingly complicated but
when they are restricted to being generic they become intelligible.

The upright torus. We start with an example that foreshadows many of the
results on generic smooth functions in an intuitive manner. Let M be the two-
dimensional torus and f(x) the height of the point x ∈ M above a horizontal
plane on which the torus rests, as in Figure VI.1. We call f : M→ R a height

u

v

w

z

Figure VI.1: The vertical height function on the torus with critical points u, v, w, z

and level sets between their height values.

function. Each real number a has a preimage, f−1(a), which we refer to as a
level set. It consists of all points x ∈ M at height a. Accordingly, the sublevel
set consists of all points at height at most a,

Ma = f−1(−∞, a] = {x ∈ M | f(x) ≤ a}.

We are interested in the evolution of the sublevel set as we increase the thresh-
old. Critical events occur when a passes the height values of the points u, v, w, z
in Figure VI.1. For a < f(u), the sublevel set is empty. For f(u) < a < f(v),
it is a disk, which has the homotopy type of a point. For f(v) < a < f(w), the
sublevel set is a cylinder. It has the homotopy type of a circle. We imagine it
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obtained by gluing the two ends of an interval to the disk which is then shrunk
to a point. For f(w) < a < f(z), the sublevel set is a capped torus. It has
the homotopy type of a figure-8 obtained by gluing the two ends of another
interval to the cylinder which is then shrunk to a circle. Finally, for f(z) < a,
we have the complete torus. It is obtained by gluing a disk to the capped torus.
Figure VI.2 illustrates the three intermediate stages of the evolution. We need
background in differential topology to explain in what sense this evolution of
the sublevel set is representative of the general situation.

Figure VI.2: Going from a disk to a cylinder is homotopically the same as attaching
a 1-handle. Similarly, going from the cylinder to the capped torus is homotopically
the same as attaching another 1-handle.

Smooth functions. Let M be a smooth d-manifold, that is, M has an atlas
of coordinate charts each diffeomorphic to an open ball in Rd. We recall that a
diffeomorphism is a homeomorphism that is smooth in both directions. Tech-
nically, being smooth means that derivatives of all orders exist. Practically, we
just need derivatives of first and second order for most of the things we do,
but it is easier to assume than to keep books. Denote the tangent space at
a point x ∈ M by TMx. It is the d-dimensional vector space consisting of all
tangent vectors of M at x. A smooth mapping to another smooth manifold,
f : M → N, induces a linear mapping between the tangent spaces, the deriva-
tive Dfx : TMx → TNf(x). We are primarily interested in real-valued functions
for which N = R. Accordingly, we have linear maps Dfx : TMx → TRf(x).
The tangent space at a point of the real line is again a real line, so this is just
a fancy way of saying that the derivatives are real-valued linear maps on the
tangent spaces. Being linear, the image of such a map is either the entire line
or just zero. We call x ∈ M a regular point of f if Dfx is surjective and we
call x a critical point of f if Dfx is the zero map. If we have a local coordinate
system (x1, x2, . . . , xd) in a neighborhood of x then x is critical iff all its partial
derivatives vanish,

∂f

∂x1
(x) =

∂f

∂x2
(x) = . . . =

∂f

∂xd
(x) = 0.
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The image of a critical point, f(x), is called a critical value of f . All others are
regular values of f . We use second derivatives to further distinguish between
different types of critical points. The Hessian of f at the point x is the matrix
of second derivatives,

H(x) =













∂2f
∂x1∂x1

(x) ∂2f
∂x1∂x2

(x) . . . ∂2f
∂x1∂xd

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x2∂x2
(x) . . . ∂2f

∂x2∂xd
(x)

...
. . .

...
∂2f

∂xd∂x1
(x) ∂2f

∂xd∂x2
(x) . . . ∂2f

∂xd∂xd
(x)













.

A critical point x is non-degenerate if the Hessian is non-singular, that is,
detH(x) 6= 0. The points u, v, w, z in Figure VI.1 are examples of non-
degenerate critical points. Examples of degenerate critical points are x1 = 0
of the function f : R → R defined by f(x1) = x3

1 and (x1, x2) = (0, 0) of
f : R2 → R defined by f(x1, x2) = x3

1−3x1x
2
2. The degenerate critical point in

that latter example is often referred to as a monkey saddle. Indeed, the graph
of the function in a neighborhood goes up and down three times, providing
convenient resting place for the two legs as well as the tail of the monkey.

Morse functions. At a critical point, all partial derivatives vanish. A lo-
cal Taylor expansion has therefore no linear terms. If the critical point is
non-degenerate then the behavior of the function in a small neighborhood is
dominated by the quadratic terms. Even more, we can find local coordinates
such that there are no higher-order terms.

Morse Lemma. Let u be a non-degenerate critical point of f : M → R.
There are local coordinates with u = (0, 0, . . . , 0) such that

f(x) = f(u)− x2
1 − . . .− x2

q + x2
q+1 + . . .+ x2

d

for every point x = (x1, x2, . . . , xd) in a small neighborhood of u.

The number of minus signs in the quadratic polynomial is the index of the
critical point, index(u) = q. The index classifies the non-degenerate critical
points into d + 1 types. For a 2-manifold, we have three types, minima with
index 0, saddles with index 1, and maxima with index 2. Examples of all three
types can be seen in Figure VI.1. In Figure VI.3, we display them by showing
the local evolution of the sublevel set. A consequence of the Morse Lemma is
that non-degenerate critical points are isolated. In other words, each critical
point has a local neighborhood that separates it from the others. This implies
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Figure VI.3: From left to right: the local pictures of a minimum, a saddle, a maximum.
Imagine looking from above with the shading getting darker as the function shrinks
away from the viewpoint.

that a Morse function on a compact manifold has at most a finite number
of critical points. To contrast this with a function that is not Morse, take
the height function of a torus, similar to Figure VI.1 but placing the torus
sideways, the way it would naturally rest under the influence of gravity. This
height function has an entire circle of minima and another circle of maxima.
All these critical points are degenerate and their index is not defined.

Definition. A Morse function is a smooth function on a manifold, f : M→
R, such that (i) all critical points are non-degenerate, and (ii) the critical points
have distinct function values.

Sometimes the second condition is dropped but in this book we will always
require both. For a geometrically perfect torus, the height function satisfies
condition (i) for all but two directions, the ones parallel to the symmetry axis
of the torus. Condition (ii) is violated for another two circles of directions along
which the two saddles have the same height. The height function of S2 is a
Morse function for all directions. The distance from a point is a Morse function
for almost all points. Exceptions for the torus are points on the symmetry axis
and on the center circle, but there are others. The only exception for the
2-sphere is the center.

Gradient vector field. A vector field on a manifold is a function X : M→
TM that maps every point x ∈ M to a vector X(x) in the tangent space of M

at x. Given f : M→ R and X , we denote the directional derivative of f along
the vector field by X [f ]. It maps every point x ∈M to the derivative of f at x
in the direction X(x). A particularly useful vector field is the one that points
in the direction of steepest increase. To define it, we need to measure length,
which we do by introducing a Riemannian metric, that is, a smoothly varying
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inner product defined on the tangent spaces. For example, if M is smoothly
embedded in some Euclidean space then the tangent spaces are linear subspaces
of the same Euclidean space and we can borrow the metric. Given a smooth
manifold M, a Riemannian metric on M, and a smooth function f : M → R,
we define the gradient of f as the vector field ∇f : M → TM characterized
by 〈X(x),∇f(x)〉 = X [f ] for every vector field X . Assuming local coordinates
with orthonormal unit vectors xi, the gradient at the point x is

∇f(x) =

[

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xd
(x)

]T

.

We use the gradient to introduce a 1-parameter group of diffeomorphisms ϕ :
R×M → M. There are two characteristic properties of this group. First, the
map ϕt : M→ M defined by ϕt(x) = ϕ(t, x) is a diffeomorphism of M to itself
for each t ∈ R, and second, ϕt+t0 = ϕt ◦ ϕt0 for all t, t0 ∈ R. Such a group
defines a vector field by differentiation and we require that this vector field be
the gradient vector field, modified by taking one over the original length:

lim
ε→0

f(ϕε(x)) − f(x)

ε
=

∇f(x)

‖∇f(x)‖2
[f ].

This group of diffeomorphisms follows the evolution of the sublevel set and can
be used to prove that there are no topological changes that happen between
contiguous critical values. Specifically, let f : M → R be smooth and a < b
such that f−1[a, b] is compact and contains no critical points of f . Then Ma is
diffeomorphic to Mb.

Attaching handles. The situation is different when we consider regular val-
ues a < b such that f−1[a, b] is compact but contains one critical point of f .
Let this critical point be u and its index be q. In this case, Mb has the ho-
motopy type of Ma with a q-handle attached. To explain what this means,
we recall that Bq is the q-dimensional unit ball and Sq−1 is its boundary. Let
g : Sq−1 → bd Ma be a continuous map. To attach the handle to Ma, we
identify each point x ∈ Sq−1 with its image g(x) ∈ bd Ma. The only case that
is a bit different is q = 0. Then S−1 is empty and attaching the 0-handle just
means adding a disjoint point.

We illustrate this construction for a 3-manifold M. There are four types of
critical points, namely minima with index 0, saddles with index 1 or 2, and
maxima with index 3. The two types of saddles deserve some attention. To
illustrate the local evolution of the sublevel set, we draw spheres around them
and shade the portion that belongs to the sublevel set, as in Figure VI.4. The



VI.1 Generic Smooth Functions 155

Figure VI.4: The double-cone neighborhood of the index 1 saddle on the left and of
the index 2 saddle on the right. The volume occupied by the sublevel set is shaded.

level set that passes through the saddle forms locally a double-cone with the
apex at the saddle. This is the same for both types, the only difference being the
side on which the sublevel set resides. For the index 1 saddle, we imagine a two
sheet hyperboloid approaching from two sides until the two sheets meet at the
saddle. Thereafter, the sublevel set thickens around the saddle as its boundary
moves out as a one sheet hyperboloid (an hour glass). Homotopically, this
evolution is the same as attaching a 1-handle (an interval) connecting the two
sheets. For the index 2 saddle, the sequence of events is reversed. Specifically, a
one sheet hyperboloid approaches along a circle of directions until it reaches the
saddle. Thereafter, the sublevel set thickens around the saddle as its boundary
moves out as two sheets of a hyperboloid. Homotopically, this evolution is the
same as attaching a 2-handle (a disk) closing the tunnel formed by the one
sheet hyperboloid.

Bibliographic notes. Morse theory developed first in infinite dimensions,
as part of the calculus of variations, see Morse [4]. The classic source on the
subject for finite-dimensional manifolds is the text by Milnor [3], but see also
Matsumoto [2] and Banyaga and Hurtubis [1].

[1] A. Banyaga and D. Hurtubis. Lectures on Morse Homology. Kluwer, Dor-
drecht, the Netherlands, 2004.

[2] Y. Matsumoto. An Introduction to Morse Theory. Translated from Japanese by
K. Hudson and M. Saito, Amer. Math. Soc., 2002.

[3] J. Milnor. Morse Theory. Princeton Univ. Press, New Jersey, 1963.

[4] M. Morse. The Calculus of Variations in the Large. Amer. Math. Soc., New
York, 1934.
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VI.2 Transversality

Given a Morse function, we can follow the gradient flow and decompose the
manifold depending on where the flow originates and where it ends. For this
decomposition to form a complex, we require that the function satisfies an
additional genericity assumption.

Integral lines. Recall the 1-parameter group of diffeomorphisms ϕ : R ×
M → M defined by a Morse function f on a manifold M with a Riemannian
metric. The integral line that passes through a regular point x ∈ M is γ =
γx : R → M defined by γ(t) = ϕ(t, x); see Figure VI.5. It is the solution to

v

u

w

z

Figure VI.5: The upright torus with the four integral lines that end at the two saddles.

the ordinary differential equation defined by γ̇(t) = ∇f(γ(t)) and the initial
condition γ(0) = x. Because ϕ and therefore γ are defined for all t ∈ R, the
integral line necessarily approaches a critical point, both for t going to plus and
to minus infinity. We call these critical points the origin and the destination
of the integral line,

org(γ) = lim
t→−∞

γ(t);

dest(γ) = lim
t→∞

γ(t).

The function increases along the integral line which implies that org(γ) 6=
dest(γ). The Existence and Uniqueness Theorems of ordinary differential equa-
tions imply that the integral line that passes through another regular point y
is either disjoint from or the same as the one passing through x, im γx = im γy
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or im γx ∩ im γy = ∅. This property suggests we decompose the manifold into
integral lines or unions of integral lines with shared characteristics.

Stable and unstable manifolds. The stable manifold of a critical point u
of f is the point itself together with all regular points whose integral lines end
at u. Symmetrically, the unstable manifold of u is the point itself together
with all regular points whose integral lines originate at u. More formally,

S(u) = {u} ∪ {x ∈M | dest(γx) = u};
U(u) = {u} ∪ {y ∈M | org(γy) = u}.

The function increases along integral lines. It follows that f(u) ≥ f(x) for all
points x in the stable manifold of u. This is the reason why S(u) is sometimes
referred to as the descending manifold of u. Symmetrically, f(u) ≤ f(y) for
all points y in the unstable manifold of u and U(u) is sometimes referred to as
the ascending manifold of u.

Suppose the dimension of M is d and the index of the critical point u is q.
Then there is a (q− 1)-sphere of directions along which integral lines approach
u. It can be proved that together with u, these integral lines form an open
ball of dimension q and that S(u) is a submanifold homeomorphic to Rq that
is immersed in M. It is not embedded because distant points in Rq may map
to arbitrarily close points in M, as we can see in Figure VI.5. For example, the
saddle v has a stable 1-manifold consisting of two integral lines that merge at
v to form one open, connected interval. The two ends of the interval approach
the minimum, u, which does not belong to the 1-manifold. While the map from
R1 to M is continuous its inverse is not.

Morse-Smale functions. The stable manifolds do not necessarily form a
complex. Specifically, it is possible that the boundary of a stable manifold is
not the union of other stable manifolds of lower dimension. Take for example
the upright torus in Figure VI.5. The stable 1-manifold of the upper saddle, w,
reaches down to the lower saddle, v, but the latter is not a stable 0-manifold.
The reason for this deficiency is a degeneracy in the gradient flow. In particular,
we have an integral line that originates at a saddle and ends at another saddle.
Equivalently, the integral line belongs to the stable 1-manifold of w and to the
unstable 1-manifold of v. Generically, such integral lines do not exist.

Definition. A Morse-Smale function is a Morse function, f : M→ R, whose
stable and unstable manifolds intersect transversally.
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Roughly, this requires that the stable and unstable manifolds cross when they
intersect. More formally, let σ : Rq → M and υ : Rp → M be two immersions.
Letting z ∈ M be a point in their common image, we say that σ and υ intersect
transversally at z if the derived images of the tangent spaces at preimages
x ∈ σ−1(z) and y ∈ υ−1(z) span the entire tangent space of M at z,

Dσx(TR
q
x) + Dυy(TR

p
y) = TMz .

We say that σ and υ are transversal to each other if they intersect transversally
at every point z in their common image.

Complexes. Assuming transversality, the intersection of a stable q-manifold
and an unstable p-manifold has dimension q+p−d. Furthermore, the boundary
of every stable manifold is a union of stable manifolds of lower dimension. The
set of stable manifolds thus forms a complex which we construct one dimension
at a time.

0-skeleton: add all minima as stable 0-manifolds to initialize the complex;

1-skeleton: add all stable 1-manifolds, each an open interval glued at its end-
points to two points in the 0-skeleton;

2-skeleton: add all stable 2-manifolds, each an open disk glued along its
boundary circle to a cycle in the 1-skeleton;

etc. It is possible that the two minima are the same so that the interval whose
ends are both glued to it forms a loop. Similarly, the cycle in the 1-skeleton can

Figure VI.6: All integral lines of the height function of S
2 originate at the minimum

and end at the maximum. We therefore have two stable manifolds, a vertex for the
minimum and an open disk for the maximum.

be degenerate, such as pinched or even just a single point. Similar situations
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are possible for higher-dimensional stable manifolds. An example is the height
function of the d-sphere. It has a single minimum, a single maximum, and
no other critical points. The minimum has index 0 and forms a vertex in the
complex. The maximum has index d and defines a stable d-manifold. It wraps
around the sphere and its boundary is glued to a single point, the minimum,
as illustrated for d = 2 in Figure VI.6.

Morse inequalities. If we take the alternating sum of the stable manifolds
in the above example, we get 1 + (−1)d, which is the Euler characteristic of
the d-sphere. This is not a coincidence. More generally, the alternating sum
of stable manifolds gives the Euler characteristic, and this equation is one of
the strong Morse inequalities. We state both, the weak and the strong Morse
inequalities, writing cq for the number of critical points of index q.

Morse Inequalities. Let M be a manifold of dimension d and f : M→ R

a Morse function. Then

(i) weak: cq ≥ βq(M) for all q;

(ii) strong:
∑j

q=0(−1)j−qcq ≥
∑j

q=0(−1)j−qβq(M) for all j.

As mentioned above, the strong Morse inequality for j = d is an equality. We
can recover the weak inequalities from the strong ones. Indeed

j
∑

q=0

(−1)j−qcq ≥ βj(M)−
j−1
∑

q=0

(−1)j−q−1βq(M)

≥ βj(M)−
j−1
∑

q=0

(−1)j−q−1cq.

Removing the common terms on both sides leaves cj ≥ βj(M), the j-th weak
inequality. We omit the proof of the strong inequalities and instead refer to
the proof of their PL versions in the next section.

Floer homology. Assuming a Morse-Smale function, we can intersect the
stable and unstable manifolds and get a refinement of the two complexes which
we refer to as the Morse-Smale complex of f . Its vertices are the critical points
and its cells are the components of the unions of integral lines with common
origin and common destination. It is quite possible that the stable manifold
of a critical point intersects the unstable manifold of another critical point in
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more than one component. By definition of transversality, the index difference
between the origin and the destination equals the dimension of the cell. In
particular, the edges are isolated integral lines connecting index q − 1 with
index q critical points.

To recover the homology of the manifold, we set up a chain complex. The
q-chains are the formal sums of index q critical points. The boundary of an
index q critical point, u, is the sum of index q − 1 critical points connected to
u by an edge in the Morse-Smale complex. If there are multiple edges, we add
the index q − 1 point multiple times. We illustrate this construction with the

v

u

w

z

Figure VI.7: The Morse-Smale complex of the height function for the almost but not
entirely upright torus.

example depicted in Figure VI.7. We have a slightly tilted torus whose height
function is a Morse-Smale function. There are one minimum, two saddles, and
one maximum. The non-trivial chain groups are therefore C0 ≃ G, C1 ≃ G2,
C2 ≃ G, with G = Z2, as usual. In this example, each critical point appears
twice in the boundary of every other critical point, or not at all. Hence, the
boundary of each one of the four critical points is zero. It follows that the
boundary groups are trivial and the cycle groups as well as the homology
groups are isomorphic to the chain groups. The Betti numbers are therefore
β0 = 1, β2 = 2, β2 = 1, which is consistent with what we already know about
the torus.

Bibliographic notes. The concepts of integral lines and stable as well as
unstable manifolds rely on fundamental properties of solutions to ordinary dif-
ferential equations, in particular the Theorems of Existence and Uniqueness,
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see e.g. Arnold [1]. The extra requirement of transversality between stable and
unstable manifolds that distinguishes Morse from Morse-Smale complexes has
been proven to be generic by Kupka [3] and Smale [4]. The chain complex
whose groups are formal sums of critical points is sometimes referred to as
Morse-Smale-Witten complex and the resulting homology theory is referred to
as Floer homology [2].

[1] V. I. Arnold. Ordinary Differential Equations. Translated from Russian, MIT
Press, Cambridge, Massachusetts, 1973.

[2] A. Floer. Witten’s complex and infinite dimensional Morse theory. J. Diff.
Geom. 30 (1989), 207–221.

[3] I. Kupka. Contribution à la théorie des champs génériques. Contributions to
Differential Equations 2 (1963), 457–484.

[4] S. Smale. Stable manifolds for differential equations and diffeomorphisms. Ann.
Scuola Norm. Sup. Pisa 17 (1963), 97–116.
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VI.3 Piecewise Linear Functions

We rarely find smooth functions in practical situations. Instead, we often find
non-smooth functions that approximate smooth ones or series of non-smooth
functions that approach a smooth limit. In this section, we turn things around
and use insights gained into the smooth case as a guide in our attempt to
understand the piecewise linear case.

Lower star filtration. Let K be a simplicial complex with real values speci-
fied at all vertices. Using linear extension over the simplices, we obtain a piece-
wise linear (PL) function f : |K| → R. It is defined by f(x) =

∑

i bi(x)f(ui),
where the ui are the vertices of K and the bi(x) are the barycentric coordinates
of x; see Section III.1. It is convenient to assume that f is generic, by which
we mean that the vertices have distinct function values. We can then order the
vertices by increasing function value as f(u1) < f(u2) < . . . < f(un). For each
0 ≤ i ≤ n, we let Ki be the full subcomplex defined by the first i vertices. In
other words, a simplex σ ∈ K belongs to Ki iff each vertex uj of σ satisfies
j ≤ i. Recall that the star of a vertex ui is the set of cofaces of ui in K. The
lower star is the subset of simplices for which ui is the vertex with maximum
function value,

St−ui = {σ ∈ Stui | x ∈ σ ⇒ f(x) ≤ f(ui)}.

By assumption of genericity, each simplex has a unique maximum vertex and
thus belongs to a unique lower star. It follows that the lower stars partition
K. Furthermore, Ki is the union of the first i lower stars. This motivates us to
call the nested sequence of complexes ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K the lower
star filtration of f . It will be useful to notice that the Ki are representative
of the continuous family of sublevel sets. Specifically, for f(ui) ≤ a < f(ui+1)

a

Figure VI.8: We retract |K|a to |Ki| by shrinking the line segments decomposing the
partial simplices from the top downward.
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the sublevel set |K|a = f−1(−∞, a] has the same homotopy type as Ki. To
prove this, consider each simplex with at least one vertex in Ki and at least one
vertex in K −Ki. Write this simplex as a union of line segments connecting
points on the maximal face in Ki with points on the maximal face in K −Ki.
In other words, express the simplex as the join of these two faces; see Figure
VI.8. The sublevel set contains only a fraction of each line segment, namely
the portion from the lower endpoint x in |Ki| to the upper endpoint y with
f(y) = a. To get a deformation retraction, we let (1 − t)y + tx be the upper
endpoint at time t. Going from time t = 0 to t = 1 proves that |K|a and |Ki|
have the same homotopy type.

PL critical points. We study the change from one complex to the next in
the lower star filtration in more detail. Recall that the link of a vertex is the
set of simplices in the closed star that do not belong to the star. Similarly,
the lower link is the collection of simplices in the closed lower star that do not
belong to the lower star. Equivalently, it is the collection of simplices in the
link whose vertices have smaller function value than ui,

Lk−ui = {σ ∈ Lkui | x ∈ σ ⇒ f(x) < f(ui)}.

When we go from Ki−1 to Ki, we attach the closed lower star of ui, gluing it
along the lower link to the complex Ki−1. Assume now that K triangulates a
d-manifold. This restricts the possibilities dramatically since every vertex star
is an open d-ball and every vertex link is a (d − 1)-sphere. A few examples
of lower stars and lower links in a 2-manifold are shown in Figure VI.9. We

Figure VI.9: From left to right: the lower star and lower link of a regular vertex, a
minimum, a saddle, and a maximum.

classify the vertices using the reduced Betti numbers of their lower links. Recall
that β̃0 is one less than β0, the number of components. The only exception to
this rule is the empty lower link for which we have β̃0 = β0 = 0 and β̃−1 = 1.
Table VI.1 gives the reduced Betti numbers of the lower links in Figure VI.9.
We call ui a PL regular vertex if its lower link is non-empty but homologically
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β̃−1 β̃0 β̃1

regular 0 0 0
minimum 1 0 0
saddle 0 1 0
maximum 0 0 1

Table VI.1: Classification of the vertices in a PL function on a 2-manifold.

trivial, and we call ui a simple PL critical vertex of index q if its lower link has
the reduced homology of the (q − 1)-sphere. In other words, the only non-zero
reduced Betti number of a simple PL critical vertex of index q is β̃q−1 = 1. We
call a piecewise linear function f : |K| → R on a manifold a PL Morse function
if (i) each vertex is either PL regular or simple PL critical and (ii) the function
values of the vertices are distinct.

Unfolding. In contrast to the smooth case, PL Morse functions are not dense
among the class of all PL functions. Equivalently, a PL function on a manifold
may require a substantial perturbation before it becomes PL Morse. As an
example, consider the piecewise linear version of a monkey saddle displayed in
Figure VI.10. It is therefore not reasonable to assume a PL Morse function

unfold

Figure VI.10: Left: a PL monkey saddle of a height function. The areas of points
lower than the center vertex are shaded. Right: the unfolding of the monkey saddle
into two simple saddles.

as input, but we can sometimes alter the triangulation locally to make it into
a PL Morse function. In the 2-manifold case, a k-fold saddle is defined by
β̃0 = k. We can split it into k simple saddles by introducing k− 1 new vertices
and assigning appropriate function values close to that of the original, k-fold
saddle; see Figure VI.10 for the case k = 2. It is less clear how to unfold
possibly complicated PL critical points for higher-dimensional manifolds; see
also Section X.8.
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Alternating sum of indices. Let K be a triangulation of a d-manifold and
f : |K| → R a PL Morse function. It is not difficult to prove that the alternating
sum of the simple PL critical points gives the Euler characteristic,

χ(K) =
∑

u

(−1)index(u).

Since it is easy and instructive, we give an inductive proof of this equation.
To go from Ki−1 to Ki, we add the lower star of ui. By the Euler-Poincaré
Theorem, the Euler characteristic of the lower link, A = Lk−ui, is

χ(A) =
∑

q≥1

(−1)q−1βq−1(A)

= 1 +
∑

q≥0

(−1)q−1β̃q−1(A).

By definition, this is 1 if ui is PL regular and 1 + (−1)index(ui)−1 if ui is PL
critical. Each j-simplex in the lower star corresponds to a (j − 1)-simplex in
the lower link, except for the vertex ui itself. Adding the lower star to the
complex thus increases the Euler characteristic by 1−χ(A), which is zero for a
PL regular point and (−1)index(ui) for a simple PL critical point. The claimed
equation follows.

Mayer-Vietoris sequences. We prepare the proof of the complete set of
Morse inequalities for PL Morse functions by recalling the Mayer-Vietoris
sequence of a covering of a simplicial complex by two subcomplexes. Let
K = K ′ ∪K ′′ be the covering and note that the intersection of the two sub-
complexes, A = K ′ ∩K ′′, is also a subcomplex of K. As discussed in Section
IV.4, the reduced version of the corresponding Mayer-Vietoris sequence is

. . .→ H̃p+1(K)
ϕp→ H̃p(A)

ψp→ H̃p(K
′)⊕ H̃p(K

′′)→ H̃p(K)→ H̃p−1(A)→ . . .

It is exact which means that the image of every homomorphism is equal to the
kernel of the next homomorphism in the sequence. We are interested in the
reduced p-th homology group of A, and write ϕp and ψp for the maps that
connect it to its predecessor and successor groups in the sequence. Let kp be
the rank of the kernel of ψp. Similarly, let kp the rank of the cokernel of ϕp, that

is, of cokϕp = H̃p(A)/imϕp. By exactness at H̃p(A), we have β̃p(A) = kp+ kp.
As illustrated in Figure VI.11, exactness also implies that the rank of the image
of ψp is kp and the rank of H̃p+1(K)/kerϕp is kp.

We note that kerψp and cokϕp distinguish two kinds of cycles in A. A cycle
in the kernel bounds both in K ′ and in K ′′ and thus corresponds to a cycle of
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Figure VI.11: A portion of the Mayer-Vietoris sequence. By exactness, the rank of
the kernel of every map complements the rank of the cokernel of the preceding map.

dimension p+ 1 in K. In contrast, a cycle in the cokernel is not in the image
of the connecting homomorphism and thus represents a non-trivial homology
class in K ′ or in K ′′ or in both.

PL Morse inequalities. We are now ready to state and prove the PL ver-
sions of the weak and strong Morse inequalities.

PL Morse Inequalities. Let K be a triangulation of a manifold of dimen-
sion d and f : |K| → R a PL Morse function. Writing cq for the number of
index q PL critical points of f , we have

(i) weak: cq ≥ βq(K) for all q;

(ii) strong:
∑j

q=0(−1)j−qcq ≥
∑j

q=0(−1)j−qβq(K) for all j.

Proof. We prove the inequalities inductively, for each Ki. They hold initially,
when K0 is empty. For the inductive step, we note that Ki is the union of
Ki−1 and the closed lower star of ui. To study the situation, we use the
Mayer-Vietoris sequence obtained by setting K = Ki, K

′ = Ki−1, K
′′ =

St−ui ∪ Lk−ui, and A = Lk−ui. Since K ′′ is the cone over a complex, it is
homologically trivial. Referring to Figure VI.11, we let ϕp : H̃p+1(K)→ H̃p(A)

be the connecting homomorphism and ψp : H̃p(A) → H̃p(K
′) ⊕ H̃p(K

′′) be
induced by inclusion. Furthermore, kp = rankkerψp and kp = rank cokϕp,

as before. Since K ′′ is homologically trivial, the rank of H̃p(K) is the rank of

H̃p(K
′) minus the rank of the image of ψp plus the rank of the kernel of ψp−1.

Translating this back to the lower star filtration, we have

rank H̃p(Ki) = rank H̃p(Ki−1)− kp + kp−1.
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By exactness of the sequence, kp−1 + kp−1 is the rank of the reduced (p− 1)-st
Betti number of A. This number is 1 if ui is a simple PL critical point of index
p and 0 otherwise. Specifically, if ui is PL regular then kp−1 = kp−1 = 0 for
all p and the ranks of the homology groups do not change. Similarly, none of
the counters of critical points change so all Morse inequalities remain valid. If
index(ui) = p and kp−1 = 1 then both cp and β̃p go up by one which maintains
the validity of all Morse inequalities. On the other hand, if index(ui) = p and
kp−1 = 1 then cp goes up and β̃p−1 goes down. Since the two have opposite
signs, this maintains the validity of all Morse inequalities that contain both.
The only strong Morse inequality that contains one but not both terms is the
one for j = p − 1. It contains the relevant Betti number with a plus sign so
this inequality is also preserved.

We note that the strong Morse inequality for j = d is actually an equality,
namely the one we have proved above, before recalling the Mayer-Vietoris se-
quence. It contains both changing terms, in all cases, so there is never a chance
that the two sides become different. We also note that the proof of the Morse
inequalities in the smooth case is the same. Indeed, passing a non-degenerate
critical point has the same effect as adding the lower star of a simple PL critical
vertex of the same index.

Bibliographic notes. Piecewise linear functions on polyhedral manifolds
have already been studied by Banchoff [1]. He defines the index of a vertex as
the Euler characteristic of its lower link. This is coarser than our definition
but leads to similar results, in particular a short and elementary proof that the
Euler characteristic is equal to the alternating sum of critical points. However,
it does not lend itself to a natural generalization of the other Morse inequalities
to non-Morse PL functions. Our classification of PL critical points in terms of
reduced Betti numbers can be found in [3], where it is used to compute the PL
analog of the Morse-Smale complex for 2-manifolds. There are industrial ap-
plications of these ideas to surface design and segmentation based on curvature
approximating and other shape-sensitive functions in R

3 [2].

[1] T. F. Banchoff. Critical points and curvature for embedded polyhedra. J. Dif-
ferential Geometry 1 (1967), 245–256.

[2] H. Edelsbrunner. Surface tiling with differential topology (extended abstract of
invited talk). In “Proc. 3rd Eurographics Sympos. Geom. Process., 2005”, 9–11.

[3] H. Edelsbrunner, J. Harer and A. Zomorodian. Hierarchical Morse-Smale
complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30 (2003),
87–107.
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VI.4 Reeb Graphs

The structure of a continuous function can sometimes be made explicit by
visualizing the evolution of the components of the level set. This leads to
the concept of the Reeb graph of the function. It has applications in medical
imaging and other areas of science and engineering.

Iso-surface extraction. The practical motivation for studying Reeb graphs
is the extraction of iso-surfaces for three-dimensional density data. In topo-
logical lingo, the density data is a continuous function, f : [0, 1]3 → R, and
an iso-surface is a level set, f−1(a). If f is smooth and a is a regular value
then the level set is a 2-manifold, possibly with boundary. Similarly, if f is
generic PL and a is not the value of a PL critical point then the level set is a
2-manifold, again possibly with boundary. Figure VI.12 illustrates this fact for
a PL function on the unit square. Assuming we enter a triangle at a boundary

Figure VI.12: The level set of a generic PL function on a triangulation of the unit
square. The superlevel set is white and the sublevel set is shaded.

point x with f(x) = a, there is a unique other boundary point y with f(y) = a
where we exit the triangle. We draw the line segment from x to y as part of
the level set and repeat the construction by entering the next triangle at y.
There is never any choice as we trace the curve until we arrive at its other end.
The procedure is similar for a PL function on the unit cube, except that we
use a graph search algorithm to collect the triangular and quadrangular surface
pieces we get by slicing the tetrahedra with planes. The most popular choices
are Breadth-first Search and Depth-first Search as described in Section II.2.
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Given a first point on the level set, it easy to trace out the component that
contains it. But to be sure we did not not miss any of the other components
it seems we need to check every edge of the triangulation. The desire to avoid
this costly computation leads to the introduction of the contour tree, which is
a data structure that can be queried for initial points on components of the
level set without checking the entire triangulation. It is based on the concept
of a Reeb graph, which we discuss next.

Space of contours. Given a continuous map, f : X → R, we note that the
level sets form a partition of the topological space X. We are interested in a
possibly finer partition defined by calling two points x, y ∈ X equivalent if they
belong to a common component of a level set of f . The thus defined equivalence
classes are the contours of f . The Reeb graph of f is the set of contours, R(f),
together with its standard quotient topology. We recall that it is defined by

taking all subsets whose preimages under ψ : X → R(f) are open in X, where
ψ(x) is of course the contour that contains x. Let π : R(f)→ R be the unique
map whose composition with ψ is f . In other words, it is the map such that

X
f−→ R

ψց րπ

R(f)

is a commutative diagram. We use it to explain how the Reeb graph speeds up
the construction of a level set, f−1(a). Instead of going directly from R to X,
we first compute the preimage of a under π, a set of points in the Reeb graph.
The level set consists of a number of contours, one for each point r in π−1(a).
In a medical imaging application, X would be represented by a triangulation of
the unit cube and the step back from a point r in R(f) to X would be provided
by a pointer to an edge in the triangulation that intersects the contour, ψ−1(r).

Besides using the Reeb graph as a data structure to accelerate the extraction
of level sets, we may hope to learn something about the function or the topo-
logical space on which the function is defined. Even though the Reeb graph
loses aspects of the original topological structure, there are some things that
can be said. First of all, ψ : X→ R(f) maps components to components. Fur-
thermore, the Reeb graph reflects the 1-dimensional connectivity of the space
in some cases. To describe this, we refer to a 1-cycle in R(f) as a loop and write
#loops for the size of the basis. The preimage of a loop in R(f) is necessarily
non-contractible in X, and two different loops correspond to non-homologous
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1-cycles. Expressing the two properties in terms of Betti numbers, we get

β0(R(f)) = β0(X);

β1(R(f)) ≤ β1(X).

Hence, if X is contractible then the Reeb graph is a tree, independent of the
function f . In medical imaging, the space is a cube and thus contractible,
which justifies the practice of calling R(f) a contour tree.

Reeb graphs of Morse functions. More can be said if X = M is a manifold
of dimension d ≥ 2 and f : M → R is a Morse function, like in Figure VI.13.
Recall that each point u ∈ R(f) is the image of a contour in M. We call u a

Figure VI.13: Level sets of the 2-manifold map to points on the real line and compo-
nents of the level sets map to points of the Reeb graph.

node of the Reeb graph if ψ−1(u) contains a critical point or, equivalently, if u
is the image of a critical point under ψ. By definition of Morse function, the
critical points have distinct function values, which implies a bijection between
the critical points of f and the nodes of R(f). The rest of the Reeb graph is
partitioned into arcs connecting the nodes. A minimum starts a contour and
therefore corresponds to a degree one node. An index 1 saddle that merges
two contours into one corresponds to a degree three node. Symmetrically, a
maximum corresponds to a degree one node and an index d−1 saddle that splits
a contour into two corresponds to a degree three node. All other critical points
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correspond to nodes of degree two. Indeed, the only quadratic polynomials of
the form f(x) = −x2

1 − . . .− x2
q + x2

q+1 + . . .+ x2
d that have level sets with two

components are the ones for q = 1, d− 1.

We note that the Reeb graph is a one-dimensional topological space with
points on arcs being individually meaningful objects. However, there is no
preferred way to draw the graph in the plane or in space.

Loops in Reeb graphs. If M is an orientable 2-manifold then every saddle
either merges two contours into one or it splits a contour into two. Either
way, the saddle corresponds to a degree three node in the Reeb graph. We use
this fact to show that the number of loops depends only on M and not on the
function as long it is Morse. In the non-orientable case, we also have degree
two nodes and therefore a number of loops that is no longer independent of the
function.

Loop Lemma for 2-manifolds. The Reeb graph of a Morse function on a
connected 2-manifold of genus g has g loops if the manifold is orientable and
at most g

2 loops if it is non-orientable.

Proof. Let cq be the number of critical points of index q and ni the number
of nodes with degree i in the Reeb graph. We first consider the orientable case
for which the number of nodes is n = n1 + n3. We note that n1 = c0 + c2
and n3 = c1. The number of arcs in the Reeb graph is m = 1

2 (n1 + 3n3).
The number of loops exceeds the surplus of arcs by one, that is, #loops =
1 + m − n = 1 − 1

2 (c0 − c1 + c2). By the last strong Morse inequality, the
expression in parenthesis is the Euler characteristic, which for orientable 2-
manifolds is χ = 2 − 2g. It follows that #loops = 1 − 1

2 (2 − 2g) = g, as
claimed.

In the non-orientable case, the number of nodes is n = n1 + n2 + n3, where
n1 = c0+c2 and n2+n3 = c1. The number of arcs ism = 1

2 (n1+2n2+3n3). The
number of loops is again one more than the surplus of arcs, that is, #loops =
1+ 1

2 (−n1 +n3) = 1− 1
2 (c0−c1+c2 +n2). Substituting the Euler characteristic

for the alternating sum of critical points, wet get #loops = 1− 1
2 (χ+n2). For a

non-orientable 2-manifold, we have χ = 2−g and therefore #loops = 1
2 (g−n2).

Since the number of degree two nodes is non-negative, this is at most half the
genus, as claimed.

Coincidentally, the proof implies that the number of degree two nodes has
the same parity as the genus. Subject to this constraint, it can be anywhere
between zero and g which implies that the upper bound is tight and any integer
number of loops between zero and half the genus can be achieved.
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Constructing a Reeb graph. We finally consider the algorithmic problem
of constructing the Reeb graph of a function on a 2-manifold. We assume the
manifold is triangulated and the function, f : M → R, is PL Morse. The
algorithm sweeps the manifold in the order of increasing function values. We
thus begin by sorting the vertices such that f(ui) < f(ui+1) for 1 ≤ i < n.
Consider a corresponding sequence of interleaved values, s1 < f(u1) < s2 <
. . . < sn < f(un) < sn+1. Since si is not the value of any vertex, its preimage is
a 1-manifold, consisting of finitely many contours. Each contour is represented
by a cyclic list of triangles in the triangulation. Every triangle contributes a
line segment and any two contiguous triangles meet in an edge that contributes
a shared endpoint of two line segments to the contour. The representation is
the same for all values strictly between f(ui−1) and f(ui). Adjustments need to
be made when we move into the next open interval, between f(ui) and f(ui+1).

Case 1. ui is a minimum. Add a degree one node to the Reeb graph. It starts
a new arc associated with a new cyclic list initialized to the triangles in
the star of ui.

Case 2. ui is a regular vertex. Then two or more triangles in its star form
a contiguous sequence in one of the cyclic lists. Except for the first and
the last, all these triangles belong to the lower star. We remove the lower
star triangles and replace them by the symmetrically defined upper star
triangles of ui.

Case 3. ui is a saddle. Then the triangles in its star form two contiguous
sequences in the representation of the current level set. They may be
part of the same cyclic list or of two different lists. Similar to Case 2, we
keep the first and last triangle of each sequence and replace the lower star
triangles in between by the corresponding upper star triangles of ui. Either
list can be empty. We do this by cutting the lists and regluing them when

Figure VI.14: From left to right: merging two cyclic lists into one, splitting one list
into two, reconnecting one list. Correspondingly, we add a down-fork, an up-fork, a
degree two node to the Reeb graph.
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we add the upper star triangles. The global effect of the operation depends
on whether the cutting is done on one or two cyclic lists and which ends
are glued together. There are three different cases, as illustrated in Figure
VI.14. In each ase, we add a new node to the Reeb graph and represent
the modified lists by arcs that end and start at that node.

Case 4. ui is a maximum. Remove the cyclic list of triangles in its star and
end the corresponding arc by adding a new degree one node to the Reeb
graph.

To implement the algorithm, we need a data structure that supports the fol-
lowing operations:

• cut a cyclic list open by removing the links between two adjacent triangles;

• drop a triangle from the end of an open list;

• append a new triangle to the end of an open list;

• glue two ends of the same or of two different open lists;

• find the cyclic list that contains a specified triangle.

The cutting and gluing can be done without knowing whether the ends belong
to the same or to different cyclic lists. However, to update the Reeb graph,
we need to know and we use the find operation to determine the necessary
information. All five operations are supported in time logarithmic in the length
of the list if we store it in a so-called balanced search tree. Letting m be the
number of edges in the triangulation, we thus get an algorithm that constructs
the Reeb graph in time proportional to m log2m. This is a significant im-
provement over the more straightforward algorithm that constructs the Reeb
graph in time proportional to m2. No such improvement is currently known
for functions on manifolds of dimension three or higher.

Bibliographic notes. The most common method for extracting iso-surfaces
from density data is the Marching Cube Algorithm due to Lorensen and Cline
[3]. As the name suggests, it works with a cube complex rather than a triangu-
lation. The portion of the iso-surface within a single cube can be complicated
and the implementation of the algorithm requires some care. The idea of speed-
ing up the iso-surface extraction with a contour tree is more recent [6]. This
tree is really the Reeb graph of a PL function on a cube, which has no loops.
The concept of the Reeb graph of a smooth function is much older [4]. The
analysis of the number of loops and the Reeb Graph Algorithm for triangulated
2-manifolds are taken from a relatively recent source [2]. From a practical point
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of view, the most demanding operations are cut and glue as they require the
splitting and melding of search trees. Particularly easy implementations of
these operations are provided by the splay tree implementation of balanced
search trees [5]. For contractible domains, the construction of the Reeb graph
can be improved to time mα(m), where α is the extremely slow growing inverse
of the Ackermann function [1]; see also Section II.2.

[1] H. Carr, J. Snoeyink and U. Axen. Computing contour trees in all dimen-
sions. Comput. Geom. Theory Appl. 24 (2002), 75–94.

[2] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan and V.
Pascucci. Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32
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[3] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D
surface construction algorithm. Comput. Graphics 21, Proc. siggraph, 1987,
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[5] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. Assoc.
Comput. Mach. 32 (1985), 652–686.

[6] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci and D. R.
Schikore. Contour trees and small seed sets for isosurface traversal. In “Proc.
13th Ann. Sympos. Comput. Geom., 1997”, 212–220.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Hessian (two credits). Compute the Hessian and, if defined, the index of
the origin, which is critical for each function in the list below.

(i) f(x1, x2) = x2
1 + x2

2.

(ii) f(x1, x2) = x1x2.

(iii) f(x1, x2) = (x1 + x2)
2.

(iv) f(x1, x2, x3) = x1x2x3.

(v) f(x1, x2, x3) = x1x2 + x1x3 + x2x3.

(vi) f(x1, x2, x3) = (x1 + x2 + x3)
2.

2. Approximate Morse function (two credits). Let M be a geometrically
perfect torus in R3, that is, M is swept out by a circle rotating about
a line that lies in the same plane but does not intersect the circle. Let
f : M→ R measure height parallel to the symmetry axis and note that f
is not Morse.

(i) Describe a Morse function g : M → R that differs from f by an
arbitrarily small amount, ‖f − g‖∞ < ε.

(ii) Draw the Reeb graphs of both functions.

3. Morse-Smale complex (two credits). Let M be the torus in Question 2
and let f : M→ R measure height along a direction that is almost but not
quite parallel to the symmetry axis of the torus.

(i) Draw the Morse-Smale complex of the height function.

(ii) Give the chain, cycle, boundary groups defined by Floer homology.

4. Quadrangles (three credits). Let M be a 2-manifold and f : M → R a
Morse-Smale function.

(i) Prove that each 2-dimensional cell of the Morse-Smale complex of f
is a quadrangle. In other words, each 2-dimensional cell is an open
disk whose boundary can be decomposed into four arcs each glued to
an edge in the complex.

(ii) Draw a case in which one edge is repeated so that the disk is glued
to only three edges but twice to one of the three.
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5. Distance from a point (three credits). Let M be the torus swept out by
a unit circle rotating at unit distance from the x3-axis. More formally, M

consists of all solutions to x2
1 + x2

2 = (2 ±
√

1− x2
3)

2 in R3. For a point
z ∈ R3 consider the function fz : M→ R defined by fz(x) = ‖x− z‖.

(i) Describe the set of points z for which fz violates property (i) of a
Morse function.

(ii) Describe the set of points z for which fz is not a Morse function.

6. Morse inequalities (two credits). Recall that the unstable manifolds of a
Morse function f : M → R are the stable manifolds of −f . Furthermore,
if M is a d-manifold then an index p critical point of f is an index d − p
critical point of −f .

(i) Use this symmetry to formulate collections of inequalities symmetric
to the weak and strong Morse inequalities of f .

(ii) Use these inequalities to prove that the Euler characteristic of M

vanishes if d is odd.

7. Reeb graph (one credit). Consider the up-right torus at time t = 0 and
imagine it falling down in slow motion until it rests on its side at time
t = 1.

(i) What is the corresponding time series of Reeb graphs of the height
function of the torus?

(ii) At which position (moment in time) does the Reeb graph of the height
function not have a loop?

8. BCC lattice (two credits). Instead of the cubic lattice, we may consider
constructing iso-surfaces from the body centered cubic lattice obtained by
adding the centers of all integer unit cubes. More formally, this is the set
of points Z3 ∪ Z3 + (1

2 ,
1
2 ,

1
2 )T .

(i) Show there is an (infinite) simplicial complex whose vertex set is the
BCC lattice and whose tetrahedra are pairwise congruent, that is,
one can be obtained from any other by a rigid transformation.

(ii) Give a geometric description of the tetrahedron in (i), complete with
all face, dihedral, and solid angles.



Chapter VII

Persistence

The central concept of this chapter is motivated by the practical need to cope
with noise in data. This includes defining, recognizing, and possibly eliminating
noise. These are lofty goals and the challenge can be overwhelming. Indeed, the
distinction between noise and feature is not well-defined but rather a subjective
notion in the eye of the beholder. In any particular case, the focus is on a range
of scales and it is desired to ignore everything that is smaller or larger. In other
words, we make ourselves the measure of all things and this way derive a unit,
a point of view, an opinion. Motivated by this thought, we take an agnostic
approach and withhold any judgement. Instead, we offer a means to measure
scale, a tool that can be used to make a judgement based on quantitative
information, if one so desires.

VII.1 Persistent Homology
VII.2 Efficient Implementations
VII.3 Extended Persistence
VII.4 Spectral Sequences

Exercises

177
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VII.1 Persistent Homology

Persistent homology can be used to measure the scale or resolution of a topo-
logical feature. There are two ingredients, one geometric, defining a function
on a topological space, and the other algebraic, turning the function into mea-
surements. The measurements make sense only if the function does.

The elder rule. We begin with a simplified scenario in which we develop our
intuition. Let X be a connected topological space and f : X→ R a continuous
function. The thus defined sublevel sets form a 1-parameter family of nested
subspaces, Xa ⊆ Xb whenever a ≤ b. It is convenient to write about this
family as if it were one sublevel set that evolves as the threshold increases.
We visualize this evolution by drawing each component of Xa as a point. The
result is a 1-dimensional graph, G(f), not unlike the Reeb graph discussed in
the previous chapter. Thinking of f as a height function, we draw the graph
from bottom to top. Since components never shrink, the arcs of the graph may
merge but they never split. At the end, for large enough threshold a, we have a
single component. It follows that G(f) is a tree, and we refer to it as the merge
tree of the function; see Figure VII.1. We decompose this tree into disjoint

Figure VII.1: Left: a function on the unit square visualized by drawing six level sets
with lighter colors indicating larger values. Right: the merge tree of the function.

paths that increase monotonically with f . To obtain the paths, we draw them
from bottom to top, simultaneously while keeping their upper endpoints at
the same height, a. Paths extend but before they merge, we end the one that
started later. Thinking of the difference between two function values as age,
we give precedence to the older path.
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Elder Rule. At a juncture, the older of the two merging paths continues
and the younger path ends.

Letting a ≤ b be two thresholds, we let β(a, b) be the number of components in
Xb that have a non-empty intersection with Xa. In terms of the merge tree, this
is the number of subtrees with topmost points at value b that reach down to
level a or below. Each such subtree has a unique path, its longest, that spans
the entire interval between a and b. It follows that β(a, b) is also the number
of paths in the path decomposition of G(f) that span [a, b]. We note that
any path decomposition that is not generated using the Elder Rule does not
have this property. In particular, if f is Morse then the Elder Rule generates
a unique path decomposition, which is therefore the only one for which the
number of paths spanning [a, b] is equal to β(a, b) for all values of a ≤ b.

Filtrations. We obtain persistence by formulating the Elder Rule for the
homology groups of all dimensions. Consider a simplicial complex, K, and a
function f : K → R. We require that f be monotonic by which we mean it is
non-decreasing along increasing chains of faces, that is, f(σ) ≤ f(τ) whenever σ
is a face of τ . Monotonicity implies that the sublevel set, K(a) = f−1(−∞, a],
is a subcomplex of K for every a ∈ R. Letting m be the number of simplices
in K, we get n + 1 ≤ m + 1 different subcomplexes, which we arrange as an
increasing sequence,

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

In other words, if a1 < a2 < . . . < an are the function values of the simplices
in K and a0 = −∞ then Ki = K(ai) for each i. We call this sequence of
complexes the filtration of f and think of it as a construction by adding chunks
of simplices at a time. We have seen examples before, namely the Čech and
the alpha complexes in Chapter III and the lower star filtration of a piecewise
linear function in Section VI.3. More than in the sequence of complexes, we are
interested in the topological evolution, as expressed by the corresponding se-
quence of homology groups. For every i ≤ j we have an inclusion map from the
underlying space of Ki to that of Kj and therefore an induced homomorphism,
f i,jp : Hp(Ki)→ Hp(Kj), for each dimension p. The filtration thus corresponds
to a sequence of homology groups connected by homomorphisms,

0 = Hp(K0)→ Hp(K1)→ . . .→ Hp(Kn) = Hp(K),

again one for each dimension p. As we go from Ki−1 to Ki, we gain new
homology classes and we lose some when they become trivial or merge with
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each other. We collect the classes that are born at or before a given threshold
and die after another threshold in groups.

Definition. The p-th persistent homology groups are the images of the
homomorphisms induced by inclusion, Hi,jp = im f i,jp , for 0 ≤ i ≤ j ≤ n. The
corresponding p-th persistent Betti numbers are the ranks of these groups,
βi,jp = rankHi,jp .

Similarly, we define reduced persistent homology groups and reduced persistent
Betti numbers. Note that Hi,ip = Hp(Ki). The persistent homology groups
consist of the homology classes of Ki that are still alive at Kj or, more formally,
Hi,jp = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)). We have such a group for each dimension p
and each index pair i ≤ j. We can be more concrete about the classes counted
by the persistent homology groups. Letting γ be a class in Hp(Ki), we say
it is born at Ki if γ 6∈ H

i−1,i
p . Furthermore, if γ is born at Ki then it dies

entering Kj if it merges with an older class as we go from Kj−1 to Kj , that is,
f i,j−1
p (γ) 6∈ Hi−1,j−1

p but f i,jp (γ) ∈ Hi−1,j
p ; see Figure VII.2. This is again the

0 0 0 0

H p
i−1 H i H p

j −1 H pp
j

γ

Figure VII.2: The class γ is born at Ki since it does not lie in the (shaded) image
of Hi−1

p . Furthermore, γ dies entering Kj since this is the first time its image merges
into the image of Hi−1

p .

Elder Rule. If γ is born at Ki and dies entering Kj then we call the difference
in function value the persistence, pers(γ) = aj − ai. Sometimes we prefer to
ignore the actual function values and consider the difference in index, j − i,
which we call the index persistence of the class. If γ is born at Ki but never
dies then we set its persistence as well as its index persistence to infinity.

We note that births and deaths can also be defined for a sequence of vector
spaces that are not necessarily homology groups. All we need is a finite sequence
and homomorphisms from left to right which, for vector spaces, are usually
referred to as linear maps.
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Persistence diagrams. We visualize the collection of persistent Betti num-
bers by drawing points in two dimensions. Some of these points may have
infinite coordinates and some might be the same, so we really talk about a
multiset of points in the extended real plane, R̄2. Letting µi,jp be the number
of p-dimensional classes born at Ki and dying entering Kj , we have

µi,jp = (βi,j−1
p − βi,jp )− (βi−1,j−1

p − βi−1,j
p ),

for all i < j and all p. Indeed, the first difference on the right hand side
counts the classes that are born at or before Ki and die entering Kj, while the
Similarly, the second difference counts the classes that are born at or before
Ki−1 and die entering Kj. Drawing each point (ai, aj) with multiplicity µi,jp ,
we get the p-th persistence diagram of the filtration, denoted as Dgmp(f). It
represents a class by a point whose vertical distance to the diagonal is the
persistence. Since the multiplicities are defined only for i < j, all points lie
above the diagonal. For technical reasons which will become clear in the next
chapter, we add the points on the diagonal to the diagram, each with infinite
multiplicity. It is easy to read off the persistent Betti numbers. Specifically, βk,lp
is the number of points in the upper, left quadrant with corner point (ak, al).
A class that is born at Ki and dies entering Kj is counted iff ai ≤ ak and
aj > al. The quadrant is therefore closed along its vertical right side and open
along its horizontal lower side.

Fundamental Lemma of Persistent Homology. Let ∅ = K0 ⊆ K1 ⊆
. . . ⊆ Kn = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ n and
every dimension p, the p-th persistent Betti number is βk,lp =

∑

i≤k
∑

j>l µ
i,j
p .

This is an important property. It says the diagram encodes the entire informa-
tion about persistent homology groups.

Matrix reduction. Besides having a compact description in terms of dia-
grams, persistence can also be computed efficiently. The particular algorithm
we use is a version of matrix reduction. Perhaps surprisingly, we can get all the
information with a single reduction. To describe this, we use a compatible order-
ing of the simplices, that is, a sequence σ1, σ2, . . . , σm such that f(σi) < f(σj)
implies i < j and so does σi being a face of σj . Such an ordering exists be-
cause f is monotonic. Note that every initial subsequence of simplices forms a
subcomplex of K. We use this sequence when we set up the boundary matrix,
∂, which stores the simplices of all dimension in one place, that is,

∂[i, j] =

{

1 if σi is a co-dimension one face of σj ;
0 otherwise.
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In words, the rows and columns are ordered like the simplices in the total or-
dering and the boundary of a simplex is recorded in its column. The algorithm
uses column operations to reduce ∂ to another 0-1 matrix R. Let low(j) be
the row index of the lowest one in column j. If the entire column is zero then
low(j) is undefined. We call R reduced if low(j) 6= low(j0) whenever j 6= j0
specify two non-zero columns. The algorithm reduces ∂ by adding columns
from left to right.

R = ∂;
for j = 1 to m do

while there exists j0 < j with low(j0) = low(j) do
add column j0 to column j

endwhile

endfor.

The running time is at most cubic in the number of simplices. In matrix
notation, the algorithm computes the reduced matrix as R = ∂ · V ; see Figure
VII.3. Since each simplex is preceded by its proper faces, ∂ is upper triangular.
The j-th column of V encodes the columns in ∂ that add up to give the j-th
column in R. Since we only add from left to right, V is also upper triangular
and so is R. To get the ranks of the homology groups of K, we count the zero

jlow

V

jj

R

=

(  ) 1

Figure VII.3: Reducing ∂ expressed as matrix multiplication. White areas are neces-
sarily zero while entries in shaded areas can be either zero or one.

columns that correspond to p-simplices with #Zerop(R) and the lowest ones in
rows that correspond to p-simplices with #Lowp(R). Comparing the reduced
matrix with the normal form matrices, we notice that #Zerop(R) = rankZp

and #Lowp(R) = rankBp. It follows that βp = #Zerop −#Lowp for all p.

Pairing. However, there is significantly more information that we can har-
vest. To see this, we need to understand how the lowest ones relate to the
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persistent homology groups. We begin by showing that they are unique, and
this in spite of the fact that the reduced matrix, R, is not. Indeed, R is charac-
terized by being reduced and obtained by left-to-right column operations. But
we may or may not continue the operations once we reached a reduced matrix.
To see that the lowest ones are unique, we consider the lower, left submatrix
Rji of R whose corner element is R[i, j]. In other words, Rji is obtained from
R by removing the first i − 1 rows and the last n − j columns. Since left-to-
right column operations preserve the rank of every such submatrix, we have
rankRji = rank∂ji for all i and j. We consider the expression

rR(i, j) = rankRji − rankRji+1 + rankRj−1
i+1 − rankRj−1

i

and note that rR(i, j) = r∂(i, j) for all i and j. To evaluate this expression,
we observe that the linear combination of any collection of non-zero columns
in Rji is again non-zero. It follows that the rank of Rji is equal to its number of

non-zero columns. Now, if R[i, j] is a lowest one then Rji has one more non-zero
column than the other three submatrices, which implies rR(i, j) = 1. If R[i, j]
is not a lowest one then we consider two subcases. If none of the columns
from 1 to j − 1 has its lowest one in row i then Rji and Rji+1 have the same

number of non-zero columns and so do Rj−1
i and Rj−1

i+1 . Second, if one of these

columns has its lowest one in row i then Rji has one more non-zero column

than Rji+1 and Rj−1
i has one more non-zero column than Rj−1

i+1 . In either case,
rR(i, j) = 0. Since the ranks of the submatrices of R are the same as those of
∂, we have a characterization of the lowest ones that does not depend on the
reduction process.

Pairing Lemma. We have i = low(j) iff r∂(i, j) = 1. In particular, the
pairing between rows and columns defined by the lowest ones in the reduced
matrix does not depend on R.

Now that we know for sure that the lowest ones are not an artifact of the
particular strategy used for reduction, we ask what exactly they mean. Note
that column j reaches its final form at the end of the j-th iteration of the outer
loop. At this moment, we have the reduced matrix for the complex consisting
of the first j simplices in the total ordering. We distinguish the case in which
column j ends up zero from the other in which it has a lowest one.

Case 1. column j of R is zero. We call σj positive since its addition creates a
new cycle and thus gives birth to a new homology class.

Case 2. column j of R is non-zero. It stores the boundary of the chain accu-
mulated in column j of matrix V and is thus a cycle. We call σj negative
because its addition gives death to a homology class.
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The class that dies in Case 2 is represented by column j. We still need to verify
that it is born at the time the simplex of its lowest one, σi with i = low(j),
is added. But this is clear because the cycle in column j of R just died and
all other cycles that die with it have ones below row i, else we could further
reduced the matrix and obtain low(j) < i, which contradicts the algorithm. It
follows that the lowest ones indeed correspond to the points in the persistence
diagrams. More precisely, (ai, aj) is a finite point in Dgmp(f) iff i = low(j)
and σi is a simplex of dimension p. In this case, σj is a simplex of dimension
p + 1. We have (ai,∞) in Dgmp(f) iff column i is zero but row i does not
contain a lowest one. In other words, σi is positive but it does not get paired
with a negative simplex.

An example. We illustrate the definitions with a small example. Let K
consist of a triangle and its faces. To get a filtration, we first add the vertices,
then the edges, and finally the triangle, numbering them in this order from 1
to 7. To make the exercise more interesting, we add the non-zero element of
the (−1)-st reduced chain group as a dummy simplex of index 0 to compute
reduced rather than ordinary homology. We recall that the augmentation map
defines the boundary of each vertex as this dummy simplex. The resulting
boundary matrix is shown as part of the matrix equation in Figure VII.4. We
reduce it as described and get four non-zero columns in R. The first lowest

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
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Figure VII.4: Reducing the boundary matrix of the complex consisting of a triangle
and its faces. The shaded squares mark ones in the matrices. The dark shaded
squares mark lowest ones in the reduced matrix.

one in R is in row 0 and column 1 and corresponds to the (−1)-dimensional
reduced homology class that dies when we add vertex 1. The second lowest one
is in row 2 and column 4. In words, the vertex 2 gives birth to the 0-cycle that
the edge 4 kills. Similarly, the vertex 3 gives birth to the 0-cycle that the edge
5 kills. Adding the edge 6 does not kill anything, which we see in the matrix
since column 6 is zero. It corresponds to a 1-cycle obtained by adding the prior
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Figure VII.5: From left to right: the minus first, the zeroth, and the first persistence
diagram of the filtration that constructs a complex by first adding the three vertices,
then the three edges, and finally the triangle.

columns 4, 5, and 6, as indicated in V . The edge 6 thus gives birth to a 1-cycle
that is then killed by the triangle 7. Figure VII.5 shows the corresponding
three persistence diagrams which are drawn assuming the function value of a
simplex is the same as its index. This particular function is injective so all
points in the diagrams have multiplicity one.

Bibliographic notes. The concept of persistent homology has been intro-
duced for components by Frosini and Landi [3] and for general homology groups
by Robins [4] and independently by Edelsbrunner, Letscher, and Zomorodian
[2]. The latter paper gives the first fast algorithm for persistence, the same as
described in this section but with the sparse matrix implementation discussed
in the next section. A generalization of the notion of persistence to coeffi-
cient groups that are fields can be found in [5]. A recent survey on persistent
homology is [1].
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VII.2 Efficient Implementations

For practical applications, the number of simplices can be large so that storing
the entire boundary matrix becomes prohibitive. As an alternative, we present
a sparse matrix implementation of the Persistence Algorithm and give bounds
on its running time that are better than cubic in the input size for some cases.

Sparse matrix representation. Same as in the previous section, we assume
a monotonic function on a simplicial complex, f : K → R, and a compatible
ordering of the simplices, σ1, σ2, . . . , σm. We store the data using a linear array,
∂[1..m], and a linked list of simplices per entry. The list in ∂[j] corresponds to
the j-th column of the boundary matrix, storing the co-dimension one faces of
σj . By the end of the algorithm, the list in the j-th array entry corresponds to
the column of the reduced matrix whose lowest one is in the j-th row. If there
is no such column then the list will be empty. To emphasize the transition, we
change the name for the array from ∂ at the beginning to R at the end of the
algorithm. All lists are sorted in the order of decreasing index so that the most
recently added simplex is readily available at the top; see Figure VII.6. We see

1 mji k l

R :

...

...... ... ............

Figure VII.6: The sparse matrix representation of the reduced matrix with only one
linked list shown.

a general migration of the lists from right to left. To describe the algorithm
that governs this migration, we write L for the linked list of the j-th array
entry, and i = top(L) for the index of its top simplex. We call the i-th array
entry occupied, if it stores a non-empty list, and unoccupied, otherwise.

R = ∂;
for j = 1 to m do

L = ∂[j].cycle; R[j].cycle = null;
while L 6= null and R[i] with i = top(L) is occupied do

L = L+R[i].cycle
endwhile;
if L 6= null then R[i].cycle = L endif

endfor.
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Adding two lists means merging them while deleting both copies of every dupli-
cate simplex. Since we store the lists in consistent sorted order, each addition
can be done in parallel scans. It is instructive to compare this sparse matrix
version of the Persistence Algorithm with its standard matrix implementation.

Analysis. The main structure of the sparse matrix implementation is that
of two nested loops, the outer and the inner loop. The addition of two lists is
another loop in disguise, so the running time is at most cubic in the input size.
To improve on this first estimate, we define a collision as an attempt to deposit
the list L that fails because the entry is occupied. Each collision requires the
merging of two lists, which takes time proportional to the sum of their lengths.
The loop ends when L runs empty or when the non-empty list L is successfully
deposited. The first case identifies σj as giving birth to a homology class. The
second case identifies σj as giving death and the simplex, σi, where the deposit
happens as triggering the corresponding birth. Each list R[k].cycle contains
σk as its topmost simplex. Similarly, σk is the topmost simplex in L when
it collides with the list in R[k]. Using modulo 2 arithmetic, σk gets deleted
which implies that the topmost simplex in the merged list has index less than
k. The inner loop thus proceeds monotonically from right to left. It follows
that collisions for a simplex σj happen only at entries between i and j, where
i = 1 if σj gives birth and i is the index of the corresponding birth if σj gives
death. Note that in the latter case, j − i is what we call the index persistence
of σj . Consider now the inner loop for σj . A collision at entry k can happen
only if σk gave birth to a class that died at σl before σj is reached. We have
i < k < l < j, as in Figure VII.6. Similarly, the collisions during the inner
loop for σl correspond to birth-death pairs nested within [k, l]. Inductively, this
implies that the lists added at collisions contain only faces of simplices with
index in [i, j]. Letting p be the dimension of σj , the number of such faces is
at most p + 1 times the number of indices in the interval. The time to merge
two lists is therefore at most proportional to this number. In summary, the
running time of the inner loop for a p-simplex σj is at most (p+ 1)(j − i)2.

There are situations in which we know ahead of time which simplices give
birth and which give death. For example, if the complex is geometrically real-
ized in R

3, the Incremental Betti Number Algorithm described in Section V.4
gives such a classification. With this information, we can then save the effort
for the simplices that give birth so that the total running time of the algorithm
becomes output-sensitive, and in particular bounded by the dimension times
the sum of squares of the index persistences. Assuming constant dimension,
this is at most proportional to m3 but for most practical data it is significantly
smaller than that.
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Zeroth diagram. The structure of the lists used to compute the 0-th per-
sistence diagram is simpler than for dimensions beyond zero. This diagram
depends solely on the vertices and edges of K and on their sequence in the
compatible ordering. A vertex has no boundary and always gives birth to a
component, so no choice there. An edge σj has two vertices as its boundary,
∂σj = u + w. Suppose u comes first, that is, u = σi, w = σk, and i < k. The
first step of the algorithm is then its attempt to deposit the list L consisting
of u and w in R[k]. If Lk = R[k].cycle is empty then the deposit is successful,
σk, σj is a pair, and the inner loop ends. Otherwise, Lk is itself a list of two
vertices, v and w in which v comes first. Adding the two lists gives L + Lk,
which consists of u and v. Indeed, all lists have length two so that each addition
takes only constant time. This implies that the total effort for dimension 0 is
at most the sum of indices, for edges that give birth, and at most the sum of
index persistences, for edges that give death. In any case, this is bounded from
above by m2.

jj

i

σ
wu

σ
u w

σ

Figure VII.7: Adding the edge σj on the left gives birth to a 1-cycle while on the
right it gives death to a component.

But we can do even better. Consider again the two cases for the edge with
boundary ∂σj = u+w. It gives birth iff u and w belong to the same component
of Kj−1, the complex right before we add σj ; see Figure VII.7 on the left.
Starting with σj , the algorithm adds an edge to the growing path at each
collision, and L keeps track of its boundary, the two endpoints. Eventually,
the two ends meet, L becomes empty, and the path becomes a 1-cycle. The
edge σj gives death iff u and w belong to two different components of Kj−1;
see Figure VII.7 on the right. The inner loop ends when one of the ends of the
growing path reaches the first (oldest) vertex, σi, of one component. Since the
inner loop works monotonically from right to left, this implies that the oldest
vertex of the other component is even older. Following the Elder Rule, L gets
deposited in R[i] and σi, σj form a pair. Note that the outcome is predictable.
All we need to know is whether or not u and w belong to different components
in Kj−1, and if they do, which are the oldest vertices of these components.
This is exactly the kind of information we can extract from the union-find data
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structure, as explained in Chapter I. Recall that this data structure stores
each component as a tree of vertices. Given a vertex, we traverse the path
up to the root to determine the name of the component. Using the index
of the oldest vertex as the name gives the information we need at negligible
cost. In summary, we compute the 0-th persistence diagram in time at most
proportional to mα(m), where α is the inverse of the Ackermann function
which, for all practical purposes, is bounded from above by a constant.

Surfaces. We now consider a simplicial complex, K, that triangulates a 2-
manifold. This case is of some practical importance and it allows for a fast
implementation of the Persistence Algorithm. Let f : |K| → R be obtained
by piecewise linear interpolation of its values at the vertices, as explained in
Section III.1. There is possibly non-trivial information in the 0-th and the 1-st
persistence diagrams of f but not in any of the others. To compute these two
diagrams fast, we need to answer two questions.

1. How can we turn the 1-parameter family of sublevel sets into a filtration
that we can feed to our algorithm?

2. How can we improve the slower running time for the 1-st persistence dia-
gram to roughly the time needed for the 0-th diagram.

We deal with the first question now and defer the second question to later.
Assume for simplicity that the restriction of f to the vertices of K is injective.
As defined in Chapter VI, the lower star filtration is then the sequence ∅ =
K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, where Ki is the union of the lower stars of the first i
vertices in the ordering by f . It is also the filtration generated by the monotonic
function g : K → R defined by mapping each simplex to g(σ) = maxx∈σ f(x).
The diagrams of f are defined by the homology groups of the sublevel sets of f ,
|K|a = f−1(−∞, a], while those of g are defined by the homology groups of the
sublevel sets of g, Ka = g−1(−∞, a]. By definition of lower star filtration, we
have |Ka| ⊆ |K|a and the inclusion is a homotopy equivalence; see Figure VI.8
and the discussion around it. It follows that the vertical maps in the following
diagram are isomorphisms:

Hp(|K|a) −→ Hp(|K|b)
↑ ↑

Hp(Ka) −→ Hp(Kb),

where p is any dimension and a ≤ b are any two real numbers. All four maps
are induced by inclusion, implying the square commutes. Indeed, these two
conditions suffice for the persistence diagrams defined by the two sequences to
be the same.
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Persistence Equivalence Theorem. Consider two sequences of vector
spaces connected by homomorphisms φi : Ui → Vi,

V0 → V1 → . . . → Vn−1 → Vn

↑ ↑ ↑ ↑
U0 → U1 → . . . → Un−1 → Un.

If the φi are isomorphisms and all squares commute then the persistence dia-
gram defined by the Ui is the same as that defined by the Vi.

The proof is not difficult but tedious and therefore omitted. As explained
above, the 0-th persistence diagram of g can be computed in time at most
proportional to mα(m). The equivalence with the 0-th persistence diagram of
f thus implies that the latter can be computed in the same amount of time.

First diagram. Instead of computing the 1-st persistence diagram of f di-
rectly, we construct the 0-th persistence diagram of −f and derive the dia-
gram of f from it. We begin by describing the relation between Dgm1(f) and
Dgm0(−f), omitting proofs since the relations are consequences of the more
general theorems given in the next section.

Figure VII.8: The white points of Dgm1(f) are reflections of the black points of
Dgm0(−f) across the minor diagonal.

The 1-st persistence diagram of f consists of the diagonal, a finite portion of
off-diagonal points (a, b), and an infinite portion of off-diagonal points (c,∞).
We construct the finite portion from the 0-th persistence diagram of −f . Specif-
ically, the point (a, b) marks the birth of a 1-dimensional homology class at a
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and its death at b. Looking at −f is like taking the complement and going
backward. We thus have the birth of a 0-dimensional homology class at −b
and its death at −a. It follows a point (a, b) belongs to Dgm1(f) iff the point
(−b,−a) belongs to Dgm0(−f). In other words, the finite portion of Dgm1(f)
can be obtained by reflecting the finite portion of Dgm0(−f) across the minor
diagonal, as illustrated in Figure VII.8. We get the points at infinity by par-
titioning the set of edges in the complex into three subsets: edges that give
death in the lower star filtration of f , edges that give death in the lower star
filtration of −f , and the rest. The first two contribute coordinates to the finite
portions of the 0-th and the 1-st diagrams of f . For each edge in the third set,
we have a point at infinity in the 1-st diagram, namely a class born when the
edge is added and living on even when the complex K is complete. In sum-
mary, we have a three pass algorithm for computing the persistence diagrams
of a piecewise linear function f on a triangulated 2-manifold in time at most
proportional to mα(m).

Bibliographic notes. The original paper on persistent homology by Edels-
brunner, Letscher, and Zomorodian [3] describes the sparse matrix version
of the Persistence Algorithm explained in this section. Furthermore, the pa-
per focuses on cases in which birth and death information is available using
the Incremental Betti Number Algorithm by Delfinado and Edelsbrunner [1].
The standard matrix reduction version of the Persistence Algorithm came his-
torically later and brought with it a more general appeal at the expense of
increased computational resources. The Persistence Equivalence Theorem re-
lating diagrams of different functions has first appeared in [4]. The algorithm
for triangulated surfaces is useful in combination with Morse theoretic ideas
and has already lead to industrial applications [2].

[1] C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for
Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom.
Design 12 (1995), 771–784.

[2] H. Edelsbrunner. Surface tiling with differential topology (extended abstract of
invited talk). In “Proc. 3rd Eurographics Sympos. Geom. Process., 2005”, 9–11.

[3] H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological persistence
and simplification. Discrete Comput. Geom. 28 (2002), 511–533.

[4] A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete
Comput. Geom. 33 (2005), 249–274.



192 VII Persistence

VII.3 Extended Persistence

In this section, we discuss an extension of persistence that is motivated by the
problem of fitting shapes to each other. This arises when we solve a puzzle
but also in the assembly of mechanical shapes, in the reconstruction of broken
artifacts, and in protein docking.

Elevation. Let M be a smoothly embedded 2-manifold in R3. Given a direc-
tion u ∈ S

2, the height function in this direction, fu : M → R, is defined by
mapping each point x to fu(x) = 〈x, u〉. We usually draw u vertically going
up and think of the height as the signed distance from a horizontal base plane,
as in Figure VII.9. Given a threshold a ∈ R, we recall that the sublevel set

a 10

a 9

a 8

a 7

a 6

a 5

a 4

a 3

a 2

a 1

Figure VII.9: A smoothly embedded 2-manifold with level sets shown and critical
points of the vertical height function marked.

consists of all points with height a or less, Ma = f−1
u (−∞, a]. As mentioned

in the previous sections, the sublevel sets are nested and define persistence
through the corresponding sequence of homology groups. For a generic smooth
surface, the homological critical values of a height function are the height val-
ues of isolated critical points. If furthermore the direction is generic then there
are only three different types, minima which start components, saddles which
merge components or complete loops, and maxima which fill holes. Assuming
the critical points have distinct heights, the points in the persistence diagrams
of f correspond to pairs of critical points. We have minimum-saddle pairs in
the 0-th diagram and saddle-maximum pairs in the 1-st diagram.
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Based on the family of height functions, we introduce the elevation function
as a measure of the local protrusion or cavity. Of course, the challenges are the
choice of the local neighborhood and of the direction in which the measurement
is taken. We finesse both difficulties by exploiting the entire 2-parameter family
of height functions. Recall that a point x ∈M is critical for the height function
in direction u = ±nx, where nx is the unit normal at x. If x is paired with
another critical point y, we define the elevation of x and y as their absolute
height difference, |fu(x) − fu(y)|, where u = ±nx = ±ny. Since x is critical
twice, for u = ±nx, we need to make sure that the pairing is the same in both
directions, else we get contradictory assignments of elevation. We also need all
critical points to be paired, else we get white areas in which elevation remains
undefined. The latter is the reason we extend persistence and the former is a
constraint we need to observe in this extension.

Extended filtration. Let a1 < a2 < . . . < an be the homological crit-
ical values of the height function fu : M → R. At interleaved values
b0 < a1 < b1 < a2 < . . . < an < bn we get sublevel sets Mbi

= f−1(−∞, bi]
which are 2-manifolds with boundary. Symmetrically, we define superlevel sets
M
bi = [bi,∞), which are complementary 2-manifolds with the same boundary.

Finally, we use both to construct a sequence of homology groups going up and
a sequence of relative homology groups coming back down,

0 = Hp(Mb0) → . . .→ Hp(Mbn
)

→ Hp(M,Mbn) → . . .→ Hp(M,Mb0 ) = 0

for each dimension p. The homomorphisms are induced by inclusion. We
recall that for modulo 2 arithmetic, the homology groups are isomorphic to
the cohomology groups. Furthermore, Lefschetz duality implies Hp(Mb) ≃
Hd−p(M,Mb). This shows that the construction is intrinsically symmetric al-
though not necessarily within the same dimension. Since we go from the trivial
group to the trivial group, everything that gets born eventually dies. As a
consequence, all births will be paired with corresponding deaths, as desired.

Tracing what gets born and dies in the relative homology groups is a bit
less intuitive than for the absolute homology groups going up. However, we
can translate the events between the absolute homology of Mb and the relative
homology of the pair (M,Mb). Coming down, the threshold decreases so the
superlevel set grows. We call a homology class in the superlevel set essential,
if it lives all the way down to b0, and inessential, otherwise.

Rule 1. A dimension p homology class of Mb dies at the same time a dimension
p+ 1 relative homology class of (M,Mb) dies.



194 VII Persistence

Rule 2. An inessential dimension p homology class of Mb gets born at the
same time a dimension p+1 relative homology class of (M,Mb) gets born.

Rule 3. An essential dimension p homology class of Mb gets born at the same
time a dimension p relative homology class of (M,Mb) dies.

We can prove these relationships by studying the kernels and cokernels of the
maps from the homology groups of Mb into those of M. Leaving this to the
interested reader, we develop our intuition by considering an example.

Example. Consider the height function of the genus-2 torus in Figure VII.9.
Going up, a1 and a2 give birth to classes in H0, a4, a5, a6, a7, a8 give birth to
classes in H1, and a10 gives birth to a class in H2. All classes live until the end of
the ascending pass, except for the dimension 0 class born at a2, which dies at a3,
and the dimension 1 class born at a8, which dies at a9. These are the only two
finite off-diagonal points in the persistence diagrams as we used to know them.
Coming down, a10 kills the class in H0 and a9 gives birth to a class in H1 that
dies at a8. Furthermore, a7, a6, a5, a4 kill the classes in H1, a3 gives birth to a
class in H2 that dies at a2, and finally a1 kills the class in H2. To summarize, the
pairs of critical values defining the points in the diagrams are (a1, a10), (a2, a3)
in dimension 0, (a4, a7), (a5, a6), (a6, a5), (a7, a4), (a8, a9), (a9, a8) in dimension
1, and (a10, a1), (a3, a2) in dimension 2. We show the diagrams in Figure VII.10
using different symbols for classes born and dying going up, born going up and
dying coming down, and born and dying coming down. They make up the
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Figure VII.10: From left to right: the 0-th, 1-st, 2-nd persistence diagrams of the
height function in Figure VII.9.

ordinary, the extended, and the relative sub-diagrams, which we denote
as Ord, Ext, and Rel, with the dimension in the index and the function in
parenthesis, as before. Note that the points of the ordinary sub-diagrams lie
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above and those of the relative sub-diagrams lie below the diagonal. The points
of the extended sub-diagrams can lie on either side.

Duality and symmetry. The symmetries we observe in Figure VII.10 are
not coincidental. They arise as consequences of the Lefschetz duality be-
tween absolute and relative homology groups of complementary dimensions,
Hp(Mb) ≃ Hd−p(M,Mb). This translates into a duality result for persistence
diagrams which we state without proof. We use a superscript ‘T ’ to indicate
reflection across the main diagonal, mapping the point (a, b) to (b, a).

Persistence Duality Theorem. A tame function f on a d-manifold with-
out boundary has persistence diagrams that are reflections of each other as
follows,

Ordp(f) = RelTd−p(f);

Extp(f) = ExtTd−p(f);

Relp(f) = OrdTd−p(f).

Equivalently, the full p-th persistence diagram is the reflection of the full (d−
p)-th persistence diagram, Dgmp(f) = DgmT

d−p(f). We have d = 2 for the
example illustrated in Figures VII.9 and VII.10 and we indeed have diagrams
that are reflections of each other as described. For 2p = d, the extended
sub-diagram is the reflection of itself and therefore symmetric across the main
diagonal.

Recall that the definition of elevation requires the pairing of critical points be
the same for antipodal height functions. We can use duality to prove that they
are indeed the same. More specifically, we have the following structural result
again expressed in terms of sub-diagrams of the persistence diagrams. We use
the superscript ‘R’ to indicate reflection across the minor diagonal, mapping
the point (a, b) to (−b,−a). Similarly, we use the superscript ‘0’ to indicate
central reflection through the origin, mapping the point (a, b) to (−a,−b).

Persistence Symmetry Theorem. Let f be a tame function on a d-
manifold without boundary and −f its negative. Then the persistence dia-
grams of the two functions are reflections of each other,

Ordp(f) = OrdRd−p−1(−f);

Extp(f) = Ext0d−p(−f);

Relp(f) = RelRd−p+1(−f).
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In lieu of a full-blown proof, we just mention that each of the three equations
can be obtained using the Persistence Duality Theorem together with the above
three rules relating events in the parallel sequences of absolute and relative
homology groups.

Lower and upper stars. To describe how we compute extended persistence,
let K be a triangulation of a d-manifold M. We assume the height function is
defined at the vertices. We also assume that the height values are distinct so we
can index the vertices such that f(v1) < f(v2) < . . . < f(vn). Let f : |K| → R

be obtained by piecewise linear extension. Writing ai = f(vi) and introducing
interleaved values b0 < b1 < . . . < bn, we can define sublevel sets and superlevel
sets as before. The set of points x ∈ |K| with f(x) ≤ bi is homeomorphic to
Mbi

and thus a manifold with boundary. Similarly, the set of points with
f(x) ≥ bi is homeomorphic to Mbi and a manifold with boundary. We can
retract the partially used simplices and get homotopy equivalent subcomplexes
of K. Specifically, let Ki be the full subcomplex defined by the first i vertices in
the ordering and Ki the full subcomplex defined by the last n− i vertices. The
two subcomplexes of K are disjoint although together they cover all n vertices.
The only simplices not in either subcomplex are the ones that connect the first
i with the last n− i vertices. Recall that the lower star of a vertex vi consists
of all simplices that have vi as their highest vertex. Symmetrically, we define
the upper star to consist of all simplices that have vi as their lowest vertex.
More formally,

St−vi = {σ ∈ St vi | x ∈ σ ⇒ f(x) ≤ f(vi)},
St+vi = {σ ∈ St vi | x ∈ σ ⇒ f(x) ≥ f(vi)}.

Since every simplex has a unique highest and a unique lowest vertex, the lower
stars partition K and so do the upper stars. With this notation, K0 = ∅ and
Ki = Ki−1 ∪ St−vi for 1 ≤ i ≤ n. Equivalently, Ki is the union of the first
i lower stars. Symmetrically, Kn = ∅, Ki = Ki+1 ∪ St+vi+1, and Ki is the
union of the last n− i upper stars.

Computation. By the Persistence Equivalence Theorem in the previous sec-
tion, the Ki have the same homotopy type as the sublevel sets and the Ki have
the same homotopy types as the superlevel sets of M. We can therefore com-
pute persistence by adding the simplices accordingly. Let A be the boundary
matrix for the ascending pass, storing the simplices in blocks that correspond
to the lower stars of v1 to vn, in this order. Within each block, we store
the simplices in the order of non-decreasing dimension and break remaining
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ties arbitrarily. All simplices in the same block are assigned the same value,
namely the height of the vertex defining the lower star. If two simplices in the
same block are paired, they define a point on the diagonal of the appropriate
persistence diagram. In other words, the homology class dies as soon as it is
born and therefore has zero persistence. Only pairs between blocks carry any
significance.

Let B be the boundary matrix for the descending pass, storing the simplices
in blocks that correspond to the upper stars of vn to v1, in this order. Using A
and B, we form a bigger matrix by adding the zero matrix at the lower left and
the permutation matrix P that translates between A and B at the upper right,
as in Figure VII.11. We can think of the result as the boundary matrix of a

birth
birth

deathdeath
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St

St

St

St St St Stv1 v1
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vn
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n

v+

++

1
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vn vn

−

−

− −

Figure VII.11: The block structure of the boundary matrix representing the construc-
tion of K going up and the subsequence destruction coming down.

new complex, namely the cone over K. We pick a new, dummy vertex, v0, and
for each i-simplex σ in K add the (i + 1)-simplex σ ∪ {v0}. Adding the cone
removes any non-trivial homology. This explains why reducing the big matrix
works. As we move from left to right, we first construct K forming pairs by
reducing A. At the halfway point, the only unpaired simplices are the ones
that gave birth to the essential homology classes. As we continue, we cone off
K step by step, eventually removing all non-trivial homology. In the end, the
ordinary, extended, and relative sub-diagrams are given by the lowest ones in
the upper-left, upper-right, and lower-right quadrants of the reduced matrix.

Indeed, we draw the diagram that corresponds to one of the three quadrants
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by marking each lowest one as a point, replacing indices by function values.
For A, the birth values increase downward and the death values from left to
right, so we need to turn the quadrant by 90◦ to get the ordinary sub-diagram.
Symmetrically, we turn the quadrant of B by −90◦ to get the relative sub-
diagram and we reflect the quadrant of P across the main diagonal to get
the extended sub-diagram. Since the reduced versions of A and B are upper
triangular, we indeed get the ordinary sub-diagram above and the relative sub-
diagram below the diagonal.

Bibliographic notes. The extension of persistence described in this section
is due to Cohen-Steiner, Edelsbrunner and Harer [2]. It makes essential use of
Poincaré and Lefschetz duality to obtain the desired symmetry properties for
manifolds. The construction applies equally well to general topological spaces
but without guarantee of duality and symmetry. The main motivation for the
extension is the elevation function introduced in [1] whose primary purpose is
the prediction of interactions between known protein structures [3].

[1] P. K. Agarwal, H. Edelsbrunner, J. Harer and Y. Wang. Extreme eleva-
tion on a 2-manifold. Discrete Comput. Geom. 36 (2006), 553–572.

[2] D. Cohen-Steiner, H. Edelsbrunner and J. Harer. Extended persistence
using Poincaré and Lefschetz duality. Found. Comput. Math., to appear.

[3] Y. Wang, P. K. Agarwal, P. Brown, H. Edelsbrunner and J. Rudolph.
Coarse and reliable geometric alignment for protein docking. In “Proc. Pacific
Sympos. Biocomput., 2005”, 65–75.
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VII.4 Spectral Sequences

Topologists will immediately recognize a connection between persistence and
spectral sequences. We shed light on this relation by reviewing spectral se-
quences, first in terms of the matrix reduction algorithm and second in terms
of groups and maps between them.

The matrix reduction view. As usual, we start with a filtration of a sim-
plicial complex, ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, letting ki = cardKi be the
number of simplices in the i-th complex. Using a compatible total ordering of
the simplices, we let ∂ be the boundary matrix which we write in block form.
Specifically, ∂i consists of the rows numbered ki−1 + 1 to ki corresponding to

the simplices in Ki −Ki−1 and ∂j consists of the columns numbered kj−1 + 1
to kj corresponding to the simplices in Kj − Kj−1. The intersection of the
i-th block of rows and the j-th block of columns is then ∂ji , which records the
codimension one faces of the simplices in Kj − Kj−1 that lie in Ki − Ki−1.
Since the boundary matrix is upper triangular, we have ∂ji = 0 whenever i > j.
We reduce the boundary matrix with left-to-right column additions, as before,
but instead of sweeping the matrix from left to right, we sweep it diagonally.
More precisely, we work in phases and in Phase r, we reduce columns in ∂j by
adding columns in the blocks from ∂j−r+1 all the way to ∂j itself. The Spectral
Sequence Algorithm thus reduces the columns from the diagonal outward, as
illustrated in Figure VII.12.

1 j n

n

i

1

Figure VII.12: After three phases, the triple blocks along the diagonal are reduced.
The highlighted blocks of rows and columns intersect in the block matrix ∂

j
i .
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for r = 1 to n do

for j = r to n do

for ι = kj−1 + 1 to kj do
while ∃kj−r < ι′ < ι with kj−r < low(ι′) = low(ι) ≤ kj−r+1 do

add column ι′ to column ι
endwhile

endfor

endfor

endfor.

The result is the same as that of the Persistence Algorithm in the first section
of this chapter, only the order in which the columns are added is different. An
easy connection to persistence arises by considering the monotonic function
f : K → R mapping a simplex σ ∈ Ki −Ki−1 to f(σ) = i. A leftmost lowest
one in ∂ji then belongs to a simplex pair of persistence j − i. The Spectral
Sequence Algorithm thus computes the pairs in the order of non-decreasing
persistence.

Groups and maps. We now interpret the algorithm in terms of groups that
make up the spectral sequence of the filtration. Recall the chain groups and
boundary maps, ∂ : Cp → Cp−1, which form the chain complex defined by K.
For each j, we let Cjp be the group of p-chains of Kj−Kj−1, and for each chain

c ∈ Cjp, we let ∂ji c be the sum of terms of ∂c that lie in Ki−Ki−1. Suppressing

the dimension in the notation for the boundary map, we have ∂ji : Cjp → Cip−1

and

∂c = ∂jjc+ ∂jj−1c+ . . .+ ∂j1c.

The block ∂ji in the boundary matrix represents the maps ∂ji simultaneously
for all dimensions. In spectral sequences, we approximate ∂ by the sum of
maps ∂jj to ∂ji and then decrease i. The spectral sequence itself consists of a
collection of groups Erp,q and maps drp,q between them. To describe them, we
break with the convention of using p for the dimension. Instead, we follow
the convention entrenched in the spectral sequence literature in which the first
subscript, p, identifies the block of columns, the sum of subscripts, p+ q, gives
the dimension, and the superscript, r, counts the phases in the iteration.

As usual, we think of the columns of the boundary matrix as generators of the
chain groups. Limiting our attention to the p-th block of columns, ∂p, we get
the groups of (p+q)-chains of Kp−Kp−1, for all q. If we further limit ∂p to the
blocks of rows ∂i to ∂p, we effectively ignore any boundary in Ki−1. For i = p,
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this is equivalent to taking the relative chain groups, Cp+q(Kp,Kp−1). For
i < p, we have a subgroup of the relative chain group Cp+q(Kp,Ki−1), namely
the one generated by the (p + q)-simplices in Kp − Kp−1; see Figure VII.13.
For what follows, it is important to remember that the boundary matrix, ∂,

p

i

p

Figure VII.13: The shaded portion of the p-th block of columns represents the chains
of Kp − Kp−1 and their boundaries in Kp − Ki−1.

represents simplices of all dimensions in one. Hence, each block will correspond
to a sequence of groups, namely one for each dimension.

The E0-term of the spectral sequence. To prepare for the first phase of
the algorithm, we focus on the diagonal blocks of the boundary matrix. Fixing
r = 0, we write E

0
p,q = C

p
p+q for the group of (p + q)-chains of Kp − Kp−1.

Fixing p and varying q, these groups are generated by the p-th block of columns.
Furthermore, we let

d
0
p,q : E

0
p,q → E

0
p,q−1

be defined by the (p + q)-dimensional boundary map restricted to the block
∂pp . In other words, d

0
p,q is ∂pp as applied to (p + q)-chains. We note that E

0
p,q

is isomorphic to the relative chain group Cp+q(Kp,Kp−1) and d0
p,q agrees with

the corresponding relative boundary map. It follows that the maps satisfy
the Fundamental Lemma of Homology, that is, d0

p,q−1 ◦ d0
p,q = 0. Indeed, a

codimension two face of a (p+ q)-simplex in Kp−Kp−1 either does not belong
to Kp −Kp−1 or it does, but then both codimension one faces that contain it
also belong to Kp −Kp−1. Hence, we get a chain complex,

. . . −→ E
0
p,q+1 −→ E

0
p,q −→ E

0
p,q−1 −→ . . . ,
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in which the maps are implied. It is customary to draw this chain complex
vertically, and adding the chain complexes for the other diagonal blocks, we
get a 2-dimensional grid of groups, as shown in Figure VII.14. To reduce the
clutter, we omit the arrows that connect the groups in each vertical line from
top to bottom. We call this the E0-term of the spectral sequence, noting that
a vertical line in the grid contains all groups represented by a diagonal block
of the boundary matrix.
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2,0
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Figure VII.14: The E0-term of the spectral sequence. We have maps going vertically
downward, from E0

p,q to E0
p,q−1 for every choice of p and q.

The E1-term. After interpreting the diagonal blocks of the original bound-
ary matrix in terms of relative chain groups, we now push this interpretation
through the phases of the algorithm. For the first phase, we take the homol-
ogy of the above vertical complexes and define E1

p,q = ker d0
p,q/im d0

p,q+1. An
element of E

1
p,q is thus the equivalence class of a chain c ∈ C

p
p+q with ∂ppc = 0,

where two chains are equivalent if their difference lies in the image of ∂pp , tak-
ing of course the boundary map that applies to chains of one higher dimension.
In other words, the element is a relative homology class and more generally
E1
p,q ≃ Hp+q(Kp,Kp−1). Representatives of E1

p,q are computed by reducing
the matrix ∂pp , which is what the algorithm does in Phase r = 1. The zero
columns in ∂pp correspond to simplices that give birth and represent cycles.
Some are paired and have zero persistence since their classes come and go
within Kp −Kp−1. Others are not paired and their cycles are the generators
of E1

p,q. Next we let

d
1
p,q : E

1
p,q → E

1
p−1,q
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be defined by the (p + q)-th boundary map restricted to ∂p−1
p . Recall that

an element in E1
p,q is represented by a relative (p + q)-cycle, c. Hence, ∂ppc =

0 but ∂p−1
p c is possibly non-zero and represents a class in E1

p−1,q. All this
sounds complicated but it is rather straightforward if interpreted in terms of
the boundary matrix after one phase of the algorithm. As before, the boundary
maps satisfy the Fundamental Lemma of Homology, d1

p−1,q ◦d1
p,q = 0, so we get

again a chain complex,

. . . −→ E
1
p+1,q −→ E

1
p,q −→ E

1
p−1,q −→ . . . .

Going back to the grid in Figure VII.14, we can see these complexes as hori-
zontal lines going from right to left. Of course, we are now in the next phase
so we need to substitute r = 1 for the superscript 0 everywhere. This is the
E1-term of the spectral sequence.

The E
2-term. We take one more step before appealing to induction, taking

the homology of the horizontal complexes, E2
p,q = ker d1

p,q/im d1
p+1,q. An element

of E2
p,q is the equivalence class of the sum of a chain c ∈ C

p
p+q and another

chain c′ ∈ C
p−1
p+q . The chains satisfy ∂ppc = 0 and ∂pp−1c+ ∂p−1

p−1c
′ = 0 and being

equivalent means that the difference lies in im ∂pp+im ∂pp−1+im ∂p−1
p−1 . The group

E2
p,q is not a relative homology group by itself but a subgroup of one, namely

E2
p,q ⊕ E1

p−1,q+1 ≃ Hp+q(Kp,Kp−2). Representatives of E2
p,q are computed by

reducing the double block of matrices ∂pp , ∂
p−1
p−1 , ∂p−1

p , ∂pp−1. The first two
have already been reduced and the third is zero. Phase r = 2 completes the
reduction of the double block for the remaining fourth matrix. Next, we let

d
2
p,q : E

2
p,q → E

2
p−2,q+1

be defined by the (p+q)-th boundary map restricted to ∂pp−2. By construction,

an element of E2
p,q is represented by a (p + q)-chain, c, whose boundary in

Kp −Kp−2 is empty. Its boundary in Kp−2 −Kp−3 is possibly non-empty and
represents a class in E2

p−2,q+1, the image of the class of c in E2
p,q. Taking the

thus defined boundary map twice gives again zero, so we get a chain complex,

. . . −→ E
2
p+2,q−1 −→ E

2
p,q −→ E

2
p−2,q+1 −→ . . . ,

similar to before. Going back to the grid in Figure VII.14, we see this complex
along a line of slope one half going from right to left. In other words, the
groups are connected by knight moves in chess, two to the left and one up. Of
course, we are now in the next phase, so we need to substitute r = 2 for the
superscript 0 everywhere. This is the E2-term of the spectral sequence.
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Iteration. The process continues and for general phase numbers r, the maps
take r steps to the left and r − 1 steps up,

d
r
p,q : E

r
p,q → E

r
p−r,q+r−1.

This gives a set of chain complexes and we take homology to enter the next
phase. Since K is finite, the maps are eventually zero and the sequence con-
verges to a limit term, Er = E∞ for r large enough. The homology groups of
K are obtained by taking direct sums along the diagonal lines in the limit term
for which the dimension is constant.

Before reaching the limit term, we may consider each class in Erp,q as gener-
ated by an “almost” cycle of dimension p+ q. This is a chain whose boundary
in Kp − Kp−r is empty by may have non-empty boundary in Kp−r. It is ei-
ther an essential cycle of K, or a cycle of persistence at least r, assuming the
monotonic function f : K → R that maps σ ∈ Kp − Kp−1 to f(σ) = p, as
before. This leads to the following summary connection between persistence
and spectral sequences.

Spectral Sequence Theorem. The total rank of the groups of dimension
p+ q after r ≥ 1 phases of the Spectral Sequence Algorithm equals the number
of points in the (p + q)-th persistence diagram of f whose persistence is r or
larger, that is,

n
∑

p=1

rankE
r
p,q = card {a ∈ Dgmp+q(f) | pers(a) ≥ r},

where q decreases as p increases so that the dimension remains constant.

In the limit, for r large enough, we have
∑n
p=1 rankErp,q = rankHp+q(K) equal

to the number of points in the (p+q)-th persistence diagram whose persistence
is infinite.

Bibliographic notes. A comprehensive account of spectral sequences can
be found in [3]. The treatment in this section follows the more concise presen-
tation in the survey of persistent homology [2]. Similar to persistent homology,
working over a field is crucial for the construction of spectral sequences. Over
Z, there are extension problems to solve because of torsion; see [1].

[1] K. S. Brown. Cohomology of Groups. Springer-Verlag, New York, 1994.
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[2] H. Edelsbrunner and J. Harer. Persistent homology — a survey. Surveys on
Discrete and Computational Geometry. Twenty Years Later, eds. J. E. Goodman,
J. Pach and R. Pollack, Contemporary Mathematics 453, 257–282, Amer. Math.
Soc., Providence, Rhode Island, 2008.

[3] J. McCleary. A User’s Guide to Spectral Sequences. Second edition, Cambridge
Univ. Press, England, 2001.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Tetrahedron complex (one credit). Let K consist of a tetrahedron and
its faces.

(i) Apply the matrix reduction algorithm to the filtration of K obtained
by adding the simplices in the order of dimension.

(ii) Do any of the three diagrams depend on the way you order the sim-
plices of the same dimension?

2. Matrix reduction revisited (two credits). Change the standard ma-
trix reduction implementation of the persistence algorithm described in
Section VII.1 by adding each j-th column to columns on its right rather
than adding columns on its left to it. Specifically, consider the following
implementation.

R = ∂;
for j = 1 to m do

while there exists j0 > j with low(j0) = low(j) do
add column j to column j0

endwhile

endfor.

(i) Show that this implementation of the persistence algorithm generates
the same lowest ones as the standard matrix reduction implementa-
tion.

(ii) Give an example for which this and the standard implementation of
the persistence algorithm compute different reduced matrices.

3. Sublevel sets (two credits). Let f : |K| → R be a piecewise linear function
defined by its values at the vertices, f(u1) < f(u2) < . . . < f(un). Let b
be strictly between f(ui) and f(ui+1), for some 1 ≤ i ≤ n− 1, and recall
that the sublevel set defined by b is f−1(−∞, b].

(i) Prove that the sublevel sets defined by b and by f(ui) have the same
homotopy type.

(ii) Draw an example each for the cases when the sublevel sets defined
by b and by f(ui+1) have the same and different homotopy types.
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4. Graphs without branching (three credits). Let K be a 1-dimensional
simplicial complex in which each vertex belongs to one or two edges. In
other words, K is a simple graph whose components are paths and closed
curves. Show that the sparse matrix implementation of the persistence
algorithm described in Section VII.2 takes time proportional to the number
of simplices in K.

5. Persistence diagram (one credit). Draw a genus-3 torus, consider its
height function, and draw the non-trivial persistence diagrams of the func-
tion. Distinguish between points in the ordinary, extended, and relative
sub-diagrams.

6. Breaking symmetry (two credits). Design a topological space X and a
continuous function f : X→ R such that

(i) the persistence diagrams violate the Persistence Duality Theorem in
Section VII.3;

(ii) the persistence diagrams violate the Persistence Symmetry Theorem
in the same section.

7. Matrix reduction once again (one credit). Prove that the reduced ma-
trix computed by the spectral sequence algorithm in Section VII.4 is the
same as that generated by the persistence algorithm in Section VII.1.

8. Parallel matrix reduction (three credits). First, rewrite the Spectral
Sequence Algorithm of Section VII.4 for the case in which each block, Kj−
Kj−1, consists of a single simplex. Second, show that the thus simplified
algorithm can be run on a parallel computer architecture using n processors
taking time at most proportional to n2.
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Chapter VIII

Stability

Persistence is a measure theoretic concept built on top of algebraic structures.
Its most important property is the stability under perturbations of the data.
In other words, small changes in the data imply at most small changes in the
measured persistence. This has major ramifications, including the study of
time series and the comparison and classification of shapes. Of particular im-
portance are biological shapes, which their sheer endless variety in the midst of
unmistaken similarity and delicate variation. The scope of this book does not
extend to this fascinating topic, but we are confident that the proper develop-
ment of persistence as a measurement tool will facilitate future inroads in this
direction.

VIII.1 Time Series
VIII.2 Stability Theorems
VIII.3 Length of a Curve
VIII.4 Bipartite Graph Matching

Exercises

209
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VIII.1 Time Series

In this section, we study how continuous change of the data affects the measured
persistence. We focus on the structural effects and on their computation. An
off-shot of the analysis is a first proof of stability, but this will have to wait
until the next section.

Straight-line homotopy. Let f : K → R and g : K → R be two monotonic
functions on the same simplicial complex. We recall this means that the
functions are non-decreasing along increasing chains of the face relation. We
use the straight-line homotopy F : K × [0, 1]→ R defined by

F (σ, t) = (1− t)f(σ) + tg(σ)

to interpolate between f and g. Define ft(σ) = F (σ, t) and note that f0 = f and
f1 = g, as intended. Furthermore, ft is monotonic for each t ∈ [0, 1]. Indeed, if
σ is a face of τ then f(σ) ≤ f(τ) and g(σ) ≤ g(τ) and therefore ft(σ) ≤ ft(τ)
for every t ∈ [0, 1]. Hence, we can find a compatible ordering of the simplices,
that is, a total order that extends the partial orders defined by ft and by
the face relation. Using this compatible ordering, we compute the persistence
diagrams of ft as explained in the previous chapter. However, if we somehow
already have the diagrams for f then we may consider modifying them to get
the diagrams for ft. This turns out to be more efficient than recomputing the
diagrams provided the two total orders are not too different. To describe what
exactly this means, we plot the function values with time, giving us a straight
line for each simplex; see Figure VIII.1. It is convenient to assume that f

f gf t

10 t

Figure VIII.1: Each line tracks the function value of a simplex as t increases. At any
moment t ∈ [0, 1], we get ft by intersection with the corresponding vertical line.
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and g are injective because this implies that ft is injective except at finitely
many moments t when two or more of the lines cross. To further simplify
the situation, we may assume that no two different pairs of lines cross at the
same moment. Equivalently, every ft has at most one violation of injectivity,
namely at most two simplices with the same function value. As we sweep from
left to right, in the direction of increasing t, we pass through this violation by
transposing the two simplices in the compatible ordering. This motivates us to
study the impact of a transposition on persistence.

Matrix decomposition. We recall that we compute the persistence dia-
grams of f : K → R by reducing the boundary matrix whose rows and columns
are ordered like the simplices in a compatible ordering. Starting with R = ∂,
we perform left-to-right column additions until R is reduced, that is, each non-
zero column has its lowest one in a unique row. In other words, the mapping
from non-zero columns to rows defined by low is injective. Each lowest one
gives a pair of simplices, namely (σi, σj) if i = low(j), and a finite off-diagonal
point in the p-th persistence diagram, namely (f(σi), f(σj)) in Dgmp(f) with
p = dimσi. It will be convenient to assume a bijection between the lowest
ones and the off-diagonal points in the persistence diagrams. In other words,
we assume there are no off-diagonal points at infinity or, equivalently, every
zero column in the reduced matrix corresponds to a row with a lowest one. We
get this property in reduced homology iff K is homologically trivial, that is,
β̃p(K) = 0 for every p. Assuming this property is no loss of generality since
we can always add simplices at the end so that they do not alter the earlier
homological evolution along the filtration. For example, we can form the cone
over a given simplicial complex, which is necessarily homologically trivial.

The reduced matrix can be written as R = ∂V , where V keeps track of the
column operations. Its j-th column stores the chain whose boundary is stored
in the j-th column of R. Since we only use left-to-right column additions, the
matrix V is upper triangular, with V [i, i] = 1 for each i and therefore invertible.
Let U be the right inverse of V and note that it is again upper triangular and
invertible. Multiplying from the right, we get RU = ∂V U and therefore

∂ = RU.

We call this an ru-decomposition of the boundary matrix. Implicit in this
definition are the requirements that U be upper triangular and invertible and
that R be reduced. We get these properties from the way we compute the
matrices, but there are other ru-decompositions that may be obtained by other,
similar algorithms. Indeed, the ru-decomposition of ∂ is not unique but as
noted in the previous chapter, the lowest ones in the reduced matrix are. The
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specific question we now ask is how we can update the ru-decomposition of the
boundary matrix if we transpose two simplices in contiguous positions along
the compatible ordering.

Updating the decomposition. Suppose ∂ is the boundary matrix for the
ordering of the simplices as σ1, σ2, . . . , σm. We write ∂′ for the boundary matrix
after transposing σi with σi+1. Letting P = P i+1

i be the corresponding permu-
tation matrix, we have ∂′ = P∂P . The difference between P and the unit ma-
trix, I, is localized to the 2-by-2 submatrix for which P [i, i] = P [i+1, i+1] = 0
and P [i, i+1] = P [i+1, i] = 1. Multiplying with P from the left exchanges the
two rows and multiplying with P from the right exchanges the two columns.
Note also that P is its own inverse, that is, PP = I. We therefore get

∂′ = P∂P = PRUP = (PRP )(PUP ).

But this is not necessarily an ru-decomposition of the new boundary matrix.
It fails to be one if R′ = PRP is not reduced or if U ′ = PUP is not upper
triangular. We will now show that either deficiency can be remedied with
modest effort, namely a constant number of row and column operations.

The only way R′ fails to be reduced is when rows i and i+1 of R both contain
a lowest one, i = low(k) and i+1 = low(l), and row i has a one in column l as
well. There are two cases, distinguished by k < l and l < k. In both cases, we
add the left column to the right column before we do the transposition. This
fixes the deficiency, as illustrated in Figure VIII.2.

i+1

i+1

k l

i

i+1

i+1

i

R

l k l k

i

k l

R

i

Figure VIII.2: After swapping rows i and i + 1 in R, the matrix would be no longer
reduced. We thus add the left to the right column before exchanging the two rows.

The only way U ′ fails to be upper triangular is when U [i, i + 1] = 1. We
fix this deficiency by adding row i + 1 to row i in U and adding column i to
column i+1 in R. Letting S = Si+1

i be the matrix whose only difference to the
unit matrix is S[i, i+ 1] = 1, we thus consider SU and RS. Since SS = I, this
does not change the matrix product, that is, ∂′ = (PRSP )(PSUP ) = PRSP ,
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same as before. With this modification, PSUP is upper triangular, but PRSP
may again fail to be reduced. If column i is zero or low(i) < low(i + 1) then
multiplying with S preserves the lowest ones and RS is reduced. In this case,
we have an ru-decomposition after the transposition. On the other hand, if
column i+1 is zero while column i is not or if low(i) > low(i+1), as in Figure
VIII.3, then we need to make the lowest ones unique again. We do this by
adding column i + 1 to column i, but after the transposition so that this is
again a left-to-right column addition. This repairs all deficiencies and we have
an ru-decomposition of ∂′.

i+1i+1 i+1 i+1i

RS PRSP

l

k

R

i i i

k

l

Figure VIII.3: After adding column i to i + 1 and exchanging the two columns, the
matrix PRSP is no longer reduced. Adding column i + 1 to i after the transposition
finally produces a reduced matrix.

Transpositions that change the pairing. The more important changes re-
quire more work. These are the switches , which we define as the transpositions
that alter the pairing. Recall that each lowest one establishes a correspondence
between a positive simplex (a row) and a negative simplex (a column). For ex-
ample, in Figure VIII.2 on the left, we have the pairs (σi, σk) and (σi+1, σl)
which are preserved through the transposition. On the right, we have the same
two pairs but they change to (σi, σl) and (σi+1, σk). This identifies the trans-
position as a switch. In Figure VIII.3, we have the pairs (σk, σi+1) and (σl, σi)
which change to (σk, σi) and (σl, σi+1), again a switch.

As a rule of thumb, most transitions are not switches. For example, if σi and
σi+1 do not have the same dimension then their transposition does not require
any changes other than the obligatory swapping of rows and columns. Even if
they have the same dimension but if σi is positive and σi+1 is negative, then
the transposition cannot be a switch. This is because row i has no lowest one,
so R′ = PRP is reduced and requires no further effort. Similarly, column i
of R is zero so we can set U [i, i + 1] = 0 to make sure U ′ = PUP is upper
triangular, if necessary. In words, the ru-decomposition is maintained without
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any of the repair operations that change the pairing. However, the remaining
three combinations of types can be switches, and we see an example each in
Figure VIII.4. We get a switch between two positive vertices, v and w, when we

xy y x

vu

w
u

v

z

Figure VIII.4: The vertices u, v, w are the oldest in their respective components,
which are eventually joined by the edges x and y. On the right, the two edges form
a hole, which is eventually filled by the triangle z.

go from uvwxy to uwvxy on the left. Indeed, the pairs (v, y) and (w, x) before
the transposition of v and w change to (v, x) and (w, y) after the transposition.
We get a switch between two negative edges, x and y, when we go from uvwxy
to uvwyx, again on the left. Indeed, the transposition of x and y produces the
same change between pairs as in the previous example. Finally, we get a switch
between a negative edge, x, and a positive edge, y, when we go from uvxyz to
uvyxz on the right. Indeed, the pairs (v, x) and (y, z) before the transposition
of x and y change to (v, y) and (x, z) after the transposition. The last switch
is the most interesting of all. Besides changing the pairing, it convinces the
negative x to become positive and the positive y to become negative. The
two edge thus contribute to different persistence diagrams before and after the
transposition.

Summary. When we transpose σi and σi+1, we touch only the columns of
σi and σi+1 and of the simplices σk and σl paired with them. The changes are
therefore limited to these two pairs. Furthermore, there are no changes unless
the transposed simplices have the same dimension. Assuming p = dimσi =
dimσi+1, the other two simplices have dimension p − 1 and p + 1. The only
possible change is therefore that the transposed simplices trade places. We
state this result for later reference.

Transposition Lemma. Let ∂ and ∂′ be the boundary matrices for com-
patible orderings of two monotonic functions on a simplicial complex that differ
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by a single transposition of two contiguous simplices, σi and σi+1. Then the
pairings defined by ru-decompositions ∂ = RU and ∂′ = R′U ′ differ only if
dimσi = dimσi+1, and if they differ then only by σi and σi+1 trading places.

The computational effort for updating the ru-decomposition is modest, namely
a constant number of row and column operations, each computable in time
proportional to the number of simplices. Returning to our two monotonic
functions, f, g : K → R, we have m simplices and thus at most

(

m
2

)

transpo-
sitions to go from a compatible ordering for f to a compatible ordering for g.
To get started, we compute the persistence diagrams of f in m3 time using
the algorithm explained in Section VII.1. Thereafter, we spend m time per
transposition and therefore m

(

m
2

)

< m3 time in total until we arrive at the
persistence diagrams of g. This is roughly the same amount of time required to
compute the diagrams of g from scratch, at least in the worst case. However,
going through the transposition has the advantage that we get the interpolating
diagrams for free.

Bibliographic notes. The material of this section is taken from [1], where
continuous families of persistence diagrams are proposed as a tool to study time
series of functions. As explained, the algorithm constructs these families by
maintaining the ru-decomposition of the boundary matrix through a sequence
of transpositions scheduled by sweeping an arrangement of lines. We can find
these transpositions in logarithmic time each by sorting the crossings, or in
constant time each by sweeping the arrangement topologically [2].

[1] D. Cohen-Steiner, H. Edelsbrunner and D. Morozov. Vines and vineyards
by updating persistence in linear time. In “Proc. 22nd Ann. Sympos. Comput.
Geom., 2006”, 119–126.

[2] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement.
J. Comput. System Sci. 38 (1989), 165–194. Corrigendum. J. Comput. System
Sci. 42 (1991), 249–251.
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VIII.2 Stability Theorems

Like any good measurement device, persistence gives similar readings for similar
functions. We make this statement precise for two notions of similarity between
persistence diagrams. The bottleneck distance is the cruder of the two but leads
to a more general result. The Wasserstein distance is more sensitive to details
in the diagrams but requires additional properties to be stable.

Bottleneck distance. Recall that a persistence diagram is a multiset of
points in the extended plane, R̄2. Under the assumptions on the input functions
considered in this book, the diagram consists of finitely many points above the
diagonal. To this finite multiset, we add the infinitely many points on the
diagonal, each with infinite multiplicity. These extra points are not essential
to the diagram but their presence simplifies upcoming definitions. Let now
X and Y be two persistence diagrams. To define the distance between them,
we consider bijections η : X → Y and record the supremum of the distances
between corresponding points for each. Measuring distance between points
x = (x1, x2) and y = (y1, y2) as ‖x− y‖∞ = max{|x1 − y1|, |x2 − y2|} and
taking the infimum over all bijections, we get the bottleneck distance between
the diagrams,

W∞(X,Y ) = inf
η:X→Y

sup
x∈X
‖x− η(x)‖∞.

As illustrated in Figure VIII.5, we can draw squares of side length twice the
bottleneck distance centered at the points of X so that each square contains

de
at

h

birth

Figure VIII.5: The superposition of two persistence diagrams consisting of the white
and the black points. Only the marked points on the diagonal correspond to off-
diagonal points in the other diagram. The bottleneck distance is half the side length
of the squares illustrating the bijection.
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the corresponding point of Y . Clearly, W∞(X,Y ) = 0 iff X = Y . Furthermore,
W∞(X,Y ) = W∞(Y,X) andW∞(X,Z) ≤W∞(X,Y )+W∞(Y, Z). We see that
W∞ satisfies all axioms of a metric and thus deserves to be called a distance.

Bottleneck stability. Letting f, g : K → R be two monotonic functions,
we consider the straight-line homotopy ft = (1 − t)f + tg, same as in the
previous section. This gives a monotonic function ft with a persistence diagram
for each dimension p and each t ∈ [0, 1]. Fixing a dimension p, the family
of persistence diagrams is a multiset in R̄2 × [0, 1]. Drawing t along a third
coordinate axis, we get a three-dimensional visualization of how the persistent
homology evolves as we go from f = f0 to g = f1. To describe this, we assume
that K has no non-trivial (reduced) homology, same in the previous section.
Adding the third coordinate, each off-diagonal point of Xt = Dgmp(ft) is of
the form x(t) = (ft(σ), ft(τ), t), where σ and τ are simplices in K. The point
represent the fact that when we construct K by adding the simplices in the
order defined by ft, then adding σ gives birth to a p-dimensional homology
class and adding τ gives death to the same. There are only finitely many
values at which the pairing of the simplices changes, and we denote these as
0 = t0 < t1 < . . . < tn < tn+1 = 1. Within each interval (ti, ti+1), the pairing is
constant and each pair σ, τ gives rise to a line segment of points x(t) connecting
points in the planes t = ti and t = ti+1. If the endpoint is an off-diagonal point
at ti+1, then there is a unique other line segment that begins at that point.
This line segment may correspond to the same simplex pair and thus continue
on the same straight line, or it may correspond to a different pair created in
a switch and make a turn at the shared point. It is also possible that the
endpoint lies on the diagonal at ti=1, in which case there is no continuation. In
summary, the line segments form polygonal paths that monotonically increase
in t. Each path begins at an off-diagonal point in X = X0 or at a diagonal point
in some Xti and it ends at an off-diagonal point in Y = X1 or at a diagonal
point in some Xtj . We call each polygonal path a vine and the multiset of
vines a vineyard ; see Figure VIII.6.

The fact that the points in the family of persistence diagrams form connected
vines is important. It is a way of saying that the persistence diagram is stable.
To further quantify this notion, we differentiate x(t) = (1 − t)(f(σ), f(τ), 0) +
t(g(σ), g(τ), 1) and get ∂x

∂t (t) = (g(σ) − f(σ), g(τ) − f(τ), 1). Projecting the
endpoints of the line segment back into R̄2, we get two points whose L∞-
distance is ti+1 − ti times the larger of the differences between f and g at the
two simplices. Letting υ be the simplex in K that maximizes this difference, we
get the L∞-distance between the two functions, ‖f − g‖∞ = |f(υ)−g(υ)|. This
is also an upper bound on the slope of any line segment in the vineyard and
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0.0
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Figure VIII.6: The 1-parameter family of persistence diagrams of the straight-line
homotopy between f = f0 and g = f1. One point traces out a vine spanning the entire
interval while the other merges into the diagonal halfway through the homotopy.

therefore an upper bound on the L∞-distance between the projected endpoints
of any vine.

Stability Theorem for Filtrations. Let K be a simplicial complex and
f, g : K → R two monotonic functions. For each dimension p, the bottleneck
distance between the diagrams X = Dgmp(f) and Y = Dgmp(g) is bounded
from above by the L∞-distance between the functions, W∞(X,Y ) ≤ ‖f − g‖∞.

Tame functions. To apply the Stability Theorem, it is convenient to get it
into a form that allows for more general functions. According to the Simpli-
cial Approximation Theorem in Chapter III, every continuous function on a
triangulable topological space can be approximated by a piecewise linear func-
tion, and as shown in Chapter VII, for every piecewise linear function there
is a monotonic function that generates the same persistence diagrams. It is
therefore not surprising that what we said about filtrations can indeed be gen-
eralized. We explain this for functions that satisfy a mild tameness condition.

Let X be triangulable and f : X → R continuous. Given a threshold a ∈ R,
the sublevel set consists of all points x ∈ R with function value less than
or equal to a, Xa = f−1(−∞, a]. Similar to the complexes in a filtration,
the sublevel sets are nested and give rise to a sequence of homology groups
connected by maps induced by inclusion, one for each dimension. Writing
fa,bp : Hp(Xa) → Hp(Xb) for the map from the p-th homology group of the
sublevel set at a to that at b, we call its image a persistent homology group, as
before. The corresponding persistent Betti number is βa,bp = rank im fa,bp . As
long as the topology of the sublevel set does not change, the maps between the
homology groups are isomorphisms. We thus call a ∈ R a homological critical
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value if there is no ε > 0 for which fa−ε,a+εp is an isomorphism for each
dimension p. Finally, we call f tame if it has only finitely many homological
critical values and all homology groups of all sublevel sets have finite rank.
The main motivation for this definition is the relative ease with which we can
define persistence diagrams. Letting a1 < a2 < . . . < an be the homological
critical values of f , we construct interleaved values b0 to bn with bi−1 < ai < bi
for all i. Adding b−1 = a0 = −∞ and an+1 = bn+1 = ∞, we consider the
corresponding sequence of homology groups,

0 = Hp(Xb−1
)→ Hp(Xb0)→ . . .→ Hp(Xbn

)→ Hp(Xbn+1
) = Hp(X),

and the maps between them. For 0 ≤ i < j ≤ n+1, the multiplicity of the pair

ai, aj is now defined as µ
ai,aj

p = (β
bi,bj−1

p −βbi,bj

p )−(β
bi−1,bj−1

p −βbi−1,bj

p ). To get
the p-th persistence diagram of f , we draw each point (ai, aj) with multiplicity
µ
ai,aj

p , and we add the points of the diagonal, each with infinite multiplicity.
With these definitions, we have the following stability result, which we state
without proof, illustrating it in Figure VIII.7.

Stability Theorem for Tame Functions. Let X be a triangulable topo-
logical space and f, g : X → R two tame functions. For each dimension p, the
bottleneck distance between X = Dgmp(f) and Y = Dgmp(g) is bounded by
the L∞-distance between the functions, W∞(X,Y ) ≤ ‖f − g‖∞.

birth

de
at

h

Figure VIII.7: Left: two functions with small L∞-distance. Right: the corresponding
two persistence diagrams with small bottleneck distance.

Wasserstein distance. A drawback of the bottleneck distance is its insen-
sitivity to details of the bijection beyond the furthest pair of corresponding
points. To remedy this shortcoming, we introduce the degree q Wasserstein
distance between X and Y for any positive real number q. It takes the sum



220 VIII Stability

of q-th powers of the L∞-distances between corresponding points, again mini-
mizing over all bijections,

Wq(X,Y ) =

[

inf
η:X→Y

∑

x∈X

‖x− η(x)‖q∞

]1/q

.

As suggested by our notation, the bottleneck distance is the limit of the Wasser-
stein distance for q going to infinity. Similar to the bottleneck distance, it is
straightforward to verify that Wq satisfies the requirements of a metric and
thus deserves to be called a distance.

It should be obvious that we cannot substitute the degree q Wasserstein
distance for the bottleneck distance and expect that the Stability Theorem for
Tame Functions still holds. Indeed, we can approximate a function f : R→ R

with a function g that has arbitrarily many wrinkles without deviating from
f by more than some positive ε; see Figure VIII.7. Each wrinkle generates
a point with persistence about 2ε in the 0-th persistence diagram. Making
the wrinkles narrow we can get an arbitrarily large number and therefore an
arbitrarily large Wasserstein distance between the diagrams of f and g.

Wasserstein stability. Although a general stability result like for the bot-
tleneck distance is out of reach, we get stability under the Wasserstein distance
for a reasonably large class of functions. Let X be a metric space, that is, a
topological space for which the distance between points x, y ∈ X, denoted as
‖x− y‖, is well defined. A function f : X→ R is Lipschitz if there is a constant
C such that |f(x) − f(y)| ≤ ‖x− y‖ for all points x, y ∈ X. Without loss of
generality, we only consider Lipschitz functions with constant C = 1. This con-
dition prevents narrow wrinkles. Indeed, each wrinkle now requires an amount
of space that relates to its persistence. It is therefore not possible to crowd
arbitrarily many wrinkles together without shrinking their persistence. What
we suggest here is a packing argument, the metric version of the combinatorial
pigeonhole principle, but homology classes can interact so that the packing ar-
gument cannot be applied directly. Indeed, making it a rigorous proof is work
which we rather skip. Instead, we introduce the precise conditions on the space
X for which we can prove stability of persistence.

Assume X is triangulable and consider a triangulation, that is, a simplicial
complex K together with a homeomorphism φ : |K| → X. Letting its mesh be
the maximum distance between the images of two points of the same simplex
in K, we define N(r) as the minimum number of simplices in a triangulation
with mesh at most r. We say the triangulations of X grow polynomially if there
are constants c and j such that N(r) ≤ c/rj . Finally, we define the degree k
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total persistence of a persistence diagram X as the sum of k-th powers of the
persistences of its points, Persk(X) =

∑

x∈X pers(x)
k
. The main technical in-

sight is that polynomial growth implies bounded total persistence. Specifically,
if X is a metric space whose triangulations grow polynomially with constant
exponent j, f : X → R is Lipschitz, and X = Dgmp(f), then Persk(X) is
bounded from above by a constant for every k > j. The proof of this implica-
tion is omitted. For example the d-dimensional sphere is triangulable and its
triangulations grow polynomially, with constant exponent j = d. It follow that
for every k > d, the degree k total persistence of a Lipschitz function on the
sphere is bounded by a constant. Using these ingredients, we are now ready
to prove an upper bound on the Wasserstein distance that implies stability for
q > k.

Stability Theorem for Lipschitz Functions. Let f, g : X → R be
tame Lipschitz functions on a metric space whose triangulations grow polynomi-
ally with constant exponent j. Then there are constants C and k > j no smaller
than one such that the degree q Wasserstein distance between X = Dgmp(f)

and Y = Dgmp(g) is Wq(X,Y ) ≤ C · ‖f − g‖1−k/q∞ for every q ≥ k.

Proof. Let η : X → Y be a bijection that realizes the bottleneck distance,
that is, ‖x− η(x)‖∞ ≤ ε = ‖f − g‖∞ for each point x ∈ X . In addition, we
require that ‖x− η(x)‖∞ ≤ 1

2 [pers(x) + pers(η(x))]. Indeed, if this inequality
does not hold then pers(x) ≤ 2ε and pers(η(x)) ≤ 2ε and we can change the
bijection by matching both with points on the diagonal within L∞-distance ε.
The q-th power of the degree q Wasserstein distance is therefore

Wq(X,Y )q ≤
∑

x∈X
‖x− η(x)‖q∞

≤ εq−k
∑

x∈X
‖x− η(x)‖k∞

≤ εq−k

2k

∑

x∈X
[pers(x) + pers(η(x))]k

≤ εq−k

2k

∑

x∈X

[(2pers(x))k + (2pers(η(x)))k].

The last step uses the fact that taking the k-th power is convex. The sum
is 2k times the degree k total persistences of the two diagrams, Wq(X,Y )q ≤
εq−k[Persk(X) + Persk(Y )]. By assumption, they are bounded by a constant.
Taking the q-th root thus gives the claimed inequality.
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l’Académie Royale des Sciences de Paris (1781), 666–704.

[7] C. Villani. Topics in Optimal Transportation. Amer. Math. Soc., Providence,
Rhode Island, 2003.

[8] L. N. Wasserstein. Markov processes over denumerable products of spaces de-
scribing large systems of automata. Problems of Information Transmission 5

(1969), 47–52.



VIII.3 Length of a Curve 223

VIII.3 Length of a Curve

In this section, we use the stability of persistence to generalize a classic result
on curves, proving an inequality connecting the lengths and total curvatures of
two curves.

Closed curves. We consider a closed curve γ : S1 → R2, with or without
self-intersections. Assuming γ is smooth, we have derivatives of all orders. The
speed at a point γ(s) is the length of the velocity vector, ‖γ̇(s)‖. We can use it
to compute the length as the integral over the curve,

length(γ) =

∫

s∈S1

‖γ̇(s)‖ds.

It is convenient to assume a constant speed parametrization, that is, speed =
‖γ̇(s)‖ = length(γ)/2π for all s ∈ S

1. With this assumption, the curvature
at a point γ(s) is the norm of the second derivative divided by the square of
the speed, κ(s) = ‖γ̈(s)‖/speed2. One over the curvature is the radius of the
circle that best approximates the shape of the curve at the point γ(s). To
interpret this formula geometrically, we follow the velocity vector as we trace
out the curve. Since its length is constant, it sweeps out a circle of radius
speed , as illustrated in Figure VIII.8. The curvature is the speed at which the

.

γ
γ

γ
.s

s

s
(  )

(  )
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Figure VIII.8: A curve with constant speed parametrization and its velocity vector
sweeping out a circle with radius equal to the speed.

unit tangent vector sweeps out the unit circle as we move the point with unit
speed along the curve. This explains why we divide by the speed twice, first
to compensate for the length of the velocity vector and second for the actual
speed. The total curvature is the distance traveled by the unit tangent vector,

curv(γ) = speed

∫

s∈S1

κ(s) ds.
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As an example consider the constant speed parametrization of the circle with
radius r, γ(s) = rs. Writing a point in terms of its angle, we get

s =

[

cosϕ
sinϕ

]

, γ(s) =

[

r cosϕ
r sinϕ

]

, γ̇(s) =

[

−r sinϕ
r cosϕ

]

.

We thus have speed = r and length(γ) =
∫

speed ds = 2πr. The curvature is

κ(s) = ‖γ̈(s)‖/speed2 = 1/r, which is of course independent of the location on
the circle. The total curvature is curv(γ) =

∫

r
r ds = 2π, which is independent

of the radius. Indeed, the unit tangent vector travels once around the unit
circle, no matter how small or how big the parametrized circle is.

Integral geometry. The length and total curvature of a curve can also be
expressed in terms of integrals of elementary quantities. We begin with the
length. Take a unit length line segment in the plane. The lines that cross
the line segment at an angle ϕ form a strip of width sinϕ. Integrating over
all angles gives

∫ π

ϕ=0 sinϕdϕ = [− cosϕ]π0 = 2. In words, the integral of the
number of intersections over all lines in the plane is twice the length of the line
segment. Since we can approximate a curve by a polygon whose total length
approaches that of the curve, the same holds for our curve γ. To express this
result formally, we introduce gu : R2 → R defined by gu(x) = 〈u, x〉, mapping
each point x ∈ R2 to its height in the direction u ∈ S1. The preimage of a
value z ∈ R, g−1

u (z), is the line with normal direction u and offset z. The
composition with the curve, fu = gu ◦ γ, maps each s ∈ S1 to the height of the
point γ(s). The preimage of this function thus corresponds to points at which
the line intersects the curve. We are now ready to formulate the length of the
curve in terms of the number of intersections.

Cauchy-Crofton Formula. The length of a curve in the plane is one
quarter the integral of the number of intersections with lines,

length(γ) =
1

4

∫

u∈S1

∫

z∈R

card (f−1
u (z)) dz du.

Here we divide by two twice, once because
∫

sinϕdϕ = 2 and again because
we integrate over all u ∈ S1 and therefore over all lines twice.

To get an integral geometry expression of the total curvature, we again
consider a direction u ∈ S1 and the height of the curve in that direction,
fu : S1 → R. For generic directions u, this height function has a finite number
of minima and maxima, as illustrated in Figure VIII.9. Recall that the total



VIII.3 Length of a Curve 225
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Figure VIII.9: The vertical height function defined on the curve has four local minima
which alternate with the four local maxima along the curve.

curvature is the length traveled by the unit tangent vector. Equivalently, it is
the length traveled by the outward unit normal vector. The number of maxima
of fu is the number of times the unit normal passes u ∈ S

1 and the number of
minima is the number of times it passes −u ∈ S1. Writing #crit(fu) for the
number of minima and maxima, we get the total curvature by integration.

Total Curvature Formula. The total curvature of a smooth curve in the
plane is half the integral of the number of critical points over all directions,

curv(γ) =
1

2

∫

u∈S1

#crit(fu) du.

The integral in the above formula can be interpreted as 2π times the average
number of critical points, where the average is taken over all directions. Hence
the total curvature is π times this average.

Theorems relating length with total curvature. Suppose the image of
γ fits inside the unit disk in the plane, im γ ⊆ B2. Then γ must turn to avoid
crossing the boundary circle of the disk. We can therefore expect that the total
curvature is bounded from below by some constant times the length. A classic
result in geometry asserts that this constant is one.

Fáry Theorem. Let γ : S1 → R be a smooth closed curve with im γ ⊆ B2.
Then its length is at most its total curvature, length(γ) ≤ curv(γ).

To generalize this result, we consider two curves, γ, γ0 : S1 → R2, and the
‘shortest leash distance’ between them. Specifically, we trace out both curves
simultaneously and connect the two moving points by a leash so that their
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distance can never exceed the length of that leash. Formally, this concept is
known as the Fréchet distance between the curves. To define it, we record
the leash length for a homeomorphism η : S1 → S1 and take the infimum over
all homeomorphisms, F (γ, γ0) = infη maxs ‖γ(s)− γ0(η(s))‖. This notion of
distance does not depend on the parametrizations of the two curves.

Generalized Fáry Theorem. Let γ, γ0 : S1 → R2 be two smooth closed
curves. Then |length(γ)− length(γ0)| ≤ [curv(γ) + curv(γ0)− 2π]F (γ, γ0).

To see that Fáry’s Theorem is indeed a special case, let the image of γ be
contained in the unit disk and let the image of γ0 be a tiny circle centered at
the origin, as in Figure VIII.10. Since γ0 is a circle, its total curvature is 2π.
Furthermore, we can make it arbitrarily small so its length approaches zero.
While for some curves γ, the Fréchet distance to γ0 exceeds one, it approaches
the maximum distance from the origin, which is at most one. Substituting
0 for length(γ0), 2π for curv(γ0), and 1 for F (γ, γ0) in the Generalized Fáry
Theorem gives the original Fáry Theorem.

im γ0

im γ

Figure VIII.10: Two curves inside the unit disk. The Fréchet distance between the
tiny circle and the other curve approaches a constant at most one as the circle shrinks
toward the origin.

Length and total curvature in terms of persistence. A first step toward
proving the Generalized Fáry Theorem is a re-interpretation of the length and
the total curvature. Fix a direction u ∈ S1 and consider fu = gu ◦ γ, the height
function of the first curve. Almost all level sets, f−1

u (z), consist of an even
number of points, decomposing γ into the same number of arcs, half of which
belong to the sublevel set, f−1

u (−∞, z]. The number of arcs in the sublevel
set is equal to the number of components that are born at or before z and are
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still alive at z. To be precise, this is true as long as z does not exceed the
height of the global maximum of fu. To make it true for all height values,
we declare that the component born at the global minimum dies at the global
maximum; see Figure VIII.11. This is incidentally what we would get with

min
min

min

min

max
max

max

max

Figure VIII.11: The zeroth persistence diagram of the height function on the curve.
We simplify the situation by pairing the global minimum with the global maximum
so that all the pair information is contained in this one diagram.

extended persistence as described in the previous chapter. Drawing the vertical
lines from the off-diagonal points in the persistence diagram down to the the
diagonal gives a set of line segments with total length Pers0(fu) =

∑

pers(a),
where the sum is over all points a ∈ Dgm0(fu). We refer to this quantity as
the zeroth total persistence of fu. By what we said above, the number of
line segments that intersect the horizontal line at height z is equal to half the
number of points in f−1

u (z). Integrating the number of intersections between
γ and lines with normal direction u thus gives twice the total persistence,

∫

z∈R

f−1
u (z) = 2Pers0(fu).

The relationship between total curvature and the persistence diagram is even
more straightforward. Assuming fu is Morse, we have a finite number of critical
points. This number is even, with equally many minima and maxima paired
up to give half the number of off-diagonal points in the persistence diagram.
We get similar relationships for the height function of the second curve.

Bounding the difference and integrating. To relate the quantities for
the two curves, we write ε = F (γ, γ0) for the Fréchet distance and assume that
γ and γ0 are parametrized such that ‖γ(s)− γ0(s)‖ ≤ ε, for all s. It follows
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that |fu(s)− f0,u(s)| ≤ ε, for all s. The Stability Theorem for Tame Functions
then implies that there is a bijection between the points of Dgm0(fu) and of
Dgm0(f0,u) such that corresponding points have L∞-distance at most ε. It
follows that the difference in persistence between two corresponding points is
at most 2ε. If both are off-diagonal points then we have four critical points
(two of fu and two of f0,u) we can hold responsible for the difference. However,
if an off-diagonal point is matched with a point on the diagonal then we have
only two critical points to take responsibility for the 2ε difference. This is
indeed the worse of the two possibilities, but we can guarantee that at least
two off-diagonal points can be matched within L∞-distance ε, namely the two
points formed by the global min-max pairs. This is because these critical points
correspond to points at infinity in the ordinary persistence diagrams, and being
at infinity they cannot be matched to points on the diagonal. In summary, the
difference in total persistence between fu and f0,u is at most ε times the number
of critical points of fu and f0,u minus two. We are now ready to integrate over
all directions u ∈ S

1 to get the final result. Specifically,

|length(γ)− length(γ0)| ≤
1

2

∫

u∈S1

|Pers0(fu)− Pers0(f0,u)| du

≤ ε

2

∫

u∈S1

[#crit(f) + #crit(f0)− 2] du

= ε[curv(γ) + curv(γ0)− 2π],

using first the Cauchy-Crofton Formula, second the re-interpretations in terms
of persistence, third the inequality implied by the Stability Theorem for Func-
tions, and fourth the Total Curvature Formula. This completes the proof of
the Generalized Fáry Theorem.

Bibliographic notes. The inequality that connects the length with the total
curvature of a closed curve is due to Fáry [2]. The generalization that compares
the lengths of curves that are close in the Fréchet distance sense is more recent
[1]. Both results have generalizations to curves in dimensions beyond two. The
integral geometry interpretations of length and total curvature can be found in
Santaló [3].
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VIII.4 Bipartite Graph Matching

In this section, we consider algorithms for the bottleneck and Wasserstein dis-
tances between persistence diagrams. Both problems reduce to constructing
optimal matchings in bipartite graphs.

Distance from matching. We begin by reducing the computation of dis-
tance to constructing a matching. Let X and Y be two persistence diagrams.
We assume both consist of finitely many points above the diagonal and in-
finitely many points on the diagonal. Letting X0 be the finite multiset of off-
diagonal points in X and X ′

0 the orthogonal projection ofX0 onto the diagonal,
we construct a complete bipartite graph G = (U ∪̇ V,E) with U = X0 ∪̇ Y ′

0 ,
V = Y0 ∪̇X ′

0, and E = U × V . For each q > 0, we introduce the cost function
c = cq : E → R defined by mapping the edge uv ∈ E to the q-th power of the
L∞-distance between the points,

c(uv) =

{

‖u− v‖q∞ if u ∈ X0 or v ∈ Y0;
0 if u ∈ X ′

0 and v ∈ Y ′
0 .

By construction, the minimum cost edge connecting an off-diagonal point u to
a point on the diagonal is the edge uu′, where u′ is the orthogonal projection
of u. For q = 1, the cost of this edge is half the persistence of u.

A matching of G is a subset of vertex disjoint edges, M ⊆ E. It is maximum
if there is no matching with more edges and perfect if every vertex is endpoint
of an edge in M . Since G is complete with equally many vertices on the
two sides, every maximum matching is also a perfect matching. We will also
consider matchings for graphsG(ε) = (U ∪̇ V,Eε) obtained fromG by removing
all edges uv ∈ E with cost c(uv) > ε. Of course, every perfect matching of G(ε)
is a maximum matching but not necessarily the other way round. A minimum
cost matching is a maximum matching that minimizes the sum of costs of the
edges in the matching. We refer to this sum as the total cost of the matching.
It is not difficult to prove the following relation between distance and matching.

Reduction Lemma. Let X and Y be two persistence diagrams and G =
(U ∪̇ V,E) the corresponding complete bipartite graph. Then

(i) the bottleneck distance between X and Y is the smallest ε ≥ 0 such that
the subgraph G(ε) of G with cost function c = c1 has a perfect matching;

(ii) the q-th Wasserstein distance between X and Y is the q-th root of the
total cost of the minimum cost matching of G with cost function c = cq.
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We are therefore interested in recognizing bipartite graphs that have perfect
matchings and in constructing minimum cost matchings.

Augmenting paths. We begin by considering the algorithmic problem of
constructing a maximum matching of the bipartite graph G(ε) = (U ∪̇ V,Eε).
The algorithm is iterative, improving the matching in each round, until no
further improvement is possible. Let Mi be the matching after i iterations.
The crucial concept is a path that alternates between edges in and out of Mi.
To explain this, we introduce a directed graph Di that depends on G(ε) and
Mi. For the most part, it is the same as G(ε) except that each edge is drawn
with a direction, namely from V to U , if the edge belongs to Mi, and from U
to V , if the edge does not belong to Mi. In addition to the vertices in G(ε),
the directed graph contains two new vertices, the source s with an edge from
s to every unmatched vertex u ∈ U , and the target t with an edge from every
unmatched vertex v ∈ V to t; see Figure VIII.12. An augmenting path is a

V

U

s

t

Figure VIII.12: A bipartite graph with six plus six vertices and a matching with four
edges giving rise to a directed graph with three paths from s to t.

directed path from s to t that visits every vertex at most once. By construction,
an augmenting path consists of 2k + 1 edges, one from s to U , an interleaved
sequence of k edges not in Mi and k− 1 edges in Mi, and finally an edge from
V to t. Clearly, if we have an augmenting path, we can improve the matching
by substituting the k edges not in Mi for the k − 1 edges in Mi. When we
make this improvement, we say we augment the matching using the path. To
get an algorithm, we also need the existence of an augmenting path unless
Mi is maximum. To construct such a path, draw the edges of an assumed
maximum matching from U to V and those of Mi from V to U . Each vertex is
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incident to at most two edges, one incoming and the other outgoing, so we can
partition the edges into maximal, vertex disjoint paths and closed curves that
interleave edges from the two matchings. A path in this partition extends to an
augmenting path from s to t iff it contains one more edge from the maximum
matching than from Mi. Since Mi is smaller, there is at least one such path.
We use this fact to give an algorithm for constructing a maximum matching of
G(ε).

M0 = ∅; i = 0;
while there exists an augmenting path in Di do

augment Mi using this path to get Mi+1;
i = i+ 1

endwhile.

Each iteration increases the size of the matching by one. The number of edges
in the maximum matching is at most n = cardU = cardV , which implies that
the algorithm terminates after at most n iterations. We can use Depth-first
Search or Breadth-first Search to find an alternating path in time proportional
to the number of edges, mε = cardEε. In either case, we have an algorithm
that runs in time at most proportional to mεn ≤ n3.

Shortest augmenting paths. The running time of the algorithm can be
improved if we use multiple augmenting paths at a time. Specifically, we use
a maximal set of edge disjoint, shortest, augmenting paths. To find them, we
use Breadth-first Search to label all vertices by their distance from the source,
and Depth-first Search to construct a maximal set of paths in the thus labeled
directed graph. Since Depth-first Search has been explained in detail in Section
II.2, we focus on the first step.

S0 = {s}; label s with 0; j = 0;
while Sj 6= ∅ do
forall vertices x ∈ Sj do
forall unlabeled successors y of x do

label y with j + 1 and add y to Sj+1

endfor

endfor; j = j + 1
endwhile.

Assuming suitable data structures, we can iterate through the vertices in the
sets Sj and their successors in constant time per vertex. Using repeated Depth-
first Search in the labeled graph Di, we construct a maximal set of edge disjoint



232 VIII Stability

paths from s to t. If we remove edges and vertices as they become useless, we
get an algorithm that computes the paths in time proportional to mε. For
example, if we start with the directed graph in Figure VIII.12, we get either
two paths of length seven, one on the left and the other on the right, or just
one path of the same length, as shown in Figure VIII.13. Finally, we augment
the matching using all paths in the maximal set.
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Figure VIII.13: The two maximal sets of edge disjoint, shortest, augmenting paths in
the directed graph of Figure VIII.12.

Analysis. We now show that the new strategy leads to a substantially smaller
number of iterations. In a nut-shell, the reason is that there cannot be many
augmenting paths that are all long. Playing off length against number, we get
a bound of some constant times the square root of the number of vertices.

Iteration Bound. Starting with the empty matching and augmenting the
matching of G(ε) using a maximal set of edge disjoint, shortest, augmenting
paths each time, we reach a maximum matching in fewer than 2

√
2n iterations.

Proof. We first show that the length of the shortest path from s to t increases
from one iteration to the next. Let ℓi(x) be the length of the shortest path
from s to the vertex x in Di; it is the label assigned to x by Breadth-first
Search. We prove that ℓi+1(t) is strictly larger than ℓi(t), assuming both are
defined. Consider a shortest path π from s to t in Di+1. It is also a path in
Di iff none of its edges belongs to the paths selected in the i-th round. If π
is a path in Di then it cannot be shortest else it would have been added to
the maximal set. On the other hand, if π is not in Di then it has at least one
edge xy that is reversed in Di. Since yx belongs to a shortest path in Di, we
have ℓi(y) = ℓi(x)− 1. For an edge xy of π that is not reversed in Di, we have
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ℓi(y) ≤ ℓi(x) + 1 by definition of ℓi. As we walk along the path, ℓi+1 grows
by one at each step while ℓi grows by at most one and at least once it shrinks.
Hence ℓi(t) < ℓi+1(t), as required.

For the second part of the proof, we note that two edge disjoint paths from
s to t share no vertices other than the source and the target. This is because
each vertex of U has only one incoming edge and each vertex of V has only
one outgoing edge. Let m̄i be the size deficit of Mi, that is, the number of
edges it is short of being a maximum matching. Since Mi can be improved by
this much, there are at least m̄i augmenting paths from s to t in Di. Using
the construction of augmenting paths given earlier in this section, we find m̄i

augmenting paths that share no vertices other than s and t. By the pigeonhole
principle, the shortest of these paths contains at most a fraction of 1/m̄i of the
vertices of G(ε). Equivalently, ℓi(t) ≤ 2n/m̄i + 1. Since the distance of t from
s begins at three and grows with increasing i, this implies i ≤ 2n/m̄i − 2. To
increase Mi by another m̄i edges takes at most m̄i additional iterations. The
total number of iterations is therefore bounded from above by 2n/m̄i− 2+ m̄i.
Setting m̄i to the smallest integer no smaller than

√
2n implies the claimed

bound.

Recall that each iteration takes time at most proportional to the number of
edges. The bound on the number of iterations thus implies that the algorithm
runs in time at most proportional to mε

√
n ≤ n5/2.

Minimum cost matching. To compute the smallest ε for which G(ε) has
a perfect matching, we do binary search in the list of edges sorted by cost,
constructing a maximum matching at every step. Similarly, constructing a
minimum cost matching of G is done by iterating the maximum matching
algorithm, but the iteration is different. There are two easy structural insights
that show the way.

1. If the subgraph G(0) consisting of the cost zero edges in G has a perfect
matching then this is a minimum cost matching. Indeed, its total cost is
zero which is as small as it gets.

2. Subtracting the same amount from the cost of all edges incident to a vertex
in G affects all perfect matchings the same way. In particular, a perfect
matching minimizes the total cost before the subtractions iff it does so
after the subtractions.

To compute a minimum cost matching of G, we begin with all zero cost edges
and construct a maximum matching of G(0). If the matching is perfect, we are
done. Otherwise, we change the costs of the edges in G while preserving the
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ordering of the perfect matchings by total cost. To describe how this is done,
we introduce deduction maps di : U ∪ V → R. Starting with the zero map,
d0(x) = 0 for all vertices x, the algorithm will change the map and this way
modify the costs. Writing c(xy) for the original cost of the edge xy in G, the
modified cost after i iterations is

ci(xy) = c(xy)− di(x) − di(y).

It is important for the efficiency but also the correctness of the algorithm
that all modified costs are always non-negative. This will be an invariant of
the algorithm. Letting Gi be the graph G with costs modified using di, the
algorithm iterates the construction of a maximum matching of Gi(0), the graph
Gi with edges of positive modified cost removed. Increasing the maximum
matching by one edge each time, we get a perfect matching after n iterations.
By construction, all edges in this matching have zero modified cost.

Minimum cost paths. We now show how to change the deduction map so
that the maximum matching increases. Let Mi be a maximum matching of
Gi(0) and let Di(0) be the directed graph defined by Gi(0) and Mi. Because
Mi is maximum, Di(0) has no directed path from s to t. Let Di be the directed
graph defined by Gi and the same matching Mi and note that it contains Di(0)
as a subgraph. Assuming Mi is not perfect, it is not maximum for Gi which
implies that Di has directed paths from s to t. Each such path is an augmenting
path and we define its total cost as the sum of modified costs of its edges. By
definition, the modified cost of the first edge, from s to U , is zero, and so is the
modified cost of the last edge, from V to t. Let π be the augmenting path in
Di that minimizes the total cost. It can be computed by an algorithm similar
to Breadth-first Search. Indeed, the only difference is it visits the vertices in a
particular ordering that depends on the modified costs of the edges. At every
moment during the construction, we have a set of visited vertices forming a
tree rooted at s, and a set of unvisited vertices. For each unvisited vertex, y,
we consider the minimum cost path that starts at s, goes to a vertex x using
edges in the tree, and ends with the edge from x to y. The next vertex visited
by the algorithm is the unvisited vertex y that minimizes this cost and we
add y together with the last edge of its path to the tree. This is known as
Dijkstra’s Single Source Shortest Path Algorithm, or Dijkstra’s Algorithm for
short. We compute the minimizing vertex y and update the costs of all yet
unvisited vertices in time proportional to n. Iterating this step n times, we
find the minimum cost path π in time proportional to n2.

We augment the matching Mi using π to get Mi+1. This increases the
matching, but to be sure that we made progress toward computing a minimum
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cost matching, we have to show that it is possible to change the deduction map
so that all edges in Mi+1 have zero modified costs. To this end, let γi(x) be
the minimum total cost of a path from s to x; it is the total cost of the path
from s to x within the tree computed by Dijkstra’s Algorithm. Using these
quantities, we update the deduction map to

di+1(x) =

{

di(x)− γi(x) if x ∈ U ;
di(x) + γi(x) if x ∈ V.

For vertices u ∈ U and v ∈ V , the new modified cost of the edge connecting u
with v is

ci+1(uv) = c(uv)− di+1(u)− di+1(v)

= c(uv)− di(u)− di(v) + γi(u)− γi(v).
In words, it is the old modified cost plus γi(u) − γi(v), no matter whether in
Di the edge goes from u to v or from v to u. If γi(u) ≥ γi(v) we use induction
to get ci+1(uv) ≥ 0 from ci(uv) ≥ 0. Otherwise, γi(v)− γi(u) ≤ ci(uv), else we
get a contradiction to γi(v) being the minimum total cost of a path from s to
v. If follows that all new modified costs are non-negative. But we need more,
namely zero new modified cost for all edges of the new matching. There are
two kinds of such edges uv, those that belong to Mi and those that belong to
the path π. For the first kind, we have γi(v) = γi(u) because ci(uv) = 0 and
the only way to reach u is along the directed edge from v to u. For the second
kind, we have γi(v)− γi(u) = ci(uv) by definition of γi. In both cases, we have
ci+1(uv) = 0, as required.

This completes the proof that the iteration ends with a perfect matching
minimizing the total cost. The maximum matching gains one edge per iteration.
We thus have n iterations each taking time proportional to n2. Our algorithm
thus constructs a minimum cost matching in time at most proportional to n3.

Bibliographic notes. Computing a maximum matching of a bipartite graph
is a classic optimization problem discussed in operations research texts [2]. As
explained in [9], it is a special case of the more general maximum flow prob-
lem in networks. Indeed, Dinic’s maximum flow algorithm for so-called unit
networks [4] specializes to the n5/2 time algorithm for maximum matching in-
dependently discovered by Hopcroft and Karp [6] and explained in this section.
The Minimum Cost Matching Algorithm, is a variant of what is known as the
Hungarian method [8]. Following [7], we describe a version that uses Dijkstra’s
Algorithm for finding shortest paths in a weighted graph as a subroutine [3].
Using the geometry of the persistence diagrams, the Maximum Matching Al-
gorithm can be improved to run in time at most proportional to n3/2 log2 n [5]
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and the Minimum Cost Matching Algorithm can be improved to run in time
at most proportional to n2+ε [1].

[1] P. K. Agarwal, A. Efrat and M. Sharir. Vertical decomposition of shallow
levels in 3-dimensional arrangements and its applications. SIAM J. Comput. 29

(2000), 912–953.

[2] R. Ahuja, T. Magnanti and J. Orlin. Network Flows. Prentice Hall, 1993.

[3] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959), 269–271.

[4] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Math. Doklady 11 (1970), 1277–1280.

[5] A. Efrat, A. Itai and M. J. Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica 31 (2001), 1–28.

[6] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput. 2 (1973), 225–231.

[7] J. Kleinberg and E. Tardos. Algorithm Design. Pearson Education, Boston,
Massachusetts, 2006.

[8] H. W. Kuhn. The Hungarian Method for the assignment problem. Naval Research
Logistics Quarterly 2 (1955), 83–97.

[9] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, Philadelphia,
Pennsylvania, 1983.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.

1. Examples of switches (two credits). Given examples for the types of
switches analogous to the ones shown in Figure VIII.4 but one dimension
up in each of the three types.

2. Matrix maintenance (two credits). Formulate the algorithm that main-
tains the reduced boundary matrix under transpositions for ∂ = RV , that
is, maintain the matrix V instead of its inverse, U .

3. Sparse matrix representation (two credits). Give a sparse matrix rep-
resentation that allows an implementation of the maintenance algorithm
running in time proportional to the number of ones in the changed columns
and rows of R = ∂U .

4. Measuring vineyards (two credits). Let f, g : K → R be two monotonic
functions on a simplicial complex and ft = (1 − t)f + tg for t ∈ [0, 1] the
straight-line homotopy between them. Each vine of the homotopy is a map
x : [a, b]→ R̄2 with 0 ≤ a < b ≤ 1. Let

µ(x) =

∫ b

s=a

‖x(s)− x(a)‖ ds

and define a measure by summing the integrals over all vines in the p-th
vineyard, µp(f, g) =

∑

x µ(x). Give examples that show that µp and the
first Wasserstein distance are incomparable, that is, there are monotonic
functions f , g, f0, g0 such that µp(f, g) < W1(Dgmp(f),Dgmp(g)) and
µp(f0, g0) > W1(Dgmp(f0),Dgmp(g0)).

5. Cauchy-Crofton (two credits). Generalize the Cauchy-Crofton formula
for curves in the plane given in Section V.3 to

(i) curves in three-dimensional Euclidean space;

(ii) surfaces in three-dimensional Euclidean space.

6. Mean and Gaussian curvatures (three credits). Use the structure of
the proof of the Generalized Fáry Theorem to show the following relation-
ship between the total mean curvature and the total absolute Gaussian
curvature of two homeomorphic closed surfaces embedded in R3,

|mean(S)−mean(S0)| ≤ [gauss(S) + gauss(S0)− 4π(1 + g)]F (S̄, S̄0),
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where g is the common genus of S and of S0, S̄ and S̄0 are the solid bodies
bounded by the two surfaces, and F (S̄, S̄0) is the Fréchet distance between
them.

7. Breadth-first search (one credit). Reformulate the breadth-first search
algorithm for labeling the vertices of Di using a single queue to represent
all sets of vertices Sj in one data structure. As suggested by the name,
this is a data structure that supports adding an element at the end and
removing it from the front, both in constant time.

8. Incremental matching (three credits). Recall that the maximum match-
ing of a bipartite graph with n vertices can be constructed in time at
most proportional to n5/2. Running this algorithm within a binary search
routine, we find the perfect matching of a complete bipartite graph that
minimizes the largest cost of any of its edges in time at most proportional
to n5/2 log2 n. Show that the two algorithms can be integrated to avoid
the log2 n overhead, constructing the perfect matching in time at most
proportional to n5/2. [[Can this really be done?]]



Chapter IX

Applications

The primary application of the mathematical and computational tools intro-
duced in the previous chapters is in data analysis, and activity that reaches
into every discipline in science and engineering. The data may comprise the
readings of an array of sensors, the pixes of an image, the accumulation of
observations, or what have you. Invariably, there is noise in the data, which
may be systematic, or random. It may also reflect genuine properties of the
measured phenomenon but at a scale level that is outside the window of inter-
est. The traditional approach to noise is to ‘smooth’ or ‘regularize’ the data,
which invariably means we change the data. This is in sharp contrast to the
approach we advocate here, namely measuring the noise and not change the
data. What is new is the measurement and the additional level of rationality it
affords us. The four case studies selected to illustrate the possibilities all start
with biological data.

IX.1 Simplification for Gene Expression Data
IX.2 Elevation for Protein Docking
IX.3 Image Segmentation
IX.4 Local Homology for Root Architecture

Exercises

239
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IX.1 Simplification for Gene Expression Data

Background. [[Introduce somitogenesis, the fact that this is a rhythmic process, and

mention cyclic gene expression driving the process.]]

Technology. [[Explain that micro-arrays are used to look at all (known) genes of the

organism, in this case a mouse, at several stages during the process. Can we talk about

noise in micro-array experiments?]]

Mathematics. [[Introduce the concept of simplification of a function. For a function

on the circle it is easy to see that such simplifications exist.]]

[[Explain the series of integrals, relate them to the moments of total persistence, and

mention that we have stability for i ≥ 2 but not for i = 0, 1.]]

Wrap-up. [[We apply our methods to ranked data, both time (horizontal) and ex-

pression value (vertical).]]

[[Present the ranking of the genes by µ2, and compare the placement of the verified

genes with the ranking for other measures.]]

Bibliographic notes.

[1] M.-L. Dequèant, S. Ahnert, H. Edelsbrunner, T. M. A. Fink, E. F.
Glynn, G. Hattem, A. Kudlicki, Y. Mileyko, J. Morton, A. R. Mushe-
gian, L. Pachter, M. Rowicka, A. Shiu, B. Sturmfels and O. Pourquié.
Comparison of pattern detection methods in microarray time series of the seg-
mentation clock. PLoS ONE 3 (2008).
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IX.2 Elevation for Protein Docking

Background. [[Talk about the importance of protein interaction, or more generally

the interaction of biomolecules. Protein docking is the computational approach to pre-

dicting interactions.]]

Technology. [[This work starts with molecular structures describes a pdb-files (protein

data bank) and obtained mostly but not exclusively through x-ray cristallography.]]

Mathematics. [[Introduce the idea of matching protrusions with cavities, first de-

scribed in [2].]]

[[Explain elevation first for a smooth curve embedded in R
2 and second for a piecewise

linear curve. This case is fairly elementary and we can already address the types of

maxima.]]

Suppose that C is a smooth curve embedded in R
2. We define the height

function
H : S1 × C → R

by H(x, u) =< x, u >. For each u this map associates to each point x ∈ C
the height of x in the u direction. For generic C and general direction u,
Hu(x) = H(x, u) is a Morse function. There are, however, a finite number of
directions in which this fails. The failure is one of two types:

• Hu has a single degenerate critical point which is a “birth-death” point.

• Hu has two critical points that share the same critical value.

A birth death point is modeled by the family of functions ft(x) = x3 − tx. For
t = 0, we have a degenerate critical point, for t > 0 a pair of non-degenerate
critical points, one a local max and one a local min, and for for t < 0, no
critical point. In our case, this variation of t corresponds to varying u so that
the critical points move along C.

Now, when u is a general direction, we can use the Morse function Hu to
define an extended persistence pairing on C. The points for which u is normal
to C are paired, and we associate to each the persistence of the pair to which it
belongs. Since every point p ∈ C has a normal direction, this defines a function
E on C, except at the special directions of the two types above.

For the first type, we can set E to 0 at p, since the pair of points that die
are paired by persistence, and the result is continuous. For the second type,
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however, we have an ambiguity of how to define E at p, and a corresponding
discontinuity in E. This is illustrated in Figure .

[[Explain elevation for a smooth surface embedded in R
3 and for a piecewise linear

surface. Explain the types of maxima, one-, two-, three-, and four-legged; see [1].]]

[[The algorithm for extended persistence for 2-manifolds uses splitting and cutting trees

[3].]]

Wrap-up. [[Discuss the experimental results presented in [4].]]

Bibliographic notes.

[1] P. K. Agarwal, H. Edelsbrunner, J. Harer and Y. Wang. Extreme ele-
vation on a 2-manifold. Discrete Comput. Geom. 36 (2006), 553–572.

[2] M. L. Connolly. Shape complementarity at the hemo-globin albl subunit inter-
face. Biopolymers 25 (1986), 1229–1247.

[3] L. Georgiadis, R. E. Tarjan and R. F. Werneck. Design of data structures
for mergeable trees. In “Proc. 17th Ann. ACM-SIAM Sympos. Discrete Alg.,
2006”, 394–403.

[4] Y. Wang, P. K. Agarwal, P. Brown, H. Edelsbrunner and J. Rudolph.
Coarse and reliable geometric alignment for protein docking. In “Proc. Pacific
Sympos. Biocomput., 2005”, 65–75.
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IX.3 Image Segmentation

Background. [[We explore organisms and medical conditions.]]

Technology. [[We start with images, which are often 3-dimensional (MRI etc) but

sometimes 2-dimensional (confocal microscopy, etc).]]

Mathematics. The first application of computational topology methods we
will give is to the segmentation of images. The segmentation problem is to
identify regions of interest in an image. We usually try to draw curves around
these regions, and when possible we do this “automatically”, i.e. without help
from the user of the software. This is an imperfect art at best, and every type
of image provides a different set of challenges.

The watershed method fits nicely into the framework of computational topol-
ogy. It is widely used [], but always has a problem in that it tends to overdo
the segmentation, surrounding more features that are usually wanted. For
this reason there is always a clean-up step, sometimes done systematically and
sometimes in a an ad hoc or even manual way. Here we will use persistence for
this step.

Watersheds Talk about the idea of filling up with water. Watershed lines
are built to keep the water from overflowing.

An image I is a matrix of m × n values, the intensity of the pixels. Values
can be bytes (integers between 0 and 255), ints, longs, etc, call the range
space of values V . Color images consist of three separate images R, G and
B, together with a blending that renders the color image. Let D = [1,m] ×
[1, n], we will think of I as samples of a continuous function f : D → V .
Choose some triangulation of D so that its vertices are the interger lattice
points {0, . . . ,m} × {0, . . . , n}, which we think of as the centers of the image
pixels, edges are straight segments and triangles are the region they cut out. We
should always assume that the border {0,m}×{0, . . . , n}∪{0, . . . ,m}×{0, n}
is a union of edges and we usually will take edges to be vertical, horizontal and
diagonal edges between neighboring vertices.

Morse Complex We now take M to be any 2-dimensional manifold and f
to be a function defined on M. Recall that in section V I.2 we constructed a
complex whose vertices were the minima of f , edges were the stable 1-manifolds
of f and faces were the stable 2-manifolds, the resulting complex is called the
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Morse Complex of f . Since M is dimension 2, the edges of the complex divide
M into regions, these are the elements of the segmentation we are looing for.

Since our image is really given by a piecewise linear function, we need to
discuss how we construct the Morse complex, or at least an approximation to
it, in this case.

Clean up with Persistence

Fine Tuning the Segmentation

Segmentation in Three Dimensions [[We focus on the watershed algorithm for

segmentation. It may be called the Morse complex consisting of all unstable manifolds.]]

[[A common drawback is ‘over-segmentation’. This is caused by noise in the image

and can be removed using persistence. We explain this is 2D and comment on extensions

to 3D.]]

[[Survey on watershed algorithms [3]. Oldest paper on the topic [1]; Extension from

2D to 3D [4], using a diffusion filter to cope with the oversegmentation.]]

Wrap-up. [[Give some 2D cell images and the segmentation we get.]]

Bibliographic notes.

[1] S. Beucher. Watersheds of functions and picture segmentation. In “Proc. IEEE
Intl. Conf. Acoustic, Speech, Signal Process, 1982”, 1928–1931.

[2] H. Edelsbrunner and J. Harer. The persistent Morse complex segmentation
of a 3-manifold. Report rgi-tech-04-066, Geomagic, Research Triangle Park, North
Carolina, 2004.

[3] J. Roerdink and A. Meijster. The watershed transform: definitions, algo-
rithms, and parallelization strategies. Fundamenta Informaticae 41 (2000), 187–
228.

[4] J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. van Dyck
and E. Raman. Watershed-based segmentation of 3D MR data for volume
quantization. Magn. Reson. Imag. 15 (1997), 679–688.



IX.4 Local Homology for Root Architecture 245

IX.4 Local Homology for Root Architecture

Background. [[The general need to classify phenotypes to study the connection be-

tween genotype and phenotype. We focus on agricultural plants, in particular rice.]]

Technology. [[We grow the rice in laboratory conditions so we can take 2D pictures.]]

Mathematics. [[There is the problem of reconstructing the 3D root from the 2D

pictures. We can then use 3D methods to characterize the shape of the root. Alternatively,

we can analyze the 2D images.]]

[[We use local homology to analyze the images, aiming at recognizing and counting

tips of roots, branches, and crossings.]]

Wrap-up. [[Images of rice roots and colorings of the sought features.]]

[[We could also talk about the classification we got already using simple geometric

descriptors.]]

Bibliographic notes.

[1] W. A. Cannon. A tentative classification of root systems. Ecology 30 (1947),
452–458.

[2] D. Cohen-Steiner, H. Edelsbrunner, J. Harer and D. Morozov. Persis-
tent homology for kernels and images In “Proc. 20th Ann. ACM-SIAM Sympos.
Discrete Alg., 2009”, to appear.

[3] P. Bendich, D. Cohen-Steiner, H. Edelsbrunner, J. Harer and D. Mo-
rozov. Inferring local homology from sampled stratified spaces In “Proc. 48th
Ann. Sympos. Found. Comput. Sci., 2007”, 536–546.
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Exercises

The credit assignment reflects a subjective assessment of difficulty. A typical
question can be answered using knowledge of the material combined with some
thought and analysis.



Chapter X

Open Problems

X.1 Complexity of Reidemeister Moves
X.2 Shelling a 3-ball
X.3 Geometric Realization of 2-manifolds
X.4 Embedding in Three Dimensions
X.5 Equipartion in Four Dimensions
X.6 Running-time of Matrix Reduction
X.7 Multi-parameter Persistence
X.8 Unfolding PL Critical Points
X.9 PL in the Limit

X.10 Counting Halving Sets

[[There are additional questions we might use to add new problems or replace some of
the old ones:

• Simplification of a PL function on S
3. For general 3-manifolds, the Poincaré Theorem

is an obstacle but knowing that we have the 3-sphere makes sense in practice and
removes the obstacle.

]]

247
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X.1 Complexity of Reidemeister Moves

Recall the definition of Reidemeister moves from Chapter I. As proved by
Reidemeister in the first half of the twentieth century, any generic projection
of a knot can be transformed into any other generic projection of the same knot
by a sequence of such moves [1]. In particular, for any generic projection of the
unknot there is a sequence of Reidemeister moves that eliminates all crossings.
This suggests a graph search algorithm to decide whether or not two generic
projections describe the same knot. The only difficulty with this approach is
that we do not know how long such a sequence of moves may get. We also do
not know how many crossings we can expect for intermediate projections. For
example, the know in Figure X.1 is the unknot but to get it into a crossing-free
projection we need to first increase the number of crossings beyond the seven
in the drawing.

Figure X.1: A generic projection of the unknot.

Given generic projections P and Q of the same knot, let x(P,Q) be the
minimum, over all Reidemeister moves transforming P to Q, of the maximum
number of crossings of any projection in the sequence. Let now x(n) be the
maximum x(P,Q), over all pairs P and Q in which P and Q have at most n
crossings each. In other words, we can transform P into Q while staying below
x(n) + 1 crossings at all times.

Question. Is there a positive constant c such that x(n) ≤ n + c for all c?
Or less ambitiously, is x(n) bounded from above by a polynomial in n?

It would be rather surprising if the answer to the first question were in the
affirmative but perhaps it is to the second question.

[1] K. Reidemeister. Knotentheorie. In Ergebnisse der Mathematik und ihrer Gren-
zgebiete, Springer, Berlin, Germany, 1932.
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X.2 Shelling a 3-ball

Let K be a triangulation of a 3-ball, that is, a collection of tetrahedra sharing
triangles, edges, and vertices whose union is homeomorphic to B3. No other,
improper intersections between the tetrahedra are permitted. A shelling of K
is an ordering of the tetrahedra such that each prefix of the ordering defines a
triangulation of B3, and K is shellable if it has a shelling. It is not difficult to
prove that every triangulation of B2 has a shelling, but the following example
taken from Bing [1] shows that the same is not true for 3-balls.

The house-with-two-rooms is sketched in Figure X.2. There are two rooms,
one above the other. The only way to access the lower room is through a
chimney and the only way to access the upper room is through an underground
tunnel. The chimney and the tunnel are connected to the side of the house by
a screen each. Now we thicken each wall, floor, ceiling and screen to one layer
of bricks. All vertices belong the the boundary but edges and triangles may be
on the boundary or in the interior. For a given cube, we refer to the connected
component of faces that belong to the boundary as exposures. By construction,
each cube has two exposures. The union of the cubes is a 3-ball but removing
any one cube destroys this property. Indeed, removing any one cube either
creates a hole in a wall (a tunnel through the 3-ball), or it pinches the 3-ball
at a point or along an edge.

Figure X.2: House-with-two-rooms. We can construct it from a solid block of clay by
a continuous deformation, without tearing or gluing.

Since we prefer to work with simplicial as opposed to cubical complexes, we
still need to decompose the cubes into tetrahedra, but this is an afterthought
that does not distract from the essential idea of the construction. For this pur-
pose, we decompose each cube into six tetrahedra in such a way that removing
any one tetrahedron destroys the property of their union begin a 3-ball. In
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other words, no tetrahedron can be last in the shelling, which implies that the
triangulation has no shelling. In order to avoid improper intersections, we first
decompose each square into two triangles and then each cube into six tetrahe-
dra in a compatible fashion. Let the type of a vertex be the minimum dimension
of any exposure of a cube that contains the vertex. For example, vertices at
corners inside the rooms are type 0, vertices along edges inside the rooms are
type 1, and the rest are type 2. Order the vertices such that type-0 vertices
precede type-1 vertices which precede type-2 vertices. Now decompose each
square by connecting its first vertex in the ordering to the opposite two edges.
Similarly decompose each cube by connecting its first vertex in the ordering
to the opposite six triangles. Again by construction each tetrahedron has two
exposures, a vertex and its opposite triangle or an edge and its opposite edge.
This completes the construction of the triangulation of the house-with-two-
rooms that is not shellable. Since not every triangulation of B3 has a shelling
it makes sense to ask for a decision procedure.

Question. Is there a polynomial-time algorithm that decides whether or not
a given triangulation of B3 has a shelling?

The construction of a shelling for a triangulated 2-ball is straightforward be-
cause every partial shelling is extendable and can therefore be completed [2].
This is no longer the case for the 3-ball. In other words, there are shellable
triangulations of B3 that have non-extendable partial shellings [3]. Without a
way to recognize such dead-ends we are forced into back-tracking, which takes
time.

[1] R. H. Bing. Some aspects of the topology of 3-manifolds related to the Poincaré
conjecture. In Lectures on Modern Mathematics II, T. L. Saaty (ed.), Wiley, New
York, 1964, 93–128.

[2] G. Danaraj and V. Klee. Which spheres are shellable? In Algorithmic Aspects
of Combinatorics, B. Alspach et al. (eds.), Ann. Discrete Math. 2 (1978), 33–52.

[3] G. M. Ziegler. Shelling polyhedral 3-balls and 4-polytopes. Discrete Comput.
Geom. 19 (1998), 159–174.
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X.3 Geometric Realization of 2-manifolds

Recall that a geometric realization of a simplicial complex K is an embedding
in which each vertex maps to a point and each (abstract) simplex maps to the
(geometric) simplex spanned by the images of its vertices. The existence of a
geometric realization in Rd can be decided using Tarski’s theory of real closed
fields [7]. The question is therefore decidable but Tarski’s quantifier elimination
method is far from practical even for small problem instances. As a special case
we consider simplicial complexes K that triangulate orientable 2-manifolds and
ask for geometric realizations in R3. Not every such K can be geometrically
realized in R

3. For example, there is a twelve-vertex triangulation of the genus-
six torus that is not [1]. There is also a twelve-vertex triangulation of the
genus-five torus that is not geometrically realizable even after removing one of
the triangles. We can therefore take the connected sum and form arbitrarily
large triangulations that have no geometric realization in R3 [6]. Perhaps five
is the smallest genus for which this works.

Question. For 1 ≤ g ≤ 4, does every triangulation of the genus-g torus have
a geometric realization in R

3?

There have been attempts to prove this in the affirmative for g = 1 but the
answer is still outstanding. The question of geometric realizability for triangu-
lated 2-manifolds has been mentioned by Császár [3] and Grünbaum [4, Chapter
13.2]. A first serious approach to the question is described in [2]. Enumeration
results can be found on Frank Lutz’ web-pages [5].

[1] J. Bokowski and A. Guedes de Oliveira. On the generation of oriented
matroids. Discrete Comput. Geom. 24 (2000), 197–208.

[2] J. Bokowski and B. Sturmfels. Computational Synthetic Geometry. Springer-
Verlag, Berlin, Germany, 1980.

[3] A. Császár. A polyhedron without diagonals. Acta Sci. Math. (Szeged) 13

(1949), 140–142.

[4] B. Grünbaum. Convex Polytopes. John Wiley & Sons, London, England, 1967.

[5] F. Lutz. The manifold page, 1999–2006. www.math.tu-berlin.de/diskregeom/-
stellar.

[6] L. Schewe. Nonrealizability of triangulated surfaces. Oberwolfach Reports 3

(2006), 707–708.

[7] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Second
edition, Univ. California Press, 1951.
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X.4 Embedding in Three Dimensions

Recall that a simple graph is an abstract simplicial complex of dimension 1
and a straight-line embedding is a geometric realization. We have seen in
Section I.4 that every simple graph that has an embedding also has a straight-
line embedding in R2. This property does not extend to higher dimensions. To
construct an abstract simplicial complex of dimension 2 that has an embedding
but not a geometric realization in R3, we use a non-trivial knot, such as the
trefoil knot in Figure I.7 in the middle. Every generic projection of this knot
has at least three crossing. A polygonal cycle forming the knot in R3 thus
necessarily consists of more than three line segments. Now take a sufficiently
fine simplicial complex whose underlying space is the unit cube in R3. Remove
from this complex a tunnel in the form of the mentioned knot. Draw a closed
curve running along the tunnel and decompose it into three edges, which are
necessarily curved. Finally, repair the triangulation by connecting the three
edges to the boundary of the tunnel. The 2-skeleton of this triangulation has
an embedding but no geometric realization in R3.

As mentioned in Section X.3, we can decide whether a simplicial complex
of dimension 2 has a geometric realization in R3 using Tarski’s theory of real
closed fields. It is not clear whether we can also decide embeddability. Be-
sides asking whether a simplicial complex has a geometric realization or an
embedding in R63, we can also ask whether it has a subdivision that has a
geometric realization. Such a realization is sometimes called a PL embedding
of the complex [2].

Question. Are there simplicial complexes that have embeddings but no PL
embeddings in R3? Is the recognition of simplicial complexes that have embed-
dings or PL embeddings in R3 decidable?

The algorithmic problem of embeddability provides a striking example of a
dramatic complexity increase by adding just one dimension. Indeed, the time it
takes to decide whether or not a simple graph with n vertices has an embedding
in R2 is only proportional to n, see e.g. Hopcroft and Tarjan [1].

[1] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM 21

(1974), 549–568.

[2] J. Matoušek, M. Tancer and U. Wagner. Hardness of embedding simplicial
complexes in R

d. Manuscript, 2008.



X.5 Equipartition in Four Dimensions 253

X.5 Equipartition in Four Dimensions

We define a density in d-dimensional Euclidean space as a Borel measure f :
Rd → R with unit mass,

∫

f(x) dx = 1. Let fi be a density in Rd for each
1 ≤ i ≤ d. The Ham Sandwich Theorem asserts that there is a (d − 1)-plane
that simultaneously bisects all d densities, that is, each fi has exactly half of
its mass on each side of the plane, see e.g. [3, Chapter 3]. In R2 this implies
that every density can be decomposed by two lines into four quadrants each
a quarter of the mass. More generally, we say that d (d − 1)-planes form an
equipartition of a density in Rd if they define 2d orthants each containing an
equal share of the mass. Hadwiger showed that equipartitions also exist in
R3 [2]. The situation is different in five and higher dimensions [1]. We count
degrees of freedom to see that a negative result is to be expected. A (d − 1)-
plane in Rd has d degrees of freedom, and since we can choose d (d− 1)-planes
we have a total of d2 degrees at our disposal. To use the degrees, we specify
the (d−1)-planes in sequence and consume a degree for each density we bisect.
The total number of consumed degrees is 1+2+ . . .+2d−1 = 2d−1. For d ≥ 5,
we therefore consume more than we have, which leads to the negative result.
For d = 4, we have 16 degrees of freedom but we need only 15. It thus seems
that there should be an equipartion for each density in R4, but it is not known
whether this is indeed the case.

Question. Does every density in R4 have an equipartition?

A host of results related to this question but not answering it can be found in
Ramos [4]. He generalizes the Borsuk-Ulam Theorem and proves among other
things that every density in R

4 has an equipartition by four 3-spheres. As
another step towards resolving the question, Živaljević proved the existence of
an equipartition provided the density in R4 has a 2-plane of symmetry [5].

[1] D. Avis. Non-partitionable point sets. Inform. Process. Lett. 19 (1984), 125–129.

[2] H. Hadwiger. Simultane Vierteilung zweier Körper. Arch. Math. (Basel) 17

(1966), 274–278.

[3] J. Matoušek. Using the Borsuk-Ulam Theorem. Springer-Verlag, Berlin, 2003.

[4] E. A. Ramos. Equipartition of mass distributions by hyperplanes. Discrete Com-
put. Geom. 15 (1996), 147–167.

[5] R. T. Živaljević. Equipartitions of measures in R
4. Trans. Amer. Math. Soc.

360 (2008), 153–169.
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X.6 Running-time of Matrix Reduction

[[Summarize what is known about the running time of the matrix reduction algorithm,

including the work on integer coefficients. State the problem of proving the cubic lower

bound.]]

[1] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput. 8 (1979),
499–507.

[2] D. Morozov. Persistence algorithm takes cubic time in worst case. BioGeometry
News, Dept. Comput. Sci., Duke Univ., Durham, North Carolina, 2005.
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X.7 Multi-parameter Persistence

[[Summarize the results known on multi-parameter persistence, citing Carlsson and

Zomorodian as well as Frosini et al.]]

[1] G. Carlsson and A. Zomorodian. The theory of multidmensional persistence.
Manuscript, Dept. Math., Stanford Univ., California, 2006.

[2] A. Cerri, P. Frosini and C. Landi. Stability in multidimensional size theory.
Manuscript, Dept. Math., Univ. di Bologna, Italy, 2006.
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X.8 Unfolding PL Critical Points

[[Explain the method for 3-manifolds.]]

[[State the problem for d-manifolds, d ≥ 4, as an open question.]]

Figure X.3: From left to right: the lower link of a regular point, a minimum, a
1-saddle, a 2-saddle, and a maximum.

[1] H. Edelsbrunner, J. Harer, V. Natarajan and V. Pascucci. Hierarchy
of Morse-Smale complexes for piecewise linear 3-manifolds. In “Proc. 19th Ann.
Sympos. Comput. Geom., 2003”, 361–370.
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X.9 PL in the Limit

[[Explain the method for a piecewise linear function on a 2-manifold, or perhaps for a PL

2-manifold itself.]]

[[Formulate the question for general PL d-manifolds.]]

[1] H. Edelsbrunner, J. Harer and A. Zomorodian. Hierarchical Morse-Smale
complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30 (2003),
87–107.
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X.10 Counting Halving Sets

[[Review the best results: upper and lower bound in R
2, same in R

3, upper bound in

higher dimensions.]]

[1] T. K. Dey. Improved bounds on planar k-sets and related problems. Discrete
Comput. Geom. 19 (1998), 373–383.

[2] P. Erdős, L. Lovász, A. Simmons and E. G. Straus. Dissection graphs of
planar point sets. In A Survey of Combinatorial Theory, eds. J. N. Srivastava et
al., North-Holland, Amsterdam (1973), 139–149.

[3] L. Lovász. On the number of halving lines. Ann. Univ. Sci. Budapest Eőtvős
Sect. Math. 14 (1971), 107–108.

[4] M. Sharir, S. Smorodinsky and G. Tardos. An improved bound for k-sets
in three dimensions. In “16th Ann. Sympos. Comput. Geom., 2000”.

[5] G. Tóth. Point sets with many k-sets. Discrete Comput. Geom. 26 (2001), 187–
194.

[6] R. T. Živaljević and S. T. Vrećica. The colored Tverberg’s problem and
complexes of injective functions. J. Combin. Theory, Ser. A 61 (1992), 309–318.
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Index

Čech complex, 72

abstract simplicial complex, 63
Ackermann function, 7, 170, 185
affine

combination, 62
hull, 62
independence, 62

Alexander duality, 140
Alexander Duality Theorem, 140
alpha complex, 83

weighted, 84
ascending manifold, 153
augmentation map, 98
augmenting path, 226

balanced search tree, 169
barycenter, 65
barycentric

coordinate, 64, 158
subdivision, 65, 90

basis
of a topology, 3

Betti number, 96, 101
persistent, 176, 214
reduced, 98

bipartite
graph, 225

matching, 225
birth, 176
bisector, 79
block, 196

chain complex, 132
Block Complex Lemma, 133
body centered cube (BCC) lattice, 172
Borromean rings, 29
Borsuk-Ulam Theorem, 249
bottleneck distance, 212
boundary, 94

group, 95

relative, 107
homomorphism, 95
map, 95, 114, 197
matrix, 102, 195
of a manifold, 33
of a simplex, 62

branch point, 51
Breadth-first Search, 41, 164, 227
Brouwer’s Fixed Point Theorem, 110

Cauchy-Crofton Formula, 220
chain, 94

complex, 95, 114, 197
group, 94

relative, 107
map, 114

Classification Theorem for 2-manifolds, 35
closed

curve, 9, 219
simple, 9

polygon, 10
set, 4
star, 63

coboundary, 125
group, 125
map, 125
matrix, 128

cochain, 125
group, 125

cocycle, 125
group, 125

coface, 62
coherent triangulation, 82
cohomology group, 126

reduced, 126
cokernel, 110
collapse, 87
collapsible, 87, 91
collision, 183
coloring, 16, 30, 58

260
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combination
affine, 62
convex, 24, 62

commutative square, 116
compact, 32
compatible ordering, 177, 195
complex

abstract simplicial, 63
simplicial, 63

component, 3, 184
connected, 2

sum, 33
connecting homomorphism, 112, 115
continuous, 4
contour, 165

tree, 165
contractible, 70
contraction

of an edge, 52
convex

combination, 24, 62
hull, 24, 62
set system, 69

coordinate chart, 45
cost function, 225
critical

event, 88
point, 147
value, 148

homological, 215
vertex, 160

cross-cap, 34
curvature, 219

Gaussian, 233
mean, 233
total, 219

curve, 9
cycle, 95

group, 95
relative, 107

cyclic list, 168
cylinder, 33
Călugăreanu-White Formula, 19

death, 176
decidability, 38, 247
deduction map, 230
deformation

retract, 70
retraction, 70

degree
of a map, 109

Delaunay
complex, 80, 83

weighted, 81
triangulation, 81

density data, 164
Depth-first Search, 41, 164, 227
descending manifold, 153
destination, 152
diameter, 66
diffeomorphism, 147
Dijkstra’s Algorithm, 230
dimension

of a complex, 63
of a simplex, 62

direct sum, 110
directed graph, 230
directional writhing number, 18
Dirichlet tessellation, 82
disjoint set system, 5
disk, 33
distance

bottleneck, 212
Fréchet, 222
power, 78
signed, 55
squared, 55
Wasserstein, 215
weighted squared, 78

doubling of a manifold, 37
drawing of a graph, 22
dual

block, 131
decomposition, 131

homomorphism, 125
duality, 191

Lefschetz, 194
Poincaré, 131, 136, 194

dunce cap, 122

edge contraction, 52
Elder Rule, 175
elementary collapse, 87
elevation function, 189
embedding, 15, 45

of a graph, 22
PL, 248
straight-line, 25, 248

equipartition, 249
equivalence

of knots, 15, 244
essential, 189
Euler
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-Poincaré Theorem, 101, 161
characteristic, 36, 101, 155
Characteristic of 2-manifolds, 36
Relation for Planar Graphs, 22

event
critical, 88
regular, 88

exact, 111, 114
sequence

of a pair, 111
of a triple, 122
of chain complexes, 114

Exact Sequence of a Pair Theorem, 111
Excision Theorem, 108
Existence, Uniqueness Thms of ODEs, 152
extended

persistence diagram, 190
real plane, 177

Fáry Theorem, 221
face

of a planar graph, 22
of a simplex, 62

field, 181
figure-eight knot, 15
filtration, 85, 175, 195

lower star, 158, 185
First

Plane Lemma, 80
Sphere Lemma, 79

fixed point, 110, 121
flag, 90
Floer homology, 157
formal sum, 94
Fréchet distance, 222
full subcomplex, 63
function

elevation, 189
height, 146, 188
monotonic, 206
PL, 158, 187
smooth, 147

Fundamental Lemma
of Homology, 95
of Persistent Homology, 177

fundamental quadric, 55

Gaussian
curvature, 233
elimination, 104

general position, 80
Generalized Fáry Theorem, 222

generic
PL function, 158

genus, 36, 43, 167
geometric realization, 64, 247
Geometric Realization Theorem, 64
gradient, 45, 150
graph

abstract, 2
bipartite, 225

complete, 225
coloring, 30, 58
complete, 2
directed, 230
homeomorphism, 23
matching, 225
maximally connected, 23
planar, 22
Reeb, 165
simple, 2
weighted, 231

group
of boundaries, 95
of chains, 94
of coboundaries, 125
of cochains, 125
of cocycles, 125
of cycles, 95
of diffeomorphisms, 150
of homomorphisms, 124

halving set, 254
Ham Sandwich Theorem, 249
Hasse diagram, 85
Hauptvermutung, 68
height function, 146, 188
Helly’s Theorem, 69
Hessian, 148
homeomorphism, 9
homological critical value, 215
homologous, 96
homology

class, 96
group, 96

persistent, 176, 214
reduced, 98, 207
relative, 107, 189, 198

homomorphism, 95
homotopy, 70

equivalence, 70
equivalent, 70
inverse, 70
straight-line, 213
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type, 70
Hopf link, 17
house-with-two-rooms, 245
hull

affine, 62
convex, 24, 62

image, 110
immersion, 45
Incremental Betti Number Algorithm, 141
index

of a critical point, 148
of a PL critical vertex, 160
persistence, 176

induced
map on chains, 109
map on homology, 109

inessential, 189
integral

geometry, 220
line, 152

interior
of a simplex, 62

intersection number, 136
inversion, 76
Inversion Lemma, 76
irreducible triangulation, 59
iso-surface, 164
isomorphism

between complexes, 64, 65, 90
between homology groups, 108

Iteration Bound, 228

Jacobian, 45
Jordan Curve Theorem, 10
Jung’s Theorem, 72

kernel, 110
Klein bottle, 34, 50, 121
knot, 15, 244, 248
Kuratowski Theorem, 23

Lefschetz
duality, 138, 189, 194
Duality Theorem, 138

length, 220
level set, 146, 165
lifting, 79
limit term, 200
line arrangement, 211
linear

array, 5, 40, 182

equation, 27
link

of a simplex, 63
of an edge, 53
of knots, 17

Link Condition, 54
linked list, 182
linking number, 17
Lipschitz, 216
list, 168
long exact sequence, 111
loop

in a Reeb graph, 165
Loop Lemma for Manifolds, 167
lower

link, 159
star, 158, 192

filtration, 158, 185
lowest one, 178

Möbius strip, 33, 49
manifold, 166, 187

ascending, 153
descending, 153
stable, 153
unstable, 153
with boundary, 32
without boundary, 32

Marching Cube Algorithm, 169
matching, 225

maximum, 225
minimum cost, 225
perfect, 225

matrix, 207
boundary, 102, 195
decomposition, 207
reduction, 104
sparse, 182

maximum, 148
matching, 225
principle, 25

Maximum Matching Algorithm, 231
Mayer-Vietoris

sequence, 117, 161
Sequence Theorem, 117

mean curvature, 233
merge tree, 174
mesh, 66, 216
metric, 213
miniball, 73
minimum, 148

cost matching, 225
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Minimum Cost Matching Algorithm, 231
monkey saddle, 160
monotonic function, 175, 206
Morse

-Smale
-Witten complex, 157
complex, 155
function, 153

function, 149
topological, 89

Inequalities, 155
Lemma, 148

multiparameter persistence, 251
multiplicity, 177, 215
multiset, 177

natural isomorphism, 129
negative simplex, 179
nerve, 71, 80, 83
Nerve Theorem, 71
non-degenerate

critical point, 148
non-orientable, 34

open
cover, 32
set, 3

optimal transportation, 218
order

complex, 90
of a group, 96

ordered triangle, 39
ordinary persistence diagram, 190
orientable, 34
orientation, 39, 47

-preserving, 33
-reversing, 33

origin, 152
output-sensitive, 183

pair
of spaces, 107

pairing, 178
Pairing Lemma, 179
Parity Algorithm, 10
partial shelling, 246
path, 4, 9

-connected, 4
augmenting, 226
compression, 8
decomposition, 175
shortest, 230

perfect
matching, 225
pairing, 137

Persistence
Algorithm, 196
Duality Theorem, 191
Equivalence Theorem, 186
Symmetry Theorem, 191

persistence, 176
diagram, 177, 215

extended, 190
ordinary, 190
relative, 190

multiparameter, 251
total, 217, 223

persistent
Betti number, 176, 214
homology group, 176, 214

piecewise linear (see PL), 158
PL

critical vertex, 160
embedding, 248
function, 158, 187
Morse

function, 160
Inequalities, 162

regular vertex, 159
planar graph, 22
Poincaré

duality, 131, 136, 194
Duality Theorem, 134, 137
map, 137

polygonal schema, 34
polyhedron, 63
polynomial growth, 216
positive simplex, 179
power, 78

cell, 79
diagram, 79

priority queue, 53
projective

plane, 34
space, 119

query point, 10
queue, 234
quotient topology, 165

randomized algorithm, 75
rank

of a vector space, 97
real projective space, 119
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reduced
Betti number, 98
homology group, 98, 207
matrix, 178, 207

reduction, 207
Reduction Lemma, 225
Reeb graph, 165
regular

event, 88
point, 147
triangulation, 82
value, 148
vertex, 159

Reidemeister move, 15, 244
relative

boundary group, 107
chain group, 107
cycle group, 107
homology group, 107, 189, 198
persistence diagram, 190

retract, 70
retraction, 70
Riemannian metric, 149
ru-decomposition, 207

saddle, 148
Schönflies Theorem, 10
separation, 3
set system, 5

convex, 69
shelling, 29, 245
short exact sequence, 111

of chain complexes, 114
shortest

augmenting path, 227
path, 230

signed distance, 55
simple

closed curve, 9
PL critical vertex, 160

simplex, 62
simplicial

approximation, 67
complex, 63
homeomorphism, 65
map, 65

Simplicial Approximation Theorem, 67
simplification, 52
skeleton, 63
smallest enclosing ball, 72
Smith normal form, 103
smooth function, 147

Snake Lemma, 115
space curve, 19
spanning tree, 3
sparse matrix, 182
Spectral Sequence

Algorithm, 196
Theorem, 200

spectral sequence, 195
speed, 219
Sperner Lemma, 121
sphere, 118
splay tree, 170
squared distance, 55
Stability Theorem

for Filtrations, 214
for Lipschitz Functions, 217
for Tame Functions, 215, 224

stable manifold, 153
standard simplex, 74
star, 63

condition, 67
Steenrod Five Lemma, 122
stereographic projection, 77
Stereographic Projection Lemma, 78
straigh-line

embedding, 248
straight-line

embedding, 25
homotopy, 213

strand, 16
strictly convex combination mapping, 24
subcomplex, 63

full, 63
subdivision, 65
sublevel set, 146, 189, 214
subspace topology, 4
superlevel set, 189
surface, 31, 185
sweeping, 211
switch, 209
symbolic perturbation, 14
symmetry, 191

group, 39

tame, 215
tangent space, 147
Tarski’s theory of real closed fields, 247
term

in spectral sequence, 198
limit, 200

Thiessen polygons, 82
time series, 206
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topological
equivalence, 9
Morse function, 89
space, 3
type, 53

topology, 3
torus, 37, 122, 146

of genus six, 247
total

curvature, 219
persistence, 217, 223

Total Curvature Formula, 221
transposition, 207
Transposition Lemma, 210
transversal, 154
tree, 3
trefoil knot, 15, 248
triangulable, 63
triangulation, 35, 63

coherent, 82
Delaunay, 81
irreducible, 59
of a polygon, 11
regular, 82

tricoloring, 16
triple point, 51
trivial

knot, 15
link, 17

Tutte’s Theorem, 25, 54
twisting number, 18

underlying space, 63
unfolding, 160
union

-find, 8
of balls, 83

Universal Coefficient Theorem, 129
unknot, 15
unlink, 17
unstable manifold, 153
up-tree, 8
upper star, 192

vector
field, 149
space, 110

velocity vector, 219
vertex

map, 64
scheme, 64
set, 63

Vietoris-Rips complex, 74
vine, 213
vineyard, 213
Voronoi

cell, 78
weighted, 79, 84

diagram, 78, 83
weighted, 79

Wasserstein distance, 215
weighted

alpha complex, 84
Delaunay complex, 81
graph, 231
squared distance, 78
union, 8
Voronoi

cell, 79, 84
diagram, 79

Whitehead link, 30
Whitney umbrella, 46
winding number, 12, 19
writhing number, 18
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Mücke, E. P., 14, 87
Munkres, J. R., 8, 66, 97, 103, 110, 117,

128, 132

Natarajan, V., 166, 246
Nekhayev, D. V., 56
Nishizeki, T., 28

Orlin, J., 228
Oudot, S. Y., 214

Pascucci, V., 166, 246
Pitcher, E., 21
Pohl, W. F., 21
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270 A Notation

Appendix A

G = (V,E) graph, vertex set, edges set
K5, K3,3 complete graph, complete bipartite graph
n,m, ℓ number of vertices, edges, faces
u, v, y, z, ui vertices
f : V → R2 vertex mapping
h : R2 → R linear map
t, ti, tuv coefficients
∆(x, a, b) left-turn matrix
ε1 ≪ ε2 small, positive indeterminants

[n] = {1, . . . , n} first n positive integers
V [1..n] linear array
V [i].parent , V [i].size parent pointer, cardinality

x ∈ X, Y point, topological spaces
U , B topology, basis
γ : [0, 1]→ X path

γ : S1 → R2 closed curve
κ, λ : S1 → R3 knots
T (s), N(s), B(s) unit tangent, nomal, binormal
u ∈ S2 direction
W (γ, x) winding number
Wr(κ), DWr(κ, u) writhing, directional writhing number
Lk(κ, λ), Tw(κ, λ) linking, twisting number

Table X.1: Notation in Chapter I.
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M, N, K,L 2-manifolds, triangulations
S2,T2,P2 sphere, torus, projective plane
D open disk
n,m, ℓ number of vertices, edges, triangles
χ, g Euler characteristic, genus

V [1..n], µ, abc vertex array, node, triangle
(µ, ι),−.fnext ,−.org ordered triangle, next triangle, origin
bx, by, bz boolean variables

f : M→ R
3 mapping, immersion

J, fi

sj
Jacobian, partial derivative

signdet ∆(a, x, y, z) orientation of four points in space

a, b, x, y vertices
ϕ : VertK → VertL contraction
Lk a,Lkab vertex, edge link
h, u, δ, x, y, d(h, x) plane, normal, offset, points, signed distance
H,EH(x) set of planes, sum of square distances
x,u,Q,Qi 4D point, 4D normal, fundamental quadric, column

Table X.2: Notation in Chapter II.
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σ = conv {u0, . . . , uk} k-dimensional simplex
x =

∑

i λiui linear, affine, convex combination
τ ≤ σ, bd σ, intσ face, boundary, interior
K,L, |K| simplicial complexes, underlying space

VertK,K(j), SdK vertex set, j-skeleton, barycentric subdivision
St σ, Stσ,Lkσ star, closed star, link
α, β,A,B abstract simplices, abstract simplicial complexes
ϕ : VertK → VertL vertex map
bi(x), f : |K| → |L| barycentric coordinates, simplicial map

F,Nrv F ,
⋃

F set system, nerve, union
f, g, r : X→ Y continuous maps, (deformation) retraction
H : X× [0, 1]→ Y homotopy
f ≃ g,X ≃ Y homotopic, homotopy equivalent
idX : X→ X identity map
Čech(r),Vietoris-Rips(r) Čech, Vietoris-Rips complex
tj(n) expected number of tests
σ ⊆ S, diamσ simplex, point set, diameter

ι : Rd+1 − {0} → Rd+1 − {0} inversion, origin
ς : Sd − {N} → Rd stereographic projection, north-pole
Vu, Vv,Σ,Σu,Π,Πu Voronoi cells, spheres, planes
Delaunay Delaunay complex
S, u, v, wu, wv finite point set, points, weights
x, y, z, p, r points, radius

Ki = Alpha(ri) i-th alpha complex
Ru(r) = Bu(r) ∩ Vu intersection of ball with Voronoi cell
α, β, β0, σ, τ, υ abstract, geometric simplices

Table X.3: Notation in Chapter III.
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K,L simplicial complexes
ai, bi, σi, τi, c, c

′, c′′, d coefficients, simplices, chains
∂p : Cp → Cp−1 chain group, dimension, boundary map
Zp = ker ∂p,Bp = im ∂p+1 cycle, boundry groups
Hp = Zp/Bp, βp = rankHp homology group, Betti number

ǫ : C0 → Z2, H̃p, β̃p augmentation map, reduced group, Betti number

np, zp, bp ranks of the chains, cycles, boundaries

∂p = [aji ] boundary matrix
Np = Up−1∂pVp normal form matrix
i, k, j, l row indices, column indices

(K,K0),Hp(K,K0) pair of complexes, homology group
f : K → L simplicial map
f# : C(K)→ C(L) induced map on chains
f∗ : H(K)→ H(L) induced map on homology
A,B, g : S

p → S
p continuous maps

f : Bp+1 → Bp+1 continuous map
α modulo 2 degree
U,V,W vector spaces
U⊕ V direct sum

U = (Up, up),V ,W chain complexes
C(K) = (Cp(K), ∂p) chain complex
φ : U → V , ψ : V → W chain maps
D : Hp(W)→ Hp−1(U) connecting homomorphism
α, α0, β, β0, γ, γ0, µ, µ

′, ν, ̺ chains and cycles
i′, i′′ : A→ (K ′,K ′′) inclusions
j : (K ′,K ′′)→ K inclusion
Pd d-dimensional real projective space

Table X.4: Notation in Chapter IV.
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G = Z2 coefficient group
A,B groups of the form Gn

ϕ,ϕ0, ψ, ψ0 homomorphisms
Hom(A,G) group of homomorphisms
f : A→ B homomorphism

f̃ : Hom(B,G)→ Hom(A,G) dual homomorphism
ϕ(c) = 〈ϕ, c〉 cochain evaluating chain
Cp,Zp,Bp,Hp cochain, cocycle, coboundary, cohomology groups
δp−1 : Cp−1 → Cp coboundary map

Table X.5: Notation in Chapter V.
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M, f : M→ R manifold, Morse function
Ma = f−1(−∞, a] sublevel set
u, v, w, z critical points
Dfx : TMx → TRf(x) derivative at x
(x1, x2, . . . , xd) local coordinate system

H(x) = [ ∂2f
∂xi∂xj

(x)] Hessian

index(u) index of critical point
X : M→ TM vector fields
X [f ],∇f derivative in direction X(x), gradient
ϕ : R×M→M 1-paramenter family of diffeomorphisms
g : Sq−1 → bd Ma gluing function to attach q-handle

γx : R→M integral line through x
org(γ), dest(γ) origin, destination
S(u), U(u) stable, unstable manifold
σ, υ : Rp →M immersions
cq number of index q critical points

f : |K| → R PL Morse function
|K|a = f−1(−∞, a] sublevel set
f(u1) < . . . < f(un) ordered vertices
K0 ⊆ K1 ⊆ . . . ⊆ Kn lower star filtration
St−ui,Lk−ui lower star, lower link
ψp, kp = rankkerψp homomorphism, rank of kernel
ϕp, k

p = rank cokϕp homomorphism, rank of cokernel

X,M space, manifold
R(f) Reeb graph, quotient space
ψ ◦ π : X→ R(f)→ R maps decomposing f
n =

∑

ni,m, cq number of nodes, arcs, critical points

Table X.6: Notation in Chapter VI.
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f : K → R function on simplices
K0 ⊆ . . . ⊆ Kn filtration
f i,jp : Hp(Ki)→ Hp(Kj) induced homomorphism
Hi,jp = im f i,jp persistent homology group
βi,jp , µi,jp persistent Betti number, multiplicity
Dgmp(f) persistence diagram

R = ∂V,Rji matrices, submatrices
#Zerop,#Lowp #zero columns, #lowest ones

f : |K| → R, g : K → R PL function, montonic function
σ1, . . . , σm compatible ordering
K0 ⊆ . . . ⊆ Kn lower star filtration
∂,R[1..m] linear arrays
L = R[j].cycle, Li linked lists
u, v, w vertices
|K|a,Ka sublevel sets
φi : Ui → Vi homomorphism between vector spaces

fu : M→ R height function
Ma,M

a sublevel set, superlevel set
a1 < . . . < an homological critical values
b0 < . . . < bn interleaved values
Ordp(f),Extp(f),Relp(f) sub-diagrams
R, T, 0 reflections
St−vi, St+vi lower, upper star
Ki,K

i lower, upper star filtration

∂j , ∂i, ∂
j
i block of columns, rows, intersection

Kj −Kj−1, kj = cardKj block in filtration, size

Cjp, ∂
j
i chain group, boundary map

E
r
p,q, d

r
p,q groups, maps in spectral sequence

Er-term r-th term of spectral sequence

Table X.7: Notation in Chapter VII.
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f, g : K → R monotonic function on simplices
ft = (1− t)f + tg straight-line homotopy
σ1, . . . , σm compatible ordering of simplices
∂,R, V, U matrices
i = low(j) row of lowest one in column

P = P i+1
i , S = Si+1

i permutation, addition matrix
R′ = PRSP,U ′ = PSUP modified matrices
u, v, w;x, y; z vertices, edges, triangle

X,Y,Xt persistence diagrams
W∞(X,Y ) bottleneck distance
Wq degree q Wasserstein distance
Persk(X) degree k total persistence
η : X → Y bijection between persistence diagrams
‖x− y‖∞, ‖f − g‖∞ L∞-distance
ft = (1− t)f + tg straight-line homotopy
x(t) = (ft(σ), ft(τ), t) point of vineyard
bi−1 < ai < bi interleaved values, homological critical values
µ
ai,aj

p multiplicity of point
diamσ diameter
r = meshK = maxσ diamσ mesh
N(r) ≤ c/rj size of triangulation
c, C, j < k ≤ q constants

γ, γ0 : S1 → R2 smooth curves
length(γ) =

∫

‖γ̇(s)‖ length
curv(γ) =

∫

κ(s) total curvature
Pers0(fu) =

∑

pers(a) zeroth total persistence
fu = gu ◦ γ, f0,u = gu ◦ γ0 height on curves
F (γ, γ0) Frechet distance

X,Y persistence diagrams
X0, X

′
0, Y0, Y

′
0 off-diagonal points, projections

G,G(ε), Gi, Gi(ε) bipartite graphs
c = cq : E → R cost function
di : U ∪ V → R deduction map
M,Mi ⊆ E matchings
n+ n,m,mε, m̄i number of vertices, edges
s, t, u, v, x, y source, target, other vertices
Di, ℓi(x), pi directed graph, distance, path
mean(S), gauss(S) total mean, absolute Gaussian curvature

Table X.8: Notation in Chapter VIII.
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f : K → R function on simplices
K0 ⊆ . . . ⊆ Km filtration

Table X.9: Notation in Chapter IX.

f : K → R function on simplices
K0 ⊆ . . . ⊆ Km filtration

Table X.10: Notation in Chapter X.
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Appendix B

Algorithms in Chapter I:

Union-find to determine connectedness.
Parity Algorithm (for point-in-polygon test).
Straight-line Embedding Algorithm (of planar graphs).

Algorithms in Chapter II:

Depth-first Search (in abstract graphs).
Recognizing orientability of triangulated, compact 2-manifolds.
Classifying a triangulated, compact 2-manifold.
Recognizing crossing triangles in space.
Surface Simplifation Algorithm (by repeated edge contraction).

Algorithms in Chapter III:

Miniball Algorithm (for finite sets of points).

Algorithms in Chapter IV:

SNF Reduction for Homology.
SNF Reduction for Relative Homology.

Algorithms in Chapter V:

SNF Reduction for Cohomology.
Incremental Betti Number Algorithm (for complexes in S

3).

Algorithms in Chapter VI:

Marching Cube Algorithm.
Reeb Graph Algorithm (for 2-manifolds).

Algorithms in Chapter VII:

Persistence Algorithm (matrix reduction version).
Persistence Algorithm (sparse matrix version).
Persistence Algorithm (for components).
Persistence Aglrotihm (for 2-manifolds).
Extended Persistence Algorithm.
Spectral Sequence Algorithm.

Algorithms in Chapter VIII:

Maintaining an ru-decomposition.
Breadth-first Search.
Maximum Matching Algorithm (for bipartite graphs).
Minimum Cost Matching Algorithm (for bipartite graphs).
Dijkstra’s Single Source Shortest Path Algorithm.

Algorithms in Chapter IX:

Contours and silhouettes.
Jacobi sets.

Algorithms in Chapter X:
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Appendix C

Theorems in Chapter I:

Jordan Curve Theorem.
Euler Relation for Planar Graphs.
Kuratowski Theorem.
White-Calugareanu Formula.
Tutte’s Theorem.

Theorems in Chapter II:

Classification Theorem for Compact 2-manifolds.
Euler Characteristic of Compact 2-manifolds.
Link Condition.

Theorems in Chapter III:

Geometric Realization Theorem.
Mesh Lemma.
Simplicial Approximation Theorem.
Helly’s Theorem.
Nerve Theorem.
Vietoris-Rips Lemma.
Inversion Lemma.
Stereographic Projection Lemma.
First Sphere/Plane Lemma.

Theorems in Chapter IV:

Fundamental Lemma of Homology.
Euler-Poincare Theorem.
Brouwer’s Fixed Point Theorem.
Exact Homology Sequence of a Pair.
Snake Lemma.
Mayer-Vietoris Sequence.

Theorems in Chapter V:

Universal Coefficient Theorem.
Block Complex Lemma.
Poincare Duality Theorem (first form).
Poincare Duality Theorem (second form).
Lefschetz Duality Theorem (first form).
Lefschetz Duality Theorem (second form).
Alexander Duality Theorem.

Theorems in Chapter VI:

Morse Lemma.
Morse Inequalities, weak and strong.
PL Morse Inequalities, weak and strong.
Loop Lemma for 2-manifolds.

Theorems in Chapter VII:

Elder Rule.
Fundamental Lemma of Persistent Homology.
Equivalence of Persistence.
Pairing Lemma.
Persistence Equivalence Theorem.
Persistence Duality Theorem.
Persistence Symmetry Theorem.
Spectral Sequence Theorem.
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Theorems in Chapter VIII:

Transposition Lemma.
Stability Theorem for Filtrations.
Stability Theorem for Tame Functions.
Stability Theorem for Lipschitz Functions.
Cauchy-Crofton Formula.
Total Curvature Formula.
Fary Theorem.
Generalized Fary Theorem.
Reduction Lemma.
Iteration Bound.

Theorems in Chapter IX:

Theorems in Chapter X:
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Appendix Z

Here we list things that should still be done to complete or improve the book. The first list
contains specific items, short or spread out.

• Can we say something about the history of topological duality in Chapter V? I thought
there was a book on the topic but now I can’t find it.

• Right now there is no discussion of handle slides and cancellations in Chapter VI.
It would be useful to add this material as it foreshadows the concept of persistence
discussed in Chapter VII.

• Is the reference to Edwards about the Hauptvermutung correct? (It used to be in
Section IV.4 but has no home at the moment.)

• Double check the definition of 1-parameter family of diffeomorphisms in Section VI.1,
which seems a bit odd as we approach a critical point.

• Can we add the proof that pairing is perfect iff the implied natural homomorphism is
an isomorphism in Section V.3?

The second list contains chapters and sections that still need work.

• Finish Chapter V on Duality.

– Finish Section on Cohomology.

– Revise Section on Poincare Duality.

– Revise Section on Intersection Theory.

– Write Section on Alexander Duality.

– Formulate exercises.

• Write Chapter IX on Application. Rethink the structure of sections, which currently
is IX.1 Simplification for Gene Expression, IX.2 Elevation for Protein Docking, IX.3
Image Segmentation, IX.4 Local Homology for Root Architecture.

• Finish Chapter X on Open Problems.

– Write Problem 6 on Running-time of Matrix Reduction, adding the recent upper
bound of matrix multiplication time.

– Write Problem 7 on Multi-parameter Persistence.

– Write Problem 8 on Unfolding PL Critical Points.

– Write Problem 9 on PL in the Limit.

– Write Problem 10 on Counting Halving Sets.

• Beautify the index and the glossary.


