An invariant for certain smooth manifolds
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Summary. - Starting with Hirzebruch’'s A-genus e define a numerical invariont p for
certain (4k — 1)-manifolds. We produce examples to show how u can distinguish
differentiable structures on certain topological manifolds.

1. - Introduetion.

In his study [4, 5, 6] of differentiable strucfures JorN MILNOR has defined
differential invariants for special classes of closed smooth manifolds of dimen-
sion 44 —1, and has used them to distingunish certain differentiable structures
on spheres. His constraction in each case is based on Hirzesruon’s formula
expressing the index of a closed smooth manifold in terms of its PoNTRIAGIN
classes; see Section 2 below.

The purpose of the present paper is to consiruct an invariant for a similar
class of smooth manifolds, this time based on HIRZEBRUCH $ theorem thaf
the A-genus of a closed smooth spin manifold is an integer; see Section 3.
We compare our invariant with MILNOR’s invariants in low dimensions and
apply it to various differentiable manifolds.

From theories of MiLNoR and SMALE we conclude that oar invariant u
determines the complete classification of the differentiable structures on the
topological spheres S8 and S of dimension 7 and 11, but not for S* for
example. We also consider inequivalent differentiable S®-fibrations of the
usual as well as of the unusual differentiable structures on S”.

Another application is given in [2], where we use the invariant to show
that certain closed 3-connected triangulable 8-manifolds (which are like the
quaternionic projective plane, in a sense made precise in [2], have homotopy
types distinet from that of any closed differentiable manifold. This proves
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again the theorem of KERVAIRE that there exist manifolds which do not admit
any differentiable structure.

2. - The invariants of Milnor.

Milnor has constructed two differential invariants (equations (2) and (3)
below} as follows:

Conditions 2). - Let M = M**~* be a closed smooth (= differentiable)
oriented (4% — 1)-manifold whose rational cohomology groups satisfy

H*M; @ =0, and H*(M; Q) =0 for 0 <i < k;
note that by POINCARE duality we also have
H*M; @) =0 and H*"M; Q) =0 0<i<k).

Suppose there exists a compact, smooth, oriented 4%k-manifold W= W**
having M as boundary; we will speak of W as a coboundary of M. The
cohomology sequence of the pair (W, M) then leads fo isomorphisms

j: HYW, M; @)= HYW; Q) (0<i<Hh.

Hence if p,(W)e H*(W; Q)is the i*"~PONTRIAGIN class of W, then j=p,(W)
is well defined. For any polynomial K(x,, .., w,) with rational coefficients, for
which K{x,, %2, ..., %;*) is homogeneous of degre k in x,, ..., ®,, we define
the rational number

(1) K(pss wos Pas, O[Wl= KG7pd W), oy J7pal W), OLW, M)

where [ W, M] in the right member denotes the fundamental homology class
of the oriented pair (W, M).

If L, denotes the k' polynomial associatod with ¢¥2/{ghs'/? (see HIRZEBRUCH
[3, p. 13}) and s = L0, ..., 0, 1} is the coefficient of p, in L,, and if t[W)]
is the index of W, then MILNOR 8 first invariant [5; p. 96D] is

2) MM~ = (o W) — La(Ps, s Pz, O W]}/sp mod. 1.

The right member is independent of the choice of the smooth oriented
coboundary W. That definition of A(M*~") is a mild modification of
MILNOR'S ecarlier definition in {4, footnote p. 400}

MiLNOR’S invariant A’ is defined for manifolds satisfying.
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CUonditions )') — M is a smooth oriented homology (4% — 1)-sphere over
the integers for which there exists a compact, smooth, oriented, parallelizable
coboundary W (see MiLNOR [6]. For any such W define

3) WM = 1] W)/8 mod. 1,/8

where I, is the greatest common divisor of the indices 7[X] of all closed,
smooth, almost parallelizable 4k-manifotds X, Then I, is divisible by 8 by
Lemma 3.2 of MiLxoR [6]. The value of I, is known to us for 1 < k< b,
Again, the right member of (3) is independent of W.

Both of these invariants are based on the Index Theorem

Li(psy ooy po)[X*] = <[ X ]

of HirzeBRUCH [3, p. 85] and the following Lemma ([4] and [6)).

LeMMaA. - Let W, and W, be {wo swmooth oviented 4k-manifolds with
coherently oriented boundaries M, and M,. Let v: M, — M, be a diffeomorphism
which carries the oriendalion of M, onto that of M, If -W, denotes W, with
opposite orienlation, then there is a mnatural orientation and differentioble
structure on the identification space X = W,U(-W,)/(v). For any pairs (W,, M.)
and (W., M,) satisfying Conditions 1), and for any polynomial K as above,
we have

(4) [ X] = [ W] — < [W,],

K(ﬁu von Pr—is O)[X} = K(pl; oy Pa, O)[T)Vl] “K(pla ey Pre1y O)[Hvz]'

3. - The invariant p.

We will now define an invariant for certain manifolds satisfying Con-
ditions p) below, based on Lemma 2 and the following theorem (see BOREL-
HirzeBrRUCH [1]). Here A[X**] = A4,(X**)[X**] = 2% 4,(X*[X*], where 4,
and 4, denote the [**-polynomial associated with 3 22/sinh 5 22 and
227/2/sinh 244 respectively; see HIRZEBRUCH [3, p. 14]. An orienfable manifold
X with STIEFEL-WHITNEY class w,(y) =0 is called a spin manifold.

TuegorEM (HirzEBRUCH). - Let X be a closed, smooth, oriented spin manifold
of dimension 4k. Then the A-genus A[X] is an integer; if k is odd, then K[X}
8 an even inleger.

There are examples [2] to show that A[X] can be odd if k is even..
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Elimination of p,[X] from

T[X} = Lk(pl; vooy Pr—as 0)[X] "}— Lk'(O} seey O))?é{X}}

A[X] = Zk(pla vy Pr—1 O)[X] + gk((l ey O: 1) pk[X]

gives
®) A[X] = Nu(ps, r» Pa—s]X] + bz X]

where we have set £ = A0, ..., 0, 1)/L,0, ..., 0, 1) and

Nk(ply e pk-—-l)[X] = Zk(ply vy Pr—1, O)[X] - tkLk(ply ooy Phesy O)[X]

p will be defined for (4% — 1)-manifolds that satisfy the following:

Conditions p). - M = M**~* is a closed, smooth, oriented (4% — 1)-manifold,
having a compact, smooth, oriented spin coboundary W, such that

(@) the homomorphisms in the exact sequence of the pair (W, M) with
respect to the field of rational numbers Q (we will omit the field in the
notation only if the field is Q);

4 H(W, M) — H*(W)
J¥r H* (W, M) — H*(W) (0 <i <k
are isomorphisms.
(6) The inclusion homomorphism
it HY W3 Z,) — HYM; Zy)

is an epimorphiam.

Condition (¢) permits the unique pulling back of the PONTRIAGIN classes
of W into H¥(W, M) as in the case of MirNor’s A. In view of the exact
sequences

v H*=YM) — H*(W, M) — H*(W) — H*(M) — ..
v H5YM) — H (W, M) — H%W)— H%M) — ...
the isomorphisms required under (a) certainly hold in case:
H#4M)= A" M)=0, 0 <i <k,
and (POINCARE duality)

H*(M) =H%M) =0, 0<i<k
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On the other hand condifion (b) holds for every coboundary W in casa
HY(M; Zs) = 0.

The Conditions p) also hold for example for the product space M = §* X §°
of S* and &%, with their usual differentiable structures. To see this we take
W = I* X S% the product space of the D-disc and S°% Then in the exact
homology sequence ¢*: H*(W) — H*(M) is an isomorphism, whence
HYW)=H4W, M)=0.

Thus the Conditions p are satisfied.

The conditions are also satisfied for M = X* X §° with coboundary
X* X D% where X* is any oriented closed surface, and for M = §* X S* with
coboundary W =8§* X D’ There are other large classes of smooth manifolds
satisfying Oonditions p) given by Tamura {10].

We define the differential invariant p(M**~*) as the modulo 1 reduction of

(6) MW, M) = {Nx(ps; o, Paal[ W]+ L Wi/ g,
where a, = 4/(3 4 (— 1)*). Thus

(7 w(M4=1) = u(W*, M*~) mod 1,

computed for any spin coboundary W that satisfies Conditions ).

THEOREM. — The right member of (6} is independent of the choice of W.
Thus w(M**} depends only on the differentiable structure of M**-1.

Proor: - Let (W,, M,) and (W,, M, be two pairs for the space M,
satisfying the Conditions p), and let X — {W,U(-W,)}/() be as in lemma 2.
Let r be 2k or 4i(0 <i << k). In the commuiative diagram of cohomology
groups over Q,

h
IJP(W}_; -n[) @ ]{7‘( WQ: l‘[) . .HT(X, M}
li T @4 l 7
k
Hr(W) @ H(Wa < H7(X)

h and jf @ j; are isomorphisms.
From
zero isom. Zero
H'(M) -=— H"™(W,) =— H"(W,, M) -— H"YM)

it follows by composition with H"(X)— H"(W,) that H"(X) — H"(M) is the
zero homomorphisn.

Annali di Matematica 13
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Consequently in the exact sequence

Zero J* ,
H'(M) <— H"(X) <— H"(X, M)
j¥ is an epimorphism.
Then all homomorphisms in the above commutative diagram are

isomorphisus.
As in [4, 7, 10] one conecludes that

UX] = [ W] — < W,
and

K(pla oy Pr—y O)[X] = K(.plﬁ oy Pr—1, O’[vvl] - K‘ph oy Pr—iy O)[W2]

with for example K(p(, ., Pr—1, 0) = Nulp1, s Pr)
Consequently

W(Wy, M) — (W, M,) = {Nups, ..., Pr—)[X] 4 bar[X] 1/ g

= A[X]/ax,

and this an integer in case X is a spin manifold. So this last fact remains

to be proven.
Cosider the exact MAYER-VIETORIS cohomology sequence:

E* o kY A
o HA\W Zi) © H{ W Z) < H\X; Za) < H{M; Zi)
7)1 — 12z
< }IL{WI; Zg!@ Hl(Wg; Zz) bl

where i,: M —- W, and k,: W, — X are inclusion maps for a =1, 2.
The image of the second STIEFEL-WHITNEY class

wo(X) e HY(X; Z,) is E*we(X)) © E¥(wa(X)).

As k, induces a bundle nap of the tangent bundle of W, into that of X,
we find

wa(W,) = k5 (w2(X))
which vanishes because W, is a spin manifold. Then (k*®k,*) wy(X)=0. In

view of (b), 4.* —4,* is an epinorphism, A is zero, and k* @k,* is a mono-
morphism by exactness. Then w,(X) =0 , and the theorem is proved.
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Remark. — The invariant g has the following three properties, shared by
MiLNOR’ S invariants A and A, and proved the same way:

1) ol — M) = — p(M);

2) WM, # M,) = w(M,) + (M,;), where # denotes the smooth connected
sum of smooth manifolds introduced by SEIFERT; see MiLNor [6].

3) If M, and M, are J-equivalent (see [6]}, then (M) = p(M,}.
ReEvMark. = If M, and M, satisfy Conditions p) then so does M, 7 M,.

REuMARK - The first part of Conditions 1) can be weakened and replaced
by (a) of Conditions p}. This gives a generalization of fthe demain of definition
for A.

4. - Comparison of X' and .

Let us consider these invariants in their common domain of definition.
Yor any such M we have

WM = {r[W]/a, mod 1,

for any parallelizable coboundary W.The number #, can be computed by the
method of HirzeBrUcH [3, p. 13] as follows:
If K is the multiplicative sequence belonging to the function @, then

8

o L (/024 =

a AV e
i ) {(— 1) ss2

0

[ &}

with s; = K,{0, ..., 0. 1). Thus for the special case K = L we have
8o =1, 84 = Ly(0, ..., 0, 1) == 2*42*—* —1)B,/(2k)!,
where the B, are BERNOULLL numbers, and for the case K = 4 we have
So=1, 85 = A4(0, ..., 0, 1) = — B,/2(2k)!
As a consequence we find

{9) th= su/8a = (— 1)/(22F2~ — 1)),

whence
=1, L =—1/8, t,=—1/2°. 7, ty = —1/2". 31, {, = —1/2°. 127,
ts = — 1/2%, B11,
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Thus for the manifolds under consideration we obtain
a( MY = — o W|/a,(2°+12%2— — 1)) mod 1.

Let us compare this with the expression (3) for X(M**—*). If we take into ac-
count Lemma 3.7 of MILNOR [6] we see that I, is divisible by @,2°%+1(2%—* —1);
furthermore, it is known that the quotient is 1 for 1<%k < b and is greater
than one for k=46, Thus we have the

PROPOSITION. ~ Let M be a closed, smooth, oriented homology (4k — 1)-sphere.
If M has a parallelizable coboundary W, then both XN(M**=*) and wW(M**~*) are
defined. The invariant X gives a differentiable classification of such spaces M
which is at least as fine as thal given by p. For dimensions 4k — 1 with
1 < k<< b, both invariants give the same imformation, and this is expressed
by the formula

SN(M#Y/T, = — wM*~Y mod 1

for k=1, 2, 3, 4 and 5. For k=6, p gives less information than V', but it
can be shown that the pair (X, p) then gives more information than X'

On the other hand p can be computed more casily and is defined for a
substantially wider class of manifolds.

5. - Computations for the caso k = 1.

It is known that there is a unique differentiable siructure on every
3-manifold. Furthermore, if M?® is a closed oriented 3-manifold with
H*(M; Z,) = 0, then the universal coefficient theorem implies that H'(M; @) = 0.
PoiNoARE duality shows that we are dealing with a homology 3-sphere relative
to @ and Z,.

For any M*® satisfying Conditions {1} we hawe
(10) w(M?) = —[W]/16 mod 1,

computed for any spin coboundary W of M.

ExampLi 1. - Clearly p(S8%)=0; thus if M° is homeomorphic fo &

then w(M® is defined and is zero.
Note that to find a counterexample to the POINCARE conjecture it suffices

to find a simply connected closed 3-manifold with p<=0.

BExAMPLE 2. - In [6] MiL~or has constructed a homology 3-sphere M’
(with m(M,®=3=0!) having a parallelizable coboundary W, with (Wo) = 8.
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Thus WM = — 1/2.

Let us compare p with MILNOR'S invariants A and A for homotopy
3-spheres. First of all, A(M®% =0 for any closed 3-manifold by [5, p. 966].
Secondly, any homotopy 5 sphere is the boundary of a parallelizable mani-
fold W*[6, p. 31]; thus both A(M?® and pn(M® are defined, and they provide
the same informalion whew compuled using parallelizable coboundaries. On the
other hand, w(M¢) can be computed using any spin coboundary W of M*

6. Computations for the case k= 2,
For any 7-manifold M satisfying Conditions p) we have
(11) WM e= {p W] — 4W]1/2°. 7 mod 1,

computed for any oriented spin coboundary W of M satisfying the conditions.
We do not know whether every manifold satisfying Conditions 1) has a spin
coboundary; however, for those that do we have a definite refinement over
MILNOR’'S invariant A, which is given by

(12) MY = (p W] — 4 W]}/7  mod 1

for any compact oriented coboundary W.

In [4] MILNOR considered bundles (£,.;) over the Euclidean 4-sphere S*
with rotation group R, as structural group and S° as fibre. () Those with
Buler class Wy&,,)=h 4 j=1 are precisely the bundles with total space
M," homeomorphic to the T7-sphere; the subseript k=7h —i=2h — 1,
If B,? is the associated 4-cell bundle with its natural orientation and
differentiable structure, then B,* is a spin coboundary (because H¥B,*; Z,) = 0);
on the other hand, B,* is not parallelizable, for <[B,*] =1 is not divisible
by 8. Because p,® [B;*] = 2%2h ~— 1)* (compare (1) for the notation) we have

(13) WMoy 1) = h(h — 1)/66  mod 1
In order to proceed we need the
LeMMa. - The equalion
hh — 1) =4 mod n,

where n=p.2" and p is o prime, has solutions for (p-- 11272 different

) Compare the end of section 9.
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values of § mod n. These values are obtained (for example) by talcing h mod n
so that

h=1,2 ..o (p+1/2 mod p, and

h=1, 2, .. or 21 mod 27,

Proor. - The lemma follows from the fact that A(h — 1) = m(m — 1)
mod » or equivalently (m 4% — 1j{(m — h) =0 mod n if and only if

(m+h—1{m—nh)=0 mod p and (m 4+ h — 1j(m —h)=0 mod 2",

Thus m=h or 1 —h mod p and m="n or 1 —h mod 2",

If we apply the Jemma fo our case p=7, r==3 we conclude that
Ih — 1) mod 56 assumes (7 4 1)2 =16 different values. In the following
table pairs (k; h{h — 1)/2 mod 28) representing all -values of h(h— 1)/2
mod 28 are given.

b= 1 2 3 4 mod 7

1 10) 98 (T24) (2520
2 (50;21) 2:1) (16;17) (18;18)
3 (43;7) (51;15) (3;3) (11;27)
4 (36;14) (44;22) B2:10) 4;6)
mod 8

The values of h(h — 1)/2 mod 28 obtained aro 0, 1, 3, 6, 7, 8, 10. 13, 14,
15, 17, 20, 21, 22, 24, 27.

Taking h =1, p =0 gives the Hopt fibration (StEENROD (9, p. 109]);
taking # = 2 and using the additivity of p with respect to connected sums
gives

WM™ H ... # M) = m/28 (m copies (I <= m << 28)).

Since the connected sum of two smooth manifolds homeomorphic to the
sphere isitself a smooth manifold homeomorphic to thesphere, these connected
sums provide 28 distinot differentiable structures on the topological 7-sphere.
Furthermore, their natural combinatorial structures (¢. e., that of the combi-
natorial structures of the bundle in case of M, and that of the connected
sum in the other cases) are all isomorphiec.

This implies that the combinatorial structure on S’ is umique, as pointed
out to us by MILNOR and SMALE. '

From the theory of J-equivalence of MILNOR [6]and SMALE’S theorem (3]
that J-equivalent (2m -+ 1)-spheres (m = 2) are diffeomorphie, it follows that
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there are precisely 28 different (i.e., inequivalentj differentiable structures
on the 7-sphere. Thus we obtain the

THEOREM. - Two smooth T-wmanifolds which are homeomorphic to the
7~sphere are diffeomorphic if and only if they have the saime y value. Of the
28 diffeomorphism’ classes, precisely 16 occur as total spaces of ( Ry, S*) bundles
over S*

The other 12 differentiable 7-spheres do not possess any such fibration
by 3-spheres.

COROLLARY. — May_1 has the usual differentiable structure of S° if and
only if (h— 1)k =0 mod 56.

ExaMPLE. -~ An oriented differentiable manifold M homeomorphic to S,
admits an orientation reversing diffeomorphism if and only if w(M) == —p(M)
mod 1. For example M471, h =21, k=2h — 1, with p,(MQ) =1/2 mod 1.

Exayprrm. ~ M;L obtained for % = 11 is diffeomorphic with the homotopy
sphere M, defined by MiLNoR in [6, p. 13] for they both have p—= — 1/28
We do not know how to construct such a diffeomorphism.

CoRrOLLARY. ~ If MT is any wanifold satisfying Conditions ), then
the underlying lopological wmanifold admits at least 28 different differentiable
structures. Examples; M = X* X §°; M = §* X §° Compare Section 3.

Proor. - Bach M7z (M, # ... ## My )with m copies of M, in parentheses
(1< m = 28) has p value defined and equal to wM") 4 m/28, and there are
28 different values, Furthermore, each such sum is an oriented smooth
manifold homeomorphic to M".

Exampre. - The topological space S X §° admits at least 28 different
differentiable structures. If .S§% X §° denotes the usunal differentiable structure
then (S* X 8%)# M, is a product space in the homeomorphic sense but it
is not a product space in the diffeomorphic sense.

ExampLe. - The projective space P(R) admits at least 14 different
differentiable structures.

Proor. - Let P denote P, (R} with its usual differentiable structure and
form X = P° # (My" # ... M) with s copies of M,". If X denotes the
universal cover of X with induced differentiable structure, then

X=FPp My ..gp MH=Spyg M # .. # M)

with 2m copies of M. Thus X has the invariant p(X) = 2m/28 = m/14
mod. 1, and it can take 14 different valuss.
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Exampre. - It seems that our invariant p cannot be computed for the
7-manifold P*C) X §°. Thus no conclusion can be made concerning the
diffferentiable structures on this space.

7. Smooth fibrations of the 7-sphere.

It is a consequence of Theorem 6 that each of the 16 differentiable
T-spheres of the form M,” adwmit an infinile number of essentially different
differentiable fibrations by differentiable 3-spheres S, for if such a manifold
has invariant p,, then there are infinitely many distinct solutions of
h(h = 1)/66 = y, mod 1. Bach of these determines a differentiable fibre bundle
over the usual 4-sphere with fibre S® and with total space Mgy, differen-
tiably the same space in each case.

G. Himsom [12] bas proved essentially that if a fibration of the
Euclidean 7-sphere 87 is isomorphic to a fibration of S” by great 3-spheres
(which are sections by four dimensional livear subspaces through the center
of §" in Euclidean 8-space), then that fibration is isomorphic to the normal
sphere bundle of a quaternionic projective line in the quaternionic projective
plane, which is in turn the classical Hopr fibration of 87 (SreEENROD [9,
p. 108]. It follows that for R{h — 1)=0 mod 56 and h==0 and 1 the cor-
responding differentiable fibrations of the Euclideam S° cannot be realized by
a fibration with great 3-spheres as fibres. Furthermore, as we show in (2],
certain of these fibrations are not even of the same fibre homolopy type as
" the HopF fibration.

8. Computations for the case & = 3.
For any 1l-manifold M" satisfying Conditions p) we have
(14) WM™ = (4p.p, — 3p,° — 24| W]/2.3.3 mod 1,

computed for any oriented spin coboundary W. This is different from
MriLwor’s invariant A, which is

(15) MMM = (13paps — 2ps° + 9455 W]/2-31  mod 1,

computed for any coboundary W.

In Theorem 1 of MiLNoOR [5] the invariant A could not be applied to the
case of homotopy 11-spheres. Thus g is a better invariant than A for such
spaces (and gives the same information as X, as we have already noted in
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Section 4. Indecd, any smooth manifold M which is a homotopy 11-sphere
bounds parallelizable manifold W (see [6}), whence p[W]=0 (0 < i< 3);
therefore,

w(M)= — {W})/2*.31  mod 1

Avain the theory of MILNOR-SMALE shows that there are precisely 992
distinet differentiable stuctures on the topological 11-sphere, and the
manifold M, of MiLxor (6, p. 13] together with its connected self sums
represent all these classes. A (M) =1 mod 992; p(M,*) = — 1/992 mod 1.

THEOREM. - Two smoolth 1l-manifolds which are homeomorphic lo the
11-sphere are diffeomorphic if and only if they have same winvariant.

COROLLARY. - On awny ll-manifold salisfying Condilions v) there are
al least 992 different difterentiable structures.

9. Computations for the case &k =4,
‘We have

. 1 — £
A4 = 5:6_?“82-‘53.—7 ( — 192}?4 + Dl?p;;f}l + 208}922 — 904p2_p12 + 381p14) »
ty=—1/2 .127,

For any 15-manifold satisfying Conditions p) we find :

w(M*) = 12096p,p, -+ 5040p,* — 22680p,p,* +9639p,* — 1814407)[ W]
/25.35.5.7.127 mod 1

computed for any spin coboundary W satisfying Condition p). Again p
provides more information than X in their common domain of definition.

Let us compare A" and p when applied to homotopy 15-spheres. First
of all, as a consequence of certain calculations of H. Toda (kindly supplied
to us in a letter of January 17, 1961) we find that I,/8 = 8128. Thus for
any homotopy 15 sphere M** which bounds a parallelizable manifotd W we
have X(M") defined as an element of the oyclic group Zs.s; also, since
Pi [W*¥] =0 for 0 < ¢ <4, we have

— W(M®)/8128 = W(M*)= — «[W]/8-.8128  mod 1

It follows that y and X' provide the same information for such homotopy
spheres ; however, there are homotopy 15-spheres which do not bound parallelizable
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manifolds. (*) In fact, according to recent computations of KERVARIE and
MiLNor (unpublished) we have a splil eract sequence (in the notation of
MiLNOR [6])

(16) 0 — 0¥dn) — 0 = Z, — 0.

Consequently, X' is not defined for all homotopy 15-spheres. In contrast
to the 7- and ll-dimensional cases, the 16, 266 different differentiable
structures on the topological 15-sphere are mnot completely distinguished by
their p invariant, although those which bound paral elizable manifolds are.

In {7} SHIMADA constructed buudles &, ; over an 8-s; h re, with properties
analogous to those of MILNOR discussed in Section 6. Here 1[5, =1, h+j =1,
P B =0, p.[By*] = 6*2h — 1) and by substitution in the above expression
for p we find

(1mn w(M2) = h(h — 1)/16 256  mod 1.

The symbol ¢ we introduced here has the following meaning. According
to KervaIiRE and MILNOR (unpublished) there exist precisely two different
difterentiable structures om S®; the usual one is denoted by =0, the other
by o =1 In order to explain the index o we give the definition of the
relevant fibre bundles with differentiable structure, which definition for a
topological base space coincides with the definitions of MILXOR and SHIMADA.

Let u,, #,, v,, v, be octaves (Cayley numbers) with norm 1 {unit octaves);
7y, 7, real numbers; (u;, r;) are polar coourdinates for a ball in euclideam
8-space with radius 1: 0 < <1, j=1 and 2. Let n: 8" — 5" be a
diffeomorphism of the 7-sphere of unit octaves.

The balls with coordinates (u,, 7,) and {u,, 7o) can be glued along their
boundaries according to the identification of

(s, 1) and (uz, 1) = (qua, 1),

to give an 8-sphere with a differentiable structure ¢ = oin); =0 or i.
A differentiable fibre bundle with tofal space ME over this differ
entiable manifold S%"), is now obtained by gluing the product bundle spaces

with coordinates

(s, 713 v,) and (g, 723 Vo)

() The corresponding subgroup of the group of all diffeomorphism classes 61, is
denoted by ©15(9n)=Zgizs-
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according to the identification of
(M, 1; vy) and (uy, 1; v)) = (nu,, 1; (u) v () )h +j=1).

Observe that the differentiable structures of Mg’fﬂ together with the fi.
bration, determines the differemtiable structure of the base space. Observe
also that both differentiable structures on S*® determine the same combinatorial
structure on 8% and therefore the combinatorial structure of Ma% and its
fibration is independent of o.

15

We do not know whether Mgy and My are diffeomorphic or not, but
the two differentiable fibre bundles are differentiably different as bundles.
Both M 5% and M ! generate a subgroup of ©% of order 8128.

If we apply lemma 6 to the case n = p.2° = 127.2" = 16 256 we find
that there are {127 4 1)2° = 4096 values of h{h — 1)/2 mecd 8128, and these
values correspond to differentiable 15-spheres which are diffeomorphic to
the total space of a 7-sphere bundle over a base space homeomorphic to S°

10. Computations for the manifolds M., 1.

Mrinyor [B] has defined ceriain closed, smooth, orienfed (4k — 1)-mani-
folds M(f,, f;) in terms of a bundle over S*' with group the orthogonal
group Ey4_,,, defined by a map fy: S*"* — R,4_,,, and another R,.-bundle
over S**—" detined by fz: S**—"—! —~ R,,.

There is also a smooth coboundary W(f,, fo) of MI(fy, f) constructed
using these bundles, and Wif,, f:} is a spin coboundary since H*(Wify, fa)),
Z,) = 0. We will let p,(f)) denote the value on S* of the PONTRJAGIN class
of the bundle determined by f,; MiLNoR has computed A(M(f;, f2)) in most
cases in terms of p,{f)) and p,_,(f;), and we can modify those computations
to obtain w(M(f;, 1)) as follows: '

CASE - k<=2r. In this case M(fy, fz) is a smooth manifold homeomorphic
to the (4% — 1)-sphere, and [ W(f1, fz)] = 0; see Lemma 3 of MiLNor [5]. Then
p(Mf, 1) = [(8,80—r — 84) — ta(8,8ky — 80)IDFDA—s(f)/ @ mod 1

2 227‘—»1 J— 1 22&—27“—1 . 1
( 2211)—(1 —1 ) p!‘ (f!)pk—r (fé)

4a, (20)! 2k — 20)1

B.B, .| 1+

CasE ~ k= 2r. In this case (without making the simplifying assumptions
made in Lemma 4 of [5]) the expression for w(Il(fi, f3)) is more complicated.
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In order to derive it we first establish the following straightforward consequence
of a result of Thom {11, Th. 1.8].

LeEMMA. —~ Let £ be an R., -bundle with total space A and fibre the
m=disc D™ over an oriented closed n-manifold B. Then A is a bounded
oriented (n -+ m)-munifold with boundary E, and the zero section [ imbeds B
in 4. If §4r: Hi(By — H"*™A; E) denotes the Gysin homomorphism of &, then
the Euler clauss w,,(E) of £ corresponds fo the Poincaré dual of the self
intersection class $(B) o §(B) of the zero section :

(18) | DT YUB) o UB)) = LT w(E).

PROOF. ~ The homomorphism {¥ is defined by commutativity of the
following diagram (using integer coefficients):

H{B)— = > Hi+m(4, B)

D5 Da
A\ ¥

Hy_o(B)——> H,_i(4).

where the verfical arrows are the isomorphisms of PoixcarE duality.
According to Thom [11, Th. I. 8] we have (¥ = ¢, where ¢ is the Gysin-THOM
isomorphism of the bundle. On the other hand, as an integral class we have

Wm(8) = o™ (@(L)Up(1))
by definition. The lemma follows at once using the relation
LB+ {(B) = DaDT(L(B) U DA(LB)),

since as a homology class we have B = Dp(1).

We are interested in the case w = m = 4r and B = §*. If we set

8= DB, then B U B = oy, (§) = EF w,(®),
and therefore

(19) 8 U Bl4] = E¥ wy, (4] = we ) B].

"For any f: 8§~ — R, we define the integer w,, (f) as the value on S
of the EULER -class of the bundle defined by f. Then MiLNoR [5, p. 969] has
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shown that {in his notation)

pr(W(fl ’ fz)) = ipr(fl)j“ :tp’(fz)fﬁ y
whence

iITpe (Wi, £ =p, (f)Ye U a=2p (fOp, (f2)e UB 4+ p. ()P U B,

where o, B ¢ H* (4, E) are the duals of the two imbeddings of S§* in 4 by
the corresponding zero sections. Applying the expression (19} we find (since
aUf==1)

(20) j7 Wy, [VIW( e, 2] = p. ()’ we ) = 2p,(f0p, (F2) + p.(F2) 104, (f2) -
It follows that p(M(f,, /o)) is the modulo 1 reduction of

Brg . 2(22;‘——1 - 1)2 2 2.
8{(27‘) BE ( L+ ot -1 _ ) <p?(f1) 1w (f2) = 2p, (F)0(f2) -+ 0, (F)" 106, () >

+ b Wy, 1]

REMARK. - MILNor has shown that if f, maps S*"* — R._,, then
M(f., f.) is again homeomorphic to a (4% — 1)-sphere. In terms of the
invariants appearing in (20) this condition implies w4 (f1) =0 and {{W{(f,,
f21]=0; for then there is a section of the bundle defined by f,, whence its
Evrer class vanishes. From this we find that the intersection matrix for
W(f., f;) in dimension 2r is of the form

( 01 )
2150 )
which is easily seen to have index 0.
EXAMPLE - (r = 2, k= 4). Then
w(M(fy, f2)) = {po(fi 05 (F1) % 20 (F)pa (F2) +
+ (12 )wa(f2) — 36, [W (fi, )]} /2 - 37 - 127,
If we let fi=/f,,; and f,={fu,, in the notation of Section 6, then
Polfng) = F6(h — ), wilfn) =h +7,
and similarly for f,. It follows that
B (Fg,y Fag)) =4 (=) (b 2 (h— ) (W — )+
(W — P A7) =L [ W]} /2 - 121,
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