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Preface

1. PREAMBLE

The principal contribution of this book is an axiomatic approach to
the part of algebraic topology called homology theory. It is the oldest
and most extensively developed portion of algebraic topology, and may
be regarded as the main body of the subject. The present axiomatization
is the first which has been given. The dual theory of cohomology is
likewise axiomatized.

It is assumed that the reader is familiar with the basic concepts of
algebra and of point set topology. No attempt is made to axiomatize
these subjects. This has been done extensively in the literature. Our
achievement is different in kind. Homology theory is a transition (or
function) from topology to algebra. It is this transition which is
axiomatized.

Speaking roughly, a homology theory assigns groups to topological
spaces and homomorphisms to continuous maps of one space into
another. To each array of spaces and maps is assigned an array of
groups and homomorphisms. In this way, a homology theory is an
algebraic vmage of topology. The domain of a homology theory is the
topologist’s field of study. Its range is the field of study of the algebraist.
Topological problems are converted into algebraic problems.

In this respect, homology theory parallels analytic geometry. How-
ever, unlike analytic geometry, it is not reversible. The derived algebraic
system represents only an aspect of the given topological system, and
is usually much simpler. This has the advantage that the geometric
problem is stripped of inessential features and replaced by a familiar type
of problem which one can hope to solve. It has the disadvantage that
some essential feature may be lost. In spite of this, the subject has
proved its value by a great varicty of successful applications.

Our axioms are statements of the fundamental properties of this
assignment of an algebraic system to a topological system. The axioms
are categorical in the sense that two such assignments give isomorphic
algebraic systems.

2. THE NEED FOR AXIOMATIZATION

The construction of a homology theory is exceedingly complicated.
It is true that the definitions and necessary lemmas can be compressed
vii
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within ten pages, and the main properties established within a hundred.
But this is achieved by disregarding numerous problems raised by the
construction, and ignoring the problem of computing illustrative exam-
ples. These are serious problems, as is well known to anyone who has
taught the subject. There is need for a perspective, and a pattern into
which the student can fit the numerous parts.

Part of the complexity of the subject is that numerous variants of
the basic definitions have appeared, e.g. the singular homology groups
of Veblen, Alexander, and Lefschetz, the relative homology groups of
Lefschetz, the Vietoris homology groups, the Cech homology groups, the
Alexander cohomology groups, etc. The objective of each variant was to
extend the validity of some basic theorems, and thereby increase their
range of applicability.

In spite of this confusion, a picture has gradually evolved of what is
and should be a homology theory. Heretofore this has been an imprecise
picture which the expert could use in his thinking but not in his exposi-
tion. A precise picture is needed. It is at just this stage in the develop-
ment of other fields of mathematics that an axiomatic treatment ap-
peared and cleared the air.

The discussion will be advanced by a rough outline of the construc-
tion of the homology groups of a space. There are four main steps as
follows:

(1) space — complex

(2) complex — oriented complex
3) oriented complex — groups of chains
(4) groups of chains — homology groups

In the first form of (1) it was necessary to place on a space the struc-
ture of a complex by decomposing it into subsets called cells, each cell
being a homeomorph of a euclidean cube of some dimension, and any
two cells meeting, if at all, in common faces. It was recognized that
only certain spaces, called triangulable, admit such a decomposition,
There arose the problem of characterizing triangulable spaces by other
properties. This is still unsolved. Special classes of spaces (e.g. differ-
entiable manifolds) have been proved triangulable and these suffice for
many applications.

The assumption of triangulability was eliminated in three different
ways by the works of Vietoris, Lefschetz, and Cech. In each case, the
relation that the complex be a triangulation of the space was replaced
by another more complicated relation, and the complex had to be
infinite. The gain was made at the cost of effective computability.

Step (2) has also been a source of trouble. The problem is to assign
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integers (incidence numbers) to each pair consisting of a cell and a face
(of one lower dimension) so as to satisfy the condition that the boundary
of a cell be a cycle. This is always possible, but the general proof
requires the existence of a homology theory. To avoid circularity, it
was necessary to restrict the class of complexes to those for which
orientability could be proved directly. The simplicial complexes form
such a class. This feature and several others combined to make simplicial
complexes the dominant type. Their sole defect is that computations
which use them are excessively long, so much so that they are impractical
for the computation of the homology groups of a space as simple as a
torus.

Steps (3) and (4) have not caused trouble. They are purely alge-
braic and unique. The only difficulty a student faces is the absence of
motivation.

The final major problem is the proof of the topological invariance of
the composite assignment of homology groups to a space. Equivalently,
one must show that the homology groups are independent of the choices
made in steps (1) and (2). Some thirty years were required for the de-
velopment of a fully satisfactory proof of invariance. Several problems
arising along the way have not yet been solved, e.g. Do homeomorphic
complexes have isomorphie subdivisions?

The origin of the present axiomatic treatment was an effort, on the
part of the authors, to write a textbook on algebraic topology. We were
faced with the problem of presenting two parallel lines of thought. One
was the rigorous and abstract development of the homology groups of a
space in the manner of Lefschetz or Cech, a procedure which lacks ap-
parent motivation, and is noneffective so far as calculation is concerned.
The other was the nonrigorous, partly intuitive, and computable method
of assigning homology groups which marked the early historical develop-
ment of the subject. In addition the two lines had to be merged eventu-
ally so as to justify the various computations. These difficulties made
clear the need of an axiomatic approach.

The axioms which we use meet this need in every respect. Their
statement requires only the concepts of point set topology and of
algebra. The concepts of complex, orientation. and chain do not appear
here. However, the axioms lead one to introduce complexes in order to
calculate the homology groups of various spaces. Furthermore, each
of the steps (2), (3), and (4) is derived from the axioms. These deriva-
tions are an essential part of the proof of the categorical nature of the
axioms,

Summarizing, the construction of homology groups is a long and
diverse story, with a fairly obscure motivation. In contrast, the axioms,
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which are given in a few pages, state precisely the ultimate goal, and
motivate every step of the construction.

No motivation is offered for the axioms themselves. The beginning
student is asked to take these on faith until the completion of the first
three chapters. This should not be difficult, for most of the axioms are
quite natural, and their totality possesses sufficient internal beauty to
inspire trust in the least credulous.

8. COMPARISON WITH OTHER AXIOMATIC SYSTEMS

The need for an axiomatic treatment has been felt by topologists for
many years. This has resulted in the axiomatization of certain stages in
the construction of homology groups. W. Mayer isolated the step (4).
He defined the abstract and purely algebraic concept of chain complex,
and showed that it was adequate for the completion of step (4). He also
demonstrated that a number of mixed geometric-algebraic concepts and
arguments could be handled with algebra alone.

A. W. Tucker axiomatized the notion of an abstract cell complex,
i.e. the initial point of step (2), and showed that steps (2), (3), and (4)
could be carried through starting with such an object. This had the
effect of relegating the geometry to step (1) alone where, of course, it is
essential,

Recently H. Cartan and J. Leray have axiomatized the concept of a
grating (carapace) on a space. In essence, it replaces the notion of com-
plex in the four-step construction outlined in §2. Their associated
invariance theorem has several advantages. Most important is the
inclusion of the de Rham theorem which relates the exterior differential
forms in a manifold to the cohomology groups of the manifold.

It is to be noted that these various systems are axiomatizations of
stages in the construction of homology groups. None of them axiomatize
a transition from one stage to another. Thus they differ both in scope
and in nature from the axioms we shall give. The latter axiomatize the
full transition from spaces to homology groups.

4. NEW METHODS

The great gain of an axiomatic treatment lies in the simplification
obtained in proofs of theorems. Proofs based directly on the axioms are
usually simple and conceptual. It is no longer necessary for a proof to
be burdened with the heavy machinery used to define the homology
groups. Nor is one faced at the end of a proof by the question, Does the
proof still hold if another homology theory replaces the one used? When
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a homology theory has been shown to satisfy the axioms, the machinery
of its construction may be dropped.

Successful axiomatizations in the past have led invariably to new
techniques of proof and a corresponding new language. The present
system is no exception. The reader will observe the presence of numerous
diagrams in the text. Each diagram is a network or linear graph in
which each vertex represents a group, and each oriented edge represents
a homomorphism connecting the groups at its two ends.

A directed path in the network represents the homomorphism which
is the composition of the homomorphisms assigned to its edges. Two
paths connecting the same pair of vertices usually give the same homo-
morphism. This is called a commutativity relation. The combinatorially
minded individual can regard it as a homology relation due to the pre-
sence of 2-dimensional cells adjoined to the graph.

If, at some vertex of the graph, two abutting edges are in line, one
oriented toward the vertex and the other away, it is frequently the case
that the ¢mage of the incoming homomorphism coincides with the kernel
of the outgoing homomorphism. This property is called exactness. It
asserts that the group at the vertex is determined, up to a group exten-
sion, by the two neighboring groups, the kernel of the incoming homo-
morphism, and the image of the outgoing homomorphism. Exact
sequences of groups and homomorphisms occur throughout. Their
algebraic properties are readily established, and are very convenient.

The reader will note that there is a vague analogy between the
commutativity-exactness relations in a diagram and the two Kirchhoff
laws for an electrical network.

Certain diagrams occur repeatedly in whole or as parts of others.
Once the abstract properties of such a diagram have been established,
they apply each time it recurs.

The diagrams incorporate a large amount of information. Their use
provides extensive savings in space and in mental effort. In the case of
many theorems, the setting up of the correct diagram is the major part
of the proof. We therefore urge that the reader stop at the end of each
theorem and attempt to construct for himself the relevant diagram before
examining the one which is given in the text. Once this is done, the
subsequent demonstration can be followed more readily; in fact, the
reader can usually supply it himself.

6. STRUCTURE OF THE BOOK

Chapter 1 presents the axioms for a homology theory, and a body of
general theorems deducible from them. Simplicial complexes and trian-
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gulable spaces are treated in Chapter 1. This chapter is entirely
geometric. In Chapter 111, a homology theory is assumed to be given on
triangulable spaces. We then derive from the axioms the classical
algorithms for computing the homology groups of a complex. Using
these, we show that the axioms are categorical for homology theories on
triangulable spaces.

The first three chapters form a closed unit, but one which is based
on the assumhption that a homology theory exists, i.e. the axioms are
consistent in a nontrivial manner. In Chapters 1v through x, the exis-
tence is established in four different ways. The singular homology the-
ory is given in Chapter vi1, the Cech homology theory in 1x, and two
others in x.

The intervening chapters are preparatory. As noted above, the con-
struction of a homology theory is complicated. Not only do we have the
four steps outlined in §2 for the construction of homology groups, but
also corresponding constructions of homomorphisms. Then the axioms
must be verified. Finally the dual cohomology theory must be given in
each case. With a total of eight theories to present, the tendency to
repeat constructions and parallel others is nearly irresistible. We avoid
most of this by presenting a number of steps on a sufficiently abstract
level to make them usable in all cases. These are given in Chaps. 1v, v.

Chapter 1v presents the ideas and language of category and funcior.
These concepts formalize a point of view which has dominated the devel-
opment of the entire book. We axiomatize here the notion of a homology
theory on an abstract category, and formulate a pattern which the sub-
sequent constructions must fulfill. In Chapter v, the step from chain
complexes to homology groups is treated. The chapter is entirely
algebraic. Chapter v1 presents the classical homology theory of simpli-
cial complexes. In Chapter vi1, the singular homology theory is defined
and proved to satisfy the axioms. This chapter is independent of vi
except possibly for motivation. A reader interested in the shortest
existence proof need only read Chapter 1v, the first four articles of v,
and then Chapter viI.

Chapter v treats direct and inverse systems of groups and their
limit groups. This is the algebraic machinery needed for the develop-
ment of the Cech homology theory given in 1x. Chapter X presents
additional properties of the Cech theory. It is shown that the addition
of a single new axiom characterizes the Cech theory on compact spaces.
Two additional homology theories are constructed which are extensions
of the Cech theory on compact spaces. The first is defined on locally
compact spaces, and the second on normal spaces. Both are obtained by
processes of compactification.
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Chapter x1, which completes this volume, gives a number of the
classical applications of homology theory such as the Brouwer fixed-point
theorem, invariance of domain, and the fundamental theorem of algebra.

Homology theory and cohomology theory are dual to one another.
We treat them in parallel. Throughout Chapters 1 and 1, each section
which treats of homology is accompanied by a section on cohomology.
The latter contains no proofs. It contains just the list of definitions and
theorems dual to those given for homology, and are numbered corre-
spondingly, e.g. Definition 4.1c¢ is the cohomology form of Definition 4.1.
The duality between the two theories has only a semiformal status. It
is true that, by the use of special “coefficient groups,” Pontrjagin has
given a strictly formal duality based on his theory of character groups.
However, the duality appears to persist without such restrictions. The
reader is urged to supply the proofs for the cohomology sections. In
addition to constituting useful excrcises, such proofs will familiarize the
reader with the language of cohomology.

The device of dual sections oceurs rarely in later chapters. The greater
parts of the constructions of homology theories and their corresponding
cohomology theories deal with mechanisms in which the two aspects are
not differentiated. In the remaining parts, the two dual theories are
treated in equal detail,

At the end of each chapter is a list of exercises. These cover material
which might well have been incorporated in the text but was omitted as
not essential to the main line of thought.

There are no footnotes. Instead, comments on the historical develop-
ment and on the connections with other subjects are gathered together
in the form of notes at the ends of various chapters.

A cross reference gives the chapter number first, then the section,
and, lastly, the numbered proposition, e.g. X,2.6 refers to Proposition 6
of Section 2 of Chapter x. The chapter number is omitted in the case
where 1t is the one containing the reference. A reference of the form (3)
means the displayed formula number 3 of the section at hand.

We acknowledge with pleasure our indebtedness to Professors .
MacLane, T. Rado, and P. Reichelderfer who read large portions of the
manuscript and whose suggestions and criticisms resulted in substantial
improvements.

S. EILENBERG AND N. STEENROD
August, 1951
Columbia University
Princeton Universtly
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CHAPTER 1

Axioms and general theorems

1. TOPOLOGICAL PRELIMINARIES

The axioms for a homology theory are given in §3. In §§1 and 2,
we review the language and notation of topology and algebra, and we
introduce a number of definitions and conventions which, as will be
seen, are virtually enforced by the nature of our axiomatic system.

We dcfine a pair of sels (X,A) to be a set X and a subset A of X.
In case A = 0 is the vacuous subset, the symbol (X,0) is usually ab-
breviated by (X) or, simply, X.

A map f of (X,A) into (¥,B), in symbols

[+ (X,4) — (Y,B),

is a single-valued function from X to V¥ such that f(4) C B. If also
g: (Y,B) — (Z,C), then the composition of the two functions is a
map gf: (X,4) - (Z, C) given by (gfNx = ¢(fx).

The relation (X’,A") C (X,A) means X’ C X and A" C A. The
map 2: (X',4") — (X,A) defined by 7z = z for each z ¢ X’ is called
the inclusion map and is denoted by

it (X,A") C (X,4).

If (X',A’) = (X,A), then the inclusion map ¢ is called the identity
map of (X,4).

It will be important for us to distinguish a funection from those
obtained from it by seemingly trivial modifications of the domain or
range. let f: (X,A) — (Y,B) be given, and let (X',4"), (Y',B’) be
pairs such that X’ C X, Y' C Y, f(X') C Y/, and f(A") C B’. Then
the unique map f: (X",4) — (Y',B’) such that f'z = fz for each
z ¢ X' is called the map defined by f, and f is said fo define f’. Tor
example any inclusion map is defined by the identity map of its range.
If f: (X,A4) — (Y,B), the map of A into B defined by f is denoted by

flA: A — B.
3
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The lattice of a pair (X,A) consists of the pairs
(X,0)

/N

(0,0) — (4,0) (X,4) — (X,X)

NS

(4,4)

all their identity maps, the inclusion maps indicated by arrows, and
all their compositions. If f: (X,A) — (Y,B), then f defines a map
of every pair of the lattice of (X,A) into the corresponding pair of the
lattice of (Y,B). In particular f{A is one of these maps.

A topological space X is a set X together with a family of subsets of
X, called open sets, subject to the following conditions:

(1) the set X and the empty set 0 are open,

(2) the union of any family of open sets is open,

(3) the intersection of a finite family of open sets is open.

The family of open sets of X is called the fopology of X. The coin-
plement X — U of an open set U is called closed.

If A is a subset of X, then the union of all the open sets contained
in A is called the interior of A and is denoted by Int A. The inter-
section, of all the closed sets containing A is called the closure of A and
is denoted by A. A topology, called the relative topology, is defined in
A by the family of intersections A M U for all open sets U of X. With
this topology, A is called a subspace and (X,A4) is called a pair of
topological spaces or, briefly, a pair. If X, X’ are spaces, the relation
X' C X means that X' is a subspace of X.

A map f: X — Y of one topological space into another is said to
be continuous if, for every open set V of Y, the set f~'(V) is open in X.
A map of pairs f: (X.A) — (¥,B) is continuous if the map X — Y
defined by f is continuous. The terms map, mapping, and transforma-
tion when applied to topological spaces or pairs will always mean
continuous maps. Identity and inclusion maps are continuous.

A space X is a Hausdorff space if, for each pair of distinct points
Z1,%s € X, there exist disjoint open sets U,,U, in X with z, ¢ U,, z, ¢ U, .
A space is called compact if it is a Hausdorf space, and if each covering
of the space by open sets contains a finite covering. A pair (X,4) is
called compact if X is compact and A is a closed (and therefore compact)
subset of X.

The foregoing is intended as a review of some basic definitions. We
shall assume a knowledge of the elementary properties of spaces and
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maps such as can be found, for instance, in the book of Alexandroff and
Hopf (Topologie, J. Springer, Berlin 1935) Chapters 1 and 2, or in the
book of Lefschetz (Algebraic Topology, Colloq. Pub. Amer. Math. Soc.
1942) Chapter 1.

DerFiniTION. A family @ of pairs of spaces and maps of such pairs
which satisfies the conditions (1) to (5) below is called an admissible
category for homology theory. The pairs and maps of @ are called ad-
massible.

(1) If (X,A) e @, then all pairs and inclusion maps of the lattice
of (X,A) are in Q.

(2 If f: (X,A) — (Y,B) is in @, then (X,A) and (Y,B) are in @
together with all maps that f defines of members of the lattice of (X,A)
into corresponding members of the lattice of (V,B).

(3) If f, and f, are in @, and their composition f,f, is defined,
then f,f, ¢ Q.

(4) If I = [0,1] is the closed unit interval, and (X,A) ¢ @, then the
cartesian product

XA XI=XXLAXI
is in @ and the maps

gogi: (X,A) - (X,4) X 1
given by

go(x) = (z,0), g:(x) = (1)

are in Q.
(5) There is in @ a space P, consisting of a single point. If X,P
arein @, if f: P — X, and if P is a single point, then f¢ Q.

The following are examples of admissible categories for homology
theory:

@, = the set of all pairs (X,4) and all maps of such pairs, This is
the largest admissible category.

Q¢ = the set of all compact pairs and all maps of such pairs.

@Lc = the set of pairs (X,4) where X is a locally compact Hausdorft
space, A is closed in X, and all maps of such pairs having the property
that the inverse images of compact sets are compact sets.

This last example of an admissible category has the property that
both X and X’ can be admissible, X’ C X, and yet the inclusion map
X’ — X may not be admissible. This is the case if X is compact and
X' is an open but not closed subset of X.
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DeriniTioN. Two maps fo,f:: (X, A) — (Y,B) in the admissible
category @ are said to be homolopic in @ if there is a map

h: (X,A) X I — (Y,B)
in @ such that
Jo=hgo, [1 = hg
or, explicitly,
Jo@ = A(=,0),  [fi(2) = h(z,1).
The map h is called a homotopy.

2. ALGEBRAIC PRELIMINARIES

Let R be a ring with a unit element. An abelian group G is called
an R-module if for each » € K and each g € G an element rg ¢ (7 is defined
such that

(g + g2) = v + 7go, (r + r)g = ng + ng,
r(r.g) = (rir2)g, lg = g.

A subgroup H of 7 such that rh ¢ H whenever r ¢ R, h ¢ H is called a
linear subspace of G. A homomorphism ¢ of G into another R-module
G’ is called linear if ¢(rg) = r¢(g) holdsforallr ¢ R, g ¢ G.

Only two special cases are of importance to us. In the first, R = F
is a field. Then G is a vector space over F. In the second, R = J is
the ring of integers. In this case (7 is an ordinary abelian group (without
additional structure). The unifying concept of module saves repetition.

In addition to R-modules, we shall also wish to consider compact
abelian groups. To avoid a complete duplication of the discussion, we
adopt the following convention:

Unless otherwise stated the word ‘‘group” will be used to mean
either one of the following two objects:

1°. An R-module (over some ring R with a unit element), or

2°. A compact topological abelian group.

Whenever, in a discussion, several ‘‘groups” appear, the word “‘group”
is to be interpreted in a fixed manner. In particular, in case 1°, the
ring R is the same for all groups. All groups are written additively. If
G is a group, ¢ = 0 means that G consists of the zero element alone.

The word “‘subgroup’’ will mean correspondingly

1°. A linear subspace, or

2°. A closed subgroup. .
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The word “homomorphism’ will mean
1°. A linecar map, or

2°. A continuous homomorphism.

If G and H are groups, the notation

¢: G > H

means that ¢ maps G homomorphically into H. The kernel of ¢ is the
subgroup of elements of G mapped into the zero element of H. The
tmage of ¢ is the subgroup ¢(G) C H. The statement “¢ maps G onto
H” means ¢(G) = H. We sometimes abbreviate “¢ maps G onto H”
by “¢ is onto.” The symbolism ¢ = 0 is used to indicate that the
kernel of ¢ is all of G, or equally well that ¢(G) = 0. The expression
“¢ has kernel zero” means that the kernel of ¢ contains only the zero
element. The symbolism

¢: G=H

means that the map ¢: G — H maps & isomorphically onto H, and ¢
is called an ¢somorphism. Observe that ¢: G = H implies ¢7': H = G.
In case 1°, this is obvious. In case 2° it follows from the theorem that
the inverse of a continuous 1-1 map between compact spaces is con-
tinuous. It is precisely the failure of ™' to be continuous in the non-
compact case which prevents our unifying the concepts of R-module
and compact group by the use of topological R-modules.

If L is a subgroup of G, G/L denotes the factor (or difference) group,
i.e. the group whose elements are the cosets of L in G. The natural
homomorphism

nn G —> G/L

is the function which attaches to each element of G the coset of L which
contains it: 5(g) = ¢ + L. In case 1° we definer(¢ + L) = r¢ + L so
that G/L is an R-module and % is linear. In case 2°, we introduce a
topology into G/L as follows: a subset U of G/L is open if and only if
7 '(U) is open in G. It can then be seen clearly that G/L is a compact
abelian group and that 5 is continuous.

If$: G— G and L C G, L' C G’ aresubgroups such that ¢(L) C L/,
then the homomorphism ¢: G/L — /L’ induced by ¢ attaches to each
coset of L in G the coset of L’ in G’ which contains its image under ¢.
The natural maps 5,7’ and the homomorphisms ¢,¢ satisfy the com-
mutativity relation

én = 1'¢.
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It asserts that two homomorphisms of @ into G’/L’ coincide. As shown
in the diagram

¢
G — @
A
é

G/L — @'/’

the first is obtained by moving down and then over, the second, by
moving over and then down.

If {G.},a =1, - -, n, are groups, their (external) direct sum D _nuy Gq
is defined, in the usual way, as the set of n-tuples {g.}, g. ¢ G., with

r{ga} = {rga}, {9a} + {94} = {ga + ga}.

In case 2°, _ G, is given the product topology.

A set of homomorphisms 7,: G, —> G, a = 1, --- | n, determine a
homomorphism z: Z’;-, G. — G by the rule ¢({g.}) = Z'.‘,-, Ta(ga). If
¢ is an isomorphism of > G, onto G, then the set {7,} is called an
injective representation of G as a direct sum, and each component 7, is
called an injection. If, in addition, G, C G and each 7, is an inclusion,
G is said to decompose into the (internal) direct sum G = D G,.

A set of homomorphisms j,: G — G,, a = 1, -+ , n, determine a
homomorphism j: G — >_n., G, by the rule j(g) = {j.g}. Ifjisan
isomorphism of G onto Y G,, then the set {j,} is called a projective
representation of G as a direct sum, and each component j, is called a
projection.

Given an injective representation {7,} as a direct sum, one constructs
a projective representation {j,} by defining j,g to be the a-coordinate of
7 'g. Similarly a projective representation determines an injective
representation. The advantage of having the two types is that they are
dual and one can state the dual of a direct sum theorem by interchanging
injection and projection. In Chapter v where we deal with infinite
direct sums, the distinction between the two types will be more than
formal.

DEFINITION. A lower sequence of groups is a collection {G,¢,])
where, for each integer ¢ (positive, negative, or zero), G, is a group,
and ¢,: G, — G,_; is a homomorphism. A lower sequcnce is said to
be exact if, for each integer ¢, the image of ¢,., in G, coincides with
the kernel of ¢,.

DEFINITION. An upper sequence of groups is a collection {G°¢°}
where, for each integer ¢ (positive, negative, or zero), G° is a group and
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¢°: G*— G*''is a homomorphism. An upper sequence is ezact if, for
each integer ¢, the image of ¢*"' in G° coincides with the kernel of ¢°

If {G.¢.} is a lower sequence, and we set G* = G_,, ¢° = ¢_, for
cach g, then {G“¢°} is an upper sequence. This transformation sets up
a 1-1 correspondence between the set of all lower sequences and the
set of all upper sequences. In the sequel, definitions are made only for
lower sequences. The corresponding definitions for upper sequences are
to be obtained using this transformation.

DeriniTION. A lower sequence G’ = {G,¢}} is said to be a subse-
quence of the lower sequence G = {G,¢,}, written G' C G, if, for each
g, G; C G, and ¢, = ¢,/G,. A subsequence is determined by any set
of subgroups {G} provided ¢,(G}) C G)_, for each q.

ReEMark. The word subsequence is used here in a sense different
from the usual one—no terms of the original sequence are discarded. It
is not to be expected that a subsequence of an exact sequence should be
exact. For example, the subsequence K, = kernel ¢, is usually not
exact.

DeriniTioN. If G,G’ are two lower sequences, a homomorphism y:
G — (' is a sequence of homomorphisms {,} such that, for each integer
¢, ¥.: G, — G} and the following commutativity relations hold:

¢€\Lq = \l’a—l¢a'

The subgroups {kernel y,} form a subsequence of G called the kernel
of ¥, and kernel ¢ = 0 means kernel ¥, = 0 for each g. Likewise image
¥ = {image ¢,} is a subsequence of G’; and when G’ = image ¢, we
say that ¢ is onto. If each ¥, is an isomorphism, then y is said to be
an isomorphism.

The commutativity relations assert that, in the following diagram
of homomorphisms

b
Gq‘l — GG
l“’a‘l l\"a
¢:

Gy — G

the two composite homomorphisms from G, to G/_, coincide.
DeriniTioN. If L is & subsequence of the lower sequence G, the
Jactor sequence G/L of G by L is the lower sequence composed of the
factor groups G./L. and the homomorphisms ¢,: Go/L, — Ge-1/Le
induced by the ¢,. Let 9, G,— G,/L,be the natural homomorphism.
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Since ¢gn, = 7Ne-1bq, it follows that n = {n,}: @ — G/L. It is called
the natural homomorphism of G onto G/L.

DerintTioN. If G,G" are lower sequences, their (external) direct
sum G’ -+ G" is the lower sequence whose groups are G, = G, + GV,
and whose homomorphisms are defined by ¢.(g,,92) = (¢4(g.) .04 (g2).

DEerinmrioN. If G/,G” are subsequences of the lower sequence G,
then G is said to decompose inio the (internal) direct sum of G’ and G”’
if, for each ¢, G, decomposes into the direct, sum of G, and G/'.

The conventions and notations introduced for pairs of sets (X,A4)
and their maps will also be used for pairs of groups, pairs of sequences,
and their homomorphisms.,

8. AXIOMS FOR HOMOLOGY

A homology theory H on an admissible categorv @ is a collection
of three functions as follows: The first is a function H,(X,4) defined
for each pair (X,A4) in @ and each integer q (positive, negative, or zero).
The value of the function is an abelian group. It is called the g-dimen-
stonal relative homology group of X modulo A.

The second function is defined for each map

fr (X,4) — (Y,B)
in @ and each integer ¢, and attaches to such a pair a homomorphism
(1) faet Ho(X,A) — H(Y,B).

It is called the homomorphism ¢nduced by f.
The third function d(¢,X,A) is defined for each (X,A) in @ and
each integer gq. Its value is a homomorphism

(2) a(Q)X)A) HG(X)A) - Hq—l(A)

called the boundary operator.

Since, in (2), the symbol (¢,X,4) is redundant, it will be omitted
in the future. Likewise the index ¢ on f,, in (1) will be omitted.

According to the convention of the preceding section, H,(X,A) is
either always an R-module, or always a compact abelian group. The
corresponding conventions govern the homomorphisms 8 and f,.

In addition, the three functions are required to have the following
properties:

Axiom 1. If f = identity, then f, = identity.

Explicitly, if f is the identity map of (X,4) ¢ @ on itself, then,
for each g, f, is the identity map of H (X,4) on itself.
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Axiom 2. (gf), = ¢.f..

Explicitly, if f: (X,4) — (V,B) and ¢g: (Y,B) — (Z,C) are ad-
missible, then the composition of the induced homomorphisms f,:
H(X,A) - H,(Y,B) and g,: H,(Y,B) — H/(Z,C) is the induced
homomorphism (gf),: H. (X,A) — H(Z,C).

Axiom 3. of, = (f|A4),0.

Explicitly, if /1 (X,A) — (Y,B) is admissible and f]|d: A — Bis
the map defined by f, then there are two ways of mapping H,(X,A)
into H,.,(B). As shown in the diagram,

I
H(X,A) —— H(Y,B)

o !

I, (A) —— H,.(B)

the composition 8f, is obtained by moving over and then down, the
composition (f|4),0 by moving down and over. The axiom requires
that the two homomorphisms have the same value on each clement of

H.(X,A).

Axiom 4 (ExacrNess axiom). If (X,A) 1s admissible and 1i:
A— X, j: X — (X,A) are inclusion maps, then the lower sequence of
groups and homomorphisms

Ty ] Je T a
e o (4) « Ho(X,4) — H(X) « H(4) « -

18 exact. This lower sequence 1s called the homology sequence of (X,A)
(abbreviated: H.S. of (X,A)).

To make the above statement precise, the groups and homo-
morphisms of the lower sequence must be indexed by integers. We
choose Hy(X,A4) as the 0'® group, i.e. G5, = H (X ,A), ¢p3, = 9, Gaes1 =
H (X), etc.

Axiom 5 (Homorory axiom). If the admissible maps fo, fi:
(X,A) — (Y,B) are homolopic in @, then, for each g, the homomorphisms
SowrS 14 of H(X,A) into H,(Y,B) coincide.

Axiom 6 (Excision axiom). If U is an open subset of X whose
closure U 1is contained in the interior of A (i.e. U C V C A for some open
set V of X), and if the inclusion map (X — U, A — U) — (X,A) s
admissible, then it induces isomorphisms H (X — U, A — U) = H (X,A)
for each q.
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An inclusion map i: (X — U, A — U) C (X,A) where U is open
in X and U is in the interior of A, will be called an excision map or
just an excision.

Axiom 7 (DIMENsION axioM). If P is an admissible space con-
sisting of a single point, then H (P) = 0 for all ¢ #~ 0.

This concludes the list of axioms for a homology theory. In proofs
of theorems, use will be made of Axioms 1, 2, and 3 without comment
or explicit reference. The remaining axioms will be referred to by name.

The reasons for the names of Axioms 4, 5, and 6 are apparent. The
reason for calling Axiom 7 the Dimension axiom is not so apparent.
Suppose H,(X,A),9,f, is a homology theory satisfying Axioms 1 through
7. Define H(X,A) = H,,(X,A). Define ¢’ and f,, in the natural
way. Then the new homology theory satisfies Axioms 1 through 6.
This is also true of the homology theory H}(X,A) = H/(X,A) +
H, ,(X,A). Thus, Axiom 7 tends to insure that the dimensional index
¢ shall have a geometric meaning.

The consistency of the axioms is easily verified by choosing each
H,(X,A) = 0. The interest, naturally, lies in the existence of non-
trivial homology theories. The existence of such will be proved in
Chapters v and 1x.

The Homotopy axiom can be put in the following form, which is
sometimes more convenient:

Axiom 5’'. If (X,A) is admissible and go,9:: (X,A) — (X,4) X I
are defined by g(x) = (2,0), g:(x) = (x,1), then go, = i,

Indeed Axiom 5 implies Axiom 5§’ since g, and ¢, are homotopic with
the identity map of (X,A) X I as homotopy. On the other hand, if
h is a homotopy of maps f,,fi: (X,4A) — (¥,B), then f, = hg, and
f1 = hg, and by Axioms 2 and 5’

fo:a = hvgo* = h*g,* = fige
The Excision axiom may be reformulated as follows:

Axiom 6’. Let X, and X, be subsels of a space X such that X, s
closedand X = Int X, U Int X,. Ifi: (X, X.NX,) C (X, X,,X,)
18 admissible, then it induces isomorphisms i,: H, (X,X, N X,) =
H (X, X,,X,) for each q.

The equivalence of this axiom with the original formulation is easily
seen by setting A = X, and U = X — X,. The new formulation of
the Excision axiom closely resembles the following theorem of group
theory: If G, and G, are subgroups of a group G, then the inclusion
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map (G,,G, N G;) — (G, Y G,,G;) induces an isomorphism of the factor
groups G,/G, N\ G, = G, U G,/G,. Here G, \J G, denotes the least
subgroup of ¢ containing both G, and G,.

In all the homology theories that will be constructed in the sequel
it will be true that H,(X,4A) = 0 for ¢ < 0. Because of the various
uniqueness theorems that will be established later, this is also true for
any homology theory provided that the pair (X,4) is triangulable (see
11,6). Because of these facts one could, without limiting the theory in
any essential fashion, incorporate the requirement that H (X,A) = 0
for ¢ < 0 into the axioms. One could go a step farther and assume
that the groups H,(X,A) are defined only for ¢ = 0 and that a:
H,(X,A) —» H, ,(A) is defined only for ¢ = 1. The Exactness axiom
would be the only one that would require modification. Indeed the
homology sequence is then no longer infinite in both directions, but
terminates on the left with

j* i*
Hy(X,A) «— Hy(X) « ---
The modified Exactness axiom would assert, in addition to the kernel =
image property, that j, maps Ho(X) onto Hy,(X,A). This is the precise
condition that the sequence remain exact when it is completed to a
nonterminating sequence by adjoining trivial groups and homomor-
phisms. This modification of the basic definition is mathematically
trivial since by defining H (X,4) = 0 for ¢ < 0 one obtains a homology
theory in the unmodified sense.

The remainder of Chapter 1 is devoted to general theorems con-
cerning a homology theory on an admissible category. This hypothesis
will be omitted from the statement of each theorem. In addition, the
assumption that the pairs and maps occurring in theorems are admissible
will be omitted unless there is a special reason for calling attention to
this fact.

3c. AXIOMS FOR COHOMOLOGY

A cohomology theory on an admissible category @ is a collection of
three functions as follows: The first is a function H*(X,A) defined for
each (X,A) in @ and each integer ¢. In each case the value of the
function is an abelian group. It is called the g-dimensional relative
cohomology group of X mod A.

The second function, f*, is defined for each admissible map

fi (X,4) = (¥,B)
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and each integer ¢, and its value is & homomorphism
f* H'(Y,B) —» H(X,A)

called the homomorphism induced by f.
The third function, §(¢,X,A), is defined for (X,4) £ @ and an integer
g. Its value is a homomorphism

5 H'(4) — HYX,A)

called the coboundary operafor.

Nore: f, and f* have reverse directions, likewise @ and §. The
index distinction between homology and cohomology groups is easily
remembered by the following rule: H, means homology since the index
below suggests that the corresponding operator (boundary) lowers the
dimension, H* means cohomology since the index above suggests that
the corresponding operator (coboundary) increases the dimension.

These three functions have the following properties (the statements
are abbreviated since they parallel the corresponding homology axioms,
in particular, conditions that the appropriate pairs and maps be ad-
missible are omitted):

Axiom 1c. Jf f = identity, then f* = idenlity.
Axiom 2c. (gf)* = f*g*.
Axiom 3c. §(f]A)* = f*s.

Axiom4c. Ifi: A - X, j: X — (X,A) are inclusion maps, then
the upper sequence of groups and homomorphisms

D ) * * )
cvro = H"Y(A) » HY(X,A) » H(X) » H(A) —> ---

18 exact. This upper sequence 1s called the cohomology sequence of (X,A)
(abbreviated: C.8. of (X,A)).

Axiom Sc. If the maps f,9: (X,A) — (Y,B) are homotopic, then
f* = g*,

Axiom 6¢. If U is open in X, and U is contained in the interior of
A, then the inclusion map: (X — U, A — U) — (X,A), tf admissible,
induces isomorphisms: H*(X,A) = HY(X — U, A — U).

Axiom 7c. If P is a point, then H°(P) = 0 for ¢ # 0.

There is a duality relating homology and cohomology. It is based on
the Pontrjagin theory of character groups. Precisely, let H(X,A4),*,s
be a cohomology theory satisfying Axioms lc¢ through 7¢; and suppose
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H*(X,A) is always a discrete abelian group (R = the ring of integers)
or always a compact abelian group. Let M (X,A) be the character
group of H'(X,A), and let f,,0 be the homomorphisms dual to f*,s.
Then it is readily shown, by the use of standard properties of character
groups, that H (X ,A),f,,0 satisfy Axioms 1 through 7. It follows that
the dual of each theorem about {H,f,,0f is a true theorem about
{H’ f*8}. When passing from a theorem to its dual, arrows are re-
versed, subgroups are replaced by factor groups and vice versa.

In case the values of H°(X,A) are R-modules, with B unrestricted,
the duality has only a semiformal status. A partial duality is obtained
by treating H‘(X,A) as a discrete abelian group, and ignoring the
operations of R. Then the strict duality above shows that the dual of
each theorem of homology is a true theorem of cohomology at least in
so far as the addiiive structures of the groups H°(X,A) are involved.

Because of this duality, theorems on cohomology will not be proved,
and will be left to the reader as exercises. At the end of each section
on homology in Chapters 1 and 111, the dual definitions and theorems
for echomology will be stated.

4. HOMOMORPHISMS OF HOMOLOGY SEQUENCES

Amap f: (X,A) — (Y,B) defines maps

fir XY, fa: A — B.
The map f, is simply the map f|4 considered before.

TueoreM 4.1.  The collection of homomorphisms f,, fi,, and fa,
forms a homomorphism of the homology sequence of (X,A) into that of
(Y,B). It will be denoted by f,.

Proor. Consider the diagram

Je Ty ]
—— H(X,A) —— H(X) —— H(4) —— H.n(X,4) —
lf-u lfhu J’fh 1].*
Jx iy 9
—— H(Y,B) «—— H(Y) e—— HB) «— Hou(Y,B) ——

where %, j, ¢/, ;' are appropriate inclusions. We must verify the com-
mutativity relations
f*j* = j:‘fl:p fl*i* = i,.:fz*; f'.'*a = af*'

The first two relations follow from Axiom 2 since fj = j'f, and f,i =
©'f,. The third relation is a restatement of Axiom 3.
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TreoreM 4.2. If f: (X,A) — (V,B) and f,,: H,/(X) = HJ(Y),
Jou: H(A) = H,B) for all dimensions q, then f,: H/(X,A) =
H (Y,B) for all dimensions ¢, and f,, ts an isomorphism.

This theorem is a consequence of the following group theoretic
lemma:

LemMa 4.3 (THE “FivE” LEMMA). Let [y} be a homomorphism of
an exact lower sequence {G.,¢.} into an exact lower sequence (G ol}. If
for some index q, Yoszy Yas1y Va1, ONd Yoo are all isomorphisms, then
¥, ts also an isomorphism.

This lemma is a consequence of the following two lemmas:

LEmMA 4.4. If the kernel of ¥,-, s zero, and .2 ts onto, then

kemel ‘l’a = ¢c+l(kernel #’aﬂ)-
LemMA 4.5. If Y4, ts onto, and the kernel of Y., 18 zero, then
image ¥, = ¢;'(image ¥,-1).

Proors. Both lemamas are proved by chasing around the following
diagram:

¢¢_1 ¢q ¢q+| ¢q+2
Gq—2 - Ga—l — Ga ¢ Gq+l €« G¢+z
lw lw lw lw lw
be-1 b: ber1 bar2
G;—z € ::—1 — G; € G::H N G;+2

Since Y Por1 = Phi¥esrr, it Tollows that
¢or1(kernel ¥,,1) C kernel y,.

To prove the inverse inclusion, assume that the hypotheses of 4.4 are
satisfied and consider an element g ¢ G, with ¢ ,g = 0. Then ¢ g = 0,
80 Y100 = 0. Since the kernel ¢,_, is zero, it follows that ¢.(g) = 0.
By exactness, thereis a g, ¢ G,., such that ¢,.,9: = g. Then¢l. Wi =
Vber10h = Vg = 0, and, by exactness, there is a ¢} ¢ G,, such that
Greags = Yosgr- Since ¥,.. is onto, there is a g, ¢ Gy,, such that
Ve+20z = ¢2. Then, on the one hand, ¥...(g; — be4202) = Yerrh —
OhiWarafe = VYerh — isegs = 0, while, on the other hand,
¢c+1(gl - ¢a+2g2) = ¢a+lgl =g ThUS g e¢¢+l(kemel #’cﬂ)'

The proof of 4.5 is similar.

TreorEM 4.1c. The collection of homomorphisms f* f%,f% forms a
homomorphism of the C.8. of (Y,B) into that of (X,A). It will be denoted
by f**.

Tarorem 4.2¢. If f: (X,A) — (Y,B) and f%: H(Y) = H'(X),
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f% HYB) = H%(A) for all dimensions q, then f*: HY(Y,B) =
H(X,A) for all q, and f** is an isomorphism.

5. INVARIANCE OF THE HOMOLOGY GROUPS

Two admissible pairs (X,4),(Y,B) are homeomorphic if there exist
admissible maps f: (X,4) — (Y,B) and ¢g: (Y,B) — (X,A) such that
both fg and gf are identity maps. The mup f is then called a homeo-
morphism, and ¢ = f™' is the inverse of f.

THEOREM 5.1. A homeomorphism f of (X,A) onto (Y,B) induces
tsomorphisms f,: H/(X,A) = H (Y,B).

Proor. Since f7'f = identity, (f7'f), = (f™).f, = identity.
Similarly f,(f™"), = identity. Therefore f, has an inverse (f,)” =
™

THEOREM 5.2. A homeomorphism f of (X,A) onto (Y,B) induces an
isomorphism of the H.S. of (X,A) onto that of (Y,B).

Proor. Since f defines homeomorphisms fi: X — ¥ and f;:
A — B, the theorem follows from 4.1 and 5.1.

THEOREM 5.1c. A homeomorphism f of (X,A) onto (Y,B) induces
isomorphtsms f*: H(Y,B) = H'(X,A).

THEOREM 5.2¢. A homeomorphism f of (X,A) onto (Y,B) induces an
tsomorphism of the C.S. of (Y,B) onto that of (X,A).

6. THE BASE POINT P, AND THE COEFFICIENT GROUP G

DerFINITION 6.1, Let P, denote a fixed reference point and also the
(admissible) space consisting of this single point. The group Hy(P,) is
called the coefficient group of the homology theory and is denoted by G.
Its elements are denoted by g,¢’, etc.

One can construct the coefficient group without choosing a base
point by the following process: Let M be a set, and, for each « ¢ M,
let G, be a group, and, for every ordered pair «,8 ¢ M, let x5 be an
isomorphism G, = G, such that (1) =2 is the identity map of G, for
each o, and (2) if a8,y ¢ M, then =575 = =3. Such a collection will
be called a transitive system of groups. To such a system we assign a
single group @ as follows: An element g e G is a function assigning to
each @ ¢ M an element g, ¢ G, such that «,8 ¢ M implies 759, = gs.
Addition is defined by adding functional values (¢ + ¢")a = g« + g..
Then @ is a group uniquely isomorphic to each G, under the projection
g fFa-

If M is the collection of all spaces in @ each consisting of a single
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point, the @, are the 0'* homology groups of these spaces, and the =2

are the isomorphisms induced by the unique maps of one such space
into another, then the above conditions are satisfied and the associated
group ( could be taken as the coefficient group.

DEeFINITION 6.1¢. The group H°(P,) is called the coefficient group
of the cohomology theory and is denoted by @, its elements by g,9, etec.

7. THE REDUCED 0-DIMENSIONAL HOMOLOGY GROUP

DeriniTioN 7.1. H z ¢ X and ¢ ¢ G, let (gx)x denote the image of
g in Hy(X) under the homomorphism induced by the map f: P, — X
defined by f(P,) = z. The image of ¢ in Hy(X) under f, is denoted
by (Gz)x.

Tueorem 7.2. If f: X > Y,z ¢ X,y = f(x), and g ¢ G, then
J+(92)x = (g9)y. Thus f, maps (Gz)x onto (Gy)y.

The proof is trivial.

DgeriniTION 7.3. If the unique map f: X — P, is admissible, the
space X is said to be collapsible. In such a case the kernel of the homo-
morphism f,: Ho(X) — G is defined. Tt is called the reduced O-
dimensional homology group of X, and is denoted by H,(X).

Lemma 74. If f: X — Y is admissible and Y 1s collapsible, then
X 1s collapsible. If (X,A) is admissible, and X is collapsible, then A
18 collapsible and the map (X,A) — (Po,P,) s admissible.

The first statement is a trivial consequence of property (3) of an
admissible category. If (X,A4) is admissible, the inclusion map A — X
is admissible. If, in addition, X is collapsible, the composite map
A — X — P, is admissible; so A is collapsible. Since X — P, is ad-
missible, so also is (X,X) — (P,,Py). Therefore (X,4) — (X, X) —
(P,,P,) is admissible.

REMARk. For each of the first two examples of admissible cate-
gories given in §1, it is true that each admissible space is collapsible.
However in the third example GL¢ of locally compact spaces, the only
collapsible spaces are the compact spaces.

TaEorREM 7.5. If P is a space consisiing of a single point, then
By(P) = 0 and Hy(P) = (GP)».

This follows from 5.1 since P — P, is a homeomorphism.

TrEOREM 7.6. If X s collapsible and z ¢ X, then Hy(X) decomposes
into the. direct sum

Hy(X) = HO(X) + (Ga)x

and the correspondence g — (gx)x maps G 1somorphically onto (Gx)yx.
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Proor. Let fi: P, — X be defined by f,(P,) = z, and let f,:
X — P,. Since f,f, is the identity map of P,, the composition of
the homomorphisms f,,: G — Hy(X) and f,,: Ho(X) — G is the
identity. Therefore f, maps G isomorphically onto (Gz)x and f,,
maps (Gz)y isomorphically onto G. Since Ho(X) = kernel Jogr it
follows that H,(X) and (Gz)x have only zero in common. If k ¢ Ho(X),
let ¥ = fi,f2,(h) and K" = k — R'. Tt follows immediately that
R e (Go)x, B e Ho(X), and h = K’ + R".

TueoReM 7.7. Iff: X — Y, Y s collupsible, z ¢ X, and y = f(x),
then X s collapsible and f, maps Ay(X) into H,(Y) and maps (Gz)x
tsomorphically onto (Gy) y.

Proor. Let fi: P, — X be defined by f,(P,) = z and let f,:
Y — P,. Then f,ff, is the identity map of P,. Therefore the compo-
sition G — (Gx)y — (Gy)y — @G is the identity. By definition and 7.2,
each homomorphism is onto; therefore each is an isomorphism. Since
fof collapses X into P, Ho(X) = kernel (f.f), = f, (kernel f,,) =

L HL(Y)).

DerFINITION 7.8. If f: X — Y and Y is collapsible, the map of
H,(X) into Hy(Y), defined by f, (see 7.7), is denoted by f,.

CoroLLARY 7.9. Kernel f, = kernel f,.

DeFIntTION 7.1c. If z ¢ X, h ¢ H*(X), and f: P, — X is defined
by f(P,) = z, let f*(h) « G be denoted by h(z), and let the kernel of
f*. H°(X) — G be denoted by HYX).

TueoreMm 7.2¢. If f: X > Y, ze X,y = f(z), and h ¢ HY(Y),
then (f*h)(z) = h(y). Thus f* maps H(Y) into HY(X), and H(Y)
contains the kernel of f*.

DeriniTION 7.3¢. If fi X — P, is admissible (i.e. X is collapsible),
the image of G in H°(X) under f* is denoted by Gx. The factor group
B°(X) = H°(X)/Gy is called the reduced O-dimensional cohomology group
of X.

TueoreM 7.5¢. If P is a space consisting of a single point, then
H°(P) = Gpand B°(P) = 0.

THEOREM 7.6¢c. If X is collapsible and z ¢.X, then H°(X) decomposes
into the direct sum H2(X) + Gy, and the map X — P, induces an iso-
morphism G = Gy.

TrEOREM 7.7¢. Iff: X — Y, Y iscollapsible, z e X, and y = f(z),
then X 1s collapsible and f* maps BY(Y) into HYX) and maps Gy iso-
morphically onto Gyx.

DEerFInITION 7.8¢. If f X — Y and Y is collapsible, the map of
A°(Y) into A°(X) induced by f* is denoted by f*.

CoROLLARY 7.9¢. Under the natural map H°(Y) — H°(Y) the kernel
of f* is mapped isomorphically onlo the kernel of f*.
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8. THE REDUCED HOMOLOGY SEQUENCE

LeEmMmA 8.1.  For each space X and each integer q, H (X, X) = 0,

Proor. Leti: X — X and j: X — (X,X) be inclusions. Con-
sider the section of the H.S. of (X,X) around H,(X,X):
iy 0 Ja iy
Hoo(X) « Hooi(X) « H(X,X) « H(X) « H(X).
Since each 7, is an isomorphism onto, it follows by exactness that
0 = kernel 7,,-, = image 3. Therefore H (X,X) = kernel 8. Similarly
H(X) = image i,, = kernel j,,. Therefore, image j, = 0. Since,
by exactness, image j, = kernel 9, it follows that H (X,X) = 0.

We shall give a second proof of 8.1 which uses the Excision axiom,
and uses only the part of the Exactness axiom which asserts that
Jute = 0. This proof will be of importance later when the full Exactness
axiom is not available.

The inclusion map (0,0) C (X,X) is an excision and therefore
H (X,X) = H,0). In the homology sequence of (0,0) we have the
homomorphisms

Ja iy
H(0) « H,(0) « H,(0).
Since 7 and j are identity maps, we have 7, = j, = identity. Since
Jute = 0, it follows that H (0) = 0.

TueorREM 8.2. If X is collapsible, then d maps H,(X,A) into H,(A4).

Proor. By 7.4, the map f: (X,A) — (P,,P,) is admissible. If
heH,(X,A), then f (k) e H,(P,,P,) = 0by8.1. Therefore (f|4),(k) =
af,(h) = 0. Hence, by definition, a(h) ¢ H,(A).

DerinmrioNn 83. If f: (X,A) — (Po,P,) is admissible (i.e. X is
collapsible), the kernel of f,, is called the reduced homology sequence
of (X,A).

THEOREM 8.4. The reduced homology sequence of (X,A) differs from
the homology sequence of (X,A) only in that the section

Je 1, ]
Hy(X,A) « Hy(X) « H,(A) « H(X,A)
of the latter has been replaced by

T 7, F]
Hy(X,A) « HyX) « H(A) « H(X,A)

where j,,i*,t?) are the maps defined by j,,t,,0 respectively.
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Cororrary 85. If f: (X,4) — (Y,B), then f,, maps the reduced
homology sequence of (X,A) inlo that of (Y,B).

Proor. By 8.1 and the Dimension axiom, the H.S. of (P,,P,) has
just two nonzero terms: H,(P,) = H,(P,). Therefore the kernel of
f s coincides with the H.S. of (X,A4) except for the two corresponding
terms which, by 7.3, are H,(X) and H,(4). The corollary follows from
7.7.

THEOREM 8.6.  If the unique map f: (X,A) — (Po,P,) is admissible
(i.e. X is collapsible, see 7.4), A is nonvacuous and = ¢ A, then the H.S.
of (X,A) decomposes into the direct sum of two eract subsequences: (1)
the reduced H.S. of (X,A) (i.e. the kernel of f,,), and (2) the isomorphic
tmage of the H.S. of (P,,P,) under g,, where g: (Po,P,) — (X,A) 1s
defined by g(P,) = z.

Observe that g is admissible since (P,,P,) — (4,4) — (X,A) are
admissible.

Since fg is the identity map of (P,,P,), this theorem is a special
case of the following one.

Tueorem 8.7. Let f: (X,4) — (Y,B) and ¢g: (Y,B) — (X,A) be
admissible and such that fg is the identity map of (Y,B). Then the
homology sequence of (X,A) decomposes into the direct sum of two exact
subsequences: (1) the kernel of f,,, and (2) the isomorphic image of the
homology sequence of (Y,B) under g,,.

This theorem in turn is a consequence of a purely algebraic proposi-
tion:

Lemma 88. If C,C' are two lower sequences and ¢: C — (',
¥t C' — C are homomorphisms such that y': C' — C’ is the identity,
then C decomposes into the direct sum of two subsequences: (1) the kernel
of ¥, and (2) the isomorphic image of C' under y'. If C is exact, then
C' and the subsequences (1) and (2) are exact.

Proor. Let K = kernel ¢, and L = image ¢’. Since ¢y’ is the
identity, ¢’ maps C’ isomorphically onto L. For convenience, suppose
C,C’ are so indexed that ¢, C, — C} and therefore y.: C., — C,.
If | ¢ L, there exists a ¢’ ¢ C} such that ¢¥i(c") = . If y,() = 0,
then ¢ .yi(¢") = ¢’ = 0, and therefore [ = 0. Thus K, " L, = 0.
Suppose ¢ ¢ C,. Let ! = ¢ (&). Thenle L, and ¢ () = Y Pip.lc) =
v.(c). Therefore k = ¢ — lisin K, and ¢ = k£ 4+ . This proves that
C, = K, + L, Suppose now that C is exact. This implies that
dbesr = 0 (ie. * = 0); hence (¢|K)* = 0 = (¢|L)>. Suppose that
ke K, and ¢(k) = 0. Since C is exact, there exists a ¢ ¢ C,,, such that
¢(c) =k Letc =k, + I, wherek, ¢ K,., and , ¢ L,,;. Then k =
(k) + ¢(l,). Thus ¢(l,) = k — ¢(k,) lies in both K, and L,. There-
fore ¢(I,) = 0, and k = ¢(k,). A similar argument shows that, if { ¢ L,
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and ¢(l) = 0, then there is an [, ¢ L,,, such that ¢(l,) = I. Thus K
and L are exact. Since L = (', it follows that C’ is exact.

LimMA 8.1c. For each space X and each inleger q, H'(X,X) = 0.

TueoreM 8.2c. If X is collapsible, then G, lies in the kernel of
8: H°(A) — H'(X,A). Therefore & induces a homomorphism §:
A°4) — H'(X,A).

DeriniTION 8.3¢. If 1 (X,A) — (P,,P,) is admissible (i.e. X is
collapsible), the factor sequence (see definition §2) of the C.S. of (X,4)
by the image of f** is called the reduced C.S. of (X,A).

THEOREM 8.4c. The reduced C.S. of (X,A) differs from the C.S. of
(X,A) only in that the section

j* 1:* ]

H°(X,A) —» H'(X) —» H(A) —» H'(X,A)

of the latter has been replaced by

* d 6

J
H(X,4) - B'(X) - B°(4) — H'(X,4)

where 7*,7*,8 are the cosel mappings induced by j*,i*,6 respectively.
Cororrary 8.5¢c. If f: (X,A) — (Y,B), then f** induces a homo-
morphism of the reduced C.S. of (Y,B) into that of (X,A).

THEOREM 8.6¢c. If f: (X,A) — (Po,P,) is admissible, and x e A,
then the C.8S. of (X,A) decomposes inlo the direct sum of two exact subse-
quences: (1) the isomorphic image of the C.S. of (Py,P,) under f**, and
(2) the kernel of g** where g: (Po,Po) — (X,A) s defined by g(P,) = z.
Furthermore the second maps isomorphically onto the reduced C.8S. of (X,A)
under factorization of the C.S. of (X,A) by the first subsequence. Thus
the reduced C.S. of (X,A) 1is exacl.

TueoreM 8.7c. Let f: (X,A) — (Y,B) and g: (Y,B) — (X,4)
be admissible and such that fg is the identity map of (Y,B). Then the
C.S. of (X,A) decomposes into the direct sum of two exact subsequences:
(1) the kernel of g**, and (2) the isomorphic image of the C.S. of (Y,B)
under f**.

LemMAa 8.8¢. (Replace “lower’’ by “upper’ in 8.8).

9. HOMOLOGICALLY TRIVIAL SPACES

All spaces in this section are assumed to be collapsible (see 7.3).
However, the results stated hold for noncollapsible spaces except
possibly in the dimensions 0 and 1.

DeriniTION 9.1. A space X is said to be homologically trivial if
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H,(X) = 0for ¢ » 0and H,(X) = 0. If 4 is not vacuous, (X,4) is
said to be homologically trivial if H,(X,A) = 0 for all q.

The reason for the exception ¢ = 0 in the definition is found in 7.6.
If the coefficient group is not zero, H,(X) cannot be zero for a nonempty
space X.

TreEorEM 9.2. If (X,A) is homologically trivial and A ts nonvacuous,
then the inclusion map 1: (A,0) — (X,0) induces isomorphisms

1,0 HJ(A) = H(X) forall q,
1,: Hy(4) = B(X).

Conversely, if these relations hold, (X,A) s homologically trivial.

TreorEM 9.3. If A s homologically trivial and is a nonvacuous
subsel of X, then the inclusion map j: (X,0) — (X,A) induces iso-
morphisms

jt: HG(X) zHa(X)A) fOTq#O,
Jet HoX) = Hy(X,4). :

Conuersely, if these relations hold, A 1s homologically trivial.

THEOREM 9.4. If X s homologically trivial and A 13 a nonvacuous
subset, then the boundary operator of (X,A) is an isomorphism in each
dimension

a: IIG(X’A) = Hv—-l(A) fOT q > 17
d: H((X,A) = H,(4).

Conversely, if these relations hold, X is homologically trivial.
CororLary 9.5. If both X and A are homologically trivial, so also 18
(X,4).

These results depend on two algebraic propositions.

Lemma 9.6. If C = {C,¢,] s an exact lower sequence, and, for some
g9, Co =0and Coiy = 0, then ¢guzi Couz = Conn.

Proor. Since C,,; = 0, image ¢,,. = kernel ¢,,, = 0. Since
C, = 0, image ¢,., = 0. Therefore C,,, = kernel ¢,.; = image ¢,42.

Lemma 9.7. If C = |C,¢.) is an exact lower sequence, and, for some
@ Parz: Cosa = Copyand ¢yt Cooy = Cog, then C, = 0.

Proor. Since kernel ¢,_, = 0, it follows that image ¢, = 0. There-
fore C, = kernel ¢, = image ¢,.,. But image ¢,., = C,., implies
kernel ¢,,, = C,,,. Therefore C, = image ¢,., = 0.

Proors oF 9.2, 3, AND 4. The hypothesis of 9.2 is that every third
term of the H.S. of (X,4) is zero (i.e. 11,(X,A) = 0). By exactness
and 9.6, this implies that the remaining adjacent pairs are isomorphic
under the mappings of the sequence. The converse of 9.2 is obtained
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from 9.7. Theorems 9.3 and 4 are proved in a similar way using the
reduced H.S. of (X,A) instead of the H.S. of (X,4A). The exactness of
the reduced H.S. was proved in 8.6.

DerFiNITION 9.1c. A space X is said to be cohomologically trivial if
H(X) = 0for ¢ # 0 and H°(X) = 0. If A is nonvacuous, (X,A) is
said to be cohomologically trival if H°(X,A) = 0 for all q.

TraeoREM 9.2¢. If (X,A) is cohomologically trivial and A s non-
vacuous, then v*: H(X) = H'(A) for all q. Conversely, if these relations
hold, (X,A) s cohomologically trivial.

THEOREM 9.3c. If A 1s cohomologically trivial and is a nonvacuous
subset of X, then

J*: HY(X,A) = HY(X) for g # 0,
j*r HYX,A) = B°(X).

Conversely, if these relations hold, A is cohomologically trivial.
THEOREM 9.4¢c. If X is cohomologically trivial and A s a nonvacuous
subset, then

8: H'(A) = HY(X,A) for q # 1,
3 A%4) = H'(X,A).

Conversely, +f these relations hold, X is cohomologically trivial.
COROLLARY 9.5¢. If both X and A are cohomologically trivial, so also
18 (X,A).

10. THE HOMOLOGY SEQUENCE OF A TRIPLE (X, A,B)

Suppose that X D A D B and that the inclusions
it (4,B) C (X,B), j: (X,B)C(X,4)

are admissible. Then (X,4,B) is called an admissible triple. The
inclusion maps and boundary operators associated with the pairs
(X,4),(X,B),(A,B) are denoted by

i Ao X, it X = (X,4), 8: H(X,A) — H,.\(4),
i1 B> X, j: X — (X,B), 8. H(X,B) — H,.(B),
i": B> A, j”: A— (AB), 9" H(AB) — H.\B).

A comparison of these maps with 7 and 3 suggests

DerFINITION 10.1. 9 = J's9 is called the boundary operator of the
triple (X,A,B):

a: H(X,A) — H,_,(A,B).
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The lower sequence of groups

3 Tu Ty
v & Hq—l(AvB) A IIO(X)A) A Hq(XyB) h Hc(AyB) = -

is called the homology sequence of the triple (X,4,B). It is indexed so
that Ho(X,A) is the 0** group.

THEOREM 10.2. The homology sequence of a triple is exact.

The proof of this theorem is a lengthy and tricky exercise in the
use of axioms 1, 2, 3, and 4. The reader may save himself the effort
of following the proof if he is willing to replace the Exactness axiom
by the stronger proposition 10.2. It reduces to the former when B = 0.

Proor. Reference to the diagram below will assist the reader in
following the proof.

i*
H, () —— H(X)

lj;’ lj;
i* j*
HG(A)B) — Hq(XvB) _— I{u(X)A)

oLl

Ty Ty
H, (B — H,(4) —— H,,(X)

lj:: * lj;‘
i
H,..(A,B) — H,(X,B)

Commutativity relations hold in each square of the diagram. In

addition to the homomorphisms displayed in the diagram, we have:
Je = Judur i, = 1,7, ' = a1, 8 = j,9.

The proof breaks up into the proofs of six propositions:

(1) 7,3, =0, (2) 3j, =0, (3) 17,0 = 0.

(@) If z ¢ H,(X,B) and j,x = 0, there exists an z’ ¢ H,(A,B) such
that i,2’ = . _

(5) If y ¢ H,(X,A) and dy = O, there exists a ¥’ ¢ H (X,B) such
that ;*y’ = y. _

(6) 1f z = H,.,(A,B) and i,z = 0, there exists a 2’ ¢ H,(X,4) such
that 9z’ = 2.

Proor oF (1). The map ji: (4,B) — (X,4) can be expressed as
the composition of the inclusion maps k: (4,B) C (4,4) and I:
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(A,A) C (X,A). ByS8.1, H(4, A) = 0 Therefore k, = 0. It follows
that 7,7, = (G0, = = k), = Lk,

PRrOOF OF (2). 6]* = ]”6], = ] .i’y0". Since the H.S. of (4,B)
is exact, j%i’y = 0.

Proor or (3). 2*6 = 1,79 = jzi,0. Since the H.S. of (X,4) is
exact, 7,0 = 0. _

Proor oF (4). Since j,z = 0, it follows that

"o’z = 3,z = 0.

By the exactness of the H.S. of (4,B), the element 4’z of the kernel
of ', is the image of an element

z, e H(A,B), 'z, = dx.
Then
Mz ~ 1 I = 'z — "% 1= 0'x — 9"z, = 0.

By the exactness of the H.S. of (X,B), the element z — Lz, of the
the kernel of 9’ is the image of an element

ue H(X), jlu=z—i,.
Then
Jett = ;,j,:u = ;*(:t - 2*1:,) = ;*:t —_ 3*;'*:1:, =90

by (1) and hypothesis. By exactness of the H.S. of (X,4), the element
u of the kernel of j, is the image of an element
ve H,(A), iy = u.

*

Define

=z, + .

Then
& = 4 G = ik Gl
= ;'*xl + jou = 2*:::1 + z - ;'*x. = z.
ProorF or (5). Since
740y = 3y = 0,

by the exactness of the H.S. of (A4,B), the element dy of the kernel
of j’, is the image of an element

ue H,_(B), iqu = dy.
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Then, by exactness of the H.S. of (X,4), 7,0 = 0. So
1 = 1,40 = 1,0y = 0.

By exactness of the H.S. of (X,B), the element u of the kernel of 4,
is the image of an element

Y€ Ha(XyB)) a'y; =Uu.
Then
Ay — Jyyn) = 3y — djyyr = By — 13"y, = oy — 'lu = 0.

By exactness of the H.8, of (X,4), the element y — jtyl of the kernel
of 9 is the image of an element

ve H(X), jo =y — i
Define
¥V =un -+
Then
j*y’ = j*yl +J*J::v = j*yl +].*V = j*yl + y - .7.,..211 =Y.
Proor or (6). Since i*z = 0, it follows that
'z = 6’;*2 = 0.

By exactness of the H.S. of (A4,B), the element z of the kernel of 9’ is
the image of an element

ue H,_,(4), Jau =z

It

Then
Tt u = t,j0u = 1,2 = 0.

By exactness of the H.S. of (X,B), the element ¢,u of the kernel of j/
is the image of an element

ve H,,(B), 0 = 10U,
Since 7,2y = 1, it follows that
=T =1tu—iyv=13u—1iy=0.
By exactness of the H.S. of (X,4), the element v — 7’[v of the kernel
of 7, is the image of an element

27 e H(X,A), 92" =u — ).
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Then

¥ = joe = jlu — i) = ju — il = jiu = .
This completes the proof.
A map f: (X,,A,,B)) — (X,A,B) of one triple into another is a
map of X, into X which carries A, into 4, and B, into B. The map f
defines maps

fii (X,4) — (X,4),  fir (4,4,B) — (4,B),
f3: (XUBJ), - (X,B)-

The map f is admissible if f,, f;, and f; are admissible. In this case,
the induced homomorphisms f.,, f2,, and fi, map the groups of the
H.S. of (X,,A,,B,) into those of the H.S. of (X,4,B).

Taeorem 10.3. A map f: (X,,4,,B)) — (X,A,B) induces a homo-
morphism of the homology sequence of (X,,A,,B,) into the homology
sequence of (X,A,B).

The proof requires only the verification of three commutativity
relations and is left as an exercise for the reader.

Tueorem 10.4. If B is nonvacuous, and any one of the three pairs
(X,A),(X,B),(A,B) s homologically trivial, then the homology groups of
the remaining two pairs are isomorphic under the maps of the H.S. of
(X,A,B). Ezxplicitly:

() If H(X,A) = O foreach q, theni,: H(A,B) = H (X B) for each q.
(2 IfH(X,B) =O0foreachq, then 8: H,(X,A) = H,_,(A,B) for each q.
(3) IfH(A,B) =0foreach q, thenj,: H(X,B) = H(X,A) for eachq.

Conversely, any one of the three conclusions implies the corresponding
hypothesis.

The proof is the same as that of 9.2 except for notation.

TaeoreEM 10.5. Let (X,A,B) be an admissible triple. If B C A
tnduces tsomorphisms H,(B) = H,(A) for all values of q, then (X,B) C
(X,A) also induces 1somorphisms H,(X,B) = H,(X,A) for all q. Simi-
larly, if A C X induces H,(A) = H(X) for all q, then (A,B) C (X,B)
tnduces H,(A,B) = H(X,B) for all q.

Proor. For the first assertion, the hypothesis and the exactness of
the H.S. of (4,B) imply that H,(A,B) = 0 for all ¢. The result follows
now from 10.4,

Another proof is obtained by applying 4.2 to the inclusion map
(X,B) C (X,4).

The proof of the second part of the theorem is similar to that of the
first part.
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DEFINITION 10.1c. 8 = 37''* is called the coboundary operator of the
triple (X,A,B):

%: HYA,B) > HYX,A).

The upper sequence of groups
3 ;* >
-++ — H"YA,B) - HY(X,A) —» H(X,B) — H(A,B) — ---

is called the cokhomology sequence of the triple (X,A,B).

THEOREM 10.2c. The cohomology sequence of a iriple is exact.

THEOREM 10.3¢c. A mapping f: (X,,4,,B,) — (X,A,B) tnduces a
homomorphism of the C.S. of (X,A,B) into that of (X,,A,,B,).

TrHEOREM 10.4c¢. If B s nonvacuous and any one of the pairs
(X,4),(X,B),(A,B) is cohomologically trivial, then the cohomology groups
of the remaining two pairs are isomorphic under the maps of the C.S. of
(X,A,B).

THEOREM 10.5¢. Let (X,A,B) be an admissible triple. If B C A
induces tsomorphisms H'(A) = H°(B) for all q, then (X,B) C (X,4)
induces isomorphisms H'(X,A) = H*(X,B) for all q. Similarly, if
A C X induces tsomorphisms HY(X) = H(A) for all q, then (A,B) C
(X,B) induces isomorphisms H°(X,B) = H'(A,B).

11. HOMOTOPY EQUIVALENCE AND CONTRACTIBILITY

In this article use will be made for the first time of the Homotopy
axiom. It isassumed here that all pairs, maps, and homotopies are in Q.

DEerFiNITION 11.1. Two pairs (X,4) and (Y,B) are said to be homo-
topically equivalent (in @) if there exist maps

fi (X,4) - (V,B), ¢ (Y,B) — (X,A)

such that gf is homotopic to the identity map of (X,A4), and fg is
homotopic to the identity map of (¥,B). The pair of maps f,g is called
a homotopy equivalence. Frequently each of the maps f,g separately
will be referred to as a homotopy equivalence.

TaEOREM 11.2. A homotopy equivalence induces isomorphisms
fo HoX,A) = H(Y,B), and (f,)"" = g,, for all q.

Proor. Since gf is homotopic to the identity, it follows from the
Homotopy axiom that (¢f), = ¢,f, = identity. Similarly f,g9, =
identity. Therefore f, has the inverse g,.

TuEOREM 11.3. A homotopy equivalence tnduces tsomorphisms of the
ordinary and reduced homology sequences of (X,A) with the corresponding
sequences of (Y,B).
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Proor. A homotopy equivalence f,g of (X,4) and (Y,B) defines
homotopy equivalences of X and Y, and of A and B. Hence 11.2
implies that f induces an isomorphism of the H.S. of (X,4), and that
g induces the inverse isomorphism. The proposition for the reduced
H.S. now follows from 7.7.

LEmma 11.4. If a space X is contractible on itself to a point, then
X i3 homolopically equivalent lo a point.

Proor. Let h(z,!) be a homotopy h: X X I — X such that
h(z,0) = z, and h(z,1) = z, for each 2 ¢ X. Let /= X — (x,), and
define g: (z,) — X by g(x,) = z,. Then fg = identity map of (z,)
and h is a homotopy connecting gf and the identity map of X. Therefore
f,g form a homotopy equivalence.

TueoreM 11.5. Every space conlractible to a point over itself s
homologically trivial.

Proor. 11.4 and 11.3 show that it suffices to prove that a space
consisting of a single point P is homologically trivial. By 7.5, H,(P) = 0
and by the Dimension axiom H,(P) = 0 for ¢ # 0; hence P is homo-
logically trivial.

DerINITION 11.6. A pair (X',A’), contained in a pair (X,4), is
called a retract of (X,A) if there exists a map f: (X,4) — (X',A’) such
that f(z) = z for each z ¢ X’. It is called a deformation retract if there
is a retraction f and the composition of f and the inclusion map
(X', A") C (X,A) is homotopic to the identity map of (X,4). It is
called a strong deformation retract if the latter homotopy can be chosen
to leave fixed each point of X', i.e. h(z,l) = xforz ¢ X' and all {. (These
definitions depend on the category @ since all maps must belong to @).

Lemma 11.7. If (X',A') is a deformation retract of (X,A), the in-
clusion map g: (X',4") C (X,A) and the retraction f form a homolopy
equivalence of (X,A) and (X',A").

By the definition of a deformation retract, gf is homotopic to the
identity, and fg is the identity.

Tueorem 11.8. If (X',A") is a deformation retract of (X,A), then
the inclusion map (X',A") C (X,A) induces an isomorphism of the H.S.
of (X',A”) onto that of (X,A).

This follows immediately from 11.7 and 11.3.

TueorREM 11.2c. A homolopy equivalence tnduces isomorphisms
f* HY(Y,B) = H'(X,A), and (f*)~' = g¢*, for all q.

TueoreM 11.3c. A homotopy equivalence induces isomorphisms of
the ordinary and reduced cohomology sequences of (Y,B) with the corre-
sponding sequences of (X,A).

THeOREM 11.5c. Every space contractible {o a point over itself is
cohomologically trivial.
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THEOREM 11.8c. If (X',A") is a deformation retract of (X,A), then
the inclusion map (X',A") C (X,A) induces an isomorphism of the C.8S.
of (X,A) onto the C.8S. of (X',A").

12, EXCISION

The Excision axiom asserts that an excision map induces isomor-
phisms of the homology groups. If the condition U C Int A on an
excision map is relaxed to U C A, then the conclusion is not generally
valid. However, it does hold in certain useful cases. We shall give
two such here. A full discussion of the various ways of strengthening
the Excision axiom will be given in Xx,5.

THEOREM 12.1. Let (X,A) be a pair, and let U,V be open subsets of
X such that V C U C A, the inclusion maps

) g
X-UA-U) > (X—-V,A—-V) > (X,4)

are admissible, and (X — U, A — U) s a deformation retract of
(X — V,A — V). Then the inclusion map gf induces isomorphisms of
the homology groups in all dimensions.

Proor. Since g is an excision map, g, is isomorphic. By 11.8, f,
is likewise isomorphic. Hence (¢f), = ¢,f, is isomorphic.

THEOREM 12.2. Let (X,A) be a pair and let U be an open subset of
X with U C A. If there exists a subsel B of X containing A such that
(?) the inclusion maps

f

I i
m
X-UB-U) — (X,B)

are admissible, (17) U C Int B, (i7i) A is a deformation retract of B, and
(i) A — U 4s a deformation retract of B — U, then f induces isomorphisms
in all dimensions.

Proor. The Excision axiom and (ii) imply that m, is an iso-
morphism. From (iii), (iv), and 11.8 it follows that the inclusion maps
induce isomorphisms H,(A) = H,(B) and H (A — U) = H(B — U).
From 10.5, it now follows that I, and k, are isomorphisms. This
implies that f, = k,'m,l, is an isomorphism.

It is to be noted that if A — U is a strong deformation retract of
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B — U, the homotopy k: (B — U) X I —» A — U can be extended to
a homotopy B X I — A by defining k(z,l) = z for z ¢ U. If the ex-
tended homotopy is admissible, then A is a strong deformation retract
of B. This is the case for the main applications of 12.2.

The theorems of this section hold as stated with cohomology in place
of homology.

13. THE DIRECT SUM THEOREM

Lemma 13.1.  In the diagram
Gl

\/I
/\

of groups and homomorphisms, assume that commulativity holds in each
lriangle, image 17, = kernel j, (@ = 1,2), and k;k, are isomorphisms.
Then 1,,i, are the components of an injective direct sum representation
. G, + G, = @, and j,,], are the componenis of a projective direct sum
represenlation j: G = G + Gi.

Proor. Since 7,2, = k, is an isomorphism, it follows that j, maps
the image of 7, isomorphically. Thus (kernel 7)) M (image 7,) =
Since image 7, = kernel j,, it follows that

® (kernel 7,) N (kernel j;) = 0

Ifge@ let § = i1ki'jag + 1ki'Fig- Then jig = jiioki'jig =
kki'jig = jig and similarly j,§ = j.g. Thus § = ¢ by (i). This
proves that g has a representation ¢ = 7,¢, + 7.9,. For any such
representation, we have j,g = Jjuiygy + J21202 = kogy, thus g, = k3'7.9.
Similarly g, = ki'j,g, hence the representation is unique.

To prove the second part, consider g{ ¢ G4, g5 ¢ G4, and g = 4,k7 g +
i:kz'g5. Then jig = jiioki'gl = kiki'gi = gi and similarly j,g = g}
This exhibits an element g ¢ G with j.g = g+ (@ = 1,2). The unique-
ness of g follows from (i).

REMARK. The proof as given remains valid if the hypothesis image
7, = kernel 7, is weakened to image 3, C kernel j;. The relation
image 7, = kernel 7, is a consequence.
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THEOREM 13.2. Let X = X, U ... \U X, be the union of disjoini
sels each of which s closed (and therefore open) in X. Let A, C X, and
A=A\ .- UA, Assume that all pairs formed of the sets X,,A,
and their unions are admissible and all inclusion maps of such pairs are
admissible. Let 1,0 (X,,4,) C (X,A) (a =1, «-- , n). Then the
homomorphisms 1.,: H,(X.,A.) — H(X,A) yield an injective repre-
sentatton of H (X,A) as a direct sum, i.e. each u in H,(X,A) can be
expressed uniquely as u = ), TayWa, Where u, ¢ H(X,, 44).

Proor. The theorem is trivial for n = 1. Assume the validity of
the theorem forn — 1. Let X' = X, U --- U X, ,,let A" = 4, U
.-+ \U A,_,, and consider the diagram of inclusion maps

(X, X, U A) //(xruL)
‘\{ j’
]k’ (X, A4) Ik,
v k\Lk
(X'U A,,4) (X.\U 4,4)
]h’ lh,
(X’,4") (X, A

The maps h,, k.h,, ', K’h" are excisions, and therefore Bogs kngs B, k)] are

isomnorphisms. Further, the exactness of the homology sequences of
the triples (X,X’ U A,,4) and (X,X, U A,A) implies

kernel j] = image [, kernel j,, = image [,,.

Thus the conditions of 13.1 are fulfilled and I] and [, yield an injective
direct sum representation of H,(X,4). It follows that ¢ and i,,, where
: (X',A"Y C (X,A), also yleld a representation of H,(X,4) as a
direct sum. By the inductive hypothesis, the maps ¢a,: H.(X.A.)

— H(X’,A") where ¢}: (X.4,) C XA, e =1, -+ ,n — 1,
yield an injective representation of H (X',A’) as a direct sum. Since
Tay = tgid,fori=1,---,n — 1,it follows that <., (i = 1, -+, n)

form an injective direct sum representation.

THEOREM 13.2¢. Under the conditions of 13.2 the homomorphisms
% HY(X,A) - HY(X,,A.) yield a projective representation of H(X,A)
as a direct sum, 1.e. for each sequence u, ¢ H'(X,,A,), @« = 1, --- | n,
there 1s a unique element v ¢ HY(X,A) with t¥u = u,,a =1, -++ | n,
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14. TRIADS

DerinrTioN 14.1. A triad (X;X,,X,) consists of a space X and two
subsets X,,X, of X such that X, X,, X,, X, U X,, X, N X, and all
pairs formed from these are admissible, and all their inclusion maps are
admissible. The triad (X;X,,X,) is called proper if the inclusion maps
ky: (X, X, M X,) C Xy VU X, X0, k: (X, X, N X)) C
(X, U X,X,) induce isomorphisms of the homology groups in all
dimensions. Note that (X;X,,X,) is a triad distinct from (X;X,,X;)
unless X, = X,.

A triad may be proper with respect to one homology theory and not
another; but certain triads are proper for all theories. For example, if

X, =X, X=X, Xi-X,NX,)NX,—-X.NX, =0,

where closure is taken in X, \U X,, then k, and k. are excision maps,
and, by the Excision axiom, the triad is proper relative to any homology
theory. Still weaker conditions for independence of the homology
theory can be based on the results of §12.

Observe that, if (X;X,,X,) is a proper triad, then (X, U X,;X,,X,)
is also proper.

THEOREM 14.2. A triad (X;X,,X,) ts proper if and only if the in-
clusion maps 1,; (X.,X; N X,) —» (X; U X, X, N\ X,) yield, for
each g, an injective representation of H (X, U X,, X, N X,) as a direct
sum, t.e. if and only if every u e H (X, U X,, X, M X,) can be expressed
uniquely as w = 1,0, + Uz for u, e H (X, X, M Xp), 2 = 1,2

Proor. Consider the diagram

(X, VY X,, X)) (X, Y X,,X5)
]kl X\ VX, XiNX, lk,
4 N
(X2, X, N X)) (X, X N X,)

The relation kernel j,, = image 7., follows from the exactness of the
H.S. of the triple (X, \U X,, X,, X; N X,). If the triad is proper, then
k., and k,, are isomorphisms, and 13.1 implies the direct sum conclusion.
Conversely assume that the direct sum decomposition holds.
Then 4,, has kernel zero. Thus, in the H.S. of the triple (X, U X,, X,,
X, N X,), we have 8 = 0, and therefore, by exactness, j,, is onto.
Now let u ¢ H(X, U X,;,X,). Then u = j,v for some v e
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H(X, U X,, X, N X,). By the direct sum assumption, we have
v = 1:,‘11,1 + iz‘UQ 80 that

U = ]l‘il‘ul + jl‘iz‘uz = k,,,u,,

and %,, is onto.
Assume u ¢ H,(X,,X, N X,) and k,,u = 0. Then Tiate,u = 0.
Thus by exactness, there is a v ¢ H,(X,,X; N X,) with Tl = Ga U
Then ¢,,(=v) + i,,u = 0. By the direct sum assumption, this implies
u = 0. Therefore k,, is an isomorphism. By symmetry, the same holds
for k,,. Thus the triad (X;X,,X,) is proper.
Derinrrion 14.3.  Let (X;X,,X;) be a proper triad. The composi-
tion of the homomorphisms
0 Ly -

2%

HG(X}XI V) X:) 4 Hc—l(Xl V) X;) — Hq—l(Xl V) Xz;Xz) hd Hq-l(leXl N X,)

where kI, are inclusion maps, is called the boundary operator of the
proper triad and is denoted, ambiguously, by 9. (Note that this new
boundary operator is just the boundary operator of the triple
(X, X, U X,, X,) followed by an excision.) The lower sequence
i} e T
—H (X,X\NX,) « HX, X, U X,) « H(X,X,) « H(X;,X, N X)) «
where 7,7 are inclusions, is called the homology sequence of the proper
triad.
TurorEM 14.4. The homology sequence of a proper triad is exact.
Proor. As shown by the following diagram
14 ¢’
HG(X:Xi) A Hq(Xl V) XZ)XZ) A }Iﬂl(X)Xl v XZ) — HGH(X!XE)
) 0
"tk Y
HX,, XN\ X))

the H.8. of (X;X,,X,) is obtained from that of (X, X, U X,, X,) by
replacing the group H, (X, U X,X,) by the isomorphic group
H,(X,,X, N X,) under k,,, and defining 9 so that k,,0 = ¢’. Thus
the H.8. of (X;X,,X,) is isomorphic to the H.S. of (X, X, U X,, X,).
Since the latter is exact, so is the former.

Note that, if (X;X,,X;) is a triad with X, D X,, then (X;X,,X,) is
a proper triad and its homology sequence reduces to the homology
sequence of the triple (X,X,,X,).

Tureorem 14.5. If (X;X,,X,) and (Y;Y,,Y,) are proper triads, and
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[+ (XX,X,) — (Y;Y,,Y,), then f induces a homomorphism f,, of the
homology sequence of (X;X,,X,) into that of (Y;Y,,Y,). In particular, the
boundary operator for proper triads commutes with induced homomorphisms.

Proor. Since 1,, j,, i;, j. are induced by inclusion maps, com-
mutativity obviously holds in the squares not involving 8. The latter
square extends into

k! 9’
H(X,X, N X,) —— H/(X,U X,,X,) — H..(X, X,V X,)

lfl* 1]‘2* lf:!*
kl"l al

*
H(Y,, Y N\NY) —— H(Y, U Y,,Y) ——— H,(Y,Y,U Y,

where f,,f;,fs are defined by f. By 10.3, commutativity holds on the
right. Since k,k" are inclusions, we have k/f,, = f.,k,. Since k,,k,
are isomorphisms, this yields f,,k;' = ki 'fa,.

THEOREM 14.6. Let (X;X,,X,) be a proper triad with X = X, \U X,,
A= XN X, Letf,f.f bemaps (X,A) — (Y,B) such that

f1|X1 = fIXl; fl(XZ) C B;
leXz = lem fz(Xl) C B.

Then f, = f1, + fay.
Proor. Consider the diagram

(X,,4) (X,,4)
N
lk2 (X,4) lk,
YN
(X, X)) |1 (X,X)
N
(¥,B)

where [ is defined by f,. Observe that commutativity does not hold
in the lower two triangles; however we have

fl = .fl'jz; fz = f:fjl; .ﬁl = f;km f’l.z = j;kh
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If we pass to the induced homomorphisms on the homology groups, we
observe that the part of the diagram not involving the group H,(Y,B)
is a diagram of the type considered in 13.1. Thus, for each u ¢ H,(X,4),
we have

. -1 . —1,
u =tk Ja i+ kg

Then

f*u = f‘iuk;,:jz‘u + f*iztk:jl*u = f;tkh ;:jhu + f;mkltkl_ljl*u
= fl,th*u + f;tjl*u = fl*u + fQ*u’

and the proof is complete.

The definitions of a triad and a proper triad relative to a ecchomology
theory is an obvious analog of 14.1.

TrEorEM 14.2c. A iriad (X;X,,X.) 1s proper if and only if, for each
g, the homomorphisms 7%: H'(X, U X,, X, N X,) = H'(X X, N X,)
yield a projective representation of H*(X,\J X,, X, N X,) as a direct sum.

Derivition 14.3c. The coboundary operalor of a proper triad
(X;X,,X,) is the composition

k2 ¥ 6
H'X,X,NX,) - H'(X,UX,X,) - H'(X,UX,) - H(XX,UX,),

and is also denoted by 8. The cohomology sequence of the proper triad
is the upper sequence
8 J* *
> H'X,X.NX) - XX UX) - I'X,X,) - HX,Xx,NX,) —

TueoreM 14.4c. The cohomology sequence of a proper iriad is ezacl.

TueoreM 14.5¢. If f: (X;X,X,) — (YV;Y,,7.) is a map of one
proper iriad inio another, then [ induces a homomorphism f** of the
cohomology sequence of the second into that of the first.

TuroreM 14.6c. Under the conditions of 14.6, f* = f% + f3%.

15, THE MAYER-VIETORIS SEQUENCE OF A TRIAD

Let (X;X,,X,) denote a proper triad such that

(1) X=X,UX, 4=XNZX.
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The appellation “Mayer-Vietoris” is usually applied to a formula re-
lating the Betti numbers (ranks of the homology groups) of X,X,,X;,4.
It provides a method of calculating the Betti numbers of a space ob-
tained by assembling two spaces. A purely group theoretic generaliza-
tion of this formula has been given by several authors. It is shown
below that this group theoretic formulation can be simplified to the
statement that a certain lower sequence is exact. The purely algebraic
part of the construction is based on the following lemma, which we
refer to as the ‘‘hexagonal lemma.”

LemMma 15.1.  If, in the following diagram of groups and homomor-
phisms,

, _ Gy,
- ~

¢ lio ¢;

e T
PN

G ljo "o
S

commutativily holds in each triangle, k, and k, are isomorphisms ontlo,
image ¢, = kernel j, for a = 1,2, and j,i, = 0, then the two homomorph-
isms of G, tnio G obtained by skirting the sides of the hexagon differ in sign
only. Ezxplicitly

hlkl—lllg = _hzk;llzg for each g & G.

Proor. By 13.1, G decomposes into a direct sum of the isomorphic
images of G, and G,; and for any g & G,,
'izkl‘ljliog + "r.lk;ljziog
izk;lllg + ilk{llzg-

i

09

]

Applying j, to both sides, and using j,%, = 0 and commutativity rela-
tions, we obtain the desired result.

The construction and proof of exactness of the Mayer-Vietoris
sequence is based on the diagram below, in which all homomorphisms
other than 9 are induced by inclusion maps. We assume that relations
(1) hold. Observe that the lower hexagon satisfies the hypotheses of 15.1.



§ 16] MAYER-VIETORIS SEQUENCE

H.(4)
> Y
H.(X,) li H. (X))
May Ay
H/(X)
L, \
H,(X,X)) l] H(X,X,)
k,,] H(X,A) ]k,,
H(X;,A) 10 H,(X,,A)
PN e

Hu—I(A)

DerINITION 15.2. The Mayer-Vietoris sequence of a proper triad
(X; X, X, )with X = X, U X,and A = X, N X, is the lower sequence

A ¢ ¥

- Ho(4) « HfX) « H(X)) + H(X,) « H(4) «

where A¢,J are defined as follows

89

yu = (hl*uy_h').u)’ ue H,(A),
o1,0,) = My Uy + Ma, s, v e Hy(X), v, e H(X)),
Aw = —d ki l,w, we H(X),
= drkz,l2,w, by 15.1.

TrHEOREM 15.3. The Mayer-Vieloris sequence of a proper (riad

(XX, X)) with X = X, U X, s exact.
Proor. We must prove the usual six propositions.
(1) If w e H(A), then

¢¢u = ¢(h|*u,_h2*u) = 'ml‘huu - mzthgtu = i*u - i‘u = 0.
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(2) Ifv = (v,,v0) e H(X\) + H,(X>), then, by exactness, I;,m,, v, =
0. This implies
Amy o, = —dkilL,mp = 0.
By 15.1, A = 62k;,:l2*. Therefore Am,, 0. = 0. Thus
Apv = A(my 0 + ma) = Amy v + Amep, = 0.
3) If we H,(X), then
hogAw = —hy d:ikisli,w =0

since h,,8; = O by exactness. Using 15.1, we obtain similarly that
hi,A = 0. Henceya = 0.
4) Ifwe H,(X) and Aw = 0, then
.kl w =0, a =12,

By exactness, there exists v/ ¢ H,(X,) such that

-1 -1
m = kyl,w, oWy = ki h,w

where n,: X, C (X,,A4). By 13.1, j w splits into a sum which now
becomes

[

. ’ . ’
TV T+ o, Ne 07
. ’ y 4
Jama o1+ Jome, 5.

I

By ‘exactness of the H.S. of (X,A), there is a u ¢ H,(A4) such that

U = W — MY — MgV,

If we let v, vi + hyuand v, = v;, it follows that ¢(v,,v;) = w.
5) If v = (0,0,) e H(X,) + H,(X,), and ¢v = 0, then
Jebv = j*ml*vl + j*mz*vz = '[A*nl*l’l + 7:2*77'2*1)2 = 0.

By 13.1, the images of ¢,, and i,, have only the zero in common.
Therefore 74,Na, e = 0 (@ = 1,2). Again by 13.1, 7,, has kernel
zero. Therefore n.,v. = 0 (@ = 1,2). DBy exactness, there exists a
u, ¢ H,(A) such that A, u, = v, (« = 1,2). Thercfore

dv = my by u + myhe e = 0, (U + ua).

Since ¢v = 0, by exactness there is an z ¢ H,,,(X,4) such that dz =
u; + u,. By 13.1, there exists 2, ¢ H, 1 (Xa,4) (a = 1,2) such that
T = 4,0 + % Then

0r = 0,2, + 012, = u; + U,

Let w = v, — d2,. Then u = —(u, — dz;). It follows now that
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higt = hyyuy — i3, = hy,uy = vy, Similarly h,,u = —»,. There-
fore yu = ».

(6) If u e H,(A) and ¥(u) = 0, then h,,u = 0 and h,,u = 0. By
exactness, there exists z, ¢ H,.,(X,,4) (@ = 1,2) such that

iz, = u, &z, = —u.
This implies
011, % + 05,2, = 9(1,,% + 15,2,) = 0.
By exactness, there is a w ¢ H,,,(X) such that
JaW = —1, % — 1,7,.
Then

Aw = —dki L,w = —dki,ji,Jw
alkl_,:].l*(il,.xl + 7:2*332)
=0+ alkl—,:jl*i2*$2 = 0%, = u

since k,, = ji,%2,. This completes the proof of 15.3.

Tarorem 1564, If (X;X,,X,),(Y;Y,Y,) are proper triads with
X=X, VX, Y=Y, UY,adf: (X;X,,X,) — (V;Y,,Y,), then f
induces a homomorphism of the Mayer-Vieloris sequence of (X;X,,X;) tnito
that of (Y;Y,,Y,).

If one observes that f induces a map of the diagram preceding 15.2
into the analogous diagram for (V;Y,,Y,), it is seen that the desired
commutativity relations follow from standard relations. The proofs
are left to the reader.

Lemma 15.5. If (X;X,,X,) is a proper triad, then commutalivily holds
in the diagram

1)
Ho (XX, UX,) — H(X,, X, N\ X))

la, laz
A
H(X,UX) —— H_(X,NX)

where 9 is the boundary operator of the H.S. of the triad (X;X,,X,) and
A is the boundary operator of the Mayer-Vieloris sequence of the triad
(x, v Xz;anz)-

Proor. Consider the diagram

9, l

2%

Ho (X, X, UX,) - H(X,UX;) — H(V, Y X,,X,)

k2* a?
— HX,XiNX,) - H (XiN X,
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where I, and k, are inclusion maps. Then, by 14.3 and 15.2,
aga = agk;*llg*al = Aa“

which is the desired result.

We now proceed to define the relative Mayer-Vietoris sequence of a
proper triad (X;X,,X,), (it is not assumed that X = X, U X,). The
definition and proof of exactness are based on the diagram below,
analogous to the one preceding 15.2. We note that 8, j, are two con-
secutive homomorphisms in the H.S. of the triple (X, X, U X,;,X, N X,),
and therefore the lower hexagon satisfies the hypotheses of 15.1.

H(X,X, N X,)
H(X,X,) lz’. H(X,X))
1%. '/m‘*
H(X,X, U X,)
H,..(X, VU X,,X)) la H (X, X,,X,)
d-.,\ /d',_
k..] H, (X, U Xa, X, N\ X) [k,.
Ho X2, X, N X)) lj. Ho (X0, X, N X)
T~ s
Hc—l(X,Xl m X:)

DerFINITION 15.6. The relative Mayer-Vietoris sequence of the proper
triad (X;X,,X;) is the lower sequence

¢ v
A Ha(X)Xl) + HG(X7X2) « Ha(X>X1 mX?) = e

A
- H_ (X,X,NX,) « HX,X,UX)
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where A¢,¢ are defined as follows:

vu = (hyu,—h,u), ue H(X,X, N X)),
¢(U|,Ug) = m!*vl + mz*vzx v € IJG(XIX])! vy e 1Ia(XyX2):
Aw = n, k;,9,w, we H(X,X, U X,),
= —n, ki, 0w, by 15.1.

THEOREM 15.7.  The relative Mayer-Vietoris sequence of a proper triad
18 exacl.

The proof is analogous to that of 15.3 and is left to the reader.
The same applies to

Tueorem 15.8. If f: (X;X,,X:) — (V;Y,Y,) is a mapping of
proper triads, then f induces a homomorphism of the relative Mayer-
Vietoris sequence of (X;X,,X,) into that of (Y;Y,Y,).

DEeriNITION 15.2¢. The Mayer-Vietoris cohomology sequence of a
proper Iriad (X;X,,X,) with X = X, U X,, 4 = X, N X, is the upper
sequence

A ¢ ¥
ver — HYA) - HY(X) — H(X,)) + H'(X,;) —» H'(4) — .-

where

Au = — k¥ '8, ue H7'(A),
= ko, by 15.1,
ow = (miw,m%w), w e H(X),
Y(v1,0) = R, — ks, v e H(X)), v, e H(X,).

TueoREM 15.3c. The Mayer-Vietoris cohomology sequence of a proper
triad (X;X,,X;) with X = X, U X, s exact.

Tueorem 154c¢. If f: (X;X,,X,) — (Y;Y,,Y,) 18 ¢ map of one
proper triad into another, and X = X, U Xy, ¥V = Y, U Y, then |
induces a homomorphism of the Mayer-Vietoris cohomology sequence of the
second triad into that of the first.

Lemma 156.5¢. If (X;X,,X,) s a proper (riad, then commutativity
holds in the diagram

)
H(X, X Y Xy) e—— H(X, X1 N Xy)

L,
A
H(X,VX,) —— H'(X, NX,)

where & is from the C.8. of the triad (X;X,,X,) and A is from the Mayer-
Vietoris sequence of the triad (X, \J X,; X, X,).
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DerFintTiON 15.6¢c. The relative Mayer-Vieloris cohomology sequence
of the proper triad (X;X,,X,) is the upper sequence

A
« > H7(X,X, N X,) » HY(X,X, U X))

¢ 1
- H'X,X,) + H'(X,X,) - HX, X, N X)) — -

where (using the diagram preceding 15.6)

Au = §,k¥ 'ntu, ue H'(X, X, N X)),
= —8,k* 'n%u,
pw = (mi{w,,miw), we H'(X, X, U X)),
V(v1,05) = W%, — h¥%,, v e H'(X, X)), v, e HY(X X,).

THEOREM 15.7c. The relative Mayer-Vietoris cohomology sequence of
a proper triad is exact,

TaeoreM 15.8¢. If f: (X;X,X,) — (V;Y,,Y.) is a mapping of
proper triads, then f induces a homomorphism of the relative Mayer-
Vietoris cohomology sequence of (Y;Y,,Y,) tnto that of (X;X,,X,).

16. CELLS AND SPHERES

Let R® be the euclidean n-space. Coordinates (z, , --+ , x,) wil
sometimes be abbreviated by the vector symbol z, and the norm of z is
defined to be ||z|| = (3.1 z3)!. Each of the following six symbols will
denote the subset of R” defined by the algebraic condition to its right:

n-cell E |zl 21,

(n — 1)sphere 8"7': |jz]] = 1,

upper cap ET =ll=1 =z.20,
lower cap E' zll =1, 2,20,
(n — 2)sphere 8"7*: |lz|| =1, =z,=0,
(n — D-cell E*': ||z}l =1, z,=0.

Clearly, "' = EY' U EY " and 8" = E;' N EY\.

S° consists of two points, one of which is £ and the other E°. We
also define S™* to be the vacuous set. R° and E° are single points.

Let R*' be the euclidean subspace of R" defined by z, = 0, and
let f be the projection of R" into R"*™:

f(xly Tty xu) = (xl: Ty 0)-
The function f defines maps
fo: EY' > B, fo: EY' > B

It is easy to verify that f. and f. are homeomorphisms.
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We shall assume throughout this section that all the pairs and maps
employed are admissible. In particular all spaces will be assumed to be
collapsible. This is the case for all the admissible categories that we
shall have occasion to consider in the sequel.

Lemma 16.1. E*, E=', and (E", E*™") are homologically trivial.

Proor. Let z ¢ E°, 0 £ t = 1. Using vector notation, define
h(z,f) = (1 — t)x. Then h(z,0) = z, h(z,1) = 0. Therefore E" is con-
tractible on itself to a point. Thus, by 11.5, E™ is homologically trivial.
Since E>™' is homeomorphic to E*7}, it is also homologically trivial.
Tinally (E", E¥") is homologically trivial by virtue of 9.5.

LemMa 16.2. The triads (E%EY', EX) and (8™ EYV,E™™") are
proper.

Proor. We must show that the inclusion maps

ky: (BVL,S7) C(SLEYY), ke (BTL,S) C(STLEYY)
induce isomorphisms of the homology groups in all dimensions. Because

of symmetry, it suffices to consider k&, only.
Let V be the subset of R” determined by the conditions

||lzl] = 1, z, < —1,

Clearly V is an open subset of S*' and V lies in the interior of E*™
relative to S*~'. The homotopy

Flz,t) = x zeEVL,02¢t=1

Q= s+t (@ —r

F(z,t) = 0=z + 4.@]] zeEY V,02t=51

shows that (K7 ',8"®) is a strong deformation retract of (S*' —

V,Ex' —V). Nowapply 12.1 with X = §"", 4 = E2", U = E*™' —

S"? to obtain that k., induces isomorphisms in all dimensions.
TueoreM 16.3. The homology sequence of the triad (E™;EY',E2")

reduces to the isomorphism

o: H(E"S™") = H,,(Ev",8"%

All other groups in the sequence are trivial. The above isomorphism is

called the incidence isomorphism and is denoted by [E™:EY'). The iso-

morphism [E™:  E*'] is defined similarly using the triad (E™;E>' E"Y).
THEOREM 16.4. The homology groups of (E",S*"") are as follows:

H(E" S = G,
HE,S) =0 for g = n.

ProoF OF 16.3 aAND 16.4. By 16.1, (E",E*™") is homologically trivial,
thus H(E™"E™") = 0; and, by the exactness of the H.S, of the triad
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(E“EV'E~"), we have 8: H(E"S"") = H,,(EV",S?. Since
the pairs (E7',8*®) and (E"',8"?) are homeomorphic, we have
H(ES") = H,_,(E~'8". Tterating this result yields
H(ES™") = H,_(E°S™") = H,_.(E°. Since E® is a single point,
16.4 follows from the Dimension axiom and the definition of the co-
efficient group G. This also establishes 16.3.

THEOREM 16.5. Commutativity holds in the diagram

[E™:EY)
H(E"8"") —— H,(ET',8

161 laz
A
H. (S"") ——  H,,(S?
where A 1s the boundary operalor in the Mayer-Vieloris sequence of the
triad (S""EV ,E~"). For n > 2 all four homomorphisms are isomor-

phisms. For n = 2 the same holds provided H, ,(S*™%) = H,(S°) is
replaced by H,(S°). In particular

A: H(S) = H,.,(SY, n>1,
A: H(SY) = (8.

THEOREM 16.6. The homology groups of S” are as follows:

Hy(S") = G, HO(S") = 0, n >0,
H(S") = G+ G, Hy(S) =@,

H,(S") = @, n >0,
H,(S) = 0, p # n,0.

Proor. The commutativity relation of 16.5 is a consequence of
15.5. Since E" and E}™' are homologically trivial, it follows from 9.4
that

d,: H(E"S™ = H,(87Y), g>1,
3,: H(E" S = H(S™,
d;: HUEY', S = H, (S, g>1,

3,2 HI(ET',S"—z) = HO(S"_2)°

These give all the conclusions of 16.5. Combining these isomorphisms
with 16.4 yields all the results of 16.6 except those concerning H,(S™).
Since S" is nonempty for n = 0, it follows from 7.6 that H(S") =
Ho(S") + G. This concludes the proof.

The formulations and proofs of analogous results for cohomology
are left to the reader.
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NOTES

The origins of the basic concepls. The basic machinery for con-
structing homology groups (namely: complexes and incidence numbers)
is due to Poincaré [Analysis Situs, Jour. de I’'Ec. Polyt. (2) 1 (1895),
1-123]. Using these he defined directly the Betti numbers and torsion
numbers. They are the numerical invariants which characterize the
homology groups based on the coeflicient group of integers. For many
years, they were the primary source of interest. It was during the
period 1925-1935 that attention shifted from the numerical invariants
to the groups themselves. This shift was due in part to the influence
of E. Noether. It was also enforced by two directions of generalization:
(1) from complexes to more general spaces where the homology groups
are not characterized by numerical invariants, and (2) from integer
coefficients to arbitrary coefficients where, again, numerical invariants
are inadequate. Thus, although Poincaré did not speak of the homology
groups themselves, he is to be credited with the origin of the concept.

The concept of relative homology (modulo a subcomplex) is due to
Lefschetz [Proc. Nat. Acad. 13 (1927), 614-622]. The operator 3 was
used by Lefschetz. It is not clear who first gave it formal recognition.
The origin of the induced homomorphism f, is likewise obscure. It
has been used, in a sense, since the time of Poincaré, but for at least
thirty-five years it had no name nor any formal status. This lack of
formal recognition of @ and f, is a natural consequence of the failure
to accord the homology groups a formal status.

Each of our axioms is a theorem of classical homology theory. In
most cases it is not clear who first stated and proved them. The
Axioms 1, 2, 3, and 7 are, perhaps, too basic and too well understood to
warrant such explicit treatment. One must be interested in an axiomatic
development before one thinks of writing them down.

The first formal recognition of the homology sequence and its exact-
ness is due to Hurewicz [Bull. Amer. Math. Soc. 47 (1941), 562]. It
was subsequently exploited by Kelley and Pitcher [Annals of Math.
48 (1947), 682-709]). It should be noted though that the six parts of
exactness were well known and had occurred frequently in the proofs
of other less obvious propositions.

The excision property was implicit in Lefschetz’s construction of
the relative groups. He often used the expression ‘‘the homology
groups of X — A’ instead of “the homology groups of X mod A.”

The homotopy axiom has had no more formal recognition than f,.

However the proposition ‘‘homotopic cycles are homologous’” has been
known and used for many years.
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The origin of the cohomology groups is thoroughly confused. The
“co” terminology is due to Whitney [Duke Math. Jour. 3(1937), 35-
45]. The existence of cohomology groups was implicit in the duality
theorem of Alexander [Trans. Amer. Math. Soc. 23 (1922), 333-349}.
The complete group invariant form of the duality theorem was proved
by Pontrjagin [Annals of Math. 35 (1934), 904-914]. Cocycles made
their first formal appearance under the name pseudocycles in the book
of Lefschetz [Colloq. Publ. Amer. Math. Soc., vol. 12, 1930}. The first
intrinsic definition of the cohomology groups was given by Alexander
at the Moscow conference in 1936.

Homotopy groups. The homotopy groups of Hurewicz are quite
similar to homology groups in that there are concepts analogous to
those of homology theory and they obey similar axioms. The ¢*
homotopy group depends not only on a pair (X,A4) but also on a refer-
ence point z, ¢ A and is denoted by = (X,4,r,). It is defined when
g = 2. If A is a single point, it is also defined for ¢ = 1 and is called
the fundamental group. The groups are abelian for ¢ = 3, and 7,(X,z,)
is also abelian. A boundary operator d: w,(X,A,2,) — 7,_,(A4,2)
exists for g = 2. If f: (X,4,x,) — (Y,B,y,), there are induced homo-~
morphisms f,: 7(X,4,1,) — 7,(Y,B,y.).

When suitably modified, all of our Axioms 1 through 7 hold for
homotopy groups with the sole exception of the Excision axiom. This
is the fundamental property distinguishing homology from homotopy.
It accounts for the computability of homology groups as contrasted
with our meager knowledge of homotopy groups.

As a simple example, let the n-sphere S™ be divided into upper and
lower hemispheres, E;,E”, by an equator S*'. Using a fixed reference
point z, ¢ S** for all groups, we obtain the diagram

i*
Wc(E:;S“‘l) _— Tc(SH;E:)

FT
E
Wa—l(‘s“_l) — ‘qu(S")

where 7 and j are inclusion maps. All homotopy groups of a cell are
zero. This and exactness imply that é and j, are isomorphisms onto.
Then we define E by E = j,'i,07".

Now ¢ is an excision map, and we wish to state properties of z,.
We have introduced the equivalent homomorphism E since it can be
proved to coincide with the suspension (Einhdngung) homomorphism
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introduced by Freudenthal [Composito Math. 5 (1937), 299-314]. Since
7(S") = 0 and =,(S?) is infinite cyeclic, it follows that E, and therefore
%4, 18 nOt always an isomorphism onto. Hence the Excision axiom fails
for homotopy groups in a very simple case. Freudenthal has shown
[ibid] that E is an isomorphism for each ¢ < 2n — 1. We may in-
terpret his results as asserting that the excision property does hold in
certain restricted cases. Most of the little we know about =, (S") is
based on the results of Freudenthal concerning E.

The problem of axiomatizing the homotopy groups has not been
solved.* One would naturally seek a substitute for the Excision axiom.
There is a reasonable candidate. Let B be a fibre bundle over the base
space X with projection p: B — X, let z, ¢ X, Y, = p~'(z,), and
Yo ¢ Y. Then, for ¢ = 2, p, maps =x,(B,Y,,y,) isomorphically onto
m.(X,zo). This is proved using the covering homotopy theorem for
bundles. If =, is replaced by H,, then p, is usually not an isomorphism
onto. We have therefore a simple and useful property of homotopy
groups which may serve as a substitute for the excision property.

In axiomatizing the homotopy groups one would need an additional
basic concept, namely: the isomorphisms 7 (X,4,7,) = 7.(X,4,z,)
assigned to a homotopy class of paths in 4 from z, to r,. One would
deal not with single groups but with systems of groups connected by
isomorphisms assigned to the fundamental groupoid of A. The latter
would include the operations of r,(4,x,) on 7,(X,4,z,).

Cohomotopy groups. The Borsuk-Spanier cohomotopy groups [An-
nals of Math. 50 (1949), 203-245] are similar to cohomology groups.
If (X,A) is a compact pair of finite dimension 7, then the ¢'" cohomotopy
group r°(X,A) is defined for each integer ¢ > (n 4+ 1)/2 and is an
abelian group. The elements of 7°(X,A) are homotopy classes of maps
of (X,4) into (8%y,) where S° is a ¢g-sphere and y, is a point. The set
x°(X,A) is defined for ¢ = 0; but the addition is only defined for ¢ >
(n 4+ 1)/2. A mapping & x* '(4) — x*(X,A) is defined for ¢ > 0
and is homomorphic when both sides are groups. If f: (X,4) — (Y,B),
then f*: #%(Y,B) — »°(X,A4) is defined for all ¢ and is homomorphic
when both sides are groups. Spanier has shown [ibid] that the co-
homotopy groups satisfy the analogs of all the cohomology axioms—
insofar as they are meaningful.

The axiomatization of the cohomotopy groups has not been at-
tempted. The chief distinction between cohomology and cohomotopy
is the absence of a group structure in »°(X,4) for ¢ < (n + 1)/2. This
makes it impossible to compute cohomotopy groups by an induction
starting with ¢ = 0. Our knowledge of cohomotopy groups is as meager
as that of homotopy groups.

*An axiomatization has subsequentlv been given by J. Milnor {Annals of
Math. 63(1956), 272-284].
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EXERCISES

A. ELEMENTARY PROPERTIES OF EXACT SEQUENCES.
Establish the following propositions for an exact lower sequence
{God}:
. ¢q+1 = 01if and only if kernel ¢,, = 0,
1 = 0if and only if ¢,(G,) =
. ¢¢nn = 0and ¢,_, = 0if and only 1f ¢q: G, = G,
G, = 0if and only if ¢,,, = O and ¢, = 0.
G, = 0if and only if ¢,.:(G.+2) = G¢sy and kernel ¢,_, = 0.

. THE Ax10MS.
. Show that Axiom 1 is a consequence of Axioms 2, 3, and 4,
. Show that Axiom 1 is a consequence of Axioms 2 and 6.
. Assume that, for every admissible pair (X,A), the map p:
(X, A) X I — (X,A) defined by p(z,t) = z is admissible. Show, using
Axioms 1 and 2, that the Homotopy axiom is equivalent to either of
the following if suitab]e maps are admissible:

Axiom 5”. p, is an isomorphism.

Axiom 5. The kernel of p, is zero.

I N

In the following problems, assume that the homology theory is
defined on the category of all pairs and maps.

C. RETRACTS.
1. If¢: G—H, ¢: H—> G, and y¢ = identity, then ¢ has kernel
zero and H decomposes into a direct sum

H = image ¢ + kernel ¢.

2. If » X — A is a retraction, and : A - X is the inclusion,
then H,(X) decomposes into the direct sum

H,(X) = image 7,, + kernel r_,,
and
H(X) = H,(A) + H,(X,A).

D. THE 0-DIMENSIONAL GROUPS.

1. If z ¢ X, then H(X,z) = H(X).

2. H,(X) = 0 if and only if H,(X,A) = 0 for each nonvacuous
subset A of X. Assume that H_,(4) =

3. If X is an arcwise connected space, z,2’ ¢ X, and ¢ ¢ G, then
(92)x = (g92")x and (G2)x = (G2')x.

4. If X is a Hausdorff space consisting of just two points, then
A.(X) = G.

5. If G 0 and H,(X) = 0, then X is connected.
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E. TriviaL MaPs.

L If f: (X,4) — (Y,B) is such that f(X) C B, then f,, = 0
for each q.

2. If f: X — (Y,B) is such that f(X) is a point of Y, then f,, = 0
forg % Oand f,, = 0.

F. DirecT suMm.

1. Prove 13.2 with the condition that the sets X, are disjoint re-
placed by the following conditions: (1) X isnormal, (2) X, N 4 = 4,,
and (3) the sets X, — A, have disjoint closures.

G. MAYER-VIETORIS SEQUENCES.
1. Let (X;X,,X;) be a proper triad. Show that in the diagram

d
H‘,“(X,X, U Xz) — Ha(Xth N Xz)

§ i
ad
HX,, X, NX,;,) — H (XINX))

where 9, and 3, are the boundary operators of the triads (X;X,,X,) and
(X;X,,X,) the anticommutativity relation

49, + 909, = 0

holds.

2. Let (X;X,,X,) be a proper triad; prove that 9 maps the relative
Mayer-Vietoris sequence into the Mayer-Vietoris sequence of the triad
x, v Xz;anz)-

3. For any space X, show that the Mayer-Vietoris relative boundary
operator A (defined in 15.6) for the triad (X X I; X X 0, X X 1)
is an isomorphism, thercby establishing an isomorphism H (X X I,
X X0UXX1) = H,(X). Prove this last result without explicit
use of the Mayer-Vietoris sequence.

4, Let (X;X,,X.) be a proper triad such that X = X, \U X, let
A =X NX,I ={01)],and let

Y=(X1X0)U(AXDU<X2><1)
B=X, X00UX, X1

be the indicated subsets of X X I. Show, using the isomorphism of
problem 3, that the Mayer-Vietoris sequence of (X;X,,X,) is isomorphic
to the H.S. of (Y,B).

5. Show that the relative Mayer-Vietoris sequence of (X;X,,X,) is
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isomorphic to the homology sequence of a triple consisting of X X I
and suitable subspaces.

6. Examine the Mayer-Vietoris sequence of the triad (X;X,X).

7. Consider a proper triad (X;X,,X,) with X = X, U X,, A =
X, N X, # 0. Define the reduced Mayer-Vietoris sequence and prove
its exactness.

H. Ranks oF GROUPS.

It will be assumed that all groups considered are D-modules over a
domain of integrity D (i.e. a commutative ring D with a unit element,
and such that d, ¢ 0, d, = 0 imply d,d, # 0).

DerinNiTiON. The elements ¢,, - , ¢, of a D-module G are called
linearly independent, provided any relation dig, + -+- 4+ d.g, = O
where d,, -+- , d, e D impliesd, = --- = d, = 0. The maximum

number of linearly independent elements in G is called the rank of G
and is denoted by (@) (or rp(@) if we wish to indicate D). If this
maximum does not exist, we set #(G) = . If D is a field, then 7(G)
is the dimension of G over D.

1. If H is a submodule of @, show that 7(@) = r(H) + r(G/H).

2. Let {G.¢.} be an exact lower sequence of D-modules such that
each r(G,) is finite. Let r, = r(kernel ¢,). Then form = n

> (=G = (=1)'my = (=1 ras.

I. BETTI NUMBERS.

DEeFINITION. Assume in this section that a homology theory is
given such that H,(X,A) are all D-modules and f,,d are linear over D.
The rank r[H,(X,A)] is then denoted by R,(X,4) and is called the »*
Betti number of (X,4).

1. Let (X,A) be a pair. Consider the three sequences {R,(A4)},
[R(X)},{R,(X,A4)}. Show that, if two of these sequences contain
only finite numbers, then so does the third one. Show that, if in two
of these sequences only a finite number of terms are different from zero,
then the same holds in the third sequence.

2. Show that (assuming all numbers involved are finite)

> (~DRD = T (~DRMA) = T (- DR A)
= (=1 = (=D,

where w, is the rank of the kernel of the homomorphism H (4) — H (X)
induced by the inclusion A C X.
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DEerinition. If the integers {R,(X,4)} are all finite and only a
finite number of them are different from zero then the integer

®

x(X,4) = X2 (=1)'R(X,4)

is called the Euler characteristic of (X,4).
3. If (X,A) is a pair and two of the Euler characteristics x(4),
x(X), x(X,A) are defined, then so is the third, and

x(X) = x(4) + x(X,4).

4. Let (X;X,,X;) beapropertriad with X = X, U X, A = X, N\ X..
Let N, be the intersection of the kernels of the homomorphisms

HG(A) - Ha(Xl)) Hq(A) - Ha(XZ)

induced by inclusion maps A C X,, A C X,. Prove the Mayer-
Vietoris formula

R (XU X;) + R(X, N X,) = R(X)) + R(X5) + r(Ng) + r(Ng-r)
and derive from it the formula
x(X, U X,) + x(Xi N Xy) = x(X)) + x(X2)

provided all four Euler characteristics involved are defined.
5. Formulate the Mayer-Vietoris formula for cohomology. Formu-
late relative Mayer-Vietoris formulas for homology and cohomology.



CHAPTER 11
Simplicial complexes

1. INTRODUCTION

This chapter develops the analytical geometric tools needed in sub-
sequent chapters. These are: simplex, complex, subcomplex, simplicial
map, triangulation, and simplicial approximation. Homology theory
is not mentioned; its study is resumed in Chapter 111. The reason for
this hiatus is the necessity of singling out a class of spaces (triangulable
spaces) sufficiently simple that an algorithm can be given for com-
puting their homology groups. The nature of this class is nearly pre-
dictable on the basis of the results of Chapter 1. Knowing the groups
of a point, the groups of a contractible space are determined. We
choose a class of contractible spaces (i.e. simplexes) and form more
complicated spaces (i.e. complexes) by assembling these in a smooth
fashion. Then the groups of the latter spaces can be computed by the
use of Mayer-Vietoris sequences or similar devices.

It is not enough to be able to compute groups: it is also necessary
to compute homomorphisms. This requires singling out a simple class
of maps—simplicial maps. Although these are quite restricted, it is
shown that any map of one triangulable space in another is homotopic
to one such: indeed, simplicial maps are dense in the function space
of all maps. This is achieved by barycentric subdivision and the
simplicial approximation theorem.

Although triangulable spaces appear to form a rather narrow class,
a major portion of the spaces occurring in applications of topology to
geometry and analysis are of this type. Furthermore, it is shown in
Chapter x that any compact space can be expressed as a limit of
triangulable spaces in a reasonable sense. In this sense, triangulable
spaces are dense in the family of compact spaces.

2. SIMPLEXES

DeFiniTION 2.1. An n-stmplex s is a set of n + 1 objects called
vertices, usually denoted by {A}, together with the set of all real-valued
functions « defined on {A} satisfying

¢y AEa(A) =1, a(4) 2 0.
54
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A single function « is called a point of s. The values of a on the vertices
of s are called the baryceniric coordinales of the point «. The distance
p(a,B) of two points «,8 of s is defined by

ple,B) = [ZA: («(4) — B(A)".

The topological space thus defined is denoted by |s| and is called the
space of s. Clearly the barycentric coordinates are continuous functions
on [s}.

The use of the term ‘‘barycenter” stems from the fact that, if the
vertices {A} of s are points of a euclidean space, then the point «
corresponds to the center of gravity of the system of masses obtained
by assigning to each vertex A the mass a(A).

DerFiNiTION 2.2, A simplex s together with a simple ordering
A® < ... < A" of its vertices is called an ordered simplex. Let R**'
be the cartesian space of all coordinates (x,, --- , z,). The corre-
spondence a — (a(A°®), - -+, a(A")) is then an isometric map s — R**',
called the canonical imbedding of s in R"*'. The image of s in R™*' is
denoted by A™ and is called the unit simplex of R"*'. Clearly A" is the
intersection of the plane Z;‘ z, = 1 with the sector x, = 0 for7 = 1,

<, N

Since A" is closed and bounded in R™*', it is compact. Hence |s| is
compact for any simplex s. Clearly, the dimension of |s|, in the eu-
clidean sense, is n. Observe that an unordered n-simplex has (n + 1)!
canonical imbeddings in R"*' corresponding to the various orderings of
its vertices.

DerinimioN 2.3. A g-face s’ of an n-simplex s is a ¢g-simplex whose
vertices form a subset of the vertices of s.

A point o’ of §' is a function defined over a subset of the vertices
of s. It can be extended to a function « on all vertices by setting
a(d) = o/'(A) if Aisin ¢, and a(A) = 0 otherwise. Then « is clearly
a point of s. In view of the conditions (1) on a,a’, the extension a of
a' is unique. The map a’ — « imbeds |¢/| isometrically in |s|. Fol-
lowing the custom, we identify o’ with a so that |s'| is a subset of |s!.
It is surely a closed subset of |s|. It isdefined by the equations a(4) = 0
for A not in &'

A O-simplex has just one vertex A, and just one point a(4) = 1.
It is customary to identify the vertex with the point and to denote
either by A. With this convention the vertices A of s are the 0-faces
of s, and are points of s. As a result, A(B) is defined for any two
vertices, and A(B) = 0if 4 = B, and A(A) = 1 for each A. In the
unit simplex A" in R**' the vertices appear as the unit points on the
coordinate axes. In addition A" is the smallest convex set in R
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containing these unit points. For this reason the simplex is said to
span its vertices.

DerFINITION 2.4. The potnt set boundary of s, denoted by 3|, is the
set of points of s having at least one coordinate equal to zero. Clearly

|3} is a closed subset of |s|. The open set |s| — |4| is called the interior
of s and is also referred to as the open simplez.
If «° +-- ,  are points of an n-simplex s, and w,, - -- , w, are non-

negative real numbers such that w, + --+ 4+ w, = 1, then the function
a defined by

a = wea® + -+ + wa
is again a point of s. For clearly a(4) = O for each vertex 4 of s, and

;a(A) = ; Z‘w,a'(A) = E‘w‘ Ea'(A) = E‘w. =1,
LemMma 2.5. If a’, -+ , a® are poinis of a simplex s, and if w,, * - ,
w, are positive numbers of sum 1 such that the point Y, w,a' is a vertex
A of s, then each o' = A.
Proor. For any vertex B » A of s, we have )_ w.a’(B) = A(B) =
0. Since each w; > 0, each o'(B) = 0. As this holds for each B
different from A, it follows that o' = A.

3. SIMPLICIAL COMPLEXES

DerintTioN 3.1. A simplicial complex K is a collection of faces of
a simplex s satisfying the condition that every face of a simplex in the
collection is likewise in the collection. The space |K| of K is the subset
of |s| consisting of those points which belong to simplexes of K.

The same simplicial complex K may lie in two different simplexes
8; and s;. In such a case K also lies in the simplex s spanning the
vertices common to s, and 8,. Since the topology of s is the subspace
topology of both |s,| and |s,|, it follows that the topology of K is inde-
pendent of the particular simplex s in terms of which it is defined.

The collection of all faces of s including s itself is a simplicial com-
plex. This complex is also denoted by s. The collection of all faces
of s, excluding s itself, is a simplicial complex and is denoted by &

DEerFiNiTION 3.2. A simplicial complex K is said to be n-dimenstonal
(briefly: an n-complex) provided K contains an n-simplex but no
{(n + 1)-simplex (and, therefore, no simplex of dimension >n).

DeriviTioN 3.3. If K is a simplicial complex, a subcomplex L of K
is a subcollection of the simplexes of K such that each face of a simplex
in L is also in L. Clearly, L is a simplicial complex.

LemMa 3.4. Ifa°, --- , a" are points of K, where K is a simplicial



§ 4] LINEAR AND SIMPLICIAL MAPS 57

complex, and w,, --- , w, are positive numbers such that w, + --- +
w, = 1, then the point a = wea® + -+ + w,a" is in K if and only if
the points a°, - -+ , o are in a simpler of K.

Proor. Let s be the simplex containing K and let s’ be the lowest
dimensional face of s containing the points a°, --- , «". Then a ¢ ¢'.

If &° -+, a” are in a simplex of K, then &' is in K and « ¢ |K|.
Thus the condition is sufficient.

Suppose now that a ¢ |K|. If A% ---, A® are the vertices of §’, then

a = a(A%A° + -+ + a(49)AY,
where

a(AY) = E w,a’(4Y).

Since w, > 0 and ¢’ is the least simplex containing a°, - - - , o", it follows
that a{A') > 0 and « is in the interior of s’. Hence « ¢ |K| implies
that s’ is in K and thus o, - -+ , a” are in a simplex of K.

CorOLLARY 3.5. Ifa°, ---, &" ¢ |K|, then all the points

a=wa + - + wea'

where wo + +-+ +w, = 1, w, > Oarein Kif and only if &°, -+ , "
are in a simplex of K.

DerFiniTION 3.6. For each vertex A of K, the open star of A is the
subset st(A) of K defined by the condition a(4) > 0.

An equivalent definition is that st(A) is the union of all open sim-
plexes of K having A as a vertex.

LEmMMma 3.7. If A% ... , A" are distinct vertices of the simplicial
complex K, then their open slars have a nonempty intersection if and only
if A%, -+, A" are the vertices of a simplex of K.

Proor. If A° --- , A" are the vertices of a simplex s, then the
interior of s is in st(A4') for each 7, so that Mst(4') = 0. Conversely,
suppose that a ¢ M st(A4'). Then a(4') > 0 for¢ =0, -+ , n, and
therefore A% - .-, A" are the vertices of a simplex of K by virtue of 3.4.

4. LINEAR AND SIMPLICIAL MAPS

DeriniTION 4.1, If K, K’ are simplicial complexes and f: |K| — |K'|
is a map, then we say that f is linear (Notation f: K — K') if f is
linear in terms of the barycentric coordinates. Precisely, if a,a’, --- ,
a” are points of |K| and

a = wea’ + -+ + wa", dw =1 w20,
1]



58 SIMPLICIAL COMPLEXES [CHAP. 11

then
fla) = wof(@”) + -+ + waf(a".

A linear map which carries vertices into vertices is called stmplicial.

Let L,L’' be subcomplexes of K,K’ respectively. By a linear [sim-
plicial) map f: (K,L) — (K',L’) is meant a map of (|K|,|L|) into
(|K’|,|L]) which defines a linear [simplicial] map of K into K,

Two trivial consequences are

TueoRrEM 4.2. The identity map (K,L) — (K,L) ts simplicial.

Tueorem 4.3. If f: (K,L) — (K',\L') and g. (K',L’) — (K" ,L")
are both linear {simplicial), then gf: (K,L) — (K",L") is linear {sim-
plicial).

The following theorem expresses a fundamental property of simpli-
cial complexes, namely: linear maps are described by their behavior on
vertices.

Turorem 4.4. A linear map f: (K,L) — (K',L’) is uniquely de-
termined by its values on the vertices. A map ¢ of the vertices of K into
points of K’ can be extended to a linear map f: (K, L) — (K',L') if
and only if the ¢-image of the set of vertices of any stmplex of K or L 1s
contained in a simplex of K’ or L' respectively. If ¢ maps vertices inlo
vertices, then f 1s simplicial.

Proor. If f: (K,L) — (K'’,L') is linear, and « is in a simplex s
of K, then

a = a(ANA® + .- + a(AMA,

where A°, --- |, A" are the vertices of s. Then
J(@) = a(A°)f(A%) + -+ + a(A")f(47),

so that f(a) is determined by its values on vertices. Further, if o is

an interior point of s, then a(4') > 0 for7 = 0, --- |, n; and by 3.4,
f(A®), -+, f(A™) are in a simplex of K’. Similarly, if s is a simplex
of L, then f(A°), ---, f(A") are in a simplex of L’. This proves that

the condition stated in 4.4 is necessary for the extension of a vertex
map ¢.

To prove that the condition on ¢ is also sufficient, consider the
simplexes s and s’ spanning the vertices of K and K’ respectively.
Let A° ---, A™ be the vertices of s. Given a vertex map ¢ satisfying
the conditions of 4.4, for each « in s, define f(a) by

fle@) = a(A%$(A%) + -+ + a(AM)p(A").

It is readily seen that f(a) is in &/, and f is a linear map s — ¢'.
Now let « ¢ |K| (or « ¢ |L]) and let B°, - -+ , B be the subsequence
of A% ..., A" consisting of those vertices with a(4') > 0. Then
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a = a(B°)B’ + .-+ + a(B%)B* with a(B*) > 0, and by 3.4, the vertices
B ---, B® are those of a simplex of K (or of L). Hence the points
¢(B°), « -+, #(B°) are all in a simplex of K’ (or of L'), so that

J(@) = a(B)$(B°) + --- + «(B)$(B")

is in K’ (or in L’). Thus f defines a linear map f: (K,L) — (K',L’),
and the proof is complete.

A trivial consequence of Definition 4.1 is

Tueorem 4.5. If 1 (K,L) — (K',L') is linear {simplicial], and if
(K,L), (K’ L) are subcomplexes of (K,L),(K',L’), respectively, such that
f maps |K| into |K'| and |\L| into |L’|, then the map of (K,L) into (K',1")
defined by f is linear [simplicial).

LemMma 4.6. If f: K — K’ is linear and maps |K| onto |K’'|, then
each vertex of K' is the image of al least one vertex of K.

Proor. Let B be a vertex of K’. Then B = f(a) where « is a
point on K. Since a = ) a(A')A' where A' are the vertices of K, it
follows that B = f(a) = D_ a(A")f(A"). Thisimplies that, if a(4"') > 0,
then B = f(A') by 2.5.

TaEOREM 4.7. If a simplicial map f: K — K’ is a homeomorphism,
then ' is simplicial.

Proor. It follows from the preceding lemma that f establishes a
1-1 correspondence between the vertices of K and K’'. Let ¢ be the
vertex map of the vertices of K’ onto those of K given by f~'. Consider
the vertices B°, --- , B" of a simplex of K’ and let 8 be a point in the
interior of that simplex. Then

B =uv,B"+ --- 4+ v,B"
where Z v. = land », > 0. Also f7'(8) is a point of K, and
F7NB) = wod® + e+ w,A”

where A°, -+, A™ are distinet vertices of K, D_ w, = 1, and w, > 0.
It follows that

B = wof(A°) + -+ + waf(4").

This implies that m = n and f(4°), --- , f(A") is a permutation of
B° ..., B*. Since A° ---, A" are the vertices of a simplex of K, it
follows that ¢(B°), - - -, (B") are the vertices of a simplex of K. Hence,

by 4.4, ¢ extends to a simplicial map g: K’ — K. Clearly g = 7.
Tueorem 4.8. If f: K — K’ is a homeomorphism, and both f and
S~ are linear, then f is simplicial.
Proor. Let A be a vertex of K. Then

f(4) = UOBO + .-+ + 0B,
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where B°, --- , B" are the vertices of a simplex of K’, X_ », = 1, and
v; > 0. Applying /™ we find

A = vf (B + - + v fTY(BY.

Hence, by 2.5, A = f7'(B° = ... = f7'(B", and therefore B® =
-+« = B" and f(A4) is a vertex of K'.

5. TRIANGULATED SPACES

DeriniTiON 5.1, Given a pair (X,4), a triangulation T = {¢,(K,L)}
of (X,A) consists of a simplicial pair (K,L) and a homeomorphic map

. (KLIL) — (X,4).

The pair (X,A) together with a triangulation T is called a triangulated
pair. If a triangulation of a pair (X,A) exists, the pair is called tri-
angulable.

Let (X,A4),(X’,A") have triangulations T = {{(K,L)}, T' =
{t/,(K',L’)} respectively. A map

fi (X4 — (X,4)

is called linear [or simplicial], with respect to T,T", if the map ¢™'ft’ is
a linear {or simplicial] map of (K’,L’) into (K,L).

The definition of triangulated triples and their maps is similar.

As a direct consequence of the definition we have

LEMMA 5.2. The identity map of a triangulated pair is simplicial.
The composition of two linear or two simplicial maps is linear or simplicial.

As consequences of 4.7 and 4.8 we have

LemMmaA 5.3.  The tnverse of a stmplicial homeomorphism 1s stmplicial.

LEmMmA 5.4. A linear homeomorphism, whose inverse is linear, is
stmplicial.

If T = {t,(K,L)} is a triangulation of (X,A), then the various
simplicial concepts in K can be carried over into X by means of the
map t. Thus a simplex of the triangulation T will mean the {-image of
a simplex of K, etc.

DerFiniTION 5.5. The mesh of a triangulation T = {¢,K} of a metric
space X is the maximum of the diameters of the simplexes of T. Pre-
cisely,

mesh 7 = max [diam ((]s])],
where s is any simplex of K.

DEeriniTION §5.6. Let T = {{,K} be a triangulation of a space X.
A function f: X — R", mapping X homeomorphically onto a subset of



§ 6] BARYCENTRIC SUBDIVISION 61

euclidean space R" is called a linear tmbedding of X into R* (relative to
T) provided the map ft: K — R"is linear, i.e. provided the cartesian
coordinates of the point ft(a) are linear funections of the barycentric
coordinates of the point « on K. If f is a linear imbedding, then the
distance function in X defined by

p(zy) = |f(x) — fy)], TyeX

is called a linear metric in X (relative to T).

LEMMA 5.7. Every space X with a triangulation T = {{,K} has a
linear tmbedding.

Proor. The complex K is a subcomplex of a ¢-simplex s. Let
I: |s| = R*'' be a canonical imbedding as defined in 2.2. Then f =
It"! is a linear imbedding of X in R°*".

CoRroLLARY 5.8. Every triangulated space has a linear metric.

6. BARYCENTRIC SUBDIVISION

Let K be a simplicial complex, and let s be a simplex of K with

vertices A%, -, A". The barycenter b, of s is the point defined by
S ST R 1 4
b'—n+1A+ +n+1A'

In particular, if A is a vertex, then b, = A.

We assign to K a second complex, denoted by Sd K, defined as
follows: Its vertices are the barycenters of the simplexes of K. For each
sequence 8,, s;, - -+ , 8, of simplexes of K such that s, is a face of s,.,
(t=0,---,q— 1), the sequence of corresponding barycenters is the set
of vertices of a simplex of Sd K. Only simplexes obtained in this manner
are in Sd K.

With the notation as above, the vertices b,., --- , b,, of a simplex
of Sd K lie in the simplex s, of K. Therefore the identity map of the
vertices of Sd K into K has, by 4.4, a unique linear extension to a map

lgy SK - K

DeriniTiON 6.1. The pair consisting of the complex Sd K and the
linear map Ix is called the baryceniric subdivision of K.

If L is a subcomplex of K, then Sd L is a subcomplex of Sd K and
I, = Ig|Sd L. The pair consisting of the pair (8d K, Sd L) and the
linear map

lr.y: (8dK,8d L) — (K,L)
defined by Iy, is called the barycentric subdivision of (K,L).
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LEMMA 6.2. The map Ik is 1-1. Therefore Sd K is (linearly) homeo-
morphic to K.
Proor. Let

(1) x = woblo + ‘e + wqbn.

be a point in the simplex of Sd K with vertices b,,, -+ , b,,. Since
b.,y <+, b,, are in a simplex of K, the same symbol (1) represents a
point of |K|. Thus, in this symbolism, Ix becomes gn identity map.
Without loss of generality we may assume that each s, is an ¢-simplex

and a face of s,,,. Let then A°, -+, A® be the vertices of s, ordered
in such a fashion that A°, --- , A® are the verticesof s,,7 =0, --- , q.
Then, by definition of the barycenter,

1

1 .
[} <
3 1A+---+Z.———'—|1A.

Substituting this in (1) we find that
a=al(AYA° + - + a(49A°

b, =

where

@ a(d) = X w,

are the barycentric coordinates of @ in K. From (2) we deduce

(3) a(4d%) z -+ 2z a(49,

and that

@ w, = (7 + D4 — a(4'™))] fori=0,---,q¢—1,

w, = (¢ + Da(4?).

These formulas show that lx maps the simplex of Sd K with vertices

b.,, -++ , b,, in a 1:1 fashion onto the portion of the simplex with
vertices A°, --- , A* determined by conditions (3). Any point « of
A® ... A% lies in some set defined by (3) for some order of the A’s.

If it lies in two such sets, then a(d4') = a(4'"") for one such order.
In this case w, = 0, so the transformation defined by (4) is uniquely
defined. It is obviously the inverse of Ix.

The following lemma is an immediate consequence of the definition
of Sd K.

LemMma 6.3. If K is an n-complez, then Sd K s an n-complez.

DeriniTiON 6.4. Let T = {t,(K,L)} be a triangulation of (X,A).
Consider the barycentric subdivision (Sd K, Sd L) and its linear homeo-
morphism [/ r, onto (K,L). The triangulation

SdT = {tl(x,[,),(sd K, Sd L)}
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is called the barycentric subdivision of T. The i*" barycentric subdivision
of T is defined inductively by

=T, T=8d("T), i=1,2 ..

LEmMma 6.5.  For every triangulation T = {{,K} of a meiric space X,

we have
lim mesh ‘T = 0

Since X is compact, the limit in question (if equal to zero) is inde-
pendent of the choice of the metric. Hence, by 5.8, we may assume
that the metric in X is lincar. Suppose that K is an n-complex; then,
by 6.3, the successive barycentric subdivisions of K also are n~-com-
plexes. Lemma 6.5 is thus a consequence of the following stronger
lemma.

LemMmA 6.6. Lel X be a space with a metric linear relative to a tri-
angulation T = {{,K}, where K is an n-complex. Then

n

n+1

This lemma follows readily from the following succession of ele-
mentary lemmas concerning points in a euclidean space.

mesh SAT =

mesh 7.

Let po, -++ , p. be a sequence of points of a euclidean space R°.
Consider the set C(p,, - - - , p.) of all points z ¢ R° of the form (in vector
notation)

T = wePo + -+ + WaDn
where w, = 0and Y, w, = 1. Observe that, if 2,y ¢ C, then
(1) ly — z| £ |y — p.l forsomei =0, +-- , n,

because

iz (w-y - w-P')| = Ew' ]y - ptl

ly — x| =
< (max |y — p.[) 2w, = max |y — pil.

Applying (1) again, we find that [y — z| £ |p, — p.| for some p, and
p,. Hence

Lemma 6.7. diam C(p,, -+, p,) = diam (p,, -, p.).
LemMma 6.8. If

1 , 1
n+1(1’0+"‘+17n); b—1'+1

then

b = (Po+"'+1?‘), ‘l:é‘n,

n
n+1

b —b| < diam (po, * -+ , P.).
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Indeed by (1) we have |b — b'| < |b — p,| forsome j =0, -+ , n.
Hence
b~ b= (b~ pil

ot - +p)—p

)
=0

1 "
éﬂ'l'l.-ZOIP‘ Pll-—n_l_ldmm(l’o;"',l’»)-

1
n+ 1 , n+1

Lemmas 6.7 and 6.8 imply that, if s’ is a simplex of the barycentric
subdivision of an n-simplex s of T, then, in the linear metric, diam
8’ £ n/(n 4+ 1) diam s. This implies 6.6.

7. SIMPLICIAL APPROXIMATIOR

DEeriniTION 7.1. Let X and X’ be spaces with triangulations
T = {{,K} and T" = {¢,K’} respectively, and let a map f: X — X’
be given. A simplicial map g: X — X’ (with respect to 7',7") is called
a stimplicial approximation to f if, for each z ¢ X, g(z) lies on the closed
simplex whose interior contains f(z).

LEMMA 7.2. A necessary and suffictent condition for a simplicial map
g: X — X' to be a simplictal approximation to f is that, for every vertex
A of X,

f(st(4)) C st(g(4)).

Proor. Suppose g is a simplicial approximation to f. Let xz e st(4),
i.e. z has a positive barycentric coordinate relative to A. It follows
that g(z) has a positive barycentric coordinate relative to g(A). Since
g(z) lies in the closure of the open simplex containing f(z), it follows
that f(x) has a positive barycentric coordinate relative to g(4), i.e.
f(z) est(g(4)).

Conversely, suppose that the condition of 7.2 is fulfilled. Let
z ¢ X and let s be a simplex of X (relative to T) containing z in its
interior. Similarly let s’ be a simplex of X’ (relative to 7”) containing
f(z) in its interior. For every vertex A of s we have x ¢ st(4), so that
f(x) e st(g(4)). Thus g(A) is a vertex of &' and g maps s onto a face
of ¢. Thus g(z) lies in the closed simplex s’

The main result of this section is the following existence theorem:

TueoreM 7.3. Let X be a triangulable metric space, X' a triangulated
space with triangulation T' = {{',K’'}, and let a map f: X — X’ be
given. There is a number ¢ > 0 such that, for any triangulation T of X
of mesh <e, there exists a simplicial map g: X — X' relative to T,T’
which is a simplicial approximalion to f.
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This theorem and 6.5 yield

CoroLLARY 7.4. Let X,X' be topological spaces with triangulations
T,T' and let a map f: X — X' be given. There is an integer h, such
that for every h 2 h, there exists a simplicial map g: X — X' relative
to *T,T" which is a simplicial approzimation to f.

The proof of 7.3 will be preceded by the following lemma:

LemMma 7.5. If X s a compact metric space and ¢ a collection of open
sets covering X, then there exists a posilive number e such that each subset
of X of diameter <e i8 contained in al least one set of the family ¢. The
least upper bound of all such numbers ¢ is called the Lebesgue number of
the covering ¢.

Proor. Buppose this is false. Then, for each positive integer n,
there exists a subset A. of X of diameter < 1/n not contained in any
set of ¢. Let x, ¢ A,. By the compactness of X, there is a point z ¢ X
such that each neighborhood of z contains infinitely many points of
{z,}. Let U be an open set of ¢ containing x, and let d be the distance
from z to X — U. Select n so that n > 2/d and p(z,z,) < d/2. Then,
foreach y e A,,

py,1) = o(y,a.) + o(z,2) = ;1; + g <d

Hence y ¢ U and A, C U, a contradiction.

Proor or 7.3. Let B, --. , B” be the vertices of the triangulation
T, let U, = st(B') (in 7”), and let V; = f(U,). Since {U,} is an
open covering of X', {V,} is an open covering of X. Let n be the
Lebesgue number of {V,}, let ¢ = 4/2, and let T = {{,K} be a tri-
angulation of X with mesh <e. Then, for every vertex A of the tri-
angulation 7, the set st(4) has diameter <7, so that st(4) C V, for
some 7 = 1, .-+ , m. Choose such an 7 and define g(4) = B'. Then

M) st(4) C [ (st(g(4))),

where st(4) isin T and st(g(4)) isin 77. If A°, ..., A" are the vertices
of a simplex of T, then, by 3.7, M st(4’) = 0. This and (1) imply
M st(g(4")) # 0. Hence by 3.7 the vertices g(4°), -+, g(4") are in
a simplex of 7'. Therefore by 4.4 the vertex map g extends to a map
g: X — X' which is simplicial relative to T,T'. To be precise, the
vertex map g defines a vertex map (¢) 'gt of the vertices of K into
those of K’. This vertex map extends to a simplicial map g: K — K/,
and g: X — X’ is defined by g = #'gt"'. The inclusion (1) implies
f(st(A4)) C st(g(4)); so, by 7.2, g is a simplicial approximation to f.
TueoreM 7.6. Let (X,4),(X',A’) be pairs with triangulations T =
{,(K,L)}, T" = {t',(K'"\L')}. Consider a map f: (X,A) — (X',A")
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and the maps fi: X — X', f,: A — A’ defined by f. If g: s any
simplicial approximation to f,, (relative to T,1"), then ¢,(4) C A’ and
g, defines maps

g: (XrA) - (Xf,A’)y Ja: 4 — A

The map g is simplicial on T to T'. The map g, ts a simplicial approxi-
mation to f, relative lo the induced triangulations of A and A’. Finally,
and most imporiant, the maps f and g are homotopic in such a way that,
during the homotopy, the image of a point x ¢ X stays in the simplex whose
interior contains f(x).

Proor. If z ¢ A, then f,(x) ¢ A’, and f,(x) is in a simplex of A’
Hence g:(z) ¢ A’. For each x ¢ X, the points f(x) and g(z) lie in the
same simplex of X’, hence the corresponding points f(z),g(x) of K’ lie
in the same simplex of K’. Then the required homotopy is given by

h(zp) = UIrf(@) + 1 — M), 0<r=1.

8. PRODUCTS OF SIMPLICIAL COMPLEXES

The cartesian product of two simplicial complexes is not directly a
simplicial complex. This fact introduces a difficulty in the study of
the cartesian product of triangulable spaces. The difficulty is cir-
cumvented by the introduction of a simplicial product. This type of
product arises naturally in connection with cartesian products of spaces
and their coverings by open sets.

DeriNiTION 8.1.  Given two simplexes s, and s; of dimension p and ¢
respectively, the stmplicial product s, A s, is the simplex of dimension
(p + 1)(g + 1) — 1 whose vertices are the pairs (4,B) where 4 is a
vertex of s, and B is a vertex of s;. If K, and K, are subcomplexes of
s; and s,;, then the simplicial product K, A K, is the subcomplex of
8, A s, consisting of all simplexes s; A s; with s] C K,, s§ C K, and of
all faces of such simplexes.

This last addition is due to the fact that a face of s, A s, need not
be the simplicial product of faces of s, and s,, because the vertices of
s; A s, are the cartesian product of the vertices of s, and s,, and a subset
of the product need not be a product of subsets.

The following five lemmas are obvious consequences of these defini-
tions.

Lrmma 8.2, A simplex of s, A s, with vertices (4°,B°%), -+, (A",B")
is in K, A K; if and only if A°, --- , A™ are the vertices of a simplex of
K, with repe*itions allowed, and B°, --- | B" are the vertices of a simplex
of K, with repetitions allowed.
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Lrmma 8.3. If L, and L, are subcomplezxes of K, and K, respectively,
then Ly, A L, is a subcomplez of K, A K,. The simplicial product of the
pairs (K,,L,) and (K,,L,) is defined then as

(Ki,Ly) A (K Ly) = (K, AK,, L AK, UK, A L,).

In reading this formula it is understood that the operations A precede the
operalion \J.

Lemma 84. If fi: (K,,L\) — (K{,L}) and f,: (K.L,) — (K},L3)
are stimplicial maps, then the vertex map (A,B) — (f,(A),f:(B)) defines
a ssmplicial map

fia Sa: (Kx,L:) A (K2;L2) - (K;;L;) A (K;,L;)

Lemma 8.5. The vertex maps (A,B) — A and (A,B) — B define
simplicial maps

. Kl A K?_ nd K], To! K] A Kg - Kz,

which will be referred lo as the projections of the simplicial product onto
its factors.
LemMa 8.6. The vertex map A — (A,A) defines a simplicial map

A: (K,L) — (K,L) A (K,L),

called the diagonal map.

DEeriniTiON 8.7. A simplicial complex K is ordered if, for each
simplex, a simple order of its vertices is given such that the order of
each simplex agrees with the orders of its faces. The order in a sub-
complex will always be assumed to be the order induced by the order
in K.

Every complex K can be ordered by selecting a simple order of its
vertices (i.e. ordering the least simplex containing I).

Clearly an order in a complex K is equivalent to a binary relation
A £ A’ for the vertices of K subject to three conditions: (i) A £ B
and B < A imply A = B, (ii) A and B are vertices of a simplex of K
ifand onlyif A £ Bor B £ A, and (i) if A,B,C are vertices of a simplex
of K;and A £ Band B £ C,then A = C.

DerFiniTiON 8.8. Let K, and K, be ordered simplicial complexes.
Define a partial order in the set of vertices of K, A K, by (4,B) =
(A’\B"Y if A £ A’ and B £ B’. (In general this is not an order in
K, A K,). The cartesian product K, X K, is the complex consisting
of those simplexes of K, A K, whose vertices are simply ordered by this
relation. If L, and L, are subcomplexes of K, and K,, then (K,,L,) X
(K,,L,) is defined as (K, X K,, L, X K, \J K, X L,).

We proceed now to compare the cartesian product K, X K, of
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ordered complexes K, and K, with the cartesian product |K,| X |K,| of
the spaces |K,| and |K,|. Let z be any point of K, A K,. Then the
projections =, (z) and =.(z) are points of K, and K, respectively. Thus
x(z) = (7 (2),7.(2)) yields a map
T IK] A Kz‘ - IK]I x IK,I.
If K, and K, are ordered, the map = defines a map
'ﬂ: 'Kl X Kzl - |K1| X IKgI-
LemMa 89. The map n 78 a homeomorphism, and {9,K, X K.} is
a triangulation of |K,| X |K,|. If L, and L, are subcomplezes of K, and
K,, then n carries |Ly, X L,| onto |\L,| X |L,|. Furthermore, this tri-
angulation has the property that, for each vertex B of K,, say, the corre-
spondence z — (z,B) is a stmplicial map of K, into |K,| X |K,).
Proor. We shall define a map 7:  |K,| X |K,| — |K; X K,| that

will be inverse to n. Let @ ¢ |K,|, 8 ¢ |K,]. We can express a and 8
uniquely in the form

a=a(ADA° + - + a(A”)A®

8 =BBY)B" + - + BB
where A° < -« < A%, B < .-+ < B a(4") > 0, 8(B) > 0, >
a(A®) = D B(B) = 1. Let

= 2ad), ¥ = L6
where0 < m £ pand 0 S n < ¢q. Nowlet
c é “oe éc’+a = cp+¢+l (=1)

be a single sequence obtained by rearranging the symbols a° ---
a’,b’, -- -, b° in order of magnitude. Foreachr =0, ---, p + ¢ let

= (A',B’) where ¢ and j are the numbers of a’sand b’s, respectively,
inc®, ---,¢™*. Theni+ j = rand C"*"iseither (4'*',B’) or (4°,B'*"),
depending on whether ¢’ is a* or b’. It follows that C° < --- < C**¢,
and they are therefore the vertices of a simplex of K, X K,. Now set

y= 2 (-,
+=0
where ¢™* = 0. Since D228 (¢’ — &™) = " — ¢! = 1, vy is a well-
defined point of K, A K,.
In the definition of C" the following ambiguity may occur: If @’ =
b’, then C***' could be either (4'*',B’) or (4',B’*"), depending on
whether a* or b’ was labeled as ¢**'. 1In either case ¢**'*' — ¢'* = 0,
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so that the choice of C'*'*! has no effect on v, which is thus defined
without ambiguity. We define 7 by setting 7(«,8) = #.

To prove that % is the inverse of 3, it suffices to establish the fol-
lowing two propositions:

(1) 7 maps |K,| X |K,| onto |K; X K,),
(2) 7 is the identity map of |K,| X |K,|.

To prove (1), consider any point v in K; X K,. Then vy = D tuo
d.D" where D" < D™*'. Let A° < .-+ < A” be the distinct first co-
ordinates of D°, - .-, D* and similarly let B® < --- < B® be the second
coordinates. By adjoining extra D’s with coefficient zero when neces-
sary, it can be arranged that, if D" = (A',B’), then D"*' = (4*,B"*")
or D™*' = (A'*',B"). Definec’ = D sd, LetC" = (A*,B),if C"*' =
(A**',B"), then set a' = ¢, if C**' = (4°,B’*"), then sét b’ = ¢".
This defines @’ £ -+ £ a”=1andd” £ --- £ b* = 1. Finally set
a=245( —aMHA'and 8 = X8 0 — b'"Y)B'. It is then easy
to verify that 5(a,8) = 7.

To prove (2) it suffices to show that if v = 7(a,8), then =, (y) =
a and my(y) = B. Let C", ---, C"** be all the vertices in C°, --- ,
C*** with A*' as first coordinate. Then C"*' = (A',B’*') where r =
i+ jand0 S 1 <k, whileC'™™' = (A*",B")and C"***' = (4'*",B'*Y),
Then from the definitions of =, and of v,

k

'u',('y)(A') — Z (C'H _ cr+l—l) —= an — !

1=0 .
— ac - an-l = a(Al).

Since this holds for every 7, it follows that =, (y) = « Similarly
7.(v) = B. This concludes the proof.

CoroLLARY 8.10. If (X,A) and (Y,B) are triangulable pairs, then
soare (X X Y, A X B)and (X,A) X (Y,B) = (X XV, A XYV
X X B).

The previous discussion shows that the simplicial product K, A K,
contains as subcomplexes the cartesian products K, X K, for the
various orderings of K, and K,. The next lemma implies that |K, A K,|
and |K, X K| are homotopically equivalent.

LemMa 8.11. |K, X K,| is a deformation retract of |K, A K,).

Proor. Consider the maps » and 5 introduced above. Then r =
n 'r is a retraction of |K, A K,| into |K, X K,|. Further, for each
z in K, A K,, the points z and r(z) lie in a simplex of K, A K;. There-
fore (1 — #)x + tr(z) yields the desired homotopy.

Both the retraction r and the homotopy remain valid for sub-
complexes L, and L, of K, and K,. This implies that (K, X K,,
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L, X L,) is a deformation retract of (K, A K,, L, A L,) and that
(K,,Ly) X (K,,L,) is a deformation retract of (K,,L;) A (K,,L;).

The closed unit interval I = [0,1] may be regarded as an ordered
1-simplex with vertices 0 < 1. Thus the above discussion yields the
definition of K X I for any ordered simplicial complex K. If we write

A, = (4,0, Ai=(4]1)
where A is any vertex of K, then each simplex of K X I has vertices

Ag, -, AL AL e, AT
or g)"':A(.)’A;+l)"'7 ‘ll) (O§2Sq)

where A° < ... < A°and are vertices of a simplex of K.

9. REGULAR NEIGHBORHOODS

We show in this section that, if L is a subcomplex of K, then |L]
is smoothly imbedded in {K| in the sense that |L| is a strong deformation
retract (see 1,11.6) of a closed triangulable neighborhood of |L| in [K]|.

DeriniTioN 9.1. Let L be a subcomplex of K. The open set

N(L) = Ust(4)

where the union is extended over all the vertices A of L, is called the
regular neighborhood of L in K.

It should be observed that, in general, L is not a deformation retract
of N(L). Forexample, let K = s be a 1-simplex and L = § its boundary,
then N(L) = |s|; and the fact that |s| is connected, and |$| is not, shows
that |3 is not a deformation retract of |s|. Consideration of this example
leads to the following definition:

DerintTION 9.2. L i3 called a full subcomplex of K, if L contains
each simplex of K whose vertices are all in L.

Clearly, in the above example L is not a full subcomplex.

Lemma 9.3. Let L be a full subcomplex of K. For each o ¢ N(L),
define

1@ = T ald),
f@) = X o5 a(A)A.

In each case, the sum is taken over the vertices of L. Then f(e) ¢ |L|, and
f i3 a retraction of N(L) into |L|. Moreover, the homotopy h: N(L) X
I — N(L), defined by

ha,)) = tf(a) + (1 — Da,
s a strong deformation retraction of N(L) into |L|. Finally, the bary-
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cenlric coordinate of h(a,t) with respect to a vertexr A is a nondecreasing
Sunction of t of A is in L, and ts a nonincreasing function if A is not in L.

Proor. First note that f(a) is a point of the least simplex s con-
taining @. Furthermore its barycentric coordinates are zero for vertices
not in L. Thus f(a) belongs to a face s’ of s, all of whose vertices are
in L. Since L is full, f{(a) isin L. If a is in L, then 2(a) = 1 and
f(a) = a, so that f is a retraction. Since a and f(a) are in the same
simplex s, the point h(e,t) also lies in s. The last statement of the
lemma is a direct consequence of the formulas for f and k. It follows
that A(e,t) isin N(L) forall a e N(L) and t e I. This completes the proof.

The following lemma shows that the assumption of 9.3 that L is
full is not a severe restriction from the topological point of view.

LEmMma 9.4, If L 1s a subcomplex of K, then, in the barycentric sub-
division, Sd L is a full subcomplezx of Sd K.

Proor. A simplex s of Sd K has vertices b,,, --- , b,, where s,
are simplexes of K and s, is a face of s,,,. If all the vertices of § are
in 8d L, then the last vertex b,, of 5is in Sd L. Then s, is also in L.
Hence 5 1s in 8d s, and thus in Sd L.

Note that the deformation of 9.3 is not defined on the closure of
N(L). To obtain a closed neighborhood of which L is a deformation
retract we resort to further subdivision.

DEerinition 9.5. If L is a subcomplex of K, the k*" regular neigh-
borhood N*(L) is the image in K of the regular neighborhood N (Sd* L)
under the natural map Sd* K — K. In particular N(L) = N°(L).

LeEMMA 9.6, If L 1s a full subcomplex of K, then a point a of K is in
NYL) if and only if there is a vertex A of L such that a(A) > a(B) for
each vertex B of K notin L.

ProoF. Let a« ¢ K. Then « is in a simplex s whose vertices A°,
«++, A" may be labeled so that a(4A®) Z -+ 2 a(A4%. Let s, be the
simplex spanning the vertices A°, --- , 4*. The point o’ = [;'(a) in
Sd K, which corresponds to a (see proof of 6.2), is given by

a’ = woba. + e + wqb,q. w, = (i + 1)[0(11') — a(A'”)],
Let J be the least index such that w, > 0.

If now a ¢ N'(L), that is, if «’ ¢ N(Sd L), then, for some index 7,

we must have b,, e Sd L and w, > 0. Then s, isin L and 4°, --- , 4°
are in L. Since 1 = j, it follows that A° ---, A" are in L, and the
condition of 9.6 is satisfied.

Conversely, if the condition of 9.6 is satisfied, then A°, --- , 4’ are

in L and, since L is full, the simplex s, isin L. Thus b,, is in Sd L
and, since w, > 0, it follows that o’ ¢ N(Sd L). Thus a ¢ N'(L) and
the lemma is proved.
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Lemma 9.7. If L is a subcomplex of K, then the closure of N**'(L)
i3 in N*(L) fork = 0,1, - -.

Proor. It suffices to prove that the closure of N'(L) is in N(L).
If L is full, this follows from 9.6 since, in passing to closure, the in-
equality a(4) > a(B) becomes a(A4) = a(B). If L is not full, let L’
be the subcomplex of all simplexes of K with vertices in L. Then L’
is full, and N(L)-= N(L’) and N*(L) C N'(L").

As observed in 9.3, the homotopy % does not disturb the relation
a(A) > a(B) for A in L and B not in L. Consequently, if « ¢ N*'(L)
and L is full, then A(a,t) e N'(L) for each t. Since the closure of N'(L)
is in N(L), we have

Lemma 9.8. If L is a full subcomplex of K, the homotopy h of 9.3
defines a strong deformation retraction of N'(L) into |L|.

Combining this with 9.4 we obtain the main objective of this
section:

THEOREM 9.9. If L is a subcomplex of K, then |L| is a strong deforma-
tion retract of the closure of the second regular neighborhood N*(L).

EXERCISES

A. SIMPLEXES.

1. If «,8 are distinct points of a simplex s, show that f: I — s
defined by f(t) = (1 — f)a + 18 is a 1-1 linear map of I into s. It is
called the line segment from « to B in s, and () is said to divide this
segment in the ratio £; (1 — ¢). Show that each point of s other than
its barycenter lies on a unique line segment from the barycenter to a
point of [§|.

2. If s is an n-simplex, and s’ is an (n — 1)-face of s, show that the
two triples (s,4,8") and (E",S""", EV™') are homeomorphic.

B. EUCLIDEAN COMPLEXES.

DerinirioN. The points A°, --- , A? of euclidean n-space R" are
called linearly independent if they are not contained in a hyperplane of
dimension <gq.

1. Show that A, --. | A° are linearly independent if and only if
the matrix
as, , as,1
aj, -+, anl
where af, --- , a; are the coordinates of A°, has rank ¢ + 1.

2. Show that, if A% --. , A® are linearly independent, then every
subset of A° ---, A%is also linearly independent.
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3. Let s” be a ¢g-simplex with vertices A°, --., A% Let f: s°*— R"
be a linear mapping. Show that f is a linear imbedding if and only if
the points f(4°%), -+, f(A% are linearly independent.

4. Show that R" contains an infinite sequence of points each n + 1
of which are linearly independent.

5,. I‘Jsing 4, prove that each n-complex K admits a linear imbedding
in R,

DeriniTION. Let A° --- , A® be linearly independent points of
R". The least convex set ¢ containing A° --- , A° is called the eu-
clidean g-simplexr with vertices A°, --. , A°. The faces of o are the
euclidean simplexes whose vertices form a subset of 4%, --- , 4% A
finite set = = {g} of euclidean simplexes in R" is called a euclidean
complex if the intersection of any two simplexes of Z is either vacuous
or is a common face of both of them.

6. Show that if f: K — R" is a linear imbedding of a complex into
R", then the images of the simplexes of K form a euclidean complex in
R". Conversely, if = is a euclidean complex in R", then there is a
simplicial complex K and a linear imbedding f: X — R" such that
the simplexes of Z coincide with the images of the simplexes of K.

C. SPACES WITH OPERATORS.

DErFiNITION. A group W (not necessarily abelian, and written
multiplicatively) is said to operate on the space X if, for every w ¢ W
and z ¢ X, an element wz ¢ X is defined such that w,(w,2) = (w.w,)z,
lz = z, and that x — wz is a continuous map w: X — X. U W
operates on X and Y, then a map f: X — Y is called equivariant if
fwz) = wf(z) forallwe W,z e X.

W is said to operate on the simplicial complex K if, for each w e W,
a simplicial map w: K — K is given such that the fixed points of w
form a subcomplex of K and w,(w,z) = (waw,)z, 1z = z for each z
e |K|.

If W operates on X, and T = {¢,K] is a triangulation of X, then T
is said to be tnvariant if, for every w ¢ W, the map t'wt: K — K is
simplicial and its fixed points form a subcomplex of K.

1. If W operates on X, and an invariant triangulation of X exists,
then W contains an invariant subgroup W, such that W/W, is finite,
and woz = z for all w, ¢ W, z ¢ X.

2. If the triangulation T of X is invariant, then so is the barycentric
subdivision of 7.

3. In theorem 7.3 assume that W operates on both X and X', that
the triangulations T and T’ are invariant, and that f: X — X’ is
equivariant. Show that the simplicial approximation g can be chosen
equivariant.
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D. JoINS OF COMPLEXES.

DEerFiNiTION. The join K o M of two disjoint complexes is the com-
plex whose vertices form the union of A, --- A",B', --- , B® of the
vertices of K and M, respectively. A set of vertices are those of a
simplex of the join if its subsets in K and M, if not vacuous, span
simplexes there.

1. K and M are subcomplexes of K o M.

2. If s, is a p-simplex and s, a ¢-simplex, then s, o s, isa (p + ¢ + 1)-
simplex, and its boundary is (§; 0 s,) \U (5; 0 &).

3. |K| is a deformation retract of |K o M| — |M]|.

4. Let L be the subset of points « of K o M such that D_ a(4%) =
> a(B") = 1/2. Show that L is homeomorphic to |K| X |M|. Show
that |[K o M| — |K| — |M]| is homeomorphie to the product of L with
an open interval.

5. let 0 £ p < dim K. In 8d K, let L(resp. AI') be the subcom-
plex of simplexes whose vertices are barycenters of simplexes of dimen-
sions £ p(resp. > p). Show that Sd K is isomorphic to a subcomplex
of L o M.

6. Define the join X o Y of two spaces; and show that |K| o |M] is
homeomorphic to |K o M|.

7. If X is contractible on itself to a point, show that the same is
trueof X oY,

8. Show that the join of a p-cell and a g-sphere is a (p + ¢ + 1)-cell.
Show that the join of a p-sphere and a ¢-sphere is a (p 4+ ¢ + 1)-sphere.

E. ELEMENTARY SUBDIVISION OF A COMPLEX.

DeriniTiON. If s is a simplex of K, the complement K — s is the
subcomplex consisting of all simplexes of K that do not have s as a
face. The boundary of K — s, written Bd(s), is the closed subcomplex
consisting of simplexes in K — s which are faces of simplexes not in
K = 5. The elementary subdivision of K with respect to s, written
8d,(K), is the complex (K — s) \U (b, o Bd(s)), where b, is the bary-
center of s.

1. Show that the linear map of Sd,(K) — K defined by the identity
transformation of the vertices is a homeomorphism.

2. If the simplexes of K are ordered s;,85, --- , 8 so that dim
s; = dim s;,, for each j, show that the barycentric subdivision of K
is the result of the succession of elementary subdivisions

8d,, (8d.,_, (-« 8d., (K) --)).

F. INFINITE COMPLEXES.

DerinitioN. Let W be an infinite set of objects called vertices. An
infinite complex K with vertices in W is an infinite collection of (finite
dimensional) simplexes whose vertices are in W, subject to the condition
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that a face of a simplex in the collection is also in the collection. Each
point a of K is described by barycentric coordinates a(4) = 0O for
A ¢ W, where a(4) > 0 only for a finite number of elements of W,
and 2. a(4) = 1. The complex K is said to be locally finite if each
vertex of K is a vertex of at most a finite number of simplexes of K.

If @ and B are points of K, then p(a,8) = {D_4 [a(4) — B(A} is
a distance function in K, and defines the metric fopology.

The weak topology in K is obtained by considering as open all sets
whose intersection with every (closed) simplex s of K is an open subset
of |s.

Thus to the infinite complex correspond two topological spaces
|K|. and |K]|,.

1. The identity map |K|, — |K|, is continuous.

2. The weak and the metric topologies coincide if and only if K
is locally finite.

3. Linear and simplicial maps (defined as in the finite case) are
continuous in both topologies. In particular, for any vertex A, the
barycentric coordinate a(A) is continuous in « for both topologies. A
subcomplex is closed in either topology. For every vertex A of K,
the set st(A) is open in either topology.

DErFiNITION. A subdivision (K',l) of an infinite complex K is a pair
consisting of an infinite complex K’ and a linear map I: K’ — K which
is a homeomorphism in the weak topology.

4. If (K',l) is a subdivision of K, and L is any finite subcomplex
of K, then I"'(L) is a finite subcomplex of K’.

5. Given a family {U} of open sets covering the space |K|,, there
is a subdivision (K’,l} of K such that, for every vertex A’ of K’, the
set I(st(A’)) is in one of the sets of the family {U}.

DEFINITION. An infinste triangulation of a space X is a pair
T = {t,K} where K is an infinite complex and ¢: |K|., — X is a homeo-
morphic mapping of |K|, onto X.

DeriniTioN, If T = {¢{ K} is a triangulation of X, and {U} is a
family of open sets covering X such that, for every vertex 4 of K,
the set {(st(A)) is in one of the sets of {U}, then the triangulation T
is said to be finer than the covering {U}.

6. (Simplicial approximation theorem). Let X be a space which is
triangulable as an infinite complex, X’ a space with (infinite) triangu-
lation 77, and let a map f: X — X’ be given. There is a covering { U}
of X by open sets such that, for every triangulation T of X which is
finer than {U}, there is a map g: X — X’ which is a simplicial ap-
proximation (relative to T,7") to f.

7. If K and M are nonempty complexes one of which is infinite,
then the join K o M is not locally finite.



CHAPTER II1
Homology theory of simplicial complexes

1. INTRODUCTION

In this chapter it is assumed that a homology theory is given such
that the groups H,(X,4) are defined for all triangulable pairs and that
[+ is defined for every map f: (X,A) — (Y,B) of one triangulable
pair into another. In other words, let 3 denote the category of tri-
angulable pairs and maps of one such pair into another. It follows from
11,8.10 that 3 is an admissible category for homology theory as defined
in 1,1. It is assumed in this chapter that the homology (cohomology)
theory considered is defined on an admissible category @ which con-
tains 3.

The first main objective of this chapter is the derivation from our
axioms of the classical algorithm used to define and compute the
homology groups of a simplicial complex. This motivates our use of
this algorithm in the existence proofs in later chapters.

The second objective of this chapter is a uniqueness theorem which
asserts that any two homology theories, with isomorphic coeflicient
groups, are isomorphic on the category 3 of triangulable pairs. This
asserts, to a certain extent, that the axioms are categorical, i.e. ad-
mitting an interpretation unique up to isomorphisms. This result will
be extended later (Chapter x11) to a larger class of spaces.

As in Chapter 1 the statements concerning cohomology are listed at
the end of each section, without proof.

2. EXCISION AND DIRECT SUM THEOREMS

It will be shown here that, for triangulable pairs, excision and
direct sum theorems are valid in more general situations than those
encountered in Chapter 1.

TraeoreEM 2.1. If K, and K, are subcomplexes of a complex K, then
the inclusion map

1:: (KI,KI ﬂ Ka) C (Kl U KZ,KQ)

tnduces isomorphisms in each dimension. Consequently (|K|;|K,|,|Ks|)
13 a proper iriad (see 1,14.1).
76
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Proor. Without loss_of generality we may assume that
K = K, U K,. Let X = N’(K,) be the closure of the second regular
neighborhood of K,, and let A = X N |K,|. Then (X,4) is a tri-
angulable pair, since both X and A correspond to subcomplexes of the
second barycentric subdivision of K. The map ¢ may be factored into
inclusions

(IK:[,IK: N K,|) = (X,4) — (K|, |Ks)).

Since |K| = N*(K,) U (|K| — |K,]) C Int X U Int |K,|, it follows that:

Kl = X U |K,|, A = XN |K,, |K| = Int X U Int |K,|.

Thus, by the Excision axiom, the map %, induces isomorphisms in all
dimensions.

By 11,9.9, |K,| is a strong deformation retract of X. Throughout
this deformation each point of |K;| remains in |K,|. Thus the pair
(K, |,| Ky M K,|) is a deformation retract of (X,A). Hence, by 1,11.8,
the homomorphisms induced by %, are isomorphisms.

TaeOoREM 2.2. Let (X,A) be a triangulable pair, and let U be an
open subset of X such that U C A. If (X — U, A — U) 15 a triangulable
pair, then the inclusion map f: (X — U, A — U) C (X,A) induces
an isomorphism in each dimension.

Proor. Let T be a triangulation of (X,A) (see 11,5.1) and let V
be the interior of A (relative to X). Then X — Vand A — V are
subcomplexes of X relative to the triangulation T, so that by 2.1 the
inclusion map ©: (X — V, A — V) C (X,A) induces isomorphisms,
Set X' = X — U, A’ = A — U, and let V' be the interior of A’ relative
to X'. Then, by the same token, the map 7/: (X’ — V', A’ — V') C
(X',A’) induces isomorphisms. Since the pairs (X' — V’, A’ — V') and
(X — V, A — V) coincide, and since 7’ = f7, it follows that f, =
4t is an isomorphism.

THEOREM 2.3. Let K be a stmplicial complex with subcomplexes
K,, ..., K,,L such that

K=K \U-.-UK, UL K.NK,CL, foris j
LetL.-=K.-f\L,andlet
k. (K,L,) C (K,L).

Then, the homomorphisms k.,: H.(|K,|Li]) — H(K|I|L)) ¢¢ = 1,
-, 1) form an injective representation of H,(|K|,|L]) as a direct sum.
Proor. The case r = 1 is covered by 2.1 since K = K, \U L and

L, = K, N L. Assume, inductively, that the theorem has been proved
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forr =n 2 1,and suppose that r = n + 1. Set K’ = K, U ... U
K, \U L and consider the inclusion maps

4 J
(K.',L.-) - (K,)L) - (K)L) (1' = 11 e )n);

k' 7
(Kn+l)Ln+l) - (Kn+l U L;L) - (K’L)‘

Clearly k., = j ki, fori=1, .- n, and k..., = j/k,. Further, by
2.1, k, is an isomorphism. Since (|K|;|K’|,|K,., \J L|) is a proper triad
with

KUK, WJL =K, KnNK,.UL) =L,

it follows, from 1.14.2, that j, and j. yield an injective representation
of H,(JK|,|L|) as a direct sum. By the inductive hypothesis, the maps
ki, ¢ =1, ---, n) yield an injective representation of H,(|K'|,|L|) as
a direct sum. This implies the conclusion of 2.3.

TareoreM 2.3c. The maps k% of 2.3 yield a projective representation
of H°(|K|,|L)) as a direct sum.

3. THE INCIDENCE ISOMORPHISM

Let s° be a g-simplex, §° its boundary, and s ' a (¢ — 1)-face of %
Let A be the vertex of s° opposite s°”!, and ¢** the closed star of A
in & i.e. ¢! is the subcomplex of s consisting of all faces of s? ex-
cepting s* and s*"'. Thus

éa — sa~l U Cq-l, Sq—l = sq-l N Cq—l.
For each ¢ e s*, the function

(1 — e + (4, 0

A

t=1

is a homotopy contracting the pair (|s°|,|c"”"|) into the point pair (4,4).
Hence, by 1,11.5 and 1,9.5

Lemma 3.1, |s%,1c*!| end (|s°,|c¢°""|) are homologically trivial.

Next we turn to the discussion of the triad (|s°|;]s*"'|.lc*"*[). By
2.1, this is a proper triad.

TuroreM 3.2. The homology sequence of the triad (|s*|;ls*™*|,lc* "]
reduces 1o the isomorphism

a: H (LIS = Hoa(Js 187D,

All other groups in the sequence are zero.
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TuEorEM 3.3. The homology groups of (|s%],|5°]) are as follows:

Hq(lsquléql) =(
H,(|s°],Is°]) = 0 forp # g.

Pkoors. By 3.1, H,(|s°|,|c"']) = O for all ¢, and therefore, by
the exactness of the H.S. of the triad, we have d: H,(|s%,|s"]) =
H,_(Is*7"|,15*7"]). Iterating this isomorphism yields H,(|s%,|5%)
H,_(|s°,1$°)) = H,_,(|s"]). Since |s°| is a single point, the assertion of
3.3 follows. This also establishes 3.2.

DeriNiTION 3.4. If s 'isa (g — 1)-face of the g-simplex s%(g > 0),
the tncidence isomorphism

[sq sq ‘ . a(|sal |S |) = q—l(lsa_lll['gq-ll)

is defined to be the isomorphism @ of 3.2. Explicitly, {s*:s*"'] may be
defined from the diagram
0 Ty . T
H (I, 13°) = Hoor(I8°)) — Hooa(8°],16"7) — Hona(s"] 1871

where 1, are inclusions; by setting

LemMa 3.5. If ¢ > 0, end f: (]s“l,l&“l) — (|sil,|8i]) 7s such that
[s*7'| and |¢*!| are mapped into |si7'| and |ci”"|, respectively, then com-
mutalivity holds in the diagram

[s%:5°77] i
H(|s°],18°) —— Hoa(]s"7], 577

o B
[st:s17']

II«(IS‘”} IS:I) —_— Hq*l(]scl'—l I; lég—l l)

where f, is the map defined by f.

Proor. The incidence isomorphism is the boundary operator of the
triad (|s°|;]s*7"|,Jc* 1), and the commutativity of this boundary operator
with induced homomorphisms is contained in the statement of Theorem
1,14.5.

DeriniTION 3.6. If A is a O-simplex (i.e. a vertex) and g ¢ G, let g4
denote the element of H,(A) mapped on g by the isomorphism in-
duced by the map A — P,. (In the notation of 1,7.1, g4 = (gA4),.)
Let s® be an ordered g-simplex with vertices 4° < A' < .-+ < A,
Define s* (k = 0,1, - -+, ¢ — 1) to be the ordered simplex with vertices
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A% < A" < ... < A° TFor each g ¢ G, the element gs* of
H (|s*|,|$%}) is defined inductively by

1) gst = [sh:st 1 gs*

Thus

gs® = [s%s" 7' .. [ 4] gAN

THEOREM 3.7. For every ordered g-simplex s°, the correspondence
g — gs° 1is an isomorphic mapping of G ondo the group H,(|s|,|$°]).

Proor. The proposition follows from the fact that the incidence
isomorphisms are isomorphisms, and ¢ — gA® maps G isomorphically
onto Hy(A°) (See 1,7.2).

THEOREM 3.8. If s, and s, are ordered q-simplexes, and f 18 a stm-
plictal map (84,8) — (8»,82) preserving the order, then f, (gs,) = gs..

Proor. Consider the simplexes s = 1,2;n = 1, --- , ¢) as
defined in 3.6. Since f is order-preserving, it defines maps

far (61,8 — (83,8).

Consider the diagram

H([s8,185]) —— Hoon(jst ™ |17 ) — -+ H(49)
lfq. lfq_,. lfo.
H(8]18]) —— Hooa(s' 57 ) —— -+ —— H (A9

where the horizontal arrows are the incidence isomorphisms. By 3.5,
commutativity holds in each square of the diagram. Since fo, maps
gAj into gA; (see 1,7.2), it follows that f,, maps gsi into gs3.
THEOREM 3.2c. The cohomology sequence of the triad (|s*},|s*"[,lc*™*])
reduces to the tsomorphism &: H* '(|s*7'|,|s" ') = H"(|s°,|s)).
TueoreM 3.3c. H(|s°|,|$°) = G, H*(|s*|,|$°]) = O for p = q.
DeriniTION 3.4¢. If 8! is a (¢ — 1)-face of a g-simplex s°, the
sncidence 18omorphism
[%is%): HW(s" 187N = HO(", [4°])
is defined as the isomorphism ¢ of 3.2¢ or equivalently as
[°7's"] = &*5*7.
LemMA 3.5¢.  Under the conditions of 3.5

] =
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DeriNiTION 3.6c. If A is a vertex and g ¢ G, let g4 e H°(A) be the
image of ¢ under the isomorphism induced by the map A — P,. (In
the notation of 1,7.1¢c, g4 = g4(4).) If s°is an ordered g-simplex with
vertices A° < A' < .-+ < A% and g ¢ G, define gs® ¢ H*(|s%,|5°]) in-
ductively by

(1¢) gs' = [s" "islgs* .
Thus
gs® = [s*7":s% - [A%s']gA".

THEOREM 3.7c. The correspondence g — g¢s° is an isomorphism of G
onto H*(|s°|,|s°)).

TueorReM 3.8¢c. If s,,s, are ordered g-simplexes, and f: (8,,8,) —
(82,8,) 1s stmplicial and order preserving, then f*(gs,) = gs,.

4. AUTOMORPHISMS OF A SIMPLEX

In the preceding section we introduced the symbol gs* ¢ H,(]s%,15%),
which is a function of ¢ e G and of the order of the vertices of the ¢-
simplex s°. Our immediate objective is to determine the extent of the
dependence on the order. The result obtained (4.3) is fundamental in
connecting our axiomatic system with the classical homology theory, in
particular, with that part dealing with orientation. As a preliminary,
we study the group H, of a space consisting of two points (the O-
dimensional sphere) in greater detail.

THEOREM 4.1. Let A and B be the vertices of the 1-simplex s'. We
shall use the simplified notation: S° = |s'| (the O-sphere). Using the
notation of 1,7.1, every element h ¢ H,(S°) can be writien uniquely as

h = (g4)se + (¢'B)se 9,9 ¢G.
The element h is in Hy(S%) if and only if g + ¢’ = 0, or, equivalently,
h = (g4)ss — (¢B)se..

Proor. The first part of the theorem is a direct consequence of 1,7.1,
and of the direct sum theorem 1,13.1. To prove the second part, con-
sider the map f: S° — P, where P, is the space consisting of a single
point that was used to define the coefficient group G (1,6.1). Then, by
L,7.2,

fh=g+y¢
go that f,h = Oif and only if g + ¢' = 0.
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DEeFINITION 4.2.  An automorphism of a simplex is any 1-1 simplicial
map of the simplex on itself.

By 11,4.4, the automorphisms of a simplex are in 1-1 correspondence
with the elements of the group of permutations of its vertices. Any
permutation is a product of simple permutations, each of which inter-
changes two vertices and leaves all others fixed. In general, a permu-
tation can be expressed in many ways as a product of simple permuta-
tions; but the number of such factors is either always even or always
odd. Accordingly the permutation is said to be even or odd. The same
adjective is used to describe the corresponding automorphism,

TueoreMm 4.3. Let f: (s,8) — (s,8) be an automorphism of the g¢-
stmplex s, and h ¢ H (|s,|$]). Then

h if f iseven,

—h if f1is odd.
Proor. For g = 0, the theorem is trivial. Consider the case ¢ = 1.
Let 8° = |§'| consist of the points A and B, and let f,: S° — S° be
defined by f. If f = identity, the result is trivial; thus we may assume

that f(A) = B and f(B) = A. Then commutativity holds in the
diagram (see 1,8.4):

Jh) =

I
Hl(lsllyso) h— Hl({sllySO)

k ] k

B(S) —— H(S")
Let h ¢ H,(|s"],S”): then, by 4.1,
h = (gA)s. — (gB)s:
for some ¢ ¢ G, and, by 1,7.2,

3fh = fou0h = (9f(4))s: — (gf(B))s: = (¢B)s: — (gA)s: = —3h.

Since H,(Js']) = 0, the kernel of  is zero; hence f,h = —h.

Suppose, inductively, that the theorem is true for the integer ¢ — 1,
g = 2. Since every permutation is a product of simple permutations,
it is sufficient to consider the case of a simple permutation f on the
vertices of s. Since s has more than two vertices, there is a vertex
A, such that f(A,) = A, Let s’ be the (¢ — 1)-face of s opposite the
vertex Ao. Then f maps s’ onto itself and defines an automorphism

v (#8) - (5,8)
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Moreover, by 3.5, the commutativity relation [s:s']f, = f/[s:s’] holds.
Let h e H.(|s,|$]). Since f’ is a simple permutation of the vertices of
¢, and 4.3 is assumed for the dimension ¢ — 1, we have

falss']h = —[s:s']h.
This implies
[s:is']f b = [s:8'1(—h),
and, since [s:s'] is an isomorphism, f b = —h.
THEOREM 4.4. Let s, and s; be two ordered simplexes both carried by
the same unordered q-simplex s. Then
g8 = =4=gs,

according as the order of s, differs by an even or an odd permutation from
the order of s,.

Proor. Let f be an automorphism of (s,§) which maps s, onto s, in
an order preserving fashion. Then, on one hand, 3.8 yields

Fu(gs2) = gsu.
On the other hand, 4.3 implies
f*(gsz’) = =¢8,;.
Consequently gs, = =g¢s,.
THEOREM 4.5. Lel s be an ordered simplex with vertices A® < -+ <

A°, and let s, be the face obtained by omitling the vertex A* and not changing
the order of the others. Then

[s:8:)gs = (—1)*gs..
Proor. If k = 0, this is formula (1) of 3.6. The general case can
be reduced to the case ¥ = 0 as follows: Let s be the new ordered

simplex obtained from s by moving the vertex A* in front of all the
others. Then s, = 3, and gs, = ¢5,, while, by 4.4, gs = (~1)"¢3. Hence

[s:8:]gs = [§:§o](—l)kg§ = (—1)*93‘0 = ("l)kgsk-

THEOREM 4.1c. Every element h ¢ H°(S®) is uniquely described by
the elemenis h(A) = g and h(B) = ¢’ of G (see 1,7.1¢), and every pair
g,g may thus be oblained. The element h is in the subgroup Gs. (see
1,7.3¢) ifand only if ¢ = ¢'.

TuroreMm 4.3c. If f is an aulomorphism of the g-simplex s, and
h e H%(Js|,13]), then

b if f iseven,

—h if f is odd.

/) =
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THEOREM 4.4c. If s,,8, are ordered ¢-simplexes on the same un-
ordered g-simplex s, then gs, = Zgs, according as the orders differ by an
even or odd permutation.

THEOREM 4.5¢. If 5,8, are as in 4.5, then

[si:slgss = (—1)*gs.

5. CHAINS IN A COMPLEX

DeriniTION 5.1. If K is a simplicial complex, the g-dimensional
skeleton K* of K is the subcomplex of K consisting of all the simplexes
of K of dimensions = g.

In this and the subsequent sections, (K,L) will stand for a pair
consisting of a simplicial complex K and a subcomplex L.

Lemma 5.2. If p %= q, then H,(|JK*\J L|, |[K*'\U L]) = 0.

Proor. Let s, «--, s, be the ¢g-simplexes of K which are not in L.
Then K°UL =5V . .- Us, UK*"'ULand $, = s, (KU L)
(m = 1, -+, r). Thus the direct sum theorem 2.3 can be applied.

Since, by 3.3, H,(|s.|,|$.]) = 0 for p %= ¢, the proposition follows.
DeriniTioNn 5.3. The group of g¢-chains of (K,L), denoted by
C.(K,L), is defined by

C.(K,L) = H(|K* U L}, |[K*' U L.
If f: (K,L) — (K,,L,) is simplicial, the map
(K*'ULK™7?UL) — (KU L,K:™' U Ly,
that f defines, induces homomorphisms
fo&o CJK,L) — C(K,L,).

They are called the chain homomorphisms induced by f.

Tueorem 54. C(K,L) = 0for ¢ < 0 and for ¢ > dim K.

Proor. If ¢ < O, then C(K,L) = H (|L|,|L|), while, if ¢ > dim K,
then C(K,L) = H,(|K|,|K|). In either case C,(K,L) = 0 by 1,8.1.

DeriNITION 5.5. Let A% .-+, A be a finite sequence of vertices
of some simplex of K (with possible repetitions). For each g ¢ G define
the element gA°® -- - A? of C,(K,L) as follows: Let s be a simplex with
ordered vertices B® < --- < B°. Let f: (58 — (K°UL,K*"'U L)
be the simplicial map such that f(B') = A'. Then

gA® -+ A° = f,(gs).

It follows from 3.8 that the definition of gA° --- A is independent
of the choice of s.
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THEOREM 5.6. The assignment of g to gA® --- A® defines a homo-
morphism @ — C(K,L), i.e.

(gl +gz)Ao “oe Aﬂ = gle [P A¢+ngo - A'.
If 4y, - -+ , %4 18 a permutation of the array O, -- - , q, then
gA™ -+- A’ = £gA° ... A°

according as the permutalion is even or odd. If some vertex occurs at least
twice in A% -+, A°, then gA® -+ A° = 0. IfA° --- , A%areina
simplex of L, then gA°® --- A® = 0.

ProoF. The first and the second part follow respectively from 3.7
and 44. If A% ..., A” involve a repetition or are in a simplex of L,
then the map f: (5,8) — (K°\U L, K ' \U L) carries sinto K" \U L.
Thus f may be factored into maps (s,8) —» (K" U L, K*'U L) —
(K*U L, K" UL). Since H(K*'U L, K*'\U L) = 0 (see 1,8.1),
it follows that gA°® ..+ A? = 0.

THEOREM 5.7. Let 8y, - - , 84, be the g-simplexes of K which are not
in L. Suppose that for each simplex s, an order of ils vertices Ad <

« < AJ has been chosen. Then each g-chain ¢ of (K,L) can be written
uniquely in the form

c=Z'g,,,A£---A,,“., gmeG.

m=1
Proor. Let i, (Smsém) C (K*U L, K*' U L). Since K* U
L=s\ -+ \Us,UK7'ULands, =s,N (KU L), the
direct sum theorem 2.3 can be applied to yield a unique representation

e =3 inhm, B € Ho(l5m, 180])-

Rl

By 3.7, each h,, can be written uniquely as k., = gn5.. Since i, gnsm =
gnAn -+ A2 by Definition 5.5, the conclusion of 5.7 follows.

One of the consequences of 5.7 is that the symbols g4° --- A°
generate the group C,(K,L). Observe further that, using 5.6, any linear
combination (with integer coefficients) of such symbols can be brought
to the normal form given in 5.7. Thus the group C (K,L) may be
regarded as the group generated by symbols gA® --+ A°, where g ¢ G
and A° --- , A% are in a simplex of K, with relations given in 5.6.

Tueorem 5.8. If f: (K,L) — (K,,L,) is simplicial and gA® - - - A*
is a g-chain of (K,L), then

fogd® - ov A% = gf(4°) -+ f(AY).
ProoF. Let s be an ordered g-simplex with vertices B, --- , BY,
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and let h: (5,8) — (K*\U L, K' U L) be a simplicial map with
h(B') = A'. By Definition 5.5, g4° --- A* = h_(gs). Let
J: K'ULK™'UL) —» (KiUL,KI" U L)
be the map defined by f. Then f, = ,f, and
fq(ng e Aa) = fah*(gs) = af*h*(gs)
= (afh)*(gs) = gf(Ao) e f(Aa)°
Consider the inclusion maps
Tt J
L - K — (K,L).
The symbol gA® --- A° then represents an element of the group C,(K)
as well as of the group C ,(K,L). If in addition A°, --- , A® are in a
simplex of L, then g4° --- A® may also represent an element of C,(L).
To avoid all ambiguity we may write (g4° --- A)gor (gA° -+ AYx.1)

or (gA° -+ A%, to indicate in which group the symbol g4° .-- A°is
to be taken. From 5.7 follows

(g’ -+ Ay = (gA° -+ A,
JolgA® - Ak = (94’ -+ ANk

As an immediate consequence of 5.6-5.8 we have
THEOREM 5.9. The sequence

% Ja
0 > C(L) > C(K) - C(K,L) > 0

s exact and the tmage of 1, is a direct summand of C (K).
LemMa 52¢. If p  q, then H?((K* U L|, |K*' U L)) = 0.
DeriniTiON 5.3c. The group of g-cochains of K is denoted by
C‘(K,L) and is defined by

CYK,L) = H'(|K*\U L}, |K*"' U L)).
If f: (K,L) — (K,,L,) is simplicial, the map
(K*ULK7' UL - (K{\UL,K{"'"U Ly,
that f defines, induces homomorphisms
f CYK,L,) — C(K,L).

They are called the cochain homomorphisms induced by f.
THEOREM 5.4¢. C%K,L) = 0forq < 0or ¢ > dim K.
DEeriniTION 5.5¢. Let ¢ ¢ C'(K) be a g¢g-cochain of (K,L), and
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A% ---, A" a finite sequence of vertices of some simplex of K (with
possible repetitions). Define
(A% -+ ,AY) =g
as follows: Let s be a simplex with ordered vertices B®° < --- < B%,
and let f: (s,8) —» (K' U I, K*'\U L) be the simplicial map such
that f(B') = A'. Then g ¢ @ is the unique element satisfying
f*c = gs.

By 3.8¢, g is independent of the choice of s.
THEOREM 5.6¢.

(CI + Cz)(Ao) Tty Aq) = CI(AO, ) Aq) + c2(Ao) M) Aq)'

If 45, -+ , 1, is @ permutation of 0, --- , q, then c(4*, -+ , A’ =
+c(A° -+, A% according as the permutation is even or odd. If some
vertex occurs at least twice in A, --- , A then c(A° ---, A9 = 0.
If A% --- , A% are in a simplex of L, then c(A°, -, A% = 0.
THEOREM 5.7c. Let s, -+ , 8., be the g-stmplexes of K which are
not in L. Suppose that for each s,, an order of its vertices An < -+ <
A~ has been chosen. Then, if g, ¢ G for m = 1, «+- | a,, there exists a
unique g-cochain ¢ ¢ C°(K,L) such that
C(A:y"')Av:)=gm m=1,--,a.

In view of 5.7c and 5.6¢c the group C‘(K,L) may be described as
the group of functions with values in G defined for arrays of vertices
A% ---, A* which are in a simplex of K and subject to the conditions
listed in 5.6¢. In view of 5.7¢, we may also use the linear form notation
for cochains; i.e. the symbol

Zg...A,ﬁ'. Al

can be interpreted to mean the cochain ¢ which has the value g, on
A3, -+, AX for each m. As the next theorem shows, the functional
notation for cochains is much more convenient.

Tueorem 5.8¢c. If f: (K,L) — (K,,L,) is simplicial, ¢ ¢ C°(K,,L,)
and A% --- , A° are vertices lying in a simplex of K, then

(f)(A° -+, AY) = c(fA°, --- , FAY).
THEOREM 5.9c. The sequence

.q iq

0—- CK,L) » C(K) - C(L) » 0

18 ezact and the tmage of j° is a direct summand of C°(K).



88 HOMOLOGY OF SIMPLICIAL COMPLEXES [Cuar. III

6. THE BOUNDARY OPERATOR
DeriniTioN 6.1.  The boundary operator for chains
d: CJ(KL)—>C,(KL)

is defined to be the boundary operator of the triple (|(K*\U LI, [K** U L,
|[K**\U L|). Explicitly , is the composition of the homomorphisms

] k
HIK*U Li, KU L) — H (KU L) — H (K™ U L 1K U L)

where k is the indicated inclusion map.

THEOREM 6.2. 9,3,., = 0.

Proor. If 9, = k,,,0 and 8..; = k,9', then 8,0,.1 = Fo-1,0k0,0".
Here 9 and k,, are the homomorphisms

ke 9
H(K'VL|) » H(K'U L, K™V L|) > He (K" L)).

Since these are two consecutive homomorphisms in the H.S. of the pair
((K*\J L}, K" \J L), we have dk,, = 0 and thus 8,8,,, = 0.

Tueorem 6.3. If f: (K.L) — (K,,L,) is simplicial, then f,.0, =
3o

This is a consequence of corresponding commutativity theorem
(1,10.3) for triples.

In order to give an explicit form to the boundary operator 8, for
chains, we introduce the following notational convention.

If A° .. A" is an ordered array of vertices, the same series of verlices
with a circumflex over one or more vertices means the ordered array oblained
Jrom the first array by deleting those vertices with circumflexes, e.g.

AoA‘l__.A‘k._.An=AoAz“_Ak-1Ak+1“.An.

THEOREM 6.4, The boundary operator for g-chains 9, satisfies

q
A" - AY = Y (=1fgA e A A
k=0
Proor. Assume first that the complex K coincides with the ordered
g-simplex s with vertices A° < --- < A°, and that L = 0, Then
K'=K = sand K" = 5. Let s, denote the ordered simplex with
vertices A° < -+ A* ... < A% Define ¢, as the subcomplex of s
consisting of all faces of s except for s and s,. The proof is based on
the diagram
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Ho_ (181,157

c(lsl Isl) _— Hc-l(ls])

\ 1&. / Ho (sl i)
c—l(lélykl")

where all maps that occur are either 8 or are induced by inclusions.
Now 8,(gs) is in H,_,(|3],|s"*]). By theorem 5.8,

M 89 = 3. A e b A" = 3 il(0.8)

1=0 s =0

for some elements g, ¢ G. Now apply /., to both sides of (1). If 7 # k&,
then s; C ¢, and the map l,j! may be factored into inclusion maps

(Slysi) - (C,,,C,‘) - (S,C,,).

Since, by 1,8.1, H,_((lcil,lca]) = 0, it follows that (L. j%), = 0. Therefore
(1) gives

(2 Ly0o(98) = Liyfia(gs) = Jralguss).
Now factor 9, into 2/9, and use l,7’ = 4,. Then (2) reduces to
3) 1y 9(g8) = Jry(ge2).
Now j,, is an isomorphism, and by 3.4,
Jrairgd = [s:s)
is the incidence isomorphism. Hence (3) gives
[5,8:1(g8) = gase.

If this is compared with 4.5 and 3.6, we obtain immediately that g, =
(—1)*g. Since this holds for each k, (1) reduces to the required formula
for a simplex.

Returning to the general case, let g4° -+ A° be a g-chain in an
arbitrary pair (K,L). Let s be an ordered ¢-simplex with vertices
B’ < ... < B*and let f: s — (K,L) be a simplicial map such that
f(B) = A*,i =0, ---,q. Then by 5.8,

JugB® -+ BY) = gA® .-+ A%,
fgB® --- B .-  BY) = gA°--- &' --- A",
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Since f,-,8, = 9,f,, we have
d(gA” -+ AY) = 8,f(gB° -+ BY) = f,-13,(¢B" - - BY)

= for(Z (=D'gB° -+ B* -+ BY) = L (~1)gd® .- A* .. A"
This completes the proof.

REMARK. Since the excision map (K°. K" U L% C (K'Y L,
K ' U L) induces isomorphisms, an isomorphic theory could be ob-
tained by defining C(K,L) = H,(|K°,|JK*' U L°)). This alternative
definition has the advantage of employing only skeletons of dimension
=q and thus yielding C,(K,L) = C(K*%L%). On the other hand the
boundary operator 8, for chains would have to be defined as the com-
posite of three homomorphisms, one of which is the inverse of an iso-
morphism induced by an excision.

DerintTioN 6.1c.  The coboundary operator.

8°: CYK,L) - C"'(K,L)

is the.coboundary operator of the triple (|K**' \U L|, |K* U LJ,
K U L)).

THEOREM 6.2¢. §°*'8° = 0.

Turorem 6.3.c. If f: (K,L) — (K,,L,) is simplicial, then f**'8° =
8,

THEOREM 6.4c. If ¢ ¢ C*(K,L), then

q+1

600(‘40: Tty AEH) = Z (_l)kc(Aoy Tty A‘k’ ttty Au“)-

k=0

7. CYCLES AND HOMOLOGY GROUPS

DeriNiTION 7.1. Let (K,L) be a pair consisting of a simplicial
complex K and a subcomplex L. The kernel of d,; C(X,L) —
C,1(K,L) is called the group of g-cycles of (K,L) and is denoted by
Z(K,L). The image of 3,.,: C,..(K,L) — C,(K,L) is called the group
of g-boundaries of (K,L) and is denoted by B,(K,L). Since 8,0.., = 0,
B.(K,L) is a subgroup of Z,(K,L); the factor group H (K,L) =
Z,(K,L)/B(K,L) is called the g-dimensional homology group of (K,L).
If /: (K,L) —» (K,,L,) is simplicial, then f, carries Z (K,L) into
Z(K,L,) and B,(K,L) into B,(K,,L,), thereby inducing homomor-
phisms,

foo H(K,L) — H/(K,,L,).

REMaRk. The group H,(K,L) is not to be confused with the group
H (|K|,|L|) given by the axioms. An isomorphism of these two groups
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will be established in the next section, and is the main step in our
uniqueness proof.

According to 5.9, the inclusion maps
Tt J
L—- K- (KL

induce exact sequences

iq Ja
0 — C(L) - C(K) — C(K,L) — 0.

We shall explore this fact to define homomorphisms 9,: H, (K,L) —
H, .\ (L). - -

Lemma 7.2, If we define Z(K,L) = j;'|Z(K,L)], B,(K,L) =
Jja'[B«K,L)), and H(K,L) = Z,(K,L)/B,(K,L), then

Z(K,L) = 8] [i4-:Cor(D)), B(K,L) = BJ(K) VY 5[CL)]

where \J s the operation of forming the smallest subgroup of C,(K) con-
taining the two groups. Further, the homomorphism j, induces tso-
morphisms

7 H(K,L) = H(K,L).

Proor. Let ¢ ¢ C(K). Then ¢ ¢ Z,(K,L) if and only if jc e
Z (K,L), i.e. if and only if 3,j,c = 0. This is equivalent to j,_,d.,c = 0,
and since kernel j,_, = image 7,_,, this is equivalent to d.¢ ¢ 7,_,[C_,(L)}.
Suppose ¢ ¢ B,(K,L). Then j.c ¢ B(K,L) and j.¢ = 8,.,b for
some b ¢ C,.,(K,L). Let d ¢ C,,,(K) be such that j,,,d = b. Then

ja(c - aaﬂd) = jac - acﬂjc*ld = qu - ac+lb = 01

so that there is an e ¢ C (L) with 7,¢ = ¢ — 9,..d. Thusc¢ = d,.1d +
1.2, and therefore ¢ ¢ B,(K) \U 7,[C (L)]. Conversely, if ¢ = 0,..d + 7.6,
then j¢ = jdend + Jiif = 0¢r1Jend and jic e Bo(K,L). Thus
¢ e B,(K,L).

The last part of 7.2 is now a direct consequence of the Noether
isomorphism theorem.

LeEMMa 7.3.  The boundary homomorphism d,: C(K) — C,_1(K) de-
Jines homomorphisms

Z(K,L) = i,[Z(D),
Ba(KtL) i iu—l[Bq—l(L)]'

Since the kernel of i,., is zero, the composition i;2,d, defines homomor-
phisms

Z(K,L) —» Z, (L), B(K,L) > B,(L),
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and thereby induces a homomorphism
A: H(K,L) —» H,_(L).

Proor. Let ¢ ¢ Z(K,L). By 7.2, we then have 3¢ = 7,..d for
some d ¢ C._,(L). Then ¢,,0,.:d = 8,101 d = 3,.,0,c = 0, and
therefore d,.,d = O since the kernel of 7,_, is zero. Thus d ¢ Z,_,(L)
and 3.c & i,1[Z,-,(L)].

If ¢ e B(K,L), then, by 7.2, ¢ = 8,.,d + 7. for some d ¢ C,,(K),
eeC,(L). Thend.c = 3,0,.1d + 306 = 7,-10.¢, and 3,¢ € t,_s[B._.{L)].

DeriniTiON 7.4. The homomorphism

Os: HO(K)L) - Ha—l(L)

is defined to be the composition 9, = A;"’.
THEOREM 7.5. Consider the diagram

14 n e
Hﬂ(K)L) L — ZG(KJL) E— Cc(KrL) - Cu(K)

V1 T ic—l

H, (L) e— Z, L) — Coi(l) —— Ci(K)

in which n,m are inclusions and vy, are natural homomorphisms. Lel
zeH (K,L),yeH, (L). Theny = 3z if and only if for any ¢ ¢ Z,(K,L)
and any d e C(K) such that x = vc, n¢ = jd, there is an e ¢ Z,_,(L) with

O d = T,_ me, vie = Y.

The proof follows by inspection of the definitions of j, A, and 8.
DEerinITION 7.1¢.  The kernel of 8°: C*(K,L) — C**'(K,L) is called
the group of g-cocycles, and is denoted by Z°(K,L). The image of
87", denoted by B°(K,L), is called the group of g-coboundaries. The
factor group H°(K,L) = Z°(K,L)/B*(K,L) is called the g-dimensional
cohomology group of (K,L). If f: (K,L) — (K,,L,) is simplicial, then
f*: HY'(K,L,) - HK,L) is the homomorphism induced by f°.
LemMa 7.2¢. In the sequence
]'ﬂ 7"0
0 — CK,L) — C(K) - C%(L) — 0,

define Z°(L) = (97'Z%L), B(L) = (97'BY(L), and HYL) =
Z°(L)/B%(L). Then

D) = (TR, DY, BY(D) = BY(K) Y FCY(K, L),
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and 1°* induces isomorphisms
i1 HY(L) = HYL).

LeMMA 7.3c. Under §*: C(K) — C**'(K), Z%(L) is carried into
J*'Z°*Y(K,L) and B*(L) s carried into "' B*N(K,L). Since the kernel
of j**' i zero, the composition (5°**)™'8° induces a homomorphism

A: HYL) —» H"'(K,L).

DEFINITION 7.4c. The homomorphism

8. H'(L) —» H*'(K,L)
is defined to be the composition §* = A7~

THEOREM 7.5¢. Consider the diagram

v Lj J
H'K,L) «— Z%K,L) — CK,L) — C'(K)

[ 6(—1
*q—1

141 n 1

H(L) «— Z"Y(L) — C"Y(L) —— CY(K)
and let z e H'(L), y e H(K,L). Then 6"y = z if and only if, for any
ceZ L) and any d ¢ C°*'(K) such that x = v;c, mc = 1° 'd, there
isan e e Z°(K,L) with

§°7'd = j9e, ve = Y.

8. THE MAIN ISOMORPHISM

Let (X,A) be a pair with a triangulation T = {{(K,L)}. In this
section we establish the basic result that H.(X,A) and H,(K,L) are
isomorphic.

LemMa 8.1. In the diagram

j* l*
HJK|,IL) « H(|K*\J L|,|L|) — H(|K*°\J L|,|K*" U L|)
where j: (K*\J L,L) C (K,.L) and I: (K*\J LL) C (K*"\U L,
K* ' \J L) are inclusion maps, the following relations hold:

(a) the kernel of 1, is zero,

(b) the tmage of I, s Z,(K,L),

(c) J, s onlo,

(d) the kernel of j, is 1,'{B.(K,L)).

As an immediate consequence of this lemma we have
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TuEOREM 8.2. (MAIN 180MoRPHISM). In the diagram

te Js Ly K v
H(X,4) « H(K|,|L|) « H(K*\J L|,|L)) - C(K,L) « Z,(K,L) - H(K,L)

where y 18 an inclusion and v the natural map, the homomorphisms t,j,
and wy'l, are onto and their kernels in H(|K* \J L|,|L|) are equal.
Therefore 6 = vy 'l,7,'t," is single valued and is an isomorphism

61 H,(X,A) = H(KL).

Explicitly, if x ¢ H,(X,A) and y ¢ H,(K,L), then y = 8,z if and only
if there exist elements ¢ ¢ Z,(K,L) and d £ H,((K* U L},|L|) with

=174 lLd=n, =y

The properties of this isomorphism will be established in the next
section, We proceed now with the proof of 8.1. The following simpli-
fied notation will be used:

X=|K, X=|KVUL, 4=X'=]|L.

Of the theorems of this chapter, the proof uses only the following
proposition, which is a restatement of 5.2;

LemMa 8.3, If p # g, then H, (X X"") = 0.

Two lemmas will be needed.

Lemma 8.4, The homomorphism

H(X*,4) —» H(X"",4)

induced by the inclusion map (X7 4) = (X7 4) is (1) onlo fo#Ep+1],
(2) of kernel zero if ¢ # p, and (3) an tsomorphism if ¢ # p,p + 1.
Proor. Consider the section

Hoo(XX%) » H(X",4) - H (X, 4) > H(X X7

of the homology sequence of the triple (X**'.X” 4). By 8.3, the left
term vanishes if ¢ # p and the right term vanishes if ¢ # p 4+ 1. Thus
(1) and (2) follow from the exactness of the H.S. of the triple (see
1,10.2). Statement (3) follows from (1) and (2).

LemMa 8.5, H,(X*,4) = 0. i

Proor. From 8.4 it follows by induction that H (X'™4) =
H(X"A)forr=2 - ,¢+ 1 Since H(X",4) = H,(4,4) =0
by 1,8.1, the proposition follows.

Proor or 8.1, The homomorphism j,: H,(X%4) — H,(X.4)
may be factored into homomorphisms
N jl* A j% j't -
H(X",4) — H(X"™4) — -+ - HX"",4) = H(X,4)
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where ¢ + r = dim K, and where j,j,;, --- are inclusion maps. By
8.4, j,, is onto, while j.,,j.,, -+ are isomorphisms. This implies
that j, is onto, thus proving part (c) of 8.1. It also follows that

(1) kernel j, = kernel ji,.

The proof of the remaining three parts of 8.1 is based on the fol
lowing diagram:

Hon(X, X9
4’5 \?qi-‘l -
- - l* -~ oA 6, ~
H(X4) - H(X,4) — HMX,X") — H. (X4
. a,
l]l* \‘ ll#
H/(X",A) Ho (X7, X0

The commutativity conditions in the two triangles are obvious conse-
quences of the definitions of the appropriate boundary operators.

The middle row is a portion of the H.S. of the triple (X,X"A).
Since H (X”"',A) = 0 by 8.5, it follows that the kernel of I, is zero,
thus proving part (a) of 8.1. Furthermore image I, = kernel 8,, and
since the kernel of [, is zero, we have

kernel 9, = kernel lj, = kemnel 3, = Z (K,L).
Thus image {, = Z,(K,L), and part (b) of 8.1 is proved.

The vertical column is a portion of the H.S. of the triple (X**', X A4);
therefore, by (1) and exactness,

kernel j, = kemel j;, = image 3.
Thus
I*[kernel j,] = I*[image 3] = image I*d = image 8,., = B, (K,L)

and therefore, since the kernel of I, is zero, kernel j, = I;'[B(K,L)].
This proves (d) and concludes the proof of 8.1.

TuroreM 8.6. If (X,A) is a triangulable pair, then H,(X,A) = 0
for g < 0.

Proor. In view of the main isomorphism, it suffices to show that
H(K,L) = 0 for ¢ < 0. By 54, we have C(K,L) = 0 for ¢ < 0.
This implies Z,(K,L) = 0, and thus also H.(K,L) = 0.

LEmMA 8.1c. In the diagram

j* l*
HY(|K|,|L]) — H'(|JK*\J L},|L]) « H'(|K*\J L|,|K*"" U L)
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where j and l are inclusions, the following relattons hold:
(a) I* is onlo,
(b) the kernel of I* is B*(K,L)
(c) the kernel of j* is zero,
(d) the image of j* is I*Z°(K,L).
THEOREM 8.2¢. In the diagram

i* 7* I*
HYX,A) — H'(|K|,|L)) — HY(|K* Y L|,|L|) « C“K,L)
] v

«— 2%(K,L) - H'(K,L)
t* 13 an isomorphism, the kernel of j* is zero, the images of j* and l*n
coincide, and the kernels of I*y and v coincide. Therefore 6 = vy~ 'I* 7' j**
18 a single-valued isomorphism

6r: H'(X,A) = HYK,L).

Explicitly, if £ ¢ H(X,A) and y ¢ H°(K,L), then y = 0,z if and

only if there is a ¢ ¢ Z°(K,L) such that
JH*z = I*nc, ve = .

Lemma 8.3c. If p # gq, then H"(f(”,f(":‘) = 0. )

LeEmmMA 8.4c. The homomorphism H' (X" ',A) — H*(X",A) induced
by the inclusion map is (1) of kernel zero if ¢ # p + 1, (2) a homomorphism
onto if ¢ # p, and (3) an tsomorphism if ¢ # p,p + 1.

LemMa 8.5¢. HY(X*',A4) = 0.

TraeoreM 8.6. If (X,A) s triangulable, then H'(X,A) = 0 for ¢ < 0.

9. PROPERTIES OF THE MAIN ISOMORPHISM

The following three important properties of the isomorphism 05 of
the last section will now be established.
THEOREM Q.1. In the diagram

6r
Ha(X’A) — Hu(KaL)

P,

Hu-l(A) —_— Hd—l(L)

where T' = {t',L} ts the triangulation of A defined by T, the commulativity
relation 3.01- = 0,-49 holds.
TaEOREM 9.2. If (X,A),(X,,A,) are pairs with triangulations T =
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{t(K,L)}, T, = {t.,,(K\,L,)} respectively, and if f: (X,A) — (X.,4))
1s simplicial, then, in the diagram

fr
Ha(X’A) — HG(K;L)

o,k
br,

H(X,A,) — Ha(Kl;Ll)

where g: (K,L) — (K,,L,) is the simplicial map g = (;'ft, the com-
mutativity relation g,6r = 07,f, holds.

Let P, be the space consisting of the single reference point. Re-
garding P, as a simplicial complex K, we have Z,(K,) = C4(K,) = @
and By(P,) = 0 so that H,(K,) = G.

Treorem 9.3. 8 Hy(P,) — Hy(K,) is the identity map G — G.

The last proposition is an immediate consequence of the definition
of 8. Theorem 9.2 follows from standard commutativity relations in
each square of the following diagram

H(X,A) « H(K||L) « H(K",|L'"") - Z(K,L) — H/K,L)

1S 19, By 14 Lgs
H(X,,A,) « Ha(|K1|;!L1I) - Hq(|K”,|Lf-1]) — Z(K\,L)) - H/(K,,L)

where £ is defined by g.
The proof of 9.1 requires some preparation
LemMma 9.4. The homomorphism

kgt H(KLLT) > H(K*\J L||L)

.
induced by inclusion, is @ homomorphism onlo.
Proor. The homomorphism k, may be factored into homomor-
phisms
kl* kﬁ*
H(K|,IL*7Y) — H(K|LIL) — H(|K*\J L|L))
induced by appropriate inclusion maps. Since L' = K° M L, the

homomorphism k,, is an isomorphism by the excision theorem 2.1.
To examine k,, consider the portion

ks,
H(K*|,IL7") — H(K[IL*]) = Heo(|L°],IL7)

of the H.S. of the triple (K°L°L*"). By 8.3, the end term is zero.
It follows from exactness that k,, is onto. Thus k, is onto.
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Proor or 9.1. Consider the following diagram

H(K,L)

v

Z(K,L)

e L Ln

[, HOKVLUED — CdkD

t* g* Tk* f* Tja

H(X,d) — H(KLIL) — HAK'LILT) = C(K)
lo 4 Lo g, ) fu Lo,
Hoo(d) — HellL)  «  Ho(r™) - Cerl®
Te-1

__l‘_*_, Con(D)

Tm

Zor(D)

H. D)

In this diagram n,7, are inclusions, »,», are natural homomorphisms,
and all other homomorphisms are either boundary operators, or are
induced by ¢ and ¢, or by appropriate inclusion maps. The com-
mutativity relations in each square are easy to verify.

Let z ¢ H,(X,A). By definition of 6, there exist elements

csZ,(K,L), be H(|K*\J L|,|L})
with
z =17 b = ne ve = Oz,

By 9.4, k, is onto, and therefore there is an a ¢ H (|K*|,|L*""|) with
kea =b. Defined = f,a. Then

Jd = lLka=1b= 1y
Thus, by 7.5, there is an e ¢ Z,_,(L) with
3,4 = T, 1me, vie = 9,02,
Since

tedigdha = 9t g,a = 8t 75, b = oz,
iq._lll*ala = aqf*a = aqd = ‘iq_lme,

and since the kernel of 7, is zero, it follows that
or = t,:jl*ala, l,*ala = me.

Thus, by the definition of 8., it follows that 67,02 = v,e = 3,0,2.



§9 PROPERTIES OF MAIN ISOMORPHISM

THEOREM 9.1c. In the diagram

0y
HY(X,A) —— H'(K,L)

'[a ]a'
Oy

H™'(A) —— HVI)

the commutativity relation 678 = 8"6,. holds.

99

TueOoREM 9.2¢. If f: (X,A) — (X,,4,) 1s simplicial relative to iri-
angulations T = {t,(K,L)}, Ty = {t,(K,,L,)}, then in the diagram

0r
H'(X,A) —— H'K\L)

e,

T

H'(X,,A) — H'K,L)

the commutativity relation g*0r, = 8rf* holds, where g = 7' ft.
THEOREM 9.3c. 6: H (P,) — Hy(K,) is the identity map G — G,
where K, 1s the simplicial complex consisting of the single vertex Py.

LEMMA 9.4c. The homomorphism
k*: HY(|K®\J L||L) — H'(IK°|,IL*™)),

tnduced by the inclusion map, has kernel zero.

The proof of 9.1c is not quite dual to that of 9.1, and will therefore

be given here. Consider the diagram

j* l*

— H(KVLL)

t* gt lk* f*

H'(X,A) — HYK|,L)) — H([K',|IL*7]) «
18 e 1y gt 14, I
H74) — HO(L) -  HO(LT)
It

H(K,L)

1o
C*(K)
5
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Let ze H'(4). By the definition of 6., there exists a ¢ ¢ Z°"*(L) with
FAU*zr = B, ve = 0r.2.

Since 7° is onto, we may select d ¢ C*"'(K) so that :°"d = n,c. Then, by
7.5¢, there is an e ¢ Z°(K,L) satisfying

8°d = j'ne, ve = 8'0p.z.
Then
k*j*t*sx = &, 4 *c = 8,%nc = 5,1%1°d = f*8%d
= f*g'ne = k*1*ne.
Since, by 9.4c, the kernel of k* is zero, it follows that
J¥t*ox = l*qe.

Thus the definition of 8, implies 6,6x = ve = §*07.2.

10. THE UNIQUENESS THEOREM

Let H and H be two homology theories defined on admissible cate-
gories containing all triangulable pairs and their maps. The main
result of this chapter is that every isomorphism of the coefficient groups
G and G yields an isomorphism of the theories H and H over the class
of triangulable spaces and their maps.

TrEOREM 10.1 (UNIQUENESS THEOREM). Given two homology theories,
H and H, and given a homomorphism

he: G — G
of their coefficient groups, there exists a unique sel of homomorphisms
h(g,X,A): H.(X,A) — H(X,A)
defined for each triangulable pair (X,A) and each integer q, such that
(1) h(0,P,) = ho

2 i1 (X,A) - (X,,4,) is a map, and (X,A) and (X,,A,) are tri-
angulable, then the commutativity relation f, h(q,X,A) = h(q,X,,4.)f,
holds in the dvagram

h
H(X,d) —— H(X,A)

V. h l?*

H(X,,4,) — H(X,,4,)
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(3) the commulativily relalion 5h(q,X,A) = h(q — 1,4)3 holds in the
diagram

h
H(X,A) — H/(X,A)

¥ ¥
h —
H, ,(4) — H,,(4)

If he: G = G is an isomorphism, then each h(q,X,A) s also an
tsomorphism.
Proor. We shall construct homomorphisms

t(g,K,L): H(K,L) — H(K,L)

for each simplicial pair (K,L) and each integer ¢ satisfying the following
conditions:

(4) £(0,Po) = ho,

%) if f: (K,L) — (K,,L,) is simplicial, then the commutativity rela-
tion fu¢(¢,K,L) = {(q,K,,L,)f, holds in the diagram

¢
HG(K)L) - Ilq(KyL)

P
¢
Hq(KnLl) — Hq(KnLl)

(6) the commutativity relation 5.{(q,K,L) = ¢(¢ — 1,L)d, holds in the
diagram

$
H(K,L) —— Hy(K,L)

la. 15,
¢
H, () — }IG—I(L)
Let g ¢ G and let gA® - -+ A° be a g-chain of K. Define
MgA° - A = ho(@)4° - A®
It follows from 5.4-5.7 that n yields a homomorphism

71 C(K) — C(K).
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From 5.8 and 6.4 it follows that » commutes properly with f, and 4..
Consequently n defines homomorphisms

Z(K,L) » Z(K,L), B(K,) - B(K,D),
and thus induces homomorphisms of their quotient groups
¢ H(K,L) » H(K,L)

satisfying (4)-(6).
Now, given a pair (X,4) with a triangulation T = {¢,(K,L)}, con-
sider the diagram

Or & 87 _
H(X,A) — H(K,L) — H(K,L) — H(X,A)

where 6, and ET are defined for H and H in 8.2. Define

hT(q:XyA) = —6;‘13-613
then
hr(g,X,4): H(X,A) — H(X,4).

We will show that hr is independent of the triangulation 7" and satisfies
(1)-(3). L

Observe that, if (X,4) = P, then 6;: G = G and 6;: G = G
are identity maps, so that hr(0,P,) = £(0,P,) = h, as desired.

Now let (X,4),(X,,4,) be pairs with triangulations T = {{,(K,L)},
T, = {4,,(K,L)}, and let f: (X,A) — (X,,A,) be a map (not neces-
sarily simplicial). In addition, we consider the identity map 1:
(X,4) — (X,4). Theorems 11,8.4 and 11,8.6 imply the existence of an
integer n and of maps

fu: (XyA) - (Xl)Al)x in: (XaA) - (XIA)

with the following properties: f, is simplicial relative to the tri-
angulations "7 = {"{,("K,"L)}, T, = {(,,(K,,L,)}, and is homotopic to
f, while 7, is simplicial relative to the triangulations "T = {",("K,"L)},
T = {t,(K,L)}, and is homotopic to 7. Define the simplicial maps

g: (CK'L)— (K,L), k: (K, L)— (K,L)
by
g = ', k=100,
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We now have the diagram

o ¢ o
HU(X’A) I Ha(KyIJ) —_— Hc(KyL) — Ha(XyA)

Pﬂ* ]k, 1ks IZ,*
6 ¢ 0 _
H,(X,A) — H,(CK,'L) — H,(K,'L) —— H(X,A)
lfn* lgﬂ gﬂ }?u*
0 ¢t 0
}IG(Xl)Al) —_— Hu(KhLl) _— Ha(KllLl) — HG(XI!AI)

The commutativity relations involving ¢ follow from (5) since & and ¢
are simplicial. The commutativity relations involving ¢ and 6 follow
from 9.2 since 7, and f, are simplicial. Since 4, is homotopic to 7, it
follows that ¢,, and 7,, are identity maps. Since f, is homotopic to f,
it follows that f,, = f, and Jox = f4 Thus we obtain

(7) ?*hT(Q)XJA) = th(QthAl)f*'

Applying this relation to the special case (X,4) = (X,,4,), and
f = identity, we find hr(¢,X,4) = hr (g,X,A) so that indeed h (¢,X,4)
is independent of the triangulation T, and may be written as h(q,X,4).
Consequently (7) yields (2).

To prove (3) consider (X,4) with a triangulation T = {¢{,(K,L)}
and denote by T’ the induced triangulation of 4. In the diagram

0 ¢ )
H(X,4) — H(K,L) —— H(K,L) «—— H(X,4)
¥ S N
o ¢ [
Hq—l(A) _— Hq—l(L) _ Hc-l(L) — Hq—l(A)

commutativity in the center square is asserted by (6) while commu-
tativity in the outside squares follows from 9.1. Thus dh(¢,X,4) =
h(g — 1,A)9 as desired.

We now prove that the homomorphisms h(q,X,A) satisfying (1)-(3)
are unique. Two auxiliary propositions will be established first.

If s® is an ordered ¢-simplex and ¢ ¢ G, then

(8) h(q,|s*L1s*D(gs®) = holg)s".

If ¢ = 0, the proposition is an immediate consequence of (1).
Assume then that ¢ > 0 and that (8) holds with ¢ — 1 in place of ¢.
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Let A° < ... <-A° be the vertices of s° and let s*' be the face of s
with vertices A < .-+ < A° Then, by 3.7,

[aql -1

lgs* = gs*
Since [s":s*7'] = 7,'7,9, it follows from (2) and (3) that

hg = 1, [s*7[,J8" " Pls®ss"'] = [s":6" l]h(q, s}, 18°D).
This implies

(%55 (g, [ 1 (gs9) = g — 1,157, 1 Digs™™)
= h(@s*™ = [ Jh(g)s"
Since [s"_s:’_] is an isomorphism, the proposition follows.
Let gA® --- A% e C,(K,L). Then
(9 R(g|K*VL| |[K"'\ULD@GA® --- A% = ho(g)A°® --- A%

By 5.5, we have gA® - - A® = f_(g) where s is an ordered g-simplex,
and f is a suitable map f: (s,8) — (K*\U L, K' U L). Then, by
(2) and (8),

R(gA® -+ A% = h(f,(9)) = Fh(g9) = S ho(g)s = ho()A° -+ A*

as required.
Now let k and A’ be two families of homomorphisms satisfying (1)-
(3). Let (K,L) be a simplicial pair. We introduce abbreviations:

hl = h(Q;|KG % L|’1K0—1 % Ll)r h2 = h(q:[Kq % LI;ILI),
and similarly define k{ and h{. By (9) we have h, = h{. Let
I: (K*ULL) — (KU L, K"\ L) be the inclusion map. Then
by (2)

Lhe = hyl, = R, = LR
Since, by 8.1, the kernel of i* is zero, it follows that h, = h;. Now
consider the inclusion map j: (K°\J L,L) — (K,L). Then
h(g,|K|,ILDjy = Juhs = jubi = W'(q,|K1,|L])j,.

Since, by 8.1, j, is onto, it follows that h(q,|K|,|L|) = h'(q,|K],|L}).

Let (X,A) be a triangulable pair and T = {{,(K,L)} a triangulation
of (X,A). Then

Lh(g,X,4) = h(q,|IK|,ILDt, = K(q,|K|,ILDL, = L,h(g,X,4).
Since 2* is an isomorphism, it follows that A(g,X,4) = hA'(¢,X,A).
Thus A = k' and uniqueness has been proved. -
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Now let ko G = G be an isomorphism, and let ke G = G be
the inverse isomorphism. Let h(q,X A): H,(X,A) — H,(X,A) be the
homomorphisms satisfying (1)-(3) relative to h,. Then

h(g,X,A)h(g,X,4): H(X,A) — H(X,4)

are homomorphisms satisfying (1)-(3) relative to the identity map G —
G. Therefore, by the uniqueness property, we have h(q,X,4)h(g,X,4) =
identity. Similarly h(q,X,A)h(q,X,A) = identity. Thus h(¢,X,4) is
an isomorphism with h(q,X,A) as inverse. This concludes the proof of
the theorem. i

TueoreM 10.1c. Given {wo cohomology theories H and H and a
homomorphism

het G — G
of their coefficient groups, there exists a unique set of homomorphisms
Mg,X,A): HYX,A) — HY(X,A)
defined for each triangulable pair (X,A) and each inleger q, such that

(1) - h(0,Po) = h,,
(2) 8h(g,4) = h(g + 1,X,4)s.
@ If f: (X,4) = (X,,A), then j*h(g, X1, 4)) = h(g, X, A)f*.

If hy: G = 5’, then each h(q,X,A) is an isomorphism.

EXERCISES

A. INCIDENCE ISOMORPHISMS.
1. Let s37',s3”" be (¢ — 1)-faces of a g-simplex s* and let s** be
their common (¢ — 2)-face. Verify that

[sf 78" ") fs%isi '] = —[s3 ":s" %57 ).
Hint: use 4.5.

B. CELLS AND SPHERES.

1. Using the notations of 1,16, consider the map &;: (E",S*") —
(E",8 ") defined by h.(zy, + -+ , Zs, =+ , Za) = (Z1, +++, —Zy, **+  Tn)e
Prove that h,,z = —zfor z e H (E",S"").

2. Consider the map f,: S ' — §"! defined by %, in problem 1.
Prove that f;,z = —zforze H,,(§"").

3. Consider the map h: (E",S"') — (E",S*") defined in vector
notation by h(z) = —z. Prove that h,z = (—1)"z for z ¢ H(E",S*™").
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4. Consider the map f: 8! — 8! defined by & in problem 3.
Prove that f,z = (—1)"zfor z e H,_,(S"™").

C. THE EULER CHARACTERISTIC.

Assume that the values of the homology theory are D-modules (see
exercises ,H and 1,I), and assume that the coefficient group has rank 1.

1. Let (X,4) be a pair with a triangulation T = {{,(K,L)}. Let
a, be the number of g-simplexes of K which are not in L. Show that
the Euler characteristic x(X,4) exists and satisfies

n

XX, 4) = 2 (=D,

where n = dim K. (Hint: prove r[C (K,L)] = a,)

D. n-Circurrs.

DeriniTioN. A simplicial pair (K,L) is called a stmple n-circutt if
(1) each point of K is a point of some n-simplex of K, (2) each (n — 1)-
simplex of K — L is a face of two n-simplexes of K — L, and (3) if
o and 7 are two n-simplexes of K — L, there exists an ordered set

T =0y, 0 **° 0 =T

of alternately n and (n — 1)-simplexes of K — L such that each (n — 1)-
simplex is a face of the neighboring n-simplexes.

1. Assume that the coefficient group G of the cohomology theory is
infinite cyclic (i.e. isomorphic to the integers). Let A° --. , A" be
the vertices of an n-simplex of K — L where (K,L) is a simple n-circuit.
If g ¢ G, show that gA° --- A" is an n-cocycle of K mod L (see Remark
after 5.8¢), and show that any n-cocycle of K mod L is cohomologous
to one of this form. Show that H"(K,L) is either infinite cyclic or
cyclic of order 2. 1In the first case (K,L) is called an orientable n-circuit,
in the second case, nonorientable.

2. Let (K,L) be a simple n-circuit and let the coefficient group be
infinite cyclic. If (K,L) is orientable, show that H.(K,I) is infinite
cyclic, and H,_,(K,L) has no elements of finite order. If (K,L) is
nonorientable, show that H,(K,L) = 0, and the subgroup of H,.,(K,L)
of elements of finite order is cyclic of order 2.

3. Define real projective n-space P" to be the space obtained from
an n-sphere by identifying each point with its antipode. Show that
P" is triangulable as an n-circuit which is orientable or not according
as n is odd or even.

4. Show that the cartesian product of any finite number of spheres
can be triangulated so as to be an orientable simple n-circuit.
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5. Let K be a 2-circuit. Show that the numbers ay, «;, a; of sim-
plexes of dimensions 0, 1, and 2 satisfy the conditions

3a, 2q,,
a = 3(010 b X(K)_)_:______
a Zz 3 (7 4+ V49 — 24x(K)).

6. Show that 2-sphere S°, projective plane P?, and the torus T° can
be triangulated as simple 2-circuits. Their Euler characteristics are
respectively 2, 1, and 0. Show that, for any such triangulation, the
following inequalities hold:

St o = 4, a = 6, a, = 4.
PZ: [2 ) 2._ 6, g ; 15, [ 27 g 10.
Tz: [2 1) g 7, a g 21, [27] g 14-

Find triangulations in which the minimal values are attained.



CHAPTER 1V

Categories and functors

1. INTRODUCTION

The first objective of this chapter is to introduce and illustrate the
concepts of category, functor, and related notions. These are needed in
subsequent chapters to facilitate the statements of uniqueness and
existence theorems. Only as much of the subject is included as is used
in the sequel. A thorough treatment can be found in a paper of Eilen-
berg and MacLane [Trans. Amer. Math. Soc. 58 (1945), 231-294).

The ideas of category and functor inspired in part the axiomatic
treatment of homology theory given in this book. In addition, the point
of view that these ideas engender has controlled its development at
every stage.

The second part of the chapter is devoted to homology theories de-
fined on abstract A-categories. An admissible category for homology
theory, as defined in 1,1, has much more structure than is needed for
the statement of the axioms for a homology theory. Abstracting the
essential elements leads to the notion of an h-category. There is a
corresponding concept of A-functor. It is shown that the composition
of an h-functor and a homology theory, when defined, is again a ho-
mology theory. We thereby obtain a rule for deriving one homology
theory from another. It is used frequently in subsequent chapters.

2. CATEGORIES

The definitions below arise from the consideration of the common
properties of collections such as (1) topological spaces and their con-
tinuous mappings, (2) groups and their homomorphisms, and (3) sim-
plicial complexes and their simplicial maps. An examination of the
properties of continuous maps, homomorphisms, and simplicial maps
leads to the following definition:

DEeriniTION 2.1. A set € of elements {v} is called a multiplicative
system if, for some pairs v,,y, ¢ @, a product vyy, ¢ C is defined. An
element ¢ ¢ € is called an identity (or a unit) if ¢y, = v, and v2¢ = v,
whenever ey, and v,¢ are defined. The multiplicative system is called

an abstract category if the following axioms are satisfied:
108
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(1) The triple product v;(vsv,) is defined if and only if (ysy.)v: is
defined. When either is defined the associative law

Ya(yam) = (Y2

holds. This triple product will be written as y;y,v,.

(2) The triple product vyv,y, is defined whenever both products
4372 and vyy, are defined.

(3) For each v ¢ € there exist identities ¢,¢; ¢ @ such that y¢, and
&y are defined.

LemMa 2.2, For each v ¢ C, the idenlities ¢, and e; such that ve, and
&y are defined, are unique.

Proor. Suppose ve, and ye] are both defined with ¢, ¢{ both identi-
ties. Then (ye)ei = ve is defined. Hence ¢¢] is defined and ¢, =
6 €] = ¢i. Similarly ¢; is unique.

DeriniTION 2.3. A category @ consists of a collection {C} of elements
called objects and a collection {y} of elements called mappings. The
mappings form an abstract category in the sense of 2.1. The objects
are in a 1-1 correspondence C — 7, with the set of identities of the ab-
stract category. Thus to each mapping v there correspond unique
objects C, and C, such that vi¢, and 7.,y are defined. The objects C,,C,
are called the domain and the range of v respectively; notations C, =
D), C, = R(v),yv: Ci— C..

LrMMma 2.4.  The product v,y, s defined if and only if R(v\) = D(v,).
If v3v, is defined, then R(v:v1) = R(v2), D(ya11) = D(vy).

In other words the lemma states that, if y;: C;, — C,, v, C;— C,,
then vy, is defined if and only if C, = Cj and then vsv,: C, — C,.

Proor. Let ¢ = ip(y,. If 7,7, is defined, then v,(ev:) = v
is defined. Thus v,¢ is defined and R(y,) = D(y,). Conversely, if
R(v\) = D(y,), then v,¢ and ey, are both defined for ¢ = ig(,,, and
therefore (v,€)y: = v.7: I8 defined. If vy, is defined and ¢ = ip(,,),
then v, ¢ is defined. Hence v,v.e = (y2v1)¢ is defined so that D(y,) =
D(vyv1). Similarly R(y2m1) = R(v2).

DEerINITION 2.5. A mapv: C, — C, in @ is called an equivalence
if there exists a map v": Cs — C, in € such that vy = i¢,, v¥' = {¢,.

LemMa 2.6. The map v’ of 2.5 is unique and s called the inverse of
v, notation: y~'. 47 is also an equivalence with (v')™' = ~. If
y1: Ci = Cay a2 Cs — C; are equivalences, then vy, is an equivalence
with (yav:)™' = vi':"'. Each identity ¢ is an equivalence with €' = e.

Proor. Suppose that 4’ and " satisfy vy = ¥y = e,
¥ = vy” = €. Then

1"

Y =¥, =11 = ex’ ="
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The fact that 4" is an equivalence and that (y™')™' = y follows directly
from the definition. If y,,v, are equivalences and v,v, is defined, then
(va71)(vi'v:") is defined and equal to e.,, similarly (vi'yz")(ya)) = e,
Thus (v2y)™' = vi'v:s'. If € is an identity and ¢ = ey, then €€
is defined and ¢ = e = e. Thus ¢ = ee 80 that € = tp(,y = 1g( and
-1

€ =e

DerinITION 2.7. A subcategory @, of € is a subaggregate of € such
that

1° if C & €, then 7, ¢ @,

2°, if v,,v, € @y and v,v, is defined, then v.y, & @,, and

3°, if vy € @, then D(y) and R(v) are in @,.

A subcategory @, of € is called full if, for each v ¢ @, conditions
D(v) ¢ @y, R(y) € G, imply v ¢ C,.

It is easy to see that a subcategory is itself a category. However a
map v ¢ G may be an equivalence in € without being an equivalence
in C,.

The process of obtaining a subcategory may be broken up in two
steps. First select a subset of the objects of € and consider the full
subcategory determined by these objects. Then without further limiting
the objects select a subaggregate of maps satisfying 1° and 2°.

3. EXAMPLES OF CATEGORIES

The first example of a category is composed of topological spaces
and continuous maps. The objects are topological spaces, the maps are
continuous maps of one topological space into another. The composi-
tion (product) of two maps is the usual function of a function. The
equivalences in this category are the homeomorphic maps of one space
onto another.

The category of prime importance in our axiomatic treatment has,
as its objects, pairs (X,4) where X is a topological space and A C X;
and has, as its mappings, continuous maps f: (X,A) — (Y,B). This
category will be denoted by @,. The admissible categories discussed
in 1,1 are all subcategories of @,. In an admissible category @ the
equivalences are precisely the homeomorphisms as defined in 1,5.

In 1,2 we encountered the categories G, and Gz; the objects in these
categories are, respectively, compact abelian groups, and modules over
a ring B. The mappings in these categories are the continuous homo-
morphisms in the first case, and linear maps in the second. When R
is the ring of integers, Gx is just the category G of ordinary abelian
groups and their homomorphisms.

For the categories G¢,Gz we may consider the categories $,G¢,8:Gr
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whose objects are lower sequences of groups in G¢ or Gz. The mappings
are the homomorphisms of one such lower sequence into another. The
exact lower sequences form subcategories §,G¢,8,Gx. The similarly
defined categories of upper sequences and exact upper sequences will
be denoted by 8,G¢,8.G¢, ete.

The categories studied in Chapter 11 are denoted by X,X,; the
objects in both these categories are pairs (K,L) where K is a simplicial
complex and L is a subcomplex. The mappings in X; are linear map-
pings, while in X, they are simplicial. Clearly X, is a subcategory of
X;. Theorem 11,4.8 states that every equivalence in X, is in X,.

In 11,1 the important category 3 of triangulable pairs is introduced.
The objects are triangulable pairs (X,4), the mappings are continucus
maps of one such pair into another. Clearly 3 is a full subcategory of @,
and is an admissible category for homology theory.

4. FUNCTORS

Let € and © be categories and let T be a function which maps the
objects of @ into the objects of © and, in addition, assigns to each map
feeamap T(f) e D. The map T is called a covariant functor (from €
to D) if it satisfies the following conditions:

1°. If f: C, — C,, then T(f): T(C,) — T(C,).

2°. T(ic) = ircc).

3°. If f.f, is defined, then T'(f.f,) = T(f)T(f:).

The map 7 is called a coniravariant functor if these conditions are re-
placed by:

V. If f: C, — C, then T'(f): T(Cy) — T(C)).

2'. T(ic) = ir(c»

3. If f.f, is defined, then T(f.f\) = T(f)T(f,).

The condition 1° can be rewritten: T(Df) = DT(f) and T(Rf) =
RT(f). Thus T is a covariant functor if it commutes with the opera-
tions of the category.

In view of condition 2° a functor T is completely determined by the
function T(f) defined for maps f only. Thus a covariant functor T is
essentially a homomorphism of the abstract category associated with
€ into the abstract category of © subject.to the condition that identities
be mapped into identities. A contravariant functor yields an anti-
homomorphism of the abstract categories.

If T is a functor from € to O, and 7" is a functor from D to &, they
can be composed in the obvious way to form a functor T'T from € to &.
If TT' have the same (opposite) variance, then 7’7 is covariant (contra-
variant).
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5. EXAMPLES OF FUNCTORS

Let @ be an admissible category on which a homology theory is
given. Let ¢ be a fixed integer, and define for an admissible map
fi (X,4) > (Y,B)

H(f) = [+ H(X,A) = H/(Y,B).

Then Axioms 1 and 2 for a homology theory assert that the pair of
functions H.,(X,A),H.(f) is a covariant functor H, on the category @
with values in the category Gy or Gc.

Instead of using the category Gr we may use the category &:Gx of
exact lower sequences in Gr. We then define H(X,4) to be the ho-
mology sequence of (X,A4), and H(f) to be the homomorphism f,, of
the H.S. of (X,4) into that of (¥,B) induced by f (see 1,4.1). Then
Axioms 1, 2, 3, and 4 insure that H is a covariant functor on @ to &Gz
or §Gc. This functor is referred to briefly as the homology functor.

In a similar way, the cohomology functor is a contravariant functor
on @ to §.Gx or £.G¢.

Another covariant functor on @, this time with values also in @, is
obtained by setting

Tx,4)=4, T =/flA

where f|A is the map A — B defined by a map f: (X,4) — (¥,B).
A covariant functor on X, to @ (compact pairs) is obtained by
setting

T(K,L) = (KLILD, T = /.

6. TRANSFORMATIONS OF FUNCTORS

Let T and S be two covariant functors from € to ©. A function T
which assigns to each object C ¢ € a map T'(C) ¢ D such that

1°. T(C): T(C) — S(C),

2°.if f: €y — C,, then T(C)T(f) = S(NHT(C),
is called a natural transformation of the functor T into the functor S.
In case T and S are contravariant functors, the condition 2° on T is
replaced by

2. if f: C,— C,, then T(C)T({) = S(HT(C,).
If the map I'(C) is an equivalence for each C ¢ @, then T is called a
natural equivalence of the functors T and S (notation: T: T & 8).
In this case, 2° can be written

T(C)TANTECY™ = SU).
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The condition 1° is equivalent to the condition that the composi-
tions in 2° are always defined. Condition 2° asserts that commutativity
holds in the following diagram:

T(f)
T(C,) — T(C,)

lr(co lr(cz)

S(f)
S(Cy) — 8(C»)

It is easily verified that the composition of two natural transforma-
tions is also natural. If T: T — S is a natural equivalence, then
I''": S — Tdefined by I"*(C) = [T(C)]™' is also a natural equivalence,
and Ty, = TI'T™' = I'"'T has the property I''(C) = ir,. Thus
I': T = T. It follows that the concept of natural equivalence is
reflexive, symmetric, and transitive.

7. EXAMPLES OF TRANSFORMATIONS OF FUNCTORS

Let @ be an admissible category on which a homology functor H
is given, and let T be the functor from @ to @ defined by

T(Xx,4) = 4, T(f) = flA.

Let ¢ be a positive integer and let H, H, , be the homology functors
from @ to the category G (or G¢). Then Axiom 3: af, = (f|4),91s
precisely the condition 2° that the homomorphism

3. H(X,A)— H.,(4) = H_,(T(X,A4))

shall be a natural transformation of the functor H, into the composite
functor H,_,T'.

In Chapter 111 it was proved that 8 is an equivalence d8: H, = H, T
over the subcategory of pairs (|s|,]$|} where s is a simplex and § is its
boundary.

The group of ¢-chains C,(K) is a covariant functor on X, to G (or
Gc), provided we define C,(f) = f, for each simplicial map f: (K,L) —
(K,,L,). In the same fashion the groups Z,(K,L) of the g-cycles mod
L and B,(K,L) of the bounding ¢-cycles mod L are functors on X, to
Gr (or G¢). Since B,(K,L) C Z (K,L), the former is called a sub-
Sunclor of the latter. The quotient funcior H (K,L) = Z,(K,L)/B,(K,L)
has the same domain and range. The map v (K,L): Z/(K,L) —
H (K,L) which assigns to each cycle its homology class is a natural
transformation of Z, into H,.
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In order to distinguish this g-functor from the ¢** homology functor
defined on @ to G we shall write H, for the ¢** homology functor on X,.

For each simplicial pair (K,L) we may regard (|K|,|L|) as a tri-
angulated pair with the triangulation T = {¢{,(X,L)} where ¢ is the
identity map of (JK|,|L|). The isomorphisms § = 68,: H (K|,|L]) —
H (K,L), defined in 111,8, yield a natural equivalence of two functors

6: HT=H,

where T is the covariant functor on X, to @ defined by T(K,L) =

(|K|,IL}), T(f) = f. Theorem 11,8.4 is the statement of the naturality
of 6.

8. c-CATEGORIES AND 9-FUNCTORS

In order to achieve uniformity and avoid repetition in the chapters
ahead, it is useful to introduce concepts similar to the homology and
cohomology theories of Chapter 1 but defined on more general cate-
gories than admissible categories for homology. The analogy with
homology and cohomology theories is complete as far as the first four
axioms are concerned.

DErINITION 8.1. A category with couples (briefly: a c-category) is a
category € in which certain pairs (a,8) of maps, called couples, are
distinguished, subject to the sole condition that the composition Se is
defined. If a: A — B, B: B — C( is such a couple, we write

(a,8): A— B—C.

A covariant [contravariant] functor T: € — D of a c-category into
a c-category, is called a c-functor if for each couple (a,8) in €, the pair
of maps (Ta,TB) [(T8,Ta)] is a couple in D.

As an example of a c-category consider an admissible category @ in
the sense of 1,1. For each pair (X,A) in @ consider the inclusion maps
i ACX, j: X C (X,4) as forming a couple

GZ,75: A—- X > (XA).

The same admissible category @ gives rise to another c-category in
which the couples

(i,5): (4,B) - (X,B) — (X,4)
are the appropriate inclusion maps of an admissible triple (X,4,B).

Another example of a c-category is obtained from the category Gg
(or G¢) of groups by defining couples

(¢7¢): Gl - Gz g Gg
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whenever ¢: G, — G, has kernel zero, y: G, — G, is onto, and kernel
¥ = image ¢, i.e. whenever the sequence

¢ ¥
0-G, -G, -G —0

is exact.

DeriNiTION 8.2. Let (o,8): A — B — C and (e,8): A4, —
B, — C, be couples in a c-category €. We define a map (a,8) — (a,,8:)
to be a triple of maps

T1: A—> Ay v:: B— B, va: C—C,
in € such that commutativity holds in the two squares of the diagram

o B

A——s B —— (C

1’71 l’)’z l’)’a
(231 B

Al’—‘—’Bl"——‘Cl

It is easy to verify that, with the maps thus defined, the couples
(a,8) in C form a category of their own. A c-functor 7: € — D in-
duces a functor on the category of couples of € into that of D.

We now come to the main objective of this section. Let € be a
c-category. We shall eonsider systems H = {H (A),a,,8(..5} where
(1) for each object A ¢ @€ and each integer ¢, H,(A) is a group, (2) for
each map a: A4 — B in € and each integer ¢, a,: H,(A) — H,(B) is
a homomorphism, (3) for each couple («,8): A — B — C and each
integer q, 3(a.5: H,(C) — H,_,(A) is a homomorphism. The groups
and homomorphisms belong to just one of the categories Gz or Ge.

Such a system I will be called a covariant 8-functor on the c-category
€ provided the following four axioms hold:

Axiom 1. If @ = identity, then «, = identity.

AxioMm 2. (Ba), = B,a,.

AxtoM 3. If v.,y,,vs form a map of the couple (¢,8): A > B —>C
into the couple (a;,8,): A, — B, — C,, then commutativity holds in
the diagram

Yy
HG(C) —_— Ha(Cl)

la(a,,, la(a,.an

71*
H,_,(A) —— H, (4,
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Axiom 4. For every couple (a,8): A — B — C the sequence

9 B Qy
v = Hi(A) « HyC) « H(B) « H(A4) -+

is exact.

These four axioms are precise replicas of the first four axioms for
a homology theory.

In an analogous fashion we define a contravariant é-functor H =
{H(A),a* 6.5y} where o*: H(B) — H%A) for a1 A — B and
8apy: HY(A) > H'(C) for (a,8): A — B — C. The axioms are
replicas of the first four axioms of cohomology.

Let H be a covariant d-functor on a c-category Dandlet T: ¢ — D
be a covariant ¢-functor. The composition

HT = {H(TA),(Ta), 9 re, 18}

is then clearly a covariant d-functor on €. Similarly if H is a contra-
variant é-functor on ® and T: € — D is covariant, then

HT = {HTA),(Ta)*,6¢a.18)}

still is a contravariant é-functor on €. Thus the composition HT is
well defined whenever T is covariant.

If T is contravariant, HT may still be defined formally as above
but the result is neither a covariant d-functor nor a contravariant é-
functor. This suggests the definition of two additional “mixed” types
of functors, namely of covariant é-functors and of contravariant 8-
functors. In a covariant 3-functor H = {H%(A),e,,8(a.5y} we have
a,: H'(A) —» H'B) for at A — B and é.4: H(C) —» H'(A)
for (@8): A — B — (. In a contravariant d-functor H =
{H (A), a*,0(a.5} we have a*: H,(B) — H,(A) fora: A — B and
dap: H,(A) — H_(C) for (@8): A — B — C. The axioms re-
quired are the obvious reformulations of the four axioms listed above.

With the mixed theories at hand, the composition HT is always
defined. The situation is summarized in the following theorem, the
proof of which is immediate.

TueoreM 8.3. Let T: € — D be a c-functor and H a d-functor
[8~functor] on D. The composition HT is then a 3-funclor [5-functor] on
©. Further HT 1s covariant tf H and T have the same variance, and HT
18 contravariant tf H and T have opposile variances.

Each homology theory on an admissible category @ furnishes an
example of a covariant d-functor on either of the c-categories associated
with @. Similarly each cohomology theory on @ furnishes an example
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of a contravariant é-functor. Examples of mixed functors will occur
in Chapter v.

The connection between the mixed functors and the unmixed ones
can be further illuminated by a procedure that will be referred to as
“the sign-changing trick.” Given a covariant d-functor H =
{H,(A)a,,d.5}, dcfine a covariant é-functor H = {H*(A),a,,8(a.5)}
as follows:

EG(A) = H_G(A), &* = a*, E(a‘g) = 8(,,3)

(precisely, a,: H'(A) — H'(B) is defined as a,: H_,(4) — H_,(B)
etc.). Conversely applying the sign-changing trick to // we obtain H.
Thus the correspondence H — H establishes a 1-1 correspondence be-
tween covariant d-functors and covariant é-functors. A similar dis-
cussion applies to contravariant functors.

9. h-CATEGORIES AND h-FUNCTORS

The introduction of the concept of a c-category was a step toward
the consideration of homology theories defined on categories more
general and abstract than on admissible categories of spaces. We saw
that the first four axioms can be formulated with ease in this more
general setting. As for the remaining axioms, it is clear that they can-
not be stated since, in a c-category, we lack the concepts of “homotopy,”
“excision,” and “point.” To complete the picture, we make the fol-
lowing definition:

DeriNITION 9.1. An h-calegory € is a c-category in which (i) a
binary relation a == 8(a homotopic to 8) is given for maps o,8: 4 — B
in €, (ii) certain maps a: A — B in € are singled out and are called
excisions, and (iil) certain objects of € are singled out and are called
poinis. A covariant d-functor [contravariant &functor] on € which
satisfies the analogs of the Homotopy, Excision, and Dimension axioms
will be called a homology [cohomology] theory on the h-category €.

It should be noted that since no properties of homotopies, excisions,
and points are required, the above definition has a purely formal char-
acter, and is made only to supply a language convenient for later uses.

DeriniTioN 9.2. Let a: A — B, 8: B —» A be two maps in an
h-category €. If Ba: A — A and «f: B — B are both homotopic
to identity maps, then « and 8 are both called homotopy equivalences, 8
is called a homotopy inverse of « and vice versa. A map a: A — B
in € which is a composition of a finite number of excisions and homotopy
equivalences is called a generalized excision.
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TreoreM 9.3. If H is a homology [cohomology] theory on an h-
category C and a: A — B 1s a generalized excision, then

a,: H(A) = H(B) [e*: H'(B) = H(A)].
Proor. Leta = a' --- a" be a representation of a as a composition
of excisions and homotopy equivalences. Since a, = a, - ay, it

suffices to show that each e, is an isomorphism. If o' is an excision,
this follows from the Excision axiom. If o' is a homotopy equivalence
with 8 as homotopy inverse, then a8, = (a'8’), = identity and
similarly 8/e, = identity. Thus a is an isomorphism.

DeFINITION9.4. A covariant c-functor T: €— D on the h-category
@ with values in the h-category D is called an h-functor if T preserves
homotopies, generalized excisions, and points. Explicitly: if a >~ 8
in @, then Ta =~ T8 in D; if « is a generalized excision in €, then Ta
is a generalized excision in D; and if A is a point in €, then T4 is a
point in D.

THEOREM 9.5. Let T: @ — D be a covariant h-functor and H a
homology [cohomology] theory on D. Then the composition HT 3 a
homology [cohomology) theory on €.

Proor. By 83, HT is a covariant d-functor [contravariant
é-functor]. There remains to prove that HT satisfies the Homotopy,
Excision, and Dimension axioms. This however is an immediate conse-
quence of 9.4 and 9.3.

As in 8.3, Definition 9.4 and Theorem 9.5 could also be formulated
for contravariant functors T provided we consider theories H of a mixed
character, i.e. covariant é-functors and contravariant d-functors satisfy-
ing the analogs of the last three axioms. These mixed theories do not
have any geometric analog, but will arise occasionally in later chapters.
In particular the following theorem will be used in v,12.

THEOREM 9.5¢. Lel T: € — D be a contravariani h-functor and H
a covariant &-funclor [coniravariant d-functor] on D salisfying the Ho-
motopy, Excistion, and Dimension axioms. Then the composition HT 15 a
cohomology [homology] theory on €.

RemARK. In proving that a c-functor T is an h-functor, it suffices to
show that T preserves homotopies and points and carries excisions into
generalized excisions. Then it follows immediately that T carries gener-
alized excisions into generalized excisions.

10. COMPARISON OF 9-FUNCTORS AND OF HOMOLOGY THEORIES

In this section the discussion will be limited to covariant d-functors
with values in the category Gz, but all that will be said applies equally
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well to the contravariant case as well as to §-functors with values in
Gr or Ge. — —

DeriniTION 10.1. Let H = [H (A),0,,0a.5} and H = {H,(A4),
a,,0..5} be two covariant d-functors on the c-category @ with values
in Gz. A homomorphism

h: H—H
is a family of homomorphisms
h(g,A): H(4) — H(A)

defined for each A ¢ € and each integer ¢, subject to the following two
conditions. If a: A — B is a mapping in €, then the commutativity
relation @, h(q,4) = h(g,B)a, holds in the diagram

h —_—
H,(A) —— H,(4)

Lk
h —
H,(B) —— I (B)
If (a,8): A — B — Cisacouplein €, then the commutativity relation

O¢a.ah(q,C) = h(q — 1,A)0(4 5 holds in the diagram

h N
H(C) —— H(C)

¥ ¥
o
o (A) —— H,(A)

If each k(q,A4) is an isomorphism H (1) = H,(A), then we say that
h is an isomorphism and write h: H = [,

The above definition applies automatically to homology theories
since a homology theory is a d-functor defined on an admissible category
(or an h-category) and satisfying additional axioms. Theorems 111,10.1
and 10.1c may now be restated as follows:

TueoreM 10.2. Let H and H be two homology [cohomology) theories
defined on the category 3 of triangulable pairs. Every homomorphism

hy: G—> G
of their coefficient groups admils a unique extension lo a homomorphism

h: H— Hon?3.

If hq is an isomorphism, then so is h,
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DerFmviTioN 10.3. An admissible category @ is called a uniqueness
category for homology [cohomology] if, for any two homology [coho-
mology] theories defined over @, each homomorphism of the coefficient
groups

het G— @G
can be extended uniquely to a homomorphism,
h: H— HonaQ.

Whenever k, is an isomorphism, so also is h. This is shown by extend-
ing k' to k', and observing that h’h and hh’ are extensions of identities
G — G, G — G. Then uniqueness insures that Ak’ and A’k are identities.

In this terminology 10.2 may be restated as

TuEoREM 10.4. The category 3 of lriangulable pairs and their maps
s a uniqueness category both for homology and cohomology.

In Chapter x11 a considerably larger uniqueness category U will be
constructed.

With the uniqueness theorem at hand, one can see why the mixed
types of homology theories are not considered for categories of spaces.
Suppose, for example, that H is a covariant s-functor defined on the
category J satisfying the Homotopy, Excision, and Dimension axioms.
Apply the sign-changing trick of §8 to H. There results a homology
theory H on 3. By the uniqueness theorem, H,(X,A) = 0 for ¢ < 0.
It follows that H,(X,A) = 0 for ¢ > 0. Thus, for mixed theories, the
positive dimensional groups are trivial.

NOTES

Logical foundations. The categories of ‘““all topological spaces” and
“all groups,” if not handled carefully, lead to the antinomies usually
associated with a “‘set of all sets.” To avoid these, one must either
restrict the notion of a category and not speak of ‘“‘the category of all
groups,” or else place oneself in an axiomatic system in which the
“category of all groups’ is a legitimate object not leading to antinomies.
Best suited for the latter purpose seems to be the system of von Neu-
mann-Bernays-Godel [P. Bernays, A system of aziomalic set theory,
Journal of Symbolic Logic 2 (1937), 65-77; 6 (1941), 1-17; 7 (1942),
65-89, 133-145; 8 (1943), 89-106; 13 (1948) 65-79: K. Godel, The
consistency of the conlinuum hypothesis, Annals of Math. Studies 3,
Princeton 1940]. This system contains the notions of ‘“‘class” and “‘set,”
each set being also a class, but not vice versa. Then the various cate-
gories introduced in Chapters 1 and 1v can be proved to exist as classes.
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One must take care not to perform on these categories certain operations
(such as forming the set of all subsets) which can be performed on sets
but not on classes.

The transitivity of homotopies. In 9.1, no conditions were imposed
on the binary relation « >~ 8 (« is homotopic to 8). In most of the
h-categories that will be considered this relation will be reflexive, sym-
metric, and transitive. It will also be compositive in the sense that,
ifaf: A —>B,a'8:B—>C,a~p3 and o =~ §’, then o’a =~ §'B.

One may always expand the relation of homotopy in an h-category
C so as to obtain these properties. This is done as follows: As a first
step, define a; >’ a, if a; = B,y1, a2 = Byy. with 8, >~ 8, and v, >~ v,.
The next step is to define « ~'"" 8 if there exists a finite sequence a =
ayay, o, a, = B (n > 0) such that, for each ¢ < n, either a, >’ a,+,
ora;., ' a,. The new relation ~'’isreflexive, symmetric, transitive and
compositive. For any homology theory on @, it is easy to prove that
a >~'" 3 implies a, = B8,. Thus we may always replace the relation
~ by the relation ~"".

If we use this broadened concept of homotopy, the relation of
homotopy equivalence defined in 9.2 becomes reflexive, symmetric, and
transitive.

EXERCISES

A. FUNCTORS OF SEVERAL VARIABLES.

1. Given categories @, -+, €, D, , -+, D,, &, define the concept
of a functor T covariant in @,, --- , €, contravariant in D,, --- , D,
with values in &. Generalize the concepts of natural transformation and
natural equivalence to such functors.

2. Exhibit the commutativity and associativity laws of the (external)
direct sum

G|+G2=(;2+G1
Gn+(G2+Gs)=(Gl+Gz)+G3

as natural equivalences of functors.

B. FuNCTORS OF GROUPS.

1. Consider the category of all groups (including nonabelian groups)
and homomorphisms. Consider the functions which assign to each
group (1) its commutator subgroup, (2) its center, and (3) its group of
automorphisms. Convert these into functors on appropriate subcate-
gories.
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DeriNttioN. A functor T on one of the categories Gp, G¢ with
values in the same or another of these categories is said to be additive
if T(¢y + ¢.) = Téy + T¢, whenever ¢,,¢,: G — G'. The functor
T is said to preserve exactness if it transforms each exact sequence into
an exact sequence.

2. Let T be additive. If ¢ = 0, then T¢p = 0. If G = 0, then
TG = 0.

3. Let T be a covariant additive functor. If i,: G, — G (a = 1,

-+, m) is an injective representation of G as a direct sum, then 7%,:
TG, — TG is an injective representation of TG as a direct sum.
4. Let T be a covariant additive functor. If

¢ ¥
0—-G —-G6—-G, -0

is exact, and the image of ¢ is a direct summand of ¢, then the same
is true of

Te¢ Ty
0O — TG, — TG » TG, — 0.

5. Prove that a functor preserves exactness if and only if it carries
each exact sequence of the form 0 - G — G — G — 0 into another
such exact sequence.

C. 3-FUNCTORS AS FUNCTORS.

1. Given a covariant [contravariant] d or s-functor H on a c-cate-
gory @, assign to each couple («,8) of € the exact sequence given hy
Axiom 4, Show that if (y,,7.,v;) maps (a,8) into another couple (a,,3,),
then (viY24,73) [(Y17%7%)] yields a homomorphism of the corre-
sponding exact sequences. Show that one obtains thus a new co-
variant [contravariant] functor H* defined on the category of pairs of €
with values in the category of exact lower or upper sequences. Formu-
late the Axioms 1-4 in terms of the functor II*. If H and H are two
d-functors and h: H — H is a homomorphism, then & induces a natural
transformation h*: H* — H*. What conditions must a natural trans-
formation T': H* — H* satisfy in order that it be of the form I' = h*?

2. Show that the operation of replacing superscripts by subscripts
and changing their sign at the same time carries a -functor into a
d-functor of the same variance.

3. If H is a covariant d-functor and T is a covariant [contravariant]
functor on groups to groups which preserves exactness, then TH is a
covariant d-functor [contravariant é-functor]. Examine the situation
for the remaining three cases for H. Show that the result also applies
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to homology and cohomology theories on an admissible category, or
on an h-category.

D. MODULES AND VECTOR 8PACES.

Let G be a module over an integral domain D (see 1,Exer. H).
Consider pairs (d,g), d e D, d = 0, g ¢ G and define equivalence (d,,g,) ~
(d,,g,) to mean that d'dyg, = d'd,g, for some d’ # 0.

1. Show that this is a proper equivalence relation. Denote the
equivalence class of (d,g) by {d,g] and the set of all these equivalence
classes by G.

2. Show that G becomes a D-module under the operations

[di,g] + (d,,g:] = [didydeg + digy), d'ld,g] = [d,d’g).

3. Show that the map g — [1,9] is a linear homomorphism G — G,
and examine its kernel.

4. Consider the case D = G (i.e. D regarded as a D-module with
the obvious composition law). Show that D is a field, namely the field
of quotients of D.

5. Show that @ is a vector space over D under the operation
[di,ds]ld,g] = [did,dug]-

6. Show that the rank of G over D is the same as the rank of G
over D.

7. Given a homomorphism ¢: G, — G2 of the D-modules G, and
G., define ¢[d,g] = [d¢g] and show _that é: G, — @, is linear over D.
Show that the pair of operations G, is a covariant functor on the cate-
gory Gp of D-modules with values in the category Gp of vector spaces
over D. Show that this functor preserves exactness.

8. Given a homology [cohomology] theory H with values in the
category Gp of D-modules, define H as the composition of H with the
functor of 7. Show that H again is a homology [cohomology] theory
with values in Gp. Show that the Betti numbers are the same in H
and H.



CHAPTER V

Chain complexes

1. INTRODUCTION

The primary aim of this and the next four chapters is the construc-
tion of homology theories with prescribed coefficient groups. The con-
struction divides roughly into three steps, namely: (i) space — com-
plex (i1) complex — chain complex, and (iii) chain complex — homology
groups. This chapter is devoted to the third step and is purely algebraic
in character.

A chain complex (called a group system by W. Mayer) is a lower
sequence of groups in which the composition of any two successive
homomorphisms is zero. The constructions on chain complexes leading
to their homology groups are suggested by the results of Chapter
1. Analogs of the Axioms of Chapter 1 are proved for these derived
groups. In this way we obtain a “Homology theory” for chain com-
plexes.

Cochain complexes are also defined. However, they bear only a
formal difference from chain complexes.

In order to introduce homology groups over a general coeflicient
group, two methods of constructing groups out of groups are discussed.
These are the tensor product, C @ G, of two groups, and the group of
homomorphisms Hom(C,G) of C into G. Using these, we assign a new
chain complex and a new cochain complex to any given chain complex
and a coefficient group @; and we obtain thereby the homology and
cohomology groups of the chain complex over G.

2. CHAIN COMPLEXES

DerINITION 2.1. A chatn complex K is a lower sequence {C,(K),d,}
of groups and homomorphisms d,: C(K) — C,,(K) such that
9,19, = O for each integer q. C. (K) 1s called the group of g-chains of
K, and 4, is called the boundary homomorphism. A map f: K — K’
of one chain complex into another is (as in 1,2) a sequence of homo-
morphisms f,: C,(K) — C,(K') defined for each ¢ and such that
fq—laq = aéfa'

DeriniTioN 2.2, Let K = {C,K),d,} be a chain complex. The

124
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kernel, Z,(K), of 8, is called the group of ¢-cycles of K. The image,
B (K) of 8,., 1s called the group of g-boundaries of K. Since 8,9,., = 0,
B,(K) is a subgroup of Z,K), and the factor group H (K) =
Z(K)/B,(K) is called the g-dimensional homology group of K. If
f: K — K'is a map, then f, sends Z (K) into Z,(K') and B,(K) into
B,(K"), thereby inducing homomorphisms f,: H.(K) — H,(K').

The following theorem is an immediate consequence of the defini-
tions:

Turorem 2.3. If f: K — K is the identity map, then f, s the
identity homomorphism. If f: K — K'andg: K — K", then (gf), =
9ut x:

Chain complexes K and their maps f constitute a category denoted
by 4Gy or 3G according as the groups C (K) are in the category Gg
or Gc. Then 2.3 asserts that the pair H (K),f, is a covariant functor
from 8G, to G [or from 3G, to G¢l.

The concept of a cochain complex K = {C‘(K),8°} differs from a
chain complex in that §: C%K) — C*"'(K) and that the dimension
is written as a superscript. Thus an application of the “sign-changing
trick” (1v,8) converts a chain complex into a cochain complex and vice
versa. The discussion of cochain complexes therefore differs from the
discussion of chain complexes in terminology alone. &% is called the
coboundary operator, Z“(K) is the group of g-cocycles, H'(K) is the
g-dimensional cohomology group, ete. The pair H(K),f* constitutes
a covariant functor on the category &G, [or §G.] of cochain complexes
with values in the category Gi [or G¢].

3. COUPLES

In this section we shall convert the categories of chain complexes
into c-categories (1v,8) and we shall extend H (K),f, to a covariant
d-functor.

We begin with the observation that if K is a chain complex and L
is a subsequence of K (in the sense of 1,2), then both L and K/L are
again chain complexes called the subcomplex and factor complex re-
spectively. Moreover the inclusion map : L — K, and the natural
map q: K — K/L yield an exact sequence

i U]
(i) 0—-L—>K—> K/L—0.

This suggests the following definition:
DerintTion 3.1. Let L,K,M be chain complexes. The maps
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¢: L—K,y: K — M are said to form a couple (¢,¥): L—-> K — M,
provided the sequence

¢ v
(11) 0—-L—->K-M->20

is exact, i.e. if the kernel of ¢ is zero, ¢ is onto, and kernel ¢ = image ¢.

If, further, the image of ¢ is a direct summand of K (i.e. if ¢(C,(L))
is a direct summand of C,(K) for all ¢), then the couple (¢,¥) is called
direct.

It is clear that, with couples defined as above, the categories dGg
and 8G; become c-categories. One obtains different c-categories by
taking direct couples only. Circumstances under which it is necessary
to consider direct couples rather than all couples will appear in §§11
and 12.

In the subsequent lemmas and definitions, we assume that an exact
sequence (ii) is given. _

_ Lemma 3.2, Let Z(M) = ¢y (Z,(M)), B,(M) = 4 '(B,(M)), and
H,(M) = Z,(M)/B,(M). Then

Z M) = 87 @Cor(L)),  BM) = B(K) U ¢(C(L)),
and ¥ tnduces tsomorphisms
Vi H(M) = H(M).

Proor. let c e C,(K). Then ¢ ¢ Z,(M) if and only if yc ¢ Z, (M),
i.e. if and only if d&¢c = 0. This is equivalent to ¥dc = 0, and since
kernel ¢ = image ¢, this is equivalent to dc e ¢(C,_,(L)).

Suppose ¢ ¢ B,(M). Then yc ¢ B,(M) and yc = 8b for some b e
C,..(M). LetdeC,. (K) be such that yd = b. Then ¢(¢c — dd) =
Yc — ayd = yc — db = 0, so that thereisane e C (L) with¢e = ¢ — ad.
Thus ¢ = dd + ¢e, and therefore ¢ ¢ B,(K) \U ¢(C(L)). Conversely,
if ¢ = dd + ¢e, then yc = ¥ad + yY¢e = dYd, and yc ¢ B,(3M). Thus
¢ ¢ B,(M).

The last part of 3.2 is a direct consequence of the Noether iso-
morphism theorem.

LeEmMa 3.3. The boundary homomorphism of the chain complex K
defines homomorphisms

Z(M) — ¢[Z,_(1)],
B (M) — ¢[B._.()].

Since the kernel of ¢ is zero, ¢~ '9 defines homomorphisms
ZM) > Zea(D),  BfM) = B(D),
and induces a homomorphism

A: H(M) — H,_(L).
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Proor. Let ¢ ¢ Z,(M). By 3.1, we have d¢c = ¢d for some d ¢
C,.1(L). Then ¢9d = 9¢d = 3dc = 0, and therefore dd = 0. Thus
deZ, (L) and dc e ¢{Z,_,(L)).

If ¢ ¢ B,(M), then, by 3.2, ¢ = dd + ¢¢ for some d ¢ C,,,(K) and
ee C,(L). Then dc = 3dd + dpe = ¢de, and dc ¢ ¢B,_,(L).

DEerFINITION 3.4. The homomorphism

3, H(M) — H_\(L)

defined as the composition 9, = Ay~ is called the boundary homomor-
phism of the couple (p,¥): L — K — M.

It will be useful to have a more direct description of the homo-
morphism d,. Suppose k ¢ H,(M). Choose z ¢ Z,(M) belonging to the
coset k, and choose ¢ ¢ C,(K) with y¢ = 2. Then dc is in the image of
¢ and ¢ 'dc ¢ Z, ,(L) is a cycle in the coset d,h. Another description
of 9, is obtained by stating the analog of 111,7.5.

The star in 9, has been inserted to distinguish it from the boundary
operator within the chain complexes. However, in later uses we shall
omit the star.

THEOREM 3.5. The system H = {H(K),f,,9,] 73 a covariant 9-
functor on the c-category 9Gg [8Gc] of chain complexes with values in the
calegory Gk {Gcl-

Axioms 1 and 2 of 1v,8 are contained in 2.3, while Axioms 3 and 4
correspond to Theorems 3.6 and 3.7 that follow.

TaeorEM 3.6. Let (g,f,h): (o¥) — (¢',¥') be a map of the couple
(¢,¢): L — K — M into the couple (¢'¥'): L' — K' — M, then
commulativity holds in the diagram

a#
HG(M) — HG—I(L)

b,
d

*
Hy(M') —— H,_\(L)

Proor. Thisis a consequence of the commutativity relations in the
diagram

v A
HM) e— H M) — H_ (L)

T
v A
H(M') «—— HM') — H,_ (L)

where ?* is induced by f. The commutativity relations in this diagram
are immediate consequences of the definition of ¢ and A.
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TrEOREM 3.7. If (¢¥): L — K —> M 17s a couple, then the sequence

a* ‘I/* ¢*
c = Ho (L) « H(M) « H(K) — H(L) « ---

is bract.
Proor. By definition, we must prove three propositions:

(1) kernel ¥, = image ¢,,
2 ) kernel 8, = image ¥,
®3) kernel ¢, = image 9,.

Suppose that h ¢ H (L) and z ¢ Z,(L) lies in the coset h. Then
Yoz = 0, and therefore ¢, ¢,8 = 0. Thus, image ¢, C kernel y,.
Suppose now that h e I (K) and ¢ o = 0. Then, if z ¢ Z,(K) lies in
the coset &, it follows that ¥z ¢ B, (M), i.e. ¥z = ac for some ¢ ¢ C,,(M).
Let b e C,, i (K) be such that yb = ¢. Then ¥(z — ab) = Yz — b =
dc — dc = 0, and therefore there is an a ¢ C,(L) with ¢a = z — 8b.
Since ¢pda = d¢pa = 9z — 09b = 0, it follows that da = Oand a e Z,(L).
If »’ ¢ H (L) is the coset of a, then, since ¢a and z are in the same coset,
it follows that ¢ h" = h.

To prove (2) suppose that h ¢ H,(K) and let z ¢ Z,(K) be in the
coset k. Then yz is in the coset ¢ h of H,(M). Since dz = 0, it follows
from the definition of 8, that 8 ¢,k = 0. Therefore image ¥, C kernel
d,. Suppose now that h e H,(M) and that 9,h = 0. Let z ¢ Z,(M) be
in the coset h, and let ¢ ¢ C,(K) be such that ¢ = z. Then ¢ 'dc is in
Z,\(L), and is in the coset 9,h. Since 0,h = 0, there is a b ¢ C (L)
such that b = ¢ 'dc or ¢8b = dc. Then d(c — ¢b) = dc — ¢pdb = O,
so that ¢ — ¢b ¢ Z(K), and y(¢c — ¢b) = y¢ = 2. Thus if &’ is the
coset of ¢ — ¢b in H (K), it follows that Y A" = h.

To prove (3) suppose that h ¢ H (M), and let z ¢ Z,(M) lic in the
coset h. Select ¢ ¢ C,(K) with yc = 2. Then thercisa b e Z,_ (L) with
¢b = dc, and b lies in the coset 8,k of H,.,(L). Since ¢b ¢ B,_(K),
it follows that ¢,9,h = 0. Thus image 9, C kernel ¢,. Suppose now
that # ¢ H,(L) and ¢ h = 0. Let z ¢ Z,(L) be in the coset . Then
¢z ¢ B,(K), and ¢z = dc for some ¢ ¢ Co, i (K). Then dfc =-Ydc =
Yoz = 0. Thusyc e Z,.,(M). If ' ¢ H,.,(M) is the coset of y¢, then
it follows from the definition of 8, that 8, A" = h. This completes the
proof of 3.7.

The definitions and theorems for cochain complexes are quite
similar and are obtainable by the sign-changing trick. The analog of
3.51s

Tueorem 3.5c. The system H = {H'(K),f,,8*} is a covariant é-
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Sunclor on the c-calegory G [8Gc] of cochain complexes with values in the
calegory Gr [Gel.

We return to the remarks made at the beginning of this section
and observe that whenever possible we use the operation of factorization
in groups and chain complexes to pass from pairs to single objects.
Thus instead of the pair (K,L) where L is a subcomplex of K we consider
the exact sequence 0 —» I, — K — K/L — 0. Similarly instead of the
triple (K,L,N) we consider the exact sequence 0 — L/N — K/N —

K/L — 0. This point of view will be followed systematically in the
future.

4. HOMOTOPIES, EXCISIONS, POINTS

In this section we define homotopies, excisions, and points in the
c-categories dG, and 8G., thereby converting them into h-categories.
The system H = {H(K),f,,d,} becomes then a homology theory. The
particular definitions of “homotopy,” “‘excision,” and ‘“point” adopted
are motivated by the applications of the next two chapters.

DeriniTioN 4.1. Let K and K’ be chain complexes and let f,g be
two maps of K into K. A chain homotopy D of f into g (notation:
D: f ~g) is 2 sequence of homomorphisms

D,: C(K)— C.. (K"
such that

aq+11)q + Dquaq = gﬂ - fﬂ'

If such a homotopy D exists, f and g are called homotopic and we write
g IfceCK), then Dy is called the deformation chain of c.

LeEmMA 4.2.  The relation f =~ g s reflexive, symmelric, and transitive.

Proor. If D = 0, then D: f ~ f. I D: f=~g, then —D:
g~f D fo~gandD'. go~h then D + D: f~h.

LemMa 43. If fig: K-> L, f'g: Lo M f~gand f' >~ ¢,
then ['f ~ ¢'g.

Proor. Let D: f~gand D': f' ~¢'. Define D): C.(K)—
Coar(M) by DY = fi..D, + Dig,; then a short computation gives
DII: f’f ~ g’g.

TuroreM 44. If fg: K — K’ are chain homotopic, then their in-
duced homomorphisms

S Ho(K) = H(K')
coincide:  f, = g,.

Proor. Let D: fo~g, and let z ¢ Z,(K). Then 6Dz = gz — f.
Thus gz — fz e By(K’) and f, = ¢,.
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DErFiniTION 4.5. Amap f: K — L is called an excision if and only if
maps K isomorphically onto L.

Trrorem 4.6. If f: K — L is an excision, then f, maps H,(K)
isomorphically onto H (L).

The proof of this ‘“Excision axiom” is of course trivial due to the
very narrow definition of excision that has been adopted.

DeriniTiON 4.7. A chain complex K = {C(K),3} is called pointlike
if 8,2 C(K) — C.1(K) is an isomorphism for ¢ even and >0, and
also for ¢ odd and <O.

TueoreM 4.8. If K s poinilike, then H (K) = 0 for ¢ = 0, and
Ho(K) = Co(K).

Proor. Let ¢ be even and >0. Since 9,;: C,(K) = C,_,(K), it
follows that Z,(K) = 0 and B, ,(K) = C,.(K). Thus H(K) = 0
and H,_,(K) = 0. Similarly H,(K) = 0, H,_,(K) = 0 for ¢ odd and
<0. Since 8,0, = 0 and 8.,9, = 0 and 3, and d_, are isomorphisms, it
follows that 3, = 0, 3% = 0. Thus Z,(K) = Co(K) and B,(K) = 0.
Hence H(K) = Co(K).

Theorems 4.4, 4.6, and 4.8 combined with 3.5 yield

TueorEM 4.9. The system H = {H (K),f,,d,} is a homology theory
on the h-category 0Gr [8Gc] of chain complexes, with values in the category
Ge [Scl

It should be kept in mind that actually 6Gz [0G.] represents two
h-categories, one with all couples and the other with direct couples only.
Theorem 4.9 holds with either meaning for 3G [9G¢].

In the h-category 4G {0Gc], we have the concepts of homotopy
equivalence and generalized excision as defined in 1v,9.2. Since every
excision in G, [0Gc¢] is also a homotopy equivalence, and since the
composition of homotopy equivalences is, by 4.3, again a homotopy
equivalence, it follows that in the category dG; [8G¢] homotopy equiva-
lences and generalized excisions coincide,

The definitions of homotopies, excisions, and points in the c-categories
0Gr,0G ¢ of cochain complexes are quite similar and are obtainable from
those for chain complexes by the sign-changing trick. The results for
cochain complexes may be summed up in the following analog of 4.9:

THEOREM 4.9c. The system H = [H(K),f,,8*} is a covariant s-
Sfunclor on the calegory 8Gr [8Gc] of cochain complexes, satisfying the
Homotopy, Excision, and Dimension azioms.

6. DIRECT SUMS AND PRODUCTS

This section reviews the definitions and basic properties of the
cartesian product of spaces, and the direct sum and direct product of
groups.
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DeriniTion 5.1. Let {X,} be a collection of sets indexed by a set
M, i.e. for each @ e M, X, is a set of the collection. The product
1 I1 X.

acM

of the collection is the totality of functions z = {z,} defined for a ¢ M
and such that z,—the value of z on a—is an element of X,. The
element z, is called the a-coordinate of . For each 8 ¢ M, define the
projection
(2) pi I Xo> Xy by psla@) = 2
In case the sets X, all coincide with a set X, then the product (1) is
denoted by X¥, and is simply the set of all functions from M to X.

DeriniTion 5.2. If each X, is a topological space, a topology is
introduced in (1) as follows: If a finite number of X,’s are replaced
by open subsets U, C X,, the product of the resulting collection is a
subset of (1) and is called a rectangular open set of (1). Any union of
rectangular open sets is called an open set of the product. The product
with this topology is called the cartesian product. Tt is immediate that
the projections (2) are continuous.

Lemma 5.3. A function

J: Y — H X.
aoehM

defined on a space Y with values in a cartestan product is continuous if
and only if, for each o ¢ M, the function

pof: ¥V — X.
s confinuous.

The proof is left as an exercise to the reader.

The following classical result is due to Tychonoff. For a proof, see
Lefschetz [Algebraic Topology, Collog. Pub. Amer. Math. Soc., 1942,
p- 19].

TueoreM 5.4. The cartesian product of a collection of compact spaces
1s compacl.

We recall that the term ‘‘compact space” is used here to denote a
Hausdorff space in which the Borel covering theorem holds.

Derinttion 5.5. If each X, is an abelian group, then an addition
is defined in (1) by the usual method of adding functional values:

3) x4+ 2 = 2o + z2.

In this way (1) becomes an abelian group and is called the direct product
of the groups {X,}. If each X, is a compact abelian group, then the
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product with the topology of 5.2 and the group operation just defined
is a compact abelian group called the direct product.

If each X, i3 an R-module over the same ring R, define addition in
(1) by means of (3) and multiplication by a scalar r ¢ B by

(4) (re), = r-z,.

Then (1) becomes an R-module called the direct product.

In all cases the projections (2) are homomorphisms,

The direct product is thus defined for a collection of groups from
either of the categories Gg,G¢, and the product belongs to the same
category. The same symbolism (1) will be used to denote each of these
products; the particular product in question can always be determined
from the nature of the X,’s.

In case all the groups X .,z ¢ M coincide with a single group G, the
direct product (1) is denoted by G* and is simply the group of functions
on M with values in G.

DEeriniTION 5.6. Let {G.} be an indexed collection of R-modules.
Their direct sum

> G.

asM
is the subgroup of their direct product [ ] G consisting of those elements
having all but a finite number of coordinates equal to zero, i.e. g, =
0 ¢ G, for all but a finite number of & ¢ M. For each 8 ¢ M, define the
injection

. . g for a =8,

(B) 2 Gs— 2 G, by  (ig(g)a =
0 for a # B.

It is clear that 7; is an isomorphism of G onto a subgroup of ZGG.

In case M is a finite collection, then of course the direct sum and
direct product coincide.

In case each G, is a compact group, 2 G,, as a subset of | | G,, has
a topology which makes of it a topological group. In addition, each pg
is continuous. As a subspace of the direct product, Z G, is not a
closed subspace (indeed, it is everywhere dense), and is therefore not
compact. It is for this reason that the direct sum is not a useful opera-
tion to apply to compact groups.

DerINITION 5.7. A projective representation of a group G as a direct
product consists of a family of groups {G,} indexed by a set M, and a
homomorphism 7%, of G onto G, for each «, such that the homomorphism
7. @— H G, defined by (79). = n.g is an isomorphism. If, in addi-
tion, each G, is given as a factor group of G by a subgroup, and 1, is the
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natural homomorphism, then G is said to decompose into the direct
product of the factor groups {G,.}.

DErFiNITION 5.8. Let G be an R-module. An tnjective representation
of G as a direct sum consists of a family of B-modules {G,} indexed by
a set M, and a homomorphism £, of G, into G for each «, such that
the homomorphism & 2 G, — G, defined by assigning to each element
of E G, the sum E £.9. of the images of its nonzero coordinates in
G, i1s an isomorphism. If, in addition, each G, is a subgroup of G and
¢, is the inclusion map, then G is said to decompose into the direct sum
of the subgroups {(,}. This is the case if and only if each ¢ ¢ G can
be expressed uniquely in the form

g=g¢|+"'+ga-) ga.EGn

where a,, - - - , o, are distinct elements of M.

If {G.} is any collection of groups, it is clear that [ ]G, and > G.
are represented as the direct product and sum, respectively, of the
groups {G,} by means of {p,} and {z.}.

6. FREE MODULES AND THEIR FACTOR GROUPS

DEeriniTION 6.1. Let G be an B-module and X a subset of G. The
set, X is said to be linearly independent if, for any distinct elements
Zy, ++- , z, of X, the relation r\z, + --- + r,z, = 0, r, ¢ R, implies
rn = .. =71, = 0. The set X is said to generate G if no proper sub-
module of G contains X. If X is linearly independent and generates
G, then X is said to be a base of G and G is called free. In this case
every element g € G can be represented uniquely as ¢ = rizy + -+ +
r.z, where r, e B, z, ¢ X, and x,, - - - , z, are distinct.

If X is a base of G and (' is any K-module, then it is clear that
every function ¢: X — (' can be extended uniquely to a homo-
morphism ¢: G — &

It is well known that, if B = F is a field, then every vector space
@G over F is free.

Lemma 6.2. If G,G' and H are R-modules, ¢: G — G and ¢:
H — @' are homomorphisms, ¢ is onlo and H is free, then there exists a
homomorphism 8: H — G such that $6 = .

Proor. Let X be a base of H. For each x ¢ X select 8(z) ¢ G so
that ¢6(z) = ¢(z). This is possible since ¢ i1s onto. The function
6: X — G extends to a homomorphism 6: H — @ which then satisfies
0 = y.

Lemma 6.3. If H s a submodule of G and G/H <s free, then H is a

direct summand of G.
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Proor. Consider the natural homomorphism 5: G — G/H and the
identity map i: G/H — G/H. By 6.2 there is a 6: G/H — G such
that #6 = 4. This implies that G decomposes into the direct sum of
the image of ¢ and the kernel of » which is H.

Since every vector space is free, we have

CoRrOLLARY 6.4. Every subspace of a vector space ts a direct summand.

DEeriniTioN 6.5. For any set X, let Rx be the set of all functions
f: X — R such that fz » 0 for at most a finite number of x ¢ X.
With addition and multiplication defined by

(fr + f2)x = fiz + faz, (rfNz = r(fx),

Ry is an R-module. As is customary, we identify each z ¢ X with the
function which is 1 on z and zero elsewhere. Then, if f has the nonzero
values ry, -+ , r, on x,, --- , x, respectively, and is zero elsewhere,
we have f = > 17z, It follows that Ry is a free R-module having X
as a base. It is called the free R-module generated by X.

If X’ is a subset of X, the inclusion map X’ C X extends uniquely
to an isomorphism of Rx. with a submodule of Rx. If X is represented
as a union \UX, of disjoint subsets, the inclusion maps X, C X induce
an injective representation of Rx as a direct sum: Ry = 2o Rx..

DeriNITION 6.6. Let G be an R-module and X C G a set generating
G. The inclusion map X — G can then be extended to a homomorphism
8: Rx — G which maps Rx onto G. Let Y be any set generating the
kernel of 6. Then we say that G is represented by generators X and
relations Y. Note that each element of ¥ can be written as a formal
finite linear combination of elements of X with coefficients in R, and,
when evaluated in G, this linear combination yields zero.

LeMMA 6.7. Let G be the R-module given by generators X and rela-
tions Y and let @' be given by generators X' and relations Y'. A function
f: X — X’ can be extended to a homomorphism ¢: G — G’ if and only
if for every element 1z, + - + rx, e Y, r, e R, z, ¢ X, the element
nf(@) + -+ + r.f(x,) € Rx, is a linear combination of elements of Y'.
If this condition is satisfied, the homomorphism ¢ extending f is unique.

Proor: Lety: Rx — Rx. be the homomorphism extending f and
let N and N’ be the kernels of the natural maps Rx — G, EBx. — @.
Then Y and Y’ generate N and N’ and the condition of the lemma is
equivalent to ¢(N) C N’. The homomorphism ¢ is then induced by ¥.

Lemma 6.8. If R is a principal ideal ring (i.e. a domain of integrity
in which each ideal has the form Rr for some r ¢ R), then every submodule
of a free R-module is also a free R-module.

Proor. Let G be a free R-module, let X be a base for G, and let H
be a submodule of G. We assume the choice axiom, and may therefore
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suppose the elements of X are well ordered: z,,25, +++ , %oy * -
For each ordinal «, let A, be the submodule of those elements of H
which are linear combinations of the zs with 8 < «, and let B, be the
submodule of those elements of H which are linear combinations of the
x5 with 8 < a. Then each a ¢ 4, is of the form a = b 4+ rx, where
b e B,. The coeflicient r is a function of a and provides a homomorphism
of 4, onto an ideal I, of R. The hypothesis on R implies that I, is
a free R-module. By 6.3, A, is the direct sum of B, and a submodule
C, isomorphic with 7,. We will show that H is the direct sum of the
submodules C,. If @ < 3, then C, C A, C Bg; hence C, M Cy = 0.
Let ao ¢ H; then a, ¢ A, for some a,. Thus a, = a, + ¢, where ¢, ¢ C,
and a, ¢ B,,., Then a, ¢ 4,, for some a; < o, Iterating this pro-
cedure, we obtain a sequence a, < a,_; < --- < a, and elements
¢, eC,, fori=20,1, --- nsuchthat g, = a..1 + ¢, + -+ + ¢; wWhere
G,+1 &€ Ba.. Since each decreasing sequence of ordinals is finite, it
follows that a,,; = 0 for sufficiently large n. Thus H is the direct sum
of the modules C,. Since each C, is free, it follows that H is free.

When R is the ring of integers, an R-module is an ordinary abelian
group. Hence 6.8 implies

Conrorrary 6.9. Any subgroup of a free abelian group is free.

7. FINITELY GENERATED GROUPS

In a great many of the applications of homology theory the spaces
involved are triangulable and the coefficient group is the group of
integers. In such a case, the homology groups encountered are gene-
rated by a finite number of elements. The structure of such a group
is easily described: it is a direct sum of cyclic groups. Its structure
can be characterized by numerical invariants. Moreover, starting with
any finite set of generators and relations, there is an algorithm for
obtaining a second set of generators which gives the direct sum de-
composition, and, at the same time, the numerical invariants. Conse-
quently the finitely generated groups are of the utmost importance in
applications of homology theory.

The object of this section is to review this algebraic material and
state the applications to chain complexes.

We recall that a matrix 4 = (a,,) with integer elements is said to
be unimodular if it has the same number of rows as columns, and its
determinant is +1 or —1. In this case the inverse of A, denoted by
A™' = (@,,), has integer elements and is unimodular. Under ordinary
matrix multiplication, the unimodular matrices, of a fixed order, form
a group.
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Let F be a free group with a finite base z,, --- , z,, and let (a,;)
be a unimodular matrix of integers of order n. Then the elements
Yo = 2 tm @,z; (¢ = 1, -+« , n) also form a base for F. To prove

this, observe, first, that the y’s generate F; for z; = Y @,y In addi-
tion, the #’s are independent. For suppose Z'.?-, ¢y, = 0. Then

¢: €,a,;z; = 0. Since the z’s are independent, this implies »_, ¢,a:; =
0 for each j. Therefore 0 = Z., €.a;,G,; = Z €8, = Cq.

Suppose now that F,F’ are free groups with finite bases z,, - - , =,
and zi, - -+, z.) respectlvely (see 6.1 with R = integers). If f: F— F’
is a homomorphism, then, for each 7, f(z,) = X7 b,;x] for some in-
tegers b,, and f is completely determined by the matrix B = (b,)).
Conversely, any m X n-matrix B corresponds to a homomorphism. If
the bases (z),(z) are transformed into bases (y),(y¥") by unimodular
matrices of integers A and A’, then the matrix of f in terms of (y),(%’)
becomes ABA’"'. Thus, to the homomorphism f corresponds an
equivalence class of matrices of integers. At this point we state for
future reference the classical theorem on the reduction of such matrices
to canonical form by an equivalence.

THEOREM 7.1. If B is an m X n-malriz of integers, then there exist
unimodular matrices-of integers A and A’ of orders n and m, respectively,
such that (1) the matrizr C = ABA'"' is in diagonal form, and (2) if
dy,d,, - -« are the diagonal elements of C, then each d, = 0 and d, is a
divisor of d,si fori =1, .-+, Min (mn) — 1. Furthermore C is unique
in the sense that the array of diagonal elements is the same for all equivalent
diagonal malrices satsifying (2).

In terms of the homomorphism f: F — F’, the theorem asserts
that there exist bases (y),(y") of F,F’ such that

(1) f(y-) = d.y.', (7' = 1) Tt P)-

The number p is the rank of B and is the number of nonzero diagonal
elements of C. This result has many consequences.

Suppose, for example, that f is an isomorphism. Then each d, = 1
and m = n. Therefore C is unimodular, and B = A™'A’ is also uni-
modular. Thus, in terms of any bases (z),(z’), an isomorphism corre-
sponds to a unimodular matrix.

If this last result is applied to the case F = F’ and f = identity,
we obtain that any two bases for F' are related by a unimodular matrix.
The number 7 of elements in any base is the same for all bases. It is
easily seen that n is the rank of F (see Exercise 1,H for definition of
rank).

TaEOREM 7.2. Suppose the group G is isomorphic to the factor group
of a free group F' of finile rank m by the homomorphic image of a free
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group F of finite rank. Then G can be decomposed into the direct sum of
r = minfinite cyclic groups and 1 £ m — r finite cyclic groups of orders
6., -+, 0, where each 0, > 1 and 0, divides 6;s, fort =1, --- , 7 — 1,
The numbers r,8,, - -- , 0, are invariants of G. Precisely, if G is decom-~
posed in two ways as a direct sum of cyclic groups in which the orders
of the finite cyclic groups divide one another successively, then the numbers
7,01, +++ , 0, are the same for the two decompositions.

Proor. As shown above we may choose bases (y), (¥') in F,F’ so
that the homomorphism f: F — F’ has the form (1). Let
Ji(t =1, -+, m) be the subgroup of F’ generated by y, and J, ( = 1,

-, ) the subgroup generated by d,y:. Then F’ decomposes into the
direct sum 3.7 J/, and the image of f decomposes into »_; J,. This
yields

P m

7
¢=XYL >
T J. s
If we define 6,, - - - , 8, to be those d’s which exceed 1, then the asserted
decomposition has been demonstrated.

Since r is just the rank of G, its invariance is obvious. Let G’ be
the subgroup of elements of finite order in G. For any integer n,
g — ng defines a homomorphism G’ — G’; let n( denote the image
group, and ¢(n) the number of elements in n@. Given any decompo-
sition of G as described above, the numbers 8, are easily shown to satisfy

0, 0, 0

n) = . HE I
¢ = G ) .
where (6,n) denotes the greatest common divisor of 4 and n. For any
o =1, -+, 7, the equation

01 0 0, =
(6,n)  (6.m)

holds if we set n = 6,, and is false for any positive n less than 6,. This
follows since 6, divides 8,,,. Therefore 6, is the least positive value
of n satisfying ¢(n) = 1; and 8, (¢ < 7) is the least positive value of n
satisfying

1

00+l 07
n) = “oe .
¢( ) (0,”,7?,) (00'7"')
This provides an inductive definition of 6.,6,_,, - -+ , 6, in terms of the

function ¢. Since ¢ is invariantly defined, the 6’s are likewise in-
variants. This completes the proof.

THEOREM 7.3. The conclusions of the preceding theorem hold for any
group G having a finite number m of generalors.
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Let z,, -++ , z, be a set of generators of G, and let ¥’ be the free
group they generate (apply 6.5 with B = the integers). Then the
inclusion {z,} C @ extends to a unique homomorphism h of F’ onto G.
It follows that (7 is isomorphic to F//F where F is the kernel of h. By
6.9, F is a free group. As the rank of F cannot exceed that of F’, it
follows that F has a finite base. Let f be the inclusion map F C F'.
Then we have shown that G satisfies the hypotheses of 7.2, and the
proof is complete.

REMARK. An analysis of the proof of 7.3 reveals several nonconstruc-
tive steps. One is the nonconstructive nature of the proof that the
integers form a principal ideal ring (see 6.8), and another is the use of
the choice axiom in the proof of 6.2. In contrast, the proof of 7.2
(including the reduction of the matrix to diagonal form) is entirely con-
structive; the decomposition of G can be found in a finite number of
steps starting with bases in F,F’ and the matrix for f. In applications
of this section to finite chain complexes, we shall use 7.2 rather than
7.3, and thereby remain within the realm of effective procedures.

8. CANONICAL BASES IN A FINITE COMPLEX

DeriniTiON 8.1. A chain complex K is said to be finite, if, for each
q, C,(K) is a free group on a finite base. Then H,(K) also has a finite
set of generators. The rank R, of H,(K) is called the ¢** Betti number
of K. The invariants 6}, - - - , 67, of H,(K), described in 7.2, are called
the q** torsion numbers of K. The ranks of C (K) and B,(K) are denoted
by a, and 8,.

TueoreM 8.2. If K 1s a finite chain complex, then

Ra =a, — B, — Bq—l-

Furthermore, there exisls a set of bases, one for each C,(K), with the fol-
lowing properties: For each q, the base for C,(K) s composed of five
lypes of elements,

Qy, t=1,--,8, — 74

b;y J=1 7

C:, k=1,---,R,,

d:) l= 1; Uty Te-n

e"ul) m = 17 Tty Beet = Tt

For eack q, the homomorphism 8, vs given by

d.as = 0, a,bi = 0, e =0
ads = 697'bl_,, 3eh = ap,.
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Such a set of bases s called canonical, and the boundary operator is said
to be in diagonal form.

Proor. Since C,.,(K) is free, we have, by 6.3, that Z,(K), the
kernel of 8,, is a direct summand of C,(K). For each g, we choose a
decomposition of C (K) into a direct sum C(K) = Z,(K) + W (K).
Then 8, defines an isomorphism of W, (K) into Z,_,(K). Since both
are free groups on finite bases, there exist bases (y),(y’) in these groups
(see 7.1) such that 9, has the form

9y, = d-y-’: i = 1) cooy Bo-re

Since the kernel of 9, is Z,(K), no d, is zero. Those y, for whichd,, = 1
are relabeled e7%, the corresponding y,; are denoted by a;.,. The re-
maining y’s are denoted by d., and the corresponding y"s by b;_,. The
remaining y"’s are denoted by ci_,. With these choices of base elements
for each g, the boundary operator has diagonal form. Then H . (K)
decomposes into the direct sum of cyclic groups generated by the cosets
of the base elements b, and c.. This decomposition has the form de-
scribed in 7.2. Therefore the number of generators c; is R,. Since the
torsion numbers are invariants, the d’s associated with the b,’s must
be the torsion numbers of H,(K). This establishes the canonical form
of the boundary operator and the ranges of the indices 7, %, and L
Since the elements a; and 6%} form a base for B,(K) of rank 8,, the
range of 7, and therefore of m, must be as indicated. The relation on
R, follows from the fact that the number of generators of all five types
is a,.

It is important from the computational standpoint to observe that
the reduction to the canonical form of 8.2 can be carried out in a finite
number of steps, for any finite number of ¢'s, starting with bases in
each group and the matrix of integers describing each 9, in terms of
these bases. This follows from the fact that the reduction to diagonal
form described in 7.1 is a finite process. One would begin with the least
¢ and reduce 9, to some diagonal form. This provides a new base for
C, including a base for Z,, and a new form for the matrix of 4,,, which
now involves only the base elements of Z,. The matrix of 8,,,: Cov1 —
Z, is then reduced to diagonal form. This provides a new base for C.,
including a base for Z,,,, and a new matrix for 9,50 Coi2 = Z, 1y, ete.

The analogs of 8.1 and 8.2 for finite cochain complexes are left to
the reader.
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9. THE TENSOR PRODUCT

DEriNITION 9.1.*  The tensor product C ) G of two R-modules C and
@ is the R-module generated by the set of all pairs (¢,9), ¢ £ C, ¢ ¢ G with
relations

1) (e + c2,9) — (c1,9) — (c29) = O,
(e + g2) — (cg) — (69)) = 0,
(2) (TC;g) - T(c)g) =0, (c,rg) - T(C,g) = 0.

Following 6.5, C ® G is obtained then as follows: Let R(C,G) be
the free R-module generated by the set of pairs (c,9) and let Y(C,G)
be the least subgroup of R(C,G) containing all the elements of the form

(e1 + cag) — (c,9) — (c29), (61 + g2) — (c,g0) — (.92,
(Tc)g) - T(cig)’ (C)Tg) - T(C,g),
then
C®G=RCGHH/YCGH.

The element of C ® G which is the image of the generator (c,g) of
R(C,@) will be denoted by ¢ ® g. These elements generate the group
C ® @ and the relations are

(11) (cl+cz)®g=cl®g+c2®g;
R+ 9)=c®g +c® g,
29 ) ®g=rc® 9 =c® (rg).

If g is a fixed element of G, the correspondence ¢ — ¢ ® g is & homo-
morphism ¢ — C ® G. Similarly, if ¢ is fixed, ¢ — ¢ ® ¢ is a homo-
morphism G — C ® G. Thus (1) implies

@) ()®9=26e®) cQ@rg=20®4q)
4 0®g=0 c®R0=0.

Lemma 9.2.  If G is an R-module, the correspondence f: R®@ G— G
defined by f(r ® ¢) = rg is an isomorphism. Similarly, G @ R = G.
In the sequel both R ® G and G ® R will be identified with G by these
tsomorphisms.

Proor. Consider first the map f': R(R,G) — G defined by
f'(r,g) = 1g. Since R(R,G) is free, and the pairs (r,9) form a base,
f' is a homomorphism. It is easily seen that f’ has the value 0 on each
of the four relations of (1) and (2). Therefore f’ maps Y(R,G) into 0,
and thereby induces a homomorphism f of the factor group R ® G into

*Assume throughout that R is commutative. Tensor products over non-com-

mutative rings are treated in the book of H. Cartan and S. Eilenberg: Homological
Algebra (Princeton Press) 1956.
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G such that f(+ ® g) = 7g. Since f(1 ® g) = g, f is onto. Applying
(2") and (3), we have

k

2n®%=21Qng=1Q 2 ng..

=1 =1 r=1

Therefore each element of R ® G can be written in the form 1 ® g.
If f0®g) =0, then g = 0. This implies 1 ® g = 0. Hence f is an
isomorphism.

DeriniTion 9.3. Iff: C—C'and h: G — @ are homomorphisms,
the correspondence ¢ ® g — (fc) ® (hg) defines a homomorphism

FRh CRGEG-C'REG

called the homomorphism of the tensor produet induced by the homo-
morphisms f and h. Precisely, the map (c,g) — (fc,hg) defines a
homomorphism R(C,G) — R(C’,G”) which carries Y(C,G) into Y(C'®),
and thus induces a homomorphism f ® h of the tensor products.

In case G = G and h is the identity, we shall speak of f ® h as
the homomorphism C ® G — ¢’ ® G induced by f and will denote it
by a symbol such as f*.

The proof of the following proposition is immediate:

TaeorEMm 94. If i C — C, j: G — @G are identity maps, then
i®75 CRGHCRGistheidentity. If f: CoC', . C' - (",
h: GG, b G >G" then (ff)®@ Wh) = (ff Q) fQHR).

This theorem states that ® is a covariant functor of two variables,
in the category Gy with values in Gp.

TueoreM 9.5. Let C and G be represented as the direct sums (see
5.8)

C=3C., G=2G,

asM B
by means of the ingections
ta: Co—>C, Jo: Gg— G.
Then, for a ¢ M and 8 ¢ N, the homomorphisms
L®J Ca®G—CRG

have zero kernels, and they provide a direct sum representation

CRG= Y C.®G,.
ta.p
Proor. Let p,: C — C,, 152 G — G5 be maps such that p,i, =
identity, p..ta = 0 for o = «, 75js = identity, and rp. j; = 0 for
B’ # B. It follows that (p. ® 75)(ia ® js) = identity and (p.. ® 74)
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(1« ® js) = O for (a,8) # («',8"). Any element k of > C. ® G, can
be written uniquely as a finite sum h = 2 h,s of its nonzero com-
ponents. Define

f: 2C.8G > C®G by fB) =% (ic®jdha-

Then (p. ® 75)f projects h into its component k,s. It follows that f
has kernel zero. Let ¢ ® g be any generator of C ® G. Then ¢ =
> tacaand g = D jsgs and f(Q_ c. @ gs) = ¢ ® g. Therefore f is
onto, and the proof is complete.

LEMMA 9.6. If C is a free R-module with base X, then C ® G s
generated by elements x & g with relations 2 ® (g + g2) = 2@ ¢, +
I®gandr(z®¢g) = z®rg. If G is also a free R-module with base Y,
then C ® G is a free R-module with base {x @ y},ze X, yeY.

This is an easy consequence of 9.5 and 9.2.

Lemma 9.7, If f is a homomorphism of B onto C, then the induced
homomorphism B ® G — C ® G is also onto.

ProoF. An element of C ® G is a finite sum 2 ¢, ® g.. For each
¢, select a b, e Bsuch that f(b;) =¢.. Then fQ_b.®g¢.) = 2 ¢ ® g

LemMma 9.8, If

f h
0> A—->B—->C—->0

18 an exact sequence of R-modules and homomorphisms, then the induced
sequence
fl hl
ARG ->BRGCG-C®RG—0

s also exact. (Note: mno statement is made about the kernel of f'.) If,
Surther, the image of f is a direct summand of B, then the sequence
fl hl
0 ARG ->BRGEG-CRG—0
s exact, and the tmage of f' is a direct summand of B ® G.

Proor. The second part of the lemma follows from the first and
from 9.5. By 9.7, I’ is onto. It therefore remains to show that image
f" = kernel }'. Let T denote the image of f’. If a ¢ 4, g € G, then
Ff'la®g) = (hfa) ® g = 0® ¢g = 0. Therefore T is contained in the
kernel of k’. Hence k' induces a homomorphism &"”: B ® G/T —
C ® G such that the composition of the natural map » B ® G —
B ® G/T followed by A" is }'.

Since h is onto, there is a function ¢: C — B (not necessarily a
homomorphism) such that ¢ is the identity. Define

¢: R(C,G) >B®G/T by ¢'(cg) = n((¢) @ g)-
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Since R(C,G) is free, ¢’ is a homomorphism. It js obvious that ¢’ maps
(c,gn + g2) - (C)gl) — (¢,92), T(C’g) - (C,Tg), and T(C,g) - (rc,g) into
zero. Suppose ¢,,¢; ¢ C and g ¢ G. Since

h(g(c, + ) — @1 — ¢c2) = hole, + ;) — hoe, — hee,

=(cl+cz)—cl—62=0,

exactness implies there is an a ¢ 4 such that f(a) = ¢(c, + ¢,) —
¢c, — ¢c,. Hence

¢,((Cl + c2;g) - (Chg) - (0279))
= 7@ + ¢) ® g — (¢c) @ 9 — () ® 9)
= n((ple: + ) — ¢ —¢) ®9) = 9(fla) @ 9 = nf'(a®yg) = 0.

Thus ¢’ maps Y (C,G) into zero. Therefore ¢’ induces 2 homomorphism
¢’ C®G— B®G/T. Furthermore

¢''h''n(b ® g) = ¢'"M'(b® g) =¢'(hd) ® g9) = 7((¥hd) ® 9).

But ¢hb — b isin f(A); hence n((¢hd) ® g) 7(d ® ¢g). This implies
¢'’h" = identity, and, therefore, kernel k"’ = 0. Since ¥’ = h'p, it
follows that T is the kernel of A’. This proves 9.8.

Let G be an ordinary abelian group, or equivalently, a J-module
where J is the ring of integers. If p is an integer, the operation g — pg
is a homomorphism of @ into ¢ whose image is denoted by pG.

LeMMa 9.9, Let G be an abelian group, p an inleger, and let n: G —
G/p@G be the natural homomorphism. Then the correspondence n ® g —
n(ng) defines an isomorphism

(J/pJ) ® G = G/pG.

Proor. Define f: J — J by f(n) = pn;and let h: J — J/pJ be
the natural homomorphism. Then fh satisfy the hypothesis of 9.8.
Therefore

fl hl
J®RGC - J®GE— JU/p))RG — 0
is exact. By 9.2, we may identify J @ G with G. Then f’ becomes the
homomorphism ¢ — pg; hence kernel k' = image /' = pG. Since k' is
onto, the stated isomorphism is proved.

LemMma 9.10. If p and q are inlegers, and r is their grealest common
divisor, then

J/pd) @ (J/qJ) = J/rJ.

This follows from 9.9 in view of the well-known proposition

(J/gD)/p( /a]) = J/1J.
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As an example, let G be a cyclic group of order 4, and let f: J — J
be defined by f(n) = 2n. Then J ® G is cyclic of order 4, and f’:
JRG—->J®Gisgiven by f/(n ® ¢) = 2(n ® g). Thus the kernel
of f is zero, while that of f’ is not. This example shows that the concept
“subgroup”’ is not preserved in general under tensor products. This
means that the symbol ¢ ® g is ambiguous in a situation where ¢ ¢
CCCorgeGCQG.

So far we have considered & as a functor (of two variables) defined
on G and G with values in G.. However we may also consider ® as
a functor defined on G (= the category of ordinary abelian groups) and
Gr with values in G,. Indeed let C be an abelian group and G an R-
module. Define C ® G by regarding G as an abelian group. Then
convert C ® G into an R-module by setting

rc®g) = c@ry.

We must verify that, if f: C — ¢/, h: G — G’ are homomorphisms,
then f @ h is a homomorphism of B-modules. Indeed we have

rf @ W ® g) = rl(fo) ® (hg)] = (fo) @ r(hg)
= (fo @hlrg) = (f @M ®rg)
={fQMrl®g.

With this verified all the previously stated results remain valid for this
modified @ product.

We shall also generalize the tensor product to a functor on ¢’ and
Gc with values in G¢, where G’ is the subcategory of G consisting of
finitely generated abelian groups and their homomorphisms. This re-
quires some preliminaries.

LemMa 9.11.  Let C be a free group on a finite base ¢,, +-- , c,. Each
element of C ® G can be written uniquely in the form D>_1 ¢, ® g.. The
Junction defined by

f(Z::c.@g.) = (g1, gn)

18 an tsomorphism of C ® G with the direct sum G, (= the direct product
G™) of n-factors equal to G.

Proor. If C, is the subgroup generated by c;, then C decomposes
into )_ C,. Applying 9.5, we obtain an isomorphism C ® G = X_ C, ®
G. Then 9.2 provides an isomorphism C, ® G = G. Combining these
yields the isomorphism f.

DEeriNiTION 9.12. Let G be a compact group and C a free group on
the base ¢, - -+ , ¢.. The direct product G" of n-factors G is a compact
group. The isomorphism f: C® G = G" of 9.11 is now used to carry



§9] TENSOR PRODUCTS 145

over the topology of G" into a topology for C ® G. Then C ® G is a
compact group and f is continuous.

LemMA 9.13. The topology of C ® G is independent of the choice of
the base in C.

LEmMmaA 9.14.  Let C,D be free groups on finite bases, and f: C — D
a homomorphism. Let G,H be compact groups and h: G — H a homo-
morphism. Then f@h: C® G — D ® H is continuous.

Proor. Weshall prove 9.13 and 9.14 simultaneously. Lete,, ---,c,
and d,, --- , d. be bases in C and D used to define the topologies in
C®Gand D H. Then fisgivenby f(c.) = X a,d, i=1,---,n)
where (a,;) is a matrix of integers. It follows that

Gon( Xeon)=5( X ed)om,

1=1 t=1

; d,® ( Z; a.,hg.).
Using the isomorphisms C ® G = G", D ® H = H™ of 9.11, we see
that f ® h corresponds to a map ¢: G" — H™ given by

¢(gl) tt H gn) = ( Z allhgu et b Zl almhg|>-

1=

Since h is continuous and the a’s are integers, it follows that ¢ is con-
tinuous. Hence f ® h is continuous; and 9.14 is proved. Now let
C = D and G = (&, and let f,h be the identities. Then f ® & is the
identity and is continuous. This proves 9.13.

DeriniTioN 9.15. Let C be a group with finite set of generators,
and let

t 7
R—-F—C
be a representation of C as a factor group of a free group F on a finite

base (7 is the inclusion map, and 7 is the natural homomorphism). Let
@ be a compact group. In the induced diagram

i, 7

n
R®G-FRGE§—-CRA

R ® G and F ® G are compact, 7’ is continuous, and by 9.8, %’ is onto
and kernel v = image ¢. In this way C ® G is isomorphic to the
compact group F @ G/image ¢’. Using this isomorphism we carry over
the topology of the factor group to provide a fopology in C ® G. This
is equivalent to defining a set U C C ® G to be open if »'~'(U) is open
inF®AQG.
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LemMma 9.16. If C has a finile sel of generators and G is compact, the
topology of C ® G s independent of the representation C = F/R.

Lemma 9.17. If C,D have finite sets of generalors, and G,H are
compact, and f: C — D, h: G — H are homomorphisms, then f @ h:
C ® G — D ® H s continuous.

Proor. The two lemmas are proved simultaneously. Let

) n 1 m
R—->F -, R, - F, —- D
be the representations used in defining the topologies of C ® G and
D ® H. By 6.2, there is a homomorphism f,: F — F, such that
fn = mfi. Therefore commutativity holds in the diagram

'

FRGCG — C®G
lﬂ@h lf@h

7

N
FF®H — D®H

By 9.15, 5’ and #{ are continuous. By 9.14, f; ® k is continuous.
Then 5{(f, ® k) is continuous. This implies that (f ® h)n’ is con-
tinuous. Thus, if U is open in D ® H, it follows that ' (f ® h)"(U)
is open in F ® G. By the remark at the end of 9.15, this last implies
that (f ® k)™ (U) is open. Hence f ® h is continuous, and 9.17 holds.
If we specialize f and A to be identities, we obtain 9.16.

It is necessary to review previous results under the assumption that
C ® @G has a topology and observe the effect on the conclusions. In
9.2, the function f is continuous since it is the one used in defining the
topology. The same remark applies to the function f of 9.11, and to
the isomorphism of 9.9. If the hypotheses of 9.4,7,8 are strengthened
by assuming the continuity of the appropriate functions, the corre-
sponding functions in the conclusions are also continuous by 9.16. In
9.5, ff G is to be compact and C to be finitely generated, the index
ranges M and N must be finite, each C, must be finitely generated,
and each G4 compact. Assuming each js to be continuous, then 2, ® 1,
is continuous and the final isomorphism likewise.

Summarizing we have

TrEOREM 9.18. Lel G denole the category of ordinary abelian groups
and their homomorphisms, and let G’ denote the subcalegory of groups
having finile bases. Then the tensor product 1s defined in the following cases:

m C & G, GeGr, . then CQ® Ge G,

@) Ceg, G e G, then C® G e G,
@3) Cs ¢, G ¢ G, then C®Ge Ge.
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All the preceding results of this section are valid in cases 1 and 2. The
same s true in case 3 except for the direct sum Theorem 9.5 which is valid
when restricted to finile sums.

10. GROUPS OF HOMOMORPHISMS

Derinrrion 10.1. Given two R-modules C and G, denote by
Hom(C,@) the R-module of all homomorphisms

¢: C =G
with addition ¢, + ¢, defined by

(61 + @2)(c) = i(c) + @a(0),
and with the product 7¢ defined by

(re)(c) = r(¢(c)) = ¢(rc).

In a sense, Hom(C,@) is dual to C ® G. This duality becomes
apparent if the results of this section are compared with the similarly
numbered results of §9.

LemMma 10.2. If G 7s an R-module, the correspondence f: Hom(R,&)
— @ defined by f(¢) = ¢(1) 1s an isomorphism.

Proor. Since (¢, + ¢,)(1) = ¢,(1) + ¢.(1), f is a homomorphism.
Since 1 generates R, f(¢) = O implies ¢ = 0. Since R is free, there
is a ¢ having any prescribed ¢(1).

Derinrrion 103, If f: ¢’ — C and h: G — G’ are homomor-
phisms, the correspondence ¢ — he¢j defines a homomorphism

Hom(f,k): Hom(C,;) — Hom(C',@).

The proof of the following proposition is immediate:

TueoreMm 104. If ©: C — C and j: G — G are identity maps,
then Hom(%,7) is the identity map of Hom(C,G). If f: C' — C, f":
¢’ - C, K: G - @, F: G — G then Hom(ff',h'h) =
Hom(f',h"YHom(f,k).

Briefly, the theorem asserts that Hom is a functor contravariant in
the first variable in Gz, covariant in the second variable in G, and with
values in Gp.

Tueorem 10.5. Let C be represented as a direct sum C = Za.u C.
by means of the injections i,: C, — C. Let G be represented as a direct
product G = [ s Gs by means of the projections ps: G — Gp. Then
the projections

Hom(7,,ps): Hom(C,G) — Hom(C,,Gs)
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represent Hom(C,G) as a direct product
Hom(C,G) = [] Hom(C.,Gs), (a,8) e M X N..

Proor. The Hom (7.,ps) are the components of a homomorphism
f: Hom(C,@) — [] Hom(C.,Gs). Suppose ¢ ¢ Hom(C,G) is not zero.
Then for some a and ¢, ¢ C,, we have ¢i,c, # 0. Then there is a 8
such that pgi.c. # 0. Thus Hom(:,,ps) applied to ¢ is not zero.
Hence f¢ # 0 and the kernel of f is zero. Suppose ¢.s ¢ Hom(C,,Gg)
is given for each (a,8) e M X N. For any c ¢ C, write ¢ as a finite
sum ¢ = 2 i.¢, and define ¢g¢ = D ¢nsc.. Then ¢5 ¢ Hom(C,Gy)
for each 8 ¢ M. These are the components of a ¢’ ¢ Hom(C, [] Gj).
The corresponding ¢ ¢ Hom(C,&) has the property Hom(Z,,ps)¢ = ¢ap.
Thus f is an isomorphism.

Lemma 10.6. If C is a free R-module with base X, then Hom(C,G) 1s
isomorphic with the module G* of all functions X — G, the isomorphism
being obtained by assigning to each ¢: C — G the function X — G defined
by ¢.

The proof is obvious.

Lemma 10.7. If f s a homomorphism of B onio C, then the kernel
of the induced homomorphism f': Hom(C,G) — Hom(B,G) s zero.

Proor. If ¢ e Hom(C,G) is not zero, choose ¢ e C such that ¢(c) » 0.
Then choose b ¢ B such that f(b) = ¢. Then (f'¢)b = ¢f(b) #= O.
Hence f'¢ is not zero.

Lemma 10.8. If

I h
0> A—->B—->C—->0

18 an exact sequence of R-modules and homomorphisms, then the induced
sequence
h’ f’
0 —» Hom(C,G) — Hom(B,@ — Hom(4,()

1s exacl. If, further, the image of f is a direct summand of B, then the
sequence
hl fl
0 —» Hom(C,G) - Hom(B,G) —» Hom(A4,G) — 0

is exact and the image of k' 1s a direct summand of Hom(B,G).

Proor. The second part of the lemma follows from the first and
from 10.5. By 10.7, the kernel of &’ is zero. It therefore remains to
prove that image i’ = kernel f'. If ¢ ¢ Hom(C,G), then (f'h'¢)(a) =
ohf(a) = 0 since hf = 0. Therefore image b’ C kernel f’. Suppose
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¢ ¢ kernel f’. Then ¢f(a) = Ofora ¢ A, and ¢(b) = 0 for b ¢ kernel h.
Hence ¢ ‘induces a homomorphism ¢’ of B/kernel h into G. Since h
is onto, B/kernel & is naturally isomorphic to C, and ¢’ can be regarded
as an element of Hom(C,G). Clearly h'¢' = ¢; and we have image
k' = kernel f’.

Lemma 10.9.  If p is an inleger, the correspondence f: Hom(J/pJ,G)
— @ defined by f(p) = ¢(1) is an isomorphism of Hom(J/pJ,G) onlo
the subgroup of G of elements of order p.

The proof is immediate (compare with 10.2).

Lemma 10.10.  If p and q are integers, and r is their greatest common
divisor, then

Hom(J/pJ,J/qJ) = J/rd.

This follows from 10.9 and the isomorphism
Lty = /.

So far we have regarded Hom as a functor on G and G with values
in Gp. As in the case of ®, we shall also consider Hom as a functor
on G (= the category of ordinary abelian groups) and G, with values
in ;. Indeed, let C be an abelian group and G an R-module. Define
Hom(C,@) regarding G as an abelian group. Then convert Hom(C,G)
into an R-module by setting for¢: C — Gand r e R,

(ré)(c) = r(gc).

Iff: ¢ >Candh G — @, then Hom(f,g) is a homomorphism of
R-modules. Indeed,

[r Hom(f,h)l¢ = r(h¢f) = h(r¢f) = Hom(f,h)(r¢).

We shall also consider Hom as a functor on G and G¢ with values
in G¢. Indeed, let C be an ordinary abelian group and let G be a com-
pact abelian group. Define Hom(C,G) regarding G as an abelian group
(without topology). Then convert Hom(C,G) into a topological abelian
group by treating it as a subgroup of the compact group G¢ of all
functions y: C — G. Since the projections of a cartesian product are
oontinuous, ¥(c) is a continuous function of ¥ in G° and therefore the
condition ¢(¢, + ¢;) — y¥(c,) — ¥(c.) = 0, for fixed ¢,c; ¢ C, defines a
closed subset of G°. Thus Hom(C,@), as an intersection of closed sub-
sets of G, is a closed subgroup and hence is compact.

It must be checked that Hom(f,k) is continuous for f: C' — C
and h: G — @' with G, compact and h continuous. Let U be a
rectangular open set in Hom(C’,G’) defined by the conditions ¢c; ¢ V
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where ¢; ¢ C’, V,isopenin G’ fori = 1, -+, n. The set Hom(f,h) ‘U
is then a rectangular open set defined by ¢fc, e A"'(V,), i = 1, - -+ , n).
Summarizing we have
TreoremM 10.11. The group Hom(C,R@) is defined in the following
cases:

(1) C e Gg, G e Gg, then Hom(C,®) & G,
@ CeG,  GeGr thn Hom(C,0) ¢ Ga,
3) Ceg, Ge Qe then Hom(C,®) ¢ G¢.

The preceding results of this section hold in all these cases.

11, HOMOLOGY GROUPS OF A CHAIN COMPLEX OVER A
COEFFICIENT GROUP

The tensor product operation extends to chain complexes as follows:

DeriNiTION 11.1. If K = {C,(K),d,]} is a chain complex and G is a
group, define K ® G to be the chain complex {C,(K) ® G,d.} where
9, is induced by 4,, i.e. 3, = 3, ® © where 1 is the identity map of G.
If f: K — K'is a map of chain complexes, let /' KQGF—- K ® G
be the map induced by f, i.e. f; = f, ® 7. The resulting functor from
chain complexes to chain complexes is denoted by ®G. By 9.18 there
are three cases:

¢)) G ¢ G, then ®G: Gy — 9Gx,
(@) G ¢ Gy, then ®G: 8¢ — 90Gg,
3) G ¢ Gg, then ® G: 9g" — a4G¢.

Naturally one must show that K ® G is a chain complex. This is
proved by tensoring 8,.,0, = 0 with ¢, and applying 9.4 to obtain
0410, = 0. Similarly f,..0, = 9.f, implies f._,d; = 9.f.; hence [’ is
a map.

Turorem 11.2. If 3Gx,0G,0G are regarded as h-categories in the sense
of direct couples (see 3.1), then, in all three cases, ®G is a covartant h-
Sfunctor.

Proor. If (¢¥): L — K — M isa direct couple, then by definition

¢ 14
0 >L—->K->M-090

is exact and the image of ¢ is a direct summand of K. By 9.8 the same
is true of the induced sequence

¢’ v’
0 LRGF—-K®QG->MQG— 0,

so that (¢',¢) is again a direct couple. Thus ®G is a c-functor.
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Since the functor ®@ carries an isomorphism into an isomorphism,
it follows immediately that ®G carries excisions into excisions and
points into points. It remains to show that it carries homotopies into
homotopies. Let f,g: K — L, and let D: f ~ g. By definition D
is a sequence of homomorphisms D,: C.(K) — C,.,(L) such that

(4) aﬂ+1Dq + Da—laq = e — fq-

Let D] = D, ® ¢ where ¢ is the identity map of G. If we tensor (4)
with 7 and apply the relations of 9.4, we obtain (4) with primes on each
homomorphism. Therefore D’: f’ ~ ¢’, and the proof is complete.

DeriniTiON 11.3. According to 1v,9.5, the composition of the
h-functor ®G with the homology theory H on 3G, [or dGc] (see 4.9) is
a new homology theory defined on the domain of ®G. 1t is called the
homology theory with coefficient group G. For any chain complex K,
the group H (K ® () is customarily written H,(K;G) and is called the
q-dimensional homology group of K with coefficients in G, or the ¢** ho-
mology group of K over . As in 11.1, there are three cases:

(1) GeGr, KedGe, then HUK;G) e Ga,
(2) G € SR) Ke 69! then HG(K)G) € SRy
®3) GeGe, Keag, thm H(K;®) e Ge.

CONVENTIONS AND INTERPRETATIONS 11.4. The group of chains,
cycles, and boundaries of K with coeflicients in G are written C,(K;G),
Z(K;@), and B,(K;G) rather than C (K ® G), etc. In keeping with
this notation the chain ¢ ® ¢, where ¢ ¢ C,(K) and ¢ ¢ G, will be written
gc. Then, by 9.1, any element of (',(K;G) is a linear combination 2, g.c.
of elements of C (K) with coeflicients in (7, and any relation is a conse-
quence of relations of the form

(g: + g2)c = gic + guc, gler + ¢2) = gey + ge,
and (rg)ec = r{gc) = g(rc) in case I, or (rg)c = r(gc) in case 2. Like-
wise the boundary operator of K ® G is given by
a; Z U.C. = Z gl(aacl))
and, if /1 K — K',then f/: K®G— K'® G is given by

Jo 2 9o = 2 g(fe).

ReMark. Inthe case when G = J is the group of integers, we agreed
in §9 to identify C ® J with C for any group C. Consequently K ® J =
K and H (K;J) = H,(K). Thus we shall regard the ordinary homology
groups as being those based on integer coefficients.

An analogous discussion for cochain complexes may be obtained by
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a simple application of the sign-changing trick. If K is a cochain com-
plex, then H = {H(K ® G),f,,6*} is a mixed theory, i.e. a covariant
é-functor satisfying the Homotopy, Excision, and Dimension axioms.

12. COHOMOLOGY GROUPS OF A CHAIN COMPLEX OVER A
COEFFICIENT GROUP

The operation Hom of §10 extends to chain complexes as follows:

Derntrion 12.1. If K = {C(K),d,} is a chain complex and G is
a group, define Hom(K,G) to be the cochain complex { Hom(C,(K),G),5°}
where

8. Hom(C,(K),G) — Hom(C,,,(K),@)

is induced by 9,411 C.i(K) — C(K), ie. 8 = Hom(d,,,,7) where 7 is
the identity map of G. If f: K — K’ is map of chain complexes, let

f'* Hom(K',G) - Hom(K,®)

be the map of cochain complexes induced by f, i.e. f'* = Hom(f,,?).
The resulting contravariant functor from chain complexes to cochain
complexes is denoted by Hom( ,G). By 10.11, there are three cases:

1) G ¢ G, then Hom( ,G): 3Gr — 6Ga,
@) G e G, then Hom( ,G): 4G — G,
3) G e Qe, then Hom( ,G): 48 — 8Gc.

If we apply Hom( ,7) to the relation 3,.,0,+2 = O and use 10.4,
we obtain §°*'8° = 0; hence Hom(K,G) is a cochain complex. Similarly
fee19. = 0.f, implies 8 f*"! = f'%6°"'; hence f’ is a map.

TeEOREM 12.2. If 0GR, 0G are regarded as h-calegories in the sense
of direct couples (see 3.1), then, in all three cases, Hom( ,G) is a conira-
variant h-functor.

Proor. If (¢,¢): L — K — M is a direct couple, then by definition

¢ 2
0—-L—>K->M->290

is exact and the image of ¢ is a direct summand of K. By 10.8, the
induced sequence
¢I ¢I
0 —» Hom(M,G) — Hom(K,§) - Hom(L,G) — 0
is likewise exact and the image of ¢’ is a direct summand. Hence

(¥',¢') is a direct couple. This proves that Hom( ,G) is a contra-
variant c-functor.
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Since Hom(f,,?) is an isomorphism whenever f,, are isomorphisms,
it follows that Hom( ,G) carries excisions into excisions.

If the chain complex K is pointlike, i.e. 8, C,(K) = C,_,(K) for
g even and >0, and for ¢ odd and <0, then 6" is likewise an isomor-
phism under the same conditions. Therefore Hom(K,®) is a pointlike
cochain complex since, after application of the sign-changing trick, we
obtain a pointlike chain complex.

It remains to show that Hom( ,G) carries homotopies into homo-
topies. Let f,g: K — L, and let D: f =~ g¢. Then D is a sequence
D, C (K) — C,. (L) such that

4) 041D + Doyd, = g, — fo.
Let D'* = Hom(D,_,,7) where 7 is the identity map of G. Then
D’*: Hom(C,(L),&) — Hom(C,.,(K),®.
Applying Hom( ,?) to (4) and using 10.4, we obtain
D8 + 87D = g’ — [0

Therefore D':  f' ~ ¢, and the proof is complete.

DerintTioN 12.3.  According to 9.5¢, the composition of the contra-
variant h-functor Hom( ,G) with the covariant s-functor H on Gy
[or 8G¢] (see 4.9¢) is a cohomology theory defined on the domain of
Hom( ,@). 1t is called the cohomology theory of chain complexes with
coefficient group G. For any chain complex K, the group H(Hom(K,G))
is customarily written H°(K;G) and is called the g¢-dimensional co-
homology group of K with coefficient group G, or the ¢** cohomology group
of K over G. Asin 12.1, there are three cases:

1 G e G, K £ 0Gp, then H'(K;G) ¢ G,
2 G ¢ G, Kedg, then H'(K;G) ¢ G,
3) G ¢ Ge, K ¢ 3g, then H'(K;Q) ¢ Ge.

CONVENTIONS AND INTERPRETATIONS 12,4, The group of cochains,
cocycles, and coboundaries of Hom(X,G) are written C*(K;G), Z°*(K;G),
and B*(K;G) rather than C*(Hom(K;G)), etc. By definition, a ¢-cochain
of K i3 a homomorphism ¢: C.(K) — G. Iis coboundary &°¢ is the
(¢ + 1)-cochain ¢d,41: Coui(K) — G. It follows that ¢ is a g-cocycle
(.e. 8°% = 0) if and only if ¢ maps B,(K) into zero. It also follows
that a ¢-coboundary maps Z,(K) into zero; however, in general, this
property is not sufficient to characterize a coboundary. If f: K — K’
is a map of chain complexes, then the induced f’: Hom(K',G) —
Hom(K,G) is given by

(¢ )z = ¢'fox, ¢ eCUK',G), xeCy(K).
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An analogous discussion for cochain complexes may be obtained by
a simple application of the sign-changing trick. If K is a cochain
complex, then H = {H,(Hom(K,G)),/*,d,} is a contravariant d-functor
satisfying the Homotopy, Excision, and Dimension axioms.

13. COMPARISON OF VARIOUS COEFFICIENT GROUPS

In this section we shall establish various results bearing on the
homology and cohomology groups of a chain complex for various co-
efficient groups. The so-called ‘“‘universal coefficient theorem” has not
been included since its statement requires new group operations, besides
® and Hom, which are not of sufficient importance in the sequel to be
studied here (see Exercises v,G).

LemMma 13.1.  If K is a chain complex composed of free abelian groups
lor of vector spaces over a field F), then Z,(K) is a direct summand of C (K).

Proor. As a subgroup of a free group, the group B,.,(K) is free
(see 6.8). Since 9, maps C,(K) onto B,_,(K) with Z,(K) as kernel, it
follows from 6.3 that Z,(K) is a direct summand of C,(K).

Lemma 13.2. If K s a chain complex such that Z,(K) is a direct
summand of C.(K) and such that H,(K) = 0 for all q, then there exist
homomorphisms D,: C(K) — C,.(K) such that

d,aDx+ D,_ 0z =12z

Jor all z ¢ C (K).

Proor. Let C((K) = Z,(K) + W, be a direct sum decomposition.
Then 8, maps W, isomorphically onto B,_,(K). Since H,_,(K) = 0,
we have B,_,(K) = Z,_(K). Letd,: W,— Z, (K) denote the map
defined by d,. Define D,: C,(K) — C,.,(K) as follows:

Dz =20 forxe W,,
Dz = 9,0z for x e Z(K).

For z ¢ W, we have 8Dz 4+ Daz = 8 '3z = z, while for z ¢ Z, we have
dDz 4 Doz = 807 'z = z. Thus the relation dDz 4- Ddx = z holds
for all z ¢ C(K).

TueorEM 13.3. Let K and L be chain complexes composed of free
abelian groups {or of vector spaces over a field Fland let f: K — L be a
map. In order that { be a homolopy equivalence (1v,9.2), it is necessary
and sufficient that

Toi Ho(K) = H,(L)

Sor all dimensions q.
Proor. The necessity of the condition is an immediate consequence
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of 4.4. In order to prove the sufficiency we construct a new chain
complex f as follows:

Coff) = Cor(K) + C(L)  (direct sum),

(2 Y) = (=012, + fo-2), zeCi(K), yeCyL).
Since 3d(z,y) = d(—az,dy + fx) = (90x,00y + dfr — fox) = O, this
definition indeed yields a chain complex f.

Next we show that the condition of the theorem implies H q(f‘) =0
for all ¢. Indeed, let (z,y) € Z,(f). Then dz = Oand —dy = fx. Then
zeZ,(K) and fzx ¢ B,.,(L). Since the kernel of f, is zero, it follows
that x ¢ B,_,(K). Thus there exists an 2’ ¢ C,(K) with 92" = z. Then
Iy + f2') = 9y + fox' = dy + fx = 0, so that y + fz’ e Z (L).
Since f, maps H,(K) onto H,(L), there exist z”/ ¢ Z,(K) and ¢’ & C,,,(L)
such that f2” + 3y’ = y + f2’. Then

o — 2'y) = (92’ — 92", oy’ + f2" — f2') = (z,y),
and H,(J) = 0. ) .
In view of 13.1, the groups Z(f} are direct summands of C,(f), and

therefore 13.2 implies the existence of homomorphisms Dy:  Co(f) —
C..1(f) such that

(i) 31 De(x,y) + Do-184(zy) = (z,y).
Each of the homomorphisms D, yields four homomorphisms

D..: C_(K) — C(K), D'l C(L) — C,.(L),

he: C (L) — C(K), E. i Co(K) — C,. (L),
such that

Dy(z,y) = (Di-1x + hey, Eimnz + DJy).

Upon computation, condition (i) yields
(i) == —D'dx + hdy + hfx — 8D’z — 0dhy,
(iil) y = —Edx + D9y + D" fx + 0Ex + oD’y + fD'z + fhy.

Substituting x = 0 in (ii) yields hdy = dhy so that i L — K is a
map. Substituting ¥ = 0 in (ii) and z = 0 in (iii) yields

oD’z + D'dx = hfzx — z, dD"y + D9y =y — fhy.

Thus D’: hf ~ 1, and —D’": fh =~ {, where 7, and 7; are the identity
maps of K and L respectively, so that f is a homotopy equivalence.

TuEOREM 13.4. Let K and L be chain complexes composed of free
abelian groups [or of vector spaces over a field F], and let f: K — L be
a map such that

foi HJ(K) = Hy(L)
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for all g. Then
for HKQ) = H(L;G), f* H'(L;G) = HY(K,@)

for any coefficient group G [or any veclor space G over F).

Proor. By 13.3, f is a homotopy equivalence. Since the func-
tors ®GF and Hom( ,G) carry homotopies into homotopies, it follows
that they carry homotopy equivalences into homotopy equivalences.
Thus the maps

. K G—-L®AG, f": Hom(L,G) —» Hom(K,G)

are homotopy equivalences. Therefore the induced homomorphisms f,
and f* are isomorphisms.

NOTE

Abstract cell complexes. One often encounters chain complexes K in
which each group C(K) is a free abelian group with a given base {o}}.
In defining such an “abstract cell complex,” it suffices to indicate the
cells in each dimension and the boundary

3ot = 2[00 "o}

of each “cell” ¢!. The coefficients [¢?:67"'] are called “incidence num-
bers”’; for a fixed 7, only a finite number of them are different from zero.
The condition 38 = 0 is equivalent to

(1) 2 [63:0i 0f " 0i ) = 0

for any pair ¢f,05 *
Let A¢ denote the matrix whose (7,7)** element is [¢%:¢?"']. Then
each row of A° corresponds to a g-cell and each column of A corre-

sponds to a (¢ — 1)-cell. Condition (1) becomes
A4 = 0.

If K and L are two such complexes with cells o and 7 respectively,
then a map f: K — L is determined by the coefficients c; in fo{ =
> cyri. If we denote by C° the matrix of the integers ci;, we find
that the condition af = fd is equivalent to

CGBG —_ AGCG-I

where {B°] are the incidence matrices of the complex L.
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EXERCISES

A. HOMOMORPHISMS OF EXACT SEQUENCES.

Let f: K — K’ be a map of the exact lower sequence K into another
such sequence K’. Regard both K and K’ as chain complexes and
denote their homomorphisms by @ and ¢’. The kernel of f is a sub~

complex L of K, and the image of f is a subcomplex L’ of K’. This
gives couples

0—>L—->K-—>K/L-J0, 0—-L > K —- K'/L' - 0.
1. For each index ¢, the various subgroups of C,(K) form a lattice
as follows:
C(K)
Z(K/L)
B(K/L)

Z(K) = B(K) C(L)

Z(L)
B(L)

2. Show that Exercise 1 holds with K’,I.’ in place of K,L.

3. Show that the above lattices of subgroups of C,(K), C.(K') form
a closed family under the six operations 9, 8%, 9, 7", f, and f7".

4. For each index ¢, we have the isomorphisms

X (907" 3
H (K'/L') = H(L') = H(K/L) = H, (L)

where g: K/L — L’ is induced by f.

5. Derive from 4 the following proposition due to R. H. Fox: If
{f.} is a homomorphism of the exact sequence {C,#,] into another
exact sequence {C},¢.}, then

¢, 1(image f,)/(image f,.;) \U (image ¢..,)
= (kemnel f,.,) M (kernel ¢,.,)/d.(kernel f,).
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B. CHAIN HOMOTOPIES.
1. Let f: K — K’ be a map of chain complexes, and let D = {D,}
be a sequence of hemomorphisms D,: C,(K) — C..:(K’). Show that

gd = fa + aa+lDa + Du—laq

defines amap g: K — K’ and that D: f~g.

2. Let f,f'* K— K’, g,¢': K’ — K be maps of chain complexes.
Suppose that g is the homotopy inverse of f and that f ~ f’. Prove
that ¢’ is a homotopy inverse of f’ if and only if ¢’ ~ g.

3. Letf: K—K',g: K' — K”. If any two of the three maps f,
g, and gf are homotopy equivalences, so is the third.

C. FREE GROUPS AND COMPLEXES,

1. Show that, for abelian groups, a group H is free if and only if
6.2 holds.

2. If Fisfreeand 0 - G’ — G — G, — 0 is exact, then the same is
true in the induced sequences

0 - F®RGE > FRGE-oFRG — 0,
0 — Hom(F,G’) — Hom(F,G) — Hom(F,G'") — 0.

3. Let K be a chain complex composed of free abelian groups, and
0> @ — G — G” - 0 an exact sequence of groups. Show that the
induced sequences

0 KRG —-KRGCG-KRG —0,
0 —» Hom(X,G"") — Hom(K,G) — Hom(K,G') — 0.

are exact and write down the exact sequences of the couples that they
represent. Give an explicit definition of the homomorphisms

H(KG") —» H,(K)G),  HKG')— H"Y(K,G")

and examine their properties.

4. Let 0 > L - K — M — 0 be an exact sequence of complexes
composed of free abelian groups and 0 — ¢ — G — G"” — 0 an exact
sequence of coefficient groups. There arise six homology sequences.
Arrange these sequences in a single diagram. Carry out a similar dis-
cussion of the cohomology sequences.

5. Let K and M be chain complexes composed of free abelian groups
and let f: K — M be a map of K onto M. Establish the equivalence
of the following conditions:

(a) [y H(K) = H/(M) for all g.

(b) I L is the kernel of f, then H,(L) = 0 for all ¢.

(c¢) There exists a map g: M — K such that fh = ix, and there is
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a chain homotopy D: hf ~ 1, such that fD = 0 (i.e. the values of
D are in N). Here i and 7, denote appropriate identity maps.

D. HoMoLOGY GROUPS OF MAPS.

DeriNrrioN.  Given a map f: K — L of chain complexes, consider
the chain complex f defined in the proof of 13.3. The groups H,.(})
may be called the homology groups of the map f and denoted by H,(f).

1. Condider the maps k: C.(L) — C,(f) and I: C.(f) = Coui(K)
defined by ky = (0,3, l(z,y) = —=z. Show that kisamapk: L —f,
and that [ lowers the dimension by 1 and commutes with 3. Establish
the exactness of the sequence

f# k* " l#
++ = H(K) » H(L) —» H(f) - H,_(K) — -

where [, is induced by [ in the obvious manner.

E. PROPERTIES OF ).
In all the subsequent exercises it is assumed that all groups are in

the category §. The restatements for other categories are left to the
reader.

1. Establish the natural isomorphisms

A®B=B®A4, ARBER®C=4Q0B&®C0)
for ordinary abelian groups A,B,C.
2. If ¢’ C C and " C G, then the natural homomorphisms

C'® G

!
CRGFT —-C G- CRG/G)
! !
C/Ch® G — (C/C)®(G/G)

arise, Show that C ® G — (C/C") ® (G/G) is onto, and its kernel is
the group

image (C’ ® @) \J image (C ® G').

3. If all elements of C or of G are of finite order, the same is true of
C®QG.

DeFINITION. A group G is infinitely divisible if, for every g ¢ G and
every integer n # 0, there is a ¢’ ¢ G such that ng’ = g¢.

4. If C or (@ is infinitely divisible, then so is C ® G,

5. If all elements of C are of finite order and @ is infinitely divisible,
then C® G = 0.

6. Let G = [] G, be a direct product and ps: G — G the pro-
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jection. The induced homomorphisms pj: C ® G — C ® Gy are the
components of a homomorphism p: C ® G — [] C ® G5. Show that
p’ has kernel zero, and show, by an example, that p’ need not be onto.
If C is finitely generated, then p’ is an isomorphism. If, further, the
Gy are compact groups, then p’ is continuous.

7. State and prove the analogs of 9.5 and 10.5 for direct products
instead of direct sums assuming that M is finite, and each C, is finitely
generated. Include the case of compact groups G,.

F. RELATIONS BETWEEN ® AND Hom.
DErINITION. A bthomomorphism ¢ of the groups C, and C, with
values in a group G is a function ¢(ci,¢c.) € G, ¢, ¢ Cy, ¢, ¢ C, such that

d(a + clc2) = d(cr,6) + dlci,ea), d(er,c: + ¢2) = (i ca) + dley,cl).

Let Hom(C,,C,;@) denote the group of all such bihomomorphisms. We
assume that C, and C, are in the category § while both ¢ and
Hom(C,,C,;@) are in one of the categories Gz or Ge.

1. Establish the following natural isomorphisms:

Hom(C,,C;;G) = Hom(C; ® C,,G)
= Hom(C;, Hom(C,,®)
= Hom(C,, Hom(C,,G)).

2. If K is a chain complex, then H*(K, Hom(C,®)) = H (K ® C,&).
3. Let J be the group of integers, and define a homomorphism

: C®G— HomHom(C,J),G)
by setting for each c ® g e C ® G and each ¢: C — J
b.0:(®) = o(c)g.

Prove that 6 is a natural transformation of the appropriate functors.
Prove that, if C is a free group on a finite base, then ¢ is an isomorphism.

4. Let K be a chain complex such that each of the groups C,(K) is
a free group on a finite base. Define a cochain complex K = Hom(K,J).
Prove that K ® G = Hom(X,®@) and Hom(K,) = K ® (@, where G is
a group in G, Gc¢, or Gr. Consequently the homology [cohomology]
groups of K over any coefficient group coincide with those homology
[cohomology] groups of K.

G. UNIVERSAL COEFFICIENT THEOREMS.
1. Let F be a free group, R a subgroup of F, and G any group. Con-
sider the homomorphisms

;. RE-F®AG, i’: Hom(F,G) —» Hom(R,R)
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induced by the inclusion ¢: B C F. Show that the groups
kernel ¢/, Hom(R,GF)/image ¢’

are essentially functions of the groups H = F/R and ¢. Denote these
new groups by Tor(H,G) and Ext(H,GF) and examine their properties,

2. Let K be a chain complex composed of free groups. Istablish
exact sequences

—>B,®GC-Z,R®GC-oHK,G—>B,_,®G—
— Hom(Z*™',G) - Hom(B*™',G) — H'(K,G) —» Hom(Z*,G) —

(Hint: Consider the exact sequence 0 - Z — K — K/Z — 0 where
Z = {Z,(K),0}.)
3. Using the results of 2 establish exact sequences
a ]
0— H(K)® ¢ — H(K;@) — Tor(f{,_.(K),G) — 0
8 a

0 - Ext(H,.,(K),G) - H'(K;G) » Hom{I (K),) - 0
and show that the images of « and E are direct summands. IExamine
the behavior of these exact sequences under maps f: K — K’

The above results yield the following isomorphisms for the chain
complex K:

H(K;G)
HYKG)

U

H(K) ® G + Tor(H,_(K),G),
Hom(H,(K),G) + Ext(H,_,(K).G).

These are known as the “Universal Coefficient Theorems” since they
express H (K;(7) and H°(K;G@) over any coeflicients in terms of H (K)
and H,.,(K) with integral coefficients. For more details see 3. Eilenberg
and S. MacLane, [Group exfensions and homology, Annals of Math. 43
(1942), 757-831]; see also H. Cartan and S. Kilenberg, Homological
Algebra (Princeton University Press) 1956,

4. Using the above results show that, if f: K — K’is a map of a
free chain complex into another such complex, and if f,: H.(K) =
H(K') and f,: H,_(K) = H,,(K’), then f: H,(K;G) = I (K;G)
and f*: HK;@) = H*(K’,G) for any coeflicient domain G.

U



CHAPTER V1
Formal homology theory of sumplicial complexes

1. INTRODUCTION

In this chapter we develop the formal homology and eohomology
theories of simplicial complexes. This is achieved by associating a chain
complex with each simplicial complex and then using the definitions and
results of Chapter v. The formalism leading from simplicial to chain
complexes is strongly influenced by the results of Chapter 1v. These
definitions point the way to the existence proofs of Chapters vii and 1x.

The homology theory of simplicial complexes is constructed in two
ways. The classical procedure attaches to each simplicial complex K
a chain complex K, which we call the alternating chain complex of K.
The definition of K, is completely motivated by the results of Chapter
1. The other procedure attaches te each K the ordered chain complex
K,. There is a natural mapping K, — K, which induces isomorphisms
of their homology groups. The use of K, is advantageous in proofs of
general theorems. It is formally simpler since one does not need to
worry about relations in groups and possible degeneracy. On the other
hand, the groups C,(K,) are unnecessarily large. Consequently, the
chain complex K, is used whenever it is necessary to compute the groups
of a complex.

Since this chapter deals almost exclusively with the formal relations
in a complex K, and the underlying space |K| is not utilized, the as-
sumption that the complex is finite may be dropped. To this end we
reproduce a definition already made in the Exercises of Chapter 11.

DEerimniTioN 1.1. Let W be an infinite set of objects called vertices.
A complex K with vertices in W is a collection of (finite dimensional)
simplexes whose vertices are in W, subject to the condition that a face
of simplex in the collection is also in the collection.

The concepts of “‘subcomplex’ and “simplicial map’’ are introduced
in the obvious way. The category of pairs of infinite complexes and
simplicial maps will be denoted by &,. The term “infinite” is always
used in the sense of ‘‘finite or infinite,” so that the finite complexes
form a subcategory X: of X,.

2. THE ORDERED CHAIN COMPLEX OF A SIMPLICIAL COMPLEX

Derntion 2.1, If K is a simplicial complex, an array A° ... A°

(g = 0) of vertices of K, ineluded among the vertices of some simplex
162
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of K, is called an elementary g-chain of K. Precisely an elementary ¢-
chain is a function which, to each integer ¢ = 0, - - - , g, assigns a vertex
A’ of K such that A°, --- | A all lie in a simplex of K. The free group
generated by this set of elementary g¢-chains of K (see v,6.5) will be
denoted by C,(K,). By definition, C (K,) = 0forq < 0.

For each elementary g-chain A° --- A° (¢ > 0), define

9,(A° - A% = z_:o(_l)'A" e A A0

where the circumflex over a vertex indicates that the vertex is omitted.
Having defined 9, for the generators of C,(K,), a homomorphism

aq: Cu(Ko) - Cqﬂ(Ko)

is uriquely determined. If ¢ £ 0, then 8, = 0, by definition.

LemMma 2.2, 9,.,0, = 0.

Proor. If ¢ £ 1, then d,_;, = 0, by definition. Suppose therefore
that ¢ = 2. It is sufficient to verify that 9,.,0,(4° -+ A% = 0 for
gz 2 Let0=<k<l=ygq Since

Bgr0(A” -+ AY) = 2 (—=1)'9,,(A° - A ... A9,

1m0

the symbol A° ---A/Ai" ..+ A" --+ A" will oceur in the expression for
(—=1)*9,.1(A° --+ A* ..+ A with the coefficient (—1)*(—1)*"" and in
the expression for (—1)'9,_,(4° --- A' --- A% with the sign

(~=1)'(—=1)*. Tence the two terms cancel, which proves the proposi-
tion.

It follows from 2.2 that {C,(K,),d,} is a chain complex. This chain
complex will be denoted by K,. If L is a subcomplex of K, then C,(L,)
is generated by a subset of the set generating C,(K,), and 9, on L,
agrees with @, on K,. Therefore L, is a subcomplex of K, and is a direct,
summand of K,. Given ¢ ¢ C,(K,) we shall write ¢ C L to denote that
ceC.L,).

DeriniTioN 2.3. For each simplicial pair (K,L), the chain complex
K,/L, is called the ordered chain complex of the pair (K,L). The groups
C(K,/L,) are free groups, and if K is finite, K,/L, is a finite chain
complex in the sense of v,8.1.

Lemma 24. Iff: (K,L) — (K',L’") 1s simplicial, the homomorphisms
fo: CUK,) = C (K2 and [ Co(L,) — C(L!) defined by

Ja(A® oo AT = f(A°) - -- f(A9)
define a map

foi KoL, — K./L.
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Moreover, if f: (K,L) — (K,L) is the identity, then f, is the identity,
and, if f: (K,L) — (K',L"), ¢g: (K'.L') — (K",L"), then (¢f)s = gof

The proof only requires the verification of the commutativity rela-
tion 8,f, = f,-.9, which is an immediate consequence of the definitions.

The lemma states that K,/L, and f, form a covariant functor O
on the category X, of simplicial pairs and simplicial maps with values
in the category G of chain complexes (recall that G is the category of
ordinary abelian groups, i.e. ¢ = Gr where B = the integers). We
now convert X, into a c-category by defining couples (¢,7) to consist
of the inclusion maps : L — K, j: K — (K,L) for each pair (K,L)
in X,. Since 1, is the inclusion map L, — K,, it follows that the sequence

7, Jo
0—-L,—-K,—K,/L, >0

is exact, thus (7,,7.) is a couple on the category 8G. Since, as was
observed earlier, L, is a direct summand of K,, it follows that the
couple (1,,7.) is direct in the sense of v,3.1.

Summarizing we have

TaeoreM 2.5. The pair K,/L,,f, forms a covariant c-functor O on
the category X, of simplicial complexes and simplicial maps with values in
the c-category 9G of chain complexes (with only direct couples considered).

3. HOMOTOPIES, EXCISIONS, POINTS

DeriniTion 3.1, Two simplicial maps f,g: (K,L) — (K',L’) are
called contiguous if, for every simplex s of K [of L], the simplexes f(|s])
and g(|s]) are faces of a single simplex of K’ [of L’]. This relation will
play the role of homotopy in the category X,.

We use the term ‘“‘contiguity” instead of homotopy to avoid con-
fusion with the homotopy of the maps f,g: (|K|,|L|) — ((K'|,|L’]) of
the associated topological spaces (when K and K’ are finite complexes).
Indeed if f and g are contiguous, then they are also homotopie, and
hla,t) = (1 — O)f(a) + tg(a) for @ ¢ |K|, 0 < ¢ < 1 is a homotopy.
The converse is generally false: f and g may be homotopic without
being contiguous.

Tuarorem 3.2. If the simplictal maps f,g: (K,L) — (K',L") are
contiguous, then the induced chain maps f,,9,0 K.,/L,— K|/L} are chain
homotopic.

Proor. Given an elementary chain ¢ = A° -+ A% in K, define

q

De= 2 (=1)'fA" -+ fA'gA’ -+ gA",

=0
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This defines homomorphisms D,: C(K,/L,) — C...(K./L)). 1t re-
mains to verify that

0D,c = g, — f.c — D,_,dc.

For simplicity, let B* = fA®, C* = gA*. Then

e 1—1
dDc = > (—1)'[ > (-1)'B°--- B ---B'C--- C°
=0 1=0
+ (__l)n‘Bo Ve Bi—lC: Cq + (_l)iﬂBo BiC'+l .. Ca
+ X (—1)"B°...BC ---C" --- C“].

fwi+l

The terms on the middle line, when summed on 7, cancel in pairs except
for the initial and end terms:

C’O...C“=‘qa(‘, —Bo'-'Bq=—f°C.

If the order of summation of the terms on the first and third lines are
interchanged, one obtains —D,_,dc.
A second and more conceptual proof of 3.2 will be given at the end
of §5.
Derinition 3.3.  If K/ and K" are subcomplexes of a chain complex
K, we denote by K’ M K” and K’ \U K" the subcomplexes of K defined
by
Co(K' M K"') = C(K') M C(K”'),
C(K'\J K") = C(K')\U C(K")

where the last group is the least subgroup of C,(K) containing C,(K’)
and C(K"”) (sometimes written as C (K’) + C(K')).
The following lemma is an immediate consequence of the definitions:
LemMa 34. If K', K" are subcomplexes of the simplicial complex K,
then

(K"K, = K. N\ K/, (K" VK", = K.\UK/.
DEerFiniTION 3.5. Let K’ and K" be subcomplexes of a simplicial
complex K. The inclusion map
. (K, K' "K") - (K'\UK",K")

is called an excision.
Tueorem 3.6. If : (KK’ N K"y —» (K’ \JU K",K") is an ex-
cision, then

i, K,/(K"YK'"), —» (K'\JK"),/K)

is an isomorphism.
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Proor. In view of 3.4, the map ¢, consists of the homomorphisms
te: CK")/CLK") M C(K") — CK)\J C(K")/C(K")

induced by the inclusion homomorphism C,(K’) C C,(K’) \J C,(K").
By the Noether isomorphism theorem 7, is an isomorphism. This proves
3.6.

Tueorem 3.7. If P is a simplicial complex consisting of a single
vertex, then the chain complex P, is pointlike in the sense of v,4.7.

Proor. The only elementary g-chain of P, is¢, = A° - -+ A% where
A° = ... = A* = P. Forgevenand >0, we have d,c, = c,_, so that
3, CAP,) = C,(P,). For q < 0 we have C,(P,) = 0. Thus the
conditions of v,4.7 are fulfilled.

Having defined the concepts of homotopy, excision, and point in
the c-category X,, it becomes an h-category in the sense of 1v,9.1.
Then, by 1v,9.4, Theorems 2.5, 3.2, 3.6, and 3.7 are summarized by

TaeoreM 3.8. If dG s regarded as an h-category in the sense of direct
couples, then 0: XK, — 3G s a covariant h-functor.

DEerinitioN 3.9. According to 1v,9.5, the composition of the h-
functor O with the homology theory of 4G with coefficient group ¢ (sce
v,11.3) yields an homology theory on XK, called the homology theory of
X, with coefficient group (. Likewise the composition of O with the
cohomology theory of 8Q with coefficient group ¢ (see v,12.3) yields
a cohomology theory on XK, called the cohomology theory of XK, with
coefficient group G. For any simplicial pair (K,L) the homology and
cohomology groups H (K,/L,;G), H(K,/L,,d) (see v,11.4, 12.4) will be
written H (K,L;G) and H*(K,L;G), respectively, and are called the ¢**
homology and cohomology groups of (K,L) with coefficient group G. Ac-
cording to v,11.3 and 12.3, we have the following cases:

(1) Ge G, (KyL) e X, then HG(K;L;G) ¢ Qry
2) Ge Gg, (K,L) £ X,, then HYK,L;G) ¢ G,
3) G ¢ Ge, (K,L) e X,, then H'(K,L:G) £ .

When K is a finite complex, i.e. (K,L) ¢ X!, we have observed in 2.3
that K,/L, is a finite chain complex; hence K,/L, ¢ 8G’. Thus, by
v,11.3, we have a fourth case:

@) GeGe, (K, L)ek!, then H(K,L:G®) e Ge.

4. DIRECT DESCRIPTION OF THE BASIC CONCEPTS

The customary procedure for defining the groups H,(K,L;®) is to
give a direet definition of the chain groups C(K,L;¢) = C(K,/L, ® G)
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and of the boundary operator, and then to set H, equal to the g-cycles
reduced by the g-boundaries. The procedure we have followed presents
H , as the result of composing three functors: O, ® G, and the homology
group of a chain complex. The advantages of our procedure are two-
fold: it provides an analysis of the construction, and it enables us to
handle a variety of cases with a minimum of repetition. The disad-
vantage is that the direct definition has been obscured. The objective
of this section is to rectify this situation by presenting the direct de-
scriptions. The statements to be made hardly require any proof since
they are the results of assembling definitions.

The group C(K,L;G) is by definition the tensor product
C(K,/L,)®G. By?2.1, a base for C,(K,) is provided by the elementary
chainsc = A° ... A°. By 2.3, a base for C,(K,/L,) is provided by those
¢’snot on L. By v,9.6, C,(K,L;G) is generated by the elements ¢ ® ¢
which will be written gc in accordance with the convention v,114.
Thus we have

THeOREM 4.1. The group C(K,L;7) is generaled by the elemenis
gA® - A" where g € G, and A®, - -, A° are vertices of K, all conlained
in a simplex of K, with the relalions

(g + g)A® - A= A" -+ 4° + g A° -+ A°
and
gA® .- A= 0

whenever A, -+ | A
given by the formula

are conlained in a simplex of L. The boundary ts

A (gA" - A = 3 (—1)gd® - A .. A
1=0
For a simplicial map f: (K,L) — (K’,L’) the chain transformation f,:
C.(K,L;G) — C(K'.L';Q) 1s given by

JolgA® - A7) = gf(4°) -+ f(49).

If this theorem were adopted as a definition, it would be necessary
to verify that f, and 8, are compatible with the relations and commute.

The remainder of the description is a strict paraphrase of what was
done in 111, and v.2. The group Z,(K.L;@) of cycles mod L, consists of
chains ¢ ¢ C, with' d,c = 0, and the group B,(K,L;G) of boundaries
mod L, consists of the boundaries of elements of C,,,. Finally
H/(K,L;G) = Z,/B,., The homomorphisms f, associated with f:
(K,L) — (K' L") carry Z(K,L;,G) and B(K,L;®) into Z,(K',L’;@) and
B (K'\L',G) respectively, and thereby induce the homomorphism
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for HJ(K,L;G) — H(K'L'y?). The direct interpretation of 4:
H(K,L;G) — H, (L) is as follows: If h ¢ H,(K,L;G), choose z ¢
Z,(K,L;G) in the coset (= homology class) . Write z as a formal sum
and interpret the resulting expression as an element z of C,(K;().
Then 8,z is in Z,_,(L;®) and is in the coset k.

If G = J is the group of integers, then we write C,(K,L), etc., in
stead of C,(K,L;&), ete.

Passing to cohomology we begin with the group C*(K,L;G) =
C‘(K,/L,;G) of cochains of K mod L over G. This group is by definition
the group Hom(C,(K,/L,),d), and therefore v,10.6 and v,12 imply

THEOREM 4.1c. The group C(K,L;G) is the group of functions ¢
defined for each array of vertices A°, -+, A° all of which are on some
simplex of K, the value ¢(A°, --- , A% is in G, and is zero if A®, -+ , A*
are in a simplex of L. The coboundary §°¢ is defined by

q+l

(5°8)(A°, -+, AT = T (=DA%, -, AF, e, AT,
+=0
For a simplicial map f: (K,L) — (K',L"), the cochain transformation f*:
C'(K'\L';G) — C*(K,L;Q) 1is given for ¢ ¢ C*(K’,L";G) by the formula

(f'e)(A°, oo, A) = ¢(f(A"), -+, F(AD).

Continuing in the classical vein, the group Z°(K,L;G) of cocycles
mod L consists of cochains ¢ ¢ C*(K,L;) such that §% = 0; and the
group B°(K,L;) of coboundaries mod I consists of coboundaries of
elements of C*7'(K,L;@). Then HYK,L;G) = Z°/B°. The direct in-
terpretation of §: H(L;Y) — H**'(K,L;?) is the following: If u is in
H*(L;G), choose ¢ in Z°(L;G) belonging to the coset u. Extend ¢ to a
function ¢’ ¢ C*(K;G) by defining ¢'(A°, --- , A% arbitrarily when
A® ---, A% are not on a simplex of L. Then 8%’ is zero on L, and is
in Z*"'(K,L;G). Its cohomology class is su.

The reason for adopting the linear form notation for chains and the
functional notation for cochains appears here for the first time: the
formulas for 9, §, f,, f° have closed forms. For example, if we were to
use the functional notation for chains, then o is given by

(0g)(4°, -+, A7) = 3 S (DA, e, ATLAL, -, AT
1=0

where the sum on A extends over all vertices of all simplexes which
include A4° --- , A",

Follovnng 1n72 and v,3.2, we could also consider the groups
Z K, L;@) and BG(K L;G) which are the counterimages of Z, and B,
under the natural mapping C (K;G) — C(K.L;G). Thus, by v,3.2, Z,
consists of all chains ¢ ¢ C (K;&) with dc e Co(L;G), while B, =
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B,(K;G) J C(L;@). The group H, = Z,/B, is isomorphic with
H,(K,L;G). This alternative description of the relative homology
groups is very common, and has the advantage of allowing a much
simpler definition of the operator 8: H (K,L;G) — H,_,(L;@).

Most of the time we shall write @ and & for 4, and &% and f for f,
and f°

If P is a simplicial complex consisting of a single vertex, then by
4.1 and 4.1c

Co(P;G3) = G, C(P;&) = @,
and 9, = 0, 3 = 0. Thus H, and C, and H° = C°. Consequently
H(P;) = G, H'(P,® =QG.

This shows that the homology [cohomology] theory on simplicial com-

plexes constructed over a group @ actually has the group @ as a coefficient
group in the sense of 1,6.1.

8. REDUCED GROUPS, ACYCLICITY, ALGEBRAIC MAPPINGS

With the homology and cohomology theories for simplicial complexes
fully established, we turn to the discussion of some special features of
these groups. First we discuss the question of reduced homology and
cohomology groups. These could be defined exactly as in 1,7; however
a more direct and explicit definition is useful for the applications.

Since the space consisting of a single point P is a simplicial complex
and for every simplicial complex K the map f: K — P is simplicial,
it would be in accord with 1,7.3 to define the reduced 0" homology
group H,(K;G) as the kernel of the induced homomorphism fa
Hy(K;G) — Ho(P;@). If c = Y g, A" is any O-chain in Co(K;G), then
f(c) = (3. g)P. This suggests the following definitions:

DeriniTION 5.1. For each element ¢ = Y g,A° of Co(K;@), the
tndex In(c) is

In(c) = 2 g. ¢G.

Clearly In: Co(K,&) — @ is a homomorphism, and Ind = 0. _

DeriniTION 5.2. The augmented ordered chain complex K, of the
simplicial complex K is defined as follows. If K = 0, then K, = K, = 0.
If K = 0, then

CuK,) = C(K,)  forgq# —1,

C.(K)=1J (= additive group of integers),
3, = 9, for ¢ = 0,—1,

3 = In: Cy(K) — J,

3., = 0.
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The reduced 0'" homology and cohomology groups of K are defined as
A(K;@) = H(K,;®), H(K;G) = H(K.,G).
Clearly
H(K,;0) = H(K.;() = H,(K;G) for ¢ > 0.

In the dimension 0, Z,(K;G) = Z,(K;G) is a subgroup of Z,(K.;@) =
Co(K,;() and consists of the 0-chains ¢ with In(¢) = 0. Hence, by the
argument preceding 5.1, we have

THEOREM 5.3.  The reduced 0** homology group H,(K;G) s the kernel
of the homomorphism f.: Ho(K;G) — H(P;G) where f: K — P and
P consist of one point.

For cohomology we find that

H(K,.Q) = H(K,;&) = H(KG) for g # 0

while A°(K;G) = Z°(K;()/B(K;G), where B°(K;G) consists of those co-
chains ¢ ¢ C°(K ;) which are constant on the vertices of K. This implies

TureoreM 5.3c.  The reduced 0% cohomology group H°(K,G) is the
Jactor group of H°(K ;) by the image of the homomorphism f*: H°(P,G) —
H°(K,G) where f: K — P and P consists of one point.

So far we have considered only those maps f: K, — K. which
were induced by a simplicial /i1 K — K’. Such maps satisfy the
condition In(fc) = In(c) for every ¢ ¢ Co(K). In the sequel we shall
have occasion to consider maps which are not necessarily induced by
simplicial maps (e.g. the subdivision operator for chains in §7 below).

Dernirion 5.4. Let K,K’' be simplicial complexes. An algebraic
map f: K — K’isachainmap f: K, — K. such that In(J¢) = In(c)
for each ¢ ¢ C,(K). A chain homotopy D between algebraic maps will
be called an algebraic homotopy.

Clearly an algebraic map f: K — K’ can be extended to a map
. K, — K of the augmented ordered chain complexes by defining
7-. to be the identity map of J = C_,(K.,) = C_,(K.). Similarly an
algebraic homotopy D can be extended by setting D_, = 0.

DerinNITION 5.5. A function C which to each simplex s of a simplicial
complex K assigns a nonempty subcomplex C(s) of a simplicial complex
K’ is called a carrier function if, for every face s’ of s, C(s') is a sub-
complex of C(s). If /i K — K’is an algebraic map such that ¢ ¢ C,(K)
and ¢ C s imply fe C C(s), then C is called a carrier of f. Similarly,
if D: [~ g is an algebraic homotopy such that ¢ ¢ C,(K) and ¢ C s
imply D¢ C C(s), then C is called a carrier of D,

DEeriniTioNn 5.6. A simplicial complex K is called acyclic if
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H,K) = 0for ¢ % 0 and Ho(K) = 0. A carrier function C is called
acyclic if, for each simplex s, the complex ('(s) is acyclic.

TuroreM 5.7. Let K and K’ be simplicial complexes, let C be an
acyclic carrier function defined on K with values in K', and let L be a
subcomplex of K. Any algebraic map L — K’ with carrier C can be
extended to an algebraic map K — K’ with carrier C. If fg: K — K’
are algebraic maps with carrier C, then any algebraic homolopy belween
SIL and g|L with carrier C can be extended to an algebraic homolopy
between f and g with carrier C.

Proor. Suppose f: L — K’ is an algebraic map. For each vertex
A of K which is not in L we select a vertex f(A) of C(A). This extends
f to an algebraic map f: K°\U L — K’. Let A°A' be an elementary
1-chain of K and let s be the least simplex containing A°4'. If s is in
L, then f(A°A") is already defined. If sis not in I, then

In(f3(A°A") = In(fA") — In(fA4°) = 0.

Thus f3(4°4Y) ¢ Z,(C(s)). Since H,(C(s)) = 0, there is a chain
f(A°AY) & C,(C(s)) such that af(A°A") = f3(A°A"). This extends f
to an algebraic map f: K'\UL — K'.

From here we proceed by induction and assume that an algebraic
map f: K°\J L — K’ with carrier C is already given (g > 0). Let
¢ be an elementary (¢ + 1)-chain of K and let s be the least stmplex
of K containing ¢. If s C L, then fc is already defined. If s is not in
L, then afdc = fddc = 0, so that foc ¢ Z,(C(s)). Since I (C(s)) = 0
we may choose fc¢ ¢ C,,1(C(s)) so that 8fc = fdc. This extends f to
an algebraic map f: K**'\U L — K’ with carrier C.

Let f,g: K — K’ be algebraic maps with carrier C, and let D:
SIL =~ g|L be an algebraic homotopy with carrier C. For each vertex
A of K which is not in L, we have In(g4 — fA) = 0. Thus g4 —
fA ¢ Z,(C(4)), and since Ho(C(4)) = 0, we may choose Dy(A) e
C,(C(A)) so that aDA = g4 — fA. This extends D to an algebraic
homotopy D: f|K°\U L ~ g|K° \U L with carrier C.

From here we proceed by induction and assume that an algebraic
homotopy D: f|K*'\U L ~g|K* ' \U L with carrier C is already given
(g > 0). Let ¢ be an elementary g-chain of K, and let s be the least
simplex of K containing ¢. If s C L, then Dc is already defined. If
s is not in L, then define z = g¢c — f¢ — Ddc. Clearly 2 C C(s) and

9z = dgc — dfc — dDadc = gdc — fac — (gdc — foc + Da3dc) = 0.

Thus z ¢ Z,(C(s)). Since H,(C(s)) = 0, there is a chain D¢ ¢ C,,,(C(s))
such that D¢ = z. Then dDc + Ddc = g¢ — fc and we find that D is
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extended to an algebraic homotopy D: f|K*\J L =~ g|K*\U L with
carrier C.

TaeoreEM 5.8. Let f,5: K — K’ be algebraic maps with an acyclic
carrier C, Let L, L’ be subcomplexes of K, K’ respectively such that s C L
implies C(s) C L’. Then the maps f,g tnduce chain maps fo,9o: K./L.—
K:/L, which are chain homotopic. In particular, fo, = goq and % = g%
or homology and cohomology groups over any coefficient group.

Proor. By 5.7 there exists an algebraic homotopy D: f ~ g with
carrier C. Each homomorphism D, C (K) — C,,(K") carries C (L)
into Cg4y(L') thus inducing 8 homomorphism D,,;: C(K)/C (L) —
Con(K)/Cesr(L). The homomorphisms D,, yield the desired ho-
motopy D..

DerintrioN 5.9. Given a vertex A of a simplicial complex K, the
star St(4) of A in K is the subcomplex of K consisting of the simplexes
which have A as a vertex, and all their faces. (This is to be distin-
guished from the open star st(A) defined in 11,3.6 which is an open
subset of |K|)

DEerinrrioN 5.10. Given a chain ¢ ¢ C(K) such that ¢ C St(4),
define a (¢ + 1)-chain A¢ e C,,,(K), called the join of A with ¢, as
follows: If

c= D a4 A
then
Ac= Y a,AA}--- AL
LemMma 511, If ¢ ¢ Co(K) and ¢ C St(4), then

8(Ac) = ¢ — A(dc) if ¢ >0,
0(Ac) = ¢ — In(04 if g=0.

Proor. Because of linearity, we may assume thatc = A° --- A% is
an elementary g-chain. Then, for ¢ > 0,

L -~ .
0Ac = 9(AA® -+ A% = A® - A" — Y (—1FAA° ... A" ... A°
s=0

= ¢ — Adc,
and, for ¢ = 0,
0Ac = 0AA® = A° — A = ¢ — In(c)A.

THEOREM 5.12. For any verlex A of a simplicial complex K, the sub-
complex St(A) is acyclic.
Proor. let 2z ¢ Z,(St(4)) for ¢ > 0. Then, by 5.11, 9(42) = 2;
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hence z ¢ B (St(4)) and H,(St(4)) = 0. If z ¢ Z,(St(4)), then In(z) =
0, so that 34z = z and z e By(St(4)). Thus H,(St(4)) = 0.

TaEOREM 5.13. A simplex i3 acyclic.

This follows from 5.12 and the fact that, if A is any vertex of the
simplex s, then s = St(A4).

Using 5.8 and 5.13 we can give a second and less computational proof
of 3.2. Let fg: (K,L) — (K',L') be contiguous simplicial maps.
For each simplex s of K, let C(s) be the least simplex of K’ containing
both fs and gs. By 5.13, C(s) is acyclic. Further if s is in L then C(s)
is in L’. Then C is an acyclic carrier for the algebraic maps f,,g..
Thus, by 5.8, f, =~ g..

6. THE ALTERNATING CHAIN COMPLEX OF A SIMPLICIAL COMPLREX

DeriniTioN 6.1.  Let K be a simplicial complex. A chain ce C(K,)
will be called an elementary degenerate chain if it has either of the two
following forms: ¢ = A°A' ... A° where A® = A', orc = v + ¢
where v = A° ... A%is an elementary chain, and v’ is the elementary
chain obtained from v by interchanging two neighboring vertices
A*,A**' forsome i = 0,1, --- , ¢ — 1. A chain which is a linear combi-
nation of elementary degenerate chains will be called degenerate. The
subgroup of degenerate chains is denoted by D (K,).

LemMma 6.2. 3D (K,)] C D, (K,).

LemMma 6.3. If L is a subcomplex of K, then

Dy(L,) = D(K,) M Co(L,).
LemMa 64. If f: K — K’ is simplicial, then
FdDo(Ko)] C Do(K5).

These lemmas are direct consequences of the definitions. The fol-
lowing three lemmas follow directly from the fact that every permuta-
tion is a product of transpositions (i.e. permutations interchanging two
adjacent elements).

LEmMa 6.5. If 45, - , 1, 18 a permulalion of the inlegers 0, -+ , ¢
and ¢ = =1 according as this permulation is even or odd, then the chain

A% oo AT — At .. A

1s degenerale.

LEMMA 6.6. If some verter occurs at least twice in ¢ = A° -+ A°,
then c is degenerate.

LeEMMA 6.7. If the vertices of each g-simplez s; of K have been ordered
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tn a definite way A7 < --- < A% then for each g-chain ¢ ¢ C,(K,) there
18 a unique g-chain ¢’ € C,(K,) of the form

¢ = D a, A% Al

such that ¢ — ¢ ¢ D(K,). Moreover ¢’ = 0 if and only if ¢ ¢ D(K,).
If ¢ C L, where L is a subcomplex, then ¢’ C L.

The analogy of the last three lemmas with 111,5.5, 5.6, and 5.8 sug-
gests the consideration of the groups

C(K.) = C(K.)/D(K,).

In view of 6.2 the homomorphisms 3,: C (K, — C,_,(K,) induces a
homomorphism 8,: C(K,) — C,_,(K,) so that K, = {C(K,),d,} is a
chain complex. If L is a subcomplex of K, then L, may be regarded, in
a natural fashion, as a subcomplex of K, and is then a direct summand
of K,.

DeriNiTiON 6.8. For each simplicial pair (K,L) the chain complex
K,/L, is called the alternating chain complex of the pair (K,L).

All the statements made in §2 can now be repeated with the ordered
complexes K,/L, replaced by the alternating complexes K./L, through-
out. The functor K,/L.f. is denoted by A. Theorem 2.5 and the
subsequent discussion apply with the functor O replaced by the functor
A.

There are almost no changes to be made in §3. The proof of 3.2 as
given in §3 remains valid provided the vertices of K are simply ordered
and the elementary (alternating) chains of K are always written with
the vertices in order. The second proof given in §5 carries over without
modification. The proof of 3.7 is even casier; for, if P is the simplicial
complex consisting of a single vertex, then C,(P,) = 0 for q = 0.

The discussion of §4 carries over to the alternating language with
the following two modifications:

In 4.1 the set of relations that the symbols gA® - -+ A° satisfy should
be augmented by the following two kinds of relations:

gA® - A" =0
if A% ..., A®are not all distinct, and
ng e e Aq = egA'“ P A""

if 4, -+, 7, 15 & permutation of 0, - -+ , ¢ and ¢ is the sign of this per-
mutation.
The corresponding additions in 4.1c are: ¢(A4° --- , 4% = 0 if
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A° -, A% are not all distinct and ¢(A°, -+, 49 = ep(A'", -+, 4'9)
if 70, -+ , 718 a permutation of 0, - - - , q of sign e.

The above remarks show that a second collection of homology and
cohomology theories on the h-category X, is obtained by replacing the
functor O by the functor A. It will be shown below (see 6.9) that
these two approaches yield isomorphic theories, so that the use of one
or the other is entirely a matter of convenience. The alternating ap-
proach is closer to the gcometry as is indicated by the alternating char-
acter of the chains and cochains obtained in 111,5. The alternating
approach is also more convenient for the actual computation of the
homology groups, since the groups C(K,L;7) are ‘“smaller.” The
ordered approach is closer to the singular homology theory of Chapter
vi1 and is also useful in many problems connected with abstract algebra.
In the sequel, unless specific mention is made, either of the two ap-
proaches could be used.

To compare the ordered and the alternating theories, for cach sim-
plicial pair (K,L), define a map

(1) a: K,/L,— K.,/L,
as follows: Let
a; C(K,) — C(K,) = C(K,)/D/(K,)

be the natural homomorphism. By 6.2, a, and 8 commute, thus yielding
a map a: K, — K, This map carries L, into L,, and thus induces
the map (1).

THrorEM 6.9. The map a induces isomorphisms

ay: HyK,/LiG) = H(K./LG),

*

a*: H'(K./L.G) = H'(K,/L,;G)

Jor any coefficienl group (. These isomorphisms yield an isomorphism
between the homology (or cohomology) theories derived from the ordered
and the allernating approach.

Proor: We first verify that «, is a homomorphism of the ordered
homology theory into the alternating one. This requires the verification
of commutativity relations in the diagrams

a* Xy
H(K,/L,;G) —— H(K./L;Q&) H(K,/L,;,G@) — H(K,/L,;&
lf* lf,. 16 16
a* a*

H(K3/LG) —— H(K./Li;G) Ho(L;G) ——  Ho(LaG)
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where f: (K,L) — (K’,L') is simplicial. These commutativity relations
are consequences of commutativity relations in the diagrams
a io jo
K,L,— K,)L, L, — K, —— K,/L,

AR
23 ia ja
Ki/L;, — K{/L; L,—— K,— K,/L,

wheres: L C Kand j: K C (K,L).

A similar argument shows that o* yields a homomorphism of co-
homology theories.

The fact that «, and a* are isomorphisms is a consequence of the
following theorem:

THEOREM 6.10. The map a1 K,/L, — K,/L, ts a homotopy equiva-
lence (see 1v,9.2).

Proor. Select a partial order for the vertices of K such that the
vertices of any simplex of K are simply ordered. A g¢-chain of K, will
be called normal if it is a linear combination of chains 4° -+ A® with
A® < ... < A% Clearly, if ¢ is normal, so is 9,c.

Given a g¢-chain ¢ ¢ C (K,), there exists in view of 6.7 a unique
normal chain o, ¢ C,(K,) such that e, = ¢. Since d,a,c is normal,
and @108, = 8,00, = 3¢, it follows that d,0.c = @,.,9.,c. Further,
if ¢c C L (ie. if ¢ € C(L,)), then, by 6.7, a,c C L. Hence the homo-
morphisms a,; C,(K,) — C,(K,) define a map

a: K.,/L, - K,/L,

and aa = identity.

Now consider the map ae: K, — K,. If ce C,(K) and ¢ C s where
s is a simplex of K, then aac C s. Thus, setting C(s) = s, we find that
C is a common carrier for ac and the identity map i: K, — K,. Since
the carrier C is acyclic by 5.13, and since both @a and 1 are algebraic
maps, it follows from 5.8 that the map aa: K,/L, — K,/L, is ho-
motopic to the identity. Thus a is a homotopy inverse of «, proving
that a: K,/L,— K,/L, is a homotopy equivalence.

Note that, in the above proof, the construction of @ depended on
the ordering of the vertices of K. However the induced homomorphisms
@, (or a*) are independent of this ordering since they are the inverses
of a, (or a*).



§17] EFFECT OF BARYCENTRIC SUBDIVISION 177

7. EFFECT OF BARYCENTRIC SUBDIVISION

In this section we shall assume that the complexes are finite. Let
K be a finite simplicial complex and (I, Sd K) its barycentric sub-
division (11,6).

We begin with the construction of an algebraic map

sd: K, — (Sd K),

called the subdivision operator for chains and satisfying the following
properties for ¢ ¢ C(K):

(1) If ¢ C s, where s 1s a simplex of K, then Sd ¢ C Sd s.
(2) d 8d ¢ = 8d de.

Define Sd ¢ = 0 for ¢ < 0. Since every vertex of K is also a vertex
of Sd K, the group C,(K) is a subgroup of Co(Sd K). Define 8d: C,(K) —
C, (8d K) to be the inclusion homomorphism. From here proceed by
induction and assume that Sd has been defined for dimensions i < ¢
(¢ = 1) so that (1) and (2) hold. Let ¢ be an elementary g-chain of K,
and let s be the least simplex of A such that ¢ C 5. Then dc C s and
therefore Sd dc C Sd s. Since b, is a vertex of Sd s, and Sd s C St b,,
the join operation of 5.10 may be used to define

Sd e = b,-8d (de).
Clearly Sd ¢ C Sd s. T'urther, by 5.11

dS8d ¢ = Sd (d¢) — b,-9 8d (dc)
= Sd (d¢) — b,-8d (dde) = Sd (ae).

Having defined Sd for the generators of C,(K) so that (1) and (2) hold,
the homomorphism Sd: C,(K) — C,(8d K) is well defined and satisfies
(1) and (2). If L is a subecomplex of K, then Sd carries L, into (Sd L),.
There results a proper map

Sd: K,/L, — (8d K),/(Sd L),.

It should be noted that, although the subdivision operator for chains
was defined by induection, the proeedure is quite definite and could be
replaced by a closed formula.

In addition to the linear map lx: Sd K — K, we shall define sim-
plicial maps

m SdK — K

called projections, as follows: For every vertex b, of Sd K, let x(b,)
be one of the vertices of the simplex s of K. If b,,, -+- , b,, are vertices
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of a simplex of 8d K, with s, a face of s,,,, 7 =0, ---, ¢ — 1, then
w(b,.), -+ , w(b,,) are contained in the set of vertices of the simplex
s, Thus, by 11,4.4, the vertex map = of vertices of Sd K into the vertices
of K extends in a unigue fashion to a simplicial map =1 Sd K — K.
If L is a subcomplex of K, then « carries Sd L into L so that

m (Sd K,Sd L) — (K,L).

THEOREM 7.1. For every (finite) simplicial pair (K,L) the subdivision
operator

S8d: K,/L, —» (8d K),/(8d L),
is a homotopy equivalence. The map
.. (8d K),/(Sd L), — K,/L,

induced by any projection =1 (8d K, Sd L) — (K,L) is a homolopy
tnverse of Sd.
Proor. We shall establish chain homotopies

3) T, Sd ~ 1,
4) Sd m, >~ j,

where 7, and j, are the identity chain maps of K,/L, and
(8d K)./(8d L), respectively.

First observe that, if ¢ ¢ C,(K) and ¢ C s, then Sd ¢ C Sd s and
7. 3d ¢ C s. Hence C(s) = s defines a carrier C for both =, Sd and /,.
Since the carrter is acyelic, (3) follows from 5.11.

For every simplex s of Sd K, let § denote the least simplex of K
containing all the vertices of s, and let C(s) = Sd 5. If ¢ e (,(Sd K)
and ¢ C s, then m,c C 8 and Sd w,c C C(s). Since s C C(s), it follows
that C(s) is a common carrier for Sd = and j. Since C(s) = Sd§ = St (§)
(the star is taken in the complex Sd 3), it follows from 5.12 that C(s)
is acyclic. Thus (4) is a consequence of 5.8.

REMARK. It is easily seen that ¢ — = Sd ¢ is a degenerate chain.
Hence = Sd ¢ induces the identity map on the alternating chain complex
K,. However this is not true of the operation which Sd = induces in
(8d K)..

As an immediate consequence of 7.1 we have

CoOROLLARY 7.2. A projection

. (8dK,SdL) — (K,L)
induces isomorphisms

r,: H(Sd K, 8d L;G) = H(K,L;G),
o HYK,L:G) = H'(Sd K, Sd L;G).

These isomorphisms are independent of the choice of the projection.
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8. UNIQUENESS OF SIMPLICIAL HOMOLOGY THEORIES

Let H be a homology theory defined on the h-category X, of finite
simplicial complexes. It will be shown how a uniqueness theorem
analogous to 111,10.1 may be established for such simplicial homology
theories.

First we observe that all the results of Chapter 1 with the exception
of those of §11 carry over to simplicial homology theories with the
obvious modifications in formulation. Proposition 1,11.5 that a con-
tractible space is homologically trivial has the following analog:

If the complex K is the star (sce 5.9) of one of its vertices, then K 1is
homologically trivial.

Indeed, let K = St A. Consider the map f: K — A and the identity
mapg: A — K. Then fg: A — A4 is the identity whilegf: K — K
is contiguous to the identity. Hence f, is an isomorphism I (K) =
H,(A), and since A is homologically trivial, co is K.

With this done, all the propositions of 11,2 through 11,9 carry over
to simplicial homology theories without any change except in notation.
The first part of the proof of the Uniqueness theorem 111,10.1 (the con-
struction of the homomorphism ¢) vields the following

TueoreM 8.1.  (Uniqueness theorem for simplicial homology theories).
Gliven two simplicial homology theories H and H on the h-category X. of
finite simplictal complezxes, and given a homomorphism

he: G > G
of their coefficient groups, there exists a uniquc homomorphssm
h: H—H on X!

which is an extension of hy. When he 2s an isomorphism, so also s h.

Thus, as far as simplicial homology theories are concerned, the theory
is complete: both existence and uniqueness are established.

This theorem casts light on the structure of the proof of the Unique-
ness theorem of 111,10.1. ¥ach homology theory H (in the sense of
Chapter 1) defined on an admissible category @ containing the category
3 of triangulable pairs, leads to a simplicial homology theory H, (defined
on X!) by setting H, .(K,L) = H,(|K|,|L|]). The axioms for H, follow
directly from the corresponding axioms for II except for the Excision
axiom which is the Theorem 111,2.2. _

If 11 ,ﬁ are two homology theories (defined on 3) and Ayt G — G is
a homomorphism of their coefficient groups, then 8.1 yields a unique
extension of A to a homomorphism of the associated simplicial theories:

h,: H,—H, on %



180 FORMAL HOMOLOGY THEORY [Cuapr. VI

The second part of the proof of 111,10.1 then shows how one can pass
from the homomorphism h, to a homomorphism

h: H>H on 3.

This is the only stage in the proof of the Uniqueness theorem which
makes use of the Simplicial approximation theorem (11,7).

An analogous discussion can be given for cohomology; the details
are left to the reader.

NOTES

The classical invariance theorem. We shall give here a modernized
version of the classical invariance theorem.

Let (X,A) be a triangulable pair. If 7',7" are triangulations of
(X,A), we shall write 77 < T if, for each vertex B’ of X (or of A) in the
triangulation 7", there is a vertex B of X «or of A) in the triangulation
T such that

st(B’) C st(B).

We note the following formal properties:

QDT <Tand T < T"imply T” < T.

(2) "T < T where T is the n'® barycentric subdivision of T (n 2 0).

(3) For any T and 7", there exists an integer n such that "7T" < T’
(follows from 11,6.5).

(4) For any T,T,, thereisa T with T < T, T < T, (follows from
(2) and (3)).

Suppuse 7" < T. 1If, for each vertex B’ of T’, we select a vertc«
p(B’) = B as above, we obtain a simplicial map p: 7’ — T called a
projection. Any two projections are contiguous, and therefore, by
3.2 and v,4.4, they induce the same homomorphism

«T,T"): H(T) — H,(T).

Here H (T), where T = {{,(K,L)} is a triangulation of (X,A), denotes
the homology group H,(K,L) in either the ordered or the alternating
approach.

T <T <Tandp: T > T,p: T" — T’ are projections,
then pp’: T" — T is also a projection. This yields:

5) U T" < T < T, then (T, T)e(T",T") = (T, T").

The crucial fact is the following:

(6) o(T,T") is an isomorphism for any 7" < T.

In the special case when 77 = 'T is the barycentric subdivision of 7T,
(6) follows from 7.2. Thus (5) implies that (6) is valid for 77 = 7.
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For any T" < T, choose n so that "' < T < T. Then o(T,T") =
a(T,T")a(T’,T") is an isomorphism. It follows that a(7,T’) is onto.
Therefore a(T",T") is also onto. This implies that a(T,T") is an iso-
morphism as desired.

Let now T,,T,; be any two triangulations of (X,A). Choose T with
T < T, T < T,and define

Br+(T:,T)) = a(T»,T)a"(T,,T): HT)) = H(T,).
If 7" < T, then

Br(T5,Ty) = T, T")a™ (T, T")
= (T3, T)a(T, T")e” (T, TV (T, T)) = Br(To,T)-

This fact, together with (4), implies that 8-(T,,T,) is independent of
the choice of . We thus obtain unique isomorphisms

(7) B(T;,T): H(T\) = H(T,).

In particular 8(7,,7) = «(T,,T)f T, < T,. If T,,T, T, are three
triangulations, then, choosing T with T < T, ( = 1,2,3), we find

(8) B(TB;TI) = 3(7‘3,712)6(712,7'1)-

It follows that the groups H,(T') together with the isomorphisms (7)
form a transitive system of groups as defined in 1,6. In this sense, the
groups H (T) are independent of the triangulation 7, and may be
denoted by H,(X,A).

The classical invariance proof limited itself to showing that H (T,)
and H (T,) were isomorphic. It did not exhibit a “unique’” isomorphism
(7) satisfying (8).

Having constructed a group H,(X,A), we could continue in the same
vein and construct d and f,, and then verify the axioms. This would
provide a proof of the existence of a homology theory on the category
of triangulable spaces. It is not worthwhile to do this in view of sub-
sequent existence proofs for much larger categories.

The development of the invariance theorem. Much of the development
of homology theory during the period 1895-1925 centered around the
question of the topological invariance of the homology groups. The
first fully satisfactory solution was achieved by Alexander near the end
of this period through the development of simplicial complexes and
their techniques [Trans. Amer. Math. Soc. 28 (1926), 301-329].

Prior to this a broader concept of cell complex was used (see Chapter
x111 of the second volume). Homology groups were defined by choosing
a cellular decomposition of the space, orienting the cells (i.e. selecting
incidence numbers—the coeflicients in the boundary relations), and
taking the homology groups of the resulting ¢hain complex. This pro-
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cedure gave rise to a series of problems: (1) a clear-cut definition of
cell complex was needed; (2) the orientability must be proved (i.e. show
that 80 = 0); (3) the independence of the homology groups on the
choice of orientation must be shown; and (4) the homology groups must
be proved independent of the choice of the cellular decomposition. The
last is the invariance problem.

By using too broad a definition of complex, the second problem be-
came too difficult. Problems (1), (2). and (3) were solved by using
polyhedra for complexes. A polyhedron is a collection of cells in a
euclidean space, each cell is defined by a system of linear equalities and
inequalities. A step in solving (4) was the proof of invariance under
subdivision. This led to the Hauptvermutung: If two polyhedra are
homeomorphic then they have isomorphic subdivisions. This plus in-
variance under subdivision would imply topological invariance. But it
remains unproved to this day.

The wording of the invariance problem is such that one feels con-
strained to use only topological maps in its solution. However the
homology groups are invariant under homotopy equivalences. It was
perhaps the realization of this fact which led Alexander to abandon the
refined techniques of topological equivalence, and to replace them by the
rough techniques of simplicial approximation and deformation, and
thereby achieve a satisfactory solution.

Although simplicial complexes appear to eliminate most theoretical
difficulties, they are highly inefficient for the computation of homology
groups of simple spaces. A triangulation of a space usually demands a
large number of simplexes. As noted in 111, Exer. D6, a triangulation
of a torus requires at least 42 simplexes. The n-simplex has 2" — 1
faces. Polyhedral and cellular decompositions are far more efficient
(see Chapters x111 and x1v of the second volume).

The Mayer homology groups. lLet K be a simplicial complex. Con-
sider the free abelian group M,.(K) whose generators are sequences
(A° .-+, A™) of vertices of K, such that A°, --- , A" are in a simplex
of ¥. Two such sequences are regarded as equal if they differ only by
a permutation of coordinates. Define the homomorphism F: M, (K) —
M, (K) by setting

F(A° -+, AN = 2 (A" -+ A, -, A0,
1=0
Let p be a prime and G an abelian group with pG = 0 (i.e. pg = 0 for
all ¢ ¢ G). Define M, (K;¢) = M. (K) ® G and consider the homo-
morphism F:  M,(K;G) — M,_,(K;&) induced by the operator F above.
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Then the iteration F* of F is zero. Thus for each integer 0 < ¢ < p
the composition
Fl"‘q F(l

—_ M, —— M,

M

is zero. The Mayer homology group H, ,(K;() is defined to be (kernel
F9)/(image F*"%). These groups were defined by W. Mayer {A new
homology theory 1, 11, Annals of Math. 43 (1942) 370-380, 594-605). He
established a large number of their properties, but was unable to de-
termine their relation with the ordinary homology groups. This was
done by E. Spanier [The Mayer homology theory, Bulletin A M.S. 55
(1949) 102-112], making essential use of our Uniqueness theorem vi,8.1.
In this order, Spanier defines (1°) relative groups 71, (K,L;7) where
L is a subcomplex of K, (2°) o homomorphism f,.: H, (K,L;G) —
11, (K',L;(7) for each simplicial map f: (K,L) — (K',L’), and (3°) a
boundary operator F°: H, (K,L;(/) - II,_, ,_(1;(). He then shows
that the groups IT,,, suitably reindexed, provide several homology
theories on the h-category of simplicial complexes. The coefficient
group of each theory is shown to be cither 0 or G depending on arith-
metic properties of the indices involved. Thus the Uniqueness theorem
implies that I, (K,L;(7) is either 0 or isomorphic with the ordinary
homology group I1,(K,L;@) for a suitable r. The precise result is that
I, (K, L) = II.(K,L;@) in the following two cases:

ntp-gq

n 4+ 1= q(mod p), and r=2n+1- ¢/p,
n+ 1 =0 (nod p), and r=2n+1/p— 1L

In all other cases IT, , is zero.

EXERCISES

A. SIMPLICIAL APPROXIMATIONS,

1. If ¢,,9.: K — K, are both simplicial approximations to a map
I+ K| — |K,l, then g, and ¢, are contiguous.

2. Show that a projection 7: Sd K — K (in the sense of §7) is a
simplicial approximation to the lincar map lx: Sd K — K involved in
the definition of subdivision.

B. L.ocALLY FINITE COMPLEXES.

DerinitioNn. Let K be a (possibly infinite) simplicial complex.
Given an clementary chain A°® - -+ A% in C(K,), define an integral co-
chain ¢ ¢ C*(KN,;J0) so that ¢(A% -+, A% = 1 and ¢(¢) = 0 for all
other elementary chains in C,(K,). The cochains ¢ thus obtained
generate a free subgroup of CY(K,;J) denoted by C(K) and called the
group of finife inlegral cochains of K.



184 EXERCISES

1. Show that K is locally finite if and only if the coboundary of
every finite cochain is again a finite cochain. Denote the resulting
cochain complex by K°.

2. A simplicial map f: K — K, of a locally finite complex K into
another such complex K, is called locally finite if, for every finite sub-
complex L of K, f7'(L) is a finite subcomplex of K. Show that a locally
finite simplicial map induces a map f*: Kj; — K°.

3. Let L be a subcomplex of the locally finite complex K, and let
i: L —> K, j: K — (K,L) be inclusion maps. Denote by K° — L’
the kernel of the map °: K° — L°. Show that a locally finite sim-
plicial map f: (K,L) — (K,L,) induces a map f°: Ki — L} —
K® — L°. Show that with suitable definitions the category of pairs of
locally finite complexes and locally finite maps constitutes an h-category
&£ and that the pair K° — L° f° then yields a contravariant h-functor O’
on £ with values in the category of G of cochain complexes (direct
couples).

4. Use the h-functor O’ to define homology and cohomology theories
3 (K, L;@), 3¢°(K,L;G). Give a detailed description of these theories
analogous to that of §3. What are the limitations on the coefficient
group G?

5. Adopt the alternating approach and define a functor A’ analogous
to 0’. Show that the homology and cohomology theories obtained using
0’ and A’ are isomorphic.

6. Compare the H and 3C theories on finite complexes. Correlate
the result with v, Exer. F4.

7. Show that, in the 3C theories, the reduced groups are defined only
for finite complexes.

REMARKS CONCERNING TERMINOLOGY. The homology groups H, of
an infinite complex based on the chain complexes K, (or K,) will be
called the direct homology groups, while the corresponding cohomology
groups H® will be called the inverse cohomology groups. In a locally
finite complex the cohomology groups 3¢° based on the chain complexes
K° (or K*) will be called the direct cohomology groups while the corre-
sponding homology groups 3¢, will be called the inverse homology groups.
The reasons for this terminology will become clear in Exercises vii,F.
The direct homology and cohomology groups are not defined for com-
pact coefficients. If the linear form notation were used for all chains and
cochains, then the direct groups would be based on finite linear forms
while the inverse groups would utilize infinite linear forms. For reasons
explained in the remark following 4.1¢, it is convenient to use the linear
form notation for chains and the functional notation for cochains, re-
gardless of whether the chain or cochain is finite or infinite.



CHAPTER VII

The singular homology theory

1. INTRODUCTION

The objective of this chapter is to establish the existence of ho-
mology and cohomology theories on the largest admissible category,
namely: the category @, of all pairs (X,4) and all maps of such pairs.
For homology {cohomology] theory, the existence is established for any
prescribed coeflicient group in any of the categories Gy [Gr or G¢], and
the theory has values in the same category. A singular homology
theory with values in G is not constructed.

The method is the following: Using mappings of ordered simplexes
into the space X, a chain complex S(X) is obtained, called the singular
compler of the space X. Then the homology and cohomology groups
of a pair (X,A) over any coeflicient group are defined as the appropriate
groups of the complex S(X)/S(A), using the methods of Chapter v.

The verifications of all the axioms, save for Homotopy and Excision,
are trivial consequences of the corresponding theorems about chain
complexes. To prove the Homotopy axiom, it is necessary to construct
a chain homotopy from the given homotopy. The proof of the Exeision
axiom requires some preliminary construction.

2. THE SINGULAR COMPLEX OF A SPACE

Tn the euclidean R°*" space with coordinates (z,, --- , x,) consider
the unit simplex A, (see 11,2.2). The vertices d’, --- , d® are the unit
points on the coordinate axes of R°*'. If we regard R* as the subset
of R*"' given by r, = 0, then A,_, is a face of A, and has vertices d°,
-+« ,d". In A, the barycentric coordinates of a point coincide with
its cartesian coordinates.

Consider the simplicial maps
ey, A,y — Ay, i=0,-,4q,
given by the following vertex assignments:

@) = d ifj <4,
@) = d if i < j.
185



186 SINGULAR HOMOLOGY THEORY [CHAP. VII

Thus e;”maps A,., simplicially onto the (¢ — 1)-face of A, not con-
taining d' and preserves the order of the vertices.
Lemma 2.1, elel_, = ele)) for0 =j<1i=q.
The proof is obvious.
DEerinITION 2.2. A continuous mapping

T: A, — X

of the unit ¢-simplex A, into a topological space X is called a singular
g-stmplex in X. The singular (¢ — 1)-simplex

T =Te): Ay — X

is called the :*" face of T, fori = 0, --- , q.
By 2.1, we have
LemMa 2.3. (T = (T9)H0 D for0 £ j<i=sq

DeriniTiON 2.4. The free abelian group generated by the singular
g-simplexes in X is denoted by C(X) and is called the group of singular
(integral) q-chains of X. If ¢ < 0, there are no g¢-simplexes and
C(X)=0.

The boundary homomorphism

aa: Ca(X) - Cu‘l(X)
is defined as follows: If ¢ £ O, thend, = 0. If ¢ > Oand 7T is a

singular g-simplex in X, then

q
3T = 2 (=1)'T™.
1m0
LemMa 2.5. 8,.,8, = 0.
Proor. If ¢ < 1, then 8,_, = 0 by definition. Assume therefore
that ¢ = 2. Tt is sufficient to verify 2.5 for each generator 7' of €' (X).
By definition

q

800 T = 3 (—19T = 3 T (=) (= (@)

=0 1=0 3=m0

- Z (_1)t+1(T(|))(1) + Z (—1)‘”(7'“))(”.

051<15¢ 05:151<¢

In view of 2.3, the first sum equals

Z (_1):‘*1(71(7))(‘—1).

05:<15q

Replacing ¢ — 1 by jand j by ¢ gives
— X (e

05181<¢

Thus the two sums cancel, and the lemma is proved.
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It follows from 2.5 that {C,(X),d,} is a chain complex. This chain
complex will be denoted by S(X). If A is a subspace of X, then C,(4)
is generated by a subset of the set generating C,(X) and 9, on C,(A)
agrees with 9, on C(X). Therefore S(A) is a subcomplex of S(X) and
it is a direct summand of S(X). Given ¢ ¢ C,(X) we shall writec C A
to indicate ¢ ¢ C,(A).

Derinirion 2.6. For each pair (X,A) consisting of a topological
space X and a subset A, the chain complex S(X)/S(A) is called the
singular complex of the pair (X,A). The groups C,(S(X)/S(4)) =
C.(X)/C,(A) are free groups.

REMARK. Strictly speaking S(A4) is not a subcomplex of S(X), be-
cause a generator of S(A)isamap 7: A, — A and not a map A, — X,
The inclusion map : A C X induces an isomorphism of S(A) with a
direct summand of S(X), and S(X)/S(A) should be written S(X)/iS(A).

Lemma 2.7, If f: (X,A) — (Y,B), the homomorphisms f,:
CX) > C () and f: CA) = C(B) defined by

fT) = fT
forT: A, > X (or T: A, — A), ylelds a map
fs: S(X)/8(A) — S(Y)/S(B).

Moreover, if f: (X,4) — (X,4) is the identily, then fg is the identily,
and, if f: (X,A) — (Y,B), g: (Y,B) = (Z,C), then (9f)s = gsfs.

The proof requires only the verification of the commutativity rela-
tion d,f, = f._19, which is an immediate consequence of the relation
(S = fTeg = f(T™).

The lemma states that S(X)/S8(A) and fs form a covariant functor
S on the category @, of pairs of topological spaces with values in the
category 4G of chain complexes (recall that G is the category of ordinary
abelian groups, i.e. G = Gy where R = the integers). We now convert
@, into a c-category by defining couples (7,7) to consist of the inclusion
maps : A4 — X, 1 X — (X,4) for each pair (X,4) in @,. Since
s is the inclusion map S(A) — S(X), it follows that the sequence

is Js
0 — S(4) - S(X) —» 8X)/S(4) - 0

is exact, thus (¢5,75) is a couple in the category 4G. Since, as was
observed earlier, S(A4) is a direct summand of S(X), it follows that the
couple (is,7s) is direct in the sense of v,3.1. Thus S is a ¢-functor.

We now go a step further. The c-category 9G has been converted
in v,4 into an h-category. We shall do the same with the category Q..
To this end we define homotopies and points in @, to be actual homo-
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topies and actual points, while excisions in @, are defined as follows: A
map f: (X',4") — (X,A) is called an excision if (1) f is an inclusion
map, (2) X — A = X' — A’, and (3) the closure of X — X’ lies in the
interior of A. The last two conditions may be replaced by the more
symmetric conditions

A= X"MNA4, X = Int (X") U Int (A).

Note that this concept of excision is broader than that of 1,3 in that
U = X — X’ is not required to be open.

With these definitions @, becomes an h-category, and we can state
the main result of this chapter.

TueorEM 2.8. If 3G s lrealed as an h-calegory in the sense of direct
couples, then the functor S: @, — 9G 1s a covariant h-functor (see 1v,9.4).

It has already been shown that S is a c-functor. To prove the
theorem we must show that S preserves homotopies, generalized exci-
sions, and points. This will be done in Theorems 4.7, 7.1, and 9.1,
Granting that this has been done, we apply 1v,9.5 to obtain our chief
objective:

DeriniTioNn 2.9. The composition of the h-functor S with the
homology theory of 4G with coeflicient group G (see v,11.3) yields a
homology theory on @, called the singular homology theory of @, with
coefficient group G. 'The composition of S with the cohomology theory
of G with coefficient group G (see v,12.3) yields a cohomology theory
on @, called the singular cohomology theory of &, with coefficient group G.
For any given pair (X,4) ¢ @,, the homology and cohomology groups
H (8(X)/S(A);G), H(S(X)/S(A);G) (see v,11.4, 12.4) will be written
H/(X,A;G), H'(X,A;Q), respectively, and are called the ¢*" singular
homology and cohomology groups of (X,A) with coefficient group G. Ac-
cording to v,11.3 and 12.3 we have the following cases:

(1) G € glh then Ha(XrA;(;) € QRJ
2) G ¢ G, then HY(X,A,() ¢ G,
3) G e Qe then H(X,A;G) ¢ Ge.

Observe that singular homology groups H,(X,4;() are not defined
when G is compact. The reason for this is that C,(X) usually does not
have a finite base (see v,11.3).

We note here the following alternative definition of the singular
simplexes. Let s be an ordered g-simplex with vertices A° < --- < A"
A map T: |s|] —» X will be called a singular ¢-simplex in X (in the
new sense). If s’ has vertices B° < -+ < B*and T": |¢'| — X, then
we say that T and 7" are equivalent if ' = 7'B where B: s — ¢’ is
the simplicial map with B(A') = B',7 = 0, --- , ¢. In this definition,
the group C,(X) is generated not by the individual singular ¢g-simplexes,
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but by the equivalence classes of such ¢g-simplexes. Clearly every such

equivalence class contains precisely one singular g-simplex in the sense
of 2.2,

3. DIRECT DESCRIPTION OF THE BASIC CONCEPTS

This section serves the same purpose as Section 4 of Chapter vi.
A direct description of the singular homology and cohomology theories
will be given. The opening remarks of vi,4 apply equally well here.

The group C,(X,A;G) of singular g-chains of X mod 4 is by defini-
tion the tensor produet [C,(X)/C.(A)] ® G. By 2.4, the singular
simplexes T: A, — X form a base for C'(X). By v,9.6, C (X ,4;0) is
generated by the elements T ® g which will be written g7 in accordance
with the convention v,11.4. Thus we have

TurEOREM 3.1.  The group C,(X,A4;() is generated by the elements gT,
wheregeGand T: A, — X isasingular g-stmplex in X. These generalors
are subject to the relations

(g + g)T = ¢T + ¢.T
and

gT =0  for T(a,) C A.
The boundary is given by the formula

3,(gT) = E (—1)'gT®,

For any map [: (X,1) — (Y.,B), the chain (ransformation f,.
C(X,A,G) — C(Y,B;G) is given by

fgT) = g(fT).

If this theorem were adopted as a definition, it would be necessary
to verify that f, and 8, are compatible with the relations and commute.

The descriptions of Z,(X,A;(), B(X,4,G), H,(X,A4;,(",f,, and 9,
are as in vi,4 with (K,L) replaced by (X,4).

Passing to cohomology we begin with the group C(X,4;G¢) =
C(S(X)/8(A):) of cochains of X mod A over G. This group is by
definition the group Hom(C(X)/(.(4),G), and therefore v,10 and v,12
imply

THeoREM 3.3¢. The group C(X,A;G) s the group of functions ¢
defined on singular q-simplexes T in X, the value ¢(T) is in G, and s
zero if T isin A. The coboundary &' is defined by

u+l

(3°)(T) = 2 (= D'e(T").

1=0
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For any map f: (X,A) — (Y,B), the cochain {transformation
I CY(Y,B;G) - C(X,4;Q) s given for ¢ = C°(Y,B;G) by the formula

(f')(T) = ¢(fT).

The descriptions of Z9(X,4;G), B(X,A;G), H*(X,A;G), f* and
&* are as in vi,4 with (K,L) replaced by (X,A).

4. PRESERVATION OF POINTS, REDUCED GROUPS

TureoreM 4.1. If P 1s a space consisting of a single point, then the
chain complex S(P) 1s pointlike in the sense of v,4.7.

Proor. For each ¢ = 0 there is only one singular g¢-simplex
T.: A, —» P. TFor g even and > 0, we have 0T, = T,_, so that
9, CX) = Cy(X). For g < 0, we have C,(X) = 0. Thus condi-
tions of v,4.7 are fulfilled.

Observe further that by 3.1 and 3.1¢ we have

Co(P;) = G,  C(P;G) = G,
and 9, = 0,9, = 0. Thus I/, = C, and H® = C°. Consequently
H(PG) =~ G, PG =~G.

This shows that the singular homology and cohomology theories con-
structed over a group G actually have the group G as coeflicient group
in the sense of 1,6.1.

Observe that, for any space X, a singular O-simplex 7: A, —» X
is completely determined by the image point z = T'(4,). If we agree
to write z instead of T, then every O-chain ¢ ¢ Co(X,G) will have the
form of a finite formal sum

c =2 ¢z

where ¢; ¢ G, . ¢ X. Every cochain ¢ ¢ C°(X,@) will be a unction
¢: X — G (with no continuity assumption).

In analogy with vi5.1 and v1,5.2, we introduce the following
definitions:

DeFINITION 4.2, For each element ¢ = 3, g,x, of Co(X,5), the
indezx In(c) is

In(c) = 2 g: ¢ G.

Clearly In: C(X;G) — G. _
DeriNiTION 4.3. The augmented singular complex S(X) of the space
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X is defined as follows: If X = 0, then S(X) = S(X) = 0. If X # 0,
then

C(8(X)) = C(X) for ¢ = —1,

C_(8(X) =J (= additive group of integers),
3, = d, for g = 0,—1,

3 = In: Cy(8(X)) — J,

3., = 0.

The reduced 0" homology and cohomology groups of X over G are
defined as

A,(X;6) = H(S(X);0), H(X;6) = H(S(X);G).

Clearly H(8(X):6) = H,(X;G) for ¢ # 0. In the dimension 0,
ZO(X;G) = Z,(8(X);0) is a subgroup of Z,(X;G) = C(X;@) and con-
sists of 0-chains ¢ with In(c) = 0. This implies

TuroREM 4.4, The reduced 0** homology group Ho(X;G) is the kernel
of the homomorphism f.: Ho(X;G) — Ho(P;G) where f: X — P and
P is a space consisting of one point.

Therefore the concept of reduced group coincides with that defined
in 1,7 for any homology theory.

For cohomology, we find that HY(S(X)G) = HY(X:G) for ¢ # 0,
and that A°(X:6) = Z2°(X:G)/B°(X;3), where B (X:G) = B°(8(X);G)
consists of those cochains ¢ ¢ C°(X;() which are constant on the singular
O-simplexes (i.e. the points) of X. This implies

THEOREM 4.4c. The reduced 0*° cohomology group H°(X,G) is the
factor group of H*(X:(7) by the image of the homomorphism f*: H°(P:G) —
H°(X:G) where f: X — P and P’ 15 a space consisting of one point.

The definition of “acyclic space” and “algebraic map f: S(X) —
S(Y)” are as in v,5.6 and vi,5.4. A carrier of f is a function C which
to each singular simplex 7 in X assigns a subset C(T) in Y such that
f(T) C C(T) and C(T'""") C C(T). The statement and proof of v1,5.7
carry over with only formal changes.

6. THE LINEAR COMPLEX OF A CONVEX SET

We proceed to develop the tools to be used in the proofs that the
functor S preserves homotopies and generalized excisions (given in
§§7 and 9).

Derinirion 5.1. Let V be a convex set in a euclidean space. A
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singular simplex T: A, — V is said to be linear, if a,,a;, € A, A, = 0,
A = 0and A, + A, = 1 imply

T()‘lal + )\20‘2) = )\1T(¢11) + )\zT(az)-

The linear simplexes form a subcomplex Q(V) of S(V).
The linear simplex T is completely determined by the points

v = T@d), 7 =0, ---, q, and we shall therefore use the symbol
v - -+ »* to designate the lincar simplex 7. With this notation we have
aa(vo oo vq) —_ Z (—1)'vo P ﬂ' e vq.

=0

DErFINITION 5.2. Ifve Vand T = v° - -+ v°is a linear g-simplex, the
join vT is the linear (¢ + 1)-simplex v° - - - v*. With v fixed, this opera-
tion on generators extends uniquely to a homomorphism ¢ — w»e of

C(Q(V)) into Co.i(Q(V)).
LemMa 53. Ifve Vand ¢ € C.(Q(V)), then

dwe) = ¢ — v(dc) if ¢ > 0,
dwe) = ¢ — In(cp if ¢ = 0.
The proof is the same as that of vi,5.11.

8. PRISMS

The unit ¢g-prism (¢ > 0) is the cartesian product
e = I X Aq-l
where A,_, is the unit (¢ — 1)-simplex in R, and [ is the closed interval

0 ¢t 1inR". The prism =, is a convex subset of R' X R* = R**".
Consider the maps

Tel Mey — Ty, i=0,--,q—1
defined for (¢,v) € 7., by

ro(tp) = (tes-1 ()
and the maps

lyo Apey — mg, Ug: Agoy — 7,
defined forv e A, by
L) = (0, u,(v) = (1,v).

As an immediate consequence of these definitions we have

LemMa 6.1. riri_, = riri7) for0sj<isgq—1,
Tleor = L€y, Pilgm1 = U1, fort =0, -+, ¢ — 1.
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DEFINITION 6.2. A continuous mapping
P. n, 5 X

of the unit ¢-prism =, into the topological space X is called a singular
g-prism in X (¢ > 0). The singular (¢ — 1)-prism

(s) __ 5,
PO =P x_, - X

is called the ¢** face of P fori = 0, .-+ , ¢ — 1. A singular 1-prism
has no faces. The singular (¢ — 1)-simplexes

P, =Pl A, — X, P, =Pu: A, - X

are called the lower and the upper base of P, respectively.
By 6.1, we have

Lemma 6.3. (P = ()t for0 =j<isqg—1,
(P, = (P)*, (P"), = (PO, fori=0,---,q¢q—1,
and we may write P.",P{"’ without ambiguity.

Derintrion 6.4. The free group generated by the singular ¢-sim-
plexes and the singular ¢-prisms in X is denoted by C,(SP(X)) and is
called the group of singular (inlegral) prismatic g-chainsin X. If ¢ < 0,
then C,(SP(X)) = 0. If ¢ = 0, there are no singular O-prisms so
Co(SP(X) = Co(X).

The boundary homomorphism

Co(SP(X)) — C,:(SP(X))

is defined as follows: 1f¢ £ 0, thend, = 0. If ¢ > Oand P is a singular
g-prism, then

a .

q°

q—-1
P =P, — P, — 2 (—1)'P".

1=0
For a singular ¢-simplex T’
0. T = 2 (—=1)'T.
1=0

LeEMMA 6.5. 9,.,9, = 0.

Proor. Clearly it is sufficient to verify that d,_,8,P = 0 for every
singular ¢-prism P. Since d, = 0, we may assume that ¢ > 1. By
definition

a-1
6«-16.,P = aq-l(P,, - P, — E (_1)'P(-))

a-1 by
— E (_I)IP‘(‘I) . Z (_I)IP;I)
s=0 +=0

-5 (—1)'{P£" (> (—1)’(P“’)‘”}.

1=0 1=0
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The single sums cancel because of the second part of 6.3. The double
sum is zero by the same calculation as in the proof of 2.5, using the
first part of 6.3.

DEeFINITION 6.6. The chain complex

SP(X) = {Co(P8(X)),d.}

is called the singular prismatic complex of the space X.

Clearly S(X) is a subcomplex of SP(X). If A is a subset of X,
then SP(A) is a subcomplex of SP(X) and S(4) = S(X) N SP(A).
Hence the inclusions S(4) C S(X) and SP(A4) C SP(X) induce a
homomorphism

7. S(X)/S(A) — SP(X)/SP(A)

whose kernel is zero by virtue of the Noether isomorphism theorem.
It will be convenient to regard S(X)/S(A) as a subcomplex of
SP(X)/SP(A) so that 5 is an inclusion map.

THEOREM 6.7. There exists a map

r: (SP(X),S8P(4)) — (S(X),8(4))

which is the identity on S(X). In other words the pair of chain complexes
(8(X),S(A)) is a retract of the pair (SP(X),SP(A)).

Proor. For any linear n-simplex «* --- ¢" of A,_,, define a linear
(n 4+ 1)-chain in =, by

(D DY’ -+ 07 = 2 (=112 - (2D’ - ).
Then D; extends uniquely to a homomorphism
Di: C.(Q(A.-) — Can(Q(x,).
The same calculation as in the proof v1,3.2 shows that
2 dDjec = u,c — le — Di0c, forceC(Q(A,_)).

If we use the second set of relations of 6.1 with (1), we obtain immedi-
ately

3) reDi7'c = Die._c, for c e C.{Q(A,_»)).
Define the homomorphism
ret Co(SP(X)) — Co(X)

as follows. If T is a singular ¢g-simplex, then »,7 = 7. If P is a singular
g-prism, then

@) 1P = PgDl_(d® --- d"7Y),



§17] PRESERVATION OF HOMOTOPIES 195

where Py is defined by 2.7. Clearly r, is the identity on C(X), and it
maps C,(SP(A)) into C,(4). It remains to prove that r and d commute.
This is obvious when applied to a singular simplex. Hence it suffices to
prove that

or,P = r,_,0P.
Apply 3 to both sides of (4), use 3Ps = Pgd and then use (1) to obtain
(5) ar,P = (Psu, — Psl, — PsD{_,0)(d" --- d"7").
By definition
(6) Paud ---d") = P, Psld ---d") = P,.

Since P,,P, are singular simplexes,
(7) P" = Tq_IPu, Pl = rq—lpl'
Using (3) we obtain
a-1
Dio(@ - d) = Diy 2 (=1 - & - dY)

1=0

- D S (—en(@ e

1=0
a-1
= 2 (=)D -+ d7F).
=0
Since, by 6.2, Pgry = PS’, we have
q-1
PDL_ o -+ dY) = 2 (=)' PUDIE - d)
®) o
— Z (—‘1)‘7‘q_1P(‘)-

3=0

Combining (5), (6), (7), and (8) gives

a—1
or,P = 1o\ Py — 1Py — DO (= D)re P = r,_,0P.

s=0

This completes the proof.

7. PRESERVATION OF HOMOTOPIES
Tueorem 7.1.  Two homolopic maps
[g (X, 4) — (Y,B)
induce chain homotopic maps

fsigsi S(X)/8(4) — S(Y)/8(B).
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Proor. Let
h X XI,AXI) — (Y,B)
be a map such that for each £ ¢ X
h(z,0) = f(z),  h(z,]1) = g(x).

For every singular g-simplex T: A, — X, consider the singular (¢ + 1)-
prism

DT: mper — Y
defined by
(DT)(z,t) = K(T(x),0 for x4, 0=st=s1.
This defines homomorphisms
D: C(X) — Coi(SP(Y))

which carries C,(A) into C,..(SP(B)). Thus D: C/(X)/C(4) —
Cort(SP(Y))/C . (SP(B)). Clearly

(D7), = fT, (DT). = 4T,
(DT)Y = D(T) fori=0,---,q.
Hence

aDT = (DT). — (DT); — 3> (1) (DT)

1=0

gT — T — 2 (=1)'D(T*)
= ¢gT — T — DaT.

Let now r: SP(Y)/SP(B) — S(Y)/S(B) be a retraction as asserted
by 6.7. Then

rD: C(X)/C(A) = Coir(Y)/C, 1 (B)

Il

with
arDT = rdDT = rqT — rfT — rDIT
gT — fT — rDaT.

1

Thus the operator 7D establishes the desired chain homotopy.

8. A COVERING THEOREM

Derinition 8.1. Let F be a family of subsets of the space X. A
singular simplex T: A, — X will be said to belong to F if the set
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T(A,) is contained in at least one of the sets of the family F. Clearly
then the faces of T also belong to F. The singular simplexes of X
that belong to F make up a subcomplex S(X,F) of the singular complex
S(X). If A is a subset of X, then S(A,F) is the subcomplex of S(X,F)
made up of the singular simplexes of A that belong to F, i.e.

S(A.F) = S8(A) N\ S(X,F).
The inclusions S(X,F) C S(X), S(A4,F) C S(A) define a homomorphism
7. S(X,F)/S(A,F) — 8(X)/S(4)
which, in view of the Noether isomorphism theorem, has kernel zero.
It will be convenient to regard S(X,F)/S(A,F) as a subgroup of
S(X)/S(A) so that 5 is an inclusion map.
TueorREM 8.2. If F is a family of subsels of the space X such that

every point of X 1s in the interior of al least one sel of F, then, for every
A C X, the inclusion map

7. S(X,F)/S(4,F) — S(X)/8(4)

is a homotopy equivalence (see 1v,9.2).
The proof requires several preliminary constructions.

Given a linear r-simplex ¢ = ° --- ¢" in A, the barycenter b, of ¢
is the point
1 |
b,—r+1v+ +T+1v.

We define two sequences of homomorphisms

8d: CQ(A) — C(Q(A)
R: Cr(Q(Aq)) — CrH(Q(Ac))

by recurrence as follows: If r = 0, then 8d is the identity map and R = 0.
For every linear r-simplex ¢ in A, with » > 0, we define using the join
operation of 5.2

) 8d o b, Sd do,
(2 Ro = b,(c — Sd ¢ — Rdo).

We shall prove by induction with respect to r that

3) 3 Sdec = Sd dc,
4) dRe = ¢ — Sd ¢ — Rac.

for every linear r-chain ¢ in A,. If ¢ £ 0, the propositions are obvious.
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Assuming that (3) and (4) hold for linear 7-chains with z < r (r > 0),
consider a linear r-simplex ¢ in A,. From 5.4 we deduce

dSdo = 9b, 8d dc = Sd 90 — 5,9 Sd d¢

Sd 8¢ — b, 8d 990 = Sd 9o,

db,(c — Sd ¢ — Rdo)

¢ —Sde¢ — Rdec — b,(d6c — 3 Sd ¢ — 8R30)

¢ — Sdo — Rdoc — b,{(dc — Sd d¢ — d¢ + Sd 3¢ + Rddo)
¢ — Sd e — Rdo.

Formula (3) asserts that Sd is a map Q(a,) — Q(4,), and (4) asserts
that R is a chain homotopy of Sd into the identity map.

Now let T: A, — X be a singular ¢g-simplex in X. Define singular
chains Sd T and RT by

SdT = TsSd (& -+~ d), RT = TsR( - dY,

([

oRo

i

where T4 is defined by 2.7. The operations Sd and R defined on the
base elements extend uniquely to homomorphisms

Sd: C(X) — C(X), B C(X) — Coi(X).

It is easy to see that formulas (3) and (4) are still valid for every
singular ¢g-chain ¢ in X. As before we define the iterates Sd” of Sd by
setting Sd° ¢ = ¢, Sd" ¢ = Sd Sd™"' ¢ for n > 0. Formulas (3) and (4)
then yield

(5) 9 8d"c = Sd" 4,

n—1

n-1
(6) d > RSd'c=c— Sd"c — D> R Sd oc.
1=0 1m0

If F is any family of subsets of X and ¢ is a singular chain in the
complex S(X,F), then Sd ¢ and Rc are both in the complex S(X,F).

Let now F be a family of subsets of X having the property stated
in 8.2. We shall prove that for every singular simplex 7' in X there
is an integer n such that Sd” T is in the complex S(X,F).

Let I: A, — X and let Fr be the family of subsets of A, of the
form 77'(B) for B ¢ F. Since every point z ¢ X is in the interior of
one of the sets in F, it follows that every point v ¢ A, in the interior of
one of the sets of F;. Since the set A, is compact, it follows from
11,7.5 that there exists a number ¢ > 0 such that every subset of A,
of diameter <e is in one of the sets of F.

The argument just concluded shows that it suffices to construct an
integer n such that Sd* (d°, --- , d°) is a linear combination of linear
simplexes of diameter <e. To verify this observe that, if ¢ = ¢° - - ¢7,
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then Sd o has the form D + 7 where r = b,, - -+ b,,, with ¢, = o, and
o.+1 18 a face of ¢,. By 11,6.8,

diam r £ —2— diam ¢.

e+

Hence Sd" (¢’ --- d%) is a linear combination of lincar simplexes of

diameter < (q/(q + 1))" diam (d° - - - d%, and this is < ¢ for n sufficiently
large.

We are now ready to prove 8.2. Since the complexes S(X)/S(A)

and S(X,F)/S(A,F) are composed of free groups, it suffices in view of
v,13.3 to prove that

et T(S(X,F)/S(A,F)) = H,(S(X)/S(A))

for integer coefficients and for all dimensions q. Since 7, is one of the
maps in the mapping of the homology sequence of the couple

0 — S(A,F) — S(X,F) — S(X,F)/S(A,F) — 0

into the homology sequence of (X,A), it follows from the five lemma
(1,4.3) that it suffices to prove that

1. H(S(X,F)) = H(S(X))
for all q. By exactness this is equivalent to showing that
(7 H(S(X)/S(X,F)) =0

for all dimensions q. Tet ¢ ¢ € (S(X)) be a singular chain such that
dc = 0 mod S(X,F). By the result previously established there is an
integer n such that Sd" ¢ is in S(X,F). Since dc is in S(X,F), the chains
R Sd* dc are also in S(X,F). Thus formula (6) yields

n-1
dYRSd'c=c¢ mod S(X,F)

=0

so that ¢ is a bounding cycle mod S(X,F). This proves (7) and con-
cludes the proof of 8.2.

9. INVARIANCE UNDER EXCISION
TueoreM 9.1, Let the inclusion map
. (X -U,A-U)C (XA
be given where U C Int A. Then the induced map
g S(X — U)/8(4 — U) — S(X)/S(4)

s a homotopy equivalence.
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Proor. Consider the family F consisting of the two sets A and
X — U. Condition U C Int (4) implies Int (X — U) U Int (4) = X.
Thus 8.2 applies. Observe that

S(4 — U) = S(&X — U) N 8(4),
S(X,F) = S(X — U) U 8(4), S(4,F) = S(4).

Thus the map 75 may be factored into two maps

j: 8(X — U)/8(4 — U) — S(X,F)/S(4,F)
7 S(X,F)/8(4,F) — S(X)/8(4)

both of which are induced by inclusions. The map n is a homotopy
equivalence by 8.2. The map j may be written as

ji S(X = U)/S(X — U) N 8(4) — S(X — U) U S(4)/5(4)

which, by the Noether isomorphism theorem, is an isomorphism. Con-
sequently 7 also is a homotopy equivalence. Since, in the category 3G
of chain complexes, the composition of homotopy equivalences is again
a homotopy equivalence, it follows that is = 77 is a homotopy equiva-
lence.

Theorem 9.1 together with 4.1 and 7.1 conclude the proof of the
statement of 2.8 that S: (X,4) — S(X)/S8(4) is an k-functor. This
concludes the construction of the singular homology and cohomology
theories.

It should be pointed out that the excision axiom that has been
obtained for the singular theories is stronger than that required in 1,3,
namely, the assumption that U be an open subset of X was not made.

10. SINGULAR THEORY OF TRIANGULATED SPACES

Now that the axioms for the singular homology and cohomology
theories have been verified, it follows from the results of Chapter 1
that, in a triangulated space, the singular groups are isomorphic with
the simplicial groups computed from the triangulation using one of the
two procedures of Chapter vi. Nevertheless, it is useful to have a
direct definition of an isomorphism between the singular and the
stmplicial groups. In this section such an isomorphism is exhibited.

Consider a triangulated pair (X,4) with a triangulation 7 =
{t,(K,L)}. We define a map

8: K,/L, —» S(X)/S8(A)

as follows: Given an elementary ¢-chain ¢ = A° --- A%in K, consider
the linear map

L: A, — K
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defined by L.(d") = A, 2 =0, --- ,q ThentL: A, » X is a
singular ¢-simplex. We define

B¢ = (L..
This defines homomorphisms
B: C.(K) — C(X)

carrying C,(L) into C,(A). To prove that 8 and 9 commute, consider
¢ =A% ... A" ... A% Then B¢’ = Bee, = (Bc)™*’. Thus

e = 2 (=1'BY” = 22 (=1 = Boc.
=0
The main result of this section is the following
TrroreM 10.1. The map

B: K,/L, — S(X)/S(4)
induces isomorphisms
Bu: H(K,LG) = H(X,A;6), B*: H'K,L;®) = H'(X,4;&)

over any coefficient group G. The groups of (K,L) are the groups of the
chain complex K,/L, of Chapter v1 while the groups of (X,A) are the
stngular homology and cohomology groups.

In view of the “five lemma’’ 1,4.3, it suffices to prove the case A = 0.

The proof leans heavily on the concepts introduced in 1,9. For
every simplex s of K we shall consider the first regular neighborhood
N'(s). In view of 11,9.6 a point a of K is in N'(s) if and only if there
is a vertex A of s such that a(A) > a(B) for each vertex B of K not
in s. This implies the following properties of N'(s):

(1) N'(s) is an open set containing |s|.

(2) Every vertex of K that is in N'(s) is a vertex of s.

(3) N'(s1) N N'(sy)) = N'(si N 82).

Let F be the family of open sets (N'(s) C X for all simplexes s of
K. This family satisfies the condition stated in 8.2, and therefore the
inclusion map

70 S(X,F) C 8(X)

induces homomorphisms n, and * which are isomorphisms. Observe
further that in virtue of (1), for each chain ¢ of K,, the singular chain
Be is in S(X,F). Thus 8 may be factored 8 = 7y where

4 7
K, - S(X,F) — 8(X)
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with y¢ = Bc. It suffices thercfore to show that v, and ¥* are iso-
morphisms.

For each point « of K select a vertex n(a) of K which is nearest in
the sense that a(n(a)) = «(B) for any vertex B of K. We note the
following properties of n(a):

(4) If a is a vertex, then n(a) = a.

(5) If @ ¢ N'(s), then n(a) is a vertex of s.

Proposition (4) is obvious while (5) follows from the characterization
of N'(s) quoted above.

Given a singular simplex 7: A, — X, consider the vertices

A'. = 'n(l_le'), 1 = 0, e ,q

of K. If T(A,) C IN'(s), then t7'Td' ¢ N'(s) and A' is a vertex of s
by (5). Thus, if T is a singular simplex in S(X,F), then

57 = A° .- A°

is an elementary g¢-chain in K,. This yields homomorphisms :
C.(S(X,F)) — C(K,) which clearly commute with §. Thus we have
a map

5. S(X,F) — K..

We cxamine the composed map ¥y. Let B® - .. B® be an elementary
g-chain of K,, and let yyT = A° --- A°. Then by definition of 8 we
have Td' = tB' and A' = n(t"'Td") = n(B'). Thus, by (4), A' = B*
so that ¥y is the identity map of K,. Consequently

(6) 7,7, = identity, ¥*¥* = identity.

We now turn our attention to the map vy. let T: A, — X he a
singular simplex of S(X,F), and let s be the least simplex of K such
that 7(A,) C tN'(s). Such a simplex s exists and is unique by virtue
of (3). Denote

C(T) = tN'(s).

We shall establish the following properties of the sels C(T) for T in
S(X,F):

(M C(T) C (D).

(B) T and YT are singular simplexes in C(T).

(9) C(T) is acyelic, i.e. Hy(C(T)) = 0 and H,(C(T)) = 0for ¢ > 0.

Proposition (7) is obvious and so is the first half of (8). Let C(T) =
IN'(s). It follows that ¢'Td" € N'(s), and, by (5), n({"'Td'") is a vertex
of s. Thus 7T is in s and v¥T is in ¢(|s|). Since |s] C N'(s), it follows
that ¢(|s|) C C(T). Thus yy7T is in C(T).
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To prove (9) observe first that, in view of 11,9.8, |s| is a deformation
retract of N’(s), and, since |s| is contractible to point, N'(s) also is
contractible to a point. Thus C(T) is contractible to a point and there-
fore homologically trivial by 1,11.5.

With (7)-(9) established, an exact replica of the proof of v1,5.7 yields
a chain homotopy of the map v¥ with the identity map of S(X,F).
Consequently

v, Y = identity, T*v* = identity,

which, combined with (6), shows that v, and 4* are isomorphisms with
¥, and ¥* as inverses.

11. TRIADS

Let (X;X,,X,) be a triad, i.e. X is a topological space and X, X,
are subspaces of X. The homology sequence of a triad was defined in
1,14 for proper triads only. Within the setting of the singular homology,
we shall define new homology groups H,(X;X,,X,) called the homology
groups of the triad. We shall imbed these groups in an exact sequence
called the triadic homology sequence. Whenever the triad is proper,
the sequence reduces to the homology sequence of the triad.

DEerinition 11.1. The homology and cohomology groups
(XX, X;;@) and H*(X;X,, X)) of the triad (X;X,,X;) are defined
as the appropriate homology and eohomology groups of the free chain
complex S(X)/S(X)) VU S(X,). Amap f: (X;X,,X,) — (VY1) of
triads induces a mup f: S(X)/S(X)) \J S(X,) — S(Y)/S(Y,) U S(Y,)
which in turn induces homomorphisms f.: H.(X;X,, X.,;G) —
H,(Y;Y,Y;() and f* HYY;Y, Y,6) - H(X;X,,X,;0).

Note that the analogs of Axioms 1 and 2 are satisfied: (identity), =
identity, (¢f), = 9./,

Now consider the homomorphisms

il ]'l
— S(X,)/S8(X,) N\ 8(X,) - S(X)/8(X,) — SX)/SX)VY SX,) —» 0

induced by inclusions. Since " may be factored into

17 i

S(X)/8(X:) N 8(Xy) — S(X) U 8(X)/8(Xa) — 8(X)/S(Xo)

where 7{ is the Noether isomorphism, and since the maps 1,,7" form a
direct couple, it follows that (¢/,7") form a direct couple.
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DErinrrioN 11.2.  The triadic homology and cohomology sequences
of (X;X,,X.) over G

i, i)
c— H(X,X,;() « H(X,,X: N\ X,,G) « H, ,(X;X,,X,;()
Ju
— H (X, X)) « ---
i 5
- - H'(X;X,;) - H(X,, X, N\ X,;;6) » (X ;X,,X,;,()
7'*
= H(X,X0) — -

are defined as the appropriate sequences of the couple (', ).

A map f: (X;X,,X,) — (V;Y,,Y,) induces a map f: (7',j)x —
(¢',7)y of the appropriate couples. Therefore the homomorphisms
o [f*] yield a map f,, [/**] of the triadic homology [cohomology]
sequences.

It should be noted that, although the homology groups of the triads
(X;X,,X,) and (X;X,,X,) are the same, their triadic homology sequences
are distinct.

If, in the triad (X;X,,X,), we have X, D X,, then the triadic ho-
mology sequence of (X;X,,X,) is easily seen to coincide with the ho-
mology sequence of the triple (X,X,,X,).

TueoreM 11.3. For each triad (X;X,,X,) and each coefficient group
G the following conditions are equivalent:

(i) The triad (X;X,,X,) is proper in the singular homology theory with
G as coefficient group.

(ii) The inclusion map ky: (X, X, N X,) — (X, Y X,,X;) tnduces
tsomorphisms k.,: H. (X, X, N X;;,0) = H(X, U X,,X,;(G) for all g.

(iii) The homomorphism S(X)/S(X,) U S(X,) — S(X)/S(X, Y X,)
tnduced by inclusion induces isomorphisms H (X;X,, X)) =
H (X, X, U X,;G) for all q.

(iv) H(X, U X;;X,,X,;G) = 0 for all q.

(v) The inclusion map S(X,) U S(X,) — S(X, YU X,;) induces
tsomorphisms of all the homology groups over Q.

A similar stalement holds for the cohomology groups over G.

Proor. Throughout this proof we shall omit the symbol @ in all
formulas,

(ii)) < (iii). Consider the inclusion map §: (X;X,,X;) — (X;X, YV
X:,X,). The triadic homology sequence of the second triad coincides
with the homology sequence of the triple (X,X, \U X,,X,). This yields
the diagram
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)
H(X,X,NX,) —— H..(X;X,,X,)
e N e
Ha(X;XZ) l»kz* 10* HG+1(X!X2)
N ad e N

H(X,U X,,X,) —— H  (X;X,UX,)

where the upper edge is the triadic homology sequence of (X;X,,X,)
and the lower one is the H.S. of the triple (X,X,\U X,,X;). An applica-
tion of the “five lemma’ (1,4.3) yields the equivalence of (ii) and (iii).
(i) < (ii). The condition that the triad (X;X,,X,) be proper con-
sists of (i1) and the condition (ii)’ obtained from (ii) by interchanging
the indices 1 and 2. Therefore (i) — (ii). On the other hand (ii) is
equivalent to (iii) which is symmetric in the indices 1 and 2. Thus
(ii) — (iii) — (ii)’. Hence (ii) — ().
(iii) & (iv). Consider the direct couple
0 — S(X, U X,)/8(X)) Y 8(X5) — S(X)/8(Xy) U S(Xz)
— S(X)/S(X, UX;) -0
induced by inclusions. The H.S. of this couple is
e Ho (XU X55X,,X0) « H(X, X, U X,) « H(X;X,,X5)
— H(X,U X;X,,X)) « .-

Thus (iii) & (iv) by exactness.
(iv) & (v). The proof is the same as the preceding using the direct
couple

0— S(X) U 8(X,) - S(X,: U X,) - S(X, U X,)/S(X)U 8(X;) - 0.

We return for a moment to the diagram used in the proof of (ii) &
(i), and assume that (X;X,,X,) is a proper triad. Then both k,,
and 0, are isomorphisms. Using either k;, or 6,' we may insert the
homomorphism H,,(X;X, U X,;) —» H (X, X, N X;) in the diagram.
In this way the above diagram contains also the homology sequence of
the proper triad (X;X,,X;) as defined in 1,14.3.

The fact that a given triad (X;X,,X;) is proper in the singular
theory may depend on the coefficient group and whether homology or
cohomology is employed. The following theorem shows that, in a sense,
homology groups with integer coefficients are universal:

THEOREM 11.4. If the triad (X;X,,X,) is proper in the singular
homology theory with integer coefficients, then it is also proper in the singular
homology and cohomology theory for arbitrary coefficients.
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Proor. By 113 (i) and (iv), the triad (X;X,,X,) is proper for
homology with integer coefficients if and only if the chain complex
S(X, U X,)/S(X,) U 8(X,) has vanishing integral homology groups.
Since the complex in question is a free chain complex, it follows from
v,13.5 that all the homology and cohomology groups H, (X, U X,;
X,,X2;,G) and HY(X, U X,;X,,X,;G) vanish. Thus, again by 11.3, the
triad (X;X,,X,) is proper for singular homology and cohomology with
any coefficients.

For the use of triads in homotopy theory, see note below.

NOTES

The development of the singular theory. Perhaps the basic idea of
the singular theory is that a singular chain on X is a collection con-
sisting of a complex K, a map K — X, and an ordinary chain on K.
This can be found in the book of Veblen [Analysis Situs, Collog. Pub.
Amer. Math. Soc. v (1921)]. Elaborations of this approach have been
given (Hurewicz, Dowker, and Dugundji, Annals of Math. 49 (1948),
391-406); but they have the defect that the homology groups are not
obtained from chain complexes; for the chains do not form groups.

It was Lefschetz [Bull. Amer. Math. Soc. 39 (1933), 124-129] who
first defined a group of singular chains. He considered only the maps
of oriented simplexes into X. Two maps f: s, — X, ¢: s, — X were
called equivalent if there exists a barycentric equivalence h: 8, — s,
preserving orientation such that gh = f. An equivalence class is called
a singular oriented simplex. Each such has a negative obtained by re-
versing the orientation of the original simplex. Generators for the chain
groups are found by choosing one of the two orientations of each singular
simplex.

It was Cech who pointed out a difficulty in this approach: (the two
ortenlations of a singular simplex could coincide. An example is obtained
by folding a 1-simplex about its midpoint and then mapping it into X.
This meant that the groups of chains contained elements of order 2,
and so were not free abelian. As we have seen, the free abelian char-
acter of the chain groups is very useful in proving that the functor S
is an h-functor. We defined homomorphisms of S(X) by prescribing
their values on the generators, namely, the singular simplexes. If S(X)
were not free abelian, one would have to verify that each such assign-
ment could be extended to a homomorphism.

The final step in the development was the substitution of the ordered
simplex for the oriented simplex [S. Kilenberg, Annals of Math. 45
(1944), 407-447). The intuitive justification is contained in the theorem
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(v1,6.10) that the ordered chain complex and the alternating chain
complex assigned to a simplicial complex are chain equivalent.

Homotopy groups of triads. 'The groups and sequences of §11 have
a natural counterpart in homotopy theory. Given a triad (X;X,,X,)
with base point z,. Blakers and Massey [The homolopy groups of a
triad 1, Annals of Math. 53 (1951), 161-205] introduce homotopy groups
7.(X;A4,B) based upon the consideration of maps (E™E, ' ,E™") —
(X;X..X,). The groups are defined for n > 2 and are abelian for n > 3.
In analogy with the triadie sequences of 11.2, they construct an exact
sequence

— WG(XJX'Z) — Wa(XI;XI m XZ) - 7ru+l(X;Xl,X2) (—7"0+1(X1X2) —

In particular, if X = X, \U X,, it follows that the “‘excision”” homomor-
phism

WG(XHXI a Xz) - Wu(Xl U X27X2)

belongs to an exact sequence in which it is preceded by =, (X, U
X,;X,,X,) and followed by (X, \J X;;X,,X;). Thus the latter groups
measure the extent by which the Execision axiom fails for homotopy
groups. Using the homotopy groups of a triad, Blakers and Massey
have proved the suspension theorems of Freudenthal (see Note to

Chapter 1 on homotopy groups) and various other results of the same
general nature.

Proof of theorem 8.2. The proof given in the text uses v,13.3 to
deduce the fact that n is a chain equivalence from the fact that g, is
an isomorphism (for integral homology groups). We shall give here a
somewhat longer but more direct proof, not using v,13.3. The ad-
vantage of this proof is that it applies in some situations (e.g. for local
coefficients) in which the proof of the text breaks down.

For a given singular simplex 7' in X, let {T,} be the family of
singular simplexes consisting of 7', its faces, their faces, and so on, Let
n(T) be the least integer such that 8d™™ (T',) is in S(X,F) for every
T,in {T,}. This integer exists and has the following properties:

(T £ n(T).

Sd™™ T is in S(X,F).

If T is in S(X,F), then n(T) = 0,

If Tisin A, then SA™™ T isin S(A,F).
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Now define for every singular ¢-simplex 7 in X

q a(T)~1
(1) T =8 T4 X (—1) Z{ R Sd’ (T™),
1m0 jen(T(s))
n(T)-1
©) DT = > RSd'T.

1=0

We observe that 77T is a ¢-chain in S(X,F) and DT is a (¢ + 1)-chain
in S(X). Thus homomorphisms

: C(X) — C(S(X,F)), D: C(X) — C,. (S(XF))
are obtained. Further
7[C(A)] C C(S(4,F)),  DI[C(A4)] C Co.i(S(4,F)).

From (2) we deduce

q n(T)-1
aDT =T — 8da"" T — > (-1 X RSd T,
1=0 1=0
q n(T ()
DT = J>_(—1) 2. RSd'T™.
+=0 1=0

Adding these two formulas and comparing with (1), we find
aDT + DaT = T — +T.

Hence for every singular ¢-chain ¢ in X

3) aDc = ¢ — ¢ — Dac.

This implies

drc = 8(c — dDc — D3c) = dc — ddDc — dDac
dc — ¢ + 71dc + Daddc = 1dc,

which proves that 7 is a map S(X) — S(X,F). Since r carries S(4)
into S(A,F), it defines a map

1 8(X)/S(A) — S(X,F)/S(A,F),

]

and the composition 74 is the identity map of S(X,F)/S(A,F). On the
other hand nr¢ = 7¢, so that formula (3) may be rewritten as dDc +
Déc = ¢ — nre. Thus 57 is homotopice to the identity map of S(X)/S(4).
Hence 7 is a homotopy inverse of 1.

Spaces with operalors. Let X be a topological space operated on by a
group W (sce 11, Exer. C for a definition). Since each w ¢ W yields a
homeomorphism w: X — X, it induces an isomorphism wg: S(X) —
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S(X) so that the chain complex has W as a group of (left) operators.
If A is a subspace of X such that the operators of W carry 4 into 4,
then we say that W operates on the pair (X,4). Then W operates also
on S(X)/S(A).

Let G be an abelian group with W as a group of right operators. We
define the tensor product G @wS(X)/S(A) as the factor group of G ®
S(X)/S(A) obtained by identifying gw ® ¢ with g ® we. The homology
groups of this tensor product over W are called the equivariant homology
groups HY (X,4:0).

If G is an abelian group with W as left operators we consider the
cochain complex Homg(S(X)/S(A),G) which is the subcomplex of
Hom(S(X)/S(A),G) consisting of ecquivariant homomorphisms (i.e.
operator homomorphisms). The cohomology groups of this subcomplex
are called the equivariant cohomology groups H%(X,4;G).

If /: (X,A) — (Y,B) is an equivariant map of pairs each having W
as operator group, then the map fs: S(X)/S(4) — S(Y)/S(B) is
equivariant and induces homomorphisms f, and f* of the equivariant
homology and cohomology groups. The operators

a,: HI(X,A6) — HY (A;6), & HW(A;0) — HYW'(X,A;6)

can also be defined in the usual fashion.

With the basic concepts defined, it is possible to prove that one ob-
tains in this way homology and cohomology theories on the category G &
defined as follows: the objects are pairs (X,4) with W as operators;
maps are equivariant mappings; couples are 7,j: 4 — X — (X,A4);
homotopies are provided by maps I': (X X I, A X I) — (Y,B) which
are equivariant, i.e. satisfy F(wx,t) = wl(z,t); excisions are inclusions
(X-U,A=-U)— (X,A) where U C Int 4 and w(U) = Uforallwe W;
a point is a discrete space X on which W operates transitively and with-
out fixed points (in particular, W itself 1s a potnt). Of course, the result-
ing category @y is not an admissible category in the sense of 1,1.

If W operates simplicially on the simplicial pair (K,L) (see 11,Exer. C),
then equivariant homology and cohomology groups may be defined
using either the complexes @ ®w K,/L,, Homg(K,/L,,G) or the com-
plexes G ®w K./L., Homg(K,./L, 7). The resulting groups are iso-
morphic with the equivariant homology and cohomology groups of the
pair (|K|,|L|) defined using the singular theory.

EXERCISES

A. PATHWISE CONNECTEDNESS.
DerFiNITION. Letz,,z, ¢ X. A mappingf: I — X of the closed unit
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interval I into X such that f(0) = z, and f(1) = =z,, is called a path
in X joining x, and z,.

1. Show that each space X decomposes into disjoint pathwise con-
nected sets {X,}, called the pathwise connected components of X, such
that two points belonging to distinct components cannot be joined by
a path in X.

2. Establish the isomorphisms

H,(X:6) = 3. H(X..0), HYXG) =[] H(X.;0)

where {X .} are the pathwise connected components of X.
3. Compute the groups H,(X;G), H(X;G), H°(X,G), and A°(X;().
4. Carry out an analogous discussion for the groups of a pair (X,4).

B. INFINITE COMPLEXES,
1. Let K be an infinite complex. In analogy with the transforma-
tion 8 of §10, define chain transformations

8.: K, — S(K|.), B.: K, —> S(K|.)

where |K|,, and |K]|,, have the weak and the metric topology respectively
(see 11, Exer. F). Show that both 8, and 8, induce isomorphisms of
the homology and of the cohomology groups.

2. Consider the map 2: |K|, — |K|. induced by the identity map
K — K. Show that this map defines S({K|.) as a subcomplex of
S(]K|.), and that the inclusion map S(|K|.) C S(|K|,) induces iso-
morphisms of the homology and the cohomology groups. Show by
examples that S(JK|,) may be a proper subcomplex of S(|K]|,.).

C. THE MAPPING CYLINDER.

DEerFiNiTiON. Let f: X — Y be a continuous map. In the join
X o Y (see 1, Exer. D8) consider the set C consisting of X, YV, and all
intervals joining x ¢ X with f(z) ¢ Y. The set C is called the mapping
cylinder of f.

1. Establish the exactness of the sequence

Te Jx d
e = H(X) —» H(Y) —» H(C,X) - H((X) — -+

where j: Y — (C,X) is the inclusion map.

2. Show the existence of homomorphisms D, C(X) — C,,,(C)
such that Dz + Doz = fx — z for z ¢ C (X).

3. Consider the map f¢: S(X) — S(Y) induced by f: X — 7,
and consider the complex J s as introduced in v,13.3. The groups H,(fs)
will be called the homology groups of f and will be denoted by H (f).
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Using a homotopy operator D: S(X) — S(C) as in 2, define a map
¢: s — S(C)/S8(X) by setting

¢(z,y) = Dz 4+ y mod S(X) forx e C,_i(X), y e C(Y).

Show that ¢,: H.(f) = H,(C,X) is an isomorphism. Hint: use the
diagram

f* k* l*
» H (X) yH(Y) —— HJ(f) — H, (X)—— -
lm,. ln. ld’,. lm.
1 Tu 9

s H(X) — s H(C) s H(C,X) —— H\ (X) ——s -

where the upper row is the exact sequence of v, Exer. D1, the lower
row is the homology sequence of (C,X), the map m is the identity, and
n: Y C C is the inclusion map.

4. Carry out a similar discussion for a map f: (X,4) — (V,B).



CHAPTER VIII

Systems of groups and their lumits

1. INTRODUCTION

The material of this chapter is preparatory for the second existence
proof of Chapter 1x. It is concerned almost entirely with the algebraic
aspects of the limiting process used in that proof. The notions of direct
and inverse systems of groups are due to Pontrjagin. In Cech’s original
construction of his homology theory, these ideas appeared only in
implicit form. There are several advantages to their explicit use. First,
the algebraic and geometric difficulties are separated. Secondly, the
reasons for the various limitations on the Cech theory become apparent.
Finally, direct and inverse systems are of use in other connections, so
that an independent treatment is not amiss.

2. DIRECT AND INVERSE SYSTEMS

DEerFINITION 2.1. A relation a < 8 in a set M is called a quast-order
if it is reflexive and transitive. In general a < 8 and 8 < «a does not
imply a = 8. A directed set M is a quasi-ordered set such that for each
pair a,8 ¢ M, there exists ay ¢ M for whicha < yand 8 <v. A directed
set M’ is a subset of M (M’ C M) if « ¢ M’ implies a ¢ M and a« < 8
in M’ implies « < Bin M. A subset M’ is cofinal in M if, for each
a ¢ M, there exists a 8 ¢ M’ such that « < 8. If M and N are directed
sets, a map ¢: M — N is an order-preserving function from 3 to N
(i.e. @ < B in M implies pa < ¢G3in N).

DErFINITION 2.2. A direct system of sets {X,x} over a directed set M
is a function which attaches to each o ¢ M a set X°, and, to each pair
a,3 such that @ < 8in M, a map

% X" - X°
such that, for each a ¢ M,

mo = identity,
and fora < 8 < vyin M,

vy_ 8 ¥
TeMa = Mae
212
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An tnverse system of sels { X,r} over a directed sel M is a function which
attaches to each a ¢ M a set X,, and to each pair a,8 such that « < 8
in M, a map

1I’:: Xp i Xa
such that
. = ldentity, aeM,
il = w2, a< B <yinM.

For both inverse and direct systems, the maps =2 are called pro-
jeclions of the system. If each X* [X.] is a topological space, or an
R-module, or a topological group, and each projection is, respectively,
continuous, or an R-homomorphism, or a continuous homomorphism,
then {X,r} is called a direct [inverse] system of, respectively, spaces,
R-modules, or topological groups.

A directed set M becomes a category if each relation a < 8 is re-
garded as a map @« — . Then a direct [inverse] system over A is
simply a covariant [contravariant] functor from M to the category of
sets and maps, or to the category of R-modules and homomorphisms,
ete.

Derinirion 2.3, Let {X,x},{X’,n’] be direct systems over M and
M’ respectively. Then a map

¢ {(Xr] — (X))
consists of a map ¢: M — M’ and, for each a ¢ M, a map
¢’ X® — X
such that, if @ < 8in M, then commutativity holds in the diagram

T
Xe X5

1¢ 1¢
1rl
an Xmﬂ

Now let {X,r},|X’,x'} be inverse systems over M,M’ respectively.
Then a map

& {X,x} - {X')x'}
consists of a map ¢: A1’ — M, and, for each o’ ¢ M’, a map

¢a': X¢a’ i Xﬂ"
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such that, if &’ < 8’ in M’, then commutativity holds in the diagram

T
Xoar —— Xopr
Pl
T,
X —— X}

Whenever both of the direct [inverse] systems are systems of topological
spaces, or groups, etc., the components ¢° (¢,.] of the map & are re-
quired to be continuous, or homomorphic, ete. In case

¢ (X - (X'}, @@ (X'} - {(X"a")
are two maps of direct [inverse] systems, their composition
e (X,xr) - (X2}

is defined to consist of the compositions ¢’¢ and ¢'*°¢", « ¢ M [p¢’ and
bl idear o e M.

It is a simple exercise to verify that direct or inverse systems of any
specified typé and their maps form a category. The category of direct
[inverse] systems of R-modules is denoted by DirG, {InvGg]. Similar
notations are used for the other categories (e.g. InvG, = category of
inverse systems of compact groups).

It is to be noted that the identity map & of {X,x} is composed of
the identities¢: M — M and ¢”: X" — X°.

DeriniTiON 2.4. If M, M’ are directed sets, M’ C M (see 2.1), and
{X,r} is a direct {inverse] system over M, then the sets and maps of
{X,n] which correspond to clements and relations in M’ form a direct
{inverse] system {X',x’} over M’, and is called the subsystem of {X,r|
over M'. If M’ is cofinal in M, the subsystem is called cofinal. The
identity map ¢: M’ — M and identity maps

¢: X'* —> X°, ¢ X. — X!, aeM’

form a map
P: {X’,r’} - {X,W}, [P: {X,7r} - {X’,r'}]

called the injection of the subsystem into the system [system into the
subsystem].

It is clear that the identity map of {X,r} is an injection. Also the
composition of two injections is itself an injection.

It is to be observed that, if the indexing set M reduces to a single
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element, the inverse or direct system indexed by M reduces to a single
set or group. Conversely, every set or group may be regarded as an
inverse or direct system indexed by a set M consisting of a single
element. In particular, if in 2.3 we select M’ to reduce to one element,
we see that a mapping

& (Xx} » X'

of a direct system {X,x} indexed by set I into the set X’ is a family
of maps ¢”: X" — X' such that

¢’re = "
Similarly, if in 2.3 M reduces to a point, we obtain a mapping
® X - {(X'7'}.
If | X', 7'} is an inverse systemn, then & is a family of maps¢,: X — X/
such that
$aTd = ¢p.

We could also consider maps {X,x} — X’ with {X,x] an inverse system,
and maps X — { X' 7'} where {X',#’} is a direet system. However,
these two types of maps are not of much interest to us.

3. INVERSE LIMITS

Derinttiox 3.1, Let {X,7} be an inverse system of sets over the
directed set M. The mrerse himit X (briefly: limit) of {X,x} is the
subset of the product [] X, (see v,5.1) consisting of those functions
xr = {x,} such that, for each relation « < gin M,

(1) rf(.rd) = T4
Define the projection
(2) T Xo = X by m(n) =7,

s0 that m4 is the same as the funetion pg of v,5.1 restricted to the subset
Xo. If {X, 7} 1s an inverse svstem of spaces, then X, is assigned the
topology it has as a subspuce of [ X.. If {X,r} is an inverse system
of R-modules, it is easily seen that X. is a subgroup of IT x.; and
X. is assigned this structure of an R-module. Similarly, an inverse
limit of topological groups is a topological group.

LeMMa 3.2, Ifa < B8, then n, = i,

Proor. By (2), ms(xr) = x5 By (1), 75(xs) = v.. Hence Tors(z) =
To = 7.(2) by (2).

Lemma 3.3. If {X,=} is an inverse sysiem of spaces {R-modules or
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topological groups], then each =, is continuous [homomorphic or con-
tinuously homomorphic).

These follow from the corresponding properties of the projection p,
(see v,5.2,5.4).

Remark. If the directed set M is enlarged to a directed set M’ by
adjoining an element « greater than each « ¢ M, then the inverse
system {X,r} together with X, and the projections 7, form an inverse
system of M’. The inverse limit of this enlarged system is in a natural
1-1 correspondence with X..

ExampLE. As it stands the notion of inverse limit i3 derived from
that of product. Conversely, the product of an infinite number of sets
can be represented as an inverse limit of finite products. Let {X,] be
a collection of sets, indexed by an infinite set J. Let M be the collection
of finite subsets of J ordered by inclusion. TFor cach a ¢ 3 define
Y. = [],e« X,. If y e Yp, then y is a function defined over 8. If
a < B, the function y defines a function on «, denoted by =2(y), and
the latter is in Y,. Thus =7 Ys — Y. It is easily seen that the
inverse limit Y., of {¥,r} coincides with [ X,.

Tueorem 3.4. If [X,x} 4s an inverse system over M and, for each
relation o < B in M, x2 is a 1-1 map of X, into (onto) X, then, for each
aeM, r,isal-1map of X- into (onto) X,.

Proor. Suppose z,y ¢ X, and, for some a, £, = y,. Since rf is
a 1-1 into, it follows, for every 8 > e, that 25 = y,. Since M is a di-
rected set, for any v ¢ A, there is a 8 > v,a. Then zz = y,; implics
z, = ¥Yy. Thus £ = g, and =, is 1-1 into. Supposec now that each
72 is 1-1 onto, and for a fixed a, z, ¢ X,. For 8 > a, define z, =
(r8) '(z,). For any vy ¢ M, choose a 8 > a,y and define r, = -n—f(.r,,).
It remains to prove that z = {x,} lies in X.. Supposey, < v.. Let
B: > a,v and B, > a,v. be the elements used in defining =z, ,,z,,.
Choose 8 > By,8;. Then z, = w2(xs) = 7°uxb.(x), and z., = 7°a(x,)
(¢ = 1,2). Since =% is 1-1, it follows that = (xs) = x5,. Thercfore
Wﬁ.(xa) = Wf:”:.(xﬂ) = v,. Finally, »}i(z,,) = 7";:7’1.(-’%) = ﬂﬁ.(xa) =
z,,, and the proof is complete.

REmark. If the hypothesis of 3.4 is weakened by requiring that
each projection be only a mapping onto, one might hope to prove that
each 7, is a mapping onto. If M is a countable set, or if M has a
countable cofinal subset, this can be proved. It is also proved for
inverse systems of compact Hausdorff spaces in 3.9. That the result
does not hold in the general case is shown by an example found by
L. Henkin [Proc. Amer. Math. Soc. 1 (1950), 224-225).

Lemma 3.5. If {X,r} is an tnverse system of Hausdorff spaces, then
the limit space X is a closed subspace of [ | X
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Proor. Suppose r ¢ [| X, is not in X.. Then for some relation
a < Bin M, r2(z;) = z.. Since X, is a Hausdorff space, there are
disjoint open sets U,,V, containing z, and rf(:c,) respectively. Let
Us = (#57'V,. Replace X.,X; by U,,U,s in the collection {X}.
The product of the resulting collection is a rectangular neighborhood
in [T X. (see v,5.2). This open set contains z, but no point of X..
Thus X. is closed since its complement is open.

THEOREM 3.6. The limit space of an inverse system of compact spaces
18 a compact space. If each space of the inverse syslem is nonvacuous,
then the limit space 1s nonvacuous.

Proor. Since X. is closed in H X. (3.5), and H X . is a compact
space (v,5.4), it follows immediately that X. is a compact space.
(Recall that “compact” includes ‘““Hausdorfi”’). For the second part,
define, for each 8 ¢ M, the subset Y, of [ X, to consist of those ele-
ments z such that #2(z;) = z, for ally < 8. Now Y, is nonvacuous;
for z; can be specified arbitrarily in X,, then set z, = x2(z,) fory < 8,
and finally use the choice axiom to extend z over all other sets of the
system. Next, Y, is closed. The proof of this is similar to that of 3.5,
and is omitted. If « < 8, then Y, D Y, This follows immediately
from xf = 7372 wherey < a < B. Since M is a directed set, it follows
now that {Y,} is a collection of closed sets in a compact space and
any finite number of them have a nonvacuous intersection. Tt follows
that their intersection is nonvacuous. Clearly, any point of this inter-
section belongs to X., and the proof is complete.

THEOREM 3.7. If {X,r} s an inverse system of compact spaces over
M, ae M, and U is an open sel of X, conlaining v,(X.), then there
exists a 8 > o such that #2(X,) C U.

Proor. For each 8 > a, let Y3 = X5 — (x2)™"(U). Otherwise,
Yy = X5 B <vyletph: Y, — ¥Y,be the map defined by »%. Then
{Y3,0%} is an inverse system of compact spaces. If the conclusion of
3.7 were false, cach Y, would be nonvacuous. Hence Y. C X, would
be nonvacuous (3.6). If y ¢ Y, then y, = pa(y) = m.(y) would lie
in both ¥, and U. As this is a contradiction, 3.7 is proved.

CoroLLARrY 3.8. Under the hypotheses of 3.7,

TaXa) = M rf,(Xg).
a<fB

Proor. If z, ¢ X, is not in =,(X.), then its complement U con-
tains wf(X,g) for some 8. Therefore z, is not in the intersection. This
shows that the left side contains the right side. By 3.2, r.(X.) C
rf(X,) for each 8 > a. This proves that the left side is included in
the right.
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CoroLLARY 3.9. If, to the hypothesis of 3.7, we adjoin the condilion
that each =% is a mapping onto, then each ., is a mapping onlo.

This follows immediately from 3.8.

DeriniTion 3.10. Let &: {X,x} — {X',7’} be a map of one inverse
system into another (see 2.3). The inverse limil ¢., of ® is a map

bo: Xo — XJ

defined as follows: Iz e Xo and a e M/, set 2) = ¢.(T4(ay). I a < B
in M’, it follows from the commutativity condition of 2.3 that =" 2(xz}) =
z4. Therefore ' = {z!} is an element of X.. Define ¢.(z) = z".

Lemma 3.11. If &: {X,n] > [ X',7'} and a ¢ M, then commutalivity
holds in the diagram

T
X¢(u) — X

1% | 1%

m

X, — X.

This follows immediately from the definition.

LemMa 3.12. If {X 7} 1s an inverse system of spaces, then the sels
{2 (U)}, where U runs over all open sets of X, and « over M, form a
base for the open sels of X..

Proor. Let W be open in X.. and z ¢ W. Ry v,5.2, there exists a
rectangular neighborhood V of z in [ X, such that VN X. C W,
Now V is determined by specifying open sets V, C X,, ¢ =1, - -+, n),
and consists of all y ¢ H X, such that y., ¢ V,. Since A is a directed
set, there cxists a 8 > a; (¢ = 1, -+, n). Since %, is continuous,
and 7, (z,) € V,, it follows that

U=nN )"V

[

is an open set of X, containing r;. lence z ¢ x5 (U). Suppose
y e 75 (U). Then ys ¢ U. This implies ., ¢ V, ({ = 1, --- , n); and
this in turn implies y ¢ V. N\ X, C W. Thus z ¢ w5 '(U) C W, and
the lemma is proved.

TreeorEM 3.13. If & (X7} — {X',7'} and { X, x},{ X", 7"} arc both
tnverse systems of spaces [R-modules or lopological groups], then the limit
¢ of ® 1s continuous [homomorphic or continuously homomorphic].

Proor. To prove continuity it suffices to show that ¢.' maps each
open set of a base for the open sets of X/ into an open set of X,. By
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3.12, the sets =%, '(U), where a ¢ M’, and U is open in X/, form such a
base. By 3.11,

¢='m.'(U) = mylmda (U).
Since ¢, and my(,, are continuous, this is an open set. The proof that,
in the case of R-modules, ¢, is homomorphic is left to the reader.

TrrorREM 3.14. Let @ be any one of the following categories: sets
and maps, spaces and confinuous maps, compact spaces and conlinuous
maps, KB-modules and homomorphisms, or compact groups and conlinuous
homomorphisms. Let Inv(@) denote the category of inverse systems and
maps of such all of whose elements belong to @. Then the operalions of
assigning an inverse limit X, to each inverse system {X,x} and an inverse
limit ¢ lo each map ®: (X ,x} — {X',x'} form a covariant functor from
Inv(®) o Q.

Proor. The fact that X, ¢ @ is trivial in all cases except those
involving compactness, and this was proved in 3.8. That ¢, ¢ @ is 3.13.
Condition 1° of 1v,4 for a covariant functor requires that ¢.: X. — XJ,
and this follows from its definition. Condition 2° reads: If &:
{X,#} — [X,x] is the identity, so also is ¢.. But ¢ is composed of
identity maps, so this is immediate. The final condition 3° requires
that the limit of a composition of maps ®,®’ shall be the composition
of their limits. This follows readily from the fact that ¢.(x) is defined
by mapping the coordinates of z by means of the coordinate functions
¢, and the fact that the composition ®'® was defined by composing
coordinate functions.

Propositions 3.10, 3.11, and 3.13 can be applied in the special case
when the system {X,x] = X is a system indexed by a set consisting of
a single point. The limit of a system consisting of a single set being the
set itself, we see that a mapping : X — {X',#'} induces a mapping
¢e: X — X! such that 7. = ¢..

Turorem 3.15. Lel {X,x},{X',x'} be tnverse systems over directed
sets MM, and let ;. {X,x} — {X',7') be a map. If there exists a
directed subset N of M’ such that (1°) N is cofinal in M’ (see 2.1), (2°)
&(N) is cofinal in M, and (3°) ¢s s a 1-1 map of X, onto Xj for each
B e N, then ¢.. is a 1-1 map of X. onto X..

Proor. If g8 ¢ M’, abbreviate ¢(8) by 8. Suppose z,y ¢ X, are
distinct. Then, for some « ¢ 3, z, ¥ y,. By 2° thereisa 8 ¢ N such
that @ < B’. Then z5 7 y,.; and by 3°, ¢z} 7 $a(ysr). But these
are the B-coordinates of ¢.(z) and ¢.(y). Thus ¢ is 1-1 into. It re-
mains to prove that ¢, is onto. Suppose 2’ ¢ XJ. For each a ¢ M,
choose a 8 ¢ N such that « < g, and define

3 Ta = wots ' (24).
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If 8 < v in N, commutativity in the diagram

™
Xﬂr — X‘Y'

lm , l«m

T
X} — X,

and the 1-1 properties of ¢5¢, yield n}.¢;'(z]) = ¢5'(x)). It follows
that (3) with v in place of 8 yields the same value of z,. Since N is
directed, it follows that (3) is independent of the choice of 3. We must
show that z = {z,} lies in X.. Suppose a < v in M. Choose 8 ¢ N
such that v < 8. As just shown

To = whuds (D), T, = Tyes (zh).

Since #°, = =2z’ it follows that »X(r,) = z,. Finally, ¢.(x) = z".
To prove this it suffices to show that they have the same g-coordinate
for each g ¢ M’. By 1°, it suffices to prove this for each 8 ¢ N. By
definition, (¢.(z))s = ¢s(zs:). As shown above, 7, = =h¢s'(zh) =
¢s ' (z5). Therefore ¢s(xs.) = x4, and the proof is complete.

CoroLLARY 3.16. Let M’ be a cofinal subset of the directed set M.
Let {X,7r} be an tnverse system over M, {X',x'} the subsystem over M’
(see 2.4), and ® the injection of {X,r} wnto {X',x'}. Then, the inverse
limit ¢ of  7s a 1-1 map of X, onto X .

This follows from 3.15 with N = M.

CoroLLARY 3.17.  Let M’ be cofinal in M, and let { X ,x} be an inverse
system over M. Then two elements z,y ¢ X coincide if and only if x, = y.
for each o ¢ M'.

LemMmA 3.18. Let ® and ¥ be maps {X,r) — {X',x'} such that, for
each a ¢ M', we have p(a) < ¥(a), and Yo = ¢or%is). Then ¢o = V.

Proor. By 3.11 and 3.2, we have

_ _ Yia) _ —
T = DaTy(a) = PaTg(arTy(ay = YaTy(a) = TaWo-

Since this holds for each a ¢ M’, we have ¢ = V..

4. DIRECT LIMITS

DeriniTion 4.1.  Let {G,r} be a direct system over the directed set
M where each G° is an R-module, and each = is homomorphic. Let
3" G denote the direct sum (v,5.5) of the R-modules of {G,x}. If
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g € G, we shall agree to identify g with its image in D, G under the map
i, 0f v,5.6. For each @« < 8in M and each ¢° ¢ G* the element

(1 rle® — ¢°

of ) G is called a relation. Let Q be the subgroup of Y. G generated
by all relations. The direct limit of {G,r} is the factor group

" = (/.
The natural map D G — G~ defines homomorphisms
Ta: G > G~

called projections.

Since each relation (1) is mapped into zero, we have

Lemma 4.2. If a < B, then 7yl = ..

LEMMA 4.3, If u e G, then there exists an @ and a g° ¢ G* such that
T.0° = W

Proor. Thisis the first place where the directedness of M is needed.
Now u is an image of v ¢ D G, and v = D} ¢°* where ¢** ¢ G**. Since
M is directed, there exists an a > o, fork =1, -+ , n. Let g, =
2.0 andlet o’ = D 1g.. Sinceg, — ¢°* ¢ Q, it follows that v/ — v e Q.
Hence ¢’ also maps on v. But v’ ¢ G°.

LeMma 44, If g e G” and 7,9 = O, then there is a § > v such that
myg = 0.

Proor. By hypothesis the element g of 2, G is a linear combination
of elements of the form (1). Since a multiple of (1) also has the same
form, ¢ 15 a sum of elements of the form (1). Choose a § > v and all
a,B entering such a sum. Then

mg=(mg—9 +y¢
is also such a sum and & exceeds all «,8 entering the sum. Since
xag® — ¢ = (rag” — ¢7) + (mp(—72g") — (—7ig™),

it follows that =g is a sum of terms (1) where each 8 = 5. All terms
with a common « can be lumped into a single term. Thus

rig = 2 (rig® — ¢%.

Since 2 G is a direct sum, any relation is a consequence of relations in
the individual summands. 1t follows then that ¢* = 0 for each o # 3.
Clearly g — ¢* = 0,50 759 = 0.

LEMMA 4.5. 7.g" = ms¢° if and only if there exists a ¥ > a,8 such

that x1g" = =g,
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Proor. If such a v exists, then 7g° — ¢° and =%’ — ¢° are in Q.
Hence their difference ¢° — ¢* is also in Q. But this implies 7,g" =
79", Conversely, if m.g* = mpg’, chooseay > a,8and let g = xlg° —
73", By 4.2, 7,9 = 0. Then by 4.4 there exists a § > ~ such that

749 = mig" — msg’ = 0.

It is to be observed that the directedness of M is not used in the
definition of the direct limit. As a consequence of 4.3 and 4.5, we have
the following theorem, which provides an alternative definition of G~
using the directedness of M.

TueoreM 4.6. Let {G,x} be a direct system of R-modules. We shall
say that g° & G* is equivalent to ¢° & G® if there exists a vy > a,8 such that
xlg® = =" This relation divides the elements ¢* ¢ G°, for all a, into
disjoint equivalence classes. The sum g, + g, = § of two equivalence
classes 1is oblained by choosing a G° in which g,,g, have representatives
g3,9% and defining g to be the class of g5 + g% The product rg is defined
lo be the class of rg” where g° 1s in the class g. Then the equaralence classes
form an R-module isomorphic to G under the correspondence which
attaches to each class the image in G of 1ls representatives.

Tueorem 4.7 If {G,x} is a direct system over M, and, for each
a < Bin M, xf: G* — G” has kernel zero [is a homomorphism onto)
then, for each a, w,: G — G~ has kernel zero [is a homomorphism onlo).

Proor. The first half is an immediate consequence of 4.4. Suppose
ueG”, and a ¢ M. By 4.3, there exists a 8 and a ¢® such that =5(¢°) = u.
Choose ay > a,8. Since =, is onto, there exists a g° such that #J(¢") =
7%(g"). It follows that =.(¢") = u; hence =, is onto.

CoROLLARY 4.8. If each x£ is an isomorphism, so also is each ..

The results of 4.7 should be compared with the corresponding ones
for inverse systems (see 3.4 and the subsequent remark; also 3.9).

ExampLE 4.9. Let G be a group and M the collection of all finite
subsets of G. For each @ ¢ M, let G* be the subgroup of G generated
by the elements of a. Define a < 8 to mean that G* C G*, and let
2. G* — G® be the inclusion. It is easily proved that M is directed,
{G,x} is a direct system, and G® = (. Thus, any group s the direct
limit of its subgroups on finite bases.

ExamrLe 4.10. Let {H,} be a family of groups indexed by a set J,
and let H be their direct sum. ILet M be the collection of finite subsets
of J ordered by inclusion. If @ ¢ M, define G* = 3.,.. H,. If a C 8,
define #f: G — G’ in the obvious way (the coordinates of =2(g) are
those of g for j £ @ and are zero for j ¢ 8 — a). It follows quickly that
@ = H. Thus, a direct sum s a direct limit of finite direct sums.

DEerINITION 4.11. Let & {G,x} — {(’,x'} be 2 map of one direct
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system of R-modules into another. The homomorphisms ¢*:
G* — (*** are the components of a homomorphism &: Y. G — Y. @',
Because of the commutativity condition of 3.3, & maps each relation of
>~ G into a relation of 3 . Hence ® induces a homomorphism (linear
map) of the factor group

o G - a°
called the direct limit of . It satisfies

P Ty = T;(a)¢a, a e M-

Referring to the alternative definition of 4.6, note that g* ~ ¢*
implies ¢°g* ~ ¢°¢°. Ilence ® maps an equivalence class in {G,r)
into one in {G',#'}. This mapping of classes is precisely ¢".

Definition 4.11 may be applied in the special case of a map &:
{G,x} — G of a direct system {(G, 7} into a single R-module G'.

The proof of the following theorem is straightforward and is left
to the reader.

TuroreMm 4.12.  Let Dir(Gg) be the category of direct systems and
maps all of whose elements belong to Gg. Then the operations of assigning
a direet omal to cach direct system and a direct limit to each map of one
such into another 1s a corariant functor from Dir(Gy) to Gp.

Remark. It is to be noted that we do not attempt to assign a
topology to a direct lmit of topological groups. This can be done in a
natural way using the topology of the product space. However the
group Q of relations is usually not closed in 3" G even in the case of
compaet groups. As a consequence the topology induced in G” is not
a Hausdorfl topology. This means that no analog of 4.12 would hold
for any reasonable category of topological groups.

ThHroreM 413, Let (G,x},{G',n"} be direct systems over M, M’ re-
spectively, and let & {G' 7'} — [G,x} be a map. If (here exists a
directed subset N of M’ such that (1°) N is cofinal in M', (2°) ¢(N) s
cofinal in M, and (3°) ¢": G = G*® forcach B e N, then¢™: G~ =G .

Proor. 1f 8 ¢ M’, abbreviate ¢(3) by 8. Suppose g ¢ G’ and
¢”(g) = 0. Rince N is cofinal, there exists a 8 ¢ ¥ and a ¢° ¢ G"° such
that w® = ¢ (see 4.3). By 411, m¢°(¢") = ¢ (9) = 0. By 44,
there exists a 8 > 8’ in M such that =5.¢"(¢®) = 0. Since ¢(N) is cofinal,
there exists a y ¢ N such that v* > 8. Then r3¢°(¢>) = 0. By the
commutativity condition of 2.3, we have ¢”x7(¢°) = 0. Since ¢’
is isomorphic, 757 (g") = 0. IHence g = (g% = wlx5"(¢") = 0. This
proves that ¢~ has kernel zero. Suppose now that g € G”. Since ¢(N)
is cofinal, there exists a 8 ¢ N and a ¢° ¢ G° such that =5.(¢%) = g.
Since ¢° is onto, there exists a ¢” ¢ G’° such that ¢°(g”) = ¢°'. Let
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g = w3(g"”). Then ¢’ ¢ G'", and by the commutativity condition of
4.11,¢7(¢') = ¢.

CoROLLARY 4.14. Let M’ be cofinal in M, {G,x} a direct system over
M, (') the subsystem over M', and & {G' 7'} — {G,x} the in-
jection (see 2.4). Then¢™: G~ = G .

This follows from 4.13 with N = M’.

LemMa 4.15. Let ®,% be maps {G,n} — {G',x'} such that, for each
a ¢ M, we have p(a) < ¥(a) and ¢* = nili’¢%. Then ¢ = ¢~

Proor. If g ¢ G7, choose an « and a ¢’ ¢ G° such that =g’ = g¢.
By 4.11, we have

© o w 't a_ y _ ./ rW(a) a y
¢g_¢1rag —7r¢(a)¢g "'1r¢(a)7r¢(a)¢g

=mpa¥g = ¥r.g = ¥7g.

6. SYSTEMS OF EXACT SEQUENCES

DEerINITION 5.1.  An tnverse system of lower sequences {S,r} over the
directed set M is a function which attaches to each a ¢ M a lower
sequence

Sa = {Ga'wd’a.a}
-]

(see 1,2), and to each relation a« < B in M, a homomorphism =,:
Ss — S, such that =z = identity, and, if « < 8 < v, rlxl = xl.
Then, for any fixed g, the groups and homomorphisms {G, .2 .}
form an inverse system of groups over M. Its limit group is denoted
by G..,. Again, for a fixed ¢, the homomorphism {¢,, .} together with
the identity map of M form a map ®,: {Ga. o780 — {Gagr,ml o).
The limit of ®, is denoted by ¢ ¢ Gw.o — Gw..-;. The lower sequence
Se = {Gs.oPe..] 80 obtained is called the inverse limit of the system
{S,x}. A direct system of upper sequences and its limil sequence are
defined in an analogous manner.

In the above definition it is to be understood that all groups and
homomorphisms in an inverse system of lower sequences belong to a
fixed one of the standard categories Gz,Ge. That the limit sequence is
of the same type is proved in the preceding sections. In the case of a
direct system of upper sequences we shalil use only the categories Gp.

DerinITION 5.2. A lower [upper] sequence is said to be of order 2
if the composition of any two successive homomorphisms of the sequence
is zero: i.e. kernel D image. Although this notion coincides with that
of chain [cochain] complex (v,2), we shall prefer the “order 2"’ language
whenever the sequences are not to be treated as chain complexes.

THEOREM 5.3. If each sequence of an tnverse [direct] system of lower
[upper] sequences is of order 2, then the limit sequence is also of order 2.
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Proor. The composition &,_,®, mapping {G, .,7f .} into {Ga .z
w8 ..} consists of the identity map of M and the maps ¢ o—ipa.q = O.
Hence the inverse limit of &, %, is zero. By 3.14, this is the composi-
110N $u,y- 19=.o- The corresponding proof for a direct system of upper
sequences is left to the reader.

THeorEM 5.4. If each sequence of a direct sysfem of upper sequences
is exact, then the limil sequence vs also exact.

Proor. One half of exactness follows from 5.3. Suppose u ¢ G**°
and ¢” %(u) = 0in ™ "', By -+.3, there exists an « and a u* ¢ G*°
such that mJ(u®) = u. By 4.9,

w2 " () = ¢ ri(u”) = 0.
By 4.4, there exists a 8 > « such that
75" (%) = 0.

Let v’ = #%°u®). It follows from the commutativity of = and ¢ that
¢ (v®) = 0. By exactness of S°, there exists a »* ¢ (%' such
) = Wb letv = a5 (0") e G"'. Then ¢™ () = w. This
proves the other half of exactness.
ExamprLe 5.5. The limit sequence of an inverse system of exact
lower sequences need not be exact as the following example shows.
Consider the diagram

T 7

J — J —— J 2J

A
T n

J —— J — J/2J

where J is the group of integers, r(n) = 2n,y(n) = 3n, € is the identity
map, and 5 is the natural map. 1t is easy to see that

T n
S: 0>»J—-J—J/2J] -0

is an exact sequence, and that the homomorphisms %,v,e together yield
a homomorphism ¢: S — S,

Tet M be the set of positive integers with the usual order. For
each « ¢ M define S, = Sand 72,, = ¢. Define all other =& for 8 < «
by composition: £ = (¢)’"°. Then {84,728} is an inverse system of
cxact lower sequences. Let

S.: 0-0G@—-G—->H-—-0
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be the limit sequence of this inverse system. Since e is the identity
map, it follows that H = J/2J. An element of G is a sequence {n.},
a ¢ M of integers such that n, = 3n.,,. [t follows that n, is divisible
by arbitrarily high powers of 3; i.e. n, = 0 and G = 0. Thus S. is
the sequence 0 — 0 — 0 — J/2J — 0 which is not exact.

TuEOREM 5.6. Let {S,x} be an inverse system of exact lower sequences
over M where all groups and homomorphisms of {8,n} belong to the category
G¢ of compact groups. Then the limit sequence S» of {S,m} s also exact.

Proor. One-half of exactness follows from 5.3. Suppose ¢ s Ga,,
and ¢...{g) = 0. Let g, = w,.(¢9) be the coordinate of ¢ in G, ..
Since ¢.. . (g) = 0, it follows that ¢, ,(9.) = O for each a. Since S, is
exact, X, = (fa.o+1) (o) 15 a closed nonvacuous subset of Ga g1
From the relation ¢ . o7l o1 = 78 s o1, it follows that =5 .., maps
X into X.. Let pf be the map so defined. Then {X,,p%} is an inverse
systemn of compact spaces. Since each space is nonvacuous, it follows
from 3.6 that the limit space X. is nonvacuous. It is easily seen that
Xo C Go.g41 and ¢ ,o; maps X, into g. This proves the other half
of exactness.

Turorem 5.7. Lel {S,x] be an inverse system of exact lower sequences
over M where all terms of {S,7} belong lo the category of finute dimensional
veclor spaces over a fixed field F'. Then the limil sequence S, of {S,7} s
also exact.

Proor. If G is a vector space over F, a variety V in ( means a coset
of some linear subspace /I of G. The dimension of V' is that of H. It
is easily seen that, under a linear map, the image (inverse image) of a
variety is a variety. It is also clear that the intersection of a collection
of varieties, if not vacuous, is also a variety. We interrupt the proof
for a basic lemma.

LemMma 5.8. If G is a finite dimensional vector space over F, and {V,}
s a collection of varietics in ¢ (7 ¢ J) such that any finite number have a
nonvacuous tnterseclion, then M, ., V, # 0.

Since G has finite dimension, any subspace has a finite dimension,
and therefore the same holds for any variety. By hypothesis, any finite
subcollection of {V;} has an intersection of dimension 2 0. Since all
such dimensions are integers, there is a smallest such integer k, and a
corresponding V = N, V,, withdim V = k. Torany jeJ, VN
V; # 0 by hypothesis. Alsodim V N\ V, = k by the minimal property
of k. Thus dim V = dim V M V, which implies V = V N\ V,, and
this in turn implies V C V,. This proves the lemma.

We return now to the proof proper of 5.7. As before, one-half of
exactness follows from 5.3. Suppose ¢ § G.., and ¢. . (¢g) = 0. I
g. is the coordinate of g in G, ,, then ¢, .(gs) = 0. Define V] =
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(ba.ar1) '(ga). Since S, is exact, Vo is not vacuous. As a coset of the
kernel of ¢, ..+1, Vo is a variety. Consider now the family ¥ of all
functions v = {V,} defined for @ ¢ M such that V, is a variety in
Garosry Va C V2 and, if @« < 8, #l(Vy) C V.. Clearly o° = {V3}
belongs to ¥. If u,w ¢ ¥, the relation v C v means U, C V, for each
a ¢ M. This defines a partial order in ¥. By Zorn’s lemma, the partially
ordered set ¥ contains a maximal simply ordered subset ¥’. For each
a, define V! to be the intersection of all V, for V ¢ ¥'. Since ¥ is
simply ordered, any finite subset has a smallest element. Hence, by
5.8 and the assumption that G, .., has finite dimension, V. is not
vacuous. It is easily proved that (V3 C V. whenever a < 8.
Therefore v' = {V .} lies in ¥. Since »' C v for each v ¢ ¥’ and ¥’ is
maximal, it follows that »' ¢ ¥'. Thus we have found an element
v' ¢ ¥ such that v C v in ¥ implies v = v'. It remains to show that
each V, is a single element of G, ,.,. Consider any fixed element
a ¢ M. The collection {xZ(175)} for all 8 > « has the property that
any finite subcollection has a nonvacuous intersection (M is a directed
set). Hence by 5.8 there is an element g, in their intersection. For
any v ¢ M, choose a 8 > a,v and define
V, = ViN @@ (9d).

The choice made of g, insures that 17, is not vacuous. Clearly V, is
independent of the choice of 8. From this it follows that V., C V3,
Vo = g, and 71(3,) C V., ify < 6. Thusv = [V,} belongs to ¥
and v C ¢'. By the minimal property of ', we have v = v'; hence
gl = V. Thusg = {g!} is an element of G. .., and ¢w ..1(g") = g.
This completes the proof of 5.7.

REMARK. The failure of exactness under inverse limits can be
deseribed with greater precision. Let &: {G.x} — {G', 7'} be a map
of one inverse system of groups into another. Then the following rela-
tions always hold:

kernel ¢, = lim {kernel ¢, },
image ¢. C lim {image é.}.

In the second case equality holds if all groups are compact or finite
dimensional vector spaces over a field. The example 5.5 shows that
equality does not hold in general. In the case of direct systems equality
holds in both cases.

8. COMMUTATIVITY OF THE OPERATIONS OF LIMIT AND FACTOR GROUP

DeriniTion 6.1.  Let {G,x] be an inverse system of groups over M.
Suppose, for each a ¢ M, that H, is a subgroup of G,, and suppose,
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for each a < 8in M, that =2 maps H, into H,. Let p2: H;— H, be
the map defined by 2. Clearly {H,p} is an inverse system over M.
It is called a system of subgroups of {G,x}. For each a ¢ M, define
K. = G./H,, and, for each a < B in M, define ¢: K; — K, to be
the map induced by »£. Then {K,c} is an inverse system over M called
the system of factor groups of {G,x} by {H,}. The inclusion map
®: |{H,p} — {G,x} and the natural map ¥: {G,x} — {K,o} are defined
in the obvious way. By definition, each element of the limit group H.,
of {H p] is an element of G, and ¢.: H. — G, is the inclusion. The
corresponding definitions for direct systems are left to the reader.

THEOREM 6.2. Let {G,x},{H p},{K,c} be an inverse system of groups,
subgroups, and factor groups over M where all terms belong to the category
Ge of compact groups or to the category of finite dimensional vector spaces
over a fixed field F; then ¥o: Go — K. tnduces an tsomorphism G./H. =
K..

Proor. For each a, adjoin an infinite set of trivial groups and
maps to

¢ '
H,—> G, > K,

50 as to obtain a lower sequence S,

¢ 14

-—»O-—)Ha-—)Ga—>Ku—>O—>'»--

It is clear that S, is an exact sequence. For each « < 8 in 3, adjoin
to 7p2,02 an infinite set of trivial maps so as to obtain a map r2:
Sg — S.. Then {S,r} is an inverse system of exact sequences. It is

also clear that the limit sequence S, consists of

¢ 14

> 0-H, -G - K. —»0—> -

By 5.6 and 5.7, S. is an exact sequence. It follows that ¥ must be
onto and its kernel is H.. This completes the proof.

It is to be observed that example 5.5 shows that 6.2 does not hold
if it is merely required that all terms belong to the category G.

TueoreM 6.3. Lel {G,x},{Hpp},{K, 0} be a direct system of groups,
subgroups, and faclor groups over M where all terms belong lo the category
Gg; then Y. G, — K. induces an isomorphism G,/H. = K.

The proof is analogous to that of 6.2 and uses 5.4 in place of 5.6
and 5.7.
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EXERCISES

A. INVERSE LIMITS OF SPACES.

1. Prove that every countable dirccted set contains a cofinal sub-
sequence (sequence = directed set isomorphic with the set of positive
integers).

2. Show that, if each X,,a ¢ M, has a countable base for its open
sets, and if M is countable, then [ [..x X. has a countable base.

3. If {X.,7} is an inverse system indexed by M, each X, has a
countable base and A has a cofinal subsequence, then the limit X, has
a countable base.

4. An inverse limit of compact connected spaces is connected. IEx-
hibit an inverse sequence of connected spaces with a disconnected limit.

B. LiMITS OF GROUPS.

1. Let G be a group and {G°} a system of subgroups such that
U G* = G and for any G°,G’® there is a G” with G* C 6", ¢* C G".
Show that ¢ is naturally isomorphic with the limit of the direct system
{G*, 78} where the =f are inclusions.

2. Let (G be a compact group and {G,} a system of (closed) sub-
groups such that M G, is the ilentity and for any (7,,(;5 there is G,
with ¢, C G, N Gs Let H, = G/G,, and for each G, C G, let
x3: H, — H,; be the natural map. Show that  is naturally iso-
morphic to the limit of the inverse system {H,,75%}.

3. Show that the above results remain valid for nonabelian groups,
provided the definitions of Chapter viir are suitably interpreted.

C. DIRECT SUMS AND PRODUCTS.

1. Let {G,x},{7G,"x}, v ¢ I be direct systems of groups over the
same directed set M. Let "¢: {7G,"x} — {(7,x] be maps such that,
for cach « ¢ M, the maps "¢": "G — (° form an injective representa-
tion of G* as a direct sum. Show the same holds for the limiting maps
% TG -G

2. In the above assume that "p: {G,x} — {"G,"x} and that the
maps "¢": G° — TG" yield a projective representation of G as a
direct product. Show that the same holds for '¢”: G~ — "G,

3. Iistablish propositions similar to 1 and 2 for inverse systems.

D. SpLIT EXACT SEQUENCES.
DEFINITION, An exact lower sequence {G.¢.} and a sequence of
homomorphisms

¥Yae1. Gaer = Gaeey, 2= 0,4+1,42, .-,
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such that i, . ¢a... is the identity map of Gy, ,, for each i, is called a
split exact lower sequence. The homomorphisms ¢, (defined only for
n = 1 mod 3) are called the splitting homomorphisms of the exact
sequence. A map of a split exact sequence into another one is defined
in the obvious fashion.

1. Show that {¢,}] and {ys,..} yield a split exact lower sequence
if and only if the following conditions hold (for all 7):

(8) ¢3 = 0,

(b) b3 10342 = 0,

(¢) Yais103.+2 = identity,

(d) ¢sis1: Gaiy — G5, and Ya,000 Gay = G, yield a projective
representation of Gy, .; as a direct sum.

2. Let {S,r} be a direct [inverse] system in which each S is a split
exact sequence. Show that the limit is also a split exact sequence.

3. Reformulate the above results for upper sequences.

4. Let (X,4) be a pair and 1 X — A a retraction. Show that
the homology sequence of (X,A) together with the homomorphisms r,
form a split exact sequence.

E. p-ApIC GROUPS AND SOLENOIDS.
1. Let G, be a cyclic group of order p" with generator g,. Consider
the inverse system

b @2 Pn

G Go= Gy = or = Gy Gy oo

where ¢,.(g,.:1) = ¢,. The inverse limit G, is called the p-adic group.
Show that G, is compact, totally disconnected, and perfect. Show that
it has a countable base for its open sets, and, therefore, is homeomorphic
with the Cantor set. Show that for each integer n the subgroup p"G.
is open and closed and yiclds a fundamental sequence of neighborhoods
of zero.

DeriniTiON. Let S' be the multiplicative group of all complex
numbers z with |z2| = 1. Consider the inverse sequence

¢ ¢

S 8 e— i — S 8 ..

where ¢(2) = 2°. The inverse limit Z, is called the p-adic solenoid.

2. Show that there is a continuous homomorphism ¢: R — Z, of
the addive group R of real numbers into Z, such that the kernel of ¢ is
zero, and the image of ¥ is dense in Z,.

3. Show that the p-adic solenoid contains a subgroup isomorphic
with the p-adic group.

4, In euclidean 3-space R® consider the disc D = {(z, + 2)° +
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z3 £ 1, 7, = 0} and the solid torus T obtained by revolving D around
the z,-axis. In D consider the disc

2
D, = {(xl + g) + a2 £, = 0} where ¢ < lsin%

2
and the discs D, obtained from D, by revolving D around its center
by the angle 2#2)/p (/ = 1, --- , p — 1). The choice of ¢ insures the

disjointness of the dises Dy, D,, --- , D,_,. Now assume that as D
revolves around the z,-axis it also revolves around its own center in
such a fashion that, as one revolution around the .r,-axis is complete,
D, becomes D,, D, becomes D, ete. Then the dises D,,D,, -+, D,
sweep out a torus 7" which runs p times around the inside of the torus 7'
To describe the situation arithmetically, represent T by means of pairs
of complex numbers (z,5),[zf £ 1, |s] = 1 (z describes a point on D
and s describes the angle of revolution around the z,-axis). Then
define a mapping 8: T — T by

e = (e )

where 0 < ¢ < 4 sin «/p. Then T' = 4(T). Show that the p-adic
solenoid is homeomorphic with the inverse limit of the sequence

0 0 0
Te—Te— ... T «7Te.

which in turn is homeomorphic with the interscetion M., 6°7T
where 8°T = T, 6°T = 0(6"'T).

F. LIMITING GROUDPS FOR INFINITE COMPLEXES.

1. Let K be a (possibly infinite) simplicial complex and L a sub-
complex. Let {K,} be the family of all finite subcomplexes of K
ordered by inclusion. Show that the groups H,(K.K. N L;G)
[H*(K ., K. N L;G)) together with the homomorphisms of these groups
induced by inclusions form a direct [mverse] system of groups. The
resulting limit groups are denoted by ,,(K L) [II" (K,L;())] and are
called the direct limit homology [inverse limit cohomology) groups of (K,L)
{cf. vi, Exer. B).

2. Show that H,(K,L) and H,,(A L;G) are isomorphic. Show that
H*(K,L;G) and H“(A L:@) are isomorphic if G is compact or a vector
space over a field.

3. Let K be a locally finite simplicial complex, and L a subcomplex.
A subcomplex K, of K is called counterfinite if K, contains all but a
finite number of simplexes of K. Show that with a suitable ordering
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of the counterfinite subcomplexes K,, the groups 3¢, (K,L U K,;G)
[3¢°(K,L \J K.} (see vi, Exer. B) with suitable homomorphisms in-
duced by inclusions, form an inverse [direct] system of groups. The
resulting limit groups are denoted by 5(2 (K, L;G) [SC“(K L;@)] and are
called the inverse limit homology [direct limit cohomology] groups of (K,L).

4. Show that :}C“(K L;G) and :}C"(I\ L;G) are isomorphic. Show that
3 (K,L;(7) and sc «(K,L;() are isomorphic if G is compact or a vector
space over a field.



CHAPTER IX

The Cech homology theory

1. INTRODUCTION

In this chapter the Cech homology and cohomology theories are
defined and the axioms for such are verified. The degree of generality
of the results has been greatly increased by the use of modifications
introduced by Dowker [Annals of Math. 51 (1950), 278-292].

The Cech cohomology theory is defined on the category @, of ar-
bitrary pairs (X,A) and their maps. The coefficient group G is taken
to be an R-module for any ring 12, and the resulting H°(X,A) are in g,.
The axioms are verified without exception. Cech cohomology groups
with compact coefficients are not defined.

The Cech homology groups are defined under the same circumstances
as the Cech cohomology groups. Further, if (X,4) is a compact pair,
then the homology group H,(X,4) is also defined for G ¢ G¢, and is
itself in G¢.. The axioms are valid without restrictions except for the
Exactness axiom, which is valid only after drastic restrictions. The
homology sequence of any pair is defined, and it is proved that the
composition of any two homomorphisms is zero. To obtain the full
Exactness axiom, we must restrict (X,4) to be a compact pair and G
must be either compact or a vector space over a field. In case (X,4) is
triangulable, exactness is proved without this restriction on G. This is
accomplished by showing directly that H,(X,4) is isomorphic in a
natural way to the group based on the chains of a simplicial division.

The failure of the Cech homology theory to satisfy the Exactness
axiom is directly traceable to the facts established in vii1,6 concerning
the interchangeability of factorization and inverse limits.

2. COVERINGS, NERVES, AND PROJECTIONS

DeFiniTION 2.1, An indexed family of sels in a space X is a function
« defined on a set V, of indices such that, for each » ¢ V,, a, (the value
of aonv)is asubset of X. If X = U .. then « is called a covering
of X. It is called an open (closed) covering of X if each «, is open

(closed) in X. The set of all open coverings of X is denoted by Cov(X),
233
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If A is a subset of X, and V4 is o subset of V, such that A C U a,
for v ¢ V4, then we say that a is a covering of the pair (X,4) with
(V.,V2) as indexing pair. The set of all open coverings of (X,4) is
denoted by Cov(X,A4).

One should be careful not to confuse the sets Cov(X) and Cov(X,0).
However one may regard Cov{X) as the subset of Cov(X,0) consisting
of coverings « indexed by (V,,0).

DEeriNiTioN 2.2. Let o be an indexed family of sets in a space X.
Let s, be the simplicial complex consisting of all simplexes whose
vertices are elements of V', (if V, is finite, then s, is itself a simplex).
If s is a simplex of s,, the carrier of s, denoted by Car,(s), is the in-
tersection of those sets «, which correspond to vertices v of s. The
nerve of a, denoted by X,, is the subcomplex of s, consisting of all
simplexes with nonvacuous carriers. If « is a covering of the pair
(X,A) indexed by (V,.,V4), then we denote by A, the subcomplex of
X, consisting of all simplexes s with vertices in V4 such that A N
Car,(s) # 0. The pair (X,,4.) is then ealled the nerve of a.

Note that «, is the carrier of the vertex v.

LEMMA 2.3, If s’ 75 a face of s, then Car,(s") D Car,(s).

Proor. Since each vertex of s’ is one of s, it follows that each term
of the intersection defining Car,(s’) is a term of that defining Car,.(s).

It follows from 2.3 that each face of a simplex of the nerve X, is
also a simplex of X,. Therefore X, is a simplicial complex.

DerintTioN 2.4, Iff: (X,A) — (Y,B) and 8 is a covering of {V,B),
then f7'8 is the covering a of (X,A) with the same indexing pair,
(Va, V) = (Vs V%, and defined by «, = f7'(8,) for each v ¢ V5. It
follows from the continuity of f that, if 8 is an open (closed) covering,
so also is f7'8.

Lemma 2.5. If f: (X,A) — (V,B) and a = f7'B, then the nerve
X . 18 a subcomplex of Y and A, is a subcomplex of Bs. The inclusion
map (X ,,4.) — (Y4,Bs) is denoted by f,.

This follows from the fact that f(Car.(s)) C Carg(s) for each
simplex s of s, = s,.

LemMa 2.6. If f: (X,A) — (X,A) is the tdenlity, and a is a covering
of (X,A), then f'a = a and f, is the identity map of (X.,A.).

Lemma 27. If /1 (X,4) - (V' ,B), ¢ (YV,B) - (Z,0), v is a
covering of (Z,C),and 8 = g_l'Y) then .f—lg—l'y = (gf)—l'y and (9f), = g-fs

DeriNiTioN 2.8. Let « and 8 be two coverings of (X,A). The
covering 3 is called a refinement of o (notation: « < B) if every set of
8 is contained in some set of a, and every set of 8 indexed by an clement
of V4 is contained in some set of « indexed by V4. If « < 8, a function
p: (Vo,Vi) — (V,,V3) is called a projection if o,, D B, for each
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v e Vi The vertex mapping p extends uniquely to a simplicial map
8s — $, which is also denoted by p.

Lumma 2.9, The relalion < is a quasi-order, t.e. a < a, and a <
B < v tmplies o < 7.

This follows from the corresponding properties of the relation C,

Note that @ < f and 8 < « do not imply &« = 8. For example
a<Band B < aholdsif A = V4 = V4 = 0 and both o and 8 have
a set = X.

Luemma 2.10. The set Cov(X,A) of open coverings of (X,A) is a
direcled set wilh respect to the relation <.

Proor. By 2.9 and vii,2.1 it is sufficient to prove that, for any
a, B e Cov(X,A), there exists a v € Cov(X,A4) such that a < % and
B <« DefineV, =V, X Vgand V4 = V4 X V4 IfveV,, then
v = (v,0,) wherev, ¢ V,, v; ¢ V5. Define

Yo = a,, M B,

It is clear that v has the desired properties.

Note that the covering v is a “smallest’”’ common refinement of «,8.
That is, if § is any common refinement of a,8, then vy < 4.

Lemma 2,11, For any a, the idenlily map s, — s, 18 a projection.
If p: sy > 8., P'i s, — 83 are projections, Lhen their composition
pp’s s, — Sa S a projeclion.

The first statement follows from «, O «,. For the second it suffices
to note that a,,., D B, O v, implies a,,. D 7v,.

Lumma 212, If o < B are coverings of (X,A), then a projection
P ss — 8. maps (Xg,Ap) into (X,,A.). This simplicial map of the
nerve of 3 wnlo that of a is also called a projection and is denoted by the
same symbol p.

Proor. Since «,, D B, any intersection of B,’s is contained in
the intersection of the corresponding sets of . Hence, for any face s
of s, Carg(s) C Car,(p(s)). Consequently if the Car,(s) is nonvacuous
(meets A), so also Car,(p(s)).

Turorem 2.13. If a < B are two coverings of (X,A), then any two
projections p,p": (XgAs) — (X.,A.) are contiguous simplicial maps
(see v1,3.1).

Proor. Let s be a simplex of X;, and let x ¢ Carg(s). Then, for any
vertex v of 5, we have 2 ¢ 8,. Since 8, C «,, and 8, C a,,, = lies
in both a,, and e,.,. Hence the simplex s’ of s, spanned by the
two images of the vertices of s has a nonvacuous carrier. Thus, p(s)
and p’(s) are faces of 8’ in X,. If sisin Ag choose z ¢ A M Cary(s’).
The same argument shows that s’ isin 4,.

CoroLrLanry 2,14, Using homology and cohomology groups of com-
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plexes in the sense of v1,3.9, we have, for any coefficient group G, that the
homomorphisms

H(XA450) > H(X.,Au30),  H'(X.,44,0) - H(Xs,456)

induced by a projection (Xz,A5) — (X.,A.) are independent of the choice
of the projection and are therefore uniquely associated with the relation
a < B

LemMma 215, If f: (X,A) — (Y,B), and « < B are coverings of
(Y,B), then,if o' = f'a, 8 = f7'B, we have o’ < B'. If p: (Y4,Bs) —
(Y.,B.) 7s a projection, then p maps (Xg.,Ag.) tnlo (Xo,As). If ' is
the map so defined by p, then p' is a projection and commutativity holds
in the diagram

’

D
(Xa';Aa’) — (Xﬁ’;Aﬁ')

lfﬂ lfﬂ
p
(Ya;Ba) e (Yﬁ;Bﬁ)

Proor. By definition, V. = V, and, for each v ¢ Vi, p(v) = p’(v).
Therefore e,, D 8, implies f 'a,, D f7'8,, i.e. af, D B:. Thus, p’ is a
projection. It follows from now 2.14, that p’ maps (X,.,4;5) into
(Xa,Aer). Commutativity in the diagram follows from the faect
that f.,fs are inclusion maps (2.5), and p defines p’. This completes
the proof.

Beginning with 2.4 the discussion of this chapter was limited to
coverings of pairs. However the definitions and results may be dupli-
cated for coverings of spaces (without a distinguished subset) and to
indexed families of sets which are not necessarily coverings.

8. THE CECH GROUPS

We are now prepared to define the Cech homology and cohomology
groups of an arbitrary pair (X,A) over any coefficient group @ in Gg.
The homology groups of complexes, used in the definition, are those
defined in v1,3.9.

DeriniTiON 3.1.  Let Cov(X,A4) be the directed set of all open cover-
ings of (X,A) (see 2.10). For each a ¢ Cov(X,A4), let (X,,A,) be its
nerve (2.2), and let

H,,= H(X.,A.,0), Hi=H(X.A.0).
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For each relation « < 8 in Cov(X,A4), let
8 H,, — H,., rs: H; — Hj

be the homomorphisms induced by any projection (X5 45) — (X.,4.)
(see 2.14). The collections {H, ,,xf},{H% x5} are called the ¢** Cech
homology and cohomology systems of (X,A) over G.

TrEOREM 3.2. The ¢ Cech homology [cohomology] system of (X ,A)
over G 18 an inverse [direcl] system of groups defined on the directed set
Cov(X,A).

Proor. By 2.11, the identity map of (X,,A.) is a projection; hence
7o is the identity map of H, ,. Again, by 2.11, if a < 8 < ¥, the
projection (X,,4,) — (X,,A,) can be chosen as the composition of
prescribed projections (X,,4,) — (X4, — (X.,A.). From this it
follows that w2x} = =2 for homology, and #%x§ = =2 for cohomology.

DeriniTION 3.3.  The inverse [direct] limit of the ¢** Cech homology
[eohomology] system of (X,4) over (7 is denoted by H(X,4;&)
[H(X,A;)] and is called the ¢*° Cech homology [cohomology] group of
(X,A) over G. The group G may belong to any one of the categories
Gr, and by vi11,3.14 and vi11,4.12, the groups H,(X,4;7) and H*(X,A;G)
are in the same category as G.

For G ¢ G, the situation is as follows: Iach of the cohomology
groups H(X,,A;@) is in G¢ and the groups form a direct system.
Since the limit of a direct system of compact groups is not defined (see
Remark vii,4), the cohomology groups for G ¢ G are not defined. For
homology, the Cech system is an inverse system and the passage to the
limit is permissible. However the groups H,(X,,4.;G) themselves are
not defined for (7 ¢ G¢ since in general the complex X, is infinite. One
could try to avoid this difficulty by replacing the directed set Cov(X,4)
by its subset Cov’(X,A4) consisting only of finite coverings (i.e. cover-
ings « with V, finite). The definitions and results of the preceding
section remain valid for the directed set Cov’(X,A) so that 3.1-3.3
could be repeated with Cov(X,A4) replaced by Cov/(X,4). Of course,
the resulting limiting group H,(X,4;G) may not be isomorphic with
H,(X,A;@) (see x,9). However, if the pair (X,A4) is compact, then (see
below) Cov’(X,A) is a cofinal subset of Cov(X,4) and therefore by
v111,3.16 the limits H and H, are isomorphic. Thus, for compact pairs,
we may limit our attention to finite coverings, and thereby define the
homology groups H ,(X,4;G) with G ¢ Gc. Then the group H,(X,4;0)
is also in Gc. The situation resembles the one of Chapter vi where the
group H (K,L;&) for G & G¢ was defined only when K is finite,

To justify the above discussion we need
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Lemma 3.4. If the pair (X,A) is compact, then the set Cov’'(X,A)
consisiing of finite coverings is a cofinal subset of Cov(X,A).

Proor. Let o« ¢ Cov(X,4) be a covering indexed by the pair
(Va, V4. Since both X and A are compact, there exist finite subsets
UCV, W C V4 such that

Ua,=X, Ua,DA.

(11 e W

Then the covering « defines a covering 8 with indexing set (U \J W, W).
Since g is finite and @ < g8, the proposition follows.

In the definition of Cov(X,A4), the indexing pair (V,,V3) for a
covering « is any pair of sets. Since the set of “all” sets involves one
of the usual logical difficulties, the same is true of Cov(X,4). We shall
now show how this difficulty can be avoided.

Let M be any infinite set. Consider the subset Cov,(X,4) of
Cov(X,A) consisting of all coverings « with V, C M. We now observe
that the set M X M has the same cardinal as M, and therefore, as in
2.10, we can prove that Covy(X A) is a directed set.

LemMma 3.5. Let w(X) be the least cardinal such that the space X has
a base for open sets of cardinal power o(X). If M C N and M has power
at least w(X), then the set Cov (X ,A) s cofinal in Covay(X,A4).

Proor. Let a ¢ Covy(X,A), and let 8 be a family of sets in X,
indexed by the set M, and such that 8,,, m ¢ M, runs through a base for
the open sets of X. Let V., (V%) be the subset of M consisting of all
m ¢ M such that 8. C a, for some » ¢ V, (v ¢ V3). Then the indexed
family 8 defines a covering v with (V,,V%) as indexing pair and a < ¥.
Since ¥ & Covy(X,4), it follows that the latter set is cofinal in
Covy(X,4).

The homology and cohomology groups of (X,4) may now be defined
as limits of appropriate directed systems defined on Cov(X,A) where M
is a set of cardinal power at least w(X). This definition seems to depend
on the choice of M. However, if N is another such set, then by 3.5
both sets Cov,, and Covy are cofinal in the set Covayuy. This yields
an isomorphism of the limit groups defined using M and those defined
using the set N. It is easy to see that these isomorphisms define a
transitive system of groups as defined in 1,6. Consequently the limit
groups may be regarded as independent of the choice of the set M.

We have carried out the discussion for a single pair (X,A4); however
the same applies to any admissible category & such that the cardinals
w(X), X £ @ have an upper bound.

THEOREM 3.4. (Dimension axiom). If P is a single poini, then
H(P;G) = 0 = H*(P,G) for ¢ # 0 and H,(P;,G) = G = H(P;G).
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Proor. Let a be the covering of P consisting of the single set P
itself. Then « is a refinement of any covering of P. This means that
the set ¢’ C Cov(P) consisting of the single element a is cofinal in
Cov(P). The inverse system H,,, « ¢ C’, has but a single term. By
the definition of inverse limit (vi1,3.1), the inverse limit of the single
term f,, is itself H,,. By vi,3.16, it follows that H,, is isomorphic
to I1,(P;G). The nerve P, consists of a single vertex. The desired
result follows now from vi,3.8 (see end of vi,4).

4. INDUCED HOMOMORPHISMS

Tueorem 4.1. Let f: (X,A) — (V,B), let f™': Cov(Y B) —
Cov(X,A) be the associated map of the coverings (2.1, 2.4), and, for each
aceCov(Y,B) let fo0 (Xa,du) — (Y,B,) be the inclusion map of
the nerve of & = f' a into that of a (see 2.5). Then the induced homo-
morphisms

fax: H(Xa As;G0) — H(Y4,B,;0),
[f4: H'(Y.B.G) — H (X.,4.;0)]

for all « ¢ Cov(Y,B) together with f™* form a map ®(f) of the q** Cech
homology [cohomology)] system of (X,4) [(Y,B)] over G inlto that of (Y,B)
(X, A)].

Proor. By 2.15, ' is order preserving. Therefore, according to
vii,2.3, ¢(f) is a map if commutativity holds in the diagram

8’
Mo’

H(X. A.) —— H(Xp,Ap)

lfa* lfﬂ*
8

Ta

Hq( YaaBa) — Ila( Yﬂ:Bﬂ)

where @ < 8in Cov(Y,B). By 2.15, a projection p:  (Y,Bs) — (Y,,B,)
defines a projection p’: (X;,Bs) — (Xa A4, ). Hence f. p = pfs.
Therefore, by v1,3.8, fa,Ps = D.fo,- By 3.1, = p, and xl = p,.

DEFINITION 4.2.  The limit of the map (/) of the ¢** Cech homology
[cohomology] system of (X,4) [(Y,B)].into that (Y,B) [(X,4)] is de-
noted by

for H{(X,AG) —» H(Y,B,®), [f*: H(Y,B;G) - H'X,4,G)]

and is called the homomorphism induced by f. The coefficient group G
belongs to one of the categories Ge; then f, and f* belong to the same
category (see viir,3.14,4.12). If the pair (X,A) is compact, then we
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replace Cov by Cov’ throughout, and as above derive the definition
of f, (homoiogy only) for G in the category Ge.

Tueorem 4.3. (Axiom 1). If f: (X,A) — (X,A) is the ideniity,
then f, and f* are identities.

It is only necessary to observe that ®(f) is the identity.

TaeEOREM4.4. (Aziom2). Iff: (X,A) > (Y,B),andg: (V,B)—
(Z,C), then (¢f), = g, and (g))* = f*g*.

Proor. It is clear that (gf)”': Cov (Z,C) — Cov(X,A) is the
composition of "' and f'. faeCov(Z,C), 8 = g 'a,andy = f7'8 =
(9f) 'a, then g.fs = (gf). because all three maps g,: (Y4B —
(Za:Ca)v fﬂ: (X"IJA‘I) - (YﬂtBﬂ) and (gf)a (X.,,A.,) - (Za;Ca) are
inclusion maps (2.5). Therefore ®(gf) is the composition of ®(g) and
®(f) (see vii,2.3). The desired result follows now from the functional
properties of the limit homomorphism (v1ir,3.14,4.12).

6. THE HOMOTOPY AXIOM

It will be convenient to establish the Ilomotopy axiom in the alter-
native form (Axiom 5’) given in 1,3.

Tueorewm 5.1.  (Homotopy axiom). Let go,g:: (X,A) > (X,4) X I
be defined by g.(x) = (2,0), g.(z) = (z,1); then Gox_= G1y and g% = g% for
any coefficient group G for which the appropriate Cech groups are defined.

The proof will be preceded by several definitions and lemmas.

LemMaA 5.2. If a is a finile open covering of I by connected sets, then
ils nerve 1, 1s acyclic (see v1,5.6).

Proor. We shall first reduce the general case to the case when no
inclusion holds between the sets of the covering. Indeed suppose
a,, C a,, for some two indices v,,v, ¢ V,. Let 8 be the covering ob-
tained by removing the element v, from V,. Then a < gand 8 < a.
Let m: Iz— I,and m: I, — Ipbeprojections. Then mm,: Iz — I,
and w,m: I, — I, are projections and therefore induce identity maps
on the homology groups. It follows that I, and I have isomorphie
homology groups. Since the covering 8 has fewer sets than a, it follows
by induction that we can limit our attention to coverings for which
no inclusion holds. If « is such a covering, an order v, < v, < - - v, of
the elements of V, can be chosen so that the left end points !, and the
right end points 7, of a,, satisfy

O=l0§l1<lz<"’<ln, T0<rl<-~~<r,._,§7‘,.=l.
Consider the simplicial maps f,: I, — I, defined fori =0, -+ , n by

f-'("i) = v for Jj= i;
JFuv) = v, for j=21.
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We assert that f,., and f, are contiguous. Indeed let s be any simplex
of I,. If all the vertices of s are less than v,,,, then f,,,(s) = f.(s).
If some of the vertices of s are larger than »,, then f.(s) has the form
s'v;, and f,.,(s) is either of the form s'v,v,,, or s'v;,, where s’ is a
simplex with vertices <v,. In the first case f,(s) is a face of f,,,(s).
Thus we may assume that f,(s) = s'v,,f,..(s) = §'v,,,. Since all the
vertices of s’ are <uv,, it follows that Car.(s’) is a connected set with
end points [,r satisfying [ < [,, »r < r,. Since Carz(s’) N a,,,, = 0,
it follows that we have

l§l|Sl|+l<r-

Consequently Car,(s") M a,, N a,,,, # 0 so that s’v,v,,, is a simplex
containing both f,(s) and f;,,(s). Thus f,,, and f, are contiguous. It
follows from v1,3.2 that f,,,, = f.,. However f, is the identity map
of I, while f, maps I, into the single vertex v,. Since f,, = fo,, it
follows that I, is acyclie.

DeriNiTION 5.3. A covering o« of I indexed by the set ¥ =
0,1, ---, n) (n = 0) is called regular if the sets a, are open and con-
nected, and if

0 ¢ a, 0 non ¢ a, lea,, 1 non ¢ a,-,,
a;ma.+l¢0 for 'i=0,"',n"’1,
a, Na; =0 for 1 <j— L

LemMA 5.4,  The regular coverings form a cofinal subset of Cov(I).

Proor. Let « be any open covering of I. Consider the family
® of components of the sets of «. Then & is a family of connected open
sets covering I, and by compactness ¢ contains a finite subfamily &,
covering I. In &, select a minimal subset ®, such that no proper subset
of &, covers I. Then &, after suitable indexing constitutes a regular
covering which is a refinement of a.

DerinITION 5.5. Let a ¢ Cov(X,A) be a covering indexed by the
pair (V,,V4). Suppose to each v & V, there corresponds a regular cover-
ing 8 of I indexed by N* = (0,1, --- , n"). Consider the set W of
all pairs (v,2), v e V,, ¢ ¢ N" and let W' be the subset consisting of pairs
(v,%) with v ¢ V4. The covering v ¢ Cov(X X I, A X I) indexed by
(W,W’) and defined by

‘Y'.‘ = a' X ﬁ:

is called a stacked covering over a. The coverings 8" are called the stacks
of ~.

LEMMA 5.6. Stacked coverings form a cofinal subset of Cov(X X I,
4 X 1)
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ProoF. Let 6 e Cov(X X I, A X I) be indexed by (V,,V3). For
each (z,l) select open sets U(z,l) C X, V(a,t) C I such that U(z,t) X
V(z,t) contains (2,{) and is contained in onc of the sets §,, and if z ¢ A,
then U(z,t) X V(z,t) is contained in one of the sets 3, with v ¢ V4. Tor
each fixed z ¢ X, the sets V(x,t) constitute a covering of I, which there-
fore by 5.3 has a regular refinement 8°. For each set 8; there is an open
set U(z,?) in X such that U(z,7) X £ is in one of the sets of §,, and if
z e A, then U(z,5) X B is in one of the sets 8, with v ¢ V4. Define
a, = M,; U(z,?). Then « is a covering of (X,A4) indexed by (X,A4),
and the covering v stacked over a with 8 as stacks is a refinement of 8.

LeEmMmA 5.7. Let v be a stacked covering over a € Cov(X). If the
nerve X , is a (finile) stmplex, then the nerve (X X I), is ucyclic.

Proor. Without loss of generality we may assume that nonec of the
sets of the covering of a is empty. Let V and W be the indexing sets of
a and v, and let §8° be the stacks. Define a covering § of I indexed by
W as follows:

67.‘ = B:‘

Let s be any simplex with vertices (vo,7,), ** -, (n,%,) in W. Then

Cal‘.,(s) = f\’y(,,,,.,, = m ay, >< m ﬂ::
=MNay, XN 3, = Na, X Cars).

Since X, is a simplex, the set M, a,, is not empty. It follows that
Car, (s) is empty if and only if Car(s) is empty. Thus (X X I}, = I,.
Since I; is acyclic by 5.2, it follows that (X X I), is acyclic.

We shall abbreviate (X X I), by X X I,.

Lemma 5.8. Let v be a covering stacked over the covering « of (X,4)
indezed by (V,,V4). Consider the simplicial maps

Lu: (X,A4,) > (X XI,,AXI)
defined forve V, by

W) = 0,0, ul) = @n).

Thenl, = u, and I* = u*.

Proor. For each simplex s of X, consider the subcomplex C(s) of
X X I, consisting of all simplexes whose vertices have the form (v,7)
where v is a vertex of s. The simplex s is the nerve of a covering o’ of
a subset X’ of X and C(s) is the nerve of a covering v’ stacked over o'.
Thus by 5.7, C(s) is acyclic. If ¢’ is a face of s, then C(s") C C(s), and
if sisin A,, then C(s) isin A X I,. If ¢ is a chain in the simplex s,
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then I(c) and u{c) are chains in C(s). Thus C(s) is a common acyclic
carrier for the maps ! and u and by v1,5.8 we have I, = u, and I* = u*.

Prooror 5.1. Let D be the subset of Cov(X X I, A X I) consisting
of stacked coverings. Since D is cofinal, we can use the set D to define
the Cech groups of (X X I, A X I). Let v ¢ D be stacked over a.

Consider the coverings vo = g5y, v1 = ¢3'y of (X,4) and the inclusion
maps

Goy: (X'Y-!A'Yn) - (X X I'n A X 17)1
g1yt (X'vnA'n) - (X X I'n A X I'v)~

The map u defined in 5.8 may be factored into u = g,,u’ where u’:
(X.,A.) — (X,,,4,,) is an isomorphism defined by v/(v) = (v,n").
Observe that v, < v, and that the map

e (X'ynA'rx) - (X‘Yo’A‘Yo)

defined by w(v,{) = (v,0) is a projection. Further observe that I =
goymu’. It follows that

— ’ . 4
ly = GoyaTylly, Uy = Gryylhye
Since by 5.8, I, = u,, and since u, is an isomorphism, it follows that

Tive = Joy My

Thus by vi11,3.18 we have g,, = g,,. For cohomology we prove simi-
larly ¢¥, = n*g¥, and apply vii,4.15.

6. INVARIANCE UNDER EXCISION

__ Tueorem 6.1.  (FExcision axiom). If U is open in X and its closure
U s contained in the interior of A C X, then the inclusion map
fi (X —=U,A - U)— (X,A) induces isomorphisms

foi HX = U, A - U) = H,(X,A),
f*: H'X,A)=H' X -U, A - U),

for any coefficient group G for which the respective Cech groups are defined.

Proor. For notational brevitylet X' = X — U, A’ = A — U. Let
D be the subset of Cov(X,A4) consisting of all coverings « indexed by
(V4,V32) such that

(1) ifa, YU ## 0, thenve V4 and o, C 4.
By vi,3.15, the conclusion of the theorem is a consequence of the
following three propositions:

(2) D is cofinal in Cov(X,4).

(3) f7Y(D) is cofinal in Cov(X",A4").
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4 faeDand 8 = f'a, then
fdt.: H,(XE,AQ) = H(X.,Aa), i H'(X,.,A,) = HG(XE)AQ)

To prove (2) consider any covering « of (X,A) with indexing pair
(Va,V4). Let V' be a set disjoint with ¥, and in a 1-1 correspondence
with V4. For each v ¢ V2, the corresponding element of V' will be
denoted by v. Consider the covering vy of (X,A) indexed by (V,\J V',
V4 U V) and defined as follows

Y=o — U for ve V,,
Yo =a, M Int A for veV’.

Since U C Int A, it follows that vy is a covering of (X,4). Clearly
a <vyandvyeD.
To prove (3) consider any covering 8 of (X’,A’) indexed by (V,,V3).
Define a ¢ Cov(X,4) indexed by the same pair (V,,V3') as follows:
a, = 3, \JU.

Then 8 = f'a. Choosey e Dsothata < y. Theng = f'a < 7,
so that f™'D is cofinal in Cov(X’,A").
To prove (4), it suffices, in view of v1,3.5, 3.6, to prove

(5) X. =X} A, Ay =XiMN A,

Since (Xj,45) is a subcomplex of (X,,A.) (see 2.5}, we have the in-
clusions

X.D XU A, A C XiN A..
It thus remains to prove
(6) X. CXpU A, A;DXpNA,.

Let s be a simplex of X, which is not in X;. Then Car,(s) = 0
and Car,(s) M X’ = Cars(s) = 0. Consequently 0 < Car(s) C U.
This implies that, for every vertex v of s, we have a, M U = 0, and
therefore, since a ¢ D, that v ¢ V4. Since U C A4, it follows that
Carq(s) M A = 0 so that s is a simplex of A,. This proves the first
part of (6).

Let s be a simplex of X5 M A,. It follows that the vertices of s
are in V4 and that

Car,(s) M X’ = Care(s) = 0, Car,(s) M A = 0.
If Car,(s) C X', then
Carg(s) VA" = Car,(s) NX' M A = Car,(s) VYA 0
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and sisin A5 If Car,(s) M U # 0, then, since « is in D, it follows that
a, C A for every vertex v of s. Thus Car,(s) C 4 and

Carg(s) M A" = Car,(8) VYA N X' = Car,(s) N X" »= 0,
so that s is in A. This concludes the proof of 6.1.

7. THE BOUNDARY OPERATOR AND EXACTNESS

The Cech homology and cohomology groups of (X,4), 4, and X are
defined as limits of suitable systems of groups defined over the directed
sets Cov(X,A4), Cov(4,0), and Cov(X,0) respectively. In order to
define the boundary operator and discuss exactness, it will be convenient
to have equivalent definitions in which all these systems are defined
over the same directed set. It appears that the directed set Cov(X,4)
is most suitable for this purpose.

DerFiNiTION 7.1, If a ¢ Cov(X,4), let S, [S”] be the homology
[cohomology] sequence of (X,.,4,) over G. If a < 8 in Cov(X,A), let
w8 Sy — S. (rf 8° = § be a map induced by a projection
(X5,45) — (Xa,4,). The resulting limit sequence is called the adjusted
homwology [cohomology] sequence of (X,A). The groups and homomor-
phisms of the adjusted sequences are written

Ix iy 9’

e IIG(X7A) A HG(X)(X.A) « Ha(A)(X,A) « Haﬂ(X)A) — -
jl# i’# 6’

voe = HY(X,A) » H(X)xar » H'(A)xoay = H(X,4) - -+

To compare the groups with the subscript (X,4) with the groups
without this subscript, we introduce two maps,

¢: Cov(X,A) — Cov(4,0),
¥: Cov(X,A) — Cov(X,0).

Let a ¢ Cov(X,A) be indexed by the pair (V,,V4). Then ¢a is indexed
by (V4,0) and (¢a), = A M a, for v € V4. The covering ya is indexed
by (V.,0) and satisfies (ya), = «,. Observe that

Aa = Am,, X,, == Xpa.

The maps ¢ and ¢ and the appropriate identity maps of the homology
groups yield maps of inverse systems

d: {HG(AG;G))T;l(Aﬁ) - {IIG(AA;G))T;‘(X.A)
¥ {HG(XG;G))W;}(X.O) - {IIG(XG;G))T;‘(X-A)

where the subseript indicates the directed set on which these inverse
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systems are defined. The inverse limits of the maps ® and ¥ are
homomorphisms

¢o: H(A;G) = H(A;G)x.0), Voo H(X;G0) = H(X;@® x.05-

For cohomology, ® and ¥ are maps of direct systems and their limits
are

¢": H'(A;G)x.0y — H(A450), V' H'(X;G)x.0y — HYX;G).

LEmMMA 7.2. The homomorphisms ¢, Vo, ¢ , and " are isomor-
phisms.

Proor. In view of vii1,3.15 and viir,4.13, it suffices to show that the
image of ¢ is a cofinal subset of Cov(A,0) and that the image of ¢ is a
cofinal subset of Cov(X,0). Let a ¢ Cov(4,0) be indexed by the pair
(V,W). Let V* be a set consisting of ¥V and a single element v, not
in V. For each v ¢ V select an open set 8, in X so that a, = A M B,.
Define 8,, = X. Then 8 ¢ Cov(X,4) and has (V*,V) as indexing set.
The covering ¢8 agrees with a but has (V,0) as indexing set, thus
a < ¢8 and the image of ¢ is cofinal.

Let @ ¢ Cov(X,0) be indexed by (V,W). Then a defines a covering
B £ Cov(X,A) indexed by (V,V). The covering 8 then agrees with
o but is indexed by (V,0). Thus e« < ¥8 and the image of ¢ is cofinal.

Derinition 7.3. The homomorphisms

9: H(X,A,G) — H, (A, 8 HY(A;Q) — H''(X,A,6)
are defined from the diagrams
3' ¢m
H(X,A;G) — H, 1(A;G)x.a0» « Hoa(A0)
P &’
HY(AG) «— H'(A;)x,ay — H"'(X,A;0)

as d = ¢3'9" and & = §(¢”) ",
TuroreM 7.4. (dAziom 3). Let f: (X,A) — (Y,B). Then
(f14),0 = af, and 3(f]lA)* = f*s.

Proor. The formula for homology is an immediate consequence of
the commutativity relations in the diagram

o’ [ )8
H(X,A;0) — Hy i(AG)ix.ar —— Hooi(A[6)
lf* l(flA); l(flAh
4 [ 38

H(Y,B;G) —— H,(B;G)y.ny «— H (B;G)
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where (f|A4), is defined as the appropriate limit map. The commuta-
tivity relations in each square are immediate consequences of the
definitions. The proof for cohomology is similar.

THEOREM 7.5. The homology [cohomology] sequence of a pair (X,A)
over any coefficient group G is isomorphic with the adjusted homology
[cohomology) sequence. The isomorphism is given by the maps ¢.,¥-
(0" ,¢"] and the identity map of H (X ,A;G) [H(X,4;G)] onto itself.

Proor. We shall only carry out the proof for homology, the proof
for cohomology is quite similar. In view of 7.2 we need only verify com-
mutativity relations in the diagram

H(d) ——  HX)

H,. (X,A) lm 1% H(X,A)

!
z*

Hq(A)(x.A) hae— Hq(X)(X.A)

Commutativity in the left-hand triangle is a direct consequence of
the definition of 3. To prove commutativity in the middle square, we
discuss the maps ¢.i, and 7,¥. in greater detail. These maps are

limits of maps
T,M: {HG(Aa)Jr;}(A,O) - lIIc(‘Yu))W;}\’X.A)

where the subscript is used to indicate the directed set over which the
inverse systems are defined. The map 7 carries each covering a ¢
Cov(X,A) indexed by (V,,174) into the covering 7a = ¢a ¢ Cov(4,0)
indexed by the set (4,0) and satisfying (ra), = A M a,. Further r,
is the map H,(4,.;G) — H,(X.;@) induced by the inclusion 4., C X,
The map n assigns to each covering a ¢ Cov(X,A4) indexed by (Va,Va
the covering na = ¢ 'Ya ¢ Cov(4,0) indexed by (V,0) and satisfying
(na), = A N a,. Again g, is the map H,(4,,6) — H (X .;G) in-
duced by inclusion A,, C X,. Clearly na < ra; furthermore the in-
clusion map A,. C A,. is a projection. Tt follows that =,z is the map
H (A,.;() — H(A,q;@) induced by inclusion. Thus we have

ra
na < Ta, Ta = NaMpa-

Thus by viir,3.18 we have 7o = %o, i.€. ¢uty = *Ya.



2,8 THE CECH HOMOLOGY THEORY [CHaP. IX

The situation in the right-hand triangle is similar. The maps
Ji¥- and j, are limits of maps

1)7’: {Hq(Xa ;G),W;} (X,0) - {Hc(XayAa;G)ﬂr;} (X, A)-

For each a ¢ Cov(X,4) indexed by (V,, V%) the coverings ra, na ¢
Cov(X,0) coincide with a but are indexed by (V.0) and (V,V%)
respectively. We have X,, = X,, = X, and both r, and 5, are the
map H,(X,;G) — H,(X,,A.;G) induced by inclusion. Again we have
na < ra and the identity map X, — X, is a projection of ra into na.
Thus again

Ta
na < Ta, Ta = NaTya

so that 7o, = 7e.

With the proof of 7.5 concluded, the question of the exactness of
the homology and cohomology sequence is replaced by the question of
the exactness of the adjusted sequences. The adjusted sequences are
however limits of systems of exact sequences defined over the directed
set Cov(X,A). Thus the results of vii,5 may be applied.

Tueorem 7.6. (Exactness axiom). For any pair (X,A) and any G
in a calegory SGg, the cohomology sequence is exacl while the homology
sequence 1s a sequence of order 2 (see vi,5.2). If (X,A) 1s compact and
G 1s either in Q¢ or in G (the category of veclor spaces over a field F),
then the homology sequence is also exacl.

Proor. The first part of the theorem is a consequence of vii,5.3
and vir,5.4. If (X,4) is compact, then, in defining the groups oc-
curring in the homology sequence, we may limit our attention to finite
coverings. If G is compact, then, for each finite covering a, the homology
sequence of (X,,4,) over G is composed of compact groups and there-
fore by vi11,5.6 the limit sequence is exact. If G is in G, and is finite
dimensional (over F), then the groups of the homology sequence of
(Xq,4,) over F are all finite dimensional and the exactness of the
limit follows from vii,5.7. If G ¢ Gp is not finite dimensional, then G
may be represented as a direct sum ) G5 where each Gy is finite dimen-
sional. This decomposition yields a decomposition of the homology
sequence of (X,A) over G into a direct sum of the homology sequences
over (5. Since each of these is exact, it follows that the homology
sequence over ( is exact.

It will be shown later (9.4) that the homology sequence of a tri-
angulable pair is exact without restriction on the coefficient group. In
x,4 we shall construct a compact pair for which the homology sequence
with integer coefficients is not exact.



§ 8] CLOSED SUBSETS 249

8. CLOSED SUBSETS

It will be shown here that the reason for using coverings a ¢ Cov(X,A)
indexed by pairs (V,,V%) in the definition of H (X,4) is due to the
fact that A was not assumed to be closed. If A4 is closed, we can use
the set Cov(X) consisting of coverings « indexed by a single set V..

DEeFINITION 8.1, A covering a ¢ Cov(X,A4) indexed by (V,,V4) is
called proper if V4 is the set of all v ¢ V with &, ™\ 4 3¢ 0.

LemMa 8.2, For each covering a ¢ Cov(X) indexed by a set V,, con~
sider the covering pa € Cov(X,A) defined by o and indexed by (V. V’)
where V' is the setof allv eV, witha, VA # 0. Themapp: Cov(X)—
Cov(X,A) is then a 1-1 order preserving correspondence between Cov(X)
and the sel of all proper coverings in Cov(X,A).

The proof is obvious.

Lemma 83. If A s a closed subsel of X, then the proper coverings
torm a cofinal subset of Cov(X,4). If X is a T\,-space, then the converse
fs also lrue.

Proor. Let a ¢ Cov(X,A) be a covering indexed by (V,,V4). Let
V’ be the set of all ¢ ¢ V4 with «, /N A 5 0 and consider the covering
B ¢ Cov(X,A) indexed by (V,,V") and defined by

B, =a, — A for veV, — V',
Bv = fOI‘ ve V’.

Then 8 is proper and a < 8.

__ Suppose now that X is a Ti-space and A is not closed. Let z ¢
A — A. Consider the covering o consisting of the sets oy = X, oy =
X — (2) and indexed by V, = (1,2), V4 = (2). Let 8 ¢ Cov(X,A)
be any refinement of . Then for v ¢ 1% we must have 8, C X — ().
Thus z ¢ 8, for some v ¢ V5 — V5. Since 8, is open, it follows that
B. M A # 0so that 8 is not a proper covering. Thus the proper cover-
ings are not cofinal.

These lemmas show that, if A is closed in X, then, in defining the
adjusted homology sequence of (X,4), we may replace the set Cov(X,A)
on which the direct and inverse systems are defined by the subset
consisting only of proper coverings. By 8.2, this set may in turn be
replace by the set Cov(X) of coverings of X. For each covering a ¢
Cov(X) we then consider the homology {cohomology] sequence of the
pair (X,,4,) where A, consists of those simplexes of X, whose carriers
meet A. This is precisely the nerve of the covering pa ¢ Cov(X,4).
The groups of the thus modified adjusted homology sequence will be
indicated by the subscript X.

If the pair (X,4) is compact, we can, in addition to the above
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changes, restrict ourselves to finite coverings. Thus the homology
[cohomology] sequence can be defined as a limit taken over the directed
set Cov’/(X) of finite coverings of X.

9. CECH GROUPS OF TRIANGULABLE SPACES

DeriniTioNn 9.1. Let (X,A) be a pair with a triangulation
T = {t,(K,L)}. For every vertex A of K consider the open star st(A)
of A in K as defined in 11,3.6 and define

T4 = t(st(4)).

There results a covering = of (X,4) with V, = {A} = |[K°|, V4 = |L°.
We shall say that 7 is the covering associated with the triangulation 7.
LEmma 9.2. The nerve of (X,A) in the covering v is (K,L), i.e.
X,=Kand 4, = L.
Proor. The vertices of K and of X, are the same; thus K and
X, are subcomplexes of the same simplex. let A°, ---, A" be distinct
vertices of K. Then, since ¢ is a homeomorphism,

M A 1a = O Lst(AY) = t(r"\ st(A‘)).

It follows that M 7, # 0 if and only if N st(A*) = 0, and, by 11,3.7,
this holds if and only if A%, .-, A" are vertices of a simplex s of K.
Thus X, = K. From (1) we deduce that

(r"\ u.) N4 = t(r"\ 1Ll N st(A‘))

1=0 1 =0
so that the simplex s with vertices A°, -+, A" is in A, if and only if
A° --- | A" are vertices of L, and
) A L] N st(AY) # 0.
1=0

Now it follows directly from the definition of st(A")
|L] M st(A®) = st (A)

where st;,(A') is the open star of the vertex A® constructed relative to
the complex L. Thus, by 11,3.7, condition (2) is equivalent to s being
a simplex of L. Thus A, = L.

TuroreM 93. Let T = {{,(K,L)} be a triangulation of the pair
(X,A). The homology [cohomology] sequence Sx.., of (K,L) (in the
simplicial theory) and the adjusted homology [cohomology] sequence S of
(X,A) (in the Cech theory) are isomorphic. The isomorphism is oblained
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by taking the covering t associated with T and regarding Sk, as the
homology [cohomology] sequence of the nerve of r. This yields maps

. S — 8, [#7: §7 — ]
which are isomorphisms.

This result is valid for all coefficient groups G for which the ap-
propriate Cech groups are defined.

CoroLuarY 9.4. The Cech homology sequence of a triangulable pair
(X,A) is exact for any coefficient group G.

The proof of 9.3 will be preceded by a definition and two lemmas.

a DeFINITION 9.5.  The mesh of a covering a of a metric space X is the
maximum of the diameters of the sets «,.

LemMa 9.6, A subsel C of the directed set Cov(X) of all open coverings
of a compact metric space X is cofinal if and only if for every ¢ > O the
set C contains a corering of mesh <e.

Proor. The condition is clearly necessary. To prove that it also
is sufficient, consider a covering « of X. Let ¢ be the Lebesgue number
of this covering (see 11,8.5) and let 8 ¢ C be a covering with mesh 8 < e
Then a < 8 and C is cofinal.

LemMa 9.7, Let T' = {{',(K',L")} be the barycentric subdivision of
the triangulation 7' = [t{,(K,L)} of (X,A). Then the covering v’ asso-
ctated with T’ is a refinement of the covering r associated with T, and the
projections

' 8, =8, 1 8 = 87]
are isomorphisms.
Proor. We recall that (K',L’) = (Sd K, Sd L). Letl: (K',L') —
(K,L) be the linear map connected with this subdivision. Then ¢/ = .
Any vertex B of K’ is the barycenter of some simplex s of K. Let

A®, -+, A" be the vertices of s. Then, from the definition of [ and the
open stars, it follows that

I(st(B)) = M st(A4").
1m0
Consequently
(1) s = t'st(B) = tlst(B) = M {st(A*) = N 7.
1=0

1=0

This implies that 7’ is a refinement of .

Let =: (K'’,L") — (K,L) be a projection as defined in vL,7,6, i.e.
# is a simplicial map which to every vertex B of K’ assigns a vertex
of the simplex of K whose barycenter is B. Hence (1) implies that =
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also is a projection of the covering 7’ into r. Thus the last part of
the lemma is a consequence of v1,7.2.

Proor oF 9.3. Let "T = {"t,("K,"L)} be the n'® barycentric sub-
division of the triangulation T, and let {"r} be the corresponding
sequence of coverings of X. It follows from 11,7.5 that

lim mesh "r = 0.

Thus, if we regard {"r} as coverings of X, they form a cofinal subset of
Cov(X). Consequently, if we regard C = {"r} as coverings of (X,4),
they will form a cofinal subset of the set R of proper coverings of (X,A4).
By 8.3, the set R is cofinal in Cov(X,A). Thus C is cofinal in Cov(X,A4).
Let S’ be the inverse [direct] limit of the system {S,x5} [{S",x5}]
defined over the directed set C. The homomorphism =, {7'] can then
be represented as the composition

Vo Vo 7
S— 8 = 8, [S — 8 « §7]

where y. [¥"] is the limit map of the injection of the system defined
over Cov(X,A) into the subsystem defined over C. Since C is cofinal
in Cov(X,A4), it follows that Y. [¢"] is an isomorphism (vii,3.16, 4.14).
In the system over C, all the maps are isomorphisms by 9.8. Thus
vir,3.4 implies that »/: S8 — S, [#": S” — S§’] is an isomorphism.
This shows that the map in 9.3 is an isomorphism.

10. PARTIALLY EXACT HOMOLOGY AND COHOMOLOGY THEORIES

As we have seen, the Cech homology groups satisfy all the axioms
except for the Exactness axiom, which holds only in very special cir-
cumstances. Nevertheless the Cech groups are very useful (particu-
larly for compact pairs) because of various features that will be discussed
in the following chapters. In later chapters we shall encounter systems
other than the Cech homology theory which fail to satisfy the Exactness
axiom in its present form. It is therefore useful to generalize the con-
cept of a homology theory so as to include the Cech theory as well as
the other theories that we shall encounter.

We begin by modifying the axioms for an admissible category @
(see 1,1) by replacing condition (5) by the following:

(") If (X,A) is triangulable, then (X,A)ea. If f: (X,4) > (V,B)
and (X,A), (V,B) are triangulable, then f & @.

This axiom asserts that the category J of triangulable pairs is a sub-
category of @: this is satisfied by all the admissible categories that we
have encountered.
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Now we replace the Exactness axiom by a weaker one:

Axiom 4’ (Partial Exaciness axiom). If (X,A) ts admissible, the
homology [cohomology) sequence of (X,A) is a sequence of order 2 (see
vir,5.2). If (X,A) is triangulable, then the sequence is exact.

A system H = {H (X ,A),f,0} [H = {H(X,A),f*é}] satisfying
axioms 1-3, 5-7, and 4’ is called a partially exact homology [cohomology]
theory. The Cech homology theory (on the category @,) is a typical
example of a partially exact homology theory. Others will appear later.

In applying the results of Chapter 1 to a partially exact homology
theory, we must check the extent to which the exactness axiom is used
in the proof. For instance in proving that H,(X,X) = 0 (1,8.1) the
first proof makes full use of exactness: however, the alternative proof
uses only the order 2 property of the homology sequence. Thus this
proposition remains valid for partially exact theories. An inspection of
the proof of 1,10.2 shows that the homology and cohomology sequences
of a triple are of order 2 even for a partially exact theory. Similarly,
inspection of the proof of 1,8.6 shows that the reduced homology and
cohomology sequences of a pair are of order 2.

NOTE

The development of the Cech theory. The first definition of homology
groups of the Cech type was made by Vietoris [Math. Ann. 97 (1927),
454-472]. e restricted himself to compact metric spaces and used a
specific metric 1o define his eycles. About the same time Alexandroff
[Annals of Math. 30 (1928), 101-187] introduced the concept of ap-
proximating a compact metric space by an inverse sequence of com-
plexes (called: a projection speetrum), and successfully defined Betti
numbers. Pontrjagin [Math. Ann. 105 (1931), 165-205] added to this
the notion of an inverse sequence of groups, and obtained homology
groups. It was Cech [Fund. Math. 19 (1932), 149-183] who first defined
the nerve of a finite covering hy open sets, and used such complexes as
approximalions to a space. By using inverse systems instead of se-
quences, hie defined homology groups of arbitrary spaces. When it
became clear that the Cech definitions for noncompact spaces did not
give a fully satisfactory theory, Dowker [Annals of Math. 51 (1950),
278-292) found the satisfactory modification based on pairs of infinite
coverings.

A parallel development has taken place based on an idea of Alexander
[Proc. Nat. Acad. Sci. 21 (1935), 509-512] that a g-cochain may be
defined as a function from ordered sects of ¢ + 1 points in the space to
the coefficient group. He subsequently modified this approach by in-
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troducing the notion of a grating [Bull. Amer. Math. Soc. 53 (1947),
201-233]. Using another modification suggested by Wallace, Spanier
[Annals of Math. 49 (1948), 407-427] showed that the cehomology
theory obtained from such cochains satisfies our axioms on compact
spaces and is isomorphic there to the Cech theory. The advantage of
this approach lies in the simplicity of the definition of cochain. A dis-
advantage is that there appears to be no equally simple and dual con-
struction of chains and their homology groups.

EXERCISES

A. CONNECTEDNESS AND QUASI-COMPONENTS.

DrriniTioN. Let X be a topological space and let z, ¢ X. The
component of x, in X is the union of all connected subsets of X con-
taining x,. The quasi-component of z, is the intersection of all the
simultaneously open and closed subsets of X containing z,.

1. Show that: (1) components are closed, connected, and disjoint;
(2) quasi-components are closed and disjoint; (3) eash quasi-component
is a union of comporents; (4) a quasi-component is a component if and
only if it is connected; (5) if X is compact or if the number of quasi-
components is finite, then each quasi-component is a component. Show
by an example that a quasi-component need not be connected.

2. Let zo,2z, ¢ X, g ¢ G, and ¢ # 0. Show that the elements (¢9z,)x
and (gz,)x of the Cech group Ho(X:0), as defined in 1,7.1, are equal if
and only if z, and 2, belong to the same quasi-component.

3. For each element h of the Cech group H°(X;G) where G is in
the category Gg, consider the function X — @ as defined in 1,7.1c.
Show that this establishes an isomorphism between H°(X;G) and the
R-module of all continuous functions X — G, where G is taken with the
discrete topology. Describe the group H°(X;@) in a similar fashion.

4. Show that H,(X;G) is isomorphic with Hom(H°(X;J);G) where
J is the group of integers.

B. 0-DIMENSIONAL SETS.

DerINITION. A space X is called 0-dimensional if every open cover-
ing of X has a refinement consisting of disjoint sets.

1. Show that a compact space is O-dimensional if and only if it is
totally disconnected (i.e. each component reduces to a single point).

2. Show that every compact O-dimensional space is the limit space
of an inverse system of finite sets.

3. Show that, if X is 0-dimensional, then H,(X;G) = 0, H(X;G) = Q
for ¢ > 0 (Cech groups).
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4. Let (X;X,,X;) be a proper triad (with respect to the Cech groups)
where X = X, \U X,, and let A = X, N X, be 0-dimensional. Show
that H,(X;G) = H (X,;() + I (X,;() forq > 1. If X, and X, are
connected and I1,(X,;G) = 0 = H,(X;G), then I,(X:Q) = H,(A,G).

C. LIMITING GROUPS.

We shall consider here the category @, of pairs (X,4), where X is
a Hausdorff space and A is a subspace of X, and of all maps of such
pairs.

1. Given a (partially exact) homology {cohomology] theory H on
the category G, of compact pairs, define an extension 74 [71] of H to the
category @, nsing direct limits of the groups H (X ,,A,) [H(X.,A4.)]
where (X.,A,) is any compact pair contained in (X,A). Verify the
axioms for the limiting theory H [H).

2._’Assume in 1 that H is given on the category @,. Define a natural
map Il - H [H — H].

3. Show that, if H is the singular homology theory on the category
@y, then H — H is an isomorphism. Show that, if the coefficient group
is compact or a vector space over a field, then, for singular cohomology,
H — H is an isomorphism. .

4. Show that, if (X,41) isin @, and A is closed, the groups H,(X,A)
[[{°(X,1)] may be defined equivalently as limits of the groups
H (X, ANX)(X,,AMNX,)] where X, is any compact subset of X.

5. Let K be a (possibly infinite) simplicial complex and L a sub-
complex of K. Show that the inverse limiting cohomology group
ﬁ"(K,L;G) (see viir, Exer. F) is naturally isomorphic with the limiting
group H"(lKl, L|;¢) using singular cohomology and using the weak
topology in |K|.

D. HoMoLOGY WITH COMPACT CARRIERS,

DEerFINITION. A partially exact homology theory H defined on the
category @y is sald to have compact carriers if, for each u ¢ H (X,A4),
there is a compact pair (X’,1") C (X,4) such that u is in the image of
the homomorphism H,(X’,-4’) — H (X,A) induced by inclusion.

1. Assume that H is exact and has compact carriers. Let (X,A)
be a pair in Gy and (X’,:1") a compact pair contained in (X,4). If
u e H(X' A" is in the kerncl of the homomorphism H (X' A") —
H,(X,A) induced by inclusion, show that there exists a compact pair
(X', A") such that (X',4") C (X",4") C (X,4), and that u is the
kernel of H (X',A") — H,(X",A"). (Hint: consider the triple (X,4,4")
to reduce the general case to the case A = A’ then consider the triple
(X,X',A4%).
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2. Show that for any exact homology theory H on @, the following
conditions are equivalent:

(a) H has compact carriers,

(b) the map H — H of C,2 is an isomorphism,

(c) the map H — H of C,2 is onto.

3. Show that singular homology has compact carriers.

E. ADMISSIBLE AND UNIQUENESS CATEGORIES.

1. Let H be a partially exact homology [cohomology] theory on an
admissible category G. Let G’ be the (full) subcategory of G deter-
mined by those pairs (X,4) for which the homology [cohomology]
sequence is exact. Show that @’ is an admissible category and that H
is an exact homology [cohomology] theory on G/,

2. Let gu be the category consisting of all compact pairs (X,4)
which have the homotopy type of a triangulable pair and of all maps
of such pairs. Show that Jy is an admissible category.

3. Show that any partially exact homology {ecohomology] theory on
the category G is an exact theory on the subcategory Jx.

4. Show that g, is a uniqueness category for homology and co-
homology. (This result will be gencralized in Chapter xi, of the
second volume.)



CHAPTER X

Special features of the Cech theory

1. INTRODUCTION

The discussion in this chapter is centered around the continuity
property of the Cech groups. Roughly speaking this property may be
stated as follows: If the compact pair (X,4) is the inverse limit of the
compact pairs (X.,A.), then the Cech groups of (X,4) are limits
(inverse for homology, and direct for cohomology) of the groups of
(XaA44). At the end of the chapter it is shown that among all the
partially exact theories (1X,10) on the category @, the Cech theory is
essentially the only one satisfying this “continuity axiom.” Thus a
complete axiomatic description of the Cech groups is obtained (for
compact pairs) despite the lack of exactness.

As an application of the continuity property, we show that the
Cech groups satisfy a much stronger form of the Excision axiom. In
particular, in the Cech theory, every compact triad is a proper triad
(see 1,1-+.1). This fact is very useful in applications.

Sections 6-9 deal with homology theories for noncompact spaces
obtained by compactifying the spaces (in some standard fashion), and
then taking the Cech groups of the compactified space. Two methods
of compactification are discussed. The first is the compactification of
a locally compuacet space by adding a point at infinity; the other one is
the Tychonoff compactification of a normal space. The first yields a
theory on the category ¢ of locally compact pairs. This theory is
especially interesting for two reasons: (1) In the case of a locally finite
infinite simplicial complex, the groups are isomorphic with those based
on finite cochains and infinite chains. (2) The theory does not admit
o reduced theory because in the category (¢ only compact spaces are
collapsible (in the sense of 1,7.3). The theory for normal spaces obtained
by using the Tychonoff compactification turns out to be isomorphic
with the Cech theory based on finite open coverings.

Throughout the chapter, the Cech groups will only be applied to
compact pairs (X,4) and therefore (see 1x,8) we may assume that the
set Cov’(X) of finite open coverings of X is the directed set used in the
definition of the Cech groups of (X,A).

257
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2. FORMULATION OF CONTINUITY

Let @ denote a category of pairs (X,4) and maps, and let Inva
denote the category of inverse systems having values in @. Elements
of Inv@ will be denoted by boldface symbols. Thus, (X,A) ¢ Inva
means

(X;A) = {(Xm,AM);"r::}

is an inverse system over some directed set M with values (X,,,4,,),7mm.
in @ Similarly, if (Y,B) = {(¥,,B.),e..} is an inverse system over N
and belongs to Inv@®, a map

f: XA - (Y,B)

of Inv@ is composed of a map f: N — M and maps f,: (X;,4,,) —
(Y.,B,) as in the definition viir,2.3.

The operation of taking the inverse (or direct) limit will be denoted
by lim. Thus lim (X,A) is a pair (X,A) where X is the limit of the
inverse system {X,,mn.}, and A is the limit of the system of subspaces
{Anmmi|A.}. Likewise, if f ¢ Inv@, then lim f: lim (X,A) — lim
(Y,B) is defined as vi11,3.10.

We shall assume that the category @ is such that the operation of
inverse limit maps Inv@® into &:

lim: Invae — Q.

For example, this is true if @ is the category of compact pairs. As
observed in vi11,3.14, lim is a covariant functor.
Suppose now that a partially exact homology {ecohomology] theory
H is defined on @ with values in G or G¢ [Gr]. Then H can be applied
to (X,A) e Inv@ to yield inverse [direct] systems
H(X,A) = (H(XmAn) oy,  [H'KA) = (H(X,,A4,)m0*}],

and maps
o: H,X,A) — H..(A), [6: H'A) - H'X,A).

defined in the obvious way. Similarly, if £: (X,A) — (Y,B), then the
maps fn, [fx] form a map
f,: H.(XA) — H(YB), ff*: H'(Y,B) —» H'(X,A)].

We have thus a kind of “homology theory” on the category Inv@. Its
values are, corresponding to those of H, in InvG, or InvG, [DirG.].
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It follows that the two composite functors H, lim and lim H, are
both defined on Inv@ and both have values in §; or G.. They are
comparable as follows:

TarorEM 2.1. Let (X,A) = lim (X,A) and let =,. (X,A) —
(X.,A,) be the projections. Then 7, = mn x,. for m < m' and =, =
TraTmiye Thus the homomorphisms {m,.,} constitule a homomorphism

H,(lim (X,A)) — H/(X,A).
This defines, by vii1,3.10,3.13, a limit homomorphism
(¢, X,A): I (lim (X,A)) — lim H (X,A).

This is a natural transformation of H lim info lim I in the following sense:
I (X,A) € Inv@ then commulativity holds in the diagram

!
H,(lim (X,A)) —— lim H,(X,A)

la llim 9
!
H,_,(lim (A) —— lim H,_,(A)

Likewise, if f: (X,A) — (Y,B) is in Inv@, then commultativity holds in
the diagram

l
I1,(lim (X,A)) —— lim H,(X,A)
l(lim f), llim (£,)
!

17,(lim (Y,B)) —— lim H(Y,B)

The proofs follow from vii,3.11. A similar result holds for co-
homology:

TueOREM 2.2. Let (X,A) = lim (X,A) and =,: (X,4) - (X,,4.)
be the projeclions. Then the maps {mk} constitule a homomorphism

HY(XA) — H'(lim (X,A))
thereby defining a limil homomorphism

I(g,X,A): lim H(X,A) — H%(lim (X,A)).
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The homomorphism | so defined is a natural transformation of lim H into
H lim in the sense that commutativity holds in the two diagrams

!
lim H'(X,A) —— H°(lim (X,A))

Ilim ) I&
l

lim H*7'(A) —— H° '(lim (A))

!
lim H(X,A) —— H*(lim (X,A))
Ilim (%) I(lim f)*

l

lim HY(Y,B) —— H*(lim (Y,B))

DEerFiniTION 2.3. A partially exact homology [cohomology] theory
H with values in Gy or G [Gr] is said to be continuous on the category
@ if the transformation I of 2.1 [2.2] is a natural equivalence, i.e. for
each (X,A) ¢ Inva

I(g,X,A): H,(lim (X,A)) = lim H,(X,A)
[l(g,X,A): lim Ha,A) = H(lim (X,A))].

We emphasize that the concept of continuity is not defined for co-
homology theories with values in the category Ge.

DEFINITION 2.4.  An inverse system {(X,,4.),72} is called a nested
system if each X, is a subspace of some fixed space Z and each =% is
an inclusion map (X;45) C (Xa,A4.). The intersection (X,4) =
(N X,,M A,) is called the intersection of the nested system.

TuroreM 2.5. If (X,A) is the inlersection of the mested system
{(Xa,A),mE}, then each point x ¢ X regarded as an element of each X,
yields an element ¢(x) of the inverse imit (X.,A.). The mapping ¢
established a homeomorphism ¢: (X,A) = (Xa,A).

Obviously ¢ is a 1-1 correspondence. The verification that ¢ and
¢~ are continuous is left to the reader.

TueoreMm 2.6. Lel H be a continuous and partially exact homology
[cohomology) theory with values in Gr or G¢ [Gr]l. Let (X,A) be the inter-
section of the nested system {(X.,Aq),w5} of compact pairs in a compact
space Z. Let 1,0 (X,A) C (Xa,A4.). Then each system {u,} where
Uqg e Hy(Xa,4,) and wﬂ*up = u, determines a unique element u e H,(X,A)
such that w, = i4,u, and vice versa. [Each u ¢ H(X,A) s of the form



§3] CONTINUITY OF THE CECH THEORY 261

t*u, for some o and some u, e H (X, ,A,). If i*u, = 0, then °*u, = 0
for some B8 > «.

Proor. If we identify (X,A) with the inverse limit of
{(X 4,4 4),m5} using the mapping ¢ of 2.5, the conclusion of 2.6 becomes
a direct consequence of the continuity of the homology [cohomology]
theory I1.

3. CONTINUITY OF THE CECH THEORY

TuEoREM 3.1.  The Cech homology theory based on a coeflicient group
which 1s in Gy or Ge 1s continuous on the category of compact pairs. The
same conclusion holds for the Cech cohomology theory based on a coefficient
group in Gg.

A number of lemmas, useful later, will precede the proof.

Since we deal with compact pairs, we can limit our attention to
finite coverings only. Since the subset A of a compact pair (X,A4) is
always closed, we may assume (see 1x,8) that the Cech groups of (X,4)
are defined as limits of inverse or direct systems of groups defined over
the directed set Cov’(X) of finite open coverings of X rather then on
on the set Cov/(X,4).

DeriniTioN 3.2.  If «,8 are families of sets in X defined on the same
indexing set V, = Vj, and, for cach v ¢ V,, @, D 8., then « is called
an enlargement of 8, and 8 is called a reduction of a. If & is an indexed
family of sets in X, « denotes the family of closures of sets of a.

Lemma 3.3.  Jf X 1s a normal space and « is a finite open covering of
X, then there exists a closed covering 8 of X which is a reduction of a.

Proor. If V, has but one element v, then a, = X. Let 8, = X.
Then g is the desired covering. Proceeding by induction, assume the
lemma holds in any normal space if V, has k elements. Let « be a
covering of X such that V, has k + 1 elements. Select a fixed v, ¢ V,
andlet A = X — U «, for v # v,. Since X is normal, there is an open
set Usuchthat A CUand U C a,,. Let X’ = X — U, and let
al = a, M X' for v ¢ v,. Then o is an open covering of the normal
space X' defined on a set of k elements. Let 8’ be a closed reduction
of . Define 8,, = U, and 8, = B, for v # v,. Then 8 is clearly a
closed reduction of a.

LieMMma 3.4. Let X be a normal space, a ¢ Cov/(X), and let 8 be a
finite indexed family of closed sets in X such that a < . Then there
ezists an open enlargement vy of B such that « < ¥ < v < B and the nerves
of ¥,y and B coincide: X; = X, = X,.

Proor. For convenience, we can suppose that Vg consists of the
integers 1,2, --- , k. Choose a v ¢ V, such that 8, C a,. Let B be
the union of those intersections of sets of 8,, -+ , B which do not
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meet 8,. Since X is normal, there is an open set v, such that 8, C vy,
Y1 Ca,,and 3, M B = 0. (If 8, = 0, we must choose v, = 0). It

follows that the indexed family %,,8,, - , B: is > @, and its nerve
coincides with Xz Repeat the foregoing process on the element 3, of
the family %,,8;, - - - , B obtaining v, and a new indexed family 7,,7.,8s,

««+, Bx. An obvious induction completes the proof.

DeriniTion 3.5. If « is an indexed family of sets in X and 4 C X,
then « is said to be regular relative to A if the following two conditions
are satisfied: (D) ifa, M A =0,veV, thena, M A =0, and (2) if
a ;i MA=0fori=1 -, kand D =@a, N -+ MNa, #0,then
DN A ##0.

The two conditions can be restated in terms of nerves as follows:
(1°) if v is a vertex of A, then v is a vertex of A, and (2°) if a simplex s
of X, has all its vertices in A, then if lies in A ,, or, using the termi-
nology of 11,9.1, A, is a full subcomplex of X ,.

LemMma 3.6. If X is a normal space, and A’ X' are closed sets in
X with A’ C X, then the finite open coverings of X which are regular relative
to both A’ and X' form a cofinal family in Cov’(X).

Proor. Let « ¢ Cov/(X). By 3.3, there is a closed covering
B of A’ {consisting of closed sets of A’) such that « < 8. By 3.4, there
is an enlargement v of 8 consisting of open sets of X’ such that « < ¥
and X3 = X, = X, Let U be the union of the sets of v. Then B =
X’ — U is a closed set. By 3.3, there is a covering & of B by closed
sets of B such that @ < 8. Form the composite covering ¢ = {¥,8} of
X' by closed sets of X’. Clearly @ < e¢. By 3.4, there is an enlargement
7 of € consisting of open sets of X such that « < nand X, = X,. We
require in addition that 3, M A’ = 0 for each 5, which is an enlarge-
ment of a set of 6. If this is not the case, choose an open set W O B
such that W M A’ = 0 and replace 5, by 5, ™ W. The properties
a < gand X, = X, still hold. In addition, condition (1) holds for
regularity relative to A’ of 1.

Suppose s is a simplex of X, and its vertices lie in 4;. Then, for
each vertex v of s, 9, N\ A’ £ 0. Thus 7, is an enlargement of a set of
¥. Since X, = X,, it follows that s belongs to X;. Since X; = X,
s belongs to X;. Therefore Carg(s) = 0. But Carg(s) C A’ M Car,(s).
It follows that Car,(s) meets A’. Therefore s lies in A7,

Suppose now that s is a simplex of X, and its vertices are in X,
Since X, = X, s belongs to X.. Therefore Car.(s) = 0. But Car,(s) C
X" M Car,(s). It follows that Car,(s) meets X’. Therefore s lies in X,

Thus 7 is regular relative to A’ and satisfies condition (2) for regu-
larity relative to X’. Let U’ be the union of the open sets of n. Let
W’ be an open set such that W D X — U’ and W N X’ = 0. Let
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a’ be the covering a cut down to W’. If we adjoin «’ to 5, we obtain
a composite covering >« which is regular relative to A’ and X',

LEmMA 3.7, Let {X,.,mm.} be an tnverse system of compact spaces, and
let X = lim {X,,xm}. Then the clements of Cov’(X) of the form =, (8),
where m e M, 8 e Cov’(X,), form a cofinal family.

Proor. Suppose a ¢ Cov’(X). Since sets of the form =, (U),
where U is open in X,,, form a base for the open sets of X (vi11,3.12),
it follows from the compactness of X (vi1,3.6) that there is a covering
o' consisting of sets =, (I/,) (+ = 1, -+ | k) such that « < o’. Since
M is directed, thereisan m > m, fori = 1, --- , k. Define a covering
Bof X, by B, = (xn) H(U)fori=1, -k and Bis1 = X — wal(X).
Then 7,,'(8.) = =, (U) (i =1, -+, k) and 7,,'(Bis1) = 0. It follows
that =,'(8) > «a.

Lemma 3.8.  Let {(X,,,4.,.),mm:} be an inverse system of compact pairs,
and let (X,4) = lim {(X,,A,),mm}. Then elements of Cov’'(X) of the
form o« = 7.'(8) (m ¢ M, 8 ¢ Cov'(X,)) and such that (X,,A,) =
(X mpy A mg) form a cofinal family.

Proor. Suppose v ¢ Cov/(X). By 3.7, there is an m, and a § ¢
Cov(X,,,) such that =,.(8) > v. let X' = 7,,(X) and A’ = =, (A).
By 3.6, there is an € ¢ Cov(X,,,) which is regular relative to both X’
and A’ and § < e. Let U (V) be the union of the sets of € which do
not meet X’ (A’), and let [”,I#"" be their complements in X,,. Then
U' W' are open, X' C U, A7 C W', and, if a set of ¢ meets U’ (W),
it also meets X’ (4’). By two applications of vii,3.7, there is an
m > mgy such that »n (X,) C U’ and 7. (A,) C W’'. Define 8 =
(rm.) '(¢). Then

a =7, (8) = ma() > m(8) > v.

Since a« = 7.'(8), we have, by 1x,2.5, that (X,,4,) C (XnsAms)-
Suppose s is a simplex of X 5. Then Carg(s) £ 0. Since Car,(s) D 7o,
(Carg(s)) C U’, we have that Car(s) meets UU’. Hence for each vertex
v of 5, ¢, meets X’. Since ¢ is regular relative to X', Car,(s) meets X'.
But Car.(s) = =, (Car.(s)). It follows that Car,(s) # 0. Therefore
s belongs to X,.. This proves that X, = X,s The same argument
with X, X,,, X..., U’ replaced by 4, 4,, A,,., IV showsthat A, = A,
This proves the lemma.

Prooror 3.1. The proof will be given only for the case of homology;
the case of cohomology is left to the reader.

Suppose then that (X,A) = {(X,,A4,),mm} is an inverse system of
compact pairs. Let (X,4) = lim (X,A). We must prove two proposi-
tions concerning the homomorphism [(¢q,X,A) of 2.1. First, its kernel
is zero; and, sccond, it is onto,
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Suppose u ¢ H,(X,A) lies in the kernel of I. Since ., (u) is the
coordinate of I(u) in H(X,,A4,), it follows that =, (x) = O for each
meM. If 8 e Cov(X,), then the coordinate of ., () in H (X s Ans)
is zero. If @ = 7,'(8) and (X,,4.) = (XmpAmp), it follows from the
definition of =, (1x,4.2) that the coordinate of u in H,(X,,4.) is zero.
By 3.8, such o’s form a cofinal family in Cov’(X). Therefore, u = 0.

Suppose now that v ¢ lim H,(X,A). Let v, be the coordinate of v
in H,(X,,A,). For any 8 ¢ Cov’(X,), let v..s be the coordinate of v,
in H(X,5A4.5). We must find a u ¢ H,(X,A4) such that [(u) = ». 1t
suffices to construct the coordinates u, of « for « in some cofinal family D
in Cov’(X). Let D be the cofinal family described in 3.8. Tor each
such « choose an m ¢ M and a 8 € Cov’(X,,) such that « = #,'(8) and
(Xeydo) = (X,5,4,8). Define u, = v,,.

Suppose @, < a; in D, and m,,3, and m,,8, are the choices for
a; and a,. Choose m; > m, and define 8! = (#n)7'(8.) ¢ = 1,2).
By 3.6, there exists an ¢ ¢ Cov’(X,,,) which is a refinement of 8] and
B% and is regular relative to both r,,,(X) and ,,(4). It follows, as in
the proof of 3.8, that there is an m, > ms such that, if 8 = (x0¢) (),
and a = 7(8), then (Xo,4.) = (Xnpdns). Let vy, = (#7297 (8)
for ¢ = 1,2. Then (X,,4.) = XniroAmey) = (Xo5,A4.,.5) for
t = 1,2, because each is contained in the following and the first equals
the third. Therefore u,, = v,.,,. Since e > #{,8}, we have 8 > ¥,,v2
and « > aja,. Let u] = v, Since commutativity holds in the
diagram

H(X,,A) = H{(Xpp5Ams)
! !

H(X.,A.) = H(Xn.y,Any)

it follows that u. projects into u,, ( = 1,2). Thercfore u,, projects
into u,,. This proves that the elements u, for « ¢ D are the coordinates
of an element u ¢ H,(X,4). It shows also that u, is independent of
the choice of m and 8.

It remains to show that l(u) = v, or that =, ,(u) = v, for each
m ¢ M. This follows if (7,.,(%)). = v.. for e in a cofinal family in
Cov(X,). Let ¢ be regular relative to r,(X) and =,(4). By 3.6, such
coverings form a cofinal family. As in the proof of 3.8, there is an
m, > m such that, if 8 = (#2)7*(¢e) and a = =_.(8), then (X,,4,) =
(XA mis). Because u, is independent of the choice of the m,8 used
in its definition, it follows that v, = v,s. Therefore u, and v,,s have
the same image in H,(X,,.,A...) under the inclusion map (X,.5,4m.8) —
(XmoAm). These images are (r,,(u)). and v, respectively. This
completes the proof of 3.1.
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4. CONTINUITY VERSUS EXACTNESS

It will be shown that the Cech “homology theory” with integer co-
efficients is not exact on all compact pairs. The proof is based on the
continuity of the Cech theory. This and Theorem 12.2 below imply
that the (essentially unique) homology theory with integer coefficients
on triangulable pairs does not admit an extension to compact pairs
which is simultaneously continuous and exact.

Examrie 4.1. Let (E,S) be the 2-cell and its boundary defined in
the complex plane by the conditions |z2| < 1 and |z] = 1 respectively.
Consider the maps

¢: S — 8, fi E—>E
defined by

6@ = —z, f(e) = 2.

If for each z ¢ S we identity z and ¢(z), the pair (E,S) becomes a pair
(P,C) where P is the projective plane and C is a projective line in P.
Since f¢(z) = (—~2)° = —2° = ¢f(2), it follows that the map f induces
amap f: (P,C) — (P,C). Inx1v, Example 9.7, the reduced homology
sequence with integer coefficients of (P,C) will be calculated, and also
the endomorphfsm of this homology sequence induced by f. It will be
shown that the only nontrivial groups are H,(P), H,(C), and H,(P,C)
and that the diagram

3 i
H,(P,C) —— H\(C) —— H,(P)
17. 17., 17.

3 i,
H,(P,C) —— H,(C) —— H,(P)

is isomorphic with the diagram of vi1,5.5.

Let M be the set of positive integers with the usual order. For
each a ¢ M define (P,,C,) = (P,C) and 75,, = 7 Define all other =/
for 8 < a by transitivity: =f = xf_x27". Then {(P.,C.),r%} is an
inverse system of spaces indexed by M. Let (P.,C.) be the limit pair.
By vi,3.6, (P.,C.) is a compact pair. If we employ integer coefficients
and the Cech homology theory (or any other continuous homology
theory), then the (reduced) homology sequence of (P.,C.) is isomorphic

with the inverse limit of the homology sequences of (P,C) under the
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maps (r%),,. This limit sequence is then precisely the sequence ob-
tained as the limit in viir,5.5. Thus in the reduced homology sequence
of (P,,C.) the group H,(P.) is cyclic of order 2 while all the other
groups are trivial. Thus the reduced homology sequence of (P,,C.) is
not exact. The nonreduced homology sequence differs only in the posi-
tions Ho(P.) and H,(C.) (which are cyclic infinite)} and also is not exact.

The pair (P«,C.) may be described alternatively as follows: Con-
sider the pair (E, S) where 8 is the 3-adic solenoid and E is the j join of
S with a point. Using the antipodism of S', define an antipodism on S
by a passage to the limit. Identifying antlpodxc pairs of points on S,
one obtains a pair homeomorphic with (P.,C.).

6. RELATIVE HOMEOMORPHISMS AND EXCISIONS

DerintTion 5.1. A map 1 (X,4) — (Y,B) is called a relative
homeomorphism if f maps X — A homeomorphically onto ¥ — B.

Lemma 5.2, If f: (X,A) — (Y,B) is a map of compact pairs and f
maps X — A in a 1-1 fashion onto Y — B, then f is a relative homeo-
morphism.

Proor. We need only verify the continuity of the map g: Y — B
— X — A defined by g(y) = f'(y). Let U be any open subsct of

X — A. Then a

g'(U) =fU)=Y - B— f(X - U).

Since X — U is compact, f(X — U) is closed, and therefore ¢7*(U) is
open. Thus g is continuous.

DeriniTion 53. A homology [cohomology] theory I (exact or
inexact) is said to be invariant under relative homeomorphisms if for every
admissible relative homeomorphism f: (X,A) — (¥,B) the homomor-
phisms f, [f*] are 1<0morph1sm% in all dimensions.

TuEOREM 5.4. The Cech homology and cohomology theories on the
calegory Q¢ of compact pairs are invariant under relative homeomorphisms.

Proor. Let f: (X,A) — (Y,B) be a relative homeomorphism of
compact pais, and let {B,}] be the collection of all closed sets of ¥
such that B C Int B,. If B, and I35 are in the collection, then B, M By
is also in the collection. Thereforc {(Y,B.),pf] where pf: (Y,B) C
(Y,B,) form a nested system with (V,B) as intersection. let A, =
F(BL). Then {(X,A.),rf}, where 72 (X,A5) C (X,A,), is also a
nested system with (X,A4) as intersection. Let f,: (X,4,) — (Y,B,)
be the map defined by f. We show first that f,, is an isomorphism.



§ 5] RELATIVE HOMEOMORPHISMS, EXCISIONS 267

Let V be an open set of ¥ such that B C V C V C Int B,. Let
U= f"V). ThenA CUC UC Int A,. Consider the diagram
i*
H(X — UA, — U — H,(X,A.)

s

Ty
IIV(Y - I’yBa - V) — IIa(YrBﬂ)

where 7 and 7’ are excision maps, and g is defined by f. Since f is a
relative homomorphism and A C U, B C V, it follows that ¢ is a homeo-
morphism. Thus g, is an isomorphism. The maps ¢, and ¢, are
isomorphisms by the excision axiom. Thus commutativity in the
diagram implies that f,, is an isomorphism.

The commutativity relations in the diagram

IIO(X;A) I— I[u(‘YyAﬂ) a— IIQ(XyAa)

1/, lfa,. lf,.*

H(Y,B) —— H(Y,B)) —— IH(Y,B.)

where the horizontal maps are induced by inclusions, together with 2.6
imply that f_ is an isomorphism.

An analogous proof applies to cohomology.

Remark. The above proof did not make any appeal to the specific
definition of the Cech groups and remains valid for any partially exact
homology or cohomology theory satisfying the continuity axiom. This
gain in generality is however to a large extent illusory, since it will be
shown in 12.2 that any such theory is isomorphic with the Cech theory.

Theorem 5.4 is of course a generalization of the excision axiom for
compact pairs. This theorem becomes the excision axiom itself if we
redefine an excision to be a relative homeomorphism. _

In general in the categories @, or Q¢ or G, we may consider the
following types of excisions:

(E) Inclusion maps f: (X — U, A — U) C (X,4) where U is
open in X and U C Int 4.

(E;) Inclusion maps f: (X — U, A — U) C (X,A) where U is
open in X and U C A. _

(E;) Inclusion maps f: (X — U, A — U) C (X,A) where U C
Int A.

(E;) Relative homeomorphisms.

Type (E) consists of the excisions introduced in Chapter 1. Type
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(E,) in the categories G and @, coincides with type (E) since the map
f is not admissible unless U is open. ¥xcisions of type (¥,;) in the
category @, are applicable in the singular homology and cohomology
theory (see vi,9.1). Theorem 5.4 asserts that excisions of type (Es)
are applicable in the Cech theories on the category Ge.

The following example shows that excisions of type (E,) are not
applicable in the singular homology theory (even in the case of compact
metric spaces).

ExamrpLE 5.5. Let R be the region in the (z,y)-plane defined by

sinl<y<2 for 0<1x|<£,
z T
l<y<2 for z=0.

Let X be the rectangle given by

III '3— -l1=y=2
and let C be the boundary of X. Clearly R C X. Set 4 = X — R.
It is easy to see that C is a strong deformation retract of A. This
implies H,(C) = H,(A) (induced by the inclusion map), and therefore
by 1,10.5 H,(X,C) = H,(X,A). Since (X,C) is a 2-cell, it follows that
H,(X,A) = G.

Let B = R M A be the boundary of B. We shall show that, in the
singular theory, we have H,(R,B) = 0;since (R,B) = (X — U, A — U)
where U = A4 — B = Int 4, it will follow that excisions of type (E,)
are not applicable in the smgular theory.

Since R is contractible over itself to a point, we have H, (R)
Hg(R) 0. Therefore, by exactness, 9: H,(R,B) = H,(B). Thus it
remains to show that H,(B) = 0 (in the singular theory.)

Let D be the part of B on the y-axis with —1 < y =< 1, and let
D' = B — D. By a simple argument involving local connectedness,
any singular simplex in B lies wholly in D or wholly in D’. Thus the
total singular complex of B divides into two disjoint singular com-
plexes—that of D and that of D’. Hence H,(B) decomposes into the
direct sum H,(D) + H,(D’). Since D is a closed line segment, it is
contractible to a point. So H,(D) = 0. Similarly D’ is homeomorphic
to an open line segment; so it too is contractible to a point, H,(D") =
Thus H,(B) = 0 as required.

The above analysis of the singular complex of B implies also that
HyB) = G + G, Hy(B) = G. Thus we have

A.B) =G  H(B) =0
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in the singular theory. In order to compute the groups of B in the Cech
theory we assume that G is a field, thus insuring exactness. We have
H,(B) = H,(R,B) by exactness and H,(R,B) = H,(X,A) by 5.4. Thus
H,(B) = (G. Since B is connected, the nerve B, for any finite open
covering a of B also will be connected. Thus H,(B.) = 0and H,(B) =
0. This yields

Hy(B) =0, H\(B)=G.

This exhibits the difference between the Cech and singular theories.
Incidentally it shows that the singular theory is not continuous on the
category @;. In the above discussion we assumed that G was a field
in order to compute the Cech group H,(B) using exactness. A direct
argument using continuity could be used to establish H,(B) = G for
any coefficient group.

6. HOMOLOGY THEORIES FOR LOCALLY COMPACT SPACES

We recall here that in 1,2, the category G.c was defined to consist
of pairs (X,A) such that X is a locally compact (Hausdorff) space,
and A is closed in X, and to consist of maps f such that the inverse
image of any compact set under f is compact.

DEeFINITION 6.1. A subset A of a locally compact space (abbrevi-
ated: LC-space) X is called bounded if A is compact. A subset U of
X 1is called countercompact if X — U is compact.

DeriNiTION 6.2. Let X be an LC-space and let « be a point not in
the space X. We define a topological space X + « to consist of the
set X \U w and the open sets (i) the open sets of X, and (ii) the union
of w with the countercompact sets of X. It is easy to see that X + o
is a compact (Hausdorff) space.

LEmMMA 6.3. Suppose (X,A), Y, and f: X — A — Y are in G,
and w ts not in Y. Set g(x) = f(x) for z ¢ X — A and ¢g(z)- = w for
zedA. Theng: X — Y 4 wis a continuous extension of f. If fisa
homeomorphism, then g vs a relative homeomorphism. If f is a homeo-
morphism, X is compact, and A 1is a single point, then ¢ is a homeo-
morphism.

Proor. To prove that g is continuous observe that g} (U) = f~'(U)
for U C Y,and if U = WU w, then

g =MV A =X - -W).

Thus, if W is countercompact, f~'(¥Y — W) is compact and ¢~*(U) is
open.
The second part of the lemma is obvious. To prove the last part
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observe that, if f is a homeomorphism and A is a single point, then ¢
is 1 — 1; thus, if X is compact, ¢ is a homeomorphism.

It will be convenient to pick a fixed point w and assume that w is
not contained in any space of the category @... This actually amounts
to replacing G.¢ by a subcategory. With this assumption it is possible
to ‘“compactify’’ all the spaces of @, by adjoining w. We shall ab-
breviate X + w by X. If (X,4) is a pair in @, then (X,A) is a pair
in @. If f: (X,A) - (Y,B) is in Qc, then by 6.3 the map f:
(X,A) — (Y,B), defined by f(z) = f(z) for z ¢ X and f(w) = w, is in
@c. It is clear that - is a covariant functor on @, with values in Q..
We shall refer to this functor as ‘““the single point compactification.”
Note that 0 = w, so that A is never vacuous in the symbol (X,4).

To show that - is an A-functor (1v,9), we convert @, and @, into
h-categories @¢ and GZ¢ in the following way: Couples (¢,7) are in-
clusions

( J
(4,B) — (X,B) — (X,A)
where (X,4,B) is a triple, i.e. where X is in G¢ (or Gr¢), B C 4 C X,
and B and A are closed in X. FExcisions are defined to be the relative
homeomorphisms. Two maps fo,f,: (X,A) — (Y,B) are homotopic if
thereisamap F: (X X . A X I) — (Y,B) in @¢ (or @.¢) such that
F(z,0) = fo(z), F(z,1) = fi(x). Points are defined to be pairs (X,4)
where X — A is a single point.

TueEoREM 6.4. Let H be a homology [cohomology) theory on Q¢ or Q¢
which is tnvariant with respect to relative homeomorphisms. If we regard
the boundary [coboundary) operatlor of triples as the basic boundary [co-
boundary] operator, then H becomes a homology [cohomology] theory on Q.4
or Qfc respectively. The same holds for partially exact homology and co-
homology theories.

Proor. The validity of Axioms 1, 2, 3 is clear. The Exactness
axiom is the statement of the exactness of the homology [cohomology]
sequence of a triple. If the given theory is partially exact, i.e. the
homology [cohomology] sequence of a pair is a sequence of order 2, then
the same holds for the sequence of a triple (see 1x,10). The Homotopy
axiom is satisfied since the homotopies in @¢ (or @, ¢) coincide with
those of @ (or @/¢). The Exeision axiom holds since, by assumption,
the given theory is invariant under relative homeomorphisms. Finally,
if the pair (X,A4) is a “point”’, then X — A is a single point, and the
inclusion map &: X — A4 C (X,A) is a relative homeomorphism. Thus
?4 [2*] are isomorphisms, which implies the Dimension axiom.

TueoreM 6.5. The single poinl compactification ts a covariant h-
functor - : Qic — Q4.
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Proor. It is clear that - carries couples into couples and thus is a
c-functor. Let fo,f,: (X,4) — (Y,B) bein @/c and let F: (X X I,
A X I) - (Y,B) be a map in @/ such that F(z,0) = fo(a:) F(z,1) =
fi(x). Extend F toamap F: (X X I, A X I) — (YB) be setting
F(wt) = w. Then F Is continuous by 6.3, and F(z,0) = fo(z), F(x,1) =
fi.(@). Thus f, and f, are homotopic. If fi (X,4) — (Y,B) is a rela-
tive homomorphism, then, since X — A = X — A and ¥ — B =
Y — B, it follows that f is also a relative homeomorphism. If (X,4)
is a “point” in @fc, then X — A = X — A is a single point and (X, A)
is a “point” in @¢.

DeriniTioN 6.6.  Let f{ be a partially exact homology {cohomology]
theory on the category @c invariant with respect to relative homeo-
morphisms. Regard H as a theory on @¢ and denote by H the compo-
sition of H with the h-functor - : @fc — @¢. There results a partially
exact homology [cohomology] theory on @/ or, what amounts to the
same, a theory on G, invariant with respect to relative homeomor-
phisms. The theory H will be called the LC-theory associated with H.
If H is exact, so also is H.

Note that, if (X,4) in @ 1s a compact pair, then the inclusion map
i (X,A) C (X,A) is admissible and is a relative homeomorphism.
Thus we have

2%
H(X,A) = H(X,A) = H(X,4).

Thus H = H on G, and H may be regarded as an “extension” of H.

From now on we shall limit ourselves to the case when H is the Cech
theory on ;. The objective will be to give a direct description of the
associated LC-theory H in terms of coverings.

DerinttioN 6.7. Let (X,A) be a pair in @Lc and a ¢ Cov/(X) a
finite open covering of X. Let @, be the subcomplex of the nerve X,
consisting of simplexes s whose carrier Car.(s) is not bounded (i.e. the
closure of Car,(s) i1s not compuact). We shall consider the groups of
(X.,A4. U Q,). If 8is a refinement of « and =: X3 — X, is a pro-
jection, then = maps A\ Qg into A, \J Q..

DeriniTiON 6.8. Let Cov,(X) denote the subset of Cov/(X) con-
sisting of those coverings a such that each set «, is either bounded or
countercompact. Clearly Cov,(X) is a directed subset of Cov/(X).
The inverse [direct] limit over the directed set Cov,(X) of the groups
H, (X, A.\J Q) [H(X.A4. Y Q,)] with the homomorphisms induced
by projections is denoted by I/4(X,A) [H((X,A)]. The provision con-
cerning the categories in which the coefficient group may lie are the
same as for the Cech groups of compact pairs (see 1x,3.3 and the sub-
sequent remarks).
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TuroreM 6.9. For every locally compact pair (X,A) we have
H(X,A) = HAX,4), H'X,4) = H{(X,4),

where the groups of (X,A) are the Cech groups.

Proor. In Cov’(X) we consider the subsets Cov’(X) of coverings
a which are regular at w, i.e. coverings for which either w ¢ @, or w non ¢
a, for each v (see 3.5). By 3.6, Cov'(X) is a cofinal subset of Cov'(X),
and therefore we may assume that the groups of (X,A) are defined as
limits over Cov'(X). Next we define an order preserving map ¢:
Cov'(X) — Cov,(X) as follows:

(p), =a,N X = a, — w.
For the nerves we then have the inclusion maps
¢a: (X¢a)A¢a U Q¢a) C (Xa)Aa)-

The system ® = {¢,¢.,} constitutes a map of the inverse system of
groups H (X,,,A s \J Q) indexed by Cov,(X) into the system of groups
H,(X.,X.) indexed by Cov'(X). The limit map

$a: HAX,A) — H(X,4)

is thus defined. Similarly for cohomology {¢,0%} is a map of direct
systems, yielding a limit map

o= H'(X,A) — HYX,4)

We assert that ¢. and ¢~ are isomorphisms. The proof breaks up
into two cases according as the pair (X,4) is compact or not.

If the pair (X,4) is compact, then Cov’/(X) = Cov'(X). Further
the inclusion map 72: (X,A) C (X ,A) is a relative homeomorphism and
therefore ¢, and ¢* are isomorphisms. Comparing the respective defini-
tions shows that i, = ¢. and i* = ¢”, which concludes the proof in
this case. ’

If (X,A) is not a compact pair, then it is easy to see that ¢ maps
Cov'(X) onto Cov,(X) and the inclusion maps ¢. become identities.
Thus ¢., and ¢% are isomorphisms, and it follows from vi,3.15 and
vii,4.13 that ¢, and ¢” also are isomorphisms.

REMARK 1. The discussion of the 4-groups was incomplete since we
did not define induced homomorphisms and boundary [coboundary]; the
missing definitions are quite analogous to those made for the Cech
groups. After these definitions are made it is trivial to check that the
isomorphisms ¢, obtained above commute with f, and 9, thus yielding
an isomorphism between homology theories.

REMARK 2. Let X be locally compact but not compact. Let
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a & Cov,(X). Since every finite number of countercompact sets has
an unbounded intersection, it follows that €, is a simplex and conse-
quently is homologically trivial. It follows then from the exactness of
the reduced homology scquence that H (X, Q.) = H,(X,). Thus in
defining the (absolute) groups H4(X) for a locally compact, non-
compact, space we can. use the groups H,(X.) rather then H (X.,Q.).
Note that, if X is compact, then 2, = 0 and H (X ,.,Q.,) = H(X.).
Thus in this case HA(X,) uses the groups H,(X.) instead of H,(X.).
The difference between these two cases is of course limited to the di-
mension zero. A similar remark applies to cohomology.

ReMark 3. It is easily shown by examples that the functor - does
not preserve excisions of type (). Thus the singular theory is not suit-
able for composition with this functor.

7. LC-THEORIES IN TERMS OF A SINGLE SPACE

Let H be a homology theory on @, which is invariant with respect
to relative homeomorphisms. Given a compact pair (X,A), the identity
map « of X — A has an extension

& (X,4) = (X — 4) )
which is a relative homeomorphism. Consequently

o

Ho(X,4) = H((X — 4) ) = H(X — 4).

This suggests that one can describe the original homology theory using
nonrelative homology groups alone, but defined over a suitable LC
category. This leads to a new type of axiomatic system which we shall
proceed to describe.

Let ®,¢ be the subcategory of G, ¢ of all LC-spaces X and all maps
f: X — Y such that for every compact subset C' of Y the set f~*(C)
is compact.

By a “‘single space’’ homology theory on ®.¢ we shall mean a system
H = {H/(X),f,,7,0} where the primitive terms are as follows:

H(X) is an abelian group defined for each X ¢ ®.¢ and each integer
q.

If f: X — Y isin ®yc, then f: H(X) — H,/Y) is a homo-
morphism.

If U is an open subset of the LC-space X, then : H (X) — H,(U)
is a homomorphism. We shall sometimes use the notation 7,y to
indicate the spaces X and U.
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If U is an open subset of the LC-space X, then 9: H,(U) —
H, (X — U) is a homomorphism.

The system H = {H/(X),f,,7,0} is subjected to the following
axioms:

Axiom 1. If f: X — X is the identity, then f, is the identity.

AxioMm 1'.  7(x.x) 1S the identity.

AxioMm2. Iff: X —>VY,q0 Y — Z, then (gf), = 9.,

Axiom2'. If V C U C X and V and U are open in X, then

Tw.nTx,v = Tx.vy
AxioMm3. If V C U C X and V and U are open in X, then com-
mutativity holds in the diagram

HG(U) — H‘,(V)
¥ ¥
h*
His(X -~ U) — H, (X = V)
whereh: X - UCX - V.
Axiom3'. Iff: X > Y,and U and V are open subsets of X and Y,

respectively, such that f(U) C V and (X — U) C (Y — V), then com-
mutalivity holds in the diagram

Js
Ho(X) —— H(Y)

11 f lr

La

H(U) —— H(V)

where fy: U — V 4s defined by f.
AxioM 3", Under the same conditions as in Aziom 3', commutalivity
holds in the diagram

fl*
HG(U) -_— Ha(V)

Fau
H (X -U) — H, (Y = V)
where fa: X — U — Y ~ V 18 defined by f.



§17] LC-THEORIES 275

Axiom 4 (Ezxactness axtom). If U is an open subset of X and
Ji X — U C X, then the homology sequence

d T N
e H (X —U) « H(U) « H(X) «~ H(X = U) ¢ ---

is exact. (Notg: for pertially exact homology theories, we assume only
that the homology sequence is of order 2, and is exact whenever (X, X — U)
1s triangulable).

Axrom 5 (Homolopy aziom). If go,gi: X — X X I are defined by
go(x) = (Z,O), gl(x) = (xyl)) then Joy = gl*'

Axiom 7 (Dimenston axiom.) If P is a point, then H,(P) = 0 for
g #0.

Note the total absence of any analog of the excision axiom.

The main results about the connection between ordinary and “single
space’’ homology theories is incorporated in the following four theorems:

TueoreM 7.1. Let H be a homology theory on the category Q¢ in-
variant with respect lo relative homeomorphisms. For each X e ®rc define
HX(X) = H(Xw). If f: X > Yisin®rcand f: (X,0) = (Y,w)
1s an exlension of f, then define f,: Hy(X) — H(Y) by setting f, = j’*.
Let U be an open subset of the LC-space X, and let f: (X,0) — (U,w)
be defined by f(z) = z forz e U, f(x) = wforze X — U. Then define
. Hy(X) — H{(U) by »* = f,. Finally to define °: H,(U) —
H,_ (X — U) consider themap g: (X,(X — U)") = (U,w) defined by f.
Then g is a relative homeomorphism and g, is an tsomorphism. Define
& = dg,' where 1 H (X, (X — U)') — H (X — U)'w) is the
boundary operalor tn the triple (X,(X ~— U)',w). Then the syslem
H° = {H(X),fs,7",9°] is a “‘single space” homology theory defined over
the category ®;.c.

THEOREM 7.2. Let H be a “single space” homology theory defined over
the category ®;c. For each (X A) in Qe define H(X,A) = H (X — A).
Let f: (X,A) = (Y,B) (in@Q¢),let U = f7(Y — B),and let f;: U —
Y — B be defined by f. Then f, is a map in ®rc and we define f,:
H(X,A) — H\(Y,B) to be the composition

T fl,.
H(X — A) - H(U) — H(Y — B).

If (X,A) is an Qc, then we define 8*: H'(X,A) — H;_,(A) to be the
homomorphism d: H (X — A) — H,_,(A). Then the system H* =
{H(X,A),f,9"} 1s a homology theory on Q. invariant with respect to
relative homeomorphisms.
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TaEOREM 7.3. Let H be a homology theory on Q. invariant with respect
to relative homeomorphisms. Then H" is again such a theory, and

H(X,4) = H(X — 4) = H((X — 4)" ).

Let¢: (X,A) > (X — A)',w) be defined by p(x) = zforz e X — A
and ¢(x) = w for x ¢ A. Then ¢ is a relative homeomorphism and ¢,:
H,(X,A) = H*(X,A) yields an tsomorphism H = H°* of the homology
theories.

TaeEOREM 7.4. Let H be a “single space” homology theory on ®.c.
Then H*° coincides with H.

The proof of the above four theorems is straightforward but lengthy
in view of the large number of propositions that have to be checked.
We therefore leave these proofs as an exercise for the reader. The
results remain valid for partially exact homology theories, and with
suitable reformulations also for cohomology. If H is the Cech theory
on @, then the “single space’” theory H° on ®,. may be given a direct
description using finite open coverings.

8. TYCHONOFF IMBEDDING AND COMPACTIFICATION

DerFintrioN 8.1. Given any set A consider the space I* of all
functions a: A — I, where I = [0,1] is the closed unit interval, with
the product topology defined as in v,5.2. The space I* is called the cube
indexved by the set A. By v,5.4, I is compact. If B is a subset of 4,
then we identify the cube I” with a subset of I* by extending each
function &: B — I to a function o’: A — I such that &'(z) = 0 for
z ¢ A — B. With this convention we call I” a subcube of I*. The
mapping pp: I* — I” which to each a: A — I assignsa|B: B — I
is called the projection of I* onto I°. If the set A is finite, then I* is
called a finite cube.

DeriniTioN 8.2. A T,-space X is called completely regular if, for
every closed set A C X and every point z, not in 4, there is a continuous
function f: X — I such that f(z,) = 0, f(x) = 1forz ¢ 4.

1t follows from Urysohn’s lemma that normal spaces are completely
regular.

LEmMma 8.3. Every subspace of a complelely regular space is com-
pletely regular.

Proor. Let ¥ C X, where X is completely regular. Let A be a
closed subset of Y and y, e Y — A. Then the closure 4 of A in X is a
closed subset of X and y, e X — A. Thus thereis an f: X — I such
that f(yo) = O and f(A4) = 1. The function g = f|¥: Y — I satisfies
g(y) = 0 and g(4) = 1, thus showing that Y is completely regular.
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DeriniTION 8.4. Given a topological space X consider the set
£ of all maps f: X — I. Define the Tychonoff map T: X — I* by
setting

T@(f) = f(=), forzeX, fet.

The continuity of T follows from v,5.3.

Lemma 85, If X is completely regular and A C X s closed, then
there is a subcube Q of I® such that T(A) = Q N T(X).

Proor. Let a be the subset of ¢ consisting of all maps f: X — I
which are not identically zero on A. Let z ¢ X; the condition T'(z) ¢ I”
is equivalent to f(z) = O for all f: X — I such that f(A) = 0. By
complete regularity this is equivalent to z ¢ A. Thus T(4) = I* N
T(X).

TarOREM 8.6. For every topological space X the following three con-
ditions are equivalent:

(1) X 1s completely regular,
(ii) the Tychonoff map T: X — I® defines a homeomorphism of X
with T(X),

(ili) X 7s homeomorphic with a subset of a compact space.

Proor. Suppose X is completely regular. If x,,z, are two distinct
points of X, then there is an f: X — I with f(z,) = 0, f(z,) = 1.
It follows that T'(x,)(f) # T'(z))(f) so that T'(x,) #= T(x,). Thus T is
1-1. If A is any closed subset of X, it follows from 8.5 that T(A4) is a
closed subset of T(X). Thus the inverse of T is continuous and T is
a homeomorphism. Thus (i) — (ii). Since I is compact, it follows
that (ii)) — (iii). Finally, since a compact space is completely regular,
it follows from 8.3 that (iii)) — (i).

Lemma 8.7. If X is any space, then any map f: T(X) — I can be
extended to a map 2 I — I.

Proor. Clearly ¢ = fT: X — I is an element of ¢£. For each
y ¢ I define f'(y) = y(g). Then f: I*— 1 IfyeT(X), theny =
T'(z) for some z ¢ X, and we have

') =ylg = T@)(g) = g@) = fT(z) = f).

Hence f’ is an extension of f.

DEerInITION 8.8. Let X be a compact space and X C X a subspace
of X~. We shall say that X~ is a Tychonoff compactification of X if
X is dense in X~ (i.e. X = X"), and if every map f: X — I admits
an extension f: X — I.

LEMMA 8.9. Let X and Y~ be Tychonoff compactifications of X and
Y respectively. Then every map f: X — Y admats a unique exlension

XY
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Proor. In view of 8.6, we may assume without loss of generality
that Y™ is a subset of some cube I*. Then the map f is described by
means of coordinate maps f,; X — I for a ¢ A. Iach f, admits an
extension f: X — I, and together they yield an extension f™:
X —TI*of f. SinceX = X, it follows that /(X ") = f~(X) = f(X) C
Y =Y. Thus f: X~ — Y~. The uniqueness of f~ also follows
from X = X .

THeEOREM 8.10. Every completely regular space X admats a Tychonoff
compactification X~. The compactification is unique in the following
sense: If X~ and X* are two Tychonoff compactifications of X, then there
is a unique homeomorphism h: X~ = X" which is the identity on X.

Proor. Let T: X — I° be the Tychonoff map of X. It follows
from 8.7 that T'(X) is a Tychonoff compactification of T(X). Since X
is completely regular, 7(X) and X are homeomorphic, so that X also
has a Tychonoff compactification.

Let X~ and X* be two Tychonoff compactifications of X. By 8.9,
the identity map #: X — X admits extensions k: X — X% ¢
X* > X". Then gh: X~ — X and hg: X* — X" are both the
identity on X. Thus gh = identity and hg = identity. Hence g =
k™' and h is & homeomorphism. This completes the proof.

In view of 8.10, we may regard the Tychonoff compactification X~
of a completely regular space X as a well defined space. Then it follows
from 8.9 that the functions X ,f~ form a covariant functor ~ on the
category of completely regular spaces and continuous maps with values
in the category of compact spaces and continuous maps.

Lemma 8.11.  If X 4s a normal space and A C X 1s closed, then the
closure A of A in X~ s the Tychonof] compactification A™ of A.

Proor. Let f: A — I. By Tietze’s extension theorem, there is
an extension g: X — I of f. The map g in turn admits an extension
g : X~ — 1. This extends fto A so that A = A, and the proof is
complete. _

If X is normal and A C X, then we shall use the notation A for the
closure of A in X and the notation A™ for the closure of 4 in X, which,
in view of 8.11, coincides with the Tychonoff compactification (4)~.
Clearly

A=XN4.

If A is a closed subset of the normal space X, then the pair (X,4)
will be called a normal pair. The category of normal pairs and their
continuous maps is denoted by Gy. If (X,A4) is a normal pair, then by
8.11, (X ,A") is a pair. If f: (X,A) — (Y,B) is a map of normal
pairs, then also f™: (X,A™) — (Y",B”). Thus ~ may be regarded
a8 a covariant functor ~: @y — QGe.
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9. HOMOLOGY THEORIES FOR NORMAL SPACES

Our next objective is to convert the category @y of normal pairs
into an h-category in such a manner that the Tychonoff compactification
becomes an h-functor (see 1v,9). Several preliminary results are needed.

LEmMMa 9.1. If A and B are closed subsets of the normal space X,
then A" N\ B™ = (AN B and A~\U B~ = (A\U B)".

Proor. Since A N B C A~ N B, it follows that (A N B)” C
AT M B”. Suppose , is not in (4 N B)”. Let V be a closed neigh-
borhood of z, in X~ such that VN (A N B)” = 0. Then V N A and
B are disjoint closed sets in X. ILet f: X — I be a Urysohn function
such that f(V N\ A) = 0and f(B) = 1. Then f7: X - I satisfies
UV A)) =0and f7(B™) = 1. Ifz,e A7, thenz, e (VN A)~
and f~(z,) = 0, thus z, is not in B”, and consequently z, is not in
AT M B, This proves A~ N\ B~ C (A N B)". The second part of
the lemma is a general property of the closure operation.

THEOREM 9.2. [If the inclusion map ©: (X,,4,) C (X,A) of normal
pairs is an excision (type (E) of §5), then the same is true of © .

Proor. By definition, X,,A4, are closed in X, and

A =X N A, X=IntX,Ulntd

The last condition is equivalent to

X—-X NX—-—4=0.

We will show that the same relations hold for the compactified sets.
By 9.1, we have

AT = X7 M A7, X—-X"NX—-—A"=0.

Since 4 is closed in X, we have X N\ A~ = A, and this implies
X —ACX — A". Since X isdense in X, we have that X — A is
dense in X~ — A~. Therefore

X—-—A"=X"— 4"

Since the same holds with A replaced by X,, we have

X"—-XINX" — A" =0.

Thus ¢ is an exeision.
LemMa 9.3. If X is normal and i X C X, then the map "
Cov/(X™) — Cov’(X) is onto.
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Proor. Let a be a finite open covering of X indexed by the set V.
Foreach v ¢ V define8, = X — (X — a,)". Then, by 9.1,

Uﬁ'_XN—n(X—av)~—X~ (m (X—av))~
=X~ — (X Uea,)” = X7,

Therefore 8 is an open covering of X~ indexed by V. Since X N g8, =
X-XNX—-—a)" =X —(X — a,) = a,, it follows that '8 = «.

DeriniTioN 9.4. If o ¢ Cov(X) and 8 ¢ Cov(Y) are coverings in-
dexed by the set V and W respectively, then we define the covering
a X B8 Cov(X X Y) indexed by the set V X W as follows:

(a X 6)(0.10) = a, X Bw-

Lemma 9.5. If X and Y are compact, then coverings of the form
a X B, a ¢ Cov'X, 8 e Cov'Y form a cofinal subset of Cov(X X Y).

Proor. Let v ¢ Cov(X X Y). Since X X Y is compact, and sets
of theform U X W, U C X, W C ¥, U and W open, form a base for
the open sets in X X 7, there is a finite covering § of X X Y such that
v < & and each set 3, is of the form 4, = U, X W,. For each v ¢ X and
y & Y define

U(x)
W(y)

The distinct sets among the U(z) and W(y) form finite coverings o and
g of X and Y respectively. Each set U(z) X W(y) is contained in
some set U, X W, = 8,s0that § < & X 8. Thusy < a X 8.

LEmMa 9.6. Leti: A C X be an inclusion map where A is a dense
subset of the space X. Let f: A — Y where Y is compact. The map f
has an extension F: X — Y if and only if, for every covering 8 ¢ Cov’'(Y),
there is a covering o £ Cov’'(X) such that f7'8 < i 'a.

Proor. Assume that the extension F: X — Y of f exists. Given
any v ¢ Cov/(Y), define « = F '(y). Then, since f = Fi, we have
f% = i 'F'% = i'a. Thus the condition is necessary.

To prove the sufficiency of the condition, consider for each z ¢ X
the family N(z) of all neighborhoods of z. For each V ¢ N(z) define
Sy = f(VNANA., IV, -+, V,eNx),then V =V, N --- N
V.eN(z),and Sy T Sy, N +++ M 8y,. Since Sy # 0, it follows that
Sy, N -+ N Sy, # 0. Thus any finite number of subsets of {Sy}
has a nonvacuous intersection. Since the sets S are closed in Y, and
Y i8 compact, it follows that the intersection F(z) = NSy for V e N(z)
is nonvacuous. We shall prove that F(z) consists of a single point.
Indeed let y,,y, ¢ F(z). Select a covering 8 ¢ Cov’/(Y) consisting of

where ze U,,
ﬂ W where yeW,.
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two sets 8,8, such that y, ¢ 8, — Ez, Y2 efy — 8. Letace Cov/(X) be
such that f7'8 < i'a. Let x ¢ a,; then a, = V is an element of the
family N(z), and

Sy = fla, N A4).

Since f(a, M A) is contained in either 8, or B;, we may assume
fla, ™ A) C B,. Then Sy C B, so that y, is not in S, and therefore
y21s not in F(x). Thus F(x) is a single point.

If x ¢ A, then f(z) ¢ Sy for all V ¢ N(zx) so that f(z) e ™ Sy, and
therefore F(z) = f(z). Thus F is an extension of f. It remains to
be proved that F is continuous.

Let U be any open set in Y containing F(x). Choose a covering
B e Cov/(Y) consisting of two sets 8, and 8, such that F(z) e 8, — B,
and 8, C U. Let a ¢ Cov/(X) be such that /'8 < 7'« and let z ¢ a,.
Since a, = V ¢ N(z) and Sy = f(a, N A), it follows that F(z) ¢
fla,M_A). Since f(a, M A) is contained in either 8, or B,, since
F(z) e f(a, M A), and since F(z) e 8, — B, it follows that f(a, M A4) C
Bi. For every z’ ¢ a,, we have a, = V e N(z') so that F(z') ¢ Sy =
(fa, Y A) C B, C U. Thus F(a,) C U, which proves that F is con-
tinuous.

Lemma 9.7. Let XY be completely regular, let Z be a normal space,
andlet f: X XY > Z. Anextension F: X X Y — Z7 of f exists
if and only if for every v € Cov’(Z) there exist a ¢ Cov’'(X) and 8 e Cov/(Y)
such that f™'y < a X B.

Proor. Consider the inclusion maps

i X — X7, Byt Y = Y7, i Z — 7.

Assume that an extension F: X~ X Y~ — Z 7 isgiven. Ify ¢ Cov/(2),
then by 9.3 there is a v" ¢ Cov’(Z") such that y = "'y’ By 9.5 there
exist coverings o’ ¢ Cov’(X"), 8 ¢ Cov/(Y") such that F7'y’ < o’ X 8.
Let « = 77'a’, B = ;'8". Then a e Cov/(X), 8 ¢ Cov/(Y), and since
if = F(i, X 1), we have
=7 = G XYY <@ X i) X8
=12’ X 1;'8 =a XB.

Conversely, assume that the condition of the lemma is satisfied.
Consider the map g = if: X X ¥ — Z7, and let v ¢ Cov/(Z"), then
i'y ¢ Cov’(Z), and there cxist coverings a ¢ Cov’(X) and 8 ¢ Cov/(Y)
such that ™'y < @ X 8. Then ¢g"'y = f7%"'y < a X B, and by
9.6, the map g admits an extension F: X~ X Y — Z~., Clearly F
is also an extension of f, which concludes the proof.

DeriniTioN 9.8. Let (X,4) and (Y,B) be normal pairs. A homo-
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topy F: (X X I, A X I) - (Y,B) is called uniform if, for every finite
open covering v ¢ Cov’(Y), there exist coverings a ¢ Cov/(X) and 8 ¢
Cov’(I) such that F™'y < a X 8.

As an immediate consequence of 9.7 we obtain

Tureorem 9.9. Lel fo,f1: (X,A) — (Y,B) be maps of normal pairs.
A homotopy F: (X X I, A X I) — (Y,B) between f, and f, is uniform
if and only if F can be extended to a homotopy G: (X~ X I, A" X I) —
(Y™,B") between the maps f4,f7: (X ,A”) — (Y ,B).

Theorems 9.2 and 9.9 indicate clearly how to convert the category
@y into an h-category. The couples in @y are inclusions : A C X,
j: X C (X,A) where (X,4) is a normal couple. Ezcisions are defined
as usual, namely, type (E) of §5. Homotopies are defined to be uniform
homotopies. Points are defined in the ordinary way. We now can state

TaeoreEM 9.10. The Tychonoff compactification is a covariant h-
Sfunctor ~: Qn — Q.

DeriniTion 9.11.  Let H be a partially exact homology [cohomology]
theory on the category Gc. Regard H as a theory on @ and denote by H~
the composition of H with the A-functor ~: @y — @¢. The result is a
partially exact homology [cohomology] theory on Gy, called the normal
space theory assoctated with H. If I is exact, so also is H .

Since @ is clearly a subcategory of Gy and since (X~ ,A7) = (X,4)
for compact pairs, it is clear that H  is an extension of H from @ to Gy.

If H is the Cech theory on @, then the associated theory H™ on
@y may be given a direct description in terms of nerves of coverings.
We recall that in 1x,3, in addition to the Cech groups H,(X,A), we
defined also the groups HZ(X,A) using the finite coverings Cov’(X,A4)
for the: passage to the limit. We will show that, if the pair (X,4) is
normal, this group is essentially identical with H(X,4) = H (X ,A™).

TueoreM 9.12. Let (X,A) be a normal pair and let Hi(X,A)
[H}(X,A)] be the homology [cohomology] groups defined using the Cech
method and finile open coverings. Then the inclusion map i: (X,4) C
(X™,A7) induces isomorphisms

i,0 HiX,A) = H(X™,47)  [*: H(X™,47) = Hi(X,4)).

Proor. Since the subset 4 is closed, and in view of the discussion
in 1x,8, we may replace the directed set Cov’(X,4) by the directed set
Cov/(X). By 9.3, the map i™": Cov/(X") — Cov/(X) is onto. If
a g Cov'(X™) and 8 = i 'a e Cov’(X), then, since X is dense in X
and A is dense in A", it follows readily that (X,,47) = (XsA4,) so
that H(X.,A4,) = H.(X,As. Thus the fact that 7, [i*] is an iso-
morphism is a consequence of viir,3.15 and virr,4.13.

If we combine the above result with the obvious fact that the
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is?morphism 1, commutes with f, and 4 we obtain an isomorphism
H = H".

Trrorem 9.13. Let f: (X,4) — (Y,B) be a relatyve homeomorphism
of normal pairs. Then f~: (X ,A7) — (Y",B") 15 a relative homeo-
morphism if and only if f(C) is closed tn Y for each closed set C of X such
that C C X — A.

Proor: Suppose f~ is a relative homeomorphism, and C C X — 4
isclosedin X. By 9.1,C" N A” = 0. Hence f~ maps C" topologically
into Y~ — B, Since

C=XNC=X-ANC,
and f~is 1-1 on X — 4 and C”, we have
SO =X =B)N () = YN

As C7 is compact, f7(C7) is closed in Y™. Ilence f(C) is closed in Y.
This proves the necessity of the condition.

Assuming the condition fulfilled, we will show that 7 is a relative
homeomorphism. Since Y is dense in Y~ and B C B7, it follows that
Y — Bisdense in Y~ — B~. Therefore Y~ — B~ C f7(X"). As
(A7) C B7, we have

Y" =BT Cf(XT - A7),

Suppose 1,2, ¢ X~ — A7, and 2, # z,. Let No,N, be closures of
neighborhoods in X~ of r,,1,, respectively, such that A,N,N, are pair-
wise disjoint. Let C, = N,MN\ X and D, = f(C,) fors = 0,1. Since X is
dense in X7, it follows that C, is dense in N,, and, therefore ", = N,.
Since N, is closed, €, is closed in X. Then, by hypothesis, D, is closed
in Y. Thus B,D,,D, are closed disjoint sets of Y. By 9.1, B”,D,D7 are
disjoint. Since

[ @) e fSWN) = f7(C7) C DT, i =01,

it follows that f~(z,) and [~ (x,) are distinet points of ¥~ — B™. This
combined with the result of the preceding paragraph shows that f~
defines a 1-1 map of X~ — A~ onto ¥~ — B™. Then 5.2 states that f~
is a relative homeomorphism.

Remark. If the homology theory H on Q¢ is invariant under rela-
tive homeomorphisms, e.g., the Cech theory, then we may use in Gy
the larger class of “excisions” described in 9.13. Also, if / is invariant
under excisions of type (E,), the same holds for H™.
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10. COMPACT PAIRS AS LIMITS OF TRIANGULABLE PAIRS

The objective of this section is to prove the following theorem:

TaeoreMm 10.1.  Every compact pair vs homeomorphic with the inverse
limit of an inverse system of triangulable pairs.

The proof will be preceded by two lemmas.

Lemma 10.2. If Q s a finite cube, R is a subcube of Q, then the pair
(Q,R) s triangulable.

Proor. Since Q is a finite product of intervals an iterated applica-
tion of 11,8.9 yields a triangulation of @ in which R is a subcomplex.

Lemma 10.3. Let Q be a finite cube, B a subcube, X a closed subset
of Q, and U an open set such that X C U C Q. Then there exisls a set
Y C U such that X C Int Y and the pair (Y,Y M R) is iriangulable.

Proor. Let T be a triangulation of (Q,R) and let ‘T denote the
1*" barycentric subdivision of T. Select a closed set X’ such that

XCInt X CX'CU,

and choose 7 large enough so that every closed simplex of 'T inter-
secting X’ is in U. Such an 7 exists by 11,6.5. Let Y be the union of
all those simplexes of *T which meet X’. Then Y and ¥ M R are sub-
complexes in the triangulation ‘7T, hence (Y,Y M R) is triangulable.
Since X' C Y, it follows that X C Int Y, and the lemma is proved.

Proor or 10.1. Let (X,4) be a compact pair. By 8.6 and 8.5, we
may assume that X is a closed subset of a cube If, and that A = X N\ R
where R = I° is a subcube of I, « C &.

For each subset a of ¢ we shall consider the subcube I° and the
projection p,: If — I°

Tet M denote the set of all pairs m = [a,N] where

(1) a is a finite subset of &,

@ NCI,

3) p.X C Int N (relative to %),

(4) the pair (N,N M R) is triangulable.

A quasi-order is defined in M as follows: If m; = [a,,N,] and
my, = [a,,N.], then m;, < m, provided

(5) a, C Az,

(6) po,N;s C N,

To prove that M is directed, let m, = [a,N,], m; = [a,,N,], and
define

a=q \Ja, B =I"Npl(N) N pa(N,).
Then
p.X C Int B C I,

and by 10.3 there is a set N C I° such that m = {a,N] is an element of
M. Then m, < m and m, < m; hence M is directed.
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We now define an inverse system of triangulable pairs {(X,.,A.),7m:}
indexed by the set M as follows: If m = [a,N], then (X,,4,) =
(NN N R). If m; = [a,,N,], ms = [as,N,] and m; < m,, then =n! is
the map of (N,,N. M R) into (N;,N, N R) defined by the projection
Da,: It — I**. The verification that this defines an inverse system of
spaces i1s immediate. Let (X.,A4.) be the limit of this inverse system.
For each m = [a,N], consider the map f,: (X,A) — (X,,4,,) defined
by the projection p,: I* — I* which carries X into N = X,, and
A=XNRintoN R =A,. Thesystem of maps {f,.} constitutes a
map of the pair (X,4) into the system (X,,,4,,), and defines a limit map
fo: (X,4) - (Xo,A.) (see vii,2 and ving,3).

We shall prove that f.. is a homeomorphism. Let a be any finite
subset of ¢£. Since, by 10.1, the pair (I°,]°"*) is triangulable, it follows
that m = [a,I°] is an element of M. Let x ¢ X.. and set z(a) = 7.(x)
where a is any finite subset of £, and m = [a,]I"]. We prove the fol-
lowing properties of z(a):

(7) z(a) & p.X.

(8) If x ¢ A, then z(a) ¢ K.

(9) If a; C a,, then p,,z(a;) = z(a,).

(10) If m’ = [a,N], then 7,..(x) = z(a).

To prove (7), assume that x(a) is not in p,X. Then, by 10.2, there is
an m’ = [a,N] with z(a) not in N; but 2(a) = =3 .. = 2, ¢ N which
provides a contradiction. Propositions (8), (9), and (10) are obvious.
Condition (9) implies the existence of an element z’ ¢ I such that
p.(2") = z(a) for all finite subsets a of £. It is easy to see that z’ ¢ X,
fo(z') = z, and that 2’ ¢ A if z ¢ A... This shows that f. maps (X,4)
onto (X.,A.).

Suppose that z,,2, ¢ X and z, ¢ z;. Then, for some finite subset
aof ¢ p.x, ¥ p.x,. Hence x,x, ¥ 7,2, where m = [a,I°], and therefore
folx) # fo(ry). This concludes the proof.

11. CANONICAL MAPPINGS OF SPACES INTO NERVES

DErFiNiTION 11.1. Let a be a covering of X with nerve X,. For
every z ¢ X, the vertices v of X, such that z ¢ «, form a simplex of X,
that is denoted by A,(z) and is called the simplex determined by x in X .
Clearly A,(z) is the largest simplex s of X, such that z is in the carrier
of s.

LemMa 11.2. Let f: X — Y, lel B be a covering of Y, and lel a =
f7'8. For every z ¢ X,

Aq(z) = Ap(f(2)).
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This follows from the fact that, for every vertex ¢ of Y, the rela-
tions f(z) e 8, and £ e @, = f~'(8,) are equivalent.
DeriniTiON 11.3. Let « be a covering of X with nerve X,. A
mapping
¢ X — | X,

s called canonical relative to o if, for every x ¢ X, the point ¢(x) is in
the closed simplex A,(z).

Lemma 114. If f: X — Y and ¢: Y — |V, 7s a canonical map
and a« = f7'(B), then ¢f maps X into X, (recall that X, C Y,), and
¢f 1s a canonical map relative to c.

This follows directly from 11.2. As a corollary of 11.4, we have

Lemma 115, If ¢ X — |X,| is canonical and A C X, then ¢
defines a canonical map of A inlo A,. We then speak of the canonical
map ¢:  (X,4) — (1X.[,|4.].

LeMMma 11.6.  Let «,8 be coverings of X, and let 8 be a refinement of
a. If ¢ (X,A) — (|Xs},|4s]) s canonical (relative to ) and
P (Xpdp) — (Xa,4,) is a projection, then pg:  (X,4) — (|X.|,l44])
18 canonical (relative lo o).

Proor. Let £ ¢ X and let » be a vertex of Ag(x). Since 2 ¢ 8, C
a0, it follows that p(v) is a vertex of A.(x). Hence p maps the
(closed) simplex Ag(x) into the (closed) simplex A,(z), so that pé(x)
A,(z), and p¢ is canonical. ]

LemMa 11.7.  Any two canonical maps ¢o,1: (X, 4) — (|X.},|4.])
are homotopic.

This follows at once from the observation that, for every z ¢ X (or
x ¢ A), the points ¢,(z) and ¢,(z) are in the same simplex of X ,(or 4,).

THEOREM 11.8. For every finite open covering o of a normal space
X there exists a canonical map ¢: X — |X .

Proor. By 3.3, there exists a closed covering 8 of X which is a
reduction of . By Urysohn’s Lemma there exists, for each v e V,, =
Vs, a continuous function f,: X — I (I = closed unit interval [0,1])
such that

f{x) =0 for z2¢X — a,
Il 1 for zeB,.

Since \U 8, = X, the sum f(z) = »_, f,(x) is positive. Define ¢, =
f./f. Then ¢,(x) = 0, X ¢,(x) = 1, and ¢.(z) = O for z not in a,.
Therefore

#(z) = Z¢.(x)v

is a canonical map ¢: X — |X,|.
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Using the concept of a canonical map we prove the following ap-
proximation theorem that will be used in the next section:

Turorem 11.9. Let (X,A) be the inverse limil of the inverse system
of compact pairs {(X,,A,.),7mn.}. For every mapping f: (X,A) — (Y,B)
where (Y,B) is a triangulable pair, there exists an index m and a map
fm: (Xn,A4,) — (Y,B) such that the maps f and f.r. of (X,A) into
(Y,B) are homotopic.

Proor. Let T = {t,(K,L)} be a triangulation of (¥,B), and let =
be the associated covering of Y as defined in 1x,9.1. Then (Y,,B,) =
(K,L), and the map ¢™": (Y,B) — (|K|,|L]) is canonical. Let a =
f7'r; then (X,,A.) is contained in (K,L), and, by 11.4, the map ¢'f
is canonical. We now apply 3.8, and find an index m and a covering
B of X,, such that the covering y = =.'8 of X is a refinement of «, and
(X-nA-y) = (XmﬂiAMB)-

Let
p: (X4, — (X,,A44.)

be a projection, and let
¢: (meAm) - (leBlylAmﬁD

be a canonical map which exists by virtuec of 11.8 and 11.5. It follows
from 11.4 and 11.5 that the map

drat (X,4) = (X,]14,)
1s canonical (relative to v), and therefore, by 11.6, the map
y o (Xyli) - (IXaM‘lal)
is canonical (relative to a). Since ¢7'f is also canonical (relative to a),
11.7 implies that the maps per,, and ¢'f of (X,4) into (|K|,|L]) are
homotopic. Since ¢ is a homeomorphism, the maps tp¢r, and f of

(X,4) into (Y,B) are homotopic. Thus the map f,, = tp¢ satisfies the
conditions of the theorem.

13. THE CONTINUITY UNIQUENESS THEOREM

It will be proved in this section that the Cech theory is essentially
the only one satisfying the continuity requirement.

TuroREM 12.1. Let H and H be two partially exact homology [co-
homology) theories defined on the category Q¢ of compact pairs, and let H
be continuous. Let G,a be the coefficient groups of H,H respeciively.
Then any homomorphism

ho: G — G [ho; -(;’—bG]
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can be extended in just one way lo a homomorphism
h: H—>H [k H>H] on Qe

If H is also continuous and hy: G = Glhe: G = @] ¢s an isomorphism,
then h is also an isomorphism

h: H=H [h: H=H] on Qe

Taking H to be the Cech theory, one obtains

TaroreM 12.2. Any continuous partially exact homology [coho-
mology] theory on the calegory Q¢ of compact pairs is isomorphic with the
Cech theory over the same coefficient group.

In this theorem the values of the homology theory are either in G
or Go. The cohomology theory has values in Gz. The Cech coho-
mology theory with values in G are in general not defined, and the con-
cept of continuity for a cohomology theory with values in G, was not
defined either (see §2).

Proor oF 12.1. The proof will be restricted to homology. The
proof for eohomology is dual. .

On the category 3 of triangulable pairs, both H and H are exact
theories. By the Uniqueness theorem 1v,10.2, we may assume that the
homomorphism

h: H—> H on 3
is already given.

Let (X,A) be a compact pair. By 10.1 there exists an inverse
system (X,A) in Inv] and a homeomorphism ¢: lim (X,A) — (X ,4).
The pair consisting of (X,A) and of ¢ will be called a development of
(X,A) and will be denoted by the letter D.

If M is the indexing set of (X,A), then, for every m ¢ M, we have a
homomorphism

M@ XmAn): Ho(XmAw) — H(XnAu).
Their totality is a homomorphism of inverse systems
ey Mg X,A): H(X,A) — H/(X,A)

as defined in §2. Using the homomorphisms of 2.1, we obtain the
diagram

by 1(¢,X,A)
H,(X,A) «—— H,(lim (X,A)) —— lim H,(X,A)
lh.,,(q,x,A)

. 1(¢,X,A)

H(X,A) e—— H(lim (X,A)) —— lim HX,A)
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where h.(¢,X,A) is the inverse limit of the map (1). Since ¢ is a homeo-
morphism, ¢, and ¢, are isomorphisms. Finally { is an isomorphism by
virtue of the assumption that H is a continuous homology theory.
Define the homomorphism

h(q,X,A,D): H(X,A) — H/(X,A)
by setting
h(g,X,4,D) = ¢, 'h.lg7".

We shall establish the following properties of h(¢.X,4,D):

(2) If (X,A) €3, then h(q,X,A,D) = h(q,X,A).

(3) If D’ is another development of (X,4), then h(q,X,A,D) =
h(¢,X,A,D").

4 If f: (X,A) » (Y,B) and D and D’ are developments of (X,4)
and (Y,B) respectively, then commutativity holds in the diagram

hg,X,A,D) _
Hc(XyA) -_— }IG(X’A)

lf* l?*

h(g,Y,B,D") _
Ha( Y,B) —_— Hq(YyB)

(5) Let D’ denote the development of A induced by the development
D of (X,A4), then commutativity holds in the diagram

h(q;X’A:D) —
H(X,A) ——— H/(X,4)

; g
h(g — 1,4,D")  _
H,y(A) ———— H,(4)

Propositions (2)-(5) imply that setting h(q,X,4) = h(q,X,4,D) does
yield a homomorphism A: H — H extending h,.

Without any loss of generality we may assume that (X,4) and
(Y,B) actually are ‘the inverse limits of (X,A) and (¥,B), and therefore
that the homeomorphisms ¢ and ¢; are identity maps. We begin by
proving two auxiliary propositions.
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6) If ».: (X,4) —» (X,.,4,) is a projection, then commutativity
holds in the diagram
h(¢,X,4,D) _
Hc(XrA) e Ha(XyA)

N .

h(Q)Xm;Am) .
Ha(XmAM) R — Ha(XmAm)

Consider the diagram

h(q, X,A) —
lim H,(X,A) ——— lim H(X,A)

&* hq, XA 1?7

H(X.,4,) ————— H,(Xn4.)

in which r,, and 7, are the projections of the limit groups lim H, and
lim H, into their m* coordinates. Commutativity in the square is a
consequence of the definition of h., and commutativity in the triangles
follows from the definition of [ and of I. Hence

Tmall(0,X,4,D) = Tyl hal = Fohal
= h(QImeAm)Tml = h(q,Xm,Am)ﬂ',.*-
This proves (6).
N If f: (X,A) - (Y,B) and (Y¥,B) is in 3, then commutativity
holds in the diagram
h(¢,X,4,D) _
Ha(XyA) E—— Ila(X)A)

2 I
h(q,Y,B) _
H(Y,B) ———— H(Y,B)
By 11.9 we may select an element m of the indexing set M of the

gystem (X,A), and a map
fnt (Xadn) — (¥,B)
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such that
Somm 2 f
where 7..: (X,4) — (X,,4,) is the projection. Consider the diagram
Ty Joms
H(X,A) — H(X.,A,) — II(Y,B)
h(q,X,A,I))l 1h(q,X,,.,A,,,) lh(q, Y,B)
_ Tk fos

HyX,A) —— H(X,,A,) — H,(Y,B)

Commutaltivity in the left square follows from (6); and, in the right
square, commutativity is a consequence of the fact that h: H — H
is a homomorphism on 3 and both (X,,4,.) and (V,B) are in 3. Since,
by the Homotopy axiom,

f’""‘ﬂ'”‘* = (f"‘ﬂ'"')* = fxu ?M*;rm* = (m)* = ?*,

proposition (7) follows.

Proors or (2)-(5). Proposition (2) follows from (7) by taking
(X,4) = (Y,B) and f = identity. Then f, and f, are identities so
that (7) implies h(q,X,A,D) = h(q,X,A).

Next we prove (4). Let n be an element of the indexing set N of
D’, and let p,: (V,B) — (YV,,B,) be the projection. Since (V,,B,)
is in 3, proposition (7) applied to the maps p, and p,f yields

Push(a,V,B,D") = h(q,Y,,B.)pay,
Bna$1(0,X,4,D) = h(q,Y.,B.) pnyf -
Consequently
eal$h(0,X,4,D) = 5o,h(g,Y,B,D)f,.

Since this holds for every n ¢ N, the above relation holds with o,, re-
placed by I. Since, by assumption, /{ is a continuous homology theory,
1 is an isomorphism, and therefore

fJMg,X,A,D) = hg,Y,B,D")f,

which proves (4).
To prove (3) apply (4) with (X,4) = (Y,B) and f = identity. Then
/. and f, are both identities and (4) yields h(g,X,A,D) = h(g,X,A,D’).
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Proposition (5) is a consequence of the commutativity relations in
the diagram

! her 1
H(X,4) —— lim H(X,A) —— lim H,(X,A) «——— H,(X,A4)

la lam l&,, 15
! h.. _ r
H,y(4) — lim H,_,(A) —— lim H,_,(A) —— H,_,(4)

where 9., is the limit of 9: H,(X,.,4.) — H,..(4,) and similarly for
d.. This concludes the proof (2)-(5). _

We now show that the homomorphism h: H — H extending A, is
unique. Let then h’: H — H be another such homomorphism. Then,
by 1v,10.2, wehave h = h’ on 3. Let (X,4) be a compact pair. Without
loss of generality we may assume that (X,A) is the inverse limit of an
inverse system (X,A) = {(X,,A4.),mm:} of triangulable pairs. Let r,:
(X,4) — (X.,,A.,.) be the projections. Since (X,,A4,) is triangulable
and h and A’ are homomorphisms of homology theories, we have

Em*h(%X)A) = h(q,X,,.,A,,.)ﬂ',,,* = h’(q,X,,.,A,,.)ﬂ',,,* = *m.h'(q,X,A)-

Since this holds for every element m of the indexing set, it follows from
the definition of the map I(q,X,A) that )

U(g,X,A)h(g,X,4) = Ug,X,A)'(q,X,A4).

Since H is continuous, [ is an isomorphism, and therefore h(g,X,4) =
k' (g,X,A4).
Finally assume that His also a _continuous theory and that hq:

G = @ is an isomorphism. Let ho: G = G be the i inverse of A, and let
h: H — H be the homomorphism on Q. extending ho. Then hh:
H — H is a homomorphism extending the identity map G — G. Thus
by the uniqueness condition, hh = identity. Similarly Rk = identity.
Thus h is an isomorphism and h is its inverse.

NOTES

The Cech process. The method used in defining the Cech homology
and cohomology groups is not restricted to these two instances. The
general situation may be described somewhat as follows:

Suppose that a functor H (covariant or contravariant) on the cate-
gory of simplicial pairs and simplicial maps with values in the category
of groups and homomorphisms is given. Suppose further that, if fo,fi:
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(K,L) — (K,,L,) are contiguous, then H(f,) = H(f,). Then the defini-
tions of §§24 of Chapter 1X can be applied to yield a similar functor
H on the category of pairs (X,4). For compact pairs the functor H
satisfies the homotopy axiom (i.e. H(f,) = H(f.) if f, and f, are homo-
topic) and the continuity axiom. This procedure was used by Spanier
to show that the cohomotopy groups satisfy the continuity axiom (see
note to Chapter 1),

Compactifications. In defining the compactification X of a locally
compact space X, we required in §6 that the compactification be made
by adding a point w which does not belong to any of the spaces in the
category G.c. This actually amounts to replacing the category by a
subcategory. This highly artificial convention was caused by the re-
quirement that the compactification (X,A) of a pair (X,4) again be a
pair; this forces us to compactify A using the same point as for X.

The proper solution in this situation calls for the generalization of
the concept of a pair. Let a generalized pair be defined as a triple
(X,A,¢) where X and A are topological spaces and ¢: A — X is a
homeomorphism of A onto a subset of X. If X,A and ¢ are in G.c,
then we say that (X,4,¢) isin @... Now the compactification (X ,A,d;)
is a generalized couple even if distinet points are used to compactify
X and A.

There remains the question of a suitable natural choice of a point
w for each locally compaet space X. To this end we remark that, in the
von Neumann-Bernays-Godel axiomatics, a set may be an element of
another set but never is an element of itself. Thus if {X] denotes the
set whose only element is X we have {X} N X = 0. Thus we may set
X = X U [X)} with the topology of 6.2.

An analogous discussion can be carried out for the Tychonoff com-
pactification.

EXERCISES

A. WEAK CONTINUITY.

1. Show that every compact pair may be represented as a nested
intersection of pairs in the category 3y, i.e. pairs having the homotopy
type of triangulable pairs. (Hint: Use method employed to prove
10.1.)

2. The conclusion of 2.6 will be referred to as the weak conlinuity
property of a homology [cohomology] theory. Prove 12.1 assuming that
H is weakly continuous. (Hint: use preceding exercise and the fact
that 3, is a uniqueness category (1x, Exer. F4).)
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3. Use the preceding exercise to prove that continuity and weak
continuity are equivalent properties.

4. Show that, in the category @¢, the Homotopy axiom is a conse-
quence of Axioms 1, 2 and continuity. (See J. W. Keesee, Annals of
Math. 54 (1951), 247-249.)

B. DIRECT SUM THEOREMS.
_ 1. Show that the direct sum theorem 1,13.2 remains valid in the
Cech theory (arbitrary pairs).

2. Let (X;X,,X;) be a compact triad with X = X, U X,, 4 =
X, N X,. Show that the maps

H(X,,A) — H,(X,A) =12

yield an injective representation of H,(X,A) as a direct sum, while the
maps
H(X,A) - H,(X,X,) =12

yield a projective representation. (All maps are induced by inclusions,
and Cech groups are used.) KEstablish similar results for cohomology.

3. Let X be a compact space, and let {U,}, a ¢ M, be a family of
pairwise disjoint open subsets of X with union U. Show that the maps

H(XX - U) » H(X,X — Uy

induced by inclusion yield a projective representation of the Cech
homology group H,(X,X — U) as a direct product. Similarly show that

H'X,X - U — H(X,X — U)

yield an injective representation of H°(X,X — U) as a direct sum.
4. Transcribe 3 into the “‘single space notation” of §7.

C. ExacrnEss.

1. Let A be an open and closed subset of a space X. Show that
the Cech homology sequence of the pair (X,A4) is exact and is split (see
viit, Exer. D) by the homomorphisms ¢: H,(X) — H,(A) where
v=k'l,l: XCXX - A4,k ACXX-A).

2. Let (X;X,,X,) be a compact triad with X = X, \JU X,;, 4 =
X. N X,. Show that the Cech homology sequence of the triple (X,X;,4)
is exact and is split by the homomorphisms y: H (X,4) — H,(X,,A4)
where ¢ = k.'l,, I: (X,4) C (X,X\), b+ (X,,4) C (X,X,).

3. Formulate similar results for the Cech cohomology sequences.

D. LC-grours
1. Show that, in the definition of H4(X,4), the directed set Cov,(X)
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may be replaced by any of the directed sets listed below and that the
resulting limit group is isomorphic with H4(X,4).

(a) Cov,(X) = the set of all finite open coverings a of X such that
at least one of the sets «, is countercompact.

(b) Cove(X) = the set of all finite open coverings « of X such that
all the sets a, except perhaps one are bounded.

Hint: Show Cov, C Cov, C Cov,, and Cov, is cofinal in Cov,.

(c¢) Covya(X), the set of all finite open coverings of X but with the
ordering < defined as follows: a < B means e < 8 and the union of the
bounded sets of 8 contains the union of the bounded sels of a. (Hint:
set up a map Cov;(X) — Cov,(X)).

(d) Cov'(X).

(e) The sets Covy(z), Cov,(X), Cov,(X) with the ordering <.

2. Given a ¢ Cov/(X,A) define, in addition to the subcomplex Q.,
the subcomplex €. which is the full subcomplex of X, determined by
the vertices v for which «, is not bounded. Thus ! is the least full
subcomplex of X, containing Q,. Show that, for any of the families of
coverings named above, one may replace the groups H,(X.,A. \JU Q.),
used in the limiting process, by the groups H,(X,,A. \J Q.) without
altering (up to an isomorphism) the limit groups.

ReEMARK. The limit groups of H (X .,4 . \J Q) over the directed set
Cov’(X) are those treated in detail by Alexandroff [Trans. Amer. Math.
Soc. 49(1941), 41-105). Thus the Alexandroff groups are isomorphic
with the 4-groups.

3. Let (X,4) be a locally compact pair. Let {X.} be the family
of all countercompact subsets of X. Show that the Cech groups
H(X,A\ X,;() [H(X,A\J X,;()] together with the homomorphisms
induced by inclusions form an inverse [direct] system of groups with a
limit group isomorphic with I74(X,A;G) [H J(X,4;()).

4. Let K be a locally finite simplicial complex and 7., a subcomplex
of K. Show that the pair (|K|,|L]|) is locally compact and establish the
natural isomorphisms

HA(K|ILLG) = 36K, L),  H(K|,|L|G) = %(K,L;G)

with J'Eq and 3° as defined in viir, Exer. F3.
5. Transcribe the relative Mayer-Vietoris sequence of a compact
triad (X;4,,4,) into the single space language of §7.

E. TYCHONOFF COMPACTIFICATION,
1. Show that, for any topological space X, any map f: X — I can

be factored uniquely into maps X Z» T(X) — I. Show that this
property describes T'(X) among compact spaces up to a homeomorphism.
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2. Replace the interval I in exercise 1 by any completely regular
space. _

3. Let X be a normal subset of a compact spaceY such that X = ¥
and for any two subsets 4,B of X the relation AN BN X = 0implies
A N B = 0. Show that Y is a Tychonoff compactification of X.

4. Let X be normal and Y compact metric with a metric p. Show
that a homotopy ¥: X X I — Y is uniform if and only if for each
e > 0 there is a 8 > 0 such that 4,,t, ¢ I, |t;, — &] < & implies
p(F(x,t,),F(x,t;)) < eforall x ¢ X.

5. Let X be a normal space and let w(X) denote the set of those
points z ¢ X such that z has a countable set N of neighborhoods with
the property that any neighborhood of z contains an element of N.
Show that w(X) = o(X").

6. Show that the Cech homology and cohomology theories of normal
pairs obtained using finite open coverings is isomorphic with the theory
obtained using finite closed coverings.

F. SovLENoIDS.

In these exercises use the fact (established in x1,4.5) that the map
i 8' — §' defined by f,(z) = 2" satisfies fi,u = ku for u ¢ H,(S";G)
and f%(u) = ku for u ¢ H'(S";().

1. Let Z, be the p-adic solenoid (see v, Exer. E). Show that
for the Cech groups

ﬁo(zp;G) = Oy go(zv;G) = 0
H(Z,,G) =0, H'C,G) =0 for g> 1

H,(Z,,@) is isomorphic with the limit of the inverse system

¢ ¢ ¢ ¢
GG -+- «— G -+ where ¢(g) = pg.

H'(Z,;@) is isomorphic with the limit of the direct system
¢ ¢ ¢ ¢

G_)G_)..._)G-—)o...

Using the above results, prove that H,(Z,;J) = 0, H'(Z,;J) is
isomorphic with the group of all rational numbers of the form m/p"
where m and 7 are integers, and that H,(Z,;S") = Z, where S' is the
multiplicative group of complex numbers of absolute value 1 (or
equivalently, the addive group of real numbers reduced modulo integers).

2. Let p and ¢ be two integers. Consider the exact sequence

T n
S: 0J o> J o J/g] -0
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where 7(n) = ¢n and % is the natural map. Consider the mapping
v: 8 — S defined by y(r) = pz. Analyze the inverse limit S, of the
inverse sequence

Y Y Y
Se— S e+t « 8§ e +».

For what values of p and ¢ is S. an exact sequence? (see Example
VIILS5.5).

3. Let (E,S) be a 2-cell and its boundary defined in the complex
plane by the conditions |2| < 1 and |z| = 1 respectively. Consider the
map ¢: S — S defined by ¢(z) = ze*"*/°. Let (P,C) be the pair ob-
tained from (E,S) by identifying each z ¢ S with ¢(z). Show that the
homology sequence (integer coefficients) of the pair (P,C) is isomorphic
with the exact sequence S of the preceding exercise. Show that the
map f: (E,8) — (E,S), f(2) = 2" induces a map f: (P,C) — (P,C)
such that f, (u) = pu. Let (P.,C.) be the limit of the inverse sequence

f f f f
(PyC) (_-(P’C) e e <_'(P)Cv) e v
Show that the homology sequence of (P.,C..) (Cech group with integer
coefficients) is isomorphic with the sequence S.. of the preceding exercise
(see Example x,4.1). Show that C,, and Z, are homeomorphic.

G. MISCELLANEOUS.

1. Let (X,A) be a compact pair, and let u be in the kernel of the
natural homomorphism H°(X) — H%A) (Cech cohomology groups).
Show that there exists a closed neighborhood V of A such that u is in
the kernel of H(X) — H(V).

2. Let « be a covering of X. Show that a map ¢: X — |X.| is
canonical relative to « if and only if, for each v ¢ V,, we have ¢ ' (st(v)) C



CHAPTER XI
Applications to Euclidean Spaces

1. INTRODUCTION

The objective of this chapter is twofold. TFirst we derive a number
of theorems concerning Kuclidean space among which are some of the
most classical and widely used ones such as the Brouwer fixed-point
theorem and the invariance of domain. Secondly we show how such
theorems can be derived using the axioms without appeal to any con-
cretely defined homology or cohomology theory.

The first five articles depend only on Chapters 1 and 11. The last
section (6) uses, in addition, the continuity axiom of Chapter x.

The notations of 1,16 are used throughout the chapter: R" =
cartesian n-space, E" = the n-cell |[x]| = I, 87" = the (n — 1)-sphere
|lz]}] = 1, ete. These spaces appear in most of the theorems. The
theorems are still valid if R”,E",8" are replaced by homeomorphs. For
example, the Brouwer fixed point theorem 3.3 holds for any set X
homeomorphic with E*. For let [’ be 2 map X — X, and & a homeo-
morphism X — E". Then f = hf’A”' maps E" into itsclf. By 3.3,
there is a fixed point, say x, of f. Then A7'(z) is a fixed point of '
The proofs of invariance of the other theorems of this chapter are
equally trivial.

2. MAPPINGS INTO SPHERES

Lemma 2.1, If (X,A) 45 a normal pair (i.e. X 15 normal, and A 1is
closed in X) and f: A — 8", then there is an open set U of X conlaining
A and an extension f': U — S" of /.

Proor. Regard f as a map of A into R**'. Then, by Tictze’s
extension theorem, there exists an extension g: X — "' of f. Define
U = X — ¢7'(0) wherc 0 is the origin of R*** and set

"p) = 2
7@ = @ e
This yields the desired extension of f.

LemMma 2.2, Let (X,A) be a normal pair such that X X I is normal.
Every map [: X X 0\J A X I — 8" admits an exlension F: X X I
- S

298
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Proor. Let B = X X 0\U 4 X I. Since the pair (X X I,B) is
normal, there is, by 2.1, a neighborhood U of B and an extension ¢:
U— 8 of f. Since A X I C U and I is compact, we may construct
a neighborhood V of 4 in X such that VX I C U. Select a Urysohn
function #: X — I such that #isO0on X — Vandis 1 on A. Then
for each z ¢ X and ¢ ¢ I, we have (z,0(x)l) ¢ U. Define F(z,l) =
o(x,0(x)!). Then F(2,0) = ¢(x,0) = [(x,0), and for x ¢ A, we have
8(x) = 1 so that F(z,t) = ¢(z,f) = f(x,t). Thus F is the desired ex-
tension.

Lemma 2.3, Let (X,A) be a normal pair such that X X I is normal,
andlet f: X — 8. Lvery homolopy of f|A can be extended to a homotopy
of f.

Proor. Leth: A X I — §" beahomotopy of fl[A. Extend k to a
map h': X X 0\J A X [ by setting i(x,0) = f(x) for x ¢ X. Then,
by 2.2, A’ admits an extension 7I: X X I — §%, which is the desired
homotopy.

DeriniTioNn 24, A map f: X — 8" is called tnessential if f is
homotopic to a map of X into a single point of S". Otherwise [ is
aalled essential.

LemMma 25, If 1 X — 8" is essential then [(X) = S

Proor. Suppose y ¢ 8" — f(X). Since 8" — y is contractible to a
point and f(X) C S" — y, it follows that [ is inessential.

LemMa 2.6.  Let (X,4) be a normal pair such that X X I is normal.
Fuvery inessential map 7= A — 8" admits an inessential extension f':
X — 8

Proor. Let h: X — 8" be a map of X into a single point of S".
Then Rk|A i1s homotopie with f. The existence of f” follows now from 2.3.

LumMma 2.7, Let T = {{,K} be a triangulation of X such thal dim
K < n. Thenevery map f: X — N is inessential,

Proor. Select a triangulation 7" = {t/,K’} of 8" with dim K’ = n.
By the theorem on simplicial approximation there cxists a map
g: X — 8" homotopic with f and which is simplicial relative to the
triangulations *7, 7’ where *7" = {*,K} is a sufficiently high bary-
centric subdivision of 7. Since the dimension of a simplicial complex
does not change under barycentric subdivision, we have dim ‘K < n.
Since ¢ is simplicial, it follows that g does not map X onto S”. Thus,
by 2.5, g is inessential, and therefore f is inessential.

CoroLLAgy 2.8. If m < n, every map f: S™ — §" is inessential
and admi’s an extension f': E™' — S"

Prcor. The fact that fis inessential follows from 2.7. The existence
of an ex.ension f’ follows from 2.6.

Lemma 2.9. Let T = {{,K} be a triangulation of X with dim K < n,
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let A be a closed subset of X, and let f: A — 8". Then f admaits an
extension f': X — S".

LemMa 2.10. Let T = {{,K} be a triangulation of X with dim
K = n+4+1,let Abeaclosed subset of X, and let f: A4 — S*. There
exists a finite set F C X — A such that f admits an extension f': X —
F—- S

Proor or 2.9 anp 2.10. By 2.1, there is an open set U in X con-
taining A, and an extension f': U — S" of f. If we replace T by a
sufficiently high barycentric subdivision *T' = {*/,*K}, we can find a
subcomplex A’ of X (relative to “T’) such that A C A’ C U. Since
dim K = dim *K, it follows that we may assume in 2.9 and 2.10 that
4 is a subcomplex of X relative to T

Let X denote the g-dimensional skeleton of X relative to T'. Clearly
fi A — S admits an extension f: X°\U A — S". Suppose in-
ductively that an extension f*: X*\U A — 8" is already given for
some ¢ < n. Lets, -+, s, be the (¢ 4+ 1)-dimensional simplexes of
X — A. Then f°is defined on §, --- , &, and, by 2.8, f* may be ex-
tended over every one of the simplexes s,, - - , s,, thus yielding f**':
X" U A — S" extending f. Therefore there exists an extension
M X"UA—> S of f. If dim K = 7, then X = X, which proves

29, Ifdm K =n+ 1,let s, ---, s, be the (n + 1)-simplexes of
X —- A,andlet F = {b, -, b,} be the set of their barycenters. A
radial projection in each simplex sy, - - - , s, yields a retraction h: X —

F - X"\U A. The map f°h»: X — F — §" is then an extension of
f: A — 8. Thus 2.10 is proved.

Lemma 2.11. Let A be a closed subset of S" and let B be a set con-
latning exactly one point out of each component of 8" — A. Then, for
every f: A — S, there exists a finite subset F of B and an extension
" 8" —=F— 8o

Proor. By 2.10, there exists a finite subset (z,, -+ ,z,) of  — 4
and an extension 8" — (z,, -+, z,) — S ' of f. For each z,, let b,
denote the point of B in the component of S — A containing z., and

let F be the set (b, --- , b). To prove that f admits an extension
8" — F — 8", we shall prove inductively that, if f admits an ex-
tension S* — (b, -+, b,_y, 2., * -+, ) — 8"}, then f also admits an
extension S — (b, -++ , b, T.4y, -, ) = S Since 2z, and b;

lie in the same component of S" — A, there is a finite sequence
T, = yO) e ,Ut = b“
of points and a sequence of convex n-cells

Eh ,E"
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in 8" — A such that y;,_,,y; ¢ E, for j = 1, -+ , 1, and the boundary
S; of E; contains none of the b’s, z’s, and y’s.

It clearly suffices to show that, if f admits an extension
St 8= (b, vy b, ¥yoyTiyy 200, 1) = S,
then f also admits an extension
Foit 8 = (by, =+, bisyUisZisr, o0, 1) — ST
Letr: S —y, > 8 — E, be a retraction. Then setting
finlx) = fijor(@) forze 80 — (by, »++ ), bicy,¥isinn, *o0 , 22)

yields the desired extension f, ,. This concludes the proof.

8. THEOREMS OF BROUWER AND BORSUK

TueoreM 3.1. The n-sphere S™ is not contractible (over itself) to a
point, t.e. the identity map of S is essential.

Proor. Let H be any homology (or cohomology) theory defined on
the category J of triangulable pairs and with a coefficient group G = 0.
Then, by 1,16.6, 8" is not homologically trivial. Thus, by 1,11.5, §"
is not contractible to a point.

REMARK. The above statement is the only one of this section that
requires the use of homology theory in the proof. All the other propo-
sitions follow from 3.1 using the results of §2 and other simple geometric
arguments.

TraeEorREM 3.2. S"' ¢s not a retract of E™.

Proor. Letr: E" — 8" be a retraction. Then

F(z,t) = r((1 — t)z) zeSh tel

yields a homotopy contracting S*™' to a point, contrary to 3.1.
TreOREM 3.3. (Brouwer’s Fized Point Theorem). Each map f.
E" — E" has at least one fixed point, i.e. a point x ¢ E™ such that f(z) = z:
Proor. Assume f(z) # z for all z ¢ E". Let r(z) be the point of
S*~! such that z lies on the line segment from f(z) to r(z). The con-
tinuity of r is proved using that of f and some elementary geometry.
Since r(z) = z when z ¢ S", 7 is a retraction E* — S~ contradicting 3.2.
THEOREM 3.4. Let T = {{,K) be a triangulation of a space X. In
order that dim K = n, it is necessary and sufficient that for every closed
subset A of X, and every map f: A — S, there exists an extension
fim X- 8~
ProoF. The necessity of the condition follows from 2.9. Suppose
that dim K > n, and let s be a simplex of X of dimension n 4- 1. Let
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A = sandlet f: A — S" be a homeomorphism. Suppose that [ admits
an extension f: X — 8" Then f7'f’: X — A is a retraction. There-
fore § is a retract of the closed simplex s contrary to 3.2.

Tuarorem 3.5. (Invariance of Dimension). If T, = {(¢,K,} and
T, = {1,,K.,} are triangulations of the same space X, then dim K, =
dim K,.

This is an immediate consequence of 3.4.

TuroreMm 3.6.  (Borsuk’s Separation Criterion). Let X be a compact
subset of cartesian space R" and let x, e R® — X. In order that x, lie
in the unbounded component of R — X, it is necessary and sufficient that
the map p: X — S given by

x—'xn
Hz — ol

p(z) = reX

be inessential.

Proor. By a translation and a similarity transformation of R", it
can be arranged that X lies in the interior of I, and x, is the origin.
The map p is then defined by p(z) = z/|{z]|.

Suppose z, lies in the unbounded component C of B — X. Since
C is arcwise connected, there exists a mapping f: I — C such that
f(0) = z0,f(1) = 2, e " — E". Consider themapping #: X X I — 8§}
defined by

z — f(8)
F(z,t) = INT ze X, tel.
@0 = =0 Xt
Then F(z,0) = p(z) and F(z,1) = (x — x)/||x — || Since x ¢ E"
and z, is not in E", it 1s easy to sce that F(z,1) = x,/||x,||. It therefore
follows from 2.5 that p is inessential.
Assume now that the component C' of R® — X containing z, is

bounded. Then C C E" and C\U X is closed. Suppose p is inessential.
Then, by 2.6, p admits an extension p': € \U X — S, Define a
map r: E"— S*' by setting

r{x) = p'(x) forzeC \U X,
r(x)=‘l;—H forxe £" — C.

The two definitions agree on X, hence r is continuous. When z ¢ §*7,
we have r(z) = 'r, so that r is a retraction of E” onto 8"~'. This con-
tradicts 3.2.

TaeoreMm 3.7 (Borsuk’s Theorem). Let X be a closed subset of S"
The set S — X 1is connected if and only if every map f: X — 87 s
tnessential.

Proor. Suppose 8" — X is not connected and let z,,z; be two
points of 8" — X lying in distinct components of 8" — X. If we regard
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S" — =z, as the cartesian space 2", it follows that z, lies in a bounded
component of " — X. Thus, by 3.6, there exists an essential map
p: X — 871

Suppose now that 8" — X is connected and let f: X — 8*7'. Let
2, ¢ 8 — X. By 2.11, f admits an extension f: S" — z, — 8" L.
Since 8" — z, is contractible, it follows that f* is inessential. Thus f
is also inessential.

Lemma 3.8. Let (X,A) be a pair in S” homemomorphic with (E*,8*™Y).
Then 8" — A decomposes tnio lwo components, namely 8" — X and X — A.
In particular, X — A is an open subset of S".

Proor. Since E” does not admit essential maps into S, it follows
from 3.7 that 8" — X is connected.  On the other hand §*7' does admit
an essential map into S"7' (e.g. the identity map), thus S* — 4 is not
connected. The set X — A is homeomorphic with E* — 87! and is
therefore connected. Since

8 — A =(5—X)U (X — 4),

and 8" — A is not connected, and 8" — X, X — A are connected, it
follows that the latter two sets are the components of §* — A.

TarorREM 3.9 (Invariance of Domain). If U,,U, are homeomorphic
subsets of S, and U, 1s open, then U, 1s also open.

Proor. Let f: U, — U, be a homeomorphism. Let z, ¢ U, and
z, = f '(x,). Seleet a spherical neighborhood V', of x, such that V, C
U, letV, =V, — Vy, then (V,,V)) and (£",8"") are homeomorphic
pairs. Let (X,1) = (fV,,f V,). Then (X,4) and (E",8"") are homeo-
morphie, and, by 3.8, X — 4 is open. Since r, ¢ X — A C U,, it
follows that U, is open.

DeriNiTioN 3.10. A space M will be called locally euclidean of
dimension n if every point x ¢ M possesses a neighborhood homeco-
morphic with R”.

TaroreMm 3.11. Let U, and U, be homeomorphic subsets of spaces
M, and M,, respectively, both of which are locally euclidean of dimension
n. If U, is open, then U, is also open.

Proor. Letf: U, — U, be a homeomorphism. Let z, ¢ U;, and
let 2, = f7'(x,). Select neighborhoods V,,V, of z,,z, respectively such
that

eV, C U, 2, eV, C M, JVy C VvV,
V,.,V, are homeomorphic with R".

Since R" is homeomorphic with an open subset of §*, we may select a
map¢,: V,— 8% ¢, V,— 8" mapping V, and V, homeomorphically
onto open subsets W, and W, of S". Then ¢2f¢1" maps W, homeo-
morphically onto a subset of W,. Thus, by 3.9, the set ¢>2f¢,"(W,). is
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open in S and therefore also in W,. Therefore the set fo~'(W,) =
f(V,) is open in V, and therefore also in M,. Since z, ¢ f(V,) C U, it
follows that U, is open.

CoRroOLLARY 3.12.  Two locally euclidean spaces M, and M, of different
dimensions are not homeomorphic.

Proor. Let m,,m, be the dimensions of M, and M, respectively and
let my = m, + n,n > 0. Then M, X R" is locally euclidean of dimen-
sion m,, and contains a nonopen subset homeomorphic with M,. Thus,
by 3.11, M, and M, cannot be homeomorphic.

4. DEGREES OF MAPS

In this section and the following one, we assume that a homology
theory H is given with a coeflicient group G isomorphic to the group
of integers J. Analogous results also hold for a cohomology theory
with a coefficient group G = J.

DerFiniTiON 4.1. Consider a map f: §° — 8", n > 0. Since
H,(S") = J (see 1,16.6) there is an integer d such that f,u = du for
all u ¢ H,(8"). This integer d is called the degree of f, written d =
degree(f).

Clearly two homotopic mappings of 8" — S" have the same degree.
The converse is also true but will not be proved until Chapter xv. It
is easy to see that the degree of the composition of two maps is the
product of their degrees.

LEmMMA 4.2. A mapping f: S" — 8" of degree # O is essential, and
therefore maps S™ onto S".

Proor. Suppose f is inessential. Then we may replace f by a
homotopic map f’ such that f'(S") is a single point z, ¢ S". Since
H, (z) = 0, it follows that f] = 0. Thus the degree of f is zero.

LeMMA 4.3. Letn > 1, and let f be a map of the triad (S;ELLED)
inlo itself:

f: (SGELED — (SELLED.
Let fi: 8" — 8§, fo: 8" — 8" be the maps defined by f. Then
degree(f,) = degree(Js).

Proor. By 1,16.2, the triad (S";E[,E’) is proper. Consider the
diagram

A
H(S) —— H,_(8")
lf., lf,.
A

H(S") —— H,,(8"™
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where A is the boundary operator in the Mayer-Vietoris sequence of the
triad. By 1,154, commutativity holds in this diagram. Further, by
1,16.5, A is an isomorphism. Let u ¢ H,(S"), u » 0. Then

degree(f.)Au = f,, Au = Af, u = degree(f,)Au.

Since Au = 0, it follows that degree (f,) = degree(f,).
LEMMa 4.4. Suppose that a function T: S§" X 8" — 8", n > 0,
18 given such that there exists an element e ¢ 8" (unit element) satisfying

(i) T(e,x) = ¢ = T(x,e)

for all x ¢ S" (see nole al end of this chapler). Given two maps fi,fs:
S" — 8", define f: 8" — S by selling

f(z) = T(fi(2),f(x)).
Then
degree(f) = degree(f,) + degree(f,).
Proor. We first replace f,,f, by homotopic maps ¢,,9, such that
(if) n(E) =¢  gED) =e.

To show that such maps exist, consider f,|E”. Since E’ is contractible
to a point, there is a homotopy F: EI X I — 8" of f,|E” such that
F(z,1) = efor z ¢ E”. By 2.3, this homotopy may be extended to a
homotopy F: 8" X I — S"of f,. Set g,(x) = F(x,1). The existence
of g, is proved similarly. The map f is now homotopic with the map
g: 8" — 8" defined by

(iii) 9(z) = T(g:(2),9:(2))
so that it suffices to prove that

g* = gl* + 92*

in the dimension n.
From (i)-(iii) it follows that

71 (x) forze E},
g(z) =

92(2) for x ¢ B,

If we denote by ¢',¢{,95 the maps (S*,8"") — (S"¢) defined by ¢,4:,92
respectively, then the conditions of 1,14.6 are satisfied; and therefore

Ie = g1y t 9iy-
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Consider the inclusion maps 7: S* C (S%58*") and j: S C (S'e).
Since jg = ¢'7 and similarly with subscripts 1 and 2, it follows that

j*g* = j*gl* + j*gZ*'

Since n > 0, we have H,(e) = 0. Hence, by exactness, j, has kernel
zero in the dimension n. This implies g, = ¢, + g2, in the dimension n.
THEOREM 4.5. Regard S' as the set of all complex numbers z with
|z2| = 1. For any integer k, the map f,: S' — S defined by fi(z) = 2*
has degree k.
Proor. Define I': §' X S' — §' by setting I'(z,y) = zy. For
any two integers k,l, we have

[1a(®) = [i(2)f1(2) = T(fe(2),[:(2)).
Thus 4.4 yields

degree(f..;) = degree(f,) + degree(f,).

Since f, is the identity map, it has degree 1. This implies that f, has
degree k.

Remark. The proof above actually yields a stronger result, namely:

i = ku for each u ¢ H,(S") in any homology theory. Similarly
*u = ku for u e H'(S").

THEOREM 4.6. For any n > 0 and any integer k there exist maps
f: 8" — 8" of degree k.

Proor. The proposition has been established for n = 1. Assume
inductively that g: S"™'— 8! (n > 1) is a map of degree k. Extend
g toamap f: 8 — S"such that f(E]) C Ef and f(£2) C EZ(such
extensions obviously exist). Then 4.3 implies that f and ¢ have the
same degree. Thus f has degree k.

6. THE FUNDAMENTAL THEOREM OF ALGEBRA

Consider the compactification R" of the cartesian space R" obtained
by adjoining a point w at infinity (see x,6.2). A mapping f: R"— R"
is admissible (in the category Q¢ of locally compact pairs) if its ex-
tension f: R — R" defined by f(w) = w is continuous.

DerFiniTION 5.1. The degree of an admissible map f: R" — R" is
defined as the degree of the map f: R* — R". The latter degree is
defined since R” is homeomorphic with the n-sphere S™.

LemMA 5.2. If f: R"— R" has degree 5= 0, then f maps K" onto R".

Proor. 4.2 implies that f maps R" onto R*. Thus f(R") = R".

LemMmA 5.3. Let D" = R" — E". Thus D" is defined by the condition
llz|l 2 1. If f: R"— R, n > 1, is an admissible map suck that f(E™) C
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E", f(D")y C D", then the degree of f coincides with the degree of the map
g: S — 8! defined by f. _
Proor. The result follows from 4.3 since the triads (R";E",D")
and (S*;E;,E’) are homeomorphic.
Lemma 5.4. Let fo,fii R" > R andlel F: R" X I - R bea
homolopy between f, and f, such that, for every real number A, there is a
real number B such that

WFaeoll >4 i |lzf| > B, tel.

Then the maps f, and f, are both admissible and have the same degree.
Proor. The condition of the lemma implies that setting F(w,l) = w
yields an extension F: R"X I — R"of F. This 1mp11es that f, and
f: are admissible and that ¥ is a homotopy between f, and f,. There-
fore f, and f, have the same degree.
THEOREM 5.5. A polynomial of degree k > 0

f(z) = akzk + ak—lzk—l + M + a,z + ao, [+ 19 # 0

with complex coefficients is an admissible map f: R® — R® which has
lopological degree k.

CoRrOLLARY 5.6 (Fundamental Theorem of Algebra). The equation
f(z) = 0 has at least one solution.

Proor. Letg(z) = ;2" ' + - + a1z + ap and @ = |ay,] +
v+« + |ao). Define F: R® X I — R? by setting

F(zt) = a,2* + (1 — t)g(2), zeR tel

Let A be any real number, and let

|2 > I(A +a, [f>1L

las
Since &k > 0, we have
[F0l 2 lae'] — 9@ Z la'| — al'™| > aille]l — a > 4.

Thus the homotopy F satisfies the condition of 5.4. Consequently f
is admissible and has the same degree as the map f: R? — R® where
f'(z) = F(z,1) = a,2" :

Let 8: I — R® — (0) be such that 6(0) = a,, 6(1) = 1. The ho-
motopy G: R*? X I — R? defined by G(z,f) = 6(f)z" again satisfies the
condition of 5.4. Therefore f' has the same degree as the map
() = G(z,1) = 2*. Since |f"(2)] = l|z/¥, the conditions of 5.3 are
satisfied and f’’ has the same degree as the map f,: S' — S' defined
by f’. Since, by 4.5, f, has degree k, the proof is complete.

We now proceed to establish an analog of the fundamental theorem
of algebra in a setting more general than that of complex numbers.
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We shall assume that a mapping I': R" X R" — R" is given. For
simplicity we shall denote I'(z,y) by the product zy. This product is
subject to the following conditions:

(i) £ 0,y = 0imply zy = 0.
(ii) There exists an element ¢ ¢ R" such that ex = z = ze for all
ze R,

(iii) The relation (fx)y = {(zy) = z(ty) holds of each real positive
number {. The last condition implies by continuity: 0z = 0 = z0.

These properties are satisfied if B" carries the structure of a real
division algebra. Typical examples are: real numbers (n = 1), com-
plex numbers (n = 2), quaternions (n = 4), Cayley numbers (n = 8).
It is not known for what values of n a product such as described above
exists (see note at end of this chapter).

We define inductively a monomial m (in one variable) of degree k as
follows: A constant in R" different from zero is a monomial of degree
zero. The identity function z is a monomial of degree 1. If m, and
m, are monomials of degree k, and k., then m,m, is a monomial of
degree k, + k..

It follows that, if m is a monomial and z ¢ R", then m(z) ¢ R" and
m: R"— R"is continuous.

Tueorem 5.7. Assume n > 1. Let f be a polynomial of algebraic
degree k > 0 of the form m + g where m 1s a monomsal of degree k and ¢
18 a finite sum of monomials of degree < k. Then the map f: R" — R"
18 admissible and has topological degree k.

CoROLLARY 5.8. The equation f(x) = 0 has al least one solution.

Applying this to the equations axz — ¢ = 0 and za — ¢ = 0, we find

CoroLLARY 5.9. Each a # 0 has at least one left inverse and at least
one right inverse.

Applying 5.8 to the polynomial zz + e yields

COROLLARY 5.10. There exists an element whose square is —e.

The proof of 5.7 will be preceded by some lemmas.

Lemma 5.11.  There exist real numbers 0 < A < B such that

Allzll {lyll = ll=yll = Bllzl] llyll.

Proor. Lety: S' X 8! — R" be defined by vy(z,y) = =y.
Then v(8"' X S*') is a compact subset of E* not containing zero.
Thus there exist real numbers 0 < A < B such that 4 £ ||lzy|]| £ B
for z,y e 8. Then (iii) yields the conclusion of the lemma.

LeEmMA 5.12. If m is a monomial of degree k, then there erist real
numbers 0 < A,, < B,, such that

Anllel* £ {Im@)] = Ballell".
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Proor. The conclusion is obviously valid for a monomial of degree 0,
and for the monomial z. Suppose now that m = m,-m, is a product of
monomials of degrees k,,k, respectively with k = k, + k,, and that the
conclusion of the lemma is valid for m, and m, with the constants
A..,B..,A.. B.,, respectively. Then, by 5.11,

lm@)|| £ Blimi(@)I| |[mo(2)|| < BB Ba,|2l|"||z]/"* = Ballzll*
where B, = BB,.B,. Similarly A.||z]]" < ||m(z)|| where 4, =

AA_ A,
Proor or 5.7. Consider the homotopy F: R" X I — I defined by

F(z,t) = m(z) + (1 — t)g(z), zeR"tel

Let g = m, 4+ - -+ + m, be a decomposition of ¢ into a sum of monomials
of degrees < k, and let

B =B, + -+ + B,

If A’ is a real number, and

1
“x” > A— (A, + Bl)s ”:‘CH > 1:
then k > 0 implies

IF@ )|l 2 lIm@|] - llg@Il 2 Aallzll* = 2 Ba,|lz}]*
> Aullz|| — B" > A’

Thus the homotopy F satisfies the condition of 5.4. Consequently f is
admissible and has the same topological degree as the map m(z) =
F(z,1). This reduces the proof to the case when f = m is a monomial
of degree k.

With each monomial m of degree k we associate a functiong: S*'—
S"~! defined by

_ _m@)_ -
0 = Tl ze S

It follows from 5.11 that m(z) == O for z # 0, thus g is a well-defined
continuous function. We shall prove that m and g have the same
topological degree. If k = 0, both m and g are constant and have topo-
logical degree 0. Let k > 0. Define a homotopy F: R" X I — R by
setting

m(zx

Flz,i) = IIT(E:)LII (1 = ollm@|| + tlz|P]l, zeB — (), te],
F@©,!) = 0.



3810 APPLICATIONS TO EUCLIDEAN SPACES [CHAP. XI
By 5.12
(@ = 04n + 4 ll2l* = [[F@oll = (1 = )B. + 4 =,
and therefore
Ap |lz|* = [I[F@=))| = By |Jz]]*
where A = min (1,4,), Br = max (1,B,). This inequality shows

that F is continuous at z = 0, and that F satisfies the condition of 5.4
Sinee F(x,0) = m(x), it follows from 5.4 that the map

_ _ iy L
M(x) = F(z,1) = m(z) Tm @1 z # 0,
MOy =0
is admissible and has the same topological degree as m. The function
M satisfies the condition of 5.3 and therefore has the same degree as
the map 8" — 8"! defined by M. Since M(z) = g(x) for z ¢ S",

it follows that m and g have the same degree.
Consider the mapping

7: Sn—l x Sn—l — Su—l

defined by
x -
v(z,y) = sz”’ zye S '
Setting ¢’ = ¢/|le|| we have
v(e',x) = x = y(z,e), ze SN
Now consider the produet m = mym, of two monomials and let

g,91,92 be the associated maps of S""! into itself. Then

. g@e@ m@mex)  |m@)]] ||m.@)|]
Y0:®:9:9) = 110 0.1 = @] (@] | ma@)]
=MD e
= Jim@] ~ 9

Sincen — 1 > 0, 4.4 gives

degree(g) = degree(g,) + degree(g.).

This implies that the topological degree of m is the sum of the topological
degrees of m, and m,. Thus the topological degree of a monomial obeys
the same additivity rule as the algebraic degree. Since for a monomial
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of algebraic degree zero (i.c. a constant 3 0) the topological degree is
also zero, and the monomial z has both algebraic and topological degree
1, it follows that the algebraic and topological degrees coincide for all
monomials. This coneludes the proof.

6. MANIFOLDS

DerFiniTION 6.1, If X is a compact space, 4 is closed in X, and
X — A is locally euclidean of dimension n (see 3.10), then the pair
(X,A) is called a relative n-manifold. If there exists a relative homeo-
morphism f: (K,S) — (X,A) (see x,5.1), where (E,S) is an n-cell and
its boundary, then (X,A4) is called a relative n-cell.

The objective of this article is to show that the homology and co-
homology groups of a relative n-manifold (X,A4) are zero for dimensions
greater than n, and to establish results concerning the structure of the
n-dimensional groups.

In case (X,A) is triangulable, the Uniqueness theorem of Chapter
111 shows that the results are independent of the choice of the homology
theory. It has been proved that any compact, differentiable, absolute
manifold can be triangulated [S. Cairns, Bull. Amer. Math. Soc. 41
(1935), 549-552]. It is an unsolved problem of long standing to de-
termine if the result is valid without the assumption of differentiability.
It is easy to construct relative n-manifolds which are not triangulable.
For example, let X be an n-sphere, and let A be a closed subset of X
which is not triangulable, then (X,A) is a relative n-manifold and is
not triangulable. A less trivial example is obtained as follows: Let
Y be a locally-euclidean space which is not separable. Let X be the
compact space obtained by adjoining a point at infinity to Y, and let
A consist of this point. Since Y is not separable, X is not triangulable.

We shall use the Cech homology-cohomology theory. Its continuity
will play a vital role in the computations. We repeat that the results
are independent of this choice if (X,A4) is triangulable. If the singular
theory were used, there would be no correspondingly simple results
valid in the nontriangulable case.

Since the results we will obtain are more significant in the case of
cohomology, we restrict ourselves to that case. The corresponding re-
sults for homology are stated at the end of this article.

Lemma 6.2. Let Y be a space having a triangulation T of dimension
n, and let (X,A) be a compact pair in Y. Then H(X,A) is zero for each
g > n

Proor. Let ‘T denote the ‘" barycentric subdivision of 7. Let
X, and A, be the least subcomplexes of Y, in the triangulation 'T, con-
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taining X and A respectively. Clearly H(X;,A;) is zero for ¢ > =,
and (X,,,4:,.) C (X,,4,). Since the mesh of 'T tends to zero as ¢
tends to infinity, it follows that (X,4) = (N X,, M A,). By applying
X,2.6, we obtain that H*(X,A) is zero, and the proof is complete.

Since a relative homeomorphism induces isomorphisms of the Cech
groups (x,5.4), it follows that the Cech groups of a relative n-cell (X,A)
are those of an n-cell, i.e. all groups are zero except H*(X,A) = G.

Lemma 6.3. If (X,A4) and (X,B) are relative n-cells such that (X,A) C
(X,B), then the inclusion map induces an isomorphism

H"(X,A) = H'(X,B).

Proor. Consider first the special case where X is the euclidean
ncell B: > 1z? < 1, and A is the sphere §: Y.t 2* = 1. Also, let
z, be a point of E — S, let U be the interior of a sphere with center
zosuch that U CE — S,andlet B = E — U. Then (E,B) is a relative
n-cell containing (E,S). Radial projection from z, defines a retraction
r: B— 8. If weset

r(z,t) = (1 — Dz + tr(z),

we obtain a strong deformation retraction of B into S. Then 1,10.5¢
applies to give the desired result in this case.

For the next case, let (X,A) be a relative n-cell, let f: (E,S) —
(X,4) be a relative homeomorphism, let U be the interior of a sphere
contained in £ — S, and let B = X — f(U). Then (X,B) is a relative
n-cell, and f defines a relative homeomorphism f,: (E.E — U) —
(X,B). Let j: (E,S) C (E,E — U)and h: (X,A) C (X,B). Since
f17 = hf, we have 7*f% = f*h*. As f,,f are relative homeomorphisms,
f% and f* are isomorphisms. By the preceding case, j* is an isomor-
phism. It follows that h* is an isomorphism.

Consider now the general case. Let f: (E,8) — (X,4) and g¢:
(E,S) — (X,B) be relative homeomorphisms. Now f '(X — B) is open
in E — S, hence it contains a sphere with interior U. Let A" = X —
f(U). Then g '(X — A’) is open in E — S; hence it contains a sphere
with interior V. Let B = X — f(V). Inclusion relations induce
homomorphisms

j* k* l*
HYX,B') — H'(X,A") — H'(X,B) — H*(X,A).

By construction, the preceding case applies to the inclusions jk and kl.
Hence k*;* and I*k* are isomorphisms. It is easily seen that this
implies that I* is an isomorphism. This completes the proof.
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DeFiNiTION 6.4. Let (X,A) be a relative n-manifold. An ordered
pair of relative n-cells (X,B),(X,B’) such that

(X,4) C (X,B) C (X,B"), or (X,4) C (X,B") C (X,B)

will be called a step in X — A. By 6.3, the inclusion map induces an
isomorphism H"(X,B) = H"(X,B’) called the isomorphism of the siep.
A finite sequence P of relative n-cells

(X7Bl)J(X7B2)’ ] (Xka):

such that each pair of adjacent terms is a step in X — A, will be called
a path in X — A from (X,B,) to (X,B,). The composition of the iso-
morphisms of the successive steps is an isomorphism H"(X B,) =
H"(X,B,) called the isomorphism P* of the path. In case (X,B,) =
(X,B,) the path is said to be closed, and the isomorphism of the path
becomes an automorphism. The manifold (X,A) is said to be orientable
if the automorphism of each closed path in X — 4 is the identity;
otherwise (X,A) is called nonorieniable. (Note that this concept de-
pends on the coefficient group).

LEmMa 6.5, Let (X,A),(X’,A") be relative n-manifolds such that
X' CX,and X' — A" C X — A. If (X,A) s orientable, so also s
(X',4.

Proor. Let (X',B}), :--, (X',B]) be a closed path in X’ — A’. Set

B, = BIU (X — X", i=1,--,k

Since X’ — B, = X — B, isopenin X' — A’, by 3.11, it is also open

in X — A; hence B, is closed. It follows that g, (X',B]) C (X,B,)

is a relative homeomorphism, (X,B,) is a relative n-ccll, and (X,B,),
-, (X,B,) 1s a closed path in X — A. We obtain the diagram

H'(X,B) = H(X,B;)) = --- = H'(X,B))

gt 1 g¥ La¥
H'(X',B}) = H'(X',B}) = .-+ = H'(X',B})

i

i

The isomorphisms of the upper [lower] line compose to give the auto-
morphism ¢ [¢'] of the path in X — A [X’ — A’']. Since g, is a relative
homeomorphism, g* is an isomorphism. Since all isomorphisms are
induced by inclusions, commutativity holds in each square. It follows
that g%¢ = ¢'g%. Since the original path is closed, B = Bj; hence
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g = gu. Since (X,A4) is orientable, ¢ is the identity. It follows that ¢’
is the identity; therefore (X’,4’) is orientable.

Lemma 6.6. If P isa pathin X — A from (X,B) to (X,B’), and P*
18 the 1somorphism of P, then commulativity holds in the diagram

P*
HY(X,B) = H(X,B’)
H'(X,4)

where j,j" are the indicated inclusions.

Proor. If P consists of a single step, commutativity is obvious since
all homomorphisms are induced by inclusions. In the general case,
we enlarge the diagram by inserting the individual steps and the homo-
morphisms H"(X,B,) — H"(X,A) induced by inclusions. Commu-
tativity in each small triangle implies the desired result.

Lemma 6.7. Let (X,A) be a relative n-manifold with X — A con-
nected. Let (X,B),(X,B’) be relative n~cells such that A C Band A C B'.
Then there exists a path in X — A from (X,B) to (X,B’).

Proor. Let F be the family of those relative n-cells (X,C) which
are the end terms of paths in X — A starting from (X,B). Let W be
the union of the sets X — C for (X,C) ¢ F. Clearly W is an open
connected set in X — A, Let 2 ¢ X — A be a limit point of W, As
X — A is locally euclidean, there is a relative n-cell (X,D) such that
DDAandzeX — D. As X — D is open, it contains a point y ¢ W,
Then y ¢ X — C for some (X,C) ¢ F. As X — A is locally euclidean,
there is a relative n-cell (X,C’) such that C’' D C\UDandye X — C'.
Then (X,C),(X,C")(X,D) is a path in X — A from (X,C) to (X,D).
Combining this with a path from (X,B) to (X,C), we obtain a path
from (X,B) to (X,D). Thus z ¢ W, and W is also closed in X — A,
As X — A is connected, we must have W = X — A. Therefore
X — B’ contains a point z ¢ W. Treating (X,B’),z in the same manner
as we treated (X,D),y above, we obtain the desired path from (X,B)
to (X,B’).

We are now prepared to state and prove the main results of this
section.

TaEOREM 6.8. Let (X,A) be a relative n-manifold with X — A con-
nected; let (X,B) be a relative n-cell containing (X,A4), and let j: (X,A) C
(X,B). Then we have the following five propositions:

() H(X,A) = 0 for g > n.
(ii) j* maps H*(X,B) onto H"(X,A).
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(ii1) The kernel of j* contains all elements of the form w — P*u where
u ¢ H'(X,B) and P is any closed path in X — A starting with (X,B).

(iv) If (X,A) is orientable, then j*: H"(X,B) = H"(X,A).

(v) If the coefficient group G 13 the group of inlegers, and (X,A) 1s
nonorientable, then H"(X,A) 1s cyclic of order 2.

Proor. To prove (iii) we apply 6.6 with j = 5/, to obtain j*P* = j*;
hence j*(u — P*u) = 0.

We shall say that (X,A) is finite if there exists a finite set (X,B,),
-+, (X,B,) of relative n-cells such that X — 4 = U, X — B..
The propositions (i), (i1), (iv), (v), restricted to the case (X,4) finite,
will be denoted by (i), (ii)’, (iv)’, (v)’ respectively. We will show first
that the finite case implies the general case.

Let {(X,B.)},ax ¢ M, be an indexed collection of relative n-cells such
that A = Mg B.. The existence of such a collection is implicit in
the assumption that X — A is locally euclidean. Let V, = X — B,.
For each finite set ¢ C M, define W, = U, Voand 4; = X — W,
Let N be the set of those £s such that W, is connected. Inclusion
relations in M provide a partial order in N. We will show that N is a
directed set with respect to this order. If z ¢ X — A4, let C(x) be the
union of all W, such that £ ¢ N and x ¢ W,. Then C(x) is open. If y
is a limit point of C(z) in X — A, choose a V, containing y. Then
V. M C(x) contains a point of some W, which contains z. Hence
V.Y Wy is connected, contains x and y, and is a W, for 9 ¢ N. There-
fore y ¢ C(x). As C(z) is open and closed in X — 4, and X — 4 is
connected, we have C(x) = X — A. If &9 e N, choosexz e W, ye W,
Since C(x) = X — A, thereisa ¢ ¢ N such that z,y e W,. Let w =
tUnUt Then W, = W, U W, U W, is a connected set. Hence
w e N, and w contains ¢ and 4. This proves that N is directed.

It follows that (X,4) is the intersection of the nested system
{(X,A))],£ ¢ N. By x,2.6, and the continuity of the Cech groups, the
group H°(X,A) is the limit group of the groups {H(X,A,)}.

Now (i)’ asserts that each H°(X,4,) = O for ¢ > n and each £ ¢ N.
Then the limit group H*(X,A) is also zero; hence (i)’ implies (i).

If u e H'(X,A), then by definition of direct limit, there is an clement
v ¢ H'(X,A,) such that g*» = u where g: (X,4) C (X,4:). Let
(X,B’) be a relative n-cell such that (X,4;) C (X,B’), and let 7’ denote
the inclusion map. Then (i)’ asserts the existence of w ¢ H"(X,B")
such that j7*w = ». Thus the image of (jg)*: H'(X,B’) — H'(X,A)
contains u. By 6.7 and 6.6, the image of (7'¢)* coincides with the image
of j*. As u is arbitrary, it follows that (ii)’ implies (ii).

Choose ay € M, let & ¢ N consist of the single element a,, and let
N’ be the subset of those £ ¢ N such that £ D &. Clearly N’ is cofinal
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in N; hence H"(X,A) is the limit group of {H"(X,A;)} for £ e N’. Let
£ C nin N’. Then we have the diagram
f* g* B*

(1) H'(X,B.,) —» H'(X,A) — H'(X,A,) - H'(X,A)
where f,g,h are inclusions. Suppose now that (X,A4) is orientable. By
6.5, (X,A;) and (X,4,) are orientable. Then (iv)’ asserts that f* and
g*f* are isomorphisms. It follows that g* is an isomorphism. Thus all
projections of the direct system {H"(X,4;)},t ¢ N’, are isomorphisms.
It follows from viir,4.8 that (fgh)* is an isomorphism. If we apply 6.6
with B,, = B’, it follows that j* is an isomorphism. Thus (iv)’ implies
(iv).

Suppose (X,A4) is nonorientable relative to integer coefficients. TLet
P be a path such that P* is not the identity. We may suppose that
the collection {(X,B,.)} includes the relative n-cells of P (adjoin them
otherwise), and let £ C M denote the set of indices of these cells.
Clearly W,, is connected, so £ ¢ N. Let N’ be the set of those £ ¢ N
such that £ D &. Proceed now as in the preceding paragraph, and
obtain the diagram (1) where a, ¢ £. Now P is a path in X — A4,
for each £ ¢ N’; hence (X,A,) is nonorientable. Then (v)’ asserts that
H"(X,A,) and II"(X,A,) are cyclic of order 2; and (i)’ asserts that
f*and g*f* are onto. It follows that g* is an isomorphism. By vii,4.8,
h* is an isomorphism. Hence H"(X,A) is cyclic of order 2. Thus (ii)’
and (v)’ imply (v).

It remains to establish the propositions in the finite case, i.e. X —
A =\, (X —B,). If k =1, then (X,A) is a relative n-cell; so (i)
holds, and 6.3 implies that ;* is an isomorphism. Hence (ii) hold:.
Since (iii) has been proved, and the kernel of j* is zero, it follows that
(X,A) is orientable, and then (iv) holds. Proposition (v) does not apply
ifk =1

Suppose inductively that (i), (ii), (iv), (v) have been proved for
finite (X,A) such that £k £ m. Consider now the case k = m + 1.
Since X — A is connected, the union of some m of the sets X — B, is
connected. Let the indexing be such that \U7 (X — B,) is connected.
Set A’ = N7 B,,and B’ = B,.,,. Then X — A’ is connected, and the
inductive hypotheses apply to (X,4’). The relative Mayer-Vietoris
sequence (1,15.6) of the triad (X;A’,B’) contains the portion

¢
(2 HYX,A’UB) — IX,A’) + H(X,B)

v A
— HY(X,4) — H"X,A' U B).
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To prove (i) for (X,A), choose a relative homeomorphism f:
(E,S) —» (X,B"). Let C = f (A’ \U B’). Then C is closed, and f
defines a relative homeomorphism g: (E,C) — (X,4’ \U B’). By 6.2,
H"*YEC) = 0 for ¢ = n. By x,54, g* is an isomorphism. Hence
H*Y(X,A" U B’) = 0 for ¢ 2 n. Then the exactness of (2) implies
that H(X,A) is the image of y. By the inductive hypothesis, H(X,A")
and H*(X,B’) are zero for ¢ > n. Therefore H*(X,4) = (0) = 0;
and (i) has been proved.

H'(X,A")
5 e N
3) H(X,D.) -i:-* H'(X,C.) — HY(X,A)
N b g
H'(X,B’)

For each component « of X — A’ U B/, let C, = X — «; and let
(X,D,) be a relative n-cell such that D, D C,. We obtain the diagram
(3) in which all homomorphisms are induced by inclusions. By 6.3,

(4) g* is an isomorphism,

By the inductive hypothesis (ii) on (X,A4),

(5) H(X,A’) = image f%.
As shown in the preceding paragraph,
(6) H"(X,A) = image ¢.

Then, if w ¢ H"(X,A), we can choose u ¢ H"(X,A’) and v ¢ H'(X,B’)
such that

w = y(u,v) = f*u — g*, sec 1,15.6.

By (4) and (5) we can choose w'v’ ¢ H"(X,D,) such that ffu’ = u and
g%’ = v. Since f.f = g.g, we have

grgalu’ — v') = frfu — gt = ffu — g*v = w.
This proves
(7) H"(X,A) = image ¢*.

By 6.7 and 6.6, H"(X,B’) and H"(X,B) have the same image in H"(X,A).
Thus (7) implies (ii).
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Having proved (ii), it follows that k% is onto. Since g *h% = g%, (4)
yields

(8) h?¥ is an isomorphism.

According to x, Exer. B3, H"(X,A’ \JU B’) is the injective direct sum
H'X,A"UPB) =) H'(X,C,) = 2, H(X,D,).

Referring to the definition of ¢, it follows that {(f%,g%)} is the collection

of components of a homomorphism

¢I: Z H"(X)Da) - H"(X)Al) 5+ H“(X)Bl)

having the same image as ¢. Since the sequence (2) is exact,
kernel ¢y = image ¢ = image ¢'.
Hence by (6)
H"(X,A) = [H"(X,A’) + H*(X,B")]/image ¢'.
Let us regard H"(X,B’) as imbedded in the direct sum. Using (7) and

the fact that ¢(0,v)) = —g*», we obtain
9) H'(X,A) = H'(X,B")/K
where

K = H"(X,B’) M image ¢'.

Now an element of 3, H"(X,D,) is a sum Y u, where u, ¢ H"(X,D,)
is nonzero for only a finite number of «’s. By definition

¢ (X ua) = (X fiua, 2 ghua).
Hence u ¢ K if and only if % has the form
(10) U= 2, g*u. where > fru, = 0.

Choose a fixed component y of X — A’ \J B’; and, for any component
a, let @, be a path in X — A4’ from (X,D.) to (X,D,). The path
(X,D,),(X,B"),(X,D.) followed by @, is a closed path P, in X — A4
beginning and ending with (X,D,). Set

va = g% 'giu. e H'(X,D,).
Using 6.6 we have
2 fua = 2 Qg g, = f% 2 Pho..
Then (10) becomes
(11 u=g*> v, where %3 P*, = 0.
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To prove (iv), let (X,A) be orientable. Then

> P, = Y v,.

By 6.5, (X,A’) is orientable. By the inductive hypothesis (iv) for
(X,A’), f% is an isomorphism. Hence (11) reduces to u = 0. By (10),
we have K = 0, so g*: H"(X,B’) = H"(X,A). Using 6.6 and a path
P from (X,B) to (X,B’), it follows that j* is an isomorphism. This
proves (iv) for (X,A4).

To prove (v), let @ = integers, and (X,4) nonorientable. The only
nontrivial automorphism of G is the reversal of sign; hence P*v, = +v,.
Let x be the sum of those v, such P%v, = v,, and y the sum of those
v, such that P*, = —»,. Then (11) becomes

(12) u=gyz+y  where [fiz—y) =0.

If (X,A’) is orientable, the inductive hypothesis (iv) for (X,4’) gives
z —y = 0; hence u = 2¢g¥zx. If (X,A’) is nonorientable, the inductive
hypothesis (v) for (X,A4’) states that £ — y has the form 2z, Hence
u = 2g%(x — z). In either case u = O mod 2. Thus K consists of the
even elements of H"(X,B’). It follows that H"(X,A) is cyclic of order
2. This proves (v) for (X,4), and thereby completes the proof of the
theorem.

ReMark. The restriction to integer coefficients in proposition (v)
is not necessary: If (X,A) is nonorientable, then, for any G, H"(X,A)
is isomorphic to G reduced mod 2. The proof just given holds in general
if we know, for any closed path P, that P* = +1 where I = identity.
This is true by virtue of the universality of integer coefficients which
we have not proved (see v, Exer. G3). Specifically, if P* = I, re-
spectively —I, for integer coefficients, then P* = I, respectively —1I,
for any G. It is therefore customary to use the terms orientable and
nonorientable always in the sense of integer coefficients.

TaeEOREM 6.9. The n-sphere S" 1s orientable relative to any coefficient
group.

Proor. If z, e 8", a sterographic projection shows that (8",x,) is a
relative n-cell. Since H"(8",z,) = H"(S") under the inclusion, it follows
from (6.8) (iii) that S” is orientable.

Tueorem 6.10. Let (X,A) be a relative n-manifold such that X s
homeomorphic lo a subset of the n-sphere. For each connected component
aof X — A, let A, = X — a. Then each (X,A,) is orienlable, so that
H"(X,A.) = @; and the homomorphisms H"(X,A,) — H™(X,A) induced
by inclusions provide an injective direct sum representalion

H'(X,4) = 2. H'(X,A.).
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The orientability of (X,A,) follows from 6.9 and 6.5. The direct
sum decomposition follows from x, Exer. B3.

We turn now to the corresponding results for homology. Up through
6.7, the exactness property was not used. Hence all statements and
proofs through 6.7 hold with cohomology replaced by homology.

The proof of 6.8 uses exactness. The Cech homology theory on
compact pairs is not generally exact. To obtain exactness we add to
the hypotheses of 6.8 that G is compact or a vector space over a field,
Then the duals of (1)-(iv) of §.8 are valid. Thesc are

(i) H(X,A) =0 for ¢ > n.
(ii) The kernel of j,: H.(X,A) — H,(X,B) is zero.

(iii) If u is in the image of j,, then w = P*u where P is any closed
path in X — A starting with (X,B).

(iv) If (X,A) is orientable, then j,: H.(X,A) = H.(X,B).

The duals of 6.9 and 6.10 hold with the same restriction on G. The
dual of the conclusion of 6.10 reads: The homomorphisms H,(X,A) —
H (X,A.) provide a projective representation of H, (X,A4) as a direct
product

H,(X,4) = [1. H.(X,4,).

Without restricting G, the Cech homology theory is exact for tri-
angulable pairs. This suggests an alternative procedure; namely, add
to 6.8 the hypothesis that (X,4) is triangulable, then show that the
proof carries through using only triangulable pairs at each stage. One
would use triangulable relative n-cells having triangulable unions and
intersections. For this it would suffice to use a single triangulation of
(X,4) and its barycentric subdivision. Then the duals of (i) to (iv),
as stated above, would hold; and, in addition, the dual of (v), which is

v) If G = integers, and (X,A) is nonorienlable, then H (X,A) = Q.

NOTE

The existence of multiplications. In §5 we assumed the proposition:

(A) There exists a multiplication T: R® X R" — R" satisfying con-
ditions (i), (i1), and (iii) of §5.

We also remarked that examples of such a multiplication, for n =
1,2,4, and 8, were provided by the real, complex, quaternionic, and
Cayley number systems respectively. No other examples are known.
If we require in addition that I'(x,y) be bilinear and |T'(z,y)| = |z| y],
then Hurwitz has proved [Nachr. Ges. d. Wiss. Gottingen (1898), 309-
316] that-n = 1,2,4, or 8, and T is isomorphic to the corresponding above-
mentioned number system. If we drop the norm condition, but retain
bilinearity, then Hopf has shown [Comm. Math. Helv, 13 (1941), 219-
239] that n must be a power of 2.
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It can be shown that (A) is equivalent to each of the propositions
(B), (C), and (D) listed below. For the equivalence of (C) and (D)
as well as the definition of the terms involved see S. Eilenberg, Ann. of
Math. 41 (1940), 662-673.

(B) There exists a multiplication "' X 8! — §*! with a two-
sided unit ¢: ex = z = reforall x ¢ S*".

(C) There exists a map S*™' X 8! — 87" of type (1,1).

(D) There exists a map 8" — S" having Hopf invariant 1.

Proposition (D) is of considerable importance in the study of ho-
motopy groups of spheres, and much effort has been expended in trying
to determine the values of n for which it is valid. Hopf has shown
(Fund. Math. 25 (1935), 427-440] that, if n > 1, then (D) implies that
n is even. G. W. Whitehead has proved {Ann. of Math. 51 (1950),
192-237] that, if n > 2, then (D) implies that »n is divisible by 4. J.
Adem has announced [Proc. Nat. Acad. Sci. 38 (1952)] that (D) im-
plies that n is a power of 2. H. Toda has announced [C. R. Acad. Sci.
Paris 241(1955), 849-850] that D is false for n = 16.

EXERCISES

A. DEGREES OF MAPS,

1. Define the degree of a map f: S° — S° by using the reduced
group Ho(S°). Show that this degree is always 0, 1, or —1. Show
that 4.3 remains valid for n = 1.

2. Define the degree of a map f: (E”,S*') — (E",S$"™"), and show
that it is equal to the degree of the map g: S"' — S defined by f.
3. Show that a map f: (E',8°) — (E',S°) has degree 0, 1, or —1.

4. Prove that, for each 2 > 1 and each integer k, there exists a
map f: (E",S"") — (E",S8""") of degree k.

B. INVARIANCE OF DOMAIN,
1. Let X be a closed subset of S" and let x, ¢ X. Show that, if
%, ¢ Int X, then HY(X,X — U) # 0 for all sufficiently small neigh-

borhoods U of z,.
2. Prove the converse of 1 assuming both continuity and exactness.

C. CARTAN’S MATCHING PROCESS.

Iet X be a compact space and {A,} a family of closed subsets of X.
Let A = C A,and 7,: (X,A) C (X,A.). Assume that an exact and
continuous homology theory (on the category @, of compact pairs) is
given and that, for a fixed integer g,

H,(X,BU A, =0 for all a

where B is any finite intersections of the sets {A,].
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1. Prove that, if u ¢ H (X,4) is such that ¢, ,u = 0 for all a, then
u = 0.

2. BEach u ¢ H/(X,A) detcrmines a family {u,} where u, =
Tayt € H(X,A,) satisfying k. su. = ks aus where k.50 H(X,A.) —
H,(X,A,\J Ap) is induced by inclusion. Show that each family {u.}
satisfying k.su. = kg.us is obtained in this fashion from some u ¢
Ha(X;Aa)-

3. Assume that the open sets X — A, form a base for X — A4 and
that u, ¢ H,(X,4,) are such that k,su, = us whenever 4, C A;.
Show that there is some u ¢ H,(X,A) with {,,u = u, for all a.

4. Transcribe the results of §6 and of the preceding exerciscs into
the “single space notation” of x,7.

5. Assume that the coeflicient group G is a domain of integrity, and
deduce from §6 results concerning co-Betti numbers. In particular show
that if A is a proper closed subset of S" then 8" — A4 has R*'(4;G) + 1
components.
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Index

abstract, category, 108; cell complex, 156

acyclic, carrier, 171; complex, 170

additive functor, 121

adjusted homology sequence, 245

admissible, category, 5; map, 306

algebraic, homotopy, 170; map, 170

alternating chain complex, 174

associated LC-theory, 271

augmented, complex, 169; singular com-
plex, 190

automorphism of a simplex, 82

axioms for cohomology, 14

axioms for homology, 10

barycenter, 61

barycentric, coordinates, 55; subdivision,
61, 63, 177

base, 133; point, 17

Betti number, 52, 138

bihomomorphism, 160

Borsuk’s separation criterion, 302

boundary, 56, 74, 90

boundary of a chain, 88

boundary operator, 10, of a couple, 127;
of a traid, 35; of a triple, 24

bounded, 269

Brouwer fixed point theorem, 301

canonical, base, 139; imbedding, 55; map
into a nerve, 286

carrier 170, 234; compact, 255

cartesian product, 67, 131

category, 109; of all pairs, 5; of compact
pairs, 5; of locally compact pairs, 5;
of triangulable pairs, 76

category with couples, 114

Cech homology groups, 237; system, 237

cell, 44; relative, 311; complex, 156

c-functor, 114

chain, 84; complex, 124; homomorphism,
84; homotopy, 129

circuit, 106

closed, covering, 233; path, 313, sct, 4

closure, 4

coboundary, 92; of a cochain, 90

coboundary operator, 14; of a triad, 37;
of a triple, 29

cochain, 86; complex, 1256

cocycle, 92

coefficient group, 17, 18

cofinal, 212; subsystem, 214

cohomology functor, 112

cohomology group, 13; Cech, 237; of a
chain complex, 153; of a complex, 92,
166; singular, 188

cohomology sequence of a, pair, 14;
triad, 37; triple, 29

cohomology theory, 13; Cech, 237; of
chain complexes, 153; of complexes,
166; singular, 188

cobhomotopy groups, 49

collapsible, 18

compact, 4; carriers, 255

compactification, 270, 277

complement, 74

completely regular, 276

complex, finite, 56; infinite, 74, 162,
locally finite, 75, 183

component, 254

composition of functions, 3

contiguous, 164

continuous, 4

continuous homology theory, 260

contractible to a point, 30

contravariant, functor, 111; &-functor,
116; 3-functor, 117

coordinate, 131

countercompact, 269

couple, 114, 126

covariant, functor, 111; d-functor, 115;
s-functor, 116

covering, 233; of a pair, 234; theorem,
187

C.S, 14

cube, 276

cycle, 90

cylinder, 210

deformation, chain, 129; retract, 30

degenerate chain, 173

degree of a map, 304, 306

development, 288

diagonal form, 139; map, 67

dimension, axiom, 12; of a complex, 56

direct, couple, 126; homology groups,
184; limit, 220; product, 131; sum, 8,
10, 32, 132; system, 212; system of
upper sequences, 224
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directed set, 212

distance in a simplex, 55
domain, 109; of integrity, 52
duality, 14

elementary, chain, 163; subdivision, 74,
75

enlargement, 261

equivalence, 109

equivariant, 73; homology groups, 209

essential, 299

euclidean complex and simplex, 73

Euler characteristic, 53

exact sequence of groups, 8

exactness axiom, 11; partial, 253

excision axiom, 11, 12

excision map, 12, 130; for complexes,
165; generalized, 117

excisions of various types, 267

Ext, 161

face, of a simplex, 55; of a singular sim-
plex, 186

factor, complex, 125; scquence, 9

finite cochains, 183

five lemma, 16

fixed point theorem, 301

formal homology theory, 166

free, base, 133; module, 134

full, subcomplex, 70; subeategory, 110

functor, 111

fundamental theorem of algebra, 307

generalized excision, 117

generate, 133

grating, 254

group, 6; of homomorphisms, 147; of
operators, 73

Hausdorff space, 4

h-category, 117

hexagonal lemma, 38

h-functor, 118

Hom, 147, 152

homeomorphie, 17

homologically trivial, 22

homology functor, 112

homology group, 10; Cech, 237; equivari-
ant, 209; of a chain complex, 125, 151;
of a chain mapping, 169; of a eomplex,
90, 166; of a triad, 203; singular, 188

homology sequence of a, pair, 11; triad,
35; triple, 25

homology theory, 10; Cech, 237; con-
tinuous, 260; equivariant, 209, for
locally compact spaces, 271; for normal
spaces, 282; singular, 188

INDEX

homomorphism, 7; of a sequence of
groups, 9, 15

homotopie, 6; chain maps, 129

homotopy, 6; axiom, 11, 12; equivalence,
29, 117; groups, 48, 207; inverse, 117

H.8, 11

identity, 108; map, 3

image, 7, 9

imbedding, 61

incidence isomorphism, 79, 80; number,
156

inclusion map, 3

index, 169; of a singular chain, 190

indexed family of sets, 233

induced homomorphism, 10, 14, 239

inessential, 299

infinite, complex, 74; triangulation, 75

infinitely divisible, 159

injection, 8, 132, 214

injective representation, 8, 133

interior, 4

intersection of a nested system, 260

Inv, 258

invariance, 180

invariance, of dimension, 302; of domain,
303

invariant, 73; under relative homeo-
morphisms, 266

inverse homology group, 184

inverse limit, 215

inverse system, 213; of factor groups,
228; of lower sequences, 224; of sub-
groups, 228

isomorphism, 7, 9

join, 74, 172, 192
kernel, 7, 9

lattice of a pair, 4

LC-theory, 271

Lebesgue number, 65

line segment, 72

linear, 6; imbedding, 61; independence,
52, 72, 133; map, 57, 60; metric, 61;
singular simplex, 192; subspace, 6

locally euclidean, 303

locally finite eomplex, 75, 183

lower cap, 44

lower sequence of groups, 8

main isomorphism, 94

manifold, 311

map, 3; linear, 57, 60; simplicial, 58, 60
map defined by a map, 3
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mapping cylinder, 210

mappings, 109

maps of inverse and direct systems, 213

Mayer homology groups, 182

Mayer-Vietoris, formula, 53; sequence,
37, 39, 42, 43

mesh, 60; of a covering, 251

metric topology, 75

module over a ring, 6

monomial, 308

multiplicative system, 108

natural, equivalence, 112; homomor-
phism, 7, 10; transformation, 112

nerve, 234

nested system, 260

nonorientable, 313; circuit, 106

norm, 44

normal pair, 278

normal space homology theory, 282

objects, 109

onto, 7, 9

open covering, 233

open set, 4

open simplex, 56

open star, 57

operator group, 73

ordered, chain complex, 163; complex,
67, simplex, 55

orientable, 313; circuit, 106

p-adic group, 230; solenoid, 230

pair of, sets, 3; groups, 10; scquences,
10, topological spaces, 4

partial exactness, 253

path, 210, 313

point of a simplex, 55

pointlike, 130

principal ideal ring, 134

prism, 192

product, 66, 67, 131

projection, 8, 67, 131, 177, 234; spec-
trum, 253

projective, representation, 8, 132; space,
106

proper, coverings, 249; triad, 34

quasi-component, 254
quasi-order, 212
quotient functor, 113

range, 109

rank, 52

reduced homology, group, 18, 19, 170,
191; sequence, 20
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reduction, 261

refinement, 234

rcgular, covering, 241; family relative
to a subspace, 262; neighborhood, 70,
71 ,

relative, cell, 311; homeomorphism, 266;
manifold, 311; Mayer-Vietoris se-
quence, 42; topology, 4

representation by generators and rela-
tions, 134

retract, 30

sequence of groups, 8; of order two, 224

sign changing trick, 117

single point compactification, 270

single space homology theory, 273

singular, chain, 186; complex, 187;
homology groups, 188; prism, 193;
prismatic chain, 193; prismatic com-
plex, 194; simplex, 186

simple circuit, 106

simplex, 54; singular, 186

simplicial, approximation, 64; complex,
56, map, 58, 60; product, 66

skecleton of a complex, 84

solenoid, 230, 296

sphere, 44

split exact sequence, 230

stacked covering, 241

star, 57, 172

step, 313

strong deformation retract, 30

subeategory, 110

subcomplex, 56, 125

subcube, 276

subdivision, 61, 63, 74, 75, 177

subfunctor, 113

subgroup, 6

subsequence of groups, 9

subsystem, 214

suspension, 48

tensor product, 140, 150

theory, 282

topological, invariance, 180; space, 4

Tor, 161

torsion number, 138

transitive system of groups, 17

triad, 34; homology groups, 203

triangulation, 60

triple, 24

Tychonoff, compactification, 277; map,
277

types of excisions, 263

uniform homotopy, 282
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unimedular, 135 variety, 226
uniqueness, 179; category, 120; theorem, vector space, 6
100 vertex, 54
unit, 108 Vietoris cycles, 253
unit, simplex, 55
universal coefficient theorems, 160 weak, continuity, 293; topology, 75

upper cap, 44
upper sequence of groups, 8 zero dimensional, 254


























