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ON PRODUCTS OF COMPLEXES." 

By SAMUELEILENBERGand J. A. ZILBER. 

The objective of this note is to establish a theorem (stated in  $1) 

concerning the equivalence, from the point of view of homology, of two kinds 
of products that  may be defined for complete semi-simplicial complexes (see 
below for a definition). The proof (8 2)  uses the niethod of acyclic models 
established in the paper [I] just preceding. Some applications are listed 

in § 3. 

1. The theorem. We write [m] for the set (0 ,1 , .  . . ,m) where m is 
a n  integer 2 0. By a map a : [m] + [n] will be meant a function satisfying 
a(;) 5 a ( j )  for 0 5;sjs m. 

9 complete semi-simplicial (abbreviated: c. s. s.) complex I< is a collec- 
tion of "simplexes " U, to each of which is attached a dimension q 2 0, such 
that  for each q-simplex u and each map a :  [m] + [q] (m 2 0)  there is 
defined a n  m-simplex ua of K, subject to the conditions 

(1)  I f  E , :  [q] 4 [q] is the identity then ae, =u, 

( a ?  I f  p : [n] 4 [m] then (ua) ,B =u (up)  

Let e,i: [q- 1]-+ [q] be the map which covers all of [q] except i 

(= 0, . . . ,q) .  Then ueqi is called the i-th fuce of a, and the boundary of a 

is defined as the chain 

If  K and L are c. s. s. complexes, a fullction f :  K -+ L mappiilg q-sim- 
plexes into q-simplexes and such that  f (aa)  = ( f a l a  is called a c. s. s. map. 
For further details see [3, 8 81. 

Let K and L be two c. s. s. complexrs. The cc~rtesinn p ~ o d u c t  K X L 
is a c. s. s. complex whose q-simplexes are pairs (u, r )  where cr and r are 
q-simplexes of K and L respectively. For each map a :  rrn,l -+ [q] we define 
(a, 7) a = (oa, r a ) .  

'' Received Mxy 26, 1052. 
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The tensor product K @ L is an abstract cell complex with r-cells u @ 7 

where a is a p-simplex of K, T a q-simplex of L with p + q = r and 

Both K X L and K @ L may be regarded as chain complexes and may be 
compared by means of chain transformations and chain homotopies. 

THEOREM.For any two complete semi-simplicial complexes K altd L, 
there exist chain transformations 

f : K X L + K @ L ,  g : K @ L - + K X  L 

and chain homotopies 

D : gf r identity, E : fg r identity 

such tha.t for 0-simplexes u E K, T E L, 

f ( u , ~ ) = u @ ~ ,  ( ) = ( , ) ,  D(a, r )=O,  E ( a @ r ) = O .  

Moreover, f, g, D and E are natural in the following sense. Let 
+ :K -+ K', $: L 4L' be c. s. s. maps. We consider the induced maps 

The11 these maps commute properly with f, g, D, E. For example, the 
diagram 

( P X 3K X L  ----+ K ' X L '  

l I 

ii7@ L -K' @ L' 

+ @ $
is commutative. 

2. Proof of the theorem. For each integer m 2 0 we define a c. s, s. 
complex K[m] as follows. A q-simplex of K[m,] is any map U :  [q] -+ [m]. 
For each map a :  [IL] + [q], oa is defined as the composite map. 

Let U be the category whose objects are pairs (I<,L ) ,  where K and L 
are c. s. s. complexes. A map (+, 3 )  : (K, L)  + (IT,L') i lz  U is a pair of 
c. s. s. maps + :K +K', 3 :  L L'. Composition is defined by (+'; $') (+, 3 )  
= (+'+, $'$) whenever +'+ and 3'3 are defined. 

mailto:E(a@r)=O
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I n  U sve consicler the set 5%. of models consisting of all pairs 

(IC[ml, ICCnI). 
On a we define tn-o co~ar i an t  functors P and Q with ~ a l u e s  in  the 

category of chain complexes as follows. P ( K , L )  (resp. & (K, L ) )  is the 
chain complex obtained from K X L (resp. K @ L )  by adjoining the group 
of i n t e g ~ r s  as group of chains in  dimension -1 with d(u X T) =1 (resp. 
~ ( C T@ T) =1) for 0-simplexes (T E I!, T E L. The maps P(+,$) (resp. 

Q (+, $) ) are defined as extensions of + X $ (resp. + @ $) obtained by 
keeping the chains of dimension -1 (i. e. the integers) pointsvise fixed. 

ITe first show that  for each dimension r 2 0 the functors P,and Q, 
are representable. If  a is an  n-simplex in a c. s. s. complex I!, then we denote 
by +r the map + u :  I i [n]  +IC defined for each a in I i [n]  as +ua =aa.  
I n  particular +UE, = U. JVith these definitions i t  is clear that  the maps 

ur x T --+ ((+n, +.r),cl. X E?), dim a =dim T =T 

ur @ T 4 ((+u, +7), cp @ rq ) ,  dim a =p, dim T = q, p + 4=r 

yield representations of the functors P, and Q,. 

Next we prove that  the homology groups of the complexes P(Ii[m],  K [ n ] )  
and Q ( g [ m ] , g [ n ]) are all trivial. 

For any map a :  [q] + [r] we define a map P ( a )  : [q + I] + [r] by 
setting 

F ( a ) ( O )  = 0 ,  F ( a ) ( i )  =a(i--1) for i=1; . . , q + 1 .  

Further, we define Or: [O] + [r] by 6,.(0) =0. 
Then 

F ( a ) c,+,O = a 

Kext, we define in  P ( K[m], IC[n,] ) and Q ( K  [m], K[n] ) homotopy operators 
G and H as follows: 

A simple calculation, using the face forinulae for P ( a )  shows that  dG + GO 
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and aH +Ha are identity operators. 'Phis proves the assertion concerning 
the triviality of the homology groups. 

The remainder of the proof is now a direct application of Theorem I1 
of [I]. TTe define the maps f :P4Q and g : Q +P in dimension -1 by 
f(1)  =1=g (1) and in dimension zero by 

Then f and g can be extended to maps defined in all dimensions. Since gf 
and fg coincide with the identity maps in dimensions < 1, the homotopies 
D and E required by the theorem, also exist in virtue of Theorem I1 of [I]. 

Although the proof given here appears to be purely existential, using the 
representations given for the functors P,. and Q ,  and using the homotopies 
G and H above, explicit formulae for f, g, D and E may be readily found. 
Such formulae will be found in [2]. 

3. Applications. Let X X Y be the cartesian product of two topological 
spaces X and Y. A q-dimensional singular simplex in X X Y defines by 
projection a singular q-simplex in X and one in Y. Conversely a pair of 
singular q-simplexes one in X and one in Y determine a singular q-simplex 
in X X Y. I t  follows that the total singular complex X(X X Y) (which 
is a c. s. s. complex; see [3, 8 8]), may be identified with the product 
X(X)  X X(Y) .  Thus the theorem allows us to assert that from the point 
of view of homology X ( X  X Y) is equivalent with X ( X )  @ S ( Y ) .  

Let A and B be subspaces of X and Y respectively. We write X(X, A) 
for the quotient of X(X)  by its subcomplex # ( A ) .  Since the maps and 
homotopies asserted in the theorem are natural, it follows that the relative 
homology groups 

(1)  H , ( S ( X  X Y)/X(A X Y)  U X ( X  X B ) )  
and 

(2)  H*(X(X,A)  @ X ( Y , B ) )  

are isomorphic. We consider the triple of complexes 

If all the homology groups 

(3) H,(X(A X Y U X  X B)/X(A X Y)  U X ( X  X B ) )  
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are trivial, then it  follows from the exactness of the homology sequence of 
the triple above that the groups (1) are isomorphic with 

Thus in this case ( 2 )  and (4)  are isomorphic. 
Our second application corlcerils the simplicial product of simplicial 

complexes. Let K and L be simplicial complexes. The simplicia1 product 
I< A L has as vertices pairs (A, B) of vertices A E L, B E L .  A set 
(A0. BO), . . . , (An, Bn)  of vertices of K A L forms a simplex of K A L if 
and only if AO,. . . , An are in a simplex of I<and RO, . . . , Bn are in a 
simplex of L. 

With each simplicial complex K me associate a c. s. s. complex O( I i )  as 
follomrs. The q-simplexes of O(K)  are sequences A0 . . . Aq of vertices of 
K contained in a simplex of K.  For each map a :  [m] + [q] me define 
(A0. . . Aq) a =Aa(0). . . Aa(m). The homology theories of K and O(K) 
are equivalent. 

With these definitions it is easy to see that O (K A L)  = O ( K )  X O(L)  . 
Thus the theorem of this paper asserts that O(K  A L) and O(K)  @ O(L)  
are homologically equiralent. I t  follomrs that the homology theories of K A L 
and of Ii@ L (regarding Ii' and L as chain complexes) are equivalent. 

Tliis result may be applied in the follomring situation. Let U and T' be 
coverings of spaces X and Y respectively and let U X T7 be the "product " 
corering of X X Y .  Then it is easy to verify the following relation between 
the nerves of these coverings : N ( U  X T7) =N ( U )  AN(T7). I t  follomrs that 
that N ( U  X 5') is homologically equivalent with N ( U )  @ N ( V ). 
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