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A Generalized Sturm Theorem®

By H. M. EDWARDS**

Introduction

This paper contains a generalization of the Sturm oscillation, compari-
son, and separation theorems to the case of formally self-adjoint linear sys-
tems of even order. With the aid of a reformulation of the theory in terms
of the calculus of variations, we are able to give an elementary and self-
contained development in which the higher order cases are almost as simple
as the usual second order case. The proofs are greatly simplified by the
introduction of a new analytic tool (U-manifolds) which is discussed later in
this introduction.

The Sturm theorems deal with differential equations of the type
(0.1) —(px’y + re =¥
where ’ denotes differentiation, and where p and r are given (differentiable)
functions with p > 0. If we set Q[z, y] = px'y’ + rxy, then integration
by parts shows that x(t) is a solution of (0.1) for tela, b] if and only if

b(Q[x, y] — May)dt is zero for all y(t) satisfying y(a) = y(b) = 0.

" Let V|a, b] be the vector space of all (differentiable) functions « on [a, b],
and let V,[a, b] be the subspace consisting of those ¥ for which x(a) = x(b) = 0.
Let Q[«] be the quadratic expression Q[z, «] = pa’ + ra’. Recalling that the
nullity of a quadratic form is the degree of degeneracy of the corresponding
symmetric bilinear form, the above shows that: the number of linearly inde-
pendent solutions « of (0.1) satisfying @(a) = #(b) = 0 is equal to the nullity
of the quadratic form & — Sb(Q[x] — \&?)dt on V,[a,b]. Then the Sturm oscil-
lation theorem (number of zeros — number of negative eigenvalues) can be
restated as:

D ci<h {nullity of x — St&’z[x]dt on V]a, t]}

(0.2) \
=Y {nullity of x — S (Q[x] — Ze?)dt on Vi|a, b]} .

This has little to recommend it over the usual statement. The objection to
the usual statement is that it obscures the third and most concise description
of the number in question, namely that it is:
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(0.3) the index of ¢ — Sb&’z[x]dt on Via, b].

(The index of a quadratic form is the maximum possible dimension of a sub-
space on which it is negative definite.) The theorem which is generalized in
this paper is:

STURM THEOREM. LHS(0.2) = RHS(0.2) = (0.3).

It is generalized in the following ways:

(a) Q may depend on any number of derivatives provided it satisfies a
condition analogous to “p > 0.”

(b) Vla, b] is generalized to be complex vector-valued functlons on [a, b].

(¢) The domain of the quadratic forms may be extended from V[a, b] to
Vla, b] and they may take the form x — (Sb[m]) + B«x] where 8 is a quad-
ratic form depending on the values and derivatives of 'Zv at a and b.

(d) RrHS(0.2) is generalized to ), _, {nullity ofb «Q — xA)dt} where A,
like Q, may depend on derivatives, provided that Alis positive definite on
Vla, b]. '

Generalizations (a)-(c) have the effect of generalizing the Sturm theorem
from the case of (0.1) subject to x(a) = x(b) = 0 to the case of an arbitrary
formally self-adjoint system (real or complex) of even order subject to an
arbitrary self-adjoint boundary condition (§ 6). Generalization (d) is included
only to strengthen the following analogy: Let E be a finite dimensional vector
space, and let @,, @, be quadratic forms on E with Q, positive definite. Then

(0.4) index of Q, = X, nullity (Q, + \Q,)

as is seen by writing @, in diagonal form relative to the norm @,; i.e. by using
the spectral theorem (finite dimensional case). The equality (0.8) = RHS(0.2)
is the statement that (0.4) holds for Q,, Q, in the class of quadratic forms
described by (a)-(c).

Consider now the equality (0.2). The simplest proof of it runs as follows
(cf. Levinson and Coddington [3, pp. 209-212]): Let C be the circle consisting
of all lines through the origin of the euclidean plane (i.e., C is the real pro-
jective line) and define ¢(\, t) = the line containing (x,(t), ¥3(t)) where x is
any non-trivial solution of (0.1) with #,(a) = 0. Let p € C be the line through
(0, 1). Then ¢\, @) = p, and for ¢t > a, ¢(\, t) = p if and only if there is a
non-trivial solution of (0.1) satisfying x(a) = x(¢) = 0. Thus (0.2) is equiva-
lent to

{number of times that ¢(0, t) = p for a < t < b}

0.5
(05) = {number of times that ¢(x, b) = p for » < 0} .
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To prove this, one first proves the following statements:

(1) If \ is fixed and ¢ increases, then ¢(\, t) moves in a monotone direction
around C. [Orient C by calling this direction “clockwise”.]

(2) If t > a is fixed and M\ decreases, then ¢(\, t) moves monotone counter-
clockwise.

(8) There is a A~ such that ¢(n, t) + p whenever t € (a, b], A =\~
Then (0.5) is seen as follows: Consider ¢ restricted to the boundary of the
rectangle [A~, 0] X [a, b]. On the side ¢ = a it is constantly p. On the side
X = A~ it is p only for ¢ = @. From the fact that the total number of times
that the curve winds around C is zero (because ¢ is defined on the whole
rectangle) the intersections with » on the other two sides must cancel, hence
(0.5).

This is precisely the proof that we give for the generalization of (0.2)
(1 of the proof of Theorem 3.1). In the general case C becomes a “U-manifold”,
“clockwise curves” become “@-curves”, and the intuitive geometric argument
by which (0.5) is deduced from (1)—(3) becomes an argument based on a certain
theory of multiplicities of intersections of curves in U-manifolds with certain
subvarieties I' of codimension 1 [in (0.5), I' = p]. These generalizations are
presented separately (in § 4) but should be read concurrently with §§ 1-3.

The primary emphasis of the presentation is on the formulation of the
problem and on the method of proof. With this end in mind, the exposition
has been made almost entirely self-contained, which has had the disadvantage
of blurring all distinctions between new work and classical results. Generally
speaking, the results are not new. For example, the main theorem (Theorem
3.1) can be deduced from a strong version of the spectral theorem (in particu-
lar a version which includes the regularity, i.e. differentiability or analyticity
of the eigenfunctions, and discreteness of the spectrum); but, as is shown in
§ 5, the implication can be reversed to prove such a spectral theorem for a
large class of ordinary differential operators and boundary conditions. Such
spectral theorems are normally called Sturm-Liouville theorems, at least in
the case of second order operators. In this case, which arises in the classical
calculus of variations, Theorem 3.1 is due to Morse [5] who was the first to
generalize the Sturm theorems to the case of vector-valued operators. Many
of the methods are not original with this paper either. For example the
intersection-theoretic method is due to Bott [2] in the second order case. The
fundamental importance of considering the form Q, rather than the differ-
ential operator L, seems to be one of those facts which date back to the
beginnings of the subject but which nonetheless are constantly being redis-
covered. Finally, I would like to acknowledge my indebtedness to the papers
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of Ambrose [1] and Heinz [4] which deal with theorems not treated here, but
which suggested many of the methods used.

The contents of the paper are as follows: § 1 defines the basic notions of
“derivative dependent hermitian form”, “Sturm form”, and “solution space”,
and proves a theorem about the extent to which the solution space determines
the form (Theorem 1.2). Although this theorem is extraneous to what follows,
it is nonetheless interesting in itself, and its proof is important in § 2. The
notion of “index problem” is defined in § 2. Theorem 2.1 shows that for such
problems only Sturm forms are of interest. Propositions 2.4 and 2.6 provide
important lemmas in the proof of the main theorem. § 3 is devoted to the
statement and proof of Theorem 8.1. § 4 contains the theory of “U-manifolds”.
§ 5 relates Theorem 3.1 to the theory of eigenfunction expansions. §6 relates
“index problems” to the classical boundary value problems consisting of a
formally self-adjoint linear differential operator L of even order with positive
definite leading coefficient together with a self-adjoint boundary condition.
§ 7 gives the generalizations of the Sturm-Morse comparison and separation
theorems which result from Theorem 3.1. § 8 includes an elementary exposi-
tion of the calculus of variations and shows the role of Sturm forms in this
theory.

I would like to take advantage of my first opportunity to express publicly
my gratitude to Prof. Raoul Bott for the honor of having been his student.
Those who are familiar with his paper [2] will recognize the extent of his
influence on the subject matter here; I would be pleased to think that it bears
his mark in other ways as well.

1. Derivative dependent quadratic forms

1.1. Notation. A (real-valued) hermitian form on a complex vector
space V is a real-valued function @ on V which satisfies:

(a) The parallelogram law: Q[v, + v,] + Q[v, — v,] = 2(Q[v.] + Q[wv,)) all
v, v, €V,

(b) Qlev] =|cPQ[v]allceC,ve V.
Such a function is of the form Q[v] = Q[v, v] where Q: Vx V—C is a
uniquely determined hermitian symmetric sesqui-linear form. (Following
Bourbaki, sesqui-linear means linear in the first variable, conjugate linear
in the second.) In the case where V is finite-dimensional a hermitian form can
also be described as follows:

For a finite-dimensional complex vector space E we define E* to be the
space of all linear maps £ — C with addition and scalar multiplication defined
in such a way that the natural map E x E* — C is (linear in the first varia-
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ble and) conjugate linear in the second. This map will be denoted by brackets
{,>. Then any map a: E— E* has a dual a*: (E*)* — E*. On the other
hand, there is a natural identification F ~ (E*)* and @ = a* if and only if
the map v — (v, av) of E— C is real-valued. Then the rule @ — (v, av) is a
one-one correspondence between self-dual maps £ — E* and hermitian forms
on K.

According to context, a hermitian form will be interpreted in any of
these three ways. In particular, if Q is a hermitian form, then Q[v,, v,] will
denote the value of the corresponding hermitian symmetric sesqui-linear form.

Associated with a hermitian form @ on V we have the following notions:
Q is positive definite (resp. positive semi-definite, negative definite, negative
semi-definite) if v # 0 implies Q[v] > 0 (resp. =0, <0, =0). Elements v, v,
are orthogonal relative to Q if Q[v, v,] = 0. The orthogonal complement
relative to Q of a subspace V, will be denoted Vi (rel. Q). Q is non-degenerate
if V+ (rel. @) = {0}. A decomposition of V as a direct sum of subspaces V =
V. @ V, (in the algebraic sense) splits Q if Q[v, + v,] = Q[v,] + Q[v.] for all
v, e V., v,€ V,, and this is true if and only if V, C Vi (rel. @) or equivalently
V. Vit (rel. Q).

The notation V]a, b] where a < b are real numbers will be used to denote
the complex vector space of all C" curves x: [a, ] — E mapping the closed
interval into a finite-dimensional complex vector space E; that is, the degree
of differentiability » and the image space E will be implicit. The value of »
can be a finite integer (r continuous derivatives), o (infinitely differentiable)
or w (analytic). Otherwise stated, V]a, b] is the space of all cross-sections of
E x [a, b] — [a, b] considered as a complex vector bundle of class C”. We
have in mind the application of § 8 in which V]a, b] is simply the space of all
cross-sections of a complex vector bundle B — [a, b] with no natural trivial-
ization B~ E X [a, b]. For the sake of simplicity we always consider V|a, b]
relative to a fixed trivialization as above, but all notions considered will be
independent of the trivialization.

For x € V0a,b], tela,b], and v an integer <7 + 1, we denote
(@), 2'(t), ”(2), - -, *~(t)) € E”, where’ denotes derivative, by x*(t), drop-
ping the superscript whenever its value is clear from the context. (As an ele-
ment of E”, x”(¢) depends on the choice of trivialization. However, defining
o” () < Vla, b] by O¥(t) = {x € V]a, b] : x*(t) = 0}, O¥(t) is independent of
the choice of trivialization and x*(¢) represents the class of « in V[a, b]/0™(t).)

DEFINITION. A derivative dependent hermitian form of order <v on
Vla, b] is a rule Q which assigns to each ¢ € [a, b] a hermitian form Q(t) on V'
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such that:

(a) In the case where 7 is finite, we assume that 2y < 7.

(b) Q(t)[x] depends only on x®*V(f); i.e., only on the class of x in
Vla, bJ/O**(¢).

(¢) t— Q(t)[x] is of class C" for all x € Va, b].

REMARKS. 1. (b) and (¢) are not meaningful unless v < 7. The reason
for (a) is seen in the proof of Proposition 1.1 below.

2. Note that (c) requires as much differentiability as possible if Q is to
depend non-trivially on x®**¥(t), which is C".

Such an Q can be uniquely written as

(L.1) Q)] = 327 ., <oV (1), @)z (X))

where the w,;(t): E— E* satisfy w,;; = o}; and are C"™ in t. The simplest
case is that in which w,,(t) is non-singular for all ¢t. Invariantly this can be
stated: Q will be called non-degenerate of order v if, for each ¢, it gives a
non-degenerate hermitian form on 0®(t)/0**"(t) ~ E. This form will be called
the leading coefficient of Q (at t). Q will be called a Sturm form if its leading
coefficient is positive definite (for all t).

Tbhis paper is concerned with hermitian forms on V]a, b] of the type
x—»g Q(t)[x]dt where Q is a Sturm form on V]a, b] (although for the re-
mainder of this paragraph we merely require that Q be non-degenerate). “Q
as a hermitian form on V]a, b]” will always mean the integral, and integrals
will be written without the dt, since at all times there is only one variable,
that of the interval [a, b].

1.2 Solutions.

DEFINITION. Let Q be a derivative dependent hermitian form on Vla, b].
xe Vla,b] will be called a solution of Q if it is orthogonal rel. Q to
O™ (a) N O™ (b) for some integer n < 7.

PROPOSITION 1.1. Let Q be non-degenerate of order v, and let S be the
set of all solutions of Q. Then:

(a) S cVla, b] is a subspace of dimension 2v-dim E.

(b) For each te[a, b] we have S N O™ (t) = {0}, hence the map S— E*
given by x — x®)(t) 1s 1-1 onto for all t.

(¢) The elements of S are in fact orthogonal to O (a) N O™ (b) rel. Q.

(d) For any [t, t,] C [a, b] the solutions of the restriction of Q to Vi, t.}
are the restrictions of the elements of S.

ProoF. Rewriting (1.1) as a hermitian sesqui-linear form and integrating
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by parts formally we have
Q)lw, y] = 207 ,_ <a?(), u(t)y‘”(t)>
(1.2) =37 L), pi@y @) + o 2ond KEO(1), an ()Y (@)

= <a(t), LAy ™ @)y + W (), ARy ™ (@)

where L(t): E** — E* and A(t): E* — E** are so defined. The only spe-
cific fact about L(#) and A(f) that will be needed is that p,, and a@;,_;_,

(17=0,1,---,v — 1) are all equal to +w®,,. It follows then that if y is a so-
lution there is an integer n such that

[ <att), Ly >@dt = 0

for all x€ O™ (a) N O™(b). A simple argument shows that this implies that
Lit)yy®™(@) = 0. [In the case r = @ use the fact that if this holds for all
analytic @ then it holds for all C= ®.] On the other hand L(t)y®*"(t) = 0 is a
sufficient condition for ¥ to be a solution, except for considerations of differ-
entiability examined below. Now since w,, is non-degenerate, L is a differ-
ential operator of degree 2v, hence Ly = 0 has a unique solution for any
prescribed value of y®'(¢). Now (a)—(d) follow from (1.2), and the fact that y
is a solution if and only if Ly = 0.

Differentiability. Since derivatives of order 2v occur, the assumption
that 2v < 7 is necessary to carry out integration by parts. The coefficients
of L involve v™ derivatives of the w’s, hence are of class C"*, which is just
enough to make the solutions C”, i.e. to guarantee that the solutions are in
Vla, b].

Note that L depends on the trivialization of V[a, b], but the notion of
solution does not.

1.3. The hermitian form + on S. For yeS the number [y] =
Im {y™(¢), A(t)y™(t)) is independent of the choice of ¢ and even of the choice
of trivialization. To see this, observe that, for any y € S, the map

z— | "0)l=, u]

of Vl]a, b] — C depends, by (c), only on x™(t,) and x”(t,); even more, it de-
pends on them separately. In this way property (c¢) of solutions can be used to
show that there are unique maps A(t): S — {V]a, b]/O“"(t)}* = E”* such that

(L.3) |, 20k y] = 0, Aty
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forall x€ Vla, b], y€ S. This is the invariant description of the A of (1.2).
Now taking @« = y and using the fact that Q(t)[y] is real, it follows that
¥ly] = Im {y(t), A(t)y) is independent of t. + is immediately seen to be a
hermitian form on S, and we now claim that it is non-degenerate. To see
this, define A%¢): S — E* @ E** by A¥t)[y] = (y(t), A(t)y). From a;,, ;, =
+,, it is seen that the matrix of A¥(t) is non-singular, hence that A%t) is
1-1 onto. Now the non-degeneracy of + follows from the fact that for any
finite dimensional complex vector space F the hermitian form (v, w)—
Im (v, w) on F@ F* is non-degenerate.
The maps

(1.4) A(t): S— E¥* .

AXt): S— E* P E>* 1-1 onto
together with the defining property (1.3) of A will be used frequently. Note
that by (1.2) they are of class C*>* in t.

DEFINITION. By the solution space of Q we mean the pair (S, ) con-
sisting of the solutions S and the non-degenerate hermitian form + defined
on them by ¥[y] = Im {y(?), A(t)y)>.

1.4. d-Equivalence. Let Q be a derivative dependent hermitian form of
order <y on Vla, b]. Define dQ by dQ(t)[x] = (d/ds)|, Q(s)[x]. Then (1.1)
shows that dQ is a derivative dependent hermitian form of order <y + 1
(provided 2(v + 1) < r). Note that the coefficients are C™>~! as required.
Two derivative dependent hermitian forms will be called d-equivalent if their
difference is d of something; what class this “something” should lie in is
simplified by the fact, easily verified by formal integration by parts, that if
Q is non-degenerate of order v, and A, 5 are derivative dependent hermitian
forms of any order with A non-degenerate, then Q — A = df implies that
order 8 < v — 1, order A = order Q, and A has the same leading coefficient
as Q. Thus the notions of d-equivalence class of non-degenerate derivative
dependent hermitian forms of order v and d-equivalence class of Sturm
forms of order v are well-defined, the difference of two members of the same
class being d of a (not necessarily non-degenerate) form of lower order.

Now suppose that O — A = dB where Q, A are non-degenerate of order v.
Then from the definition of solution, the fact that order 8 < v and deﬁ’(t)[m] =
B(®d)[x] — B(a)[«], it follows that Q and A have the same solutions S.aMoreover,
by the defining property (1.3) we have A, = A, + B so, since B is real, the
corresponding +’s are equal. In short, O and A have the same solution space

(S, ¥). Not only is the converse true, but we know exactly which pairs (S, )
arise:
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THEOREM 1.2. Two non-degenerate derivative dependent hermitian
Jorms have the same solution space if and only if they are d-equivalent.
Moreover, (S, ) is the solution space of some Q if and only 1 f:

(@) S c Vl]a,b] is a subspace of dimension 2v-dim E where 2y = r.

(b) SN O™(t) = {0} for all te|a, b].

(¢) 4 is a mon-degenerate hermitian form on S.

(d) The restriction of 4 to S N O¥(t) s =0 for all t € [a, b].

1.5. PROOF OF THEOREM 1.2. We have already shown that “d-equivalent”
implies “same solution space”, and “(S, v) the solution space of some Q” im-
plies (a)-(d). The proof of the first statement is completed by:

LEMMA 1.3. If Q, and Q, have the same solution space, then they are d-

equivalent.
Proor. Let A,(t): S— E** for j = 1,2 be the maps corresponding to

Q,, Q,. Then if we have Q, — Q, = dB the uniqueness of A in (1.3) gives
(1.5) Bl = BOY] = y¥@), [A0) — 4Dy
for all y € S such that x — y € O%(t). Thus we want to show that (1.5) can
be used to define 5. Since the solution spaces are assumed equal, the RHS is
real. Moreover it is C"~*! so we need only show that the 8 it defines (ostensi-
bly of order <(2v — 1) since we must take x — y € 0®'(t) to define B) satisfies
Q, — O, = dB (from which it follows that 3 is of order <y — 1). Now y**"(?)
for y € S gives a complete set of representatives of V[a, b]/O**"(t) so it suf-
fices to show that Q,(t)[y] — Q.(t)[y] = dB(t)[y] for y € S, and this is proved
by using (1.3) to evaluate StQi(t)[y] and differentiating.

The following propositi:)n proves that (S, ) arises from an Q locally, as
will be seen following its proof. It proves in addition the most difficult part of
Theorem 2.1 below.

PROPOSITION 1.4. Let (S, v) satisfy (a)-(d) of Theorem 1.2, and let IIC S
be given satisfying:

(i) II is a subspace of dimension (1/2) dim S = v - dim E.

(ii) II N O™ (t) = {0} for all t € [a, b].

(iii) +r |IT = 0 (| denotes restriction).
T hen there is a unique non-degenerate derivative dependent hermitian
form Q of order v such that (S, ) is the solution space of Q, and such that
Q@)|v, 7] = 0 for all t e, b], ve Via, b], w € II.

REMARK. In terms of the notation of §2, conditions (i)—(iii) can be re-
stated: ITeUu(S, ) satisfies ®(¢) N II = 0 for all ¢ € [a, b].

Proor. We first prove uniqueness, finding in the process the formula
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for Q in order to prove existence. Assume then that Q satisfies the conclusion
of the proposition. Then Stlﬂ(t)[v, ] = 0 for all v e V{a, b], = € II, hence from
(1.3) we obtain A(t) |11 = 60 This turns out to be enough information to de-
termine A(%) in terms of IT and S. To see this, note first that for x€ S, we
have Im<x, Az)> = +[x] while Re<{x(t), A(t)x> = Rely(t), A(t)z> where © =
Y + 2 is the unique decomposition of & with y € IT and z€ O®(t) N S. Now let
j:: S— S be the unique automorphism of S which is the identity map on II
and multiplication by —7 on O® ()N S. Then

vl = vy — 2] = Im y(t) — 22(t), Ay — ©2))
= Im<y(t), —1A(t)z) = Rey(?), At)z>
= Re {x(t), A(H)x) .
Thus we have

(1.6) <x(t), A@)wy = yljwl] + ivle]

for all x € S. From this we have Stﬂ(t)[x] for x € S in terms of S, +, and II,
and differentiating we have Q in terms of S, 4, and II, which proves unique-
ness.

We want to show then that given S, 4, and 1I, the formula (1.6) leads to
an Q. Writing both sides as sesqui-linear forms (in (1.6) they are complex-
valued hermitian forms) we obtain

a.7m {x(t), Ay = vlim, jy] + iyle, Y]
for all #, ¥ € S from which Q is given by:

(1.8) a0, 0] = | i i

where v; € V[a,b] are arbitrary, and ;€ S are chosen such that
%, — v; € 0¥ (t). We must show that (1.8) defines Q

(1) independent of choices of «;;

(2) non-degenerate;

(3) with solution space (S, ¥);

(4) satisfying the conclusion of the proposition;

By C.
The proof of these facts lies mainly in showing that (1.7) defines an A with
the desired properties, namely that (1.7) defines A(t): S — E** onto with
kernel 1I. To see this observe that for x € O™(t) N S, we have

vliw, Jy] + e, y] = y[—ix, jy —yl.
For y e I1, this is zero by the definition of j,. For y€ O”({)N S, it is zero by
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assumption (d) of the theorem. Hence it is zero for all y € S, and it follows
that (1.7) depends only on the class of # mod O™(¢); i.e., it indeed defines
A(t): S— E>*. If A(t) is not onto, then its kernel is of dimension greater
than (1/2) dim S; taking the imaginary part, this gives a subspace of S of
dimension greater than (1/2) dim S on which v = 0, which is impossible if
is non-degenerate. Therefore A(t) is onto by assumption (c¢). Finally, if y €1l
we have
Ylix, Jy] + vle, yl = vl + @, yl

which is zero for & € 0™ (t) N S by the definition of j,, and is zero for x € I by
the assumption that v | II = 0. Hence II is the kernel of A(?).

(1) To show that (1.8) is independent of the choice of the w;, it suffices
by symmetry to show that it is independent of the choice of «,. But it is
(d/ds) |, {x.(s), A(s)x,», which, since x,(s) depends on (v — 1) derivatives, de-
pends on only v derivatives of @, at ¢.

(2) Suppose that v € O™ (t) is such that Q(t)[v, w] = 0 for all we O™(¢).
We want to conclude that v e O»*(t). Now taking we O™ (t) N S, we have

0 = Qt)[v, w] = (d/ds) |, <v(s), A(S)w)
= (d[ds) |. v(s), AQ)w) .
Since A(t)| O™ (t) N S is onto E**, this means (d/ds)|, v(s) = 0; i.e., v € O"*V(?).

(8) For ve Vla,b] and ye S, we have Q(t)[v, y] = (d/dt)<v(t), AR)y>
from which it follows that the elements of S are solutions. By non-
degeneracy this must be all the solutions, and moreover for y € S we have
Im {y(t), A@)y> = vlyl.

(4) For y eI, we have A(t)y = 0.

(5) Since t— O™ (t)N S is C™* (in the Grassmann manifold of subspaces
of S of half the dimension) so is j, (in the group of automorphisms of S),
therefore so is A, from which Q is C™.

Now Q’s satisfying the condition of the proposition exist locally. To see
this let U(S, ) be the manifold of all subspaces IT of S satisfying (i) and (iii)
of the proposition. By (d) of the theorem U(S, +) is non-empty. The geometry
of U(S, +) is studied extensively in § 4, and a trivial consequence of this study
is that for any %, € [a, b] there is a II € U(S, v) such that II N [0™() N S] =
{0}. Then there is a neighborhood of ¢, on which IT N O"(t) = {0} and on this
neighborhood the proposition applies to give an Q (on the neighborhood) with
solution space (S, v). In this way we cover [a, b] with a finite number of Q’s,
which by Lemma (1.3) are d-equivalent on overlaps. The following lemma
can then be used to piece these together to give a single Q on [a, b] with so-
lution space (S, 4+), and hence to prove the theorem.
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LEMMA 1.5. Given real numbers a < b < ¢ < d, and given Q,, Q, on
Ve, c], Vb, d] respectively, whose restrictions to Vb, ¢] are d-equivalent,
then there is an Q on Vl]a, d] whose restrictions to Via, c], Vb, d] are d-
equivalent to Q,, Q,.

Proor. If r # w, this is an easy consequence of the extendability of C”
functions defined on closed sets. In the general case, use Proposition (6.1) to
conclude that L is unique on the interval and, from the same proposition,
that there is then an Q throughout the interval.

2. Index problems
2.1. The index of the focal problem.

DEFINITION. Let @ be a hermitian form on a complex vector space V.
Consider the set of all finite dimensional subspaces of V on which Q is negative
definite. If the elements of this set are bounded in dimension, we call the
maximum dimension the index of @, denoted ix(Q). Otherwise we set
ix(Q) = o. The nullity of Q, also a non-negative integer or <, is defined
to be the dimension of V*(rel. @).

REMARKS. 1. If Vs finite dimensional, then a basis V ~ C* can be chosen
in which Q[(x,, -+, «,)] = 37 & |&;|* where ¢; is =1 or 0. Then ix(Q) is the
number of —1’s, and nul(Q) is the number of 0’s.

2. @ is non-degenerate if and only if nul(Q) = 0.

3. It is easily shown that if nul(Q) = ix(Q) = 0, then Q is positive definite.

For the moment we will be interested in the case where V =
O0»(a) N O™(b), and Q is Sbﬂ where Q is a non-degenerate derivative de-
pendent hermitian form of order . This hermitian form on this space will be
denoted, for reasons explained in 2.2, by (2, o, [a, b]). Note that (2, o, [a, b])
depends only on the d-equivalence class of ©, which in turn depends only on
the solution space (S, ). The main result of this paragraph expresses
ix(Q, e, [a, b]) in terms of (S, ). The expression of nul(Q, , [a,b]) in terms
of (S, v) is elementary—from (c) of Proposition 1.1 we have nul(Q, o, [a, b)) =
dim [S N O%(a) N O™(b)] = dim [®(a) N P(b)] where P(t) S is defined by
®(t) = S N O¥(t). The expression of ix(Q, o, [a, b]) is obtained from the
following two theorems:

LOCAL INDEX THEOREM 2.1. Let Q be a nmon-degenerate derivative de-
pendent hermitian form of order v. Then the following are equivalent:

(a) ix(Q, o, [a, b]) < oo.

(b) Setting ©(t) = SNO™M(t), the curve t — ®(t) in U(S, ¥) ts a P-curve.

(e¢) Qs a Sturm form, i.e., its leading coefficient is positive definite.
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(@) (Q, =, [a, b]) is locally positive definite, by which we mean that there
is an e > 0 such that (Q, o, [t, t,]) is positive definite whenever [, t,] C [a, b]
18 a subinterval of length <e.

REMARKS. 1. (b) is to be regarded as the “expression in terms of (S,v)”
of this property.

2. In view of (a) only Sturm forms are of interest in index problems.
The rest of the paper deals exclusively with Sturm forms.

MORSE INDEX THEOREM 2.2, If Q is a Sturm form, then
ix(Q, o, [a, b]) = X, ., nul(Q, o, [a, t])
or equivalently
= Ea<t<b dim [®(a) N ()] .

ProOF OF 2.1. (b) = (c). Let t,e[a, b] be given. Choose II € U(S, ¥)
such that II N &(t) = {0}. The tangent vector to t — ®(t) is the form
(d/d¢) |, @11, D(t,), ©(t)] which, for any v € ®(t,), has the value (d/d?) |, ¥[4.v]
where j, is multiplication by 1 on II, and —7on ®(¢). By (1.8) this is Qu(t)[v],
where Qy is the form d-equivalent to Q given by Proposition 1.4. Therefore,
since v"'(t,) = 0, the tangent vector evaluated on v is equal to the leading
coefficient of Q (since Q, Q; have the same leading coefficient) evaluated on
v™(t,). It follows that the tangent vector is positive semi-definite if and only
if (c) is satisfied. Thus by (1) of Proposition 4.7, it suffices to show that
t — d(t) is discretely self-intersecting. This is done by a classical argument
using the fact (Proposition 1.1 (b)) that the wronskian of S is everywhere
non-zero, the underlying idea being that any solution which is zero at 2v
nearby (or coincident) points is identically zero.

(c) = (d). We will show that if (c) is satisfied, and if there isa Il as in
Proposition 1.4, then (Q, o, [a, b]) is positive definite. To deduce (c) = (d)
from this statement, let I be the collection of subintervals [¢,, t,] < [, b] with
the property that there is a IT € U(S, v) for which ®(t) N II = {0} when ¢ € [Z,, t,].
We want to show that there is an ¢ > 0 such that all subintervals of length
<e¢ are in I. This is true because:

(i) subintervals of elements of I are in I, and

(ii) every point of [a, b] is interior to an element of I.

Thus let II € U(S, v) be given with II N ®(¢) = {0} for € [a, b]. Since
(Q, =, [a, b]) depends only on the d-equivalence class we can assume from
Proposition 1.4 that Q(t)[v, ] = 0 for weIl, ve V[a, b]. Then Q()[v] =
Q(t)[v — 7]. Now let Ly be the unique v™ order differential operator, with
leading coefficient the identity whose solution space is II. Explicitly Lu(t)[v]
is the v™ derivative of v — m at t where « is the unique element of II for
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which v — 7€ O™ (t). Then Q(t)[v] is equal to the leading coefficient of Q
evaluated on Lyv. Hence by (¢) we have Q(f)[v] = 0 with equality if and only
if Ly(t)[v] =0. Thereforeg Q(t)[v] = 0 with equality if and only if Lyv = 0,
i.e., veII. Thus v e domain (Q, o, [a, b]) and S Q@)[v] =0=v =0 and (d) is
proved.

(d)=(a). Lett=(¢,¢, -, t,, t,11) be a subdivisiona =t, < t, <+ <
t,<t,.,=0b of [a,b] with the property that ®(t;,) N ®(¢;;,) = {0} for ¢ =
0,1, ---, n. For such a 7, let B(z) be the space of broken solutions of Q rela-
tive to the subdivision 7, by which we mean

B(t) = {(#0, %y, +++, 3,) € S 1 1, € OV (Ly); @; — @ € OV(L))
fori=1,.--,m;x,€0%{,.)},

and let Q(7) be the hermitian form SbQ on B(7), by which we mean

QO -+, w)] = T, | e

From ®(t;) N ®(t;,) = {0}, it follows that ev: B(r) — E™ defined by
ev|[(x,, Ty, + -+, )] = (Xu(t), Xu(E2), - -+, X,(t,)) is 1-1 onto. Hence we can define
p: OY(a) N OY(b) — B(7) by p(v) = ev[v(ty), v(L,), - -+, v(t,)]. In short p(v) is
the broken solution which agrees with » at the points of 7.

Now choose 7 such that ¢,,, — ¢; < ¢ where ¢ is as in (d). Then it
follows that ®(t;) N B(t:s,) = {0}, and that Sb(l(tb)[v] > Q(¢)[p(v)]. Therefore i
W< O™(a) N O™(b) is a subspace on which S Q is negative definite, then
»|W has no kernel, and Q(z) is negative definite on p[|W] < B(r). Hence
ix(Q, o, [a, b]) =< ix[Q(7)] < o and (a) is proved.

(a) = (¢). It will suffice to show that if (c¢) does not hold, bthen there is
an infinite dimensional subspace of O™ (a) N O™ (b) on which S Q is negative
definite. Now if » ++ w, we can argue as follows: If (¢) does not hold then we
can choose F'C E and [t,, t,] C [a, b] such that the leading coefficient of Q is
negative definite on F for t € [¢,, t;]. Let Vi[t, t. < V¢, t.] be the subspace
consisting of curves whose image is in F (i e., sections of the subbundle
F x [t, t,] < E x [t, tl]) Then by choosing t,, ¢, closer together if necessary
we have by (¢) = (d) that S (—Q) is positive definite on V,[t,, t;] N O™(¢,) N
OY(t) C Vilty, td N O‘””(to) N O"+Y(t,). Extending elements of the latter
space to elements of V[a, b] by making them identically zero on [a, ¢,) and
(t,, b], we have the desired result. In the general case it is probably easiest
to decompose E x [a, b] into the sum of two subbundles such that Q is a
Sturm form on one, and —Q is a Sturm form on the other. Then except for
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a finite dimensional subspace, ng is negative definite on the space of sections
on the second bundle. ’

This completes the proof of Theorem 2.1.

The full proof of Theorem 2.2 is postponed to § 3 where it is proved as a
part of Theorem 3.1. An important step in the proof of Theorem 3.1 is the
following partial statement of Theorem 2.2.

PROPOSITION 2.4. If Q is a Sturm form and if nul(Q, o, [a, b]) = 0,
then we have

ix(Q, o, [a,d]) = X°,_, ., nul(Q, o, [a, t]) .

Proor. This is an extension of the proof of (d) = (a) above. In terms of
the notation of that proof, it will suffice to show:

ProposITION 2.4, If Q is a Sturm form, and 1f ®(a) N ®(b) = {0}, then
there is a subdivision T of [a, b] for which

ix[Q(D)] = Y.., ., dim [®(a) N D(@)] .

ProoF. Since ®(a) N ®(b) = {0}, we can choose T = (t,, * - -, t,.,) such that
t; —t,1<e, and P(t,) N P(t;) ={0} fori=1,2,.--,n + 1, where ¢ is as
in (d) of Theorem 2.1. Note that it follows that ®(t) N ®(t;) = {0} for
te[ti_y, tira], t # ;. We will show that the proposition holds for this z. To
this end, let 7, = (¢, -+ -, t._1, t,) and 7, = (¢, L., t.41). Then there are natural
inclusions of B(z,) and B(z,) in B(z) (the assumption that ®(¢,) N ®(t,) = {0} is
needed for B(7,) to be defined) whose images we identify with B(z,) and B(z.).
Then B(z,) N B(z,) = {0}, and by dimensionality we have B(z) = B(t,) D B(7,).
Now the elements of B(z,) are unbroken solutions on [t,, £,], and the elements
of B(t,) are identically zero on [t,, t,..]; so from (1.8) we have easily that
B(7;) 1 B(z,) (rel. Q(7)). Hence B(t,) 6d B(z,) splits Q(7) into Q(7,) P Q(z.)
and both steps of an inductive argument will be proved if it is shown that
ix[Q(z,)] = Etn <i<tnin dim [®(t) N ®(a)]. For this, consider the index of
a[®(t,), ®(t), ®(t,..)]. From (1) of Proposition 4.7, it is zero fort =t,,, — 0
for small 9, hence from Proposition 4.5, we have ixa[®(t,), ®(t,), P(t,+1)] =

Et” < <t”+1dim [®(a) N D(t)]. The proof of the proposition will thus be com-
plete once we prove:

LEMMA 2.5. If T consists of three values (t, t, t,), and if ®(t,), P(t,),
D(t,) are mutually disjoint, then the hermitian forms Q(t) on B(7) and
a[D(L,), B(L,), P(t,)] on B(t,) are equivalent.

REMARK. This shows the connection between (b) and (d) of Theorem 2.1.
ProoF. From d(t,) N ®(t,) = {0} it follows that (x,, x,) — ®, — x, carries
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B() one-one onto ®(t,). We will show that this induces an equivalence of the
two forms. We have

- Q@O)[(xo, )] = {xo(t), At)w,) li(l, + <xu(?), A(t)x,y ltt: .
From x, € ®(t,) and x, € ®(t,) the terms at t, and ¢, are zero while the terms at
¢, are both real. Thus ’

QO (%, #,)] = Re{lx(ty), At )y — {x(t), A(t)w)} .
Using the fact that x,(t,) = #,(¢,), this can be written

= Im{{ix,(t,), A(t)x + <{xit.), A(t,)iw, )}
= Im{{xo(t) + ixu(t), At)(@ + 1@}
= P[@, + 13, = y[J(x, — )]
where j: S — S is multiplication by 1 on ®(¢,) and by —% on ®(t,). Since this
is a[D(t,), D(t,), ®(t,)] evaluated on x, — x,, the lemma is proved.
2.2. The general index problem. The generalized Sturm theorem of § 3
deals with hermitian forms of the following type:

DEFINITION. Let © be a Sturm form of order v on V]a, b], and let
B e Herm(E* @ E*). We denote by (Q, 8, [a, b]) the hermitian form defined on

{ve Vla, b] : (v*(a), v*¥'(b)) € domain 5}
by

v— S:Q(t)['v] — Bl(v"(a), v (d))] .

(Q, B, [a, b]) is thus a particular kind of hermitian pair on V]a, b].

ExXAMPLES. 1. If B = oo cHerm(E* @ E*), then (Q, o, [a, b]) has its
former meaning.

2. If B=v@ where v;cHerm(E")(i.e., domainB = domain~, P
domain v, and B[(#,, #,)] = v:[®.] + 7.[%.]), then B is said to be separated. In
the calculus of variations such £’s arise from the problem of an extremal
subject to variation through paths whose end points lie on two given sub-
manifolds (see § 8).

3. Domain B is the diagonal of E* @ E* and B[(x, x)] = 0.

This is the periodic boundary condition. In the calculus of variations it arises
from the problem of a closed extremal subject to variation through closed
paths.

4. B8 =0. Then (Q, B, [a, b]) is simply Sbn on Via,?].

We note in passing that (Q, 8, [a, b]) aepends on more than the d-
equivalence class of Q; but that if Q, and Q, are d-equivalent, then there is an
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automorphism 8,— 8, of Herm(E> @ E”) such that (Q,, 8, [a, b]) = (Qx B, [@, b]).

We want to compute ix(Q, S, [a, b]). The advantage of the present
formulation is that it leads immediately to the following reduction of this
problem:

PROPOSITION 2.6. Let Q on V[a, b] be such that nul(Q, 5, [a, b]) = 0;
i.e., such that ©— (x(a), x(b)) maps S— E>@ E> non-singularly. Define a
hermitian form o« on E* @ E” by a(x(a), x(b)) = Sbﬂ(t)[ac] forallzeS. Then
for any B € Herm(E* @ E”) we have ’

nul(Q, B, [a, b]) = nul(Q, =, [a, b]) + nul(@ — B) = nul(a — B),
ix(Q, B, [a, b]) = ix(Q, o, [a, b]) + ix(a — B)
where we take domain (¢ — B) = domain (5).

PROOF. This is simply the observation that the decomposition Vla, b] =
[0%(a) N O™ ()] @ S splits Sbﬂ, hence (Q, 8, [a, b]) is split into (2, <, [@,b]) and
@ — afo] — Blx(a), x(b)] for w e S N domain (2, 5, [a, b]).

COROLLARY. In this case ix(, 8, [a, b]) < co. [It is shown in Theorem
3.1 that this is true in all cases].

Taken together with Theorem 2.2 this proposition gives the rule for
computing ix(Q, B, [a, b]) given just S (v is irrelevant if we know Q is a
Sturm form) and the value of Sb&’l on S. The case nul(Q, «, [a,b]) # 0 is ex-
cluded (see § 8 for the simple extension of the algorithm to this case) and is
not of interest here, but it is important in § 3 to have the following extension
of the definition of & to all cases:

DEFINITION 2.7. Let F= E* P E'* P E* @ E**, and let ¥ be the her-
mitian form on F defined by W(v,, w;, v,, w,) = —Im{w;, w)> + Im<v,, wy).
Then (v;, Wy, v;, Wy) — (Vy, v, —w,, w,) induces an identification U(F, ¥) ~
Herm(E* @ E*). Now if Q is a Sturm form on V[a, b], then the image of the
map A¥a) @ A¥b): S— F is an element of U(F, ¥). We denote the corre-
sponding element of Herm(E> @ E”) by «(2, [a, b]).

It is easily checked using Proposition 4.1 that a(Q, [a, b]) can also be
described by:

domain a(2, [a, b]) = {(x(a), x(b)) € E” D £ : v € S}
(2, [a, B)[(x(@), x(b))] = Sb&’z(t)[ac] for all we S

so Definition 2.7 is an extension of that of Proposition 2.6. It is also easily
checked that:

PROPOSITION 2.8. nul(€, 8, [a, b]) = dim [«(Q, [a, b]) N B].
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3. The generalized Sturm theorem

THEOREM 3.1. Let Q be a Sturm form of order v on Vl]a,b], and let
BeHerm(E* @ E*). Then ix(Q, B, [a, b]) < « and:
b
If A is any Sturm form on V|a, b] for which S A s positive definite
then
(a) ix(Q, B, [, b]) = >_,., nul(Q + \A, B, [a, ) .

In the case where B is of the form B = v o where v Herm(E"),
then (A) ts also equal to

(B) Ea<t<b nul(Q’ ’Y @ w’ [a7 t]) .
Finally, setting a(\) = a(Q + NA, [a, b]) for x> 0, (A) is also equal to
(©) [a(V) @ Tglesasa+

whenever ¢ is suffictently small and N+ sufficiently large.

REMARKS. 1. The normal choice of A (i.e., the choice which leads to
familiar theorems) is a 0" order form A(t)[x] = || #(t)||* where || || is a hermitian
norm on K.

2. Note that if » > 0, then Q + MA is again a Sturm form, its order being
max{order A, order Q}. If order A > order Q then (Q + \A, 5, [a, b]) has not
yet been defined. Observe, however, that the definition of (Q, 3, [, b]) in no
way depends on the fact that v = order Q, so it is clear how to make the
extension to the ecase v + order Q.

3. The Morse index theorem is the equality (B) = LHS(A) when B =
v ) . Note that this includes Theorem 2.2.

4. The Sturm oscillation theorem is the equality (B) = RHS(A) when £ =
v € . The other Sturm theorems are deduced from Theorem 3.1 in § 7.

5. The usefulness of () is that it puts (A) in a form which behaves well
under perturbations. For example it easily yields:

COROLLARY. Let s — Q, be a family of Sturm forms, all of the same
degree, depending smoothly on the real parameter s near 0. [Smoothly here
means all terms of (1.2) are continuous in s.] Then if nul(Q, B, [a, b]) =0
we have ix(Q,, B, [a, b]) = ix(Q, B, [a, b]) for all s sufficiently near 0.

The following lemma will be proved as the last step of the proof of the
theorem:

We will say that a Sturm form A on V{a, b] has “property B if gbA

is positive definite and if (A, o @ 0, [¢, b]) is positive definite (on its domaian)
for all ¢ € [a, D).
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LEMMA 8.2. If Q, A are Sturm forms on V]a, b] and A has property
@, then Q + MA has property P for all sufficiently large \.

Note. From (B) of the theorem (with the orientation reversed as in (3.1)
below) it follows easily that “SbA positive definite” implies “A has property
”, so this concept is purely a satopgap. Notice then that the lemma is an im-
mediate consequence of (A) [take B8 = 0].

PRrROOF OF THEOREM 3.1. The proof is given in steps (1)—(1X).

(1). If order A < order Q, and if A has property @ then
B.1) X,.,nul(Q + 1A, 0 B, [a,b]) = X, ., nul(Q, o B, [1, b]) .

In other words, (B) = RHS(A) where we have changed the orientation of [a, b]
to make the signs more convenient. The method of proof is a direct generali-
zation of the proof of the oscillation theorem in the introduction. For » = 0,
let (Sy, vx) be the solution space of Q + A, and let A*(\,t): S — E* O E*
be the map of (1.4). The proof will result from an examination of the map
c: [0, ©) x [a, b] — Herm(E") given by

c(n, t) = AH\, D)A(\, t) o] .

For each fixed ), this is the image under A*(\, b) of the curve { — ®(t), hence
t—c(\, t) is a @-curve for each fixed M by (b) of Theorem 2.1. Next we
claim that, for ¢ # b, the curve A — ¢(), t) is also a @-curve. This is proved
by computing the tangent vector as follows:

The + defining Herm(E>) corresponds to the hermitian sesqui-linear
form (s, v1), (s, 1)) = (1/20)[ s, v — (s, V1], Now let M — (un, v,) € ¢(N, )
be a differentiable curve, say (u,, vy) = A*(\, b)[x.] where x, € Sy N O™ (¢).
Then by the corollary of Proposition 4.6, the tangent vector at » = £ evaluated
on (u, v,) is

d

’(ﬁ' 52 Im 'lﬁ‘[('u)\, v)»)r (u$7 vé)]
— L | Re (<x:), A Bl — <xa(b), A D)
. d b . b
= eRe{gt(Q + MA) [, @] St(ﬂ + &N, we]}
d

=% | Re {(x - g)S’:A[xe, xA]} = S:A[wel

which is positive by the hypothesis that A has property .
Thus (3.1) can be rewritten as

(3.2) [e(N, @) : Ty]aso = [€(0, ©) : Ty ]acecs
using the facts that the curves are P-curves and dim[e(n,t) N 7] =
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nul(Q + MA, o @, [t, b]). To prove (3.2) we show first that there are num-
bers t,, \, such that ¢(\, t) N v = {0} if either ¢ € [¢,, b) or N €[N,, ). To find
t,, first use Theorem 2.1 to choose ¢, € [a, b) with the property that (Q, o, [¢, b])
is positive definite for all ¢t = ¢,. It follows that ¢(\,t) N o = {0} for all ¢ € [¢,, b)
and A= 0. Then choosing t, = t, such that ¢(0,t) N v = {0} for t € [¢,, b), it
follows, using (1) and (11) of Proposition 4.7 and the fact that ¢(0, b) = oo,
that c(\, t) N v = {0} whenever te€[t, b). To find A, choose a derivative de-
pendent hermitian form é of order < order Q with the property that v — d(b)
is positive definite on domain v [considering §(b) as a hermitian form on E"].
Then choosing A\, such that (Q + dé) + MA has property @ it follows that
(Q + AA, oo B, [t, b]) is positive definite for A =\, from which ¢(x, t) N7 =
{0} for A = X,

Now consider ¢(\, t) as (A, t) runs around the boundary of the rectangle
[0, Nl X [, t,]. The total intersection with I, is zero (the image curve is null-
homotopic) and there is no intersection on two of the sides, from which (pro-
vided ¢(0, a) ¢ T',) (8.2) follows. For the general case cut the corner [0, 6] x
[a, @ + 38,] out of the rectangle. It is easy to do this in such a way that the
only intersections with I', on the boundary of the small rectangle are at (0,a)
and along the open segment A=4,, t € (a, @ + 0,). Then, following the boundary
of the big rectangle minus the corner, we have LHS(3.2) = RHS(3.2). The op-
posite inequality is obtained similarly and (1) is proved.

(11). (c) follows from (A). By Proposition 2.8, it suffices to show that
x— a()) is a @-curve in Herm(E* @ E*). This is done by computing the tan-
gent vector exactly as in the proof above that » — ¢(\, ) is a B-curve.

(). = holds in (A). This is a standard argument. (Moreover, it is valid
for hermitian forms in general and a setting such as that of Proposition
5.1 can be used.)) Let0 <N <N\ < +++ <N\, be values for which
nul(Q + MA, B, [, b]) # 0, and let N;C Vla,b] be the corresponding null-
spaces. Then for y; € N;, y; € N;, we have

° b
ga(ﬂ N Y vil — Bl 9] = 0 = Sa(ﬂ + NiM)ws, w5 — B9 91
where we have abbreviated (y{'(a), y(b)) by #;. Thus
b b b
—xigaA[yi, yil = Saﬂ[yh y;l — Bl 91 = XjSaA[yi, v, .

And if N # A, all terms must be zero. Hence (2, 5, [a, b]) splits on
N,@:--P N, (noting that the formula above also proves that N; N N; =
{0} for © # 7). By the positivity of A, it is negative definite on each N; sepa-
rately, hence ix(Q, 5, [a, b]) = dim (N, P --- P N,).
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(1v). LHS(A) = RHS(A) = (B) @1 the case where 8 = oo, v = o, order A <
order Q, A has property @, and nul(Q, =, [a, b]) = 0. From (1) and (111) we
have LHS(A) = RHS(A) = (B). But we have (B) = LHS(A), by Proposition 2.4.

(V). The assumption “A has property @’ is superfluous. Assume Q
has the property that Sbﬂ is positive definite on V]a, b]. It will suffice to show
that (Q, © 0, [t, b]) is positive definite for all ¢ € [a, b).b Choose any A with
property €@ and order A < order Q. By (Iv), we have “| Q positive definite”
implies “(Q, o0, [a, b]) positive definite” implies “nul(Q, c ft b])—O fort e [a,b)”
implies “(Q, o, [t, b]) positive definite.” It remains to show that Q is pos1t1ve
definite on solutions in O™(t), i.e., that ¢(0, t) is positive deﬁmte Now Q,
positive definite” implies “c(0, @) positive definite” and since ¢(0,t) N o = fO}
for t € [a, b), the result follows by (11) of Proposition 4.7.

(vi). It suffices to prove (A). Since (B) is independent of A, we can choose
A to satisfy the conditions of (1), so (B) = RHS(A). If (A) holds, then (B) =
LHS(A) regardless of A.

(vir). (A) holds in the case where order A <order Q and nul(Q, B, [a,b]) =
nul(Q, =, [a,b]) = 0. By (1v) and (11), we have ix(Q, e, [a, b]) = [@(\) : Tlosasa+
for A* sufficiently large. Using Proposition 2.6 and (11), the statement to be
proved becomes
(3.3) [a(N) : Tglogasa+t — [@(V) : Talogasa+ = ix(a(O) — /3)
for all large A*. Since we have by (B) of Proposition 4.8 that [¢: '] — [¢: '] =
0 for any closed curve ¢, it follows that LHS(3.3) depends only on «(0) and ae(\*).
Now let 0 be a positive definite hermitian form on E* @ E*. Then it is easily
seen that RHS(3.3) is equal to [@(0) + 80 : T'gloc,<,+ for all s* large. Thus
we want to show that «(0) + s*0 and a(\") are in the same component of
Herm(E* @ E*) — I'y — I, for s*, A" large. From (1v) of Proposition 4.7, this
means we must show that ix(a@(A*) — 8| domain 8) = 0 for \* large. This is
done by letting 6 be a derivative dependent hermitian form of lesser order
such that 8 — [—d(a)] @ [6(b)] is positive definite on domain B and using
Lemma 3.2 to find a A+ for which gb(ﬂ + do + WFA) is positive definite.

(vim). ix(Q, B, [a, b)) is finite. “Choose A with order A < order @ and

A positive definite. Then a()\) is also defined for negative values of A near
zero. Since r—a()\) is a @-curve, the conditions of (VII) are satisfied by
(@ —eA, B, [a, b]) for all small ¢ > 0. Then ix(Q, 8, [a,b]) < ix(Q — €A, 8, [a, b]) =
ix(Q — €A, oo, [a, b]) + ix(a(—e) — B) < .

(1x). (A) is true. By (viI) we have for all but a discrete set of ¢ > 0 that

(As) ix(Q + €A, B, [a, b]) = 3,.. nul(Q + NA, B, [a, b)) .
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From (vi) it follows easily that LHS(A.) < LHS(A) for all ¢ sufficiently small.
Hence choosing a small € for which (A.) is true we have

LHS(A) = LHS(A.) = RHS(A,) < RHS(A)

and, combining this with (111), (A) is proved.

We conclude with the proof of Lemma 3.2. Throughout the remainder
of this paragraph Q and A are Sturm forms on VJ[a,b] and A has property
. We want to show that Q + AA has property @ for A sufficiently large.

LEMMA 3.3. Q has property @ if and only if:

(1) There is some vecQuad(E>) such that for all tela,b] we have
c(t) N v = {0} where, as in (1), we define c(t) = A¥b)A¥t) [ oo].

(2) a(Q, [a, b]) is positive definite.

COROLLARY. Lemma 3.2 is true in the case where order A = order Q.

DEDUCTION OF COROLLARY. Let Q,=sQ+ A. Then a(Q,, [a, b]) and ¢,(¢)
depend continuously on s. Since properties (1) and (2) remain unchanged under
small variation, it follows that Q, and hence Q + s™*A has property € for small
positive s. (Note: if order A < order Q, then the order of Q, jumps at s = 0
and this argument fails.)

PrROOF OF LEMMA 3.3. Since t— ®(t) = A%t) o] is a P-curve, it is
easily seen by (1) of Proposition 4.7 that (1) is fulfilled if and only if
D(t,) N D(t,) = {0} whenever ¢, t, € [a, b] and ¢, # t,. Thus if (1) holds,
(Q, o, [a, b]) is non-degenerate and, by Proposition 2.4, it has index zero.
Then (2) and Proposition 2.6 show that bQ is positive definite. Then since
c(t) N oo = {0} for t € [a, b), the concluding’z argument of (v) shows that Q has
property @. That property p implies (1) and (2) is immediate.

LEMMA 3.4. If A is of order zero, then there is an € >0 with the prop-
erty that, for any subinterval [t,, t,] C [a, b] of length <e, there is a \ such
t
that S (Q 4+ AA) has property @ on V[t t.].
to

"COROLLARY. Lemma 3.2 is true in the case where order A s zero.

DEDUCTION OF COROLLARY. Subdivide ¢ =t, <t < --- < t, = b with
t; — t;1 < ¢, and choose \; such that Q + NA has property @ on V[t,_, t.].
Setting M = max {\;}, it is immediate that Q + MA has property @ on V[a,b].

PRroOOF OF LEMMA 3.4. By Theorem 2.1, there is an ¢ with the property
that ¢, — ¢, < ¢ implies ®(t) N ®(t,) = {0} for t € [¢,, t,). Since this implies (1)
of Lemma 3.3 for Q + M on V¢, t,] (all \) it will suffice to prove that there
is an ¢ with the property that ¢, — t, < ¢ implies S:I(Q 4+ NA) is positive def-
inite for A sufficiently large. This is done by the folloowing construction:
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For s, t € [a, b] with s + ¢, let |[s, t]| denote [s, t] if s < ¢ and [¢, s] if
t <s. Let m(s,t):|[s,t]| —[—1,1] be the mapr— (2r — t — s)/(t — s).
Then m(s, t) induces V[—1,1]— V'|[s, t]| which, in turn, induces a map from
Sturm forms on V|[s, ]| to Sturm forms on V[—1,1]. We denote by
m(s, t)’[Q2] the Sturm form obtained by restricting Q to V'|[s, ¢]| and applying
m(s,t). A simple computation shows that, if ;;(r): £ — E* is the “coordinate
representation” of Q asin(1.1), then the coordinate representation of m(s,t)’[Q]
is given by

@9 s, 0@ = (;

2 >f+1w”<(t—s)q+t+s>
—s 2
where g e [—1,1]. Set Q°(s, ) = m(s, t)’[(t — $)*Q + A] where v = degree Q.
For the case s = t, we define Q'(¢, t) to be the constant coefficients form whose
leading coefficient is 2%w,(t) and whose 0™ order term is A(¢) (with all other
terms zero). Then (3.4) shows that Q"(s, t) depends smoothly on (s, t) € [a, b] x
[a, b]. By inspection Q'(¢, t) has property €, hence by continuity and the pre-
ceding lemma, it follows that Q'(s, £) has property & on some neighborhood of
the diagonal in [a, b] X [a, b], hence there is an ¢ such that [¢,, t,] C [a, b], and
t, — t, < € implies thatg (Q + (t, — t)™™A) is positive definite on V[t,, t,] as
was to be shown.

Proor oF LEMMA 3.2. The case 0 < order A < order Q remains. Choose
A, of order zero. From Lemma 3.3, there is an ¢ > 0 such that —eA, + A has
property . From Lemma 3.4, there is a K such that O + KA, has property P.
Hence Q + (K /¢)A has property €, and the lemma is proved.

4, U-manifolds
4.1. Definitions and examples.

DEFINITION. By a u-manifold we mean a set U(E, 4) obtained from an even
dimensional complex vector space E and a non-degenerate hermitian form + on
E of signature zero [i.e., nul(y) = 0, ix(y+) = ix(—+)] by setting U(E, 4) = {all
subspaces P C E of dimension (dim E)/2 with the property that | P = 0}.

REMARKS. 1. A non-degenerate + has signature zero if and only if there
is a P of half the dimension for which + | P = 0; i.e., if and only if U(Z, +) is
non-empty. For the 4 of 1.3, the subspace ®(t) = S N O™(t) shows that the
signature is zero.

2. Let G be the Grassmann manifold of all subspaces P C E of half the
dimension of E. Then U(E, ) can also be described as the fixed point set of
the involution P — P+ (rel. v) of G. In this way U(E, +) becomes a topological
space, and in fact a manifold.
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3. Since two non-degenerate hermitian forms on E are equivalent if and
only if they have the same signature, it follows that U(E, ) is determined,
up to isomorphism, by the dimension of E.

Example 1. Let F be a complex vector space with a given hermitian norm
|| [|*. Let + be the hermitian form on F'@ F defined by v[(x, y)] = ||2|]*— ||¥]]*

Then U(F'@ F, ) is the set of all graphs of norm-preserving linear maps
F—F.

REMARK. This example shows that as a topological space U(E, ) is
homeomorphic to the unitary group u(n) where 2n = dim E.
Example 2. E= F@ F*, where F is a finite dimensional complex

vector space, and v is defined by v[(2, ¥)] = Im{x, ¥>. Then U(E, ) has the
following interpretation:

DEFINITION. By a hermitian pair on a complex vector space ¥, we mean
a pair (=, B) where 3 is a subspace of F' and 8 is a hermitian form on =.

PRrROPOSITION 4.1. The elements of U(F @ F*, ) of Example 2 corre-
spond one-one with hermitian pairs (=, B) on F by the rule

E,B8) —~{(x,y)e FP F*:xe= and {z,y)> = Bz, x] for all ze 5} .

Proor. It is immediately seen that the RHS is a subspace on which
is zero. That its dimension is dim F' is seen from the fact that its projection
on the first coordinate has image =X 0 and kernel 0 @ +. Conversely
if Peu(F & F*, ), set =, = projection of P on first coordinate, and define
Bolx] = <z, y> where (¢, y) € P. Then 3, is real-valued and we need only show
it is well-defined. But if (%, ), (¢, ¥') € P, we have (z,y + i(y — ¥')) € P hence
Im<w,y + iy — ¥')) = 0 from which Re{z, > = Re <z, y".

DEFINITION. The set of all hermitian pairs on F, considered as the U-
manifold of Example 2, will be denoted Herm(F'). The element F 0, i.e.,
the pair (£, 0), will be denoted by 0 € Herm(F'). The element 0 P F'*, i.e., the
pair ({0}, 0), will be denoted by o € Herm(F').

REMARKS. 1. If F = C, then the Grassman manifold G is the complex
projective line (i.e., the Riemann sphere) the involution is complex conjuga-
tion, and Herm(F') is the real axis plus the point at o,

2. The correspondence between Examples 1 and 2 is given by the Cayley
transform.

4.2. The structure of U-manifolds. Let U = U(E, +). By an auto-
morphism of U we mean a map U — U induced by an automorphism of E which
leaves + invariant. From Example 1, it is easily seen that the group of auto-
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morphisms acts transitively on U. From Example 2, it is easy to deduce the
following proposition:

DEFINITION. For Pe U, set I', ={Qe U: PN Q # 0}. [We mean, of
course, P N Q # {0} but will often overlook this detail for the sake of sim-

plicity.]

PROPOSITION 4.2. The group of all automorphisms of U which leave
P fized acts transitively on U — I'p (set theoretic—).

Proor. Take P = o € Herm(F).

Otherwise stated, for any P, P,, Q,, @, € U with P; N Q; = 0 there is an
automorphism of U carrying P,— P,, Q,— @, so any pair of disjoint planes
is like any other. However, three disjoint planes give rise to the following
non-trivial invariant:

DEFINITION. Given P, Q, Re U with PN R = 0, define a hermitian form
a(P,Q, R) on Q as follows: Let j: E— E be the unique map which is the
identity on P and multiplication by —i on R. Then set a(P,Q, R)[q] = v[jq]
for q e Q.

PROPOSITION 4.3. Given P, Re U with PN R=0. Then for Qe U we
hawve:

(1) (P, Q, R) is non-degenerate if and only if PN @ =RNQ =0, 1i.e,
if and only if P, Q, R are mutually disjoint.

(2) Q — ixa(P, Q, R) is a continuous integer-valued function on
U — T, — 'y, which distinguishes components. In particular, U—Tp —T'g
has (dim E/2) 4+ 1 components.

ProoF. We can take U = Herm(F'), P=0, R = o. It is easily checked
that te PN Q or e RN Q implies «# is in the nullspace of a(P, @, R).
Suppose then that PN Q@ = RN Q = 0. Then @ is of the form {(x, a,)}
where a,; F'— F* is self dual and non-singular. Then «(P, Q, R) is the
map (x, ayx) — &, a,xy which is non-degenerate and (1) is proved. (2) is simply
the statement that the space of all non-degenerate hermitian forms on an
n-dimensional space F has (n + 1) components which are distinguished by the
index.

Near P this labelling of the components of U — I's — I', is independent
of R. Specifically:

PROPOSITION 4.4. Let P, R, R,c U be such that PN K, = PN R, = 0.
Then there is a neighborhood N of P, Pe NC U — I'y — T'y,, such that for
all Qe NN (U — I'p), we have ixa(P, Q, R,)) = iica(P, Q, R,).

ProoF. Join R, to R, by a curve R(t) in U — I',. Then the union of the
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Tz is a closed set not containing P. Let N be its complement. Then for
Qe NN (U—T5;) the integer ixa(P, @, R(t)) depends continuously on ¢, hence
is constant.

DEFINITION. A curve Q: [a, b]— U is called a @-curve if, for any t, € [a, b)
and any R e U with Q(¢,) N B =0, there is an ¢ > 0 such that a(Q(t,), Q(t), R)
is positive definite for all ¢ € (¢,, t, + ¢).

PRrOPOSITION 4.5. Let Q: [a, b] — U be a B-curve. Then for any Pe U,
the curve Q intersects I'p in a discrete set of points. Moreover, if there is
an Re U such that the curve Q does not intersect I'y,, then

ixa(P, Qa), R) = ixa(P, Q(b), R) + Y., nula(P, Q(t), R)
= ixa(P, Q®), R) + X, dim[P N Q)] .

ProOF. The proposition reduces easily to the following statement: Let
t — B(t) be a curve of hermitian forms on F' with the property that A(t,) — 5(t,)
is positive definite whenever ¢, > t,. Then B(¢) is non-degenerate except at a
discrete set of ¢’s, and for small ¢ > 0 we have ixB(t, + ¢) = ix8(t,), ixB(t, — &) =
ix5(t,) + nulB(¢,). This is seen by taking a decomposition F = F,. P F, P F-
such that Fj is the nullspace of A(t,), while F, (resp. F_) is a subspace on
which B(%,) is positive (resp. negative) definite. Then B(t, + ¢) is positive defi-
nite on F,. @ F; and negative definite on F_, from which it follows that
B(t, + ¢€) is non-degenerate with index equal to dim F_. Similarly B(¢, — €) is
non-degenerate with index dim (F_ @ F,).

PROPOSITION 4.6. Let Q: [a,b] — U be a differentiable curve, and let
to€la, b]. Then the hermitian form (d/dt) |, (P, Q(t,), Q(t)) (the derivative
of a curve of hermaitian forms on Q(t,) is @ hermitian form on Q(t,)), defined
Sor any Pe U — T(t,), ts independent of P.

DEFINITION. The above form on Q(t,) will be called the tangent vector to
the curve Q at Q(t,).

REMARKS. 1. It is easily seen that the tangent vector is, as the name
implies, a complete characterization of the first order properties of the curve
Q at Q(%,).

2. It is easily proved that a curve all of whose tangent vectors are posi-
tive definite is a B-curve, but not conversely.

PROOF OF PROPOSITION. Let q € Q(¢,). For any P complementary to Q(%,)
we have a unique decomposition ¢ = p(t) + q(t) where p(t) € P, q(t) € Q(¢) (for
¢t near ¢,). Then computation gives a(P, Q(t,), Q(®))[q] = 2 Im [q(t), ¢]. Now
let ¢t — q(t) be any differentiable curve in E with g(¢,) = ¢ and g(t) € Q(t).
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Then differentiating the relation +[q(t), @(t)] = 0 we have

@y 4| 2Imyla), o) = | 2Imy[a0), q]

which proves not only the proposition but also:

COROLLARY TO PROOF. The tangent vector to t — Q(t) at Q(t,) evaluated
on q € Q(t,) is equal to LHS (4.1) where t — q(t) is any differentiable curve
with q(¢) € Q(t), q(t,) = q.

We conclude this section with a catch-all proposition which is simply a
list of properties needed elsewhere. The proofs are elementary.

PROPOSITION 4.7. (1). A curve t— Q(t) € U is a @-curve if and only if
it has the property that, for t, in its domain and P€ U — Ty, there is
an € > 0 such that a(P, Q(t), Q(t,) is positive definite for t e (t, — ¢, t,).

(1). If Q: la,b]— U is a P-curve, 1f a(P, Q(a), R) is positive definite,
and if Q) N R = 0 for t €[a, b], then Q(t) N P = 0 for t € [a, b].

(). A curve Q: [a, b] — U will be called discretely self-intersecting if
there is an € > 0 for which Q(t,) N Q(t) = 0 whenever 0 < |t, —t,| < . Then
a differentiable curve Q is a P-curve if and only if

(i) 4t is discretely self-intersecting, and
(ii) ets tangent vector at each point is positive semi-definite.

(1v). Given P, P,, Q,, Q,c U, there is an automorphism of U which
carries P,— P,and Q,— Q, if and only if dim[P,N Q,] = dim [P, N Q,]. In
the case where U = Herm(F'), Q = o and P = (I, B), a hermitian form
YeHerm(F) — I', @8 in I35 of and only tf (v — B|Z) s degenerate, from
which it follows that Herm(F') — T — D'z, has (dim = + 1) components
which are distinguished by the function v — ix(y — 8| 3).

4.3. Intersection theory. The intersection theory is specified by the
following axioms:

Fix Qe U.

Axiom 1. An integer, denoted [P(%) : T'gl.<:<, and called the total inter-
section of P with Ty, is assigned to each (continuous) curve P: [a, b] — U for
which P(a), P(b) ¢ T,.

Awiom 2. If (s,t)— P,(t) is a map of [0,1] X [a, b] — U with P,(a),
P,(b) ¢ Ty for se|0, 1], then [P,(t) : T¢l.<:<, is independent of s.

Axiom 3. If P:[a,c]— U and be(a, c) are given, and if P(a), P(b),
P(c) ¢ T'y, then

[P(®) : Dolasese = [P(t) : Tlasess + [P(#) : Tolosise -
Axiom 4. If P:[a, b] — U is a @-curve such that P(t) e T, for only one
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t, € (a, b), and if dim [P(t,) N Q] = 1, then [P(t) : T¢),<,<p = 1.

ProposITION 4.8. Awioms 1-4 uniquely determine [P(t): Tyl.<i<,. We
have the further properties that:

(A). If Pisa @-curve, then [P(t): Uolocics = D ..., dim [P() N Q].

(B). If P(a)= P(b), then [P(t):T,].<.<, ts independent of Q (as long as
it is defined; i.e., P(a) ¢ T'y).

Proor. Axioms 1-3 say that [P: I',] is a homeomorphism of the relative
homotopy group 7,(U, U — T) into the integers Z. Since U is homeomorphic
to the unitary group and U — Ty is a cell, it follows that #(U, U — I'y) = Z
and Axiom 4 will determine the homeomorphism uniquely. It remains only
to show that Axiom 4 can be fulfilled; i.e., that any two curves of the type
it describes are in the same class of 7, (U, U — T'y) and that this class is a
generator. To prove this, let P, P, be two such curves. Using Axiom 2 to
shrink their domains if necessary we choose a representation of U as Herm(F')
with @ = 0 in which P, and P, lie in Herm(F') — I'... Choosing a basis in F'
we see from Proposition 4.5 that, modulo deformations of P; in U — I',, keeping
end points in U — I', — I'.,, we can assume that the P; are of the form

(4.2) t—diag (=1, —1, +++, —1,¢, 1,1, -+, 1) te[—1,1]

there being dim F' such curves, one from each component of U — I', — I'.. up
to the next component. Taking the Cayley transform they become

0 — diag (—i, —i, -+, —1, €9, 4,0, - -+, ) 0e [—E, l] :

2 2

Now these curves are homotopic mod (U —I'y) (Q is the identity matrix) to
the closed curves diag (—1, ---, —1,¢® —1, --., —1) for e [—mx, ] which
are all representatives of the same generator of 7,(U). Thus P, and P, are in
the same class of m,(U, U — T'y), and that class generates.

To prove Property (A), we can treat each of the values t, for which
P(t)) N @ # 0 individually. Choose a representation of U as Herm(F') in which
@ =0 and P(t,) ¢ I'.. Then from Proposition 4.5, we see that P is homotopic
mod (U — T'y) to k of the curves (4.2) laid end to end, where k = dim[P(¢,) N Q].
Then (A) follows from the proof and Axiom 3.

Property (B) follows by observing that the intersection theory for @ was
shown to arise from a choice of generator [the class of diag (—1, ---, —1, €%,
—1, «++, —1)] of 7,(U) followed by 7 (U)~ 7 (U, U — I')). Hence we need
only show that the choice of this generator of 7,(U) is independent of Q. This
follows from property (A), which shows that a closed @-curve must have
positive total intersection with I', regardless of Q.
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S. Eigenfunction expansions

The relevance of the generalized Sturm theorem of the existence of eigen-
function expansions is seen from the following general observation:

DEFINITION. Let @ and R be hermitian forms on V. An eigenvector of
of the pair (@, R) is a non-zero vector v for which there is a complement
W < V with the property that V = {cv} @ W splits both Q and R. (If either
Q[v] or R[v] is non-zero, then W is unique).

ProprosITION 5.1. Let Q, R be hermitian forms on V with R positive
definite. For any real \, let W, be the linear span of all eigenvectors v of
(Q, R) for which (@ + MR)[v] < 0. We assume:

(1) W, is finite dimensional, and

(2) @ + \R s positive semi-definite on Wy (rel. R).

For a given x € V, let x, be the orthogonal projection (rel. R) of x on
W,. Then lim,__, R[x — x,] = 0.

ProoF. We will call W < V a splitting space of (Q, R) if it has a comple-
ment W’ such that W@ W' splits Q and R. (Thus an eigenvector is a one-
dimensional splitting space.) Since the span and intersection of two splitting
spaces are again splitting spaces, it follows that the W, are splitting spaces
of (Q, R). Without loss of generality we can assume that Q is positive definite
because (1) and (2) imply that @ + KR is positive definite for K large, and
changing Q@ to @ + KR does not change the conclusion. Now by (2) we have
Q@ + AR)[x — x,] = 0, so (—\)'Q[x — x,] = R[x — x,], and it suffices to show
that Q[x — «,] is bounded as A — — oo, which follows from

Qlz] = Qay] + Qlr — x,\] = Qr — =] .

REMARK. Under the assumption that R is positive definite, we have v

an eigenvector if and only if {cv}i(rel. R) C {cv}i(rel. Q) if and only if

(Q + MR)[w, v] = 0 for all we V where A = —Q[v]/R[v]. Hence the present
definition of eigenvector reduces to the usual one.

COROLLARY. Let Q, A be Sturm forms on V]a, b] with order A < order Q
and SbA positive definite, and let B e Herm(E>* @ E”). Choose a sequence
Yy Usy -+ € Va, b] such that:

(1) v, is in the nullspace of (Q + NA, B, [a, b]) for some \;.

(2) N = Ny

(3) For any real \, the y; which are in nullspace of (Q + xA,bB, [a, b))
are a basis of this nullspace and are orthonormal with respect to \ A.

Given x € domain (Q, B, [a, b]), set ’
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c; = SbA[w, vl .
Then

b
T P

PROOF. In the notation of the proposition, let V = domain (Q, 8, [a, b]),
Q =(Q, B, [a, b)), R = SbA. Then v is an eigenvector of (Q, R) if and only if
it is a non-zero element of the nullspace of (Q + MA, 8, [a, b]) where \ =
—Q[v]/R[v]. Thus W, is a direct sum of nullspaces, and by Theorem 3.1, the
sum contains a finite number of finite-dimensional terms. More importantly,
Theorem 3.1 says that the dimension of W, is equal to the index of (Q + \R)
s0, since @ + \R is negative definite on W,, it follows [ W, is a splitting space
of (@, R)] that (2) is satisfied. Thus the conclusion of Proposition 5.1 holds.
The y’s and ¢’s simply constitute a computation of z,.

A more familiar statement would be:

COROLLARY (Sturm-Liouville theorem). Let (Q, 8, [a,b]) be given on
Vla, b]. Take A to be A(t)[x] = || z(t) ||> where || || 18 a norm on E. Let H be
the Hilbert space obtained by taking the completion of domain (Q, B, [a, b])
relative to the L* norm bA. Then the functions y, defined by the relevant
etgenvalue problem (see §a6) and by (1)—(3) above, are a complete orthonormal
set in H.

ProoF. The assertion is that linear combinations of the y; are dense in H.
It follows from the proposition that they are dense in domain (@, 8, la, b])
hence they are dense in H.

6. The classical formulation

PrOPOSITION 6.1. Let Q be a mon-degenerate derivative dependent
hermaitian form of order v on Vla, b], and let {,> be a hermitian norm on
the image space E of V]a,bl. Then the formula (1.2) associates to Q a
Sormally self-adjoint linear differential operator L of order 2v. Moreover,
there 1s a natural one-one correspondence 11: Herm(E> @ E*) — {self-adjoint
boundary conditions for L on [a,b]} such that x is in the nullspace of
(Q, B, [a, b]) if and only if Lx = 0 and x satisfies the boundary condition
II(B). Any self-adjoint boundary value problem (L, 11) in which L is formal-
ly self-adjoint and of even order arises in this way.

ProoOF. To see that the L of (1.2) is formally self-adjoint, use the identity
Q[z, y] = Qly, ¥] to obtain

©.1) <o, Lyy — <Lx, Uy = - [KAX, ¥> — &x, AV}
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Now for any L there are unique L* and B(t): E* x E* — C (sesqui-linear)
such that

6.2 o, Ly> — <L*x, 4 = % Bt)[x, y]

by integration by parts. Thus (6.1) gives L = L* and B(@)[x,y] =
{Ax,y> — {x, Ay>. Now when L is formally self-adjoint, i.e., L = L*, a
self-adjoint boundary condition for L on [a, b] is by definition a subspace
I1 € E* such that

(6.3) *B(a)[(vu vy), (vy, ’02)] + B(b)[(’vm Vy), (Vs ’1)4)] =0

for all (v, v,, v, v,) €. Let SA be the set of all such II. Since B is (by

uniqueness) skew hermitian, the real part of (6.3) is zero. Its imaginary part,
on the other hand, is

—2 Im<v,, A(a)(vy, v,)) + 2 Im{w,, ADd)(vs, V) .

Define G: E*— E*@P E* P E* P E** by Q(v,, vy, v, v,) = (v1, A(a)(vy, vy),
vy, A(D)(vs, v,)). In terms of the notation of Definition 2.7, we then have SA =
{1 ¢ E*: Q[II] € u(F, ¥)}. Hence @ (which exists for the same reason that
At is non-singular) induces Herm(E* @ E*) — SA. Take this map as the II of
the proposition. If x € Via, b], then it is easily seen from Propositiobn 4.1 that
Lx = 0 and (x*(a), x*'(b)) € I1(B) if and only if % € domain B and g Qly, ] =
B[z, §] for all y € Vl]a, b] with 4 € domain B [where Z means (x‘”;l(a), x™ (b))
and similarly 7].

It remains only to show that every (L, IT) arises in this way, and for this,
it will suffice to show that every even order self-adjoint L arises from some
Q via (1.2). This is done by integrating <&, Ly> by parts to put it in the
form 3 (&, 0,4 where w;; =0 for |71 —j|>1 and ®; ;11 + @i11.s = 0.
Then the assumption L = L* and (6.2) imply, without too much difficulty,
that w; ; = ®;,; and that Q defined by Q[x] = 3 (&, w,;x'") gives rise to L.

Remark. We have as an easy corollary that  is unique under the as-
sumptions w,;; =0 for |4 — 7| >1 and w;,;;; + ®;,,; = 0. In this case the

; ; are hermitian and the terms w,;;, and ®,,,,; are skew hermitian. This
yields a well-known canonical form for a self-adjoint L.

7. The Sturm theorems

It has already been pointed out that the Sturm oscillation theorem is the
equality (B) = RHS(A) in Theorem 3.1.

COMPARISON THEOREM 7.1. Let Q,, Q, be Sturm forms on Vla,d], and
assume that Q,t)[z] = Qt)[x] for all ze Vl]a,b] and tela,b]. Let
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BeHerm(E” @ E”) for any positive integer v. Then
ix(Q, B, [a, b]) < ix(Q, B, [a, b)) .
In this formulation the theorem is obvious.

COROLLARY 1 (Sturm comparison theorem). Let L,z be defined to be
— (@) + ra where p, p,, ry, v, are differentiable real-valued fumnctions
of a real variable tela,b] with p,= p, >0, r, =71, and where = is a
real function of tela,bl. For i =1, 2, let x; be a non-trivial solution of
Lix; = 0 for which x(a) = 0. Then x, has at least as many zeros on [a, b] as
x, does.

Proor. The number of zeros of x; is, by (B) of Theorem 3.1, equal to
ix(Q,, oo, [a, b]) where Q,(¢)[x] = px”? + rat.

COROLLARY 2. Let Q,, O, be as in the theorem, and assume further that
(Qy, o, [a, b]) is positive definite and order Q, = order Q, = v. Let
7: € Herm(E">) be the hermitian form such that SbQi[x] = 7[x(®)] for all so-
lutions x of Q; in O (a). Then v, = v,. ’

PROOF. 7; can also be described as the largest hermitian form v on E*
for which ix(Q;, e @7, [a, b]) = 0, and the corollary follows.

The present formulation does not seem to lead to a natural generalization
of the Rauch comparison theorem (Rauch, [6, p. 43]), but a substantial part of
the proof of that theorem (Lemma 2, p. 43) is a special case of Corollary 2.

SEPARATION THEOREM 7.2. Let Q be a Sturm form of order v on Vla, b],
and let v,, v, € Herm(E*). Then for any [t, t,] C [a, b], we have
D iysiee, NULQ, @ Dy, [E, 0]) — 30 iz, nul(Q, o @ 7, [¢, b])
< dim(E”) — dim(7v, N 7,) .
Proor. Let ¥; = A%b)'[7:] € U(S, v). Then the LHS can be rewritten as
[®() : P§l]t0§tst1 — [®(@) : P72]t0§t§tl
(if ®(t,) or ®(t,) intersects 7, or 7, extend to a slightly large interval). As

in (vII) of the proof of Theorem 3.1, this expression depends only on ®(t,) and
®(t,). The result is then clear from (1v) of Proposition 4.7.

to

COROLLARY (Sturm separation theorem). If x,, @, are solutions of
—(pxi)’ + rx; = 0 where w;, p, r are differentiable real-valued functions of
tela, b] with p(t) # 0, then any interval which contains two zeros of w,
must contain a zero of x,.

Proor. Take Q(t)[x] = & (px’* + rx?) where the sign is chosen to make
Q a Sturm form. Take 7; to be the subspace of E@ E* (E = complex numbers)
generated by A*(b)[«;]. Then x,(t) = 0 if and only if nul(Q, o @ 7, [¢, b]) = 1.
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Since dim(E”) = 1 and dim(v, N 7,) = 0, the result follows.

8. Calculus of variations

Hermitian forms of the type (2, 8, [a, b]) occur in the calculus of varia-
tions as follows: Let M be a differentiable manifold. Let P be the space of
all differentiable curves in M parametrized on [0, 1]. Let N be a submanifold
of M x M, and let Py = {pe P: (p(0), p(1)) € N}. A function L on the tangent
bundle T'(M) gives a function J on P by the usual formula J(p) = SIL(p’(t))dt
where p’ is the tangent vector to p. A path p € Py will be called an0 extremal
of J relative to N if the gradient of J is zero on the tangent space to Py at
p; or, more precisely, if (d/ds) |,J[p,] = 0 whenever s — p, € P satisfies

(i) (s, t) — p,(t) is differentiable for (s, t) € [—¢, €] X [0, 1].

(ii) p,e Py forse[—e¢,ce¢].

(iii) p, = p.

Now let p be a given extremal of J relative to N. Let B be the induced bundle
p [T (M)]; i.e., B is the real vector bundle on [0, 1] whose fiber at t € (0, 1) is
the tangent space to M at p(t). Let S(B) be the space of all differentiable
cross-sections of B. [S(B) is the tangent space to Pat p and is best visualized
as the space of vector fields along p.] Let S(B)y = {x € S(B): (%(0), (1)) is
tangent to N at (p(0), p(1))}. [S(B)y is the tangent space to Py at p.] Define
a quadratic form H (the hessian) on S(B)y by

Hiol = | Jlp]

ds?

where s — p, satisfies (i)—(iii) above and has tangent vector «; i.e., ®(t) is the
tangent vector to s — p,(t) for each t.

PROPOSITION 8.1. H s independent of the choice of p, and defines a
quadratic pair on S(B) which is of the type (Q, 5, [0, 1]) where order Q < 1.
[In particular, since domain (Q, B, (0,1]) = domain H = S(B)y we have
that domain B is the tangent space to N at (p(0), p(1))].

PrOOF. This is the derivation of the “second variation formula,” a
straightforward computation consisting of differentiating under the integral
sign and using the fact that p is an extremal of J relative to N.

The index of H is called the index of p considered as an extremal of J
relative to N. The Morse theory relates the indices of such extremals p to
the topology of Py, subject to the assumption that L is such that the Q of
Proposition 8.1 is a Sturm form and, normally, the assumption that nul(H) =0
for all extremals p. Thus one is interested in methods of computing indices
of extremals, which constitutes the second part of the Morse theory. Theorem
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2.2 and Proposition 2.6 give ix(H) in terms of:

(1) The zeros of the solutions of Q.

(2) The value of H on solutions of Q.

(3) The quadratic form 3.
or in more familiar terms:

(1) The zeros of Jacobi fields X along p.

(2) The values and covariant derivatives (X(t), X(t)) of Jacobi fields at
t =0 and t = 1 (using formula (1.3) and the fact that X(¢t) = A(¢)X in the
usual formulation).

(3) The second fundamental form of N C M x M at (p(0), p(1)) relative
to the normal direction given by p.
This method of compuation is valid subject to the following two remarks:

1. The Q above is defined on a real vector bundle B. However, the prob-
lem is unchanged if it is complexified as is shown by the following:

PROPOSITION 8.2. Let Q, be a (real) quadratic form on a real vector
space Vg, let Vo, = V, P iV, be the complexification of Vi, and let Q, be the
unique extension of Q to a hermitian form on V, (namely Q,[v + tw] =
Q:lv] + Qalw]). Then ix(Q,) = ix(Qz) and nul(Q;) = nul(Qx).

PRoOOF. The only part which is slightly tricky is the proof that ix(Q,) =<
ix(Qz). In the finite dimensional case, this is proved by writing Q, in canonical
form. The infinite dimensional case is reduced to the finite dimensional case
by considering W\/ W for any finite dimensional subspace W V, on which
@, is negative definite.

2. Proposition 2.6 assumes that a N oo = {0}; i.e., no Jacobi fields vanish
at both ends. For the general case we need a trivial improvement of this
proposition:

PROPOSITION 8.3. Let Q be a Sturm form of order v on V]a,b]. Let
e—(e) for ¢ =z 0 be a P-curve in Herm(E* @ E”) with v(0) = a(Q, [a, b]).
Then for any B € Herm(E* @D E*), we have

ix(Q, B, [a, b]) = ix(Q, o, [a, b]) + ix(¥(e) — B |domain B)
for all sufficiently small ¢.

[For an application see Example 1 below].

PROOF. Let A be a Sturm form with bA positive definite and order A <
order Q. Set d(e) = a(Q + €A, [a, b]). Then o(¢e) is a @P-curve (11 of Theorem
3.1). By semi-continuity of the index (i.e., ix(Q + €A, 8, [a,b]) = ix(Q, B, [a, b])
for small ¢) and by Proposition 2.6, the present proposition is true if
we choose 7(¢) = d(¢). But it is easily seen that the component of ¥(¢) in
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Herm(E" @ E”) — I'y — I'.. is independent of the choice of the @-curve 7,
hence so is ix(v(¢) — B) by (1v) of Proposition 4.7, and the proposition follows.

We concluded with two examples considered by Bott [2]. The background
of these is as follows:

Let M, L, J be given as before, and let N be the diagonal of M x M.
Then an extremal p of J relative to N is a closed curve and its »™ iterate g"
[i.e., go around g n-times] is easily seen (Euler’s equations) to be an extremal
of Jrelative to N too. The problem is to find the index of g”. This is reduced
to a set of boundary value problems by:

THEOREM (Bott). Let Q be a Sturm form of order 1 on V|0, n] which is
periodic with period 1; i.e., Qt)[x] = Q(t — 1)[y] when x(t) = y(t — 1). For
any complex number z +# 0, define B,c Herm(E@ E) by domain B, =
{(v, zv) : ve K} and B,[(v, 2v)] = 0. Then

nul(Q, 8., [0, n]) = Y nul(, ., [0, 1])
iX(Q, 8., [0, n]) = E iX(‘Q" B 10, 1]) .

where summation is over all »™ roots w of z.

Proor. By Theorem 3.1, it suffices to prove the statement for the nullity.
This is done in [2, p. 177].

The problem of iterated extremals leads to the cases 2 = +1, and hence
to the functions A, N defined on the unit circle || = 1 by

Aw) = ix(Q, B., [0, 1])
N(w) = nul(Q, 5., [0, 1]) .
[Note. A geometric problem leads to complex boundary conditions.] Now if
a(, [0, 1]) (henceforth denoted «) is given, then it is a matter of simple
computation to find N () and to find A(w) up to an additive constant.
Computation of N(w). As in Definition 2.7, let « be considered as a sub-
space of F = ED E*@ EP E*. (In the notation of Bott, « is the graph of
the Poincaré matrix X.) Now B, ¢ Herm(E @ E) is {(x, ¥, wx, wy} € F:xc E,
y € E*} (using the fact that @ = w) and N(w) = dim[a N B,] is easily found.
Computation of A(w). Let k = ix(Q, oo, [0, 1]). Then A(w) — k is given
by Proposition 8.3. We consider the examples of [2, p. 181].
Example 1. a = B,. In this case N(w) =0 for w #+#1 and N(1) = 2n
where n = dim E. For v(e) we can take the hermitian form on E P E defined

by v@)[(x, )] =¢lle+ y|? — e ||x — y|?, where ||| is some norm on E.
Then A(w) — k = index of v(¢) on {(¢, wx)} which is 0 if ® =1 and » if ® # 1.
Example 11. a[(x, y)] = (20)7" ||y — @ |]’, where || || is a norm on E and

o # 0 is a real number. Then N(w) = degree of degeneracy of « restricted
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to domain B,, whichis 0if w # 1, nif ® = 1.

ifo=1
ifw+1,0>0
fwo+1,0<0

A(®) — k = index of & on {(w, wx)} =

S © ©

all of which agree with Bott’s results.
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