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summary. - Starting Jvith Hirzebruch's ~4-genus we define a nt~merical invariant ~ for 
certain (4k--1)-manifolds.  We produce essamples to showy how ~ can distinguish 
differeatiable st~'uctures on certain topological manifolds. 

i .  - I n t r o d u c t i o n .  

~[n his s tudy  [47 5, 6] of d i f f e r e n t i a b l e  s t r u c t u r e s  Jo~d~ 3III~O]~ has  de f ined  
d i f f e r en t i a l  i n v a r i a n t s  for  spec ia l  c lasses  of closed smooth  man i fo lds  of d imen-  
sion 4 k - - l ,  and has  used  them to d i s t ingu i sh  c e r t a i n  d i f f e r en t i ab l e  s t r u c t u r e s  
on spheres .  H i s  cons t r t l c t ion  in each  case is based  on ]~tIRZEBRUCH~S f o r m u l a  
e x p r e s s i n g  the i ndex  of a c losed smooth  man i fo ld  in  t e rms  of its P o ~ J A ( ~ I ~  
c lasses ;  see Sec t i on  2 below.  

T h e  p u r p o s e  of the p r e s e n t  p a p e r  is to c o n s t r u c t  an  inYar iant  for  a s imi la r  
c lass  of smooth  mani fo lds ,  this  t ime based  on I~IRZEBRUCH S t h e o re m tha t  
the A - g e n u s  of a c losed smoott l  sp in  man i fo ld  is an i n t e g e r ;  see Sec t ion  3. 
W e  c o m p a r e  our  i n v a r i a n t  wi th  ~[ILSTOR' S i n v a r i a n t s  in low d imens ions  and 
app ly  it  to va r i ous  d i f f e r en t i ab l e  mani fo lds .  

F r o m  theor ies  of MILNOR and SMALE we conc lude  tha t  o a r  i n v a r i a n t  
d e t e r m i n e s  the comple t e  c lass i f i ca t ion  of the d i f f e r e n t i a b l e  s t r u c t u r e s  on th~ 
topologica l  sphe re s  S 7 and  S ~ of d imens ion  7 and  11, but  not  for  S ~ for  
example .  W e  also cons ide r  i n e q u i v a l e n t  d i f f e r e n t i a b l e  SS- f ib ra t ions  of the 
usua l  as wel l  as of the u n u s u a l  d i f f e r e n t i a b l e  s t r u c t u r e s  on S 7. 

A n o t h e r  app l i ca t ion  is g iven  in [2], w h e re  we use the i n v a r i a n t  to show 
tha t  c e r t a i n  c losed 3 - c o n n e c t e d  t r i a n g u l a b l e  8 - m a n i f o l d s  (which are  l ike  the 
q u a t e r n i o n i e  p ro j ec t i ve  p lane ,  in a sense  ma d e  p rec i se  in [2], have  h o m o t o p y  
types  d i s t inc t  f rom tha t  of an y  closed d i f f e r e n t i a b l e  mani fo ld .  Th is  p roves  
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again the theorem of KERVAIRE that there exist manifolds which do not admit 
any differentiable structure. 

2. - T h e  i n v a r i a n t s  o f  M i l n o r .  

Milnor has constructed two differential invariants (equations (2) and (3} 
below) as follows: 

Conditions k). - Let M - - M  ~-~ be a closed smooth (--different iable)  
oriented ( 4 k -  1)-manifold whose rational eohomology groups satisfy 

H~a(M; Q) -" O, and H4~(M; Q) = 0 for 0 < i < k; 

note that by Poi~cAm~ duality we also huve 

H2a-~(M; Q) - 0 and H4~-~{M; Q) = 0 (0 < i < k). 

Suppose there exists a compact, smooth, oriented 4k-manifold W - -  W 4~ 
having M as boundary; we will speak of W as a coboundary of M. The 
cohomology sequence of the pair (W, M) then leads to isomorphisms 

j: H4'(W, M; Q) :-: H 4 ' ( ~  Q1 (0 ~ i < k). 

Hence if p~ (W) ~ H4t( W; Q) is the ith-IgONTRJAG:IIq class of ~ then j-'~PI(W} 
is well defined. For any polynomial K(x~, .., 004)with rational coefficients, for 
which K(x~, x~', .... x~h ~) is homogeneous of degre k in x~  ..., xh, we define 
the rational number  

(1) K(p~, ..., ph-~, O)[W] = K{i-~p~(W), ..., j-~p,_~(liP), O)[W, M] 

where [W, /I/] in the right member denotes the fundamental  homology class 
of the oriented pair (W, M). 

If L~ denotes the k th polynomial assoeiatod with zl/2/tghzl/~ (see HI~ZEBRUC~ 
[3, p. 13]} and s~'-L~IO,  ..., O, 1) is the ebeffieient of Pk in Lh, and if ~[W] 
is the index of W, then 3~[IL~o~s first iuvariant [5~ p. 965] is 

(2) >,(M +a-:} =___ { "c(W) - -  Lk(p:, ..., p , -~ ,  0)[ W] t/sk mod. 1. 

The right member is independent  of the choice of the smooth oriented 
coboundary W. That  definition of k(M ~-~) is a mild modification of 
t~IIL~O~'S earlier definition in [4, footnote p. 400]. 

M:IL~OR'S invari~nt k' is defiued for manifolds satisfying. 
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Conditions ~') - ~1 is a smooth or iented homology ( 4 k - - t ) - s p h e r e  over 
the integers for whicl~ there exists a compact ,  smooth, oriented, paral lel izable 
coboundary W (see MILNOR [6]. F o r  any such W define 

(3) )~'(/I/1 ~ -* )  ~ z [ W ] / 8  mod. I~/8 

where Ik is lhe greatest  common divisor of the indices x[X] of all closed, 
smooth, almost  paral lel izabte 4k-mani fo tds  X, Then  I~ is divisible by 8 by 
L e m m a  3.2 of M~L~oR [6]. The  value of I~ is known to us f o r  1 <: k ~  5. 
Again, the r ight  member  of (3) is independen t  of W. 

Both of these invar iants  are based on the Index  Theorem 

Lh(p~, ..., Ph)[X4h] __ z [X 4~] 

of HIRZEBRUC~ [3, p. 85] and the fol lowing L e m m a  ([4] and [6]). 

LE~[~[A.- Let W, and W2 be two smooth oriented 4k-manifolds with 
coherently oriented boundaries M~ and M> Let ~ : M,  ~ M2 be a diffeomorphism 
which carries the orientation of  M~ onto that of M> I f  -W2 denotes W2 with 
opposite orientation, then there is a natural orientation and differentiable 
structure on the identification space X = W~ U (-W2)/( @ For any pairs ( W~, M~) 
and (W2, M~) satisfying Conditions ),); and f o r  any polynomial K as above, 
we have 

(4) W 1 

K(p, ,  .... Ph- , ,  0)[X] = K(p~, ..., Ph-~, 0 ) [ W ~ ] -  K(p~, ..., Pk-~, 0)[W~]. 

3. - T h e  i n v a r i a n t  ~. 

We will now define an invar iant  for cer ta in manifolds  sat isfying Con- 
di t ions t ~) below, based on L e m m a  2 and the fol lowing theorem (see BOREL- 
H I R 2 1 E B R U C K  I l l ) .  Here A[X *a] 4a ~ -__  -----A~(X )IX ] 2-~hA~(X~)[X~], where  -4h 

1 1 z,/= and and Ak denote  the kta-polynomial  associated wi th  ~ z~/~/sinh ~ 

2z~/2/sinh 2z ~'2 respect!rely;  see I-IIRZEBRUCK [3, p. 14]. An orientable manifold  
X wi th  S~EFEL-W~IeeXE:~" class w2(X)--" 0 is called a spin manifold. 

THEORE~ (HIRZEBRUOH). - Let X be a closed, smooth, oriented spin manifold 
of  dimension 4k. There the A-genus .~[X] is an integer; i f  k is odd, then-~[X] 
is an even integer. 

There  are examples  [2] to show that  .4[X] can be odd if k is even.,  
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Eliminat ion of p~[X] from 

"c[X] --  Lk(pl ,  ..., P~-I ,  0)[X] -}-Lk(O, .... 0,)p~[X], 

A[X] = .4~(p,, ..., Pk-~, 0)[X] + A~(0, ..., 0, 1) p~[X] 

gives 

(5) A[X] = N~(pl, ..., p,_l)[X] + thz[X] 

where we have set t h - - 4 h ( 0 ,  ..., 0, 1))/L~(0, ..., 0, 1) and 

N~(pl,  ..., pk_i)[X] =-4h(Pl ,  ..., Pk-~, 0 ) [ X ] -  taLh(p~, ..., p~_~, 0)IX]. 

lx will be defined for (4k- -1 ) -man i fo lds  that satisfy the following: 

Conditions ~). - M = M ~ - ~  is a closed, smooth, oriented (4k ~ l)-manifold,  
having a compact, smooth, oriented spin  coboundary W, such that 

(a) the homomorph i sms  in the exact sequence of the pair (W, M) with 
respect to the field of rational numbers  Q (we will omit the field in the 
notation only if the field is Q); 

j* :  H ~ (  W, M) ~ H ~ ( W }  

j* :  H ~ ' ( W ,  M ) ~  H~'(W~ { 0 < i < k )  

are isomorphisms.  

(b) The inclusion homomorphism 

i*: H (w; H (Zvl; 

is an epimo~Thiam. 
Condition (a) permits the unique pulling back of the PONeRJA(~IN classes 

of W into H * ( W ,  M)  as in the case of MH~oR's  ),. In  view of the exact 
sequences 

. . . .  H2~-~(M) --~ H2~(W, 311 ~ H'~a(Wt ~ [Uh(M) . . . . .  

. . . .  H~-~(M) ~ H  ~(W, M) ~ H~i(W) ~ H4i(3I) . . . .  

the isomorphisms required under (a) certainly hold in case: 

H~-~(M)  = H~-~(M) = O~ 0 < i < k, 

and (POINCAR];: duality) 

H ~(M} - - H  ~12111 =0~  0 ~ i ~ k .  
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On the other hand condition ~b) holds for every coboundary W in casa 
H~(M; Z~) = 0. 

The Conditions p.) also hold for example  for the product  space M = S 4 X S ~ 
of S ~ and S~ with their usual  different iable structures.  To see this we take 
W - - - - D s X  S ~, the product  space of |he 5-disc and S 3. Then in the exac~ 
homology sequence i*: H ~ ( W  ~ I F ( M )  is an isomorphism, whence 
H~(W) = H~  W, M) = O. 

Thus  the Conditions Ix are satisfied. 

The conditions are also satisfied for M - - X  ~ X S ~ with coboundary 
X 2 X D 6, where X ~ is any oriented closed surface, and for M = S ~ > S 2 with 
coboundary  W - - S X X  D ~. There are other large classes of smooth manifolds 
sat isfying Conditions ~) given by TAMUnA [I0]. 

We  define the differential invaria~t ~IM 4a-~) as the modulo 1 reduct ion of 

(6) ~( w ,  M} = !N,(p~ , ..., p~_~t[w.] + t ; [  W ] } / a ,  , 

where ah --  4/(3 -4- ( - -  1 a). Thus 

(7t ~(M ~-~) =-- p.( W ~, M ~-~) rood 1, 

computecl for any spin coboundary  W that satisfies Conditions ~t). 

TKEOREM. - The right member of  (6~ is independent of  the choice of  W. 
Thws bqM ~a-~} depends only on the differentiable structure of  M ~-~. 

P R o o s : -  Let  (W~, M~) and (W2, M2) be two pairs for the space M, 
satisfying the Conditions Ix), and let X =  {W~U(-Wz)}/(O be as in lemma 2. 
Let  r be 2k or 4i(0 < i  < k). In the commutative diagram of cohomology 
groups over Q, 

h 

t i* 
k 

HqWl)  ~ tt~(W~l + - -  HqX) 

h and j*  @ j* are isomorphisms. 
] ? r o m  

zero isom. zero 

it follows by composition with H " I X I -  H"(WI) that HqX)--* H ' (M) i s  the 
zero homomorphisn.  

Annali di Maternatica 13 
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Consequently in the exact sequence 

z e r o  j* 

j* is an epimorphism. 
Then all homomorphisms in the 

isomorphisus. 
As in [4, 7, 10] one concludes that 

above commutative diagram 3re  

and 

~ [ x ]  = ~[ w~]  - ~[ w , ]  

Kipx, ..., pa_,  O)[Xl -- K(p~, ..., Pk-~, Ot[W~] - -  Ktp~, ..., p~_~, OI[W2] 

with for example K(p~, ..., p~_~, 0 ) - N g p ~ ,  .... Ph-~). 
Consequently 

= A [ X ] / a k ,  

and this an integer in ease X is a spin manifold. So this last fact remains 

to be proven. 
Cosider the exact )~[/kYER-¥IETORIS cohomology sequence:  

k~* ® k~* A 
• .. - -  H~(W1; Z~) + H~(W~; Z~) ~ ~:~(X; Z~ ~ - - - -  It~{.¢i; Z~ 

i* - i :  

where i~: M ~  Wa and k~: W~-~ X are inclusion maps for c¢--1, 
The image of the second STI)~';~'EL-WHI~EY class 

. 

As k~ induces a bundle nap o[ the tangent bundle of W~ into that of X~ 

we find 

~v~ ( W ~ )  * • = k.~ (w~(x)~  

which vanishes because W~ is a spin manifold. Then (k~*~k2*) w2(X)"-O. In 
view of (b), i l*-- i~* is an epinorphism, 5 is zero, and k~* @ks* is a mono- 
morphism by exactness. Then w,~(X)= 0 , and the theorem is proved. 
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RESIARK. - The  inva r i an t  ~t has the fo l lowi~g three  proper t ies ,  sha red  by 
MIL)ZOR' S inva r i an t s  ), and  )J, and p roved  the same w a y :  

2) [~{M~ ~ M2) - -  ~(M~) ~- (M~), where  ~/ denotes  the smooth  connec ted  
sum of smooth  mani fo lds  i n t roduced  by  S:~I~'EnT; see 5IHAqOR [6]. 

3) If  _~i~ and ~i2 are J - e q u i v a l e n ~  (see [6])~ then ,~(M~)--~(M2). 

RE.~AI~K. - I f  M~ and M, sa t is fy  Condi t ions  ~) then so does M~ .// M~. 

RE~_~nK - The  f irs t  par t  of Condi t ions  X)can be w e a k e n e d  and r ep l aced  
by (a) of Condi t ions  ~). This  gives  a genera l i za t ion  of the demain  of def in i t ion  
for  ),. 

4. - C o m p a r i s o n  o f  X' a n d  ~. 

Let  us cons ide r  these  inva r i an t s  in the i r  c o m m o n  doma in  of def ini t ion.  
Fo r  any  such  M we have  

~(M ~-1)  ~ th~[W]/ak rood 1, 

for any  pa ra l l e l i zab le  c o b o u n d a r y  W. The n u m b e r  th can  be  compu ted  by  the 
me thod  of HIRZEBRUOI4 [3; p. 13] as f o l l ows :  

I f  K is the mul t ip l i ca t ive  s e q u e n c e  be long ing  to the  func t ion  Q, then 

d Q(~) -~ (z/Q ~) t  = ~ ( - -  1 ) :  s : J  
y=O 

with  sj-----Kj(0, ..., 0, 1). Thus  for  the specia l  case K ~  L we have  

so - -  1, sk - -  Lh(0, ..., 0, 1) = 2~a(2 ~a-1 - 1)Bh/(2k) i ,  

where  the B a are  BERNOULLI~ numbers ,  and for  the case  K - - A  we have  

So = 1, sa = A~(0, ..., 0, 1) --- - -  Bk/2(2k)  ! 

As a c o n s e q u e n c e  we f ind 

~9) t~ = ~,/s~ = (-- 1)/(~+1(2 ~ - ~ -  I~); 
whence  

t o - - ' l ,  t ~ - . - - 1 / 8 ,  t ~ - ' - - 1 / 2  ~. 7, t ~ - - - - - - 1 / 2  ~. 31, t 4 - - - - 1 / 2 9 .  127, 

t~ = - -  i / 2  ~1. 511. 



Thus for the manifolds under  consideration we obtain 

= _  - -  - -  1))  , n o d  1. 

Let us compare this with the expression (3) for )J(M~-~). If  we take into ac- 
count Lemma 3.7 of 3~IL~OI~ [6] we see that I~ is divisible by ak2"~+~(2 : a - : -  1); 
fur thermore,  it is known that the quotient  is 1 for 1 ~ k ~ 5 and is greater  
than one for k - - 6 .  Thus we have the 

BROPOSI+ION. - Let M be a closed, smooth, oriented homology (4k - -  1)-sphere. 
I f  M has a parallelizable coboundary W ,  then both k'(M 4.-~) and ~t(M 4.-~) are 
defined. The invariant k' gives a differenliable classification of such spaces 3,1 
which is at least as fine as that given by ~. For dimensions 4 k ~  1 with 
1 ~ k ~ 5, both invariants give the same information, and this is expressed 
by the formula 

8}.'{3D~-~)/Ik ~ - -  p.(M 4~-~) mod 1 

for k = l ,  2, 3, 4 and 5. For  k - - 6 ,  ~ gives less information than ),', but  it 
can be shown that the pair  ()~, 1~) then gives more information than k'. 

On the other hand l~ can be computed more easily and is defined for a 
substant ial ly  wider class of manifolds. 

5. - C o m p u t a t i o n s  f o r  t h e  c a s o  k : 1. 

It  is known that there is a unique differentiable s t ructure  on every 
3-manifold.  Fur thermore,  if  M ~ is a c l o s e d  oriented 3-manifold with 
H~{M; Z2) = 0, then the universal  coefficient theorem implies that H~(M; (2) "- O. 
I~OINOARi duali ty shows that we are dealing with a homology 3-sphere relative 

to Q and Z2. 

For  any M ~ satisfying Conditions ~) we hawe 

( l o )  ~(M 8} --: - -  z[W]/16 rood i, 

computed for any spin eoboundary W of M. 

EXA~fPLE 1 . -  Clearly I~IS~)--0; thus if M 8 is homeomorphic  to S ~ 
then ~t(M ~} is defined and is zero. 

Note that to find a counterexample  to the POINOiR]~ conjecture it suffices 
to find a simply connected closed 3-manifold with ~ :4=0. 

EXAMPLE 2. - In [6] 3~ILI,~OR has constructed a homology 3-sphere  Mg 8 
(with u~(Mo~=~=0!) having a parallelizable coboundary Wo with z ( W o ) = 8 .  
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T h u s  ~(Mo ~) - -  - -  1/2. 
Let us compare Ix with MILNOR'S invariants  ), and ),' for homotopy 

3-spheres.  First  of all, ),(M ' ) - -  0 for any closed 3-manifold  by [5, p. 9661. 
Secondly, any homotopy 3 sphere is the boundary  of a parallelizable mani- 
fold W~[6, p. 31]; thus both k'(M ~) and ~(M ~) are defined, and they provide 
the same informc~tion when computed using parallelizable coboundaries. On the 
other hand, ~t(M ~) can be computed using any spin cobonndary W of M a' 

6. C o m p u t a t i o n s  f o r  t h e  c a s e  k - - 2 .  

For any 7-manifold M satisfying Conditions bt) we have 

(11) ,a(M ~) - -  {p~:[W] - -  4-:[W] }/2 ~. 7 rood 1, 

computed for any oriented spin coboundary W of M satisfying the conditions. 
We do not know whether  every  manifold sa.tisfying Conditions ).) has a spin 
coboundary; however, for those that do we have a definite ref inement  over 
MIL>TOR'S invar iant  ), which is given by 

{12) k(M 7) ~ {p}~[ W] - -  4~[W] }/7 mod 1 

for any compact oriented coboundary W. 
In  [4] MILNOR considered bundles (~-h,~) over the Eucl idean 4-sphere  S ~ 

with rotation group R~ as s t ructural  group and S 8 as fibre. {3) Those with 
Euler  class l/~(~,~,j)--h + j =  1 are precisely the bundles with total space 
M~ 7 homeomorphic  to the 7-sphere ;  the subscript k - "  h - -  i - 5  2 h - -  1. 
If Ba s is the associated 4-cel l  bundle with its na tura l  orientation and 
different iable  structure,  then B~ s is a spin coboundary (because H2(B~8; Z2) ~ 0); 
on the other hand, Ba s is not parallelizable, for x[B~ s] --  1 is not divisible 
by 8. Because p2 [BS] = 22(2h__ 1)2 (compare (1) for the notation} we have 

(13) 7 NMeh-1) ~ h(h - -  1)/56 mod 1 

In order to proceed we need the 

LEM~A. - The equation 

h ( h - -  1) ~ j rood n, 

where ~ = p.2*" and p is a prime, h~s solutions for (p-k  1)2 ''-'a different 

(3) Compare the end of section 9. 
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values of j rood n. These ,values are obtained (for example)by talcing h mod n 
so that 

h ~ 1, 2, ... or (p + 1/2 rood p, and 

h ~ 1, 2, ... or 2 "-~ rood 2 ~'. 

P R O O f . -  The lemma follows from the fact that h ( h - - 1 ) ~ m ( m ~  1) 
mod n or equivalent ly (m + h - - 1 ) ( m - - h ) ~  0 rood n if and only if 

(m + h - - 1 )  (m - -  h) ~ 0 m o d p  and (m + h - - 1 )  (m - -  h) ~ O rood 2". 

Thus m ~ h  or 1 - - h  mod p and m ~ h  or 1 - - h  mod 2". 

If  we apply the lemma to our case p = 7 ,  r = 3  we conclude t~hat 
h ( h - -  1) rood 56 assumes (7 + 1)2- -  16 different  values. In  the following 
table pairs (h; h ( h - - 1 ) / 2  rood 28) represent ing all va lues  of h ( h - - 1 ) / 2  
rood 28 are given. 

i 

2 

3 

4 

mod 8 

1 2 3 4 mod 7 

(1;0) (9;8) (17;24) (25;20) 

(50;21) (2;1) (10;17) (18;13) 

(43;7) (51;15) (3;3) (11;27) 

(36;14) (44;22) (52;10) (4;6) 

The values of h ( h - - 1 ) / 2  rood 28 obtained aro 0, 1, 3, 6, 7, 8, i0. 13, 14, 
15, 17, 20, 21, 22, 24, 27. 

Taking h - - 1 ,  ~ - - 0  gives the Hopf f ibrat ion (S~E]~ROD f9, p. 109]); 
taking h = 2 and using the additivity of ~ with respect  to connected sums 
gives 

~(MJ ~ ... # MJ) --  m/28 (m copies (1 ~ m ~ 28)). 

Since the connected sum of two smooth manifolds homeomorphic  to the 
sphere isi tself  a smooth manifold homeomorphie  to thesphere, these connected 
sums provide 28 distinot differentiable structures on the topological 7-sphere. 
Fur thermore ,  their  natura l  combinatorial  s t ructures (i. e., that of the combi- 
natorial  s t ructures of the bundle in case of MJ, and that of the connected 
sum in the other cases) are all isomorphic. 

This implies that the combinatorial structure on S 7 is unique, as pointed 
out to us by MIL~OI¢ and S~ALE. 

From the theory of J -equ iva lence  of MILtOn [6j and S~IALE'S theorem [8] 
that J -equiva len t  (2m + 1)-spheres (m ~ 2) are diffeomorphic, it follows that 
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there are precisely 28 different  (i.e., inequivalent} differentiable s tructures 
on the 7-sphere. Thus we obtain the 

TItEORE~L- TWO smooth 7-manifolds which are homeomorphic to the 
7-sphere are diffeomorphic i f  and only i f  they have the sa~ne ~ value. Of the 
28 diffeomorphism classes, precisely 16 occur as total spaces of  ( R4, S 3) bundles 
over S 4. 

The other 12 differentiable 7-spheres do not possess any such fibration 
by 3-spheres. 

COROLLARY.- .}~27_1ha8 the usual differentiable structure of S ~ i f  and 
only i f  ( h - -  1)h ~ 0 rood 56. 

EXA~IPLE. - An oriented differentiable manifold M homeomorphie to S 7, 
admits an orientation reversing diffeomorphism if and only if ~(M)~---~t(M) 
mod 1. For e x a m p l e M ~ ,  h----21, k - - 2 h - -  1, with ~(M~)-- -1 /2  mod 1. 

EXAMPLE. M ~ - e~ obtained for h --  11 is diffeomorphic with the homotopy 
sphere .Mo 7 defined by )~IL~OI~ in [6, p. 13] for they both have ~ - - -  1/28. 
We do not know how to construct such a diffeomorphism. 

COROLLARY.- [f M ~ is any ~r~c!nifold satisfying Conditions ~), then 
the underlying topological manifold admits at least 28 different differenliabte 
stm~ctures. Examples;  M - -  X2 X SS; M ~- S ~ X SL Compare Section 3. 

PROOF. - Each M ~ /  (M~¢/ ,.. ¢/ MJ)with m copies of M8 * in parentheses 
(1 _< m ~ '  28) has ~ value def ined and equal to t~(M 7) + m/28, and there are 
28 different  values, Fur thermore,  each such sum is an oriented smooth 
manifold homeomorphic to _ML 

EXAMPLn. - The topological space S~X S 5 admits at least 28 different 
differentiable structures.  If S ~ X S ~ denotes the usual  differentiable structure 
then (S~X S~)¢/ MJ  is a product space in the homeomorphic sense but it 
is not a product space in the diffeomorphic sense. 

E X A M P L E . -  The projective space F ( R )  admits at least 14 different  
differentiable structures.  

PROOF, - Let  P~ denote PT(RJ with its usual  differentiable s t ructure  and 
form X - - P ~  ~y (_M~ 7 ~ ... ¢/ ~ll~i with m copies of MJ.  If  X denotes the 
universal  cover of X with induced differentiable structure~ then 

with 2.m copies of MJ.  Thus X has the invariant  ~t(X)--2m/28 = m/14 
rood. i, and it can take 14 different  valuss. 
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E X A S { P L E .  - It  seems that our iuvariant  ~ cannot be computed for the 
7-manifold P~(C} X S 3. Thus no conclusion can be made concerning the 
difffereat iable s t ructures  on this space. 

7. S m o o t h  f l b r a t i o n s  o f  t h e  7 - s p h e r e .  

I t  is a consequence of Theorem 6 that each of the 16 differentiable 
7-spheres of  the form M~ 7 admit  an  inf ini te  m~mber of  essentially dif ferent  
differentiable ]Tbrations by differentiable 3-spheres S~, for if such a manifold 
has invariant  t~0, then there a r e  infini tely many distinct solutions of 
h(h ----- 1)/56 ~ ~0 rood 1. Each of these determines a differentiable fibre bundle 
over the usual  4-sphere with fibre S ~ and with total space M ~ - t ,  differen- 
tiably the same space in each case. 

G. HIRSCK [12]  has proved essentially that if a fibration of the 
Eucl idean 7-sphere S 7 is isomorphic to a fibration of S ~ by great 3-spheres 
(which are sections by four dimensional l inear subsp~ces through the center 
of S 7 in Euclidean 8-space), then that fibration is isomorphic to the normal 
sphere bundle of a quaternionic projective line in the quaternionic projective 
plane, which is in turn the classical HO}'F fibration of S ~ (S~EE~I~O]:) [9, 
p. 108], It follows that for h I h - - 1 ) ~ O  rood 56 and  h=~O and 1 the cor- 
responding differenliable fibrations of  the Eucl ideam S 7 cannot be realized by 
a f ibralion with great 3-spheres as fibres. Furthermore,  as we show in [2], 
certain of  these ]~brations are not even of  the same fibre homotopy type as 

t h e  HoPF /ibration. 

(14) ~(M 11) ~ (4p . . p l -  3p~ 8 --  24~)[W]/211. 3. "~,1 

computed for any oriented spin coboundary W. 
.~'[IL~on's invariant  X, which is 

(15) ),(M 11) -= (13p2p. - -  2pl a -{- 945:)[W]/2.31 

computed for any coboundary W. 

8. C o m p u t a t i o n s  f o r  t h e  c a s e  k - - 3 .  

For any l 1-manifold M ~1 satisfying Conditions ~) we have 

rood 1, 

This is different  from 

rood 1, 

In Theorem 1 of N~L~OR [5] the invariant  ~, could not be applied to the 
ease of homotopy l l - spheres .  Thus ~t is a better invariant  than ~. for such 
spaces (and gives the same information as ~', as we have already noted in 
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Sect ion 4. Index,d, any  smooth  mani fo ld  M which  is a homotopy  l l - s p h e r e  
bounds  para l le l izabie  mani fo ld  W (see [6]), whence  p,[W] = 0 (0 < i  < 3); 
therefore ,  

ix(M) -= - -  x[W]/2s.31 mod 1 

A,:ain the theory  of ~ILNOR-SMALE shows tha t  there  are prec i se ly  992 
d is t inc t  d i f fe ren t i ab le  s tuc tu res  o n  t h e  t(~pological l l - s p h e r e ,  and  lhe 
man i fo ld  Mo ~1 of MIL:NOR [6, p. 13] toge ther  wi th  its connec ted  self sums  
r ep resen t  all these classes.  ~.{211o~t = 1 rood 992; ix(Moist = - 1/992 rood 1. 

T:KEOREM.- TwO smooth l l-mani/olds which are homeomorphic to the 
ll-sphere are diffeomorphie i f  and only i f  they have same ~invariant. 

COROLLARY. - O n  any l 1-manifold satisfying Conditions ix) there are 
at least 992 different dif/erentiable structures. 

9. C o m p u t a t i o n s  f o r  t h e  c a s e  k----4. 

W e  have  

~ 4  B 1 2 ~ • 3 • • 5 ~ • 7 ( - -  192/04 -4- 5t2p,/,~ -+, 208p22 - -  904p2pl 2 -¢- 381p~'), 

t ~  - -  - -  l / 2  • 127. 

Fo r  any  15-manifo ld  sa t i s fy ing  Condi t ions  ix) we f i n d :  

ix(M 1~) - -  1209~p~p~ -~ 5040p~ ~ - -  22680p~p~ ~ A-9639p~ ~ - -  181440z)[ W]. 

• /215 .34 .5  . 7 • 127 mod 1 

computed  for any  spin  coboundary  W sa t i s fy ing  Condi t ion  ix). Again  ix 
provides  more  i n fo rma t ion  than  ), in  the i r  common domain  of def in i t ion ,  

Le t  us compare  ),' and  ix when  appl ied  to homotopy 15-spheres .  F i r s t  
of all, as a consequence  of ce r ta in  ca lcu la t ions  of H.  Toda  (kindly suppl ied  
to us in a le t ter  of J a n u a r y  17, 1961) we f ind that  1~/8 = 8128. Thus  for 
any  homotopy  ] 5  sphere  ~I ~ wh ich  bounds  a para l leI izabl  e man i fo td  W TM we 
have  )~'(M ~5) de f ined  as an  e lement  of the cycl ic  group Zs12a; also, s ince 
p~ [ W  ~ 6 ] ~ 0  for  0 < i < 4 ,  we have  

-- ),'(M15)/8128 - -  IX(MI~) ~ - ~:[W]/8. 8128 mod 1 

It  follows tha t  ix and )~' provide the same information for such homotopy 
spheres; however~ there are homotopy 15-spheres which do not bound parallelizable 
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manifolds. 1~ In f.~ct, according to recent computat ions of ]~ERVARIE and 
)I~LNO~ ( u n p u b l i s h e d ) w e  hJve  a split exact sequence (in the notation of 

~I I~L~OR [611 

(16) 0 - , .  0 ~ ' ( ~ = )  ~ 0 ~ = Z~ ~ O. 

Consequently,  k' is not defined for all h~)motop~ ~ 15-spheres.  In contrast  
to lhe 7- and l l - d i m , n s i o n a l  cases, the 16, 256 different differenliable 
slruclures on the topological 15-sphere are not completely disting~d.shed by 
their ~ invariant, allhough those ~vhich bound paral elizable manifolds are. 

In [7] S~I [~DA constructed bu~dles ~ ,  ~ over an 8-s  t h ,re, wilh propert ies 
anah)gous to those of M~L:NOR discussed in Section 6. Here  z[l~ ~] = 1, h + j  = 1, 
p~(B, ~) = O, p.~ [B~ ~] = 6~i2h -- 1) ~ and by subst i tut ion in lho above expression 

for ~ we find 

(17) ~t(M2~:~,) --  h(h --  1)/16 256 rood 1. 

The symbol a we int roduced here has the following meaning. According 
to KERVAIRE and MIL~COR (unpubl ished)  there exist precisely two different 
different iable s t ructures  on-$8;  the usual one is denoted by a - - 0 ,  the other 
by ~ = 1 In order to explain the index z we give the definition of the 
relevan~ fibre bundles  with difi 'erentiable s tructure,  which definit ion for a 
topological base sp.~ce coincides wilh Ih~ definit ions of MIL~COR and SaI)IADA. 

Let  u~, u~, v~, v~be octaves (Cayley numbers) wi |h  norm I lunit octaves); 
rx, r~_ real numbers;  luj, rj} are polar co~)rdinates for a ball  ia eucl ideam 
8-space  with radius 1 : 0  <:-- r1 ~ 1, j - -  I and 2. Let  ~: S 7 --* S 7 be a 
diffeomorphism of the 7-sl)here of unit octaves. 

The balls with coordiuate~ (ut, r~) and lu2, r2) can be glued along their  
boundar ies  according to lhe identif ication of 

(u~, 1) and (u2, 1)-= (~u~, 1), 

to give an 8-sphere  with a differentiable s t ructure  ~ - - ~ t ~ ) ;  ~ " - 0  or 1. 

A different iable  fibre bundle with total space M l~'~(~) eh-1 over t h i s  differ. 

ent iable manifold S 8 ~ ,  is now obtained by gluing the product  bundle  spaces 

with coordinates  

(u~, r l ;  el) and (u~, r~; v~) 

(~) The corresponding subgroup of  the group of all diffeomorphism classes 015, is 
denoted by 0tY(~r:)~Zsl~s. 
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according to the identif icat ion of 

(u~, i ; v~) and (u,, 1 ; v~) = (~u~, I ; (u~)~v~(u,)~)(h + j = t). 

~ 15, Observe that  the differentiable s tructures of ~u~_~ together with the fi- 
bration, determines the differentiable s t ructure  of the base space. Observe 
also that both differeutiable s tructures on S s determine the same combinatorial  

?I~T 15,a structure on S s, and therefore the combinatorial  structure of .~,~e~._~ and its 
f ibration is independent  of ~. 

j ~  1~,0 ~1//- 15,l We do not  know whether 2~-~ and  ~ _ ~  are d i f feomorphic  or not, but 
the two differentiable fibre bundles are different iably different  as bundles. 
Both M~ ~,° and M~ ~,~ generate a subgroup of 0 ~ of order 8t28. 

I f  we apply lemma 6 to the case n - - p 2 ~ = 1 2 7 . 2  ~ - -  16 256 we find 
that there are (127 + 1)2 ~ -  4096 values of h ( h - - I ) / 2  reed 8128, and these 
values  correspond to differentiable 15-spheres which are diffeomorphic to 
the total space of a 7-sphere bundle over a base space homeomorphic to S s. 

10. C o m p u t a t i o n s  f o r  t h e  m a n i f o I d s  M(f~, f~). 

MrLNOR [5] has defined certain closed, smooth, oriented { 4 k - - l ) - m a n i  
folds M ( f l ,  f~) in terms of a bundle over S ~" with group the orthogonal 
group R~(~_~), defined by a map /'1: S 4"-~ ~ / ~ ( h - , ~ ,  and another  R~.-bundle 
over S 4~-~', defined by f2: S 4~a-r)-I ~ R4,.. 

There is also a smooth eoboundary W{f~,  f2t of Mt f~ ,  f2} constructed 
using these bundles, and l/Vqf~, f~) is a spin coboundary since H 2 ( W ( f l ;  f~)), 
Z2} -- 0. We will let p , . ( f j  denote the value on S 4'" of the PON~rR.IA(~N class 
of the bundle determined by /'1; MIL~OR has computed k(M(f~, f2t) in most 
cases in terms of p,(f~) and Pa-,.(f2), and we can modify those computat ions 
to obtain ~(M(f~, f2)t as follows: 

C A S E  - k4= 2r. In this case M(f~,  /'2) is a smooth manifold homeomorphic 
to the (4k ~ 1)-sphere, and z[II'(f~, f~) ] = 0 ; see Lemma 3 of MIL~OR [5]. Then 

I~(M(L, f2)) ~- [(s,sa_r - -  s~) - -  th(s , sa_, . - -s , )]P, ( f l )pa-r( f~) /ah rood 1 

w 

B,.B~_,. 2~a- I __ 1 t 

4aA (2r) i (2k --  2r) ! 

C A S E  - k --  2r. In  this case (without making the simplifying assumptions 
made in Lemma 4 of [5]) the expression for ~(M(f~, f~)) is more complkated.  
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In order to derive it we first establish the following straightforward consequence 
of a result  of Them [ l l ,  Th. 1.8]. 

LEMM~..- Let ~ be an R. , -bundle  with total space A and fibre the 
m-disc D 0~ over an oriented closed n-mani fold  B. Then A is a bounded 
oriented (n + m)-mc~nifold with boundary E, and the zero section ~ imbeds B 

in A. I f  ~t~: H~(B) - -  H~+'*(A; E) denotes the Gysin homomorphism of  ~, then 
the Euler class w,,,(~) of  ~ corresponds to the Poincard duc, l of  the self 
intersection class ~(B) o ~(B) of the zero section: 

(18) 

P n o o F . -  The homomorphism ~ is defined by commutat iv i ty  of the 
following diagram (using integer coefficients):  

H~(B) ~. ~ H ~ +*'(A, E) 

H,_~(B) ~ > H,_~(A). 

where  the vertical  arrows are the isomorphisms of POI~'CaR~ duality. 
According to Them [1t, Th. I. 8] we have ~ t  - .  % where  ¢p is the GYslN-TI-IOM 
isomorphism of the bundle. On the other hand, as an integral class we have 

w~(~) = 9-~(9(i)U~(i)) 

by definition. The lamina follows at once using the relation 

-1 B ~(B) o ~(B) - -  @A(~)A ( ~ ( ) )  U ~ 2 ( ~ ( B ) ) ) ,  

since as a homology class we have B = 98(1). 

We  are interested in the case n = m - - 4 r  and B = S 4''. If we set 

and therefore  

(19) 

i~ = ~3~(~ (B) ) ,  t h e n  ~ U ,a = ~ro~,.(D = ~'¢"m,.(~), 

u ~[A] = [~'  w~,(;)[A] = m,([)[B]. 

F o r  any f :  84~-1--~R~,. we define the integer w4,.If)as the value on S ~'~ 
of the E~I,EI~ c l a s s  o f  the bundle  defined by f. Then MIL~Ol~ [5, p. 969] has 
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s h o w n  that (in his notat ion) 

pr( W(L , f~) ) = ± p,.(fl)j~ ~ P,,(t'~)j~ , 

whence 

i-~p,.( Wi l l ,  f2)) ~ = p ,  ( f , )~  U ~ ± 2p,~(f~)p, (f~)~ U ~ + p,.(f2)~ U ~, 

where ~., ~ ~ H~'(A,  E) are the duals  of the two imbeddings of S 4'~ in A by 
the corresponding zero sections. Applying the expression (I9) we find (since 
~ u ~ = - + - t ) .  

(20) j -~p,(  W(f~ , f~))~i~'V(L, f~)] = p,.(L)~w~,.(f~) + 2p,.(L)p, (f~) + p,.(f~.)bv~, (f2). 

It follows that ~(M(fl; f2)) is the modulo l reduction of 

8((2r)!).~ , 1-+: 2 4 ' ' - ~ -  t P'(f~)n~"(f'~)±2P'(f~)P'~(f~)+P'(f~)°-w~'(A) 

+ t~,.~[ w (f~, f~)]. 

RE~AR~:. - ]~IIL~oR has shown that if f~ maps S ~ r - ~  R~._~, then 
M ( f l ,  f~) is again home0morphic to a ( 4 k - - 1 ) - s p h e r e .  In terms of the 
invariants  appear ing in (20) this condit ion implies w 4 , . ( f ~ ) -  0 and z[W(f~, 
f2)] : 0; for then there, is a section of the bundle defined by f~, whence its 
EULEI¢ class vanishes. From this we find that the intersection matr ix for 
W(f~,  f~) in dimension 2r is of the form 

+ l b . b  ' 

which is easily seen to have index 0. 

EXAMPLE - (r = 2, k --  4).  Then 

~( M(f~,  f~) ) ~_ I p~( f~w~(f~)  +__ 2p~([~)p~(f~) + 

+p2(f2)~w~(f2) - -  361 [W (f~, f~)] ! /2  ~ .  3 ~- 127. 

If  we let f ~ -  f~, j  and f2 - - f~ , , j ,  in the notation of Section 6, then 

p~(hj) = +--_6 (h - - j ) ,  w~(h~) = h + j ,  

and similarly for f~. It  follows that 

p.(M(fhj ,  f h o , ) ) ~  ( h - - j ) ~ ( h + j ± 2 ( h - - j ) ( h ' - - j ) ) +  

( h ' - - j ' ) ~ ( h ' + i ' ) - - t [ W ]  }/29. t27. 
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