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ABSTRACT. Persistent homology is an algebraic tool for measuring topological features
of shapes and functions. It casts the multi-scale organization we frequently observe in na-
ture into a mathematical formalism. Here we give a record of the short history of persistent
homology and present its basic concepts. Besides the mathematics we focus on algorithms
and mention the various connections to applications, including to biomolecules, biological
networks, data analysis, and geometric modeling.

1. Introduction

In this section, we discuss the motivation and history of persistent homology. Both
are related and our account is biased toward the particular path we took to discover the
concept.

Motivation. Persistent homology is an algebraic method for measuring topological
features of shapes and of functions. Small size features are often categorized as noise
and much work on scientific datasets is concerned with de-noising or smoothing images
and other records of observation. But noise is in the eye of the beholder, and even if we
agreed on the distinction, the de-noising effort would be made difficult by dependencies
that frequently lead to unintended side-effects. Features come on all scale-levels and can
be nested or in more complicated relationships. It thus makes sense to survey the situation
before taking steps toward change. This is what persistent homology is about. This is not
to say that de-noising the data is not part of the agenda, it is, but de-noising often goes
beyond measuring.

History. The concept of persistence emerged independently in the work of Frosini,
Ferri, and collaborators in Bologna, Italy, in the doctoral work of Robins at Boulder, Col-
orado, and within the biogeometry project of Edelsbrunner at Duke, North Carolina. All
three developments happened roughly simultaneously with relevant discoveries spread out
over a period of fifteen years or so straddling the last turn of the century.
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The group around Patrizio Frosini and Massimo Ferri refers to persistence of 0-dimen-
sional homology as size theory and is motivated by the study of the natural pseudo-distance
between two functions on homeomorphic topological spaces [3, 6, 29]. Vanessa Robins de-
fines persistence in shape theoretic terms and uses the idea in the study of fractal sets with
alpha shapes [40]. The concept of alpha shapes introduced in [23] is also at the root of the
developments at Duke. Two of the crucial algebraic ingredients of persistence, simplicial
filtrations and the distinction between positive and negative simplices, date back to the im-
plementation of three-dimensional alpha shapes by Ernst Mücke [26] and the enhancement
of the tool by the incremental Betti number algorithm of Delfinado and Edelsbrunner [17].
A further critical insight is the existence of a pairing in which positive simplices mark the
appearance (birth) of topological features while negative simplices mark their disappear-
ance (death). This pairing is unique and defined using homomorphisms between homology
groups induced by inclusion. That this pairing also has a fast algorithm is perhaps surpris-
ing but essential to connect the mathematical ideas to the motivating practical problems.
All this is described in [24, 45]. The algorithm is readily coded and implementations are
available as part of PLEX, a package for high-dimensional data analysis.

Outline. Section 2 introduces the basic ideas of persistent homology, progressing
from special to more general settings. Section 3 describes the algorithm for the filtra-
tion of a simplicial complex, formulating it as a variant of the classic Smith normal form
reduction of the boundary matrices. Section 4 presents variants of the algebraic concept of
persistence, including the extension to essential homology classes motivated by the compu-
tational prediction of protein interaction. Section 5 sheds light on the connection between
persistence and spectral sequences. Section 6 discusses the stability of persistence which
is the starting point of a number of further developments, including the study of time se-
ries data. Section 7 concludes the paper by contemplating possible future directions the
research on persistent homology may take.

2. Persistence

In this section we define the key concepts that underlie the theory of persistent homol-
ogy. First we introduce persistence for single variable functions. To generalize the idea we
give a terse introduction to simplicial homology and refer to [31, 37] for more informa-
tion. We illustrate persistence first for Morse functions, then for simplicial complexes, and
finally for tame functions.

Single variable functions. Let f : R → R be a smooth function. Recall that x is
a critical point and f(x) is a critical value of f if f ′(x) = 0. A critical point x is non-
degenerate if f ′′(x) 6= 0. Suppose now that f has only non-degenerate critical points
with distinct critical values. Each critical point is then either a local minimum or a local
maximum. For each t ∈ R we consider the sublevel set Rt = f−1(−∞, t]. As we increase
t from−∞, the connectivity of Rt remains the same except when we pass a critical value.
At a local minimum the sublevel set adds a new component and at a local maximum two
components merge into one.

We pair the critical points of f by the following rule. When a new component is
introduced, we say that the local minimum that creates it represents the component. When
we pass a local maximum and merge two components, we pair the maximum with the
higher (younger) of the two local minima that represent the two components. The other
minimum is now the representative of the component resulting from the merger. Note
that critical points that are paired need not be adjacent. When x and y are paired by this
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Figure 1: A single variable function with three local minima and three local maxima. The critical
points are paired and each pair is displayed as a point in the persistence diagram on the right.

method we define the persistence of the pair to be f(y) − f(x). Persistence is coded in
the persistence diagram by mapping each pair to the point (f(x), f(y)) whose coordinates
are the corresponding critical values. In the diagram, all points live in the half space above
x1 = x2, and the persistence is easily visible as the vertical distance to this diagonal line.
For reasons that will appear later, we usually adjoin the diagonal to the persistence diagram.

The remainder of this paper extends these ideas beyond single variable functions.
Specifically, we extend the domain first to manifolds and then to general triangulable topo-
logical spaces. The algorithms compute homology and persistence for nested sequences
of simplicial complexes which we think of as piecewise constant or piecewise linear ap-
proximations of functions defined on their underlying spaces. At the same time we extend
features beyond connected components using homology which we introduce next. To go
from homology to persistence we are guided by the following property we observe for the
components of the sublevel sets of the single variable function f : R → R. Let s < t and
consider the sublevel sets Rs ⊆ Rt. Going from s to t, components of Rs may merge and
new components may be born and possibly merge with each other or with components of
Rs. We let βs,t

0 be the number of components that are born at a finite time at or before s
that belong to distinct components in Rt. The pairing of critical points we described has
the property that βs,t

0 is equal to the number of pairs (x, y) with f(x) ≤ s < t < f(y). No
other pairing satisfies this property for all s < t. As indicated by the shading in Figure 1,
βs,t

0 is also the number of points in the upper left quadrant defined by (s, t).

Homology. Let K be a simplicial complex. The Z/2Z vector space generated by the
p-dimensional simplices of K is denoted Cp(K). It consists of all p-chains, which are
formal sums c =

∑
j γjσj , where the γj are 0 or 1 and the σj are p-simplices in K. The

boundary, ∂(σj), is the formal sum of the (p−1)-dimensional faces of σj and the boundary
of the chain is obtained by extending ∂ linearly,

∂(c) =
∑

j

γj∂(σj),

where we understand that addition is modulo 2, i.e. 1 + 1 = 0. It is not difficult to check
that ∂ ◦ ∂ = ∂2 = 0. The p-chains that have boundary 0 are called p-cycles. They form
a subspace Zp of Cp. The p-chains that are the boundary of (p + 1)-chains are called p-
boundaries and form a subspace Bp of Cp. The fact that ∂2 = 0 tells us that Bp ⊆ Zp. The
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quotient group Hp(K) = Zp/Bp is the p-th simplicial homology group of K with Z/2Z-
coefficients. The rank of Hp(K) is the k-th Betti number of K and is denoted βp(K).

When we have two simplicial complexes K and L, a simplicial map f : K → L is
continuous, takes simplices to simplices, and is linear on each. A simplicial map induces
a homomorphism on homology, f p : Hp(K) → Hp(L), and homotopic maps induce the
same homomorphism. Homotopy equivalences of spaces induce isomorphisms on homol-
ogy. The simplicial approximation theorem tells us that a continuous map of simplicial
complexes can be approximated by a simplicial map, so that it makes sense to talk about
continuous maps inducing homomorphisms on homology.

REMARK 2.1. There are a variety of other homology theories defined in topology.
Most notably singular homology has the advantage that it exists for arbitrary topological
spaces and it is easy to define concepts like induced maps, prove that homotopy equivalent
maps induce isomorphisms on homology, etc. However, in singular homology the chain
groups are infinite-dimensional and therefore not directly suited to computational methods.
Nevertheless, the reader should be aware of this theory. It justifies the common practice of
talking about homology for spaces without an explicit triangulation. Most of the time, and
certainly in low dimensions, singular and simplicial homology are equivalent theories.

Morse functions. Let M be a smooth manifold of dimension d and f : M → R a
smooth function. We can imagine that M is embedded in R

d+1 and f maps every point
to its height above some hyperplane, but the reader is warned that this is not the general
case as many manifolds of dimension d do not even embed in R

d+1. At a critical point
x the differential is zero, and again we call f(x) a critical value of f . A critical point is
non-degenerate if the Hessian matrix of second partial derivatives, (∂2f/∂xi∂xj), is non-
singular. Although it takes a choice of coordinates to define this matrix, the non-singularity
is independent of the choice. The index of a non-degenerate critical point is the number of
negative eigenvalues of its Hessian; see Figure 2. A Morse function is a smooth function

Figure 2: From left to right: a minimum, saddle, and maximum of the (vertical) height function.
They are non-degenerate critical points with index 0, 1, and 2.

that has only non-degenerate critical points all of which have distinct critical values. We
choose regular values t0 < t1 < . . . < tm bracketing the m critical values and let Mj =
f−1(−∞, tj ] be the sublevel set containing the first j critical points. Morse theory tells
us that Mj is homotopy equivalent to the result of attaching a p-dimensional cell along its
boundary to Mj−1, where p is the index of the j-th critical point [34].

As we pass from Mj−1 to Mj there are two possibilities for how homology might
change. The first is that Hp increases rank by one, that is, βp(Mj) = βp(Mj−1) + 1.
The second is that βp−1(Mj) = βp−1(Mj−1) − 1. To distinguish the two cases, we call
the critical point in the first case positive since the sum of Betti numbers increases and
the critical point in the second case negative since the sum of Betti numbers decreases.
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Persistence gives a pairing between some of the positive critical points of index p and
the negative critical points of index p + 1. The idea is that a homology class is born at
a particular time, dies at a later time, and its persistence is the difference. To make this
precise, we use the maps between homology groups induced by the inclusions Mi ⊆ Mj

whenever i ≤ j. We say a homology class α is born at Mi if it does not come from a class
in Mi−1. In actual fact, an entire coset is born, not just a single class. Furthermore, if α is
born at Mi we say it dies entering Mj if the image of the map induced by Mi−1 ⊆ Mj−1

does not contain the image of α but the image of the map induced by Mi−1 ⊆ Mj does.
If α is born at Mi and dies entering Mj then we pair the corresponding critical points, x
and y, and say their persistence is j − i or f(y) − f(x), depending on the application we
have in mind. The latter is frequently more useful. Homology classes that are born at Mi

and do not die are not paired by this method, but require an extension of the persistence
formulation which we will describe in Section 4.

Generalizing from the case of a single variable function, persistence is coded in the
persistence diagrams, Dgmp(f), which includes the point (f(x), f(y)) whenever x is a
positive critical point of index p that is paired with the negative critical point y of index
p+1. As before, all points live in the half-space above the line x1 = x2 and the persistence
is easily visible as the vertical distance to the diagonal. Again we adjoin the diagonal to
the persistence diagram.

Simplicial complexes. Persistence can also be defined for a simplicial complex K.
We recall that K is a finite set of simplices that is closed under the face relation. Two
simplices are either disjoint or intersect in a common face. A subcomplex is a subset of
simplices that is again closed under the face relation. A filtration of K is a nested sequence
of subcomplexes that starts with the empty complex and ends with the complete complex,

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K.

The subcomplexes are the analog of the sublevel sets in the Morse function setting. A
homology class α is born at Ki if it is not in the image of the map induced by the inclusion
Ki−1 ⊂ Ki. Furthermore, if α is born at Ki it dies entering Kj if the image of the map
induced by Ki−1 ⊂ Kj−1 does not contain the image of α but the image of the map
induced by Ki−1 ⊂ Kj does. The persistence of α is j − i. As before we code the
information in the persistence diagrams, one for each dimension. Each diagram is now a

(  ,  )jj

(  ,  )i j

de
at

h

birth

Figure 3: The number of points in the quadrant is the rank of the image of the homology group
defined by the (horizontal) birth coordinate in the homology group defined by the (vertical) death
coordinate.
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multiset since classes can be born simultaneously and they can die simultaneously. The
rank of the image of a map fp : Hp(Ki) → Hp(Kj) is the number of p-dimensional
homology classes that are born at or before Ki and are still alive at Kj . This includes
the essential classes of K, the ones that do not die within the filtration. It is convenient
to represent an essential class born at Ki by the point (i,∞) in the diagram. With this
modification, the rank of im fp is the number of points of Dgmp(K) in the half-open left
upper quadrant (−∞, i]×(j,∞]; see Figure 3. This is the defining property of persistence,
namely that it gives the ranks of all images of maps induced by inclusion. For i = j we get
a quadrant anchored on the diagonal and the number of points is equal to the Betti number
of Kj .

Tame functions. There are applications for which Morse functions on manifolds and
filtered simplicial complexes are too limiting. We thus consider functions f : X → R

where both the topological space X and the function f satisfy comparably mild conditions.
As before we write Xt = f−1(−∞, t] for the sublevel set defined by the value t. We
call f tame if the homology groups of every sublevel have finite ranks and there are only
finitely many values t across which the homology groups are not isomorphic. Let t1 <
t2 < . . . < tm be these values and consider an interleaved sequence with si−1 < ti < si

for 1 ≤ i ≤ m. To capture homology that exists at the beginning and at the end we
set s−1 = t0 = −∞ and tm+1 = sm+1 = ∞. For each −1 ≤ i ≤ j ≤ m + 1 we
have the inclusion Xsi

⊆ Xsj
and the induced homomorphism between the corresponding

homology groups,

f i,j
p : Hp(Xsi

)→ Hp(Xsj
).

We call the image of f i,j
p a persistent homology group because it consists of classes born

before si that are still alive at sj . The ranks of these images, βi,j
p = rank im f i,j

p , are the
persistent Betti numbers of f . By assumption, the only times at which homology classes
are born or die are the ti. Each off-diagonal point of a persistence diagram of f is therefore
of the form (ti, tj) where 0 ≤ i ≤ j ≤ m+1. We can use inclusion-exclusion to determine
its multiplicity,

µi,j
p = βi,j−1

p − βi−1,j−1
p − βi,j

p + βi−1,j
p .

Alternatively we may use the fact that for every class that is born at ti and dies entering tj
there is another class born at ti that dies going to 0 at tj . Hence µi,j

p is the rank of the pair
group

P
i,j
p =

im f i,j−1
p ∩ ker f j−1,j

p

im f
i−1,j−1
p ∩ ker f j−1,j

p

.

With this definition the total multiplicity of points in the upper quadrant defined by (si, sj)
is βi,j

p , as before.
A special case of a tame function is a piecewise linear function f mapping the under-

lying space of a simplicial complex to the real numbers. It is defined by its values at the
vertices and we assume for simplicity that the restriction of f to the vertices is injective.
Re-indexing the vertices such that f(u1) < f(u2) < . . . < f(un) we let Ki be the full
subcomplex defined by the first i vertices. It is obtained from Ki−1 by adding the lower
star of ui, which consists of ui together with all simplices that connect ui to vertices with
lower function value. The nested sequence of Ki is hence referred to as the lower star fil-
tration of f . We note that Ki has the same homotopy type as the sublevel set f−1(−∞, t]
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for all f(ui) ≤ t < f(ui+1). As far as homology is concerned, the evolution of the sub-
level sets is therefore indistinguishable from the evolution of the complexes in the lower
star filtration. Assuming X is triangulable we can approximate every tame function on X

by a piecewise linear function on its triangulation. Using the lower star filtration we can
then effectively compute the persistence diagram of this approximation. We will see in
Section 6 that this diagram approximates the diagram of the tame function.

Module structure. Homology can be defined with coefficients in any abelian group.
This requires orienting simplices and taking these orientations into account when defin-
ing the boundary maps, see [31, 37] for details. Recall that an abelian group is a ring
if multiplication is defined and distributes over addition and it is a field if multiplication
has an inverse. It is easy to see that persistence can then be defined using homology with
coefficients in any field, F; the definitions are the same.

Zomorodian and Carlsson [46] give the homology groups of K the structure of a mod-
ule over the polynomial ring R = F[t]. To describe this, we recall that F[t] is the ring of
all polynomials in the variable t with coefficients in F. A module M over R is an abelian
group together with an action of R on M given by (r, m) → rm that distributes over the
group structure of M. When R is a field a module is better known as a vector space. A
subset of R is called an ideal if it is a subgroup under addition and satisfies the property
that for every r ∈ R and each x in the subgroup rx is again in the subgroup. For example,
the even integers form an ideal in the ring of integers. An ideal is principle if it is generated
by a single element. A principle ideal domain is a ring in which every ideal is principle. A
standard result from commutative algebra says that F[t] is a principle ideal domain. Note,
however, that this is false for polynomial rings in more than one variable. Finitely gener-
ated modules over principle ideal domains are easy to classify. There is a structure theorem
that says that if M is such a finitely generated module then M is the direct sum of a finitely
generated free module and a torsion module. Furthermore, the torsion module, T(M), is
the direct sum of modules Tq(M), where the sum is over prime ideals q of R and

Tq(M) = R/ql1 ⊕ R/ql2 ⊕ · · · ⊕ R/qls ,

where l1 < l2 < . . . < ls. Given a filtration of complexes K0 to Km, as before, we form
M = Hp(K0)⊕ Hp(K1)⊕ · · · ⊕ Hp(Km),

all with coefficients from the field F. Let f j
i : Hp(Ki)→ Hp(Kj) be induced by inclusion,

i ≤ j. There is then an action of F[t] on M given by setting tkα = fk+i
i (α) for each

α ∈ Hp(Ki), and this makes M a finitely generated F[t] module. In fact, M is called a
graded module because of the direct summand decomposition (the grading) and the fact
that ti maps the p-graded part to the (p + i)-graded part. When a class α is born at Ki

but does not die, it generates a free module of the form Rα. When a class α is born at
Ki and dies at Kj it generates a torsion module of the form Rα/tj−i(α), so the module
structure codes persistent homology. Zomorodian and Carlsson go further to observe that
the chain complexes of the Ki can also be treated as graded modules. One can then take
the homology of the direct sum of all Cp(Ki) with coefficients in the polynomial ring, and
this homology is easily identified with the persistent homology of the filtration. We refer
the interested reader to [46] for more details.

3. Algorithm

In this section we give an algorithm to compute Betti numbers and persistence. We be-
gin with a brief description of the classic Smith normal form algorithm; see also [37]. The
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persistence algorithm is based on the same principles but places priority on the ordering of
the simplices. Its sparse matrix implementation is particularly efficient in practice.

Smith normal form. Let K be a simplicial complex with its p-dimensional simplices
indexed consecutively from 1 to np = rankCp, for each dimension p. The boundary matri-
ces record the face relationship for simplices whose dimensions differ by one. Specifically,
Dp[i, j] = 1 if the i-th (p−1)-simplex is a face of the j-th p-simplex and Dp[i, j] = 0 oth-
erwise. The Betti numbers of K can be computed from the ranks of the boundary matrices,
namely rankBp−1 = rankDp, rankZp = np − rankDp, and therefore

βp(K) = np − rankDp − rankDp+1.

To compute the ranks we may use elementary row and column operations. For modulo 2
arithmetic it takes time cubic in the number of simplices to reduce the boundary matrices
to Smith normal form in which all entries are 0 except in an initial piece of the diagonal
where they are 1; see Figure 4.

Z
p

rank

rank

B

Cp −1

Crank
rank

−1p

p

Figure 4: Smith normal form of the boundary matrix recording the face relationship between sim-
plices of dimension p and p − 1. Entries in the shaded portion of the diagonal are 1.

REMARK 3.1. For integer coefficients the reduction is complicated by the need to
factor numbers into primes. The normal form is similar except that entries in the initial
portion of the diagonal can be larger than 1. They encode torsion, which arises for Z but
not for Z/2Z. With this change the running time of the reduction algorithm may no longer
be polynomial in the size of the input. However, it can be modified to run in polynomial
time [32]; see also [43].

Persistence pairing. If, in addition to the Betti numbers, we wish to compute the
persistent pairing we need to be sensitive to the ordering of the simplices. We begin with a
filtration of the complex, ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K, and sort the simplices to get a
compatible total ordering of the simplices in K, σ1, σ2, . . . , σn. Compatible means that

• the simplices in each complex Kl in the filtration precede the ones in K −Kl;
• the faces of a simplex precede the simplex.

Instead of parceling out the face relation we do the computations wholesale on the com-
bined boundary matrix defined by D[i, j] = 1 if σi is a codimension 1 face of σj and
D[i, j] = 0 otherwise. We restrict ourselves to column additions. Let low(j) be the row
number of the lowest non-zero entry in column j, where we set low(j) = 0 if the entire
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column is zero. We call D reduced if the restriction of low to its non-zero columns is in-
jective, that is, each row has at most one entry that is the lowest 1 for a column. To reduce
D we proceed from left to right and expand the reduced submatrix one column at a time.

for j = 1 to n do
while ∃j′ < j with low(j′) = low(j) 6= 0 do

add column j′ to column j
endwhile

endfor.
Adding column j ′ decreases low(j) which implies that the algorithm terminates after at
most n2 column operation. The running time is at most cubic in the number of simplices.

To read the Betti numbers off the reduced boundary matrix, R, we write #Zerop(R)
for the number of zero columns that correspond to p-simplices and #Low p(R) for the
number of lowest ones in rows that correspond to p-simplices. The rank of D is the same
as that of R, namely the total number of lowest ones. Hence rankBp−1 = rankDp =
#Lowp−1(R) and rankZp = np − rankDp = #Zerop(R) since every non-zero column
has a lowest one. It follows that

rankHp(K) = #Zerop(R)−#Low p(R).

It is similarly easy to get the persistence pairs. If low(j) = i > 0 then σj is a negative
simplex paired with the positive σi. If low(j) = 0 then σj is itself positive and we look to
row j to see whether it is paired. If there is no k with low(k) = j then σj represents an
essential cycle and these generate the homology of K.

Generating cycles. If we are interested in the cycles that represent the homology
classes we can track which columns are added to which. Adding column j ′ to column j
is the same as adding the chain represented by the former to the chain represented by the
latter column. The first such addition adds two simplices so that column j corresponds
to σj + σj′ . Subsequence additions may add other simplices but the youngest of them
is always σj since we only add columns left to right. To do the tracking note that the

R D V

=

Figure 5: Shading indicates lowest non-zero entries in R and possibly non-zero entries in V . From
left to right, the highlighted columns in V store an inessential cycle, an essential cycle, and a chain
killing a cycle.

operation corresponds to multiplying D on the right by the elementary matrix that is equal
to the n-by-n identity matrix except that the entry (j ′, j) is 1 rather than 0. Performing the
column operations to reduce D thus amounts to multiplying D on the right by a matrix V ,
the product of the corresponding elementary matrices. Since we always add columns left to
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right, V is upper triangular with ones on the diagonal. Letting R be the reduced boundary
matrix we thus have R = DV . The columns of V give the cycles, which may be essential
or inessential, and the chains that kill cycles of one lower dimension; see Figure 5. The
killed cycles are boundaries and are represented by the non-zero columns in R. Since V
is invertible we also have D = RU , with U = V −1, in which U is again upper triangular
and invertible. Similar to V the columns of U represent the cycles and chains but now in
the basis represented by R.

The matrices U and V are not unique and neither is the reduced matrix R even though
the pairing defined by low is unique. In some situations it is desirable to have a canonical
set of cycles generating the homology groups of the Ki, one that is determined by the
filtration and not the algorithm used to compute persistence [27]. Such a canonical set can
be obtained by performing additional left to right column additions until each lowest 1 is
the last 1 in its row.

Sparse matrix implementation. The initial boundary matrix is sparse by definition.
Although the reduced matrix can be dense [36] it rarely is and using a sparse matrix data
structure can lead to significant efficiency gains. We describe the particular implementation
given in the original paper on persistence [24].

The data structure consists of a linear array, L[1..n], storing a linked list with each
simplex. Initially, all lists are empty and at least half the lists remain this way. Each linked
list stores a cycle or, more specifically, the row indices of the non-zero entries in a column
of the boundary matrix. Each list is sorted with the largest row index readily available at
the top. Adding two such lists means merging them and removing duplicate indices. Since
the lists are sorted this takes time linear in the lengths of the two lists. We store the list that
represents the column j in L[i], where i = low(j). When low(j) changes we move the list
and since it can only decrease the list moves monotonically to the left. Letting i be the top
index in a moving list L we encounter two cases.

Collision:: L[i] is non-empty. We add L[i] to L.
Arrival:: L[i] is empty. We set L[i] equal to L.

After adding L[i] in the case of a collision, the top index of the list L is smaller than before
and we continue the search. It is also possible that adding L[i] leaves L empty. In this
case we end the search and mark the simplex σj that initiated the search as positive. If L
does not become empty it is eventually stored at some L[i]. We mark σj as negative and
pair σi with σj . The number of times the list moves before reaching σi is at most j − i,
the persistence of the pair. A list added to L in this search is initiated by a simplex σj′ ,
with dim σj′ = dim σj = p and j′ < j, and stored with a simplex σk, with k < j′. It can
therefore not store more than j ′−k < j−k times p+1 simplices, namely the codimension
one faces of all p-simplices in the interval. Assuming the dimension is a constant, the at
most j − i steps thus take time at most proportional to j − i each. The running time of the
entire algorithm is therefore at most proportional to the sum of squares of the persistences.
In other words, the running time is sensitive to the output although not to the amount of
output generated, which is at most n pairs. Each persistence is j − i ≤ n which implies
the more conservative upper bound of n3.

4. Variants

In this section we discuss variants of persistence that arise when we modify the fil-
tration in which homology classes are tracked. After discussing relative homology we
extend persistence to essential classes, which are not measured by ordinary persistence as
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described in Section 2. Then, motivated by stratified spaces, we define persistence for in-
tersection homology. Finally, we discuss how to localize generating cycles computed by
the persistence algorithm using Mayer-Vietoris sequences.

Relative homology. Here the motivating application is the estimation of the dimen-
sion of an embedded manifold M presented to us by a finite point sample [39]. Letting x
be a point of M we consider a shrinking sequence of neighborhoods of x in the ambient
space. For each neighborhood we are interested in the relative homology groups and the
maps induced by inclusion between the groups of different neighborhoods. If M is a k-
dimensional manifold embedded in R

d, k ≤ d, we expect to see a k-dimensional relative
class with large persistence. All other classes reflect the sampling within M and have small
persistence if the sampling is sufficiently fine.

Let K be a simplicial complex and Kl ⊆ K a subcomplex. Relative homology de-
scribes the connectivity of K−Kl, which is generally not a complex. This is done by form-
ing chain groups of the pair, Cp(K, Kl) = Cp(K)/Cp(Kl). The effect of taking the quo-
tient is to identify two chains that are the same in K−Kl but possibly different in K. Cycle
and boundary subgroups are defined as before, and their quotients are the relative homology
groups of the pair, denoted Hp(K, Kl). Now let K0 to Km be a filtration of K as before.
The inclusion Kl ⊆ Kl′ induces a homomorphism gl,l′

p : Hp(K, Kl) → Hp(K, Kl′). A
relative homology class is again born at some (K, Kl) and because the last relative homol-
ogy group is empty it is guaranteed to eventually die.

K

K−K

K−K

K

l

l

l

l

j

j

i

i

Figure 6: The relative homology groups of (K, Kl) can be read off the shaded portion of the reduced
boundary matrix. If i = low(j) then column i is zero and row j does not contain a lowest 1.

To compute ranks of relative homology groups and persistence pairs we use the exact
same algorithm as before. The only thing different is the interpretation of the reduced
matrix. Sorting the simplices as before, Kl corresponds to an upper left submatrix and
K −Kl to the lower right submatrix R`r; see Figure 6. The rank of the relative homology
group is

rankHp(K, Kl) = #Zerop(R`r)−#Low p(R`r).

Recall the interpretation of i = low(j) with p = dim σj in the original filtration: it
represents a (p − 1)-dimensional homology class that is born when σi is added and dies
when σj is added. In the filtration of pairs the same lowest 1 represents a p-dimensional
relative homology class that is born when σi is removed (added to Kl) and dies when σj



12 HERBERT EDELSBRUNNER AND JOHN HARER

is removed. To see this we just need to observe the contribution of the lowest one to the
formulas for Hp(Kl) and Hp(K, Kl) as l increases. Similarly, we observe that a (p − 1)-
dimensional essential class of K that is born at Kl exists in the relative homology groups
from the beginning and dies at (K, Kl).

Extended persistence. Here the motivating application is the identification of cavities
and protrusions of macromolecules for the purpose of protein docking. Inspired by the
pioneering work of Connolly [16] we use the critical points of a function defined on the
surface M of the macromolecule for this purpose. The particular function we have in mind
is the elevation which was introduced in [1] and applied to coarse protein-protein docking
in [44]. To define it at a given point x ∈M we consider the height function f : M→ R in a
direction normal to M at x. By construction, x is a critical point of f . We apply persistence
and if x gets paired with another critical point y of f then we define the elevation of x equal
to |f(x) − f(y)|. If x does not get paired then its elevation remains undefined which is
a shortcoming that would handicap the approach to docking. We thus extend persistence
such that all critical points get paired, also the ones that give birth to essential cycles of M.

We describe the extension for a d-manifold M and a Morse function f : M → R

defined on it. Choose regular values t0 < t1 < . . . < tm bracketing the m critical values
and set Mi = f−1(−∞, ti], a manifold with boundary f−1(ti). We also consider the
superlevel set Mm−i = f−1[ti,∞), which has the same boundary. To define the pairing
we take the ascending sequence of sublevel sets followed by the descending sequence
of complements of superlevel sets. As usual, the corresponding homology groups are
connected by maps induced by inclusion,

0 = Hp(M0) → . . .→ Hp(Mm)
→ Hp(M, M0) → . . .→ Hp(M, Mm) = 0.

An essential class that is born at Mi is not paired by ordinary persistence but it dies in the
second half of the sequence. Descending through the superlevel sets we look for the first
M

m−j (the largest j) that contains a class that is homologous in M. We then say the class
dies entering M

m−j and we pair the i-th critical point with the j-th critical point.
To compute the persistence pairs we work with a triangulation K of M and the piece-

wise linear extension of f defined on its vertices. Assuming distinct function values we
sort the vertices such that f(u1) < f(u2) < . . . < f(um). Letting Kl be the full subcom-
plex defined by the first l vertices in this ordering and Lm−l the full subcomplex defined
by the last m− l vertices, we substitute the Kl for the sublevel sets and the Lm−l for the
superlevel sets. This gives two filtrations of K, the ascending sequence of the Kl and the
descending sequence of the Lm−l.

The algorithm is the same as before but applied to an augmented boundary matrix, as
shown in Figure 7. The upper left submatrix, A, is the boundary matrix defined by a total
ordering of the simplices that is compatible with the ascending filtration. The lower right
submatrix, B, is the boundary matrix defined by a total ordering of the same simplices but
now compatible with the descending filtration. The upper right submatrix, P , stores the
permutation that connects the two sequences. The entire matrix may be interpreted as the
boundary matrix of the cone over K. After reducing the augmented boundary matrix we
get lowest ones in A, B, as well as in P . The ones in A define the ordinary persistence
pairs, same as in Section 2. The ones in B define the relative persistence pairs, as discussed
above. The new information is in P whose lowest ones define the extended persistence
pairs. They correspond to the homology classes that are born going up and die coming
down.
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0

A

B

P

Figure 7: The augmented boundary matrix storing the ascending filtration in A, the descending
filtration in B, and the connecting permutation in P . After reduction the extended persistence pairs
are given by the lowest ones in P .

A crucial result about extended persistence for a Morse function is its symmetry, that
is, we get the same pairing for f and for −f . This is important for elevation which would
otherwise not be well defined. The proof of symmetry relies on Poincaré and Lefschetz du-
ality. Indeed, the construction of the extended filtration is guided by the desire to guarantee
this symmetry property. We refer to [14] for further details.

Intersection homology. When K is not a manifold, it no longer satisfies Poincarè
duality. Extended persistence can still be defined but the duality property will no longer
hold. To extend the theory, Bendich et al. use intersection homology which was developed
precisely to guarantee Poincaré duality for a larger class of spaces [4]. We aim at using this
more general theory in the reconstruction of stratified spaces from point cloud data. Recall
that a stratified space is a topological space X ⊆ R

n and a collection of nested subspaces
∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xd = X

in which the i-stratum, Si = Xi − Xi−1, is a possibly empty i-dimensional submanifold
of R

n, and each point of Si has a neighborhood in X that is a product of an i-dimensional
ball in Si with the cone on a (d − i − 1)-dimensional stratified space. When X is the
underlying space of a simplicial complex, we assume that each Xi is the underlying space
of a subcomplex. A good example of a stratified space is the suspended torus, ΣT, obtained
by collapsing each end of the product T× [−1, 1] to a point. The stratum S0 consists of the
two points, S1 = S2 = ∅, and S3 is the rest. The homology of ΣT has rank 1 in dimensions
0 and 3, rank 2 in dimension 2 and is 0 otherwise, so ΣT does not satisfy Poincarè duality
with ordinary homology.

Goresky and McPherson defined a new theory called intersection homology for strat-
ified spaces [30]. The idea is that one only considers simplices that intersect the strata of
X in a specific way. To describe what this means we use a vector P = (p1, p2, . . . , pd) of
integers, called a perversity, with p1 = −1 or 0, p2 = 0, and pi+1 is equal to pi or pi + 1.
A (closed) i-simplex σ is proper if dim (σ ∩ Xd−k) ≤ i− k + pk, for each k > 0. Note
that if pi = 0 for all i then the condition is satisfied if each simplex meets each stratum
transversally. In particular, simplices σ contained in Xd−1 are necessarily improper be-
cause dim (σ ∩ Xd−1) = i > i − 1. If some of the pi are positive then intersections can
be non-transversal and thus of dimension higher than i − k. An i-chain is allowable if it
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is the sum of proper simplices and its boundary is the sum of proper simplices and sim-
plices in Xd−1. A simplex in an allowable chain may have a face that is not proper but this
face must be in Xd−1 or cancelled by the face of another simplex in the chain. The usual
boundary map takes allowable chains to allowable chains and we define the intersection
homology groups, I

P
Hi(X), to be the homology groups of this chain complex. The main

result about these groups is that when two perversities P and Q add up to the maximum
perversity, (−1, 0, 1, . . . , d− 2), the corresponding intersection homology groups are dual
so that IP Hi(X) is isomorphic to IQHd−i(X). For example, when X = ΣT the two dual
perversities P = (0, 0, 1) and Q = (−1, 0, 0) give us

IP H1(X) ' IQH2(X) ' 0;

I
P
H2(X) ' I

Q
H1(X) ' (Z/Z2)

2;

because 2-simplices are not allowed to meet the singular points for Q but they are for
P . Given a filtration of X that is compatible with the stratification, inclusion induces a

pr
op

er
im

pr
op

er

proper improper

Figure 8: The reduced boundary matrix in which improper simplices are ordered to come last. From
left to right the high-lighted columns represent an allowable cycle, an allowable chain, and a non-
allowable chain.

natural map on intersection homology so we can define persistence in the usual way. The
algorithm for computing it is the usual one once we set up the matrix as shown in Figure
8. In this matrix we reorder the simplices such that the improper ones come last. Only
columns in the proper left portion of the reduced boundary matrix are relevant. If such a
column has its lowest one in the improper bottom portion it corresponds to a non-allowable
chain because its boundary includes an improper simplex. A column that has its lowest one
in the proper top portion corresponds to an allowable chain that is negative and is paired
with the proper simplex for that row. Finally, a zero column represents an allowable cycle,
and is thus positive. Hence

rank I
P
Hp(X) = #Zerop(R`)−#Low p(Ru`),

where R` is the left submatrix defined by the columns of the proper simplices and Ru` is
the upper submatrix of R` defined by the rows of the proper simplices.

Localized homology. There are applications in which we are exclusively interested
in local cycles or representatives of homology classes that are as local as possible. To give
meaning to this notion we assume a covering of a simplicial complex K by subcomplexes
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K1 to Km. Let B1 = K1 q K2 q . . . q Km be the disjoint union of the subcomplexes
and consider the homomorphism fp : Hp(B1) → Hp(K) induced by the inclusions Ki ⊆
K. Zomorodian and Carlsson define the localized homology as the image of fp and they
show how to compute it with the persistence algorithm [47]. The main ingredient in their
solution is the Mayer-Vietoris blowup complex, B. To define it let σ be a simplex in K and
J ⊆ {1, 2, . . . , m} such that σ ∈ Ki for each i ∈ J . Letting Bj be the set of products
σ × J with cardJ ≤ j gives a filtration

∅ = B0 ⊆ B1 ⊆ . . . ⊆ Bm = B;

see Figure 9. Importantly, the blowup complex has the same homotopy type as the given
simplicial complex, B ' K [42]. To compute the localized homology we reduce the

e
d

c c
b

a

d
c

b

Figure 9: The blowup complex of a one-dimensional simplicial complex covered by three subcom-
plexes displayed along the edges of the prism.

boundary matrix D of B defined by an ordering of the simplex products that is compat-
ible with the filtration of the Bj . The fact that we deal with simplex products instead of
simplices causes no difficulties since boundaries are readily defined. The localized homol-
ogy consists of the homology classes that are born in B1 and stay alive during the entire
process. To read them off the reduced boundary matrix we let R1,[m] and R[m],1 be the
submatrices of the reduced matrix that consist of the rows and columns corresponding to
simplices in B1. We count the zero columns and lowest ones to get

rank fp = #Zerop(R[m],1)−#Lowp(R1,[m]).

Indeed, the first term counts the p-dimensional homology classes born in B1 and the second
counts among them the classes killed during the construction of the blowup complex.

5. Spectral Sequences

Topologists will immediately recognize a connection between persistence and spectral
sequences. We shed light on this by reviewing how spectral sequences are constructed
using the algorithm in Section 3.

Diagonal sweep. Again we start with the filtration of a simplicial complex, ∅ = K0 ⊂
K1 ⊂ · · · ⊂ Km = K. Using a compatible total ordering of the simplices we let D be the
boundary matrix which we write in block form. Specifically, Dj

i records the codimension
one faces of simplices in Kj −Kj−1 that lie in Ki−Ki−1. It is the intersection of a block
of rows Di and a block of columns Dj . Since the boundary matrix is upper triangular we
have Dj

i = 0 whenever i > j. We reduce the boundary matrix with left-to-right column
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additions, as before, but instead of sweeping the matrix from left to right we sweep it
diagonally. More precisely we work in phases and in Phase r we reduce columns in Dj by
adding columns in Dj−r+1 to Dj . The columns get reduced from the diagonal outward,
as illustrated in Figure 10. Since entries below the diagonal are zero this is the same as
getting reduced from bottom to top.

DD

D

D

D

D

1

i

m

j1 m

Figure 10: After three phases the triple blocks along the diagonal are reduced. The highlighted block
of rows Di and columns Dj intersect in the block matrix D

j
i .

for r = 1 to m do
for j = r to m do

take the columns ι in Dj from left to right;
while low(ι) is in Dj−r+1 and

∃ι′ < ι not to the left of Dj−r+1

with low(ι′) = low(ι) 6= 0 do
add column ι′ to column ι

endwhile
endfor

endfor.
The result of the algorithm is the same as that of the algorithm in Section 3, only the order
in which the columns are added is different. By definition, if a leftmost lowest one is in Dj

i

it belongs to a simplex pair of persistence j − i. This algorithm thus computes the pairs in
the order of non-decreasing persistence.

Groups and maps. We now interpret the diagonal sweep algorithm in terms of groups
that make up the spectral sequence of the filtration. Recall the chain groups and boundary
maps, ∂ : Cp → Cp−1, which form the chain complex defined by K. For each j we let C

j
p

be the group of p-chains of Kj −Kj−1 and for each c ∈ Cj
p we let ∂j

i (c) be the sum of
terms of ∂(c) that lie in Ki −Ki−1. Thus ∂j

i : C
j
p → C

i
p−1 and

∂(c) = ∂j
j(c) + ∂j

j−1(c) + . . . + ∂j
0(c).

The block Dj
i in the boundary matrix represents the maps ∂j

i simultaneously for all dimen-
sions. In spectral sequences we approximate ∂ by ∂j

j + ∂j
j−1 + . . . + ∂j

i for decreasing i.
The spectral sequence itself consists of a collection of groups E

r
p,q and maps dr

p,q between
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them. We follow the customary convention in which the first subscript, p, identifies the
block of columns, the sum of subscripts, p+ q, gives the dimension, and the superscript, r,
counts the phases in the iteration. To begin let E0

p,q = C
p
p+q and let d0

p,q : E0
p,q → E0

p,q−1

be defined by the (p + q)-dimensional boundary map restricted to Dp
p , that is, d0

p,q is ∂p
p

as applied to (p + q)-chains. It is easy to check that d0
p,q−1 ◦ d0

p,q = 0 so we get a set of
vertical chain complexes which we write in a grid:

. . . . . . . . . . . .
↓ ↓ ↓ ↓

E
0
1,1 E

0
2,1 E

0
3,1 . . .

↓ ↓ ↓ ↓
E

0
1,0 E

0
2,0 E

0
3,0 . . .

↓ ↓ ↓ ↓
E

0
1,−1 E

0
2,−1 E

0
3,−1 . . .

↓ ↓ ↓
E

0
2,−2 E

0
3,−2 . . .
↓ ↓

E
0
3,−3 . . .

↓
. . .

We call this the E0-term of the spectral sequence. The groups E0
p,q are generated by the

columns in Dp and the maps d0
p,q are represented by the block Dp

p .

Iteration. After interpreting the original boundary matrix we now push this interpre-
tation through the phases of the algorithm. For the first phase, we take the homology of the
above vertical complexes and define

E
1
p,q = kerd0

p,q/imd0
p,q+1.

An element of E1
p,q is thus the equivalence class of a chain c ∈ C

p
p+q with ∂p

p(c) = 0, where
two chains are equivalent if their difference lies in the image of ∂p

p , taking of course the
boundary map that applies to chains of one higher dimension. In other words, the element
is a relative homology class and more generally E1

p,q ' Hp+q(Kp, Kp−1). Representatives
of E1

p,q are computed by reducing the matrix Dp
p , which is what the diagonal sweep algo-

rithm does in Phase r = 1. The zero columns in Dp
p correspond to positive simplices and

represent cycles. Some are paired and have zero persistence since their classes come and
go within Kp − Kp−1. Others are not paired and their cycles are the generators of E1

p,q .
Next we define d1

p,q : E1
p,q → E1

p−1,q. Letting γ be a class in E1
p,q we set d1

p,q(γ) equal to
the equivalence class of ∂p−1

p (γ) in E1
p−1,q . This gives a set of horizontal chain complexes

which we write in a grid as before:

. . . ← . . . ← . . . ← . . .

E
1
1,1 ← E

1
2,1 ← E

1
3,1 ← . . .

E
1
1,0 ← E

1
2,0 ← E

1
3,0 ← . . .

E
1
1,−1 ← E

1
2,−1 ← E

1
3,−1 ← . . .

E
1
2,−2 ← E

1
3,−2 ← . . .

E
1
3,−3 ← . . .
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This is the E1-term of the spectral sequence. We take one more step before appealing to
induction, taking the homology of the horizontal complexes,

E
2
p,q = kerd1

p,q/imd1
p+1,q .

An element of E2
p,q is the equivalence class of the sum of a chain c ∈ C

p
p+q and an-

other chain c′ ∈ C
p−1
p+q . The chains satisfy ∂p

p(c) = 0 and ∂p
p−1(c) + ∂p−1

p−1(c′) = 0

and being equivalent means that the difference lies in im ∂p
p + im ∂p

p−1 + im ∂p−1
p−1 . The

group E2
p,q is not a relative homology group by itself but a subgroup of one, namely

E2
p,q ⊕ E1

p−1,q+1 ' Hp+q(Kp, Kp−2). Representatives of E2
p,q are computed by reduc-

ing the double block of matrices Dp
p, Dp−1

p−1 , Dp−1
p , Dp

p−1. The first two have already been
reduced and the third is zero. Phase r = 2 completes the reduction of the double block for
the remaining fourth matrix. Next we define d2

p,q : E
2
p,q → E

2
p−2,q+1 which gives another

set of chain complexes.
The process continues and for general phase numbers r the map takes r steps to the

left and r−1 steps up, dr
p,q : Er

p,q → Er
p−r,q+r−1. This gives a set of chain complexes and

we take homology to enter the next phase. Since K is finite the maps are eventually zero
and the sequence converges to a limit term, Er = E∞ for r large enough. The homology
groups of K are obtained by taking direct sums along the diagonals in the limit term. Here
it is crucial that we work over a field. Over Z, for example, there are extension problems
to solve because of torsion [5].

6. Stability

An important property of persistence is its stability under perturbations. After for-
mulating this concept for continuous functions, we list some of its consequences, which
includes inequalities for the curvature of smooth curves and surfaces. The stability leads to
continuous images, called vineyards, that track topological features in homotopies, a new
paradigm in the study of dynamic processes.

Bottleneck distance. Let X be a topological space with two tame functions f, g :
X → R. We recall that this entails that f and g are continuous, that all sublevel sets
have homology groups of finite rank, and that these groups change at a finite number of
homological critical values. As explained in Section 2, we encode the homology groups
of the sublevel sets in the persistence diagrams Dgmp(f) and Dgmp(g), each a multiset
of points in the extended plane, R̄

2. The L∞-distance between points u = (u1, u2) and
v = (v1, v2) in the extended plane is ‖u− v‖

∞
= max{|u1 − v1|, |u2 − v2|}, where

the difference between two infinite coordinates is defined to be zero. Given a bijection η
between two diagrams, we take the supremum L∞-distance between matched points and
define the bottleneck distance by taking the infimum over all supremums,

dB(Dgmp(f), Dgmp(g)) = inf
η

sup
x
‖x− η(x)‖

∞
.

Besides the finitely many off-diagonal points, each diagram includes copies of all points on
the diagonal. These are needed for the bijections because the number of off-diagonal points
in two diagrams is not necessarily the same. As suggested by Figure 11, we may think of
a diagonal point as an anti-cancellation in waiting. Measuring the distance between func-
tions by taking the supremum of the absolute difference between corresponding values,
‖f − g‖

∞
= supx∈X |f(x)− g(x)| we are now ready to state in what sense persistence is

stable.
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x

x 2

1

Figure 11: Left: two functions with small L∞-distance. Right: the corresponding two persistence
diagrams with small bottleneck distance.

THEOREM 6.1. Let X be a topological space with tame functions f, g : X→ R. Then
for each dimension p the bottleneck distance between the dimension p persistence diagrams
is bounded from above by the difference between the functions, dB(Dgmp(f), Dgmp(g)) ≤
‖f − g‖

∞
.

The proof given in [13] chases diagrams formed by homomorphisms induced by in-
clusions between various sublevel sets of f and g. An alternative elementary proof of a
slightly weaker version of the theorem can be found in [15]. A proof for connected com-
ponents tracked by the dimension 0 persistence diagram has independently been obtained
in [3].

Applications. The stability of persistence diagrams has a number of consequences,
some immediate and some less direct. We restrict ourselves to brief descriptions and a
small number of references.

Homology inference. Let X0 ⊆ R
d be a closed set and write d0 : R

d → R for the
Euclidean distance function that maps each point to its Euclidean distance from the nearest
point in X0. For each ε ≥ 0, the parallel body is a sublevel set of the distance function,
Xε

0 = d−1
0 [0, ε]. Let X1 be another closed set in R

d. The Hausdorff distance between
the two sets, dH (X0, X1), is the infimum over all ε for which X0 ⊆ Xε

1 and X1 ⊆
Xε

0 . The homological feature size of X0, denoted hfs(X0), is the infimum of the positive
homological critical value of d0. Let dH (X0, X1) < ε < hfs(X0)/4 and δ > 0 sufficiently
small. Then the rank of the p-dimensional homology group of the parallel body defined by
δ is

rankHp(X
δ
0 ) = rank im f3ε

ε ,(6.1)

where f3ε
ε : Hp(X

ε
1) → Hp(X

3ε
1 ) is induced by inclusion. For example X0 could be a

body bounded by a smooth surface and X1 could be a finite point sample of the body. In
this case the homological feature size is necessarily positive and the result says that we can
compute the homology of the body from a finite sample. In [13] this result is proved as
a corollary to the stability theorem. It has been obtained independently in [11]. A similar
result with a stronger requirement on the closeness between X0 and X1 can be found in
[38].
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Shape comparison. An important problem in practice is measuring the similarity between
shapes, may it be faces, teeth, plants, tools, or what have you. For i = 0, 1 let Xi ⊆ R

3 and
di : R

3 → R the corresponding distance function on the ambient space. The difference
between two distance functions is bounded from above by the Hausdorff distance between
the shapes,

‖d0 − d1‖∞ ≤ dH(X0, X1).

Theorem 6.1 thus implies that the bottleneck distance between corresponding persistence
diagrams is bounded from above by the Hausdorff distance. We remark that the reverse
is generally not true. For example, if X1 is the mirror image of the non-symmetric shape
X0 then the two corresponding distance functions have identical persistence diagrams even
though the Hausdorff distance between the two shapes is non-zero.

A finer function aimed at measuring the difference between smooth surfaces has been
introduced in [7]. It maps each point and unit tangent vector at the point to the correspond-
ing absolute normal curvature. This is a function over the (four-dimensional) tangent bun-
dle of the surface. If η : R

3 → R
3 is a diffeomorphism that has derivatives up to second

order close to the identity then the bottleneck distance between the persistence diagrams
for the surfaces X and η(X) is small [13].

Curvature of curves. Let γ : S
1 → R

2 be a smooth closed curve. Writing κ(s) for the
(absolute) curvature at γ(s), the total curvature is

k(γ) =
`(γ)

2π

∫
s∈S1

κ(s) ds,

where `(γ) is the length. Note that k(γ) is also the distance traveled by the unit tangent
vector on the circle of directions. Fáry’s Theorem states that if the image of γ is contained
in the unit disk then the total curvature cannot be less than the length, `(γ) ≤ k(γ) [28].
Using Theorem 6.1, [12] generalizes this to a statement about two smooth curves γ0, γ1 :
S

1 → R
2. The Fréchet distance between them is dF (γ0, γ1) = infϕ sups ‖γ0(s)− γ1(s)‖,

where ϕ ranges over all homeomorphisms between two unit circles and s ranges over all
points of the first unit circle. Letting `i = `(γi) be the length and ki = k(γi) the total
curvature, we have

|`0 − `1| ≤ [k0 + k1 − 2π] dF (γ0, γ1).(6.2)

Letting γ0 be the curve inside the unit disk and γ1 a tiny circle around the origin we see
that this inequality indeed implies Fáry’s Theorem in the plane. Both Fáry’s Theorem and
(6.2) generalize to smooth curves in Euclidean spaces of dimension beyond two.

Curvature of surfaces. There is a similar inequality that relates two notions of curvature of
a closed surface X embedded in R

3. Letting κ1(x) ≥ κ2(x) be the principal curvatures at
a point x ∈ X , the total mean curvature and the total absolute Gaussian curvature of the
surface are

h(X) =
1

2

∫
x∈X

(κ1(x) + κ2(x)) dx;

k(X) =

∫
x∈X

|κ1(x)κ2(x)| dx.

Since it is embedded the surface necessarily partitions R
3 into the bounded set X̄ of points

on and inside X and the unbounded complement of X̄. Given two surfaces Xi with total
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mean curvature hi = h(Xi) and total absolute Gaussian curvature ki = k(Xi), for i =
0, 1, we have

|h0 − h1| ≤ [k0 + k1 − 4π(1 + g)] dF (X̄0, X̄1),(6.3)
where g is the common genus of X0 and X1 and dF is the Fréchet distance between the
bodies bounded by the surfaces. Recall that this distance is the supremum of ‖x− η(x)‖
over all points x ∈ X̄0 and all homeomorphisms η : X̄0 → X̄1. The latter exist because
the surfaces have the same genus. The proof of the inequality given in [12] uses integral
geometry expressions of the total mean curvature and the total absolute Gaussian curvature.
These formulations extend naturally to non-smooth surfaces. The inequality can thus be
used to bound the difference between the total mean curvature of a smooth surface and a
piecewise linear approximation of that surface.

Time series. So far we have only discussed persistence for single functions. We now
consider how persistence changes when we have a 1-parameter family of functions. In this
case the points in the persistence diagrams move in the plane. Sometimes a point appears
or disappears and sometimes two points interact in what we will call a switch. Theorem
6.1 limits the changes to continuous motion. The diagrams can therefore be stacked up to
form a collection of curves. We explain this in some detail assuming a d-manifold M and
two Morse functions f0, f1 : M → R. Any two smooth functions can be connected by
the straight-line homotopy and therefore also f0 and f1. In other words, there is a smooth
homotopy F : M× [0, 1]→ R with F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ M.
The thus defined path consists of functions ft(x) = F (x, t) for t from 0 to 1. Furthermore,
the path can be deformed slightly to a generic path in which every ft is Morse except at a
finite number of times 0 < t1 < . . . < tn < 1 at which either

• two critical points of fti
share the same critical value;

• a critical point x is degenerate with nearby local coordinates under which fti

takes the form fti
(y) = fti

(x) + y3
1 ± y2

2 ± . . .± y2
d;

see [10]. The first violation is an interchange of two critical values. The degenerate critical
point in the second violation is known as a birth-death point: as ft passes through fti

two
non-degenerate critical points annihilate each other in a cancellation at x (a death) or two
non-degenerate critical points emerge in an anticancellation from x (a birth).

As we follow the generic path of functions the persistence diagram changes in inter-
esting ways. As long as the function remains Morse the pairing of critical points does not
change and the off-diagonal points in the diagrams vary continuously. At a death an off-
diagonal point merges into the diagonal while at a birth one emerges from the diagonal.
At an interchange there are two possibilities depending on whether the pairing changes.
Suppose xt and yt are two critical points that go through an interchange at t = ti and be-
fore the interchange xt is paired with x′

t and yt is paired with y′

t. Assuming xt and yt are
both positive the points in the diagrams that represent the pairs are ut = (ft(xt), ft(x

′

t))
and vt = (ft(yt), ft(y

′

t)). At t = ti the two points line up on a common vertical line.
There are now two possibilities. In one case the pairs remain unchanged and the points
ut and vt simply pass one another. In the other case the pairing switches by which we
mean that for t > ti the points continue on the trajectories ut = (ft(yt), ft(x

′

t)) and
vt = (ft(xt), ft(y

′

t)). Since the switch happens at the moment ut and vt share the same
first coordinate there is no jump although the speed and direction of the two points under-
goes a sudden change. We use the types of xt and yt to distinguish between three kinds of
switches. It is easy to see that a necessary condition for a switch is that the interchanging
critical points have the same index. We get another, less obvious necessary condition by
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Figure 12: From left to right: a switch between two positive critical points, between two negative
critical points, and between a positive and a negative critical point. In the third case the two inter-
changing critical points also swap their types.

interpreting the points ut and vt as two intervals. As proved in [15] a switch requires that
both before and after the switch the two intervals are nested or disjoint; see Figure 12.

We can track the evolution of the persistence diagram by adding an extra dimension
for time. The vineyard is the collection of points (ft(xt), ft(x

′

t), t) where the (xt, x
′

t) are
critical points paired by persistence. The above analysis shows that the vineyard is a family
of curves that start and end either at off-diagonal locations in the planes t = 0, 1 or on the
diagonal wall of points (x, x, t).

Dynamic algorithm. To compute the vineyard of the family ft we use a triangulation
K of the manifold and a filtration that changes with t. Interchanges, deaths, and births
all reduce to transpositions in the compatible ordering of simplices. Such a transposition
may or may not affect the pairing of simplices. Writing n for the number of simplices,
the algorithm in [15] takes time O(n) to decide which case it is and to update the pairing
if it is affected by the transposition. To describe the algorithm we let D be the boundary
matrix defined by the ordering of the simplices at time t. Letting R be a corresponding
reduced boundary matrix we have R = DV , and since V is invertible we have D = RU ,
where U = V −1. We call this an RU-decomposition of D assuming R is reduced and
U is upper triangular. The RU-decomposition is not unique but any one defines the same
pairing of simplices. To transpose two simplices in the ordering we swap the corresponding
rows and columns in D. Equivalently, we multiply D with the permutation matrix from
both sides giving PDP = (PRP )(PUP ). It fails to be an RU-decomposition if PRP is
not reduced or PUP is not upper triangular. Both shortcomings can be remedied with a
constant number of row and column operations giving an algorithm that takes linear time
per transposition in the worst case; see [15] for details.

In practice it is more efficient to represent both R and U as sparse matrices. To ef-
ficiently maintain the pairing requires a slightly richer collection of primitives than com-
puting the pairing. We therefore need a sparse matrix data structure that is different from
the one described in Section 3. To represent R we use two linear arrays, a vertical one to
index the rows and a horizontal one to index the columns. Each column is represented by
a singly linked list storing the row numbers of its non-zero entries, as sketched in Figure
13. To add two columns we merge the two linked lists while deleting nodes that come in
duplicate. To swap two columns we swap two pointers in the horizontal array. To swap
two rows we record the new row positions in the vertical array but do not propagate that
change to the linked lists. This way the lists remain consistently ordered which simplifies
the merging since it can be done without reordering. We use a symmetric sparse matrix
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Figure 13: The sparse matrix representation of R supports column additions as well as column and
row swaps.

implementation for U and get a data structure that takes a constant amount of memory per
non-zero entry in R and in U .

7. Discussion

In spite of its short history, persistent homology has already lead to a number of in-
teresting results and connected problems from seemingly distant fields. To substantiate
this view we briefly mention developments that are related to persistence and we draw a
speculative bigger picture by expressing where we believe persistent homology might lead
us.

Related developments. We discuss three research directions: the decomposition and
simplification of functions, data analysis and witness complexes, and coverage questions
for sensor networks.

Morse-Smale complexes and simplification. A Morse function on a Riemannian manifold
defines a gradient flow that can be used to decompose the manifold into regions of con-
stant origin or destination. An additional non-degeneracy condition leads to Morse-Smale
functions which can be used to decompose the manifold into regions of points with com-
mon origin and common destination. Both decompositions have applications in medical
imaging [41] and in geometric modeling [20]. A show stopper in these applications is
the over-segmentation resulting from spurious critical points created by noisy data or ar-
tifacts of the data representation. There has been work on simplifying the decomposition
using persistent homology for 2-manifolds [22] and for 3-manifolds [21]. Both methods
simplify the decomposition but do not adjust the function that leads to the simplification,
which is a more difficult problem. A controlled adjustment of a piecewise linear function
on a 2-manifold that simplifies the persistence diagram by eliminating points of persistence
below a given threshold while retaining all other points unchanged has been described in
[25]. The problem for manifolds of dimension three and higher is still open.

Data analysis and witness complexes. Generalizing a topology preserving network con-
struction in [33], de Silva and Carlsson introduced witness complexes by using the majority
of the data as witnesses that support the construction of simplices connecting a minority
of the data points [18]. While there are distinct similarities to other shape reconstruction
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methods, see e.g. [2], there are also important differences. Perhaps the most significant
difference is the liberation from the metric of the ambient space. Indeed many data sets of
interest are preferably interpreted as sampled from or nearby subspaces of positive codi-
mension. Without knowing what these subspaces are, the partition of the data into land-
marks and witnesses allows us to approximate distances in these subspaces. This liberation
favors the use of coarse landmark sets and permits the exploration of high dimensions. At
the same time, it suggests we focus on the gross, topological features of the data rather
than on the fine, geometric distinctions. A good example of this research is the analy-
sis of image data leading to the realization that small patches are located on or nearby a
hypothetical Klein bottle [8].

Coverage of sensor networks. Here the central problem is deciding whether a collection of
relatively primitive sensors with limited domains of observation cover a given region. De
Silva and Ghrist use Vietoris-Rips complexes and their homology to decide this question
under rather weak assumptions on what we know about the location of the sensors [19].
These complexes are upward completions of edge skeleta. In Euclidean space the differ-
ence between the Vietoris-Rips complex and the Čech complex (the nerve of the spherical
neighborhoods) can be quantified and related to the radius of the neighborhoods. This
leads to the characterization of coverage in terms of the homology of complexes. Using
persistence these characterizations can be made robust to fluctuations in the distribution of
sensors and gaps in the coverage.

Future directions. There are many open questions raised by our current understand-
ing of persistent homology. One of the most important is the extent to which this theory
can be generalized to a multi-variate situation in which two or more functions characterize
the data. Negative results in this direction can be found in [9]. Questions on a different
scale level are about the relationship between persistence and other broad approaches to
problems in the sciences. We feel that any attempts to answer them would be premature
but making the question specific might be productive.

Statistics. How different is the approach with persistent homology to high-dimensional
data analysis from methods in statistics? We think there is a latent symbiotic relationship.
The probabilistic aspects of persistence have not yet been explored and similarly persis-
tence has not yet been integrated in statistical approaches to data.

Machine learning. A related question is about the connection between persistent homology
and machine learning. Manifold learning is very much part of that discipline and obviously
connects to topological ideas and questions of robustness addressed by persistence.

Dynamical systems. It would be interesting to extend persistence from gradient fields to
general smooth vector fields defined on manifolds. We refer to [35] for an account of
discrete methods and combinatorial algorithms in the field. The connection to the idea of
persistence is still unclear.
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no. 35, DISMI, Università di Modena e Reggio Emilia (2003).



PERSISTENT HOMOLOGY — A SURVEY 25

[4] P. BENDICH, J. HARER AND H. KING. Persistent intersection homology for stratified spaces. Manuscript,
Math. Dept., Duke Univ., Durham, North Carolina, 2007.

[5] K. S. BROWN. Cohomology of Groups. Springer-Verlag, New York, 1994.
[6] F. CAGLIARI, M. FERRI AND P. POZZI. Size functions from the categorical viewpoint. Acta Appl. Math.

67 (2001), 225–235.
[7] G. CARLSSON, A. COLLINS, L. GUIBAS AND A. ZOMORODIAN. Persistence barcodes for shapes. Inter-

nat. J. Shape Modeling (2005).
[8] G. CARLSSON, T. ISHKHANOV, V. DE SILVA AND A. ZOMORODIAN. On the local behavior of spaces of

natural images. Internat. J. Comput. Vision, to appear.
[9] G. CARLSSON AND A. ZOMORODIAN. The theory of multidimensional persistence. In “Proc. 23rd Ann.

Sympos. Comput. Geom., 2007”, to appear.
[10] J. CERF. La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la
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