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COHOMOLOGY AND CONTINUOUS MAPPINGS
By SAMUEL EILENBERG
(Received April 25, 1939)

I. INTRODUCTION'

Given a geometrical cell-complex K and a polyhedron Y, let us consider all
continuous mappings f(K) C Y. These maps are divided into homotopy
classes, the maps in any class being homotopic to each other. The problem of
determining these classes by means of known invariants (for instance, homology
properties) of K and Y is of extremely great importance in modern topology.

The discussion of the case when K = S*is an ¢-dimensional spherical manifold
led Hurewicz® to the definition of the 7t homotopy group =:(Y) of Y. Although
our knowledge of these groups is still very imperfect, they have proved to be a
powerful instrument in all considerations connected with the general question.

Special interest has always been paid by topologists to the case when ¥ = S™.
In this direction there is the fundamental result of Hopf solving the question
completely if K = K".* As newly shown by Whitney* this theorem may be
stated as follows:

The classes of maps of K™ into S™ are in a (1 — 1)-correspondence with the
elements of the n** cohomology group "H(K™) of K™ with the group I of all integers as
coefficient group.

The theorem holds even if we replace the condition ¥ = S™ by the condition
mi(Y) = Oforz < n (n > 1), provided the group I is replaced by 7.(Y). This
shows that the appearance of the group I in Hopf’s theorem (as stated above) is
due to the fact that I and 7,(S™) are isomorphic.

The use of cohomology in Hopf’s theorem is natural, also, for the following
reason. The theorem and the proofs hold for infinite, locally finite complexes
as well as for finite, provided infinite chains and cocycles are admitted.® The
statement of Hopf’s theorem for infinite complexes in the language of homology
seems to be much more complicated.’

1 Some of the results were published by the author without proofs, in C. R. Paris 208
(1939), p. 68. See also H. Freudenthal, Proc. Akad. Amsterdam 42(1939), p. 139.

2 W. Hurewicz, Proc. Akad. Amsterdam 38(1935), pp. 112-115.

3 K* stands for the closed subcomplex of K consisting of all its cells of dimension <n;
K1=0.

4+ H. Whitney, Duke Math. Jour. 3(1937), p. 51. References to Hopf, Hurewicz, and
others will be found there.

8 C. H. Dowker, Proc. Nat. Acad. U. S. A. 23(1937), p. 293.

¢ In a note published in C. R. Paris 206(1938), p. 1436, L. Pontrjagin signalizes some
results concerning the case K = K** Y = S» (n + 1)-chains with coefficients from
mu41(S™) are implicitly introduced.
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232 SAMUEL EILENBERG

In a recent paper’ I have made systematic use of chains with elements of
homotopy groups as coefficients.  Let Q" be a geometrical cell-complex which is
an r-dimensional oriented combinatorial manifold, and let P’ be an i-dimensional
closed subcomplex of Q. Given a map f(Q — P’ C S", I define an i-chain
v (f) in P with coefficients in 7,_;_;(S") as follows: Let ¢ bo an t-cell of P* and
§T 7 a “small” (r — ¢ — 1)-sphere contained in @ — P* and “simply linked”
with ¢, then the element of x,_;_;(S™) defined by the map (s ") < 8" is the
coeﬁiment of o' iny'(f). I proved that this chain is a cycle and that its homo-
logy properties are closely related with the homotopy properties of f.

The purpose of the present paper is to build up an analogous theory for
arbitrary complexes. In parts III, IV, and V we develop such a theory which,
applied to manifolds, will at once give us, in part VI, all previous results con-
cerning v'(f), even in a slightly stronger form.

The basic definition is introduced in part III as follows: Let K be an arbitrary
geometrical cell-complex and f(K™) C Y a continuous mapping. Let ¢"™ be a
(n + 1)-cell of K and c(f, a™) the element of m.(Y) defined by cons1der1ng fon
the boundary of ¢"*'. Taking ¢(f, ¢"*") as the coefficient of ¢" , we obtain an
(n + 1)-chain ¢"*'(f). It is proved that ¢"*'() is a cocycle. Extension theo-
rem I, which is the main theorem of this paper, shows how closely the cohomology
properties of this cocycle are connected with the extension-possibilities of f
In all of part III Y can be an arbitrary topological space which is simple in
dimension 7, a condltlon introduced in part IT that is necessary in order to make
the definition of ¢(f, ¢"™") unique.

Part IV contains the application to the case when 7;(Y) = 0 fori < n. A
generalization of Hopf’s theorem is given which includes the generahzatlon of
Hurewicz-Whitney* and a generalization given by the author® arising from
replacing the hypothesis K = K" by some hypothesis concerning cohomology
groups for dimensions > n.

A homology interpretation of the results of part IV is given in part V, under
some additional hypothesis on Y.

Two appendices discussing special topics are given at the end of the paper.

II. PRELIMINARIES

1. Let K be a geometrical locally finite complex, with oriented convex cells
i of dimensionn = 0, 1, ... . Their number may be infinite and their dimen-
sions may form an unbounded sequence. The cells are open, and the closure of
the n-cell ¢} will be denoted by &7.

Let 87, = 1, —1 or 0 according as ¢} ' is positively, negatively, or not at all,
on the boundary 67 — ¢ of ¢f. The boundary and coboundary of o} are

defined by
E 6“0'7 , E an+l n+l

7 Fund. Math. 31(1938), pp. 179-200.
8 Compositio Math. 6(1939), p. 429.
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An n-chain is an infinite linear form A" = }:.- a;a; , in which a; are clements
. 9 r "
of an abelian group (¢".  The boundary and coboundary of A" are defined by

9A" = 2 asda7, A" = 2 aidol.

2. Let K’ be a closed subcomplex of K. An n-chain A" = Zi a;o; 1s con-
tained in K’ or in K — K’ (notation: A C K'or A" C K — K') if a; = O for
cach n-cell 67 in K — K’ or in K'. Clearly A" C K’ implies 44" C K’ and
A" C K — K’ implies A" C K — K'.

A" is a cycle mod K’ if 0A™ C K'; A" is a cocycle in K — K' if A™ C
K — K'and A" = 0. Two cycles A¢ and A} mod K’ are homologous mod K’
(notation: A§ ~ AT mod K') if there is an (n + 1)-chain A" such that
9A™™ — AT — A} C K. Two cocycles Ay and A in K — K’ are cohomologous
in K — K’ (notation: Ay «~ A7 in K — K’) if there is an (n — 1)-chain 4™ C
K — K’such that 64" " = A7 — A7,

Using the relations 904" = 0 = 80A" we may define as usual the homology
and cohomology groups

"H°(K) mod K, "Hs(K — K'),

where G is an arbitrary abelian group whose elements are taken as coefficients
in the chains.

If K" = 0 we write A¢ ~ A}, A¢ — Al and "H®(K) instead of Ay ~
Al mod K/, Ay — A7 in K — K'and "H°(K) mod K.

Everything can be repeated starting from finite chains. We shall use similar
notations, replacing ~, «~ and H by ~*, —* and H*.

3. LemMA. Given an n-chain A", an (n + 1)-cell " and an n-cell ¢* C
"', there is an (n — 1)-chain A™" such that

(81) A" —8A"'=ac" + A7, AT CK -, aeG.
Proor. Let ¢", o, o3, ---, o be all the n-cells of """ and let
A" = Bo" + D Bio} + B, B'c K — .
1=1

The boundary "™ — "™ of ¢"*' being an n-dimensional manifold there is'
an (n — 1)-chain A" with integer coefficients such that

AT = 67 — " + B}, & = =1, Bfc K — &%

Writing A" = D i1 BiAT ", a =8+ D imi&Biand AT = B" + DI 8B}
we obtain (3.1).

9 More exactly, an n-chain is a function with n-cells as arguments and elements of G as
values.
10 H. Whitney, Duke Math. Jour. 3(1937), p. 44.
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4. Let X and Y be two topological spaces and Y™ the family of all continuous
transformations f such that f(X) € Y. Given feY¥ and A C X, we denote
by f| A the “partial”’ function obtained considering f only on 4. Y*(4, f)
will be the subfamily of Y* containing all the functions f’ such that f' | A = f| 4.

Let us fix a point y € Y. We shall denote by 0 the function mapping the
whole of X into yo, 0 will also stand for 0 | A and Y*(4, yo) for Y*(4, 0).

We shall denote the closed interval (0, 1) by E and the Cartesian product of
X and E by X X E.

Two functions fo , fi e Y*(A, f) will be called homotopic relative to A (notation:
fo = fi rel. A) if there is a g ¢ Y*** such that

g(z, 1) = fi(x) for zeX,2=0,1,
gz, t) = f(z) for zeA,tek.

If A = 0, the functions f, and f; will merely be called homotopic (notation:
fo =~ f1) instead of homotopic rel. 0.

In this way the family Y* is divided into homotopy classes and Y*(4, f) into
homotopy classes rel. A.

5. It is well known" that the set 7 = K X 0 + K’ X E is a retract” of the
product K X E, where K’ is a closed subcomplex of K, and therefore
(5.1) Every f ¢ Y™ has an extension f' ¢ Y**%.
Let A C K and fe Y™
(5.2) Given foe YX(A, f) such that fo|K' ~ f|K' rel. A, there is an
fo e YS(K', f) such that fo ~ forel. A.
Proor. Let g e Y*F be such that

g(z, 0) = fo(x), g(z, 1) = f(z) for z e K’,

g(z, 1) = f(x) forzeA,tekE.
Writing g'(z, t) = g(x, t) for (x,t) e K' X E,

g'(x, t) = fo(x) for (z,t) e K X O

we have g’ ¢ Y7 and by (5.1) there is an extension g”’ ¢ Y*** of ¢’. The func-
tion fo(x) = ¢'(z, 1) satisfies the conditions of (5.2).
Taking A = 0 in (5.2) we have
(5.3) Given fo, f1 € Y™ such that fo | K' ~f, | K', there is an fo ¢ Y™ such that
fo~foand fo | K' = fi | K.

6. Let S™ be an oriented n-dimensional sphere, let S™ = E} + EZ be a
decomposition of S™ into two hemispheres (oriented as S™), and let x, be a
point of the equator $"™ = E}.E" .

11 See P. Alexandroff-and H. Hopf, Topologie I, Berlin 1935, p. 501; K. Borsuk, Ann. Soc.
Polon. Math. 16(1937), p. 218.
12 4 < X isaretract of X if thereisanr ¢ AX such thatr(z) = zforz e A.
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We shall denote by [f] the homotopy class rel. 2o of a map f e Y*"(zo, yo).
Given fo , fi € Y** (20, %), we obviously have

fo| EZ ~0rel. zy and fi|E} ~Orel. 7.
Therefore, by (5.2), there are two functions fo € [fo] and f1 € [fi] such that
fo|E* =0 and fi|E} = 0.
Writing
JIEY =fo|EX and f|EZ =f{|EZ
we have f e Y*(zo, ). We define
[f1 = [fol + [Ai]-

It is easy to see that with this definition the homotopy classes rel. z, of
Y5 (xo, 3o) form a group 7. = m.(Y) which is called" the nth homotopy group
of Y (with respect to %). The unit element of this group is obviously the
class [0].

(6.1) 1, is abelian for n > 1.1

7. We shall call Y simple in dimension n,” or, more briefly, n-simple if every
homotopy class of Y** contains exactly one homotopy class rel. 2o of Y5 (20 , 40).
In other words, Y is n-simple if

(a) for each f € Y°" there is an f’ € Y™*(xo , yo) such that f' ~ f

(®) fo, fi e Y(xo, o) and fo =~ f1 imply fo ~ firel. o .

It can easily be shown, using (5.3), that (a) is equivalent with

(a’) Y is arcwise connected.

From now on we shall assume that Y is arcwise connected.

Obviously if Y is n-simple then every f ¢ Y°" determines uniquely an element
of 7, , and we may suppose that the elements of 7, are the homotopy classes of
Y5, This is the property that makes n-simple spaces useful for our further
discussion.

(7.1) m is abelian if and only if Y is 1-simple.”
(7.2) If m, = O then Y is n-simple.””

(7.3) If m = O then Y is n-simple."”

(7.4) S isn-stmple forr = 1,2, ... .

8. Let E" be an oriented n-dimensional element bounded by S*'. Let us
choose two homeomorphisms

he(E}) = E* and h_(EL) = E"

13 W, Hurewicz, Proc. Akad. Amsterdam 38(1935), p. 113.

14 Ibid., p. 114. Though = is in general non-abelian, it is abelian in all the cases con-
sidered here, so that additive notations will be used throughout this paper.

15 §. Eilenberg, Fund. Math. 32(1939), pp. 167-175.
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such that hy | 8" = h_| 8™, "' = EL.E” being the equator of 8*. Let
us agree further that A, transforms E} into E" positively. Then h_ transforms
E” into E" negatively.

Given two functions fo, fi € Y*" such that fo | 8" = f1 | 8", let (fo, f1) e Y™
be a function defined by

(fo; f) | EX = fohy, (fo, f1) | EZ = fih_.

Assuming that Y is n-simple we denote by d(fy , f1) the element of ,, corre-
sponding to (fo, f1).
(8.1) d(fo, fi) = 0 f and only #f fo ~ f, rel. 8"\
(82) Iffo,fi,freY™ and fo| 8" = fi| 8" = £ 8" then d(fo, fi) +
d(fl; f2) = d(fﬁy f2)’

8.3) d(fo, f) = —d(f1, fo).

(8.4) Given fo e Y™ and « €1, there is an f1 € Y such that fo | 8" = f, | 8"
and that d(fo, fi) = a.
Proors. Ap (8.1). d(fo, fi) = 0 is equivalent to (fy, fi) =~ 0 and this ob-
viously holds if and only if fo ~ f; rel. 8"7".
ADp (8.2). Since f; ~ 0 there is a map g; ¢ Y*"*” such that

9z, 0) = filx), gz, 1) =y for zeE"
using (5.1) we can find two maps go, g2 € Y* < such that
gi(z, 0) = fi(x) for zeE", i=0,2
gi(z, t) = qi(x, t) for (z,t)eS"' X E, 1=0,2
Writing f;,.(x) = gi(z, t) for te E and 7 = 0, 1, 2 we have forz, j = 0, 1, 2
fouol 8" =f 18" and  (fi, f) =~ (fir, fin)-

In particular we have d(f;, f;) = d(fi1, f;.1) and since fi; = 0, (8.2) reduces
to the formula

d(for, 0) + d(O, f21) = d(for, fo0),

which is a direct consequence of the definition of =, .

Ap (8.3). Follows from (8.1) and (8.2) taking fo = f .

Ap (8.4). Let g e Y° be a map representing the element a er,. Since
g | E: ~0and f, ~ 0 we have

g | BT ~ fohs .
Using (5.3) we find a g’ ¢ Y*" such that
¢ ~¢ and ¢'|EY = foh, .

Writing f; = g’h”  wehavefy e Y, fo | 8" = £, | " and ¢’ = (fo,f1). There-
fore d(fo, fi) = a.
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III. TaE GENERAL THEORY

9. We assume that Y is n-simple. All chains considered here will have coeffi-
cients taken from 7, = w.(Y).

Let f ¢ YX"® For each (n 4 1)-cell ¢"*' the map f|(¢""")", the n-sphere
(™) = "' — ¢"™ being oriented by the n-cycle 8¢"", defines uniquely an
element of m. which we denote by c¢(f, ¢""). We define an (n + 1)-chain

¢"*(f) writing
(9.1) cn+l(f) — Z‘ C(f, o_;t+1 a?+l.16
Obviously ¢(f, ¢"™) = 0 is equivalent with f | ("™
9.2) ¢(f, ") = 0 1f and only if there is an extension f’ ¢ Y= of f.
9.3) Iff e Y<" and f ~f then "' (f) = ¢""(f").

Let fo, fie Y™ fo| K™ = fi | K". For each n-cell ¢" the maps fo | 6" and
fi| &" define according to 8 an element d(fo, fi, ¢") of mn. We define” an
n-chain d"(fy , f1) writing

(9.4) a*(fo, 1) = 22:d(fo, fi, o)al.
It follows from (8.1) that
(9.5) d(fo,f1,6") = 0ifand only if fo | 6" ~f1 | &" rel. " — o".

)" ~ 0 and therefore

10. We shall prove the following fundamental properties of ¢"'(f) and
d"(fo, f1):
(10.1) ¢"*'(f) is a cocycle (i.e. 5¢™'(f) = 0).
(10.2) 8d"(fo, fr) = ¢"(fo) — (S
(103) If fo,fr , foe Y™ and fo| K" = fi| K" = fo| K" then
d"(fo, f1) + d*(fr, f2) = d"(fo, fo).
(10.4) d*(fo, f1) = —d"(f1, fo)
(10.5) Given fo € Y*" and an n-chain d" there is an f e Y*" such that fo | K" =
fi| K" and that d"(fo , ) = d".
Proors. (10.3) follows from (8.2); (10.4) follows from (8.3) and (10.5) is an
immediate consequence of (8.4).
Ap (10.2). Let o7 be an n-cell. We suppose first that

(10.6; fol K" — ol = fL| K" — oi .
We then have
d*(fo, fr) = d(fo, fr, oi)ai,
and therefore
8d™(fo, f1) = d(fo, fr, o0)8a? = d(fo, fr, 0F) 0% o7

18 According to footnote? we obtain c**1(f) by considering c(f, ¢3+') as a function of the
argument o7,
17 See the paper of L. Pontrjagin quoted in ¢.
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The formula (10.2) therefore, takes the form
(10.7) 01 d(fo, fr, 0f) = ¢(fo, o7 ™) = e(fr, o} ).

If 87" = 0, then because of (10.6) we havefy | (7)) = f1| (67 ). It follows
that ¢(fo, "“) = ¢(f1, o), and (10.7) holds.

If 37" % 0 we have o7 C&!*". Let h(67) = (¢7*") — oF be a homeomor-
phism such h(z) = z for z € (¢7). Because of (10.6) we have
(10.8) foh = fih.

It follows from 8 that for £k = 0, 1 we have
c(fx, o7 ) = d(fi, fuh, o) if 0 =1,
c(fe, o7 = d(fuh, fi, oF) if 87 = —1.
Using (10.8) and (8.3) we obtain

c(fO, "+l) - c(fl) "+1) = an+1 [d(fo,foh, ‘71") + d(foh, fl b a:»)]

(10.7) follows, therefore, from (8.2).
Now, let of, o5 , - -+, o be the n-cells of ", where ¢} "' is an arbitrary
(n 4+ 1)-cell. We define the functions go, g1, -+- ,¢g. € Y* as follows:

go = Jo,
gi | K" — ol = gia | K" — of ,g:i| 6] = fi] &l fori > 0.
We then have for: =0,1, ... ,r — 1

8d™(gs , ginr) = ¢ (g0) — " (gu),
and by (10.3)
(10.9) 8d"(fo, g) = ¢"(fo) — ¢"(gn)
But since g, | (e7™") = f2| (677")" we have
cgr, o7 ") = e(fr, of ™),
dfo, g, 01) = d(fo, f, 0f) for of Caf™.

Consequently we deduce from (10.9) that ¢(fo, o7 ™) — ¢(fi, o7 ") is the coeffi-
cient of ¢7*" in the (n + 1)-chain 8d"(fs, f1), and hence (10.2) is completely
proved.

Ap (10.1). Let "™ be an (n + 2)-cell and ¢ C "™ an (n + 1)-cell.
By the lemma of 3 there is an n-chain d” such that

(10.10) ¢"P'(f) — 8d" = ac™™ 4+ A™, A" c K - " Q€ Ty,

)

According to (10.5) there is an f" ¢ Y*" such that f| K" = f'| K" and
d"(f,f) = d". Therefore, by (10.2),

(10.11) ") = 8d” = "),
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It follows from (10.10) and (10.11) that ¢(f’, ¢"*") = a and that ¢(f’, ¢} ™) =0
for each (n + 1)-cell ;™ C 5" — ¢™''. By (9.2) we may therefore suppose
that f’ is extended on (¢"**)" — ¢"*''. This complex being an (n 4 1)-clement it
follows f” | (¢™™")" ~ 0 therefore ¢(f/, ¢"*") = 0 and therefore « = 0. This and
(10.10) imply
cn+1(f) _ Bd" CK _ 6'"+2,
and therefore
&™) = s[c"(f) — 8d"] C K — ¢"

o"** being an arbitrary (n + 2)-cell it follows that sc™'(f) = 0.

11. Let f ¢ Y*'**" where K’ is a fixed closed subcomplex of K.
(11.1) ¢""(f) € K — K'.
(11.2)  ¢""'(f) = 0 if and only if there is an extension f' ¢ Y 75" of f.
In fact, for each ¢""' C K’ we have f|é""" ~ 0, whence c¢(f, ¢"*") = 0.
Therefore (11.1) holds. (11.2) is a consequence of (9.2).
Letfo, ie Y™ fo|K' + K" = fi | K' + K"\
(11.3) d"(fo,f1) CT K — K'.
(11.4) d"(fo, fr) = 04f and only if fo ~ f, rel. K' + K"\
For each ¢" C K’ we have fo|é" = fi| ¢" and from (9.5) we deduce
d(fo, fi, ¢") = 0. Therefore (11.3) holds. (11.4) follows from (9.5).
(11.5)  Givenfy e Y*'**" and an n-chain d® C K — K', there is an f; ¢ Y*' 5"
such that fo | K' + K" = f; | K’ + K" and that d"(fo, f1) = d".
(11.6) Given f ¢ Y " and a cocycle ¢"*' € K — K’ such that """~ ¢*™'(f)
inK — K', thereisanf’ ¢ Y*"" such thatf | K' + K" ' =f' | K + K"
and that ¢"7'(f") = "
Proors. (11.5) is an immediate consequence of (8.4). In order to prove
(11.6) let us consider an n-chain d" € K — K’ such that

Bdﬂ - Cn+l(f) _ C"+1.

By (11.5) there is an f’ € Y*'**" such that f | K’ + K" = /| K’ + K" " and
that d"(f, f) = d". According to (10.2) we then have

adn — cn+1(f) _ Cn-H(fl),
and ¢"*'(f") = ¢"** follows.

12. ExtensioN THEOREM 1. Let f e Y'™*". The (n 4 1)-chain ¢"*'(f) de-
fined by (9.1) is a cocycle in K — K'. Moreover, ¢"™'(f) «~ 0in K — K’ if and
only if there is an f ¢ YX' 75" sych that f | K’ + K" = f/ | K’ + K"\

Proor. The first part of the theorem follows from (10.1) and (11.1). If
¢"*(f) <~ 0in K — K’ then applying (11.6) for ¢"™ = 0 we find an f” ¢ Y*'*%"
such that f| K’ + K" = f” | K’ + K" and that ¢""'(f”) = 0. By (11.2)
there is an extension f’ e YX'"*"™" of f”. We then have f| K’ + K" =
S| K + K"™". On the other hand, if such an f’ exists we have: 8d"(f, /') =
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) = () because of (10.2), ¢*'(f) = 0 because of (11.2), and
d"(f,f) € K — K’ because of (11.3). It follows that ¢"*'(f) ~ 0in K — K'.

Homorory THEOREM 1. Given two functions fo, fie Y™ such that
folK' + K" = fi| K" + K"\, the n~chain d"(fo, f1) defined by (9.4) is a
cocycle in K — K'. Moreover, d"(fo, fi) «— 0 in K — K’ if and only if
(12.1) fol K" + K" ~f,|K' + K" rel. K’ + K™

Proor. We shall consider the interval E as a complex containing two 0-cells
0 and 1 and one 1-cell € oriented so that e = 0 — 1. The product L = K X E
is considered as a complex with cells of the form ¢" X 0, ¢” X 1 and ¢" X e
The n-cell ¢" X 0 is oriented as ¢”, 6" X 1as —o”". The (n + 1)-cell 6" X ¢
is oriented so as to have 9(¢" X €) = 96" X € + 0" X de.

Let L' =K' XE+ K X0+ KX1. LetgeY” ™ bethe map defined by

g(x, t) = fo(x) for zeK 4+ K"', teE,
g(x,7) = fi(x) for zekK, 1 =0, 1.

By (9.2) we then have ¢(g, o™ X 0) = 0 and ¢(g, ¢"™* X 1) = 0. It follows
from 8 that ¢(g, ¢" X €) = d(fo, f1, ¢"). Therefore we have

c"Mg) = d"(fo, f1) X e

The condition d*(fy, fi) “ 0in K — K’ is therefore equivalent with the condi-
tion ¢"*'(g) ~~ 0in L — L’. By Ext. th. I this is equivalent with the existence
ofag e V¥ such thatg|L' + L" " =g’ | L’ + L™, This, however, means
exactly (12.1).

Homoropy TueoreM Ia. If "H, (K — K') = Oand fo,fi e Y™ then

(12.2) fol K + K" o~ fi |K' + K" " rel. A
tmplies
(12.3) JolKK + K" ~fi| K+ K"rel. A

for any subset A of K.

Proor. By (5.2) and (12.2) there is an fo € Y™ such that fo | K’ + K*' =
fi| K’ + K" " and that fo o~ forel. A. Since d"(fs , f1) ~ 0in K — K’ it follows
from Hom. th. I that fo | K’ + K" ~f, | K’ + K" rel. A. This implies (12.3).

13. In this section Y is ¢-simple for 2 = n, n + 1, --. ,dim (K — K’).

ExrtensioNn Taeorem 1I. If “P'H, (K — K') = 0fori =n,n + 1, ..,
where w; = wi(Y), then every f ¢ Y which has an extension f' ¢ Y*'**" has also
an extension f"’ € Y*. _

Proor. We define a sequence fo = f’, fas1, fnse, - -- of maps f; e Y<'T5°
such that fiy, | K’ + K™ = f; | K’ + K*'. The sequence exists by Ext. th. I.
Writing f”/(z) = lim fi(r) we have f’ ¢ Y and f | K’ = f' | K’ = f" | K.

Howmoropy Taeorem II. If ‘H, (K — K') = Ofori=mn,n + 1, ..., where
i = mi(Y), thenfo,fie Y and fo |K' + K" ~ fi | K’ + K" ' rel. A imply
Jo >~ firel. A for any subset A of K'.
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Proor. Jet L=KXEL =K XE+ K XO0+ K X 1. We then
have ""'H, (I, — L") = 0fori = n,n + 1, ... . It follows by Ext. th. IT
that every g e Y* which has an cxtension ¢’ e Y*''*" also has an extension
g// € YL.

Iffo | K"+ K" ~fi | K’ + K" "rel. A, thereis a ¢’ ¢ Y*"**" such that

g'(x, t) = folx) for zed, teE,
g'(z,7) = fi(x) for zeK, i=0,1.

Writing ¢’ | L = g, we sec that there is an extension ¢"’ ¢ Y* of g. This implies
Jo >~ firel. A.

IV. THE CasE m(Y) = 0 For 1 < n.

14. In this part we assume that =;(Y) = 0 for ¢ < n. If n > 1 this implics
m = 0and by (7.3) Y is¢-simple for all 2. If n = 1 we assume that Y is 1-simple,
or (see (7.1)) that m, is abelian. In particular everything can be applied for
Y = 8"

(14.1) Every f € Y™  has an extension f’ ¢ Y%,
(14.2) fo, freY™ and fo|K' ~ fi|K' rel. A imply fo|K' + K"' ~
fi| K" + K" rel. A forany A C K.

Proors. Obviously there is an extension fo e Y% * of f. Since Y is arcwise
connected (see 7) there is also an extension f; ¢ Y* TR of f. Since m; = 0 for
i < n, we have *"'H, (K — K’) = 0 and applying Ext. th. I we obtain suc-
cessively extensions fi e Y5 fori=1,2, ... ,n — 1.

Y being arcwise connected, it follows from fo | K’ ~ fi| K’ rel. A that
fo| K+ K ~f;| K’ + K'rel. A. Since ‘H,, (K — K') =0fori=1,2, ...,
n — 1, weobtainf, | K’ + K" ~f; | K’ 4+ K" rel. A applying Hom. th. I a.

15.
(15.1) fo,fr e Y™ andfo | K' =~ f, | K" imply " (fo) ~ c""'(f) in K — K.

Proor. By (14.2) we have fu | K’ + K" ~ f; | K’ + K"}, and according
to (5.2) there is an foe Y*"*" such that fo ~ fo and fo| K’ + K" =
fil K + K*'. From (9.3), (10.2), and (11.3) we then have: ¢""'(fo) =
" (fo), 8d™(fo , f1) = ¢"(fo) — " (f), and d"(fo, fi) € K" — K'. It follows
that ¢"*'(fo) « ¢""'(f1) in K — K'.

By (14.1) every fe Y™ has an extension f' e Y*'**". Let ¢""'(f) be the
element of ""'H, (K — K’) determined by the cocycle ¢"*'(f"). It follows from
(15.1) that the choice of f’ does not matter and that

(15.2) fo, i e Y™ and fo ~ f, imply ¢"'(fo) = ¢"(f1).

From Ext. th. I we obtain the following
ExTtENsioN THEOREM III. Cl‘z’ven f e Y™ we have ¢"™'(f) = 0 if and only if
there is an extension f' € Y75 of f.
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16.
(16.1)  Given fo,fi,fo,f1 e Y such that fo| K" + K" "' =fi | K+ K" ', fo |
K +K'™7" =fi|K + K" fo ~ forel. K’ and f; ~ {1 rel. K’ we have
d"(fo, f1) ~d"(fs,f1)in K — K.
Proor. Let L=KXE L =K XE+KXO0+KX1. Letge Y**
be defined by

g(x, t) = fo(x) for zeK + K", teE,
g(x,7) = fi(x) for =z eK, 1 =0,1.

In an analogous way we define ¢’ ¢ Y*"**" using fo and f; instead of fo and fi .
As in 12 we then have

(16.2) ¢"Ng) = d"(fo, 1) X & c"TNg) = d"(fs, f1) X e

Now, fo =~ fo rel. K’ and f; ~ f1 rel. K’ obviously imply ¢ | L’ ~ ¢’ | L', and
therefore, by (15.1), ¢""'(g) « ¢"*'(¢’) in L — L’. Using (16.2) we then obtain
&"(fo, 1) ~ d"(fo, f) in K — K.

Given two functions fy, fi, e Y* such that fo | K’ = fi| K’ we have, by
(14.2), fo | K’ + K" ~ fi | K’ + K" ' rel. K’, and by (5.2) there are two
functions fo , f1 € Y™, such that

(16.3)  fo~forel. K/, fi~firel. K', fo|K' + K" ' =f1| K + K"\

Let d"(fo, f1) be the element of "H, (K — K’) determined by the cocycle
d"(fs, f1). It follows from (16.1) that d"(fo, f1) is independent of the particular
choice of fo and f] such that (16.3) holds. By (10.3) and (10.4) we have

(164) Iffo,fl,fzéyxandfo|K/ =fllK, =f2|K/th6’7L
' dn(fO ) fl) + dn(fl rf2) = dn(f07f2))

(16.5)  d"(fo, i) = —d"(f1, fo).

Homoropry THEOREM III.  Given fy, fi € Y such that fo | K’ = fi | K’ we have
d"(fo, f1) = 01if and only +f

(16.6) fol K' + K" ~fi | K' + K" rel. K'.

Proor. If d"(fo, fi) = O then d"(fs, fi) « 0 in K — K’ and by Hom. th. I
we have fo | K’ 4+ K" ~ fi | K’ + K" rel. K’. Using (16.3) we obtain (16.6).
On the other hand, by (5.2), (16.6) implies the existence of an f; ¢ Y™ such that
fo ~forel. K’ and that fo | K’ + K" = fi | K’ + K". It follows d"(fs, f1) = 0
and therefore d"(fo , fi) = 0.

17. In this section (and in 18) we assume as before that =;,(Y) = 0 forz < n.
If n = 1 we assume that Y is ¢-simple for 7 = 1, 2, ..., dim (K — K’). As
before, everything can be applied for ¥ = S”.

Combining Ext. th. IT and ITI we have the

ExrtensioNn THEOREMIV. Let "'H, (K — K)=0fori=n+1,n+2, ...,
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where m; = w(Y). Given f € Y*' we have ¢"*'(f) = 0 if and only if there is an
extension f' ¢ Y™ of f.

Similarly Hom. th. II and III imply

Homoropy THEOREM IV. Let '‘H, (K — K)=0fori=n+1,n+2, ...,
where m; = m;(Y). Givenfo,fr € Y* suchthatfy | K' = fi | K' we haved"(fy , f1) =
0 of and only if fo ~ firel. K'.

The hypotheses of Ext. th. IV and of Hom. th. IV are obviously satisfied if
K — K C K"

Existence THEOREM. Let "'H, (K — K)=0fori=n+1,n+2, ...,
where m; = m(Y). Given fi e Y and d" ¢ "H, (K — K') there is an fy e YX
such thatfo | K' = f1| K’ and thatd"(fy , f1) = d".

Proor. Let d” be a cocycle of the cohomology class d”. By (11.5) and
(10.4) there is a map fo e Y* ™" such that fo | K’ + K" = f; | K’ + K™
and that d"(fo, i) = d". By (10.2) we have 6d" = ¢"*'(fo) — ¢""'(f1). Since
8" = 0and ¢""'(f1) = 0 (see (11.2)) it follows ¢**'(fo) = 0 and by (11.2) there is
an extension fy e YX' 75" of £, .

Now, let K = K’ + K".  We then have "'H, (K — K"") = 0fori = n + 1,
n + 2, -- - and by Ext. th. II therc is an extension fo ¢ Y* of fy. We then have
d"(fo ,f1) = d" and therefore d"(f’, /1) = d".

18. Let f* e Y*. Asin 4 Y*(K’, f*) will be the sub-family of Y* containing
all f e Y* such that f| K’ = f*| K’. The family Y*(K’, f*) is divided into
homotopy classes rel. K’, two maps fo , fi , € Y*(K, f*) being in the same class if,
and only if, fo ~ f; rel. K'.

Given a homotopy class® rel. K’ of Y*(K’, f*) we define d"(®) = d"(f, f*)
where f e®. It follows from (16.4), (16.5), and Hom. th. III, that the element
d"(®) of "H, (K — K’) is defined uniquely. Under the hypothesis of Hom.
th. IV we have & = @, if and only if d"(®) = d"(#;). Under the hypothesis
of the Existence th. there is for each d” ¢ "H, (K — K’) a homotopy class ®
rel. K’ of Y®(K’, f*) such that d"(®) = d". We obtain, therefore,

CrasstFicatioN THeorem 1. Let ‘H, (K — K') = “'H, (K — K') = 0
fori=n+4+1,n+2, ..., where 7; = n;(Y). The elements of "H, (K — K’)
are in a (1 — 1)-correspondence with the homotopy classes rel. K' of Y*(K’, f*).
The correspondence is determined by the operation d™(f, *).

Taking K’ = 0 and f* = 0 we obtain

CrasstFicatioN Teorem 11 Let ‘H, (K) = V'H, (K) = 0 for i = n + 1,
n+ 2, ... where m; = wi(Y). The elements of "H, (K) are in a (1 — 1)-corre-
spondence with the homotopy classes of Y*. The correspondence is determined by
the operation d™(f)(=d"(f, 0)).

Note that according to 16 d"(f) is defined as follows: by (14.2) we have
1 K" ~ 0, therefore by (5.2) there is an f’ ¢ Y* such that f ~ f’ and that
| K" =0. d"(f)is then the element of "H, (K) corresponding to the cocycle
d&\(f") = d'(f’, 0).

The hypothesis of Class. th. I are obviously satisfied if K — K’ C K". Tak-
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ing K = K" in Class. th. II we obtain the theorem of Whitney quoted in the
introduction.

V. ArpricaTiON TO HOoMOLOGY

19. Let G, H, Z be three abelian groups. If to each a ¢ G and 8 ¢ H there
corresponds and «-8 in Z, and both distributive laws are satisfied, we say'
G and H form a group-pair with respect to Z. If I is the group of rational
integers then clearly G and I form a group pair with respect to G.

Given a finite n-chain A" = ) ; a7 with a; € G and an arbitrary n-chain
B" = Z.- Bsol with B; e H we write

An-Bn = Zi a.--B,-.
It is easy to see that
6A"+I-B" — An+1-5B"

for every finite (n 4 1)-chain A™. It follows that if A7 and A} are finite
cycles mod K’ (coef. G) and Bg and By are cocycles in K — K’ (coef. H) then

Ay ~* A7 and Bg§ -« B}
imply
Ag-By = Al-B7.

We see then that "H*®(K) mod K’ and "Hx(K — K’) form a group pair with
respect to Z. Similar relations hold for "H°(K) mod K’ and "Hn(K — K').

20. We assume that

1°) Y 4s locally connected in dimensions < n

2°) 7(Y) = 0fori <n

3°) 7. (Y) s isomorphic with I.

It follows from (7.3) and (7.1) that Y is n-simple.

It follows from our hypothesis that r.(Y) can be considered as identical with
the n* homology group "JF('(Y) with integer coefficients.”® Further, there is in
Y an n-dimensional cycle I'y (coef. I) such that for every n-dimensional cycle
I'" (coef. @) in Y there is a unique « € G such that I'" ~ aI'§.* Owing to this
fact we may write "} °(Y) = G and in particular =,(Y) = "J'(Y) = L.

19

21. Letfe Y™, Forevery finite cycle A™ in K’ with coefficients in G we have
f(A™) ~ al'y where «a€G.

18 See E. Cech, Ann. of Math. 37(1936), p. 684.

19 See e.g. C. Kuratowski, Fund. Math. 24(1935), p. 269.

20 W. Hurewicz, Proc. Akad. Amsterdam 38(1935), pp. 521-2. Explanations concerning
homology in Y will be found there.

21 See N. E. Steenrod, Amer. Jour. of Math. 58(1936), pp. 661-701.
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The element « will be called the degree of f on A™ and denoted by g(f, A™). Itis
obvious that A ~* A7 in K’ implies g(f, A¢) = g(f, A7) and therefore g(f, @) is
defined for every a” ¢ "H*°(K’) and is a homomorphic mapping of "H*“(K’)
into G. Obviously fo , fi ¢ Y and fo ~ f, imply ¢(fo, ") = g(f1, a").

Let f/ € Y*"**" be an extension of f. For any (n + 1)-cell ¢7"" we then have
according to 9 and 20 ¢(f7, ¢7"") = g(f’, 8s7"") which can be written

ot N(f) = g(f, 907,
It follows that
A™TS) = g(f, 04"

for any finite (n 4+ 1)-chain A™" with coefficients in G. If, in particular, A"
is a finite cycle mod K’ then d4™" C K’ and

(211) An+1~Cn+1(fl) — g(f, aAn+l).
Therefore, according to 16 and 19
(21.2)  a".c"Nf) = g(f, 9a™ M) for every " e T H*°(K) mod K'.

22. Let fo,fieY® and fo | K’ = fi| K'. For every finite cycle A™ mod K’
(coef. @) fo(A™) — fi(A™) is an n-cycle in Y, and therefore fo(A™) — fi(A™) ~ aI'y
forsome a e . Wewrite g(fo,f1, A”) = a. As before we verify easily that g(fo,
f1, @") G is a homomorphic map defined for every a" ¢ "H*°(K)mod K’. Clearly
fo fieYX fo ~forel. K’ and f; ~ firel. K" imply ¢(fo , f1, ") = (f5,f1, a").

Now let us suppose that fo | K’ + K" = fi | K’ + K"'. We then have
according to 8,9, and 20d(fs ,f1 , o7) = g(fo ,f1, o7) and as before

A™d"(fo, 1) = g(fo, i/, A7)
and therefore
(22.1) A"-d"(fo, f1) = g(fo, 1, A7)
for every finite cycle A™ mod K’. According to 16 and 19 we then have
(22.2) a’-d"(fo, f)) = g(fo, f1, a") for every a" ¢ "H**(K) mod K'.

23. We assume now (besides the hypothesis on Y made in 20) that

1°)y K — K’ is fintte,

2°) G = R 1is the group of real numbers reduced mod 1.
In this case the groups "H*(K) mod K’ and "H,(K — K') are orthogonal® and
therefore every element of "H,(K — K’) can be considered as a character™ of

2 This group has to be considered as a topological compact group. See L. Pontrjagin,
Ann. of Math. 35(1934), p. 908.

23 L,. Pontrjagin, Ann. of Math. 35(1934), pp. 361-388; H. Whitney, Duke Math. Jour.
3(1937), p. 40.

24 L. Pontrjagin, Loc. cit.
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"H*(K) mod K'. By (21.2) and (22.2) we sec that the cohomology classes
") e ""H(K — K') and d"(f,, f) e "H (K — K’), when considered as
characters, are just equal to g(f, 8a"™") and ¢(fo, f1, @").”* Using Ext. th. III
and Hom. th. III we obtain therefore

ExTENsION THEOREM III*. Given f e Y™ we have g(f, 0a™™) = 0 for every
a"™ ¢ ""H*(K) mod K’ if and only if there is an extension f' ¢ Y <" of 1.

Homotory ThEOREM IIT*.  Given fo, fi € Y™ such that fo | K' = f, | K’ we have
9(fo, fr, @") = 0 for every a" ¢ "H"(K) mod K’ if and only if fo | K' + K" ~
fi|K' + K" rel. K'.

24. In order to obtain classification theorems in terms of homology we have
to admit that

1°) Y is locally connected in dimensions < dim (K — K’);

2°) 7(Y) = 0 fori < n;

3°%) ma(Y) s isomorphic with I.

If n > 1it follows from (7.3) that Y is ¢-simple for all . If n = 1 we require
Y to be ¢-simple for ¢ = 1, 2, ... dim (K — K’). In particular we may take
Y =8~

The group m; = x:(Y) being countable at most for 7 < dim (K — K’), there
is® a topological compact group p; orthogonal to m;. In particular we may
take p, = R.

If we admit further that K — K’ is finite, then the groups ‘H**(K) mod K'*
and ‘H, (K — K') are orthogonal® and therefore the formulas

‘H(K)mod K’ =0, °H,(K—-K')=0

are equivalent.

Using the argument of 23 we may restate all the theorems of 17 and 18 replac-
ing cohomology by homology. In particular we obtain

CLASSIFICATION THEOREM I*.  Let ‘H**(K) mod K’ = ""H*(K) mod K’ = 0
fori=n 41, n+ 2 ... . The characters of the group "H®(K) mod K’
are in a (1 — 1)-correspondence with the homotopy classes rel. K’ of Y*(K', f*).
To each f € YE(K', f*) there corresponds the character g(f, f*, a).

CrassIFICATION THEOREM IT*7  Let ‘H* (K) = “""H*(K) = 0 fori = n + 1,
n 4+ 2, .... The characters of the group’"H*(K) are in a (1 — 1)-correspondence
with the homotopy classes of Y*. To each f ¢ Y™ there corresponds the character
g(f,a").

VI. MANIFOLDS

26. Let Q" be a finite or infinite geometrical cell-complex which is an oriented
r-dimensional combinatorial manifold.® The first barycentric subdivision

% This conclusion (and consequently also the theorems which follow) can be obtained
even when K — K’ is infinite provided the groups ‘HR(K — K') and ‘H7(K) mod K’ are
orthogonal forz = 1,2, ... .

26 L. Pontrjagin, Ann. of Math. 35(1934), pp. 361-388.

27 See S. Eilenberg, Compositio Math. 6(1939), p. 429.

28 Sec c.g. K. Reidemeister, Topologic der Polyeder, Leipzig 1938, p. 151.
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Q1 of @ is a simplicial complex, and using the simplices of Q we may define as
usual the (oriented) dual (r — n)-cell for each n-cell of Q". The dual cells form a
cell-complex K" which is also an r-manifold and has Q] as a barycentric sub-
division.

If o;" is the (r — n)-cell of K dual to the n-cell { of Q" we write D(+7) =
o; "and 9*(o; ") = 77 . More generally, given an n-chain.

n n
A" = Ez QT4
we write

DA™Y = ),; aio; "
and D¥[D(A")] = A". It is well known that
6@(1‘1") — (—1)"+1£D(6An).29

Similar relations hold for 9*. We obtain thus (I — 1)-isomorphisms
P"HYQ)] = ""He(K') and D["Hs(Q)] = ""H°(K"). The inverse isomor-
phisms are given by 9D*.

26. P will stand for an arbitrary closed subcomplex of Q. We shall denote
by D(P) the subcomplex of K™ consisting of all the cells D(77') where ' € P.
(26.1) P C D(P).

(26.2) P; C P; implies D(Py) C D(Py).

(26.3) K" — D(P) is a closed subcomplex of K'.

(26.4) P = P'implies K "' C K — 9(P).

(26.5) D(A™) S D(P) for every n-chain A™ in P. D*(A") C P for every n-chain
A" in D(P).

(26.6) K’ — 9(P) is a deformation retract” of Q° — P."

(26.7) Every f ¢ Y "9 has an cxtension f € YO

(26.8) fo,fie YV "andfy| K — D(P) ~fi | K — D(P) imply fo ~ 1 .

(26.1)-(26.5) follow dircctly from the definition. In order to prove (26.6),
notice that K™ — D(P) consists of all simplices of the barycentric subdivision
Q1 of Q" which have no vertex on P. (26.6) is therefore a consequence of the
following quite general and elementary lemma:

Let Q1 be a geometric simplicial complex, Py a closed subcomplex of Q, and C(P;)
the closed subcomplex of Q. consisting of all simplices of Q, which have no vertex on
P, . The complex C(P,) is then a deformation retract of Q, — P; .

(26.7) and (26.8) follow from (26.6).

27. We assume that Y is n-simple All chains will have coefficients from
mn = ma(Y).

29 See H. Seifert and W. Threfall, Lehrbuch der Topologie, Leipzig-Berlin 1934, p. 245.

30 A C X is a deformation retract of X if there is a map g ¢ X**F such that g(z, 0) = z,
g(xz,1) e Aforz e X and g(z,1) = zforz e A.

3 See S. Lefschetz, T'opology, New York 1930, p. 141.
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Let P be a closed subcomplex of @ and let fe Y7 "', Taking K’ =
K" — 9(P) we have according to (26.1) and (26.4)
K+K'CcK —-9P "hYcqQ —pP .
Write .
hA=FIK + K", 77 = D" ()"

(27.1) ") is @ cycle in P77 (with coef. in m.(Y)).
(27.2) ' e YT and f o~ f imply 4TS = 4N,
(27.3) Ify""7N(f) C Py CP then there is an f’ ¢ YO~ PTY queh that f ~

f/ I Qr _ Pr—n—l‘
(27.4) ¥"7"N(f) = 0 if and only if there is an f' ¢ Y¥ """ such that f ~
f/ I Qr _ Pr—n—l-

(27.5) Givenan (r — n — 1)-cycley™ "™ C P such thaty """ ~~y""""'(f) in P,
there is an ' € Y °" "7 such that ¥""Nf) = " and that
f|QT_ PT-" &JfllQr—-Prin_ )

(27.6) Y "'(f) ~ 0 in P if and only if there is an f' e Y¥ 7" such that
Q@ —P " ~f[Q — P

Proors. Ap (27.1). By (10.1) and (11.1) ¢"*'(f)) is a cocycle in D(P).

Therefore, by (26.5), v "'(f) is a cycle in P.

Ap (27.2). f~f'impliesf|K' + K"~f |K+ K". Therefore fi ~ f;, and

by (9.3) ¢""(f1) = ¢""(f). Tt follows that v " 7'(f) = v " X(f").

Ap (27.3). ¥ 7"7N(f) € Piimplies ¢"*'(fy) € D(Py), whence ¢(f;, of) = 0
for every o 7' C D(P) — D(Py). By (9.2) f1 admits an extension on every such

. . / r_ — —n—2 .
o2+ and therefore therc is an extension fi e Y~ D@—rr="0 o fi.  According

to (26.7) there is an extension f' ¢ Y¢ """ of f/ We then have
FIK —DP "N =fi=f|K —DP " "andby (26.8)f ~f |Q — P """

Ap (274). If ¥"7'(f) = O then taking P, = 0 in (27.3) we obtain an
S €YU """ uch that f ~ f| Q" — P""". On the other hand if such an J’
exists we have " 7'(f) =+ ""'(f") by (27.2) and therefore v "7'(f) = 0 by
(27.1) since " 7I(f") € P72

Ap (27.5). Let ¢*™ = D" ™"). Then ¥ " ~ v "(f) in P implies
D ™" DY ")) in D(P) and therefore ¢* — ¢"™'(f)) in K* — K'.
By (11.6) there is an f; ¢ Y*""*" such that f, | K’ + K™ = f{ | K’ + K" and
that ¢"*(f1) = ¢"*'. Since K’ + K" = K* — D(P™"™") there is, by (26.7), an
extension f ¢ Y& """ of f{.  We then have v " 7(f') = D" (f)] =+ "L
Since K’ + K"' = K — 9P and f|K' + K" = f,|K + K" =
filK'+ K ' =f|K+ K" wehavef| K" — QP = f'| K — P,
and by (26.8)f | Q" — P " ~f' | Q*— P ".

Ap (27.6). Ify " 7'(f) ~ 0in P, then, takingy"~""" = 0 in (27.5), we obtain
an f” € YO7U"" such that v "7'(f”) = 0 and that f|Q — P ~

32 This definition of y~""1(f) is obviously equivalent with that given in the introduction.
Cf. footnote 15,
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71 Q — P7". Applying (27.4) we obtain an f’ e Y9 """ such that
f1Q — P7" ~f"|Q — P". On the other hand, if such an f’ exists then
JIK' + K" ~f|K + K" 'since K’ + K € Q — P™". By (56.2)
we may therefore suppose that f | K’ + K" = f/| K’ + K"". Since K’ +
K'cQ —P " 'and K’ + K" € Q — P " it follows from Ext. th. I that
(| K+ K" ~0in K — K’ = D(P) and therefore that v " "(f) ~ 0 in P.

28. In this section we assume that m;(¥Y) = O for7 < nif n > 1, and that ¥
is 1-simple (i.e. that m;(Y) is abelian) if n = 1.

(28.1) Givenfe Y " thereisanf e Y7 "' such thatf ~f' | Q" — P.

(282) fo,fie Y " " and fo|Q — P ~fi|Q — P imply fo ~ i .

(283) fo, eY" ™™ " and fo|Q — P ~fi|Q — P imply v "Nfo) ~
v "N fL) in P.

Proors. Ap (28.1). By (14.1) there is an f; ¢ Y*™*" such that f| K’ =
fi| K, where as before we take K’ = K" — D(P). Since K’ + K" = K" —
D(P"") there is, by (26.7), an extension f/ ¢ Y 7" of f;. We then have
1K — 9D(P) =f"| K — D(P) and thereforef ~f' | Q" — P by (26.8).

Ap (28.2). folQ — P ~fi|Q — P implies fy | K’ ~f, | K’ and by (14.2)
fol KK+ K" ' ~fi|K'+ K™ Since K’ + K" = K" — QP it follows
from (26.8) that fo ~ fi.

Ap (28.3). fo|Q — P ~f,|Q — Pimplies fo | K’ ~ fi | K/, and by (15.1)
M fo| K4+ K "/ | K+ KM in K — K = 9(P). It follows that
¥ ~ 2 ) in P

Let f ¢ Y977 and let f’ be given by (28.1). Let " ""'(f) be the element of
""" 'H™(P) determined by the cycle v "'(f’). It follows from (28.3) that

r—n—1

¥ (f) is independent of the choice of f’.
(28.4) ¥ NS = D¥c"'(f | K')] where K' = K — 9(P).

(28.5) Givenf e Y " we have " N(f) = 04f and only if thereisanf e Y "
such thatf ~f" | Q — P.

Proors. (28.4) follows straight from the definition of ¥ "' and ¢"™'. If
¥ ") = 0 then for every "'« Y¥ """ such that f ~ " | Q" — P we have
Y " Nf") ~ 0in P. It follows by (27.6) that there is an f’ ¢ Y¥ % """ such
that f ~f"|Q — P ~f'|Q — P. On the other hand, if such an f’ exists we
havey™ "'(f") = 0 by (27.4), and therefore v "'(f) = 0.

29. We assume now that =;(Y) = O for¢ < nif n > 1 and that Y is ¢-simple
fort=1,2, ... ,r—1ifn = 1.
(29.1) Let™ " 'H™(P) =0fori =n+1,n+2, ... ,r — 1 where = = m:(Y).
Given f ¢ Y% we have ¥ "7'(f) = 0 if and only if there isanf ¢ Y
such that f ~ f'| Q" — P.
This follows from (28.5) and (27.6) applied successively for n + 1, n +
2, ...,r—1.
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30. Let G and H be two groups forming a group pair with respect to a group
Z. Given a finite n-chain A™ = 2_; a;o? in K* with coefficients in G and an
arbitrary (r — n)-chain B™" = X, 8:;7; "in Q" with coefficients in H, we write

X(A" AT = 20 B
We obviously have
(30.1) x(4", A7) = A" DBT") = D*(A™M-B"

It follows therefore from 19, 26, and 26 that "H*°(K") mod K~ — 9(P) and

""H"(P) form a group pair with respect to Z. Similar relations hold for
"H(K") mod K" — D(P) and " "H*"(P).

31. We make the same hypothesis about Y as in 20. Let fe Y* *. By
(21.2), (28.4) and (30.1) we have
(31.1) x[@"™, ¥ "] = g(f, 8a™") for every @™ ¢ """ H**(K") mod K™ — 9(P)
Now, if P is finite and G = R (see 23 and footnote™) the complex 9D(P)
is finite and """ H*(K") mod K* — 9(P) is orthogonal to """ "H'(P), since it is
orthogonal to ""'H,[D(P)] (see 23). It follows therefore from (31.1) that
+v" 7 7'(f) considered as a character of ""'H®(K") mod K" — 9D(P) is equal to
g(f, 3a™*"). Therefore it follows from (28.5) that
(31.2) Given f € Y% we have g(f, 8a™™") = 0 for every a"" ¢ """ H*(K") mod
K — D(P) if and only if there is an f' e YO 7" """ such that f ~
f1Q — P.
AppENDIX I. ON NorRMAL MappiNnGgs™
Let Y be an arbitrary topological space and let yoe Y. A map fe Y*" will
be called n-normal if f | K™™' = 0 (i.e. if f(x) = yo forz e K ).
Given an oriented n-cell ¢; in K", the map f| ;' defines (if f is n-normal)
uniquely an element d(f, o;') of m,(Y). If n > 1 then =,(Y) is abelian and we
may define the n-chain d"(f) and the (n + 1)-cocycle ¢**'(f) by

d"(f) = 2o:d(f, al)et, NS = 8d"(f).

c(f, of™) will be defined as the coefficient of the (n + 1)-cell ot in ¢"*'(f).
Given two n-normal maps fy , fi € Y= we take

a"(fo, f) = d"(fo) — d"(f).

Starting from the definition of 7,(Y) we can prove that c(f, ¢7*") = 0 if and
only if f can be extended on ¢*". It follows that .

d™(f) is a cocycle (i.e. ¢"*'(f) = 0) if and only if there is an extension f' ¢ Y
of f.

33 The purpose of this appendix is to make clear the position of the results of H. Whitney
(Duke Math. Jour. 3(1937), pp. 51-55) in the theory developed in this paper. The proofs
are on the same lines as those of Whitney and may be left to the reader.
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From this, statements analogous to those of 9-12 can easily be deduced. In
particular we have

ExTENsION THEOREM. Given an n-normal map f e Y=, the n-chain d"(f) C K’
is part of a cocycle in K™ if and only if there is an n-normal extension f’ ¢ Y X T5*"
of 1.

Homoropry THEOREM. Given two n-normal maps fo, fie Y™ such that
fo|l K" = fi| K, the n-chain d"(f,, f1) is a cocycle in K — K'. Moreover
d (fo, fi) - 0in K — K if and only if fo | K' + K" ~ fi | K’ + K" rel.
K' + K"

AppENDIX II. MapPpPINGS OF INFINITE (n + 1)-MANIFOLDS

We assume that m;(Y) = 0 for ¢ < nif n > 1 and that Y is ¢-simple for
1=1,2if n = 1. In particular we may take Y = S".

Let Q""" be an infinite geometrical cell-complex which is an oriented (n + 1)-
dimensional combinatorial manifold.

CLASSIFICATION THEOREM. The homotopy classes of Y<"'" are in (1-1)-corre-
spondence with the elements of the group "H™(Q™"") where mn = m,(Y).

Proor. Let K™ be the dual of Q*"'. Since Q""" is a connected infinite
complex, it is easy to see that "H(Q™"") = 0 and therefore, by 25, that
"M He(K™") = 0 for every abelian group G. The hypotheses of Class. th. II
are thus satisfied and the homotopy classes of Y = Y¥"" arein a (1 — 1)-
correspondence with the elements of "H, (K"*'). By 26 this group is iso-
morphic with "H™(Q™""). This proves the theorem.
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3 Whitney, loc. cit., p. 53. It is easy to verify that d"(f) is part of a cocycle in K if
and only if ¢**1(f) «~ 0 in K — K’; ibid., p. 54.



