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ANNALS OF MATHEMATICS 
Vol. 51, No. 3, May, 1950 

SEMI-SIMPLICIAL COMPLEXES AND SINGULAR HOMOLOGY 

BY SAMUEL EILENBERG AND J. A. ZILBER 

(Received January 27, 1949) 

A simplicial complex has the following two properties: (a) each q-simplex 
determines q + 1 faces of dimension q - 1, (b) the faces of a simplex determine 
the simplex. 

Recent work in singular homology theory of topological spaces [1] and homol- 
ogy and cohomology theory of abstract groups [2] have led to abstract complexes 
which satisfy (a) without satisfying (b). We shall give a general definition of this 
class of complexes and show how the various constructions of homology theory 
(including homology with local coefficients, cup-products, etc.) can be carried 
out just as for simplicial complexes. 

The chief example of such a "semi-simplicial" complex is the singular complex 
S(X) of a topological space X. Although this complex is very "large" it is pos- 
sible to find subcomplexes of S(X) which contain all the information that S(X) 
carries but which are stripped of everything superfluous from the point of view 
of homotopy. The existence and uniqueness of such minimal subcomplexes is 
established. These minimal complexes are the main tool in the paper of S. Eilen- 
berg and S. MacLane [4] immediately following. 

1. Semi-simplicial complexes 

A semi-simplicial complex K is a collection of elements {f } called simplexes 
together with two functions. The first function associates with each simplex 
a- an integer q _ 0 called the dimension of a; we then say that a is a q-simplex. 
The second function associates with each q-simplex a- (q > 0) of K and with 
each integer 0 ? i ? q a (q - 1)-simplex a() called the ith face of a, subject to 
the condition 
(1.1) [0()J0(i) = [OfW]U-4) 

for i < j and q > 1. 
We observe that this definition does not exclude the possibility of two distinct 

q-simplexes a and Xwith (i) = 7(i) for i = 0, q. 
We may pass to lower dimensional faces of ar by iteration. If 0 ? ij < ...< 

in < q then we define inductively 
0,(il,--,in) = [OU2,- in)] (il). 

This is a (q - n)-simplex. If 0 ? jo < < jq- q is the set complementary 
to {il *. , in} then we also write 

a =i.n 

In particular a(i) for 0 < i ? q is a 0-simplex called the ith vertex of a. We shall 
also refer to a(o) as the leading vertex and (rol) as the leading edge. 
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A subcomplex L of K is a subcollection of simplexes of K with the property 
that if a e L then all the faces of a are in L. 

The group of q-dimensional (integral) chains Cq(K) is defined as the free 
abelian group with the q-simplexes of K as free generators. The boundary homo- 
morphism 

0: CQ(K) >+ C2_(K) 

is defined by setting for each generator 

o = Ej (-1)ta. 
i=O 

One verifies readily that 0a = 0. This leads directly to the definition of cycles, 
boundaries, and of the homology group Hq(K). Following the usual procedure 
we may also define homology groups Hq(K, G) with an arbitrary abelian coeffi- 
cient group G as well as relative homology groups Hq(K, L, G) modulo a sub- 
complex L. 

A q-dimensional cochainf e C2(K, G) may be defined either as a homomorphism 
f: Cq(K) -* G or as a function f(o) defined on the set of q-simplexes of K with 
values in G. The coboundary is defined by 

q+1 

(f)(o) E= E (-_)tf'f('(i)) 
i=O 

for each (q + 1)-simplex a of K. This leads to cohomology groups H'(K, G). 
Relative cohomology groups Hq(K, L, G) are obtained by considering cochains 
which are zero on every simplex of the subcomplex L. 

The cup-products for cohomology may be defined by the Alexander formula 
just as in the case of a simplicial complex with ordered vertices. Let the groups 
G1 and G2 be paired to the group G and let cochains f' e C'(K, G1), f2 e Cq(K, G2) 
be given. Define the cochain fi <, f2 e C"+' (G) by setting 

(fl 'y f2)(of) - fl(Cr(O...,p))f2(0T(p,...,p+,q)) 

for every (p + q)-simplex o of K. The usual coboundary formula 

B (f1 f2) = (bfl) kf2 + (-1) fl A' 6f2 

is then valid, and the pairing of the cohomology groups H'(K, G1) and 
H'(K, G2) to the group Hp+'(K, G) is defined. 

Following the same procedure all the formal definitions and results of the 
_,-product theory of Steenrod [6] can be carried out in a semi-simplicial complex. 
A simplicial map T: K-- K1 of a semi-simplicial complex K into another such 

complex K1 is a function which to each q-simplex a of K assigns a q-simplex 
X = T(a) of K1 in such a fashion that r(i) = T(oPW), i = 0, -. -, q. Clearly T 
induces homomorphisms of the homology groups of K into those of K1 and of 
the cohomology groups of K1 into those of K. The latter homomorphisms preserve 
the products. 
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2. Local coefficients 

Steenrod's theory of homology and cohomology with local coefficients [5] 
can be built very conveniently in a semi-simplicial complex. Let K be such a 
complex. For the sake of brevity we shall discuss cohomology only. 

A local system G = {G(a), y(Q) of groups in K consists of two functions; 
the first assigns to each vertex (i.e. O-simplex)a of K a group G(a), the second 
assigns to each edge (i.e. 1-simplex) fi of K an isomorphism 

,y0O: G(0(1,) --- G@(O?)) 

subject to the condition 

7(0f(0, 1))Y(0(l, 2)) = 7(a(o, 2)) 

for each 2-simplex oa. 
Let G = {G(a), -yQ() } be a local system of abelian groups in K. A q-cochain 

f of K over G is a function which to each q-simplex a of K assigns an element 
f(o-) of the group G(o-(o)) associated with the leading vertex c(o) of a. The q-cochains 
form an abelian group C'(K, G). The coboundary 6 f is a (q + 1)-cochain defined 
by 

q+1 
(6f)(0) = 7(O(o.1))f(0Aa) + X (-i)%f(ofti). 

iP=l 

It is easy to verify that b5f = 0. The group Z'(K, G) of cocyles is then defined 
as the kernel of 5: Cq - C+ while the group Bq(K, G) of coboundaries is the 
image group of 5: Cl _ Cqa. The qth cohomology group of K over G is 

Hq(K, G) = Z(K G)/B(K, G). 

Let T: K1 -* K be a simplicial map. From the given local system G in K we 
define a local system T*G of groups in K1 as follows: T*G = {G(T(a)), -y(T I)) 
for vertices a and edges d in K1 . If f e C(K, G) we define 

(T*f)(ar) = f(Ta) 

for q-simplexes a of K1 , and find that T*f E C(K, T*G). Clearly 6(T*f) = T*(af) 
so that a homomorphism 

T* : H'(K, G) --) Hq(Ki 2 T*G) 
is obtained. 

3. Singular homology 

Typical examples of semi-simplicial complexes are encountered in singular 
homology theory. 

Select for each dimension q a fixed Euclidean q-simplex A, with ordered ver- 
tices do < * < do. Consider the simplicial maps 

e :,Aq^-_* i=O-=0, q 

which are order preserving and map ,- onto the face of Aq opposite d . 
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A map T: A, -*> X of Aq into a topological space X is called a singular q-simplex 
in X. The faces of T are defined as 

T() = Te':4.1- X. 

The singular simplexes of X thus make up a semi-simplicial complex S(X) 
called the total singular complex of X. If A is a subspace of X, S(A) is a sub- 
complex of S(X); the homology and cohomology groups of the pair (X, A) are 
defined to be those of the pair (S(X), S(A)). 

From now on we shall assume that X is arcwise connected and that a fixed 
point x* of X has been selected as base point. A singular simplex T: Aq + X 
such that T(Aq) = (x*) will be called collapsed. We denote by Sn(X) the sub- 
complex of S(X) consisting of all singular simplexes T such that all faces of 
T of dimension < n are collapsed. Thus for dimensions q < n, S(X) contains 
only one q-simplex, namely the collapsed one. 

With reference to local coefficients it should be remarked that a local system 
of groups on the space X yields a local system of groups on the complex S(X) 
and vice-versa. It also determines a local coefficient system on each of the com- 
plexes S,(X). On the complex S1(X) the local system reduces to one group G 
- G(x*), and each 1-simplex of S1(X) defines an automorphism of this group. 
These automorphisms determine, and are determined by, the fashion in which 
the fundamental group 7r1(X) (with x* as base point) operates on G. In the com- 
plexes S,(X), n > 1, the automorphisms are all identity maps and the local 
coefficient system collapses. 

4. Minimal complexes 

Two singular q-simplexes To and T1 in a space X are called compatible if 
their faces coincide: T"t) = T(t) for i = 0, * *, q. If in addition To and T1 are 
members of a continuous one parameter family Tt, 0 < t < 1, of singular 
q-simplexes, all of which are compatible, we say that To and T1 are homotopic. 
For q = 0 any two simplexes are compatible, and since X is assumed to be arc- 
wise connected, they are also homotopic. 

A subcomplex M of S(X) will be called minimal provided: 
(4.1) For each q the collapsed q-simplex T:A, --* x* is in M. 
(4.2) If T is a singular q-simplex all of whose faces are in M, then M contains 

a unique singular q-simplex T' compatible with and homotopic to T. 
To show that minimal subcomplexes exist we proceed by induction. Assume 

that a subcomplex M(') of S(X) has been defined containing only simplexes of 
dimension <n and satisfying (4.1) and (4.2) for q ! n. Consider all (n + 1)- 
simplexes in S(X) all of whose faces are in Men). Divide these simplexes into 
equivalence classes, counting two simplexes as equivalent if they are compatible 
and homotopic. Select one simplex out of each equivalence class with the pro- 
vision that the collapsed (n + 1)-simplex be one of those selected. Define M(+') 
by adjoining to M(') these selected (n + 1)-simplexes. This yields a "dimension 
by dimension" construction of a minimal complex Ml. 
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Since every two 0-simplexes in S(X) are compatible and homotopic, M con- 
tains only one 0-simplex, namely the collapsed one. This implies 

(4.3) Every minimal subcomplex M of S(X) is a subcomplex of S1(X). 
More generally we have 
(4.4) If the homotopy group xr,-1(X) vanishes, then for every minimal subcomplex 

M of S(X) we have M n Sn1(X) C Sn (X). 
PROOF. Let T be an (n - 1)-simplex of M n S.-1(X). Since all the faces of 

T are collapsed, T is compatible with the collapsed (n - 1)-simplex To, and since 
srn-l(X) = 0, T is homotopic to To . Thus by (4.2) T = To and T is collapsed. 

As a corollary of (4.4) we have 
(4.5) If the homotopy groups 7ri(X) vanish for i < n then every minimal sub- 

complex M of S(X) is a subcomplex of S,(X). 

5. The main homotopy 
We shall consider prisms 

lIqA,-, X I, q > 0 

where A,, is the (q - 1)-simplex used to define singular (q - 1)-simplexes while 
I is the closed interval 0 < t ? 1. The maps 

eql: AQ-2 -Aq1, 1 0i , = q -1 
define maps 

Pg I11q-1 --> 11g 

by setting p(x, t) = (ea l(x), t). 
We further have the maps 

qb:Aq-, -IIq, I 0 < t _1 

defined by b'(x) (x, t). The maps b' and b' are of special interest. 
A continuous mapping 

P:llq -* X 

is called a singular q-prism in X. The singular (q - 1)-prism 

p(i) = Pp:I,-,-* X 

is called the ill face of P, i = 0.**, q - 1. The singular (q - 1)-simplexes 

P(t)=Pbq:Aq1--X, 0 t ? 1 

will be considered, in particular P(O) and P(1) will be called the lower and the 
upper base of the singular prism P. 

(5.1) Let X be an arcwise connected space and let M be a minimal subcomplex 
of X relative to some base point xs e X. There is then a function {PTI which to each 
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singular q-simplex T in X assigns a singular (q + 1)-prism PT in X subject to 
the following conditions 
(i) PT($ = PT 
(ii) PT(O) = T. 
(iii) PT(1) is in the subcomplex M, 
(iv) If T e M then PT(t) = T for all O ? t ? 1. 

A function {PT} satisfying conditions (i)-(iv) will be called a homotopy de- 
forming S(X) into M. 

We begin the construction of PT with the dimension zero. A 0-simplex T in 
X is represented by a point x e X; we then select PT to be a path joining xt 
and x, with the provision that PT is the collapsed path if x = x*. 

Suppose, by induction, that PT is defined for simplexes T of dimension <q 
so that (i)-(iv) hold. Let T be a singular q-simplex in X. If T is in M we define 
Pr by (iv). We may thus assume that T is not in M. Consider the following 
subsets of Ilq+1 

A = ka X (0) U Aq X I, 

B = A U Aq X (1), 

where Aq denotes the boundary of Aq. Conditions (i) and (ii) define a mapping 

f:A -*X 

such that 

fb+1 = T, fp+l = PT(i) for i = Oy. , q. 

Since A is a retract of HI+1, there is an extension 

f,: lq+il X. 

The map T1 = f b+1,: Aq -* X is a singular q-simplex. The ith face of T1 is 
PTW (1) and thus in M. Since the faces of T1 are in M, there is in M a unique 
q-simplex T2 which is compatible and homotopic with T1. We define 

f2 :B->X 

so that f2 = fi = f on A and f2bq+l = T2 . The map f2 is then homotopic with 
fi (considered only on B). Since fi is defined all over 7I+1 , there is an extension 
f : Hq+1 >- X of f2. Define PT = f3 ; conditions (i)-(iv) are then easily verified. 

If we denote 

eptT = PT(t), 0 _. t < I, 

then for every singular q-simplex T in X, ((otT) (p) is continuous simultaneously 
in 0 ? t _ 1 and p e Ag , and conditions (i)-(iv) can be rewritten as follows. 
(i)' 'pt: S(X) -- S(X) is simplicial, 
(ii)' po is the identity, 
(iii)' =M0T e M, 
(iv)' VptT =T for T e Mk and 0 -< t '_ 1. 
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Thus in a sense (,. is a retraction of S(X) onto M while {JOt} is a homotopy con- 
necting this retraction with the identity map. Thus we may say that M is a 
deformation retract of S(X). 

6. Applications of the main homotopy 

We shall use the main homotopy to compare the homology and cohomology 
of the complex S(X) with those of a minimal subcomplex M. 

By a suitable simplicial subdivision of H. one can define (see [1, ?16]) a function 
which to each singular prism P: Hq -> X assigns a q-dimensional chain c(P) 
in S(X) such that 

Oc(P) = P(1) - P(O) - E (-1)i c(P(")). 
Now let PT be the main homotopy of ?5 and define DT = C(PT) e C+'(S(X)) 

for each q-simplex T of S(X). There result homomorphisms 

D: Cq(S(X)) *C+(S(X)) 

such that 
IDT + DdT =o1T - T. 

Consequently we have 
(6.1) The inclusion simplicial map i:M -- S(X) and the simplicial map 

8P1: S(X) -* M are such that the composition epji:M -* M is the identity while 
the composition ip1: S(X) -* S(X) is chain homotopic to the identity. 

A corollary of (6.1) is 
(6.2) The inclusion map i: M -* S(X) induces isomorphisms of the homology 

and cohomology groups of the space X with those of the minimal complex M. 
From the properties of PT and C(PT) it follows easily that if T is a q-simplex 

-in Sn(X) then D(T) is a (q + 1)-chain in S,(X). Thus (6.1) and (6.2) may be 
restated with S(X) and M replaced by Sn(X) and M n Sn(X) respectively. 

(6.3) If the homotopy group -7r,,(X) vanishes then the inclusion map j:S., (X) 
-+ S8-(X) induces isomorphisms of the homology and cohomology groups of Sn(X) 
-with those of Sn_1(X). In particular this always applies to the map S1(X) -* S(X). 

PROOF. Consider the inclusion maps 

M n S,(X) M 4Sn(X) 4 Sn-1 

Since by (4.4) we have 1M1 n Sn(X) = M n SnI(X), it follows that jin = in-l 
is the inclusion map in1 M n Sni(X) -* Snl(X). Since both in and in-i 

induce isomorphisms of the homology and cohomology groups, the same applies 
to j. 

As a corollary of (6.3) we have 
(6.4) If the homotopy groups 7ri(X) vanish for i < n then the inclusion map 

sS,(X) - S(X) induces isomorphisms of the homology and cohomology groups of 
S(X) with those of S,(X). 

All the isomorphisms asserted in (6.2)-(6.4) are also valid for cohomology 
groups with local coefficients. As an example we shall indicate the reasoning 
leading to the analoguLe of (6.2). 
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Let G be a local coefficient system in X (i.e. in S(X)) and let G' be the induced 
local system in M. The inclusion map i:M -- S(X) induces homomorphisms: 

i*: H'(X, G) --.H'(M, G'). 
To define an inverse map proceed as follows. Let T be any q-simplex in X with 
leading vertex T(o) . Then PT(o) may be regarded as a 1-simplex in X which 
yields an isomorphism 

p(T) = y[<p(T(o))] : G(,rlT(o)) - G(To)). 

Now for any cochain f e C(M, G') we define a cochain O'f e C'(X, G) by setting 

(4Jf)(T) = p(T) f (spjT). 

It is easy to verify that 84,f = qP15f and thus 46 induces homomorphisms 

4[*: H"(M, Gf) -+H2(XI G). 
The composition i* iP* is evidently the identity map. To examine the composi- 
tion Ski* we must examine the definition of the chain DT = C(PT) e C,+'(S(X)) 
and observe that DT is a linear combination of simplexes all of which have the 
same leading vertex as the simplex T. Thus for each f e C'(X, G) we may define 
D*f E C-1(X, G) by setting 

D*f(T) = f(DT) 

for every singular (q - l)-simplex T. The coboundary formula 

aD*f + D*6f = 4'*i*f - f 

then follows by computation. Thus if f is a cocycle it follows that i*j*f - f is 
a coboundary, proving that sl*i* is the identity. 

As an example of another application of the main homotopy we briefly discuss 
the maps of a simplicial complex into the space X. 

Let K be a simplicial complex with ordered vertices. For each q-simplex .s of 
K there is a unique simplicial map T, : Aq -4 K which maps Aq simplicially onto 
s and preserves the order of the vertices. 

Let f : K -> X be a continuous map and let M be a minimal subcomplex of 
S(X). The map f will be called minimal if for every simplex s of K the singular 
simplex fT8 is in M. 

(6.5) Every map f: K -* X is homotopic to a minimal map. Further the homotopy 
At may be so chosen that if L is a subcomplex of K on which f is minimal then 
ot(y) = f(y) for every point y e L. 

PROOF. Let {ept} be the homotopy retracting S(X) onto M as defined in ?5. 
For each simplex s of K consider the homotopy 

ot,e = (SOtfT8)T'. 

The homotopies At a defined on each simplex s, together yield the desired homo- 
topy At. 
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7. Uniqueness of minimal complexes 

Suppose that in the arcwise connected space X we have, in addition to the 
minimal complex M, another minimal complex M1 (constructed relative to some 
base point x4). 

(7.1) The simplicial map (p of ?5 maps the minimal complex Ml isomorphically 
onto the minimal complex M. 

Use will be made of the following elementary lemma, the proof of which is 
left to the reader. 

(7.2) If P1 and P2 are two q-prisms in X such that P"i) = P(K) for i = 0, ... 
q - 1, then PI(0) and P2(0) are homotopic if and only if Pi(1) and P2(1) are 
homotopic. 

In order to establish (7.1) we shall prove by induction that 501 maps the q-skele- 
ton M(') of M1 isomorphically onto the q-skeleton M(') of M. For q = 0 the 
proposition is obvious. Suppose inductively that the proposition is valid for 
q - 1. 

Let T1 and T2 be two q-simplexes in M, and suppose that (AT1 = (PT2 = T. 
Then sp(T(s) = T(") = v1(T(t)). Thus by the inductive hypothesis T(t) - T(") 
fori = 0,. , q i.e., T1 and T2 are compatible. SinceP(Tj) = P") fori = 0,*, q 
and PT1(1) =PT2(1) it follows from (7.2) that PT,(0) and PT2(0) are homotopic. 
Thus T1 and T2 are homotopic, and since they are both in the minimal complex 
M, it follows that T1 = T2 . 

Let now T be any q-simplex of M. By the inductive hypothesis there is for 
each i = 0., *- , q a unique (q - l)-simplex TX in M1 such that sp1Tj- T=). 
Consider the subset A = Aq X (1) u Aq X I of Hl+q where a, is the boundary of 
Aq . The singular prisms PT, and the singular simplex T together define a map 

f:A- X 

such that 

fb'41 = T,;fp'? = PTi fori = 0... ,q. 

Since A is a retract of ll+, the map f can be extended to a singular prism P. 
Consider the singular q-simplex T = P(o). Since Tji) = Ti, the faces of T 
are in M1 and therefore there is in M1 a (unique) q-simplex T' compatible 
and homotopic with T. For the prisms P and PT' we then have p"i) = P(T?) for 
i = 0, , q and P(O) and PT'(0) are homotopic. It follows that P(1) = T and 
PT'(1) =pT' are homotopic. Since they are both in M, we conclude that 
T = (p1T'. This concludes the proof. 

8. Complete semi-simplicial complexes 

We write [ml for the ordered set (0, 1, . , n), where m is an integer ? 0. 
By a map a: [mi] -> In] will always be meant a weakly monotone function from 
[m] to [n]. A map which is not strictly monotone will be called degenerate. 

A map a: [m] -* [n] induces a simplicial map &: Am -* An. Thus for every 
singular simplex T:A, -An X the composition Ta is defined; we shall write Ta 
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instead of T&. This operation Ta could be used, in place of the concept of the 
ith face, as a starting point of the definition of S(X). The corresponding abstract 
theory will now be outlined. 

A complete semi-simplicial complex K is a collection of "simplexes" o-, to each 
of which is attached a dimension q > 0, such that for each q-simplex a and each 
map a: [m] -- [q], where m > 0, there is defined an m-simplex aa of K, subject 
to the conditions 
(8.1) If ev is the identity map [q] [q], then a E, = a. 
(8.2) If A: [n] -* [m], then (ata): = c(ac). 

Whenever the relation a = ra subsists, we say that a lies on r. 
A complete semi-simplicial complex is semi-simplicial (?1) in the following 

sense. Let 
Eq:[q -l[q] ~0i<q 

be the map which covers all of [q] except the integer i. Then the definition 
=k cr4 where o is a q-simplex, turns K into a semi-simplicial complex; more- 

over, one verifies readily that the simplex a(j0, ... iq-n) of ?1 may be written op, 
where p: [q- n] -> [q] is defined by 

p = ii 0 < i <_ i q-n. 
With this understanding, all of the discussion of ?1 and 2 applies, except that 
the requirements on a subcomplex and a simplicial map become more stringent: 
L C K is a subcomplex if o e L implies aa e L; and T: K -> K1 is simplicial if 
T(aa) = (Ta)a. Here a is any simplex, and a any map of [m] into [q], where dim 
a = q. 

For every integer m >- 0 introduce a complete semi-simplicial complex 
K[m] as follows. A q-simplex of K[m] is any map a: [q] -* [m]. For every map 
a: [n] -> [q] the simplex oa is defined as the composite map. 

A q-simplex a is degenerate if it has a factorization ra, where a is degenerate. 
(8.3) A q-simplex cr of a complete semi-simplicial complex K has a unique 

"minimal" factorization Tra, where a is a map onto, and r is a non-degenerate 
simplex. The dimension of r will be called the rank of a. 

PROOF. Because of (8.1), a has at least one factorization r'a' where a': [q] 
[m'], m' < q and r' is an m'-simplex. Let m = m (a) be the smallest such m' and 
let Ta be the corresponding factorization. We assert that r is non-degenerate and 
a is onto. Indeed if r is degenerate then r = r'/ where I: [m] -> [m'] is degenerate. 
Then /3 may be factored into 3 = &y wherey: [m] -[i"], [ : [m"] -* ['] with 
In" < m. Consequently a = Tra = -r'/a = (WS) (ya) where ya: [q] -+ [m], contrary 
to the definition of m. Similarly if a is not onto then a = To where /: [q] > 
[m'], y:[m'] -> [m] and m' < m. Hence a- = r(yy) - (ry)/ with /3:[q] - + [m'] 
for m' < m. This shows the existence of a factorization asserted in (8.3). 

To prove the uniquenesss of this factorization, suppose that a = rial with 
T1 non-degenerate and a, a mapping of [q] onto [ml]. We shall show that 1 = r 
and a, = a. Since both a and a, are onto there exist maps 

/3:[m] -> [q], /3:[ml] -* [q] 
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with 
af3 = Cm? au,1 - mi E 

Since rjax = ira we have -iaiI3= ra = TECm =r and similarly ia(39 = ri . Since 
both X and r1 are non-degenerate the maps al3 and a,43 are non-degenerate. 
Consequently ml = m and al3 =43o = Cm . This implies r = ri- . Suppose that 
for some i X [q] we have a(i) 5 ai(i). We may select ,3 so that fla(i) = i, then 
aigai = ali 5 ai contradicting a, = CEm . Consequently a =a, . 

Notice that if a: [ml -* [q], then a E K[q] and a.(7 a- is the id' face of a. 
Therefore for any q-simplex a- we have (aa) -r = (aC (aCm) = abet). Thus 

(8.4) (o a-) () ) 

Suppose now that a = ia is the minimal factorization of a with a: [q] -+ [ml onto 
and r non-degenerate. If a(') is onto then io(t) = o-( is the minimal factorization 
of a() and rank aa = rank a. If a) : [q - 1] [ml is not onto then aci) = Em x 
where 3: [q - 1] -* [m - 11 is onto. Thus 

(i) (2:) __ ai (at)r 

a = i-a - -C = 
Tat 

ai-p 

and since ( is onto it follows that rank a") < dim 7-(a) < dim i = rank a-. Sum- 
marizing we have 

(8.5) If a = -a is the minimal factorization given by (8.3) then either a(" is onto, 
and then ra(t) is the minimal factorization of a (t) or a(') is not onto and then rank 
a' W< rank a. 

As an application of (8.5) we prove 
(8.6) If a and a, are degenerate q-simplexes such that at a-_j) for i = 0, ... * q, 

then a- = a. 
PROOF. Let a = ia, a1 = i-1a1 be minimal factorizations with a:[q] - [m], 

a,: [q] -> [ml]. Since a is degenerate and onto there exist at least two indices j such 
that a(") is onto. Then by (8.5) 

m = rank a = rank a(J( =rank a(-' < rank ai = i. 

Similarly we prove that mi < m. Thus m = im, Consequently rank aW- rank 
a- and therefore a(i) is onto for the same values of j for which a2(:) is onto. For such 
a value of j the simplex a) = a() has two minimal factorizations ra '3 and 
Tlal'). Thus r = ir and a( a(i). This implies a(i) = ao(i) for i F j. Since 
this is true for at least two indices ], it follows that a = a, . Thus a = -1 . 

9. Complete inimal complexes 
As was already remarked early in ?8, the total singular complex S(X) of a space 

X may be regarded as a complete semi-simplicial complex. Turning to minimal 
subcomplexes it is natural to require that the minimal complex M, be a subcom- 
plex of S(X) regarded as a complete semi-simplicial complex. Thus an additional 
condition has to be imposed: 

(9.1) If T is a q-simplex of M and a: [ml -* [qi then Ta is an m-simplex of M. 
It will be shown that a slight change in the construction of M described in 
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?4 will insure this additional property. First observe that in view of (8.6) two 
degenerate simplexes of S(X) that are compatible are equal. Thus the equivalence 
classes used in defining M(n+l) in ?4 each contains at most one degenerate simplex. 
We shall require that the degenerate simplex be selected whenever there is one 
in the equivalence class. We must now prove that (9.1) holds. The case of a 
non-degenerate is trivial since then Ta = T't ...m) for a suitable choice of 
il < i2 ... < is-m. Assume then that a and therefore also Ta are degenerate. 
The proposition is valid for m = 0 since then a is not degenerate. Suppose, by 
induction, that the proposition holds for m - 1. Then (Ta)(") = Tac(0) is in M 
and therefore in M(ml). Thus Ta is a degenerate simplex with all of its faces in 
M(m-1). By our modification of the construction it follows that Ta is in M. 

Turning to the main homotopy of ?5, we modify the construction so as to 
insure that each map cpt be a simplicial map in the sense of complete semi-simpli- 
cial complexes. Thus we must replace the condition 

(*) Pt(T() = ('ptT)(t) 

by the stronger condition 

(**) f t(Ta) = (9eT)a, 

where T is a singular p-simplex and a: [m] -* [p]. 
Suppose then that (ptT has been defined for all singular simplexes T of dimen- 

sion < q and that it satisfies the conditions of ?5 as well as condition (**) for 
m < q and p < q. First consider the degenerate singular q-simplexes T. Let T = 
Tra be the "minimal" factorization given by (8.3) where r is a non-degenerate 
m-simplex and a: [q] -* [ml is onto with m < q. Define 

=pjT= ('ptr)a. 

After 'ptT has been defined for all degenerate q-simplexes define 'PtT for the non- 
degenerate q-simplexes exactly as in ?5. Thus (*) is assured for all non-degenerate 
q-simplexes. We shall show that (*) holds also for the degenerate q-simplexes. 
Indeed we have 

(Pt(T"') = 'pt(Ta() = ('ptr)a( ) = (ptT) 

We now prove (**) for q-simplexes Ta, a: [m] -> [p], m _< q, p < q. First consider 
the case when a is non-degenerate. In this case (**) follows from (*) since Ta 
is T".i - q-m) for suitable indices ii < i2 < ... < i-m . Next consider the case 
when a is onto. If T = ,r1 is the minimal factorization of T then Ta = r (Oea) is 
the minimal factorization of Ta and therefore 

'Pt(Ta) = pt(TrIa) = ((ptr)13a = ('pT)a. 

Since any a: [q] -> [m] may be factored into a = ala2 where al is nondegenerate 
and a2 is onto, it follows that (**) holds for all a. 
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10. Normalization 

Let K be a complete semi-simplicial complex and G = {G(a), ey(j) a local 
system of abelian groups in K. A cochain f e Cq(I, G) will be called normalized 
provided that f(a) = 0 for every degenerate q-simplex a of K. It will be shown in 
the sequel that the coboundary of a normalized cochain is again normalized. 
Let Hq (K, G) denote the cohomology group obtained using only normalized 
cochains. Explicitly let H' (K, G) = Zq (K, G)/B' (K, G), where Z' is the group 
of normalized q-cocycles while B' is the group of coboundaries of normalized 
(q - 1)-cochains. The inclusions Z' C Zq and B' C Bq then yield a natural 
homomorphism H', H- . The main result of this section is 

(10.1) The homomorphism H'(K, G) -+ H(K, G) is an isomorphism onto: 

nq (K, G) Hq(K, G) 
As will be shown in [4] this theorem is a generalization of the normalization 

theorem in cohomology theory of groups [3, ?6] [2]. The proof of (10.1) that 
follows is a direct generalization of that of [3]. 

In addition to the identity map cq: [q] -- [q] and its faces eq: [q [q], 
i = 0, * , q we shall also consider the maps 

77q [q]- [q -1 i = O. -- q- 1 

defined by 7qj = j for j _ i and yj = j - 1 for i < j. We note that is} iS the 
totality of all the maps of [q] onto [q - 11. 

The following identities will constantly be used 

?q 4q = ?Eq- 7aq- for j < i 
7q =-?-1 =77q Eq 

71E = E for i + 1 <j 

7 qa-17 = 71'1?1q for j ? i q 

. q_1 

77 

77q1 2-l= 7-1 7_q for i < j. 
(10.2) A q-simplex cr of K is degenerate if and only if it has the form a- = rq for 

some i = 0, , q-1. 
PROOF. Since 11 is degenerate, rnq must be degenerate. If a- is degenerate then 

it factors into a = ra where a: [q] -* [m] is degenerate. Thus a(i) = a(i + 1) 
for some i = 0, - , q- 1. It follows that a factors into a = f3q' where 

[q 1] - [m]. Thus a- (r13)X as desired. 
(10.3) If 1 is a degenerate 1-simplex of K then 1(1) = 3(0) and y(l3) is the identity 

map G(f3(1)) -> G((o)). 
PROOF. By (10.2) 1 must have the form = a-q 

0 where a is a 0-simplex. The 
identities then imply 1(0) = a = #(l) . Consider the 2-simplex 0q2 = W702 * By 
definition of a local system, we have 

y ( 
I I 

2)ay(avji?0e?) = Y(C 
0 

1e). 
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It follows from the identities that the expressions in parentheses all give acl = 1. 
Thus y (j) = identity. 

A cochain f e C'(K, G) will be called i-normalized (i = 0, * , q) if 

f(AanI) = 0 for all j < i. 

Every cochain is 0-normalized. The q-normalized cochains are in view of (10.2) 
the normalized cochains. 

(10.4) If f is i-normalized, then so is 8f. 
PROOF. Let k < i. Then 

q+1 

( )= /3)f(cq+4Q+l) + E (- 1)'f(WOt+I ei+l) 
ji1 

where , is the leading edge of r*+i . Forj < k we havef(anT+ieq+i) = f((ftCrl 1) - 0 
since f is i-normalized. Similarly f(u_7k+lic+1) = f(Cer'-nI) = 0 for A + 1 < j. 
For j = k, k + 1 we have 

f(u_0+,4+i) = f(or) = fo k+ . 

Thus we obtain that (6f) (akil+) = 0 if k > 0. For k = 0 there remains the 
expression y(f)f(f) - f(o), where : is the leading edge of o +1. Since 13 is degen- 
erate, (10.3) implies that y(Q) is the identity and the two terms cancel out. 

(10.5) For every cochain f e Cq(K, G) such that bf is normalized, there is a cochain 
g e C'-(K, G) such thatf - Sg is normalized. 

PROOF. The proof depends on the following algorithm. Starting with the 
cochain f e C' construct cochains fo, , fE CE and go, *, 1 e C'-' by 
induction as 

o = f, fi+1 = A - 69 gj(o) = (-1)if(aq) 

for i = 0, * , q -1. Then clearly fti =fo = 6f for all i. Since fq = f -g, 
where g = go + + gq-l it suffices to show that fq is normalized. We shall 
prove by induction that fj is i-normalized. This is clearly valid for i = 0. We 
proceed by induction and assume that fi is i-normalized. Since for j < i we have 

gi(ang'-) =) (-1)( fa(un 1-q) = 0, 

gi is i-normalized. Thus by (10.4) 6gi is i-normalized and therefore +1 is i-normal- 
ized. To show that fig I is (i + 1)-normalized we use the identity 

flfv)= (-1)isfi('fqv~) 

which follows by straightforward computation using the identities and the fact 
that fi is i-normalized. Since efc = Bf is normalized, the right hand side is zero. 
Thus fi+j(a-q') = 0 and fj+j is (i + 1)-normalized. This concludes the proof of 
(10.5). 

Theorem (10.1) is an immediate consequence of (10.5). Indeed if f e Z then 
5f = 0 is normalized and (10.5) yields a cochain g e CG such that f - bg is 
normalized. Since f - g e Z? this shows that the homomorphism H' -I is 
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onto. Assume now that h e Z' and that h = bf for some f e Cq'-. Since 5) =h 
is normalized there is a g e c2 such that f - 6g is normalized. Thus h is the 
coboundary of the normalized cochain f - 6g, showing that H' -+ H' is an iso- 
morphism. 

If we limit ourselves to simple coefficients, we can give theorem (10.1) a more 
intuitive interpretation. Call a chain of K degenerate if it is a linear combination 
of degenerate simplexes. The same argument as in (10.4) shows that the bound- 
ary of a degenerate simplex is a degenerate chain. Thus the degenerate chains 
form a chain complex D which is a subcomplex of K (regarded as a chain complex 
and not as a semi-simplicial complex). The normalized cohomology groups 
H' (K, G) are then nothing else than the relative cohomology groups H'(K, D, 6). 
If we examine the cohomology sequence 

... -* H"(K, D, G) - H(K G) -> H(D G) -> H+'(K D, G) *- 

the exactness (kernel = image property) implies that H'(K, D, G) > H-(K, G) 
is an isomorphism onto for all values of q if and only if H(D, G) = 0 for all 
dimensions q. It follows from well known universal coefficient theorems that this 
holds for all G if and only if all the integral homology groups Hq(D) vanish. 
Since D contains no non-trivial zero chains, this is equivalent with the statement 
that D is acyclic. Thus (10.1) stated only for simple coefficients is equivalent with 

(10.6) The degenerate chain complex D of a complete semi-simplicial complex 
is acyclic. 

A direct proof of (10.6) could be given, but then (10.1) would still have to be 
proved for local coefficients. 
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